
AN ABSTRACT OF THE THESIS OF

Donald C. Kirkpatrick for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented 25 April 1985.

Title: Design of Self-Synchronized Asynchronous Sequential

State Machines Using Asymmetrical Delay Elements

Redacted for Privacy
Abstract approved:

V. M. Powers

A design style is presented for a self-synchronized,

multiple input change, asynchronous state machine which

processes input changes at a speed limited only by the

required machine behavior and implementation technology.

This state machine will operate at this ultimate speed

because of a new asynchronous delay element with unequal

rising and falling propagation delays. This new delay

element is used in a clock generator circuit which monitors

the machine's inputs to generate a clock pulse for each

input state change. Two new functions, based on the

machine's required behavior, are defined for a multiple

output change machine. The first function specifies the time

between intermediate state transitions in a multiple output

change sequence. The second function indicates when the next

state is a final stable state. The clock generator, new

delay element, and new functions are used in two design

examples. This design style is extended to the unbounded

input change mode, pulse mode, and speed independent mode.

° Copyright by Donald C. Kirkpatrick
25 April 1985

All Rights Reserved

Design of SelfSynchronized Asynchronous Sequential
State Machines Using Asymmetrical Delay Elements

by

Donald C. Kirkpatrick

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirement for the

degree of

Doctor of Philosophy

Completed 25 April 1985

Commencement June 1985

APPROVED:

Redacted for Privacy
Associate Professor of Electrical and Computer Engineering
in charge of major

Redacted for Privacy
Head of depart t of Electrical and Computer Engineering

Redacted for Privacy

1
Dean of Grad to Schooll

Date thesis is presented 25 April 1985

Typed by researcher for Donald C. Kirkpatrick

TABLE OF CONTENTS

INTRODUCTION 1

The Problem 2

Motivation 3
Why Self-Synchronized Asynchronous Design 4

BASIC CONCEPTS AND DEFINITIONS 6

REVIEW OF LITERATURE 14

THE DELAY ELEMENT 20
Delay Element Types 20
Asymmetrical Delay Element Design 23

TIMING ANALYSIS 27
Huffman-Moore MIC Machine Analysis 28
Self-Synchronized SOC Machine 31

Self-Synchronized MOC Machine 34

SELF-SYNCHRONIZING CLOCK GENERATORS 41
Single Input Change Mode Clock Generation 42
Multiple Input Change Mode Clock Generation 43
An Optimum Clock Generator 47

EXTENDING SELF-SYNCHRONIZATION 54
Unrestricted Input Change Mode 54
Pulse Mode 57
Speed Independent Mode 59

TWO DESIGN EXAMPLES 62
The Crumb Road Traffic Control Machine 62
A Practical Design Example 66
Machine Block Diagram and Overview 67
The Change Detector 70
The Delay Element 73
State Variable Register 75
Transition Function Map Array 76
UIC Latch 76
Microprocessor Interface 79

SUMMARY AND CONCLUSIONS 82

BIBLIOGRAPHY 85

LIST OF FIGURES

Figure Page

1. Huffman-Moore Model Finite State Machine 7

2. Delay Element Waveforms 22

3. Simple Asymmetrical Delay 23

4. Programmable Asymmetrical Delay 24

5. Improved Asymmetrical Delay 26

6. Self-Synchronized Asynchronous State Machine 31

7. MOC Clock Generator - Present and Next State 35

8. MOC Clock Generator - Input and Present State 38

9. Clock Generator Expanded 41

10. Digital Differentiator 45

11. Symmetrical Delay Element MIC Timing Diagram 46

12. Asymmetrical Delay Element MIC Timing Diagram 48

13. MOC Machine With Early Final State Indication 50

14. Early Final State Indication Timing Diagram 51

15. Pulse Mode Alternate Change Detector 58

16. Crumb Road Problem Flow Matrix 63

17. Crumb Road Problem Sequential Machine 63

18. Crumb Road Problem Self-Synchronized Machine 65

19. Practical Example - Block Diagram 68

20. Practical Example - Change Detector 71

Figure Page

21. Practical Example - Asymmetrical Delay 74

22. Practical Example - State Register 75

23. Practical Example - Transition Function 77

24. Practical Example - UIC Latch 78

25. Practical Example - Programming Interface 80

DESIGN OF SELF-SYNCHRONIZED ASYNCHRONOUS SEQUENTIAL

STATE MACHINES USING ASYMMETRICAL DELAY ELEMENTS

INTRODUCTION

The logical structure and design style selected for an

asynchronous sequential state machine implementation will

affect the performance of the resulting circuit realization.

An optimum structure and design style will result in the

ultimate speed of the final circuit being limited only by

required machine behavior and implementation technology.

This dissertation emphasizes design of asynchronous

state machines operating in multiple input change mode. In

general, such machines cannot be realized without delay

elements (Friedman and Menon, 1968). A new delay element,

with unequal delay of the rising and falling edges, is used

in a circuit to monitor a machine's inputs and, when a

change is detected, generate a clock pulse. This design

style is shown to be an optimum solution, permitting simple

design techniques, yet requiring little added circuitry.

This design style is extended to operate in unbounded input

change mode, pulse mode, and speed independent mode.

2

The Problem

One of the most compelling rationales for embarking

upon an asynchronous design is to maximize the operating

speed of a sequential state machine. The measure of

operating speed will be the maximum rate at which the

machine can process input state changes. The ultimate

operating speed of any asynchronous machine is bounded by

the fundamental limitations imposed by the required machine

behavior and implementation technology. The machine is

required to perform a sequence of transitions as determined

by its behavioral description, and these transitions proceed

at a pace which is limited by the speed of the circuits used

to realize the design. Except for a normal fundamental mode

machine, every design methodology presented to date imposes

additional restrictions on operating speed beyond these

fundamental limitations. The task is to develop a design

style wherein the ultimate operating speed is limited

only by these fundamental constraints.

Previous sequential machines do not achieve this

ultimate speed. For the multiple input change mode machine,

the choice has always been either a fundamentally flawed

structure that can never reach the ultimate speed, or a

structure that could achieve ultimate speed but is prevented

from doing so by limitations of available delay elements.

3

The search for a circuit realization that will achieve

the ultimate operating speed can be divided into two phases.

The first is a careful analysis of the possible machine

structures to determine which have the potential to realize

this ultimate operating speed. The second is the development

of a method to design and augment the structure as required

so that the final circuit realization does in fact achieve

this ultimate operating speed.

Motivation

Technology is continually improving; operating speeds

that were only dreams yesterday are commonplace today. These

gains should not be squandered on a mediocre machine design

or implementation strategy. Achieving ultimate operating

speed is especially important to the test equipment

manufacturer. His customers are building newer and faster

circuits every day. The manufacturer must stay one step

ahead so he can offer his customers products capable of

testing and measuring their circuits.

Quite often the interface between digital test

equipment and the customers circuit is asynchronous; the

customer's circuit and the test equipment each have their

own clocks. This kind of interface can be most difficult

because of interactions between the two different clocks.

The test equipment manufacturer strives to squeeze all the

4

speed possible (consistent with other goals such as cost)

into his equipment to maximize his potential market.

why Self-Synchronized Asynchronous Design

There exists a class of design problems that can only

be solved using asynchronous design methods. In many

practical problems, the clock pulse that characterizes

synchronous design is not available. Even when it is,

greater overall speed can sometimes be achieved by designing

asynchronous sub-circuits. The interface between two

synchronous circuits with different clocks is always an

asynchronous design problem. For problems where speed is

critical, an asynchronous machine has the distinct advantage

of not being required to wait for the next clock pulse.

Synchronous machines have many advantages over

asynchronous machines. By using a self-synchronized

asynchronous design, the inherent speed advantage of an

asynchronous machine is retained while the advantages of

efficient state assignment and logic reduction normally

associated with synchronous machines is obtained.

The state assignment process involves designating a

unique state-variable value for each state of the machine.

Any state assignment imposes structure on the machine

(Hartmanis and Stearns, 1966) and influences the logic

complexity (Kohavi,1978), but for a synchronous design,

5

proper operation of the resulting machine will result with

any state assignment. However, a necessary condition for

proper asynchronous machine operation is a proper state

assignment (Liu, 1963; Tracey, 1966; Tan, 1971). By using a

self-synchronized design, the state assignment problem is

transformed to the synchronous case (Chuang and Das, 1973)

and failures due to improper state assignment are avoided.

A necessary condition for proper operation of an

asynchronous machine is the proper design of the transition

function combinational logic (Unger, 1969). A proper design

requires the addition of logic gates to an otherwise minimal

circuit for the sole purpose of suppressing spurious output

pulses. A synchronous machine is unaffected by these

spurious pulses because they are not present when the clock

occurs. Again, self-synchronization transforms this

asynchronous design problem into a synchronous problem and

renders these additional logic gates unnecessary.

The price for this design simplification and hardware

complexity reduction is the addition of a clock generator.

In the following chapters, previously proposed clock

generators are discussed, their assumptions, advantages, and

limitations are presented, and their timing requirements are

analyzed. Once the problems are explored, an optimum clock

generator is presented. The self-synchronized asynchronous

machine is then extended to operate in the unbounded input

change mode, pulse mode, and speed independent mode.

6

BASIC CONCEPTS AND DEFINITIONS

A physical circuit can be abstractly modeled using the

mathematical concepts of sets and mapping functions.

Definition: A sequential machine, M, is a quintuple,

M=(S,I,0,6,A),

where:

i) S is a finite nonempty set of internal states.

ii) I is a finite nonempty set of input states.

iii) 0 is a finite nonempty set of output states.

iv) 6:SxI4-S is called the transition function.

v) A:SxI-0-0 is called the output function.

When the output function is of secondary importance, the

abstract model can be simplified.

Definition: A state machine, M, is a triplet,

M=(S,I,(5),

where S, I and (5 are defined above.

The input signal combination presented to the machine is

called the input state. The output signal combination

7

produced by the machine is called the output state. The

state variable signal combination is called the internal

state. The individual input, output, or internal state

variable signals themselves will be referred to as inputs,

outputs, or state variables. Together, the internal and

input states form the total state (or just state). This

notation can be clarified by examining the Huffman-Moore

model of a finite state machine shown in Figure 1.

Inputs > OutputsCombinational

Present Next

State State

Logic

.1
le....,

Delay

Elements

Figure 1

Huffman-Moore Model Finite State Machine

This model is completely general; any sequential state

machine can be built in this form. The combinational logic

block contains no memory and the delay element block

contains only memory devices. As indicated in the

introduction, the state assignment must be based on the

transition function or the machine can malfunction. Machines

8

with a special kind of transition function can be built

delay free (utilizing only the stray delays), but the vast

majority of machines require at least one delay element.

A sequential machine may be designed to operate in one

of six basic modes. These modes are characterized by the

constraints placed on the input signals.

Definition: The input signals of a synchronous

machine are permitted to change only during the

period between changes of a special input signal

called the clock. All input signals must be stable

fora specified time prior to a change in the clock

and must remain stable for a specified time after

the clock changes.

Definition: Only one input of an asynchronous

single input change machine (SIC) is allowed to

change at a time. Consecutive input changes must be

separated by some specified minimum time.

Definition: Several inputs of an asynchronous

multiple input change machine (MIC) are permitted to

change within a specified period of time. The state

machine is to consider all these changes to be

simultaneous. After this first period, no further

input changes are permitted fora second time period

while the machine processes this input.

9

Definition: Any input of an asynchronous

unrestricted input change machine (UIC) may change

at any time. Sometimes the mild restriction that the

same input may not change twice within some minimum

time is included.

Definition: For a pulse mode machine, the input

changes always occur in pairs. The same input signal

must change twice within some specified minimum

time. Each input state corresponds to a single input

change pair (pulse) and consecutive input states

must be separated by a specified minimum time.

Definition: Input changes for a speed independent

machine are permitted only when the machine

indicates, through special outputs, that it is

ready to accept the next input change.

If the restrictions and conditions are all properly met

by the circuit providing input to the sequential machine,

then all is well and the machine will operate as it should.

If, for some reason, the circuit providing the inputs does

not meet the constraints, unpredictable operation will

result. The sequential machine could produce spurious output

pulses, wrong output states, or go to the wrong next state.

It is impossible to predict a priori the effects of

assumption violations.

10

In addition to the six basic modes of operation, an

asynchronous sequential machine may be classified into one

of three categories based on its output behavior.

Definition: A machine is classified as single output

change (SOC) if no more than one output state change

results from every single input state change.

Definition: A machine is classified as multiple

output change (MOC) if at least one input state

change produces more than one output state and there

exists some fixed upper bound on the number of

output state changes that result from every single

input state change.

Definition: A machine is classified as unbounded

output change (UOC) if there is no uniform finite

number bounding the number of output state changes

that result from one or more single input state

change.

There is only one output state for every total state of

the sequential machine. If a sequential state machine is to

produce more than one output state in response to a single

input state change, the sequential machine must perambulate

through a sequence of internal states. There will be one

internal state for each output state. For both SOC and MOC

operation, the machine will always reach a final stable

11

total state. If the transition function maps a total state

to its own internal state, that total state is stable. The

UOC behavior results when no final stable total state exists

for a given input state.

Definition: A machine operates in fundamental mode

if a final stable state is always reached between

input state changes.

Non-fundamental mode operation will not be considered

herein; it will be assumed all state transition sequences

terminate in a final stable state. A machine operating in

fundamental mode with single input change and single output

change is said to be a normal fundamental mode machine.

The process of encoding the states of a machine as

binary numbers is called state assignment. Choosing a state

assignment for a synchronous machine influences the

complexity of the combinational logic, but proper operation

of the machine is not affected.

An asynchronous sequential design using level-sensitive

logic suffers from several potential failure modes that are

not found in synchronous designs (Unger, 1969). In

asynchronous level-sensitive design, an improper state

assignment may cause the machine to fail to reach the proper

next state. An asynchronous machine is said to have a

critical race if the proper operation of the machine depends

upon the relative speed of the state variable changes.

12

There exists a class of asynchronous machines for which

a race-free state assignment is a necessary, but not

sufficient, condition for proper operation. Machines of this

class have an essential hazard - so called essential because

its presence or absence is determined by the machine's

required functional behavior. The final circuit realization

must have at least one delay element to assure proper

operation. A machine has an essential hazard if any state

requires the following behavior; starting in state s, the

input changes to x and the machine reaches a new total

state. If this new total state is not re-established by now

changing the input to what it was in s and back to x again,

then the machine has an essential hazard.

Even when a proper state assignment is chosen, the

machine may still fail to achieve the proper next state due

to delays in the combinational logic. These delays will

cause spurious output pulses in the transition function

logic unless additional circuits are introduced to suppress

them. Any combinational logic realization that has the

potential for spurious outputs is said to have a logic

hazard.

Synchronous machines do not suffer from malfunctions

due to critical races, essential hazards, or logic hazards.

There is no clock pulse when these spurious output pulses

occur or when the machine would be susceptible to a critical

race or essential hazard. It would be advantageous to

13

transform an asynchronous machine into a synchronous machine

yet retain the asynchronous speed advantage. This is

possible if the machine can be built to generate its own

clock pulse at the appropriate time. The entire self-

synchronizing problem then revolves around generating this

clock pulse without giving up the inherent speed advantage

an asynchronous machine has over a synchronous machine.

14

REVIEW OF LITERATURE

The foundation of sequential state machine analysis and

design was set in place by three classic papers. D. A.

Huffman presented the first orderly method for state machine

synthesis (Huffman, 1954). He introduced the flow chart

concept and presented a method for reducing the number of

storage elements. E. F. Moore published his studies of the

abstract properties of sequential machines (Moore, 1956). He

had independently developed essentially the same method for

reducing the number of storage elements. G. H. Mealy

presented a formal procedure for the synthesis of sequential

machines (Mealy, 1955). From these three papers come the

basic concepts of sequential machines - present state, next

state, inputs, outputs, state equivalence, flow charts,

state diagrams, Huffman-Moore Model, Moore Machine, Mealy

Machine, and much more.

In the late 1950's, D. E. Muller and W. S. Bartky

developed the theory of speed independent circuits. Numerous

papers were presented at conferences and published. These

papers have been condensed into chapters in the texts

(Unger, 1969; Miller, 1965). The original papers are

reportedly not easy to read. The chapters in these texts

15

were the source for the speed independent information

presented herein.

The importance of circuit delays was known very early.

S. H. Unger proved that if the required machine behavior

has an essential hazard, then there is no delay free

realization that will operate properly under all conditions

(Unger, 1959). He then proved any circuit can be realized

hazard-free with at most a single delay element (under the

single input change assumption).

The state assignment is crucial to proper asynchronous

state machine operation. C. N. Liu published a method of

state variable assignment for asynchronous circuits. A Liu

assignment solves the critical race problem while allowing

concurrent changes in the state variables (Liu, 1963). He

also was the first to prove the conditions necessary for a

race-free assignment. J. H. Tracey improved upon the Liu

assignment (Tracey, 1966). The advantage of a Tracey

assignment is that the number of state variables is bounded

above by the number required for the Liu assignment; in many

cases the number required is less. C. J. Tan extended the

work of Liu and Tracey (Tan, 1971). A Tan assignment results

in reduced complexity for the transition function

combinational logic at the expense of additional state

variables.

In addition to the Liu, Tracey, and Tan assignments,

there are several "universal" state assignments possible

16

(Unger, 1969). All of these state assignments suffer the

same problem. The number of state variables required to make

a race-free assignment is usually greater than the minimum

number required to encode the states of the machine.

S. H. Unger published the first formal definition of

proper behavior for a machine operating in the unbounded

input change mode (Unger, 1971). The paper then detailed the

design of a Huffman-Moore machine to function properly in

this mode.

As a first step toward a self-synchronized machine, D.

Friedman and P. R. Menon published the first practical

solutions to the problem of multiple input change mode

design (Friedman and Menon, 1968). This paper demonstrated

that any circuit operating in multiple input change mode has

a hazard-free realization with, at most, a single delay

element. Three solutions are presented: source box in the

input path, Huffman-Moore design with proper state

assignment, and delay box in the feedback path.

J. G. Bredeson and P. T. Hulina published the first

method to use the input transitions to generate a self-

synchronizing clock pulse (Bredeson and Hulina, 1971). This

paper describes how the normal problems of critical races

and logic hazards are avoided for a self-synchronized

asynchronous machine. The design method in this paper is

strictly limited to single input change mode.

A solution to the multiple input change problem took

17

another two years to surface. H. Y. H. Chuang and S. Das

published a method for designing a self-synchronized machine

operating in the multiple input change mode (Chuang and Das,

1973). A short time later, C. A. Rey and J. Vaucher

published another method for designing a self-synchronized

machine (Rey and Vaucher, 1974). This design used a general

purpose clocking circuit and allowed multiple output

changes. The delay elements were digital differentiators and

monostable multivibrators.

The two machines of Rey and Vaucher and Chuang and Das

were compared by Unger to the Huffman-Moore machine (Unger,

1977). Unger found several problems with the Rey and Vaucher

machine and suggested an improved clock generator in the

same spirit. This paper was primarily concerned with

asynchronous machines operating in the UIC mode. Unger

demonstrated that the Huffman-Moore approach was suitable

for UIC operation if a proper state assignment was made, but

all previous self-synchronized approaches are unsuitable for

UIC operation.

The state transition function can be realized using

many different kinds of logic components. A read only memory

device has been a popular choice in synchronous designs for

many years, but was not used in early asynchronous machines

due to possible spurious outputs. H. A. Sholl and S. C. Yang

published the first asynchronous machine using memory

devices to realize the transition function (Sholl and Yang,

18

1975). The design is not self-synchronized; the unavoidable

memory access delay is used to control critical races.

Memory devices are also attractive because of the inherent

matching of delays. B. Thomas and P. C. Chandrasekharan

presented a design methodology using the matched delays in

memory devices (Thomas and Chandrasekharan, 1981).

There are several structural configurations that an

asynchronous machine can assume. J. L. Huertas and J. I.

Acha were the first to recognize this and they published

three models for self-synchronizing asynchronous machines

(Huertas and Acha, 1976). This paper is the first to use a

comparator in the clock generator. G. L. Chiesa published a

method of constructing a larger asynchronous machine from a

collection of smaller self-synchronized asynchronous

machines (Chiesa, 1979). A. B. Hayes published the first

self-synchronized machine to operate in the speed

independent mode (Hayes, 1981).

The above references provide a historical path from the

beginnings of switching theory to the present. There are

also several texts that provide a valuable reference source.

The key ideas in these texts were first presented in the

papers previously mentioned herein, but the texts provide a

context and unity not possible in these individual papers.

One of the earlier texts was written by J. Hartmanis

and R. E. Stearns in 1966. This text models the structure of

sequential machines using the mathematics of groups. It is

19

this text that serves as the guideline for the mathematical

notation used herein. Another such text was written by H. S.

Stone in 1973. Both texts are invaluable references for any

work relating algebraic structures to machine architectures.

An early two-volume text on sequential machine design

was written by R. E. Miller. Published in 1965, it is a

remarkably complete text on switching theory. The second

volume contains one chapter on asynchronous switching

networks and one chapter on speed independent circuit

theory. These two chapters formed the most complete

reference work on asynchronous circuits and machines prior

to the classic text written by S. H. Unger and published in

1969. There still is no better text on asynchronous design

than Unger. He covers virtually every design aspect with

many theorems and proofs. Since his book was published, the

major advances in the field have been in synthesis of

unbounded input change mode machines and self-synchronized

machines.

There are several other texts that have a chapter on

asynchronous design: F. J. Hill and G. R. Peterson, Z.

Kohavi, C. R. Clare, and W. I. Fletcher for example. These

texts have little to offer beyond what is already in Unger

or Miller.

20

THE DELAY ELEMENT

In the real world, all circuits exhibit delay. When a

machine is designed under the synchronous assumption, the

time between successive clock pulses must be greater than

the sum of the delays in the circuit. If this condition is

met, the machine will operate as if all the components are

ideal. In the asynchronous machine, the delays must be

carefully analyzed or malfunctions may occur.

Delay Element Types

Circuit delays may be either deliberately introduced or

unavoidable due to physical device characteristics.

Definition: A stray delay is the unavoidable delay

cause by the physical limitations of the device.

Definition: A delay element is a delay that has been

deliberately introduced by the designer.

Definition: A delayfree circuit is one that has

only stray delays.

21

Delay-free does not mean the circuit has no delay. It

just means there are no intentionally introduced delays. In

general, the location or magnitude of a stray delay is not

assumed to be known. However, the upper bound on the

magnitude of the stray delay is specified.

In all previous work, three types of delay elements

have been used.

Definition: A pure delay only transforms or shifts

the input signal in time by amount D.

Definition: An inertial delay outputs a signal only

after it has persisted for the delay time D.

Definition: A monostable multivibrator outputs a

pulse of fixed duration D in response to a positive

(or negative) input transition.

The pure delay only shifts the input signal in time. It

is best approximated in the real world by a transmission

line. The inertial delay not only delays the input by amount

D, but it also filters the input. Any pulse of duration less

than D does not propagate to the output. A monostable

multivibrator is a delay in the sense it produces an edge a

fixed time after a reference edge. The multivibrator is also

known as a one-shot. If the multivibrator time period can be

extended by additional edges occurring before the end of the

period, then the multivibrator is said to be retriggerable.

22

Other kinds of delay behavior are possible. One such

behavior introduced here is called an asymmetrical delay.

Definition: An asymmetrical delay output changes to

a one (or zero) only after the input change has

persisted for the delay time D. The opposite signal

change is output without delay.

An asymmetrical delay operates as an inertial delay on one

edge of a signal only. The other edge is ideally passed

through with no delay.

Figure 2 compares the behavior of the four different

types of delays on the same input waveform. All four delays

have the same delay time (D). The monostable multivibrator

(one-shot) delay and the asymmetrical delay are shown

operating on the positive edge, but could just have easily

been designed to operate on the negative edge.

Input waveform

Pure Delay

Inertial Delay

One-Shot

Asymmetrical Delay

Figure 2

Delay Element Waveforms

t_.

23

Asymmetrical Delay Element Design

Several methods exist for creating an asymmetrical

delay element. One such method is the resistor-capacitor-

diode combination shown in Figure 3.

Figure 3

1=>

Simple Asymmetrical Delay

This method has the advantage of simplicity. However,

there are serious limitations to its usefulness. If large

delays are required, the capacitor value can be large enough

that the driving circuit output impedance is important. The

rise time of the capacitor voltage is slow so a buffer with

hysteresis must be present. With a low input, the noise

immunity of the circuit is degraded by the diode forward

drop. With a high input, noise is more easily coupled into

the node due to the high source impedance. The nominal delay

time is difficult to control since it is a function of

driving circuit output impedance, logic high voltage level,

buffer threshold, and temperature.

24

Sometimes it is also desirable to make the delay

programmable. One reason for making the delay programmable

is to provide a method for calibrating the delay. A second

reason is to increase the throughput of the machine by

customizing the delay to the state of the machine. This

second reason will be detailed later. The key to building a

programmable asymmetrical delay is illustrated by the

circuit in Figure 4.

DIFFERM

Figure 4

D1

D2

U CI

X

Dn

SEL

DELAY I:Do

Programmable Asymmetrical Delay

CHANGE

For reasons which will be obvious later, the delay

element input and output have been named DIFFER and CHANGE.

The total delay is achieved through a series of smaller

individual delay elements, shown above using the traditional

"D" symbol. The delayed edge propagates using a serial path

while the non-delayed edge propagates using a parallel path.

25

An individual delay element can be realized using the

resistor-capacitor-diode circuit shown in Figure 3. AND

gates serve as buffers. The delay is programmed using the

binary vector DELAY to select the proper input on the N to 1

multiplexer.

This circuit solves many of the problems associated

with the circuit shown in Figure 3. Since the total delay is

spread over many smaller delays, the capacitors and

resistors are smaller. This helps solve problems caused by

noise and slow rise time. The input low noise margin is

restored since the second input of each AND gate is

connected to DIFFER. The scheme of Figure 4 was built and

tested using 74F08's as the AND gates. With one exception,

the performance was excellent. There was a significant

variation in propagation delay with temperature due to the

74F08 input threshold drift. The actual drift was -4.4

millivolts per degree C. This produced a 20% variation in

propagation delay over the commercial temperature range of 0

to 70 degrees C.

For many applications this amount of drift is not

acceptable and another solution must be found. Such a

solution is to replace the DELAY-AND gate string with a

shift register, as shown in Figure 5 on the next page. A low

on DIFFER holds the shift register in a reset condition.

When DIFFER changes to a high, the reset is removed and the

register begins to shift the high on the serial input down

26

the register. The accuracy of the delay is limited only by

the accuracy of the oscillator. DIFFER also turns the

oscillator on and off so the time to the first shift is

known and constant.

DIFFER r::

En Q

Cisc

O

S

SI H Q1
I Q2

F .

T.

R
E

R
Qn

G

D1

D2

U Q

X

Dn

SEL
1

DELAY 11=

Figure 5

Improved Asymmetrical Delay

I=1 CHANGE

This structure is very suitable for delays much longer

than would be reasonable for the resistor-capacitor-diode

network. For extremely long delays, the shift register would

be replaced by a counter. The counter would be preloaded

with a count value and decremented by the oscillator. When

the counter reached zero, the delay time would be over. A

shift register is chosen here because it is extremely easy

to decode the count. (A shift register, when used as a

counter, is sometimes called a Johnson counter.)

27

TIMING ANALYSIS

Over the years, the following notation has evolved as

conventional when writing timing expressions:

D : Delays through delay elements.

d : Stray delays through combinational logic.

s : Set-up times for flip-flops.

f : Propagation delays through flip-flops.

Subscripts M and m are used to represent maximum and minimum

values respectively. This notation will be used throughout

the timing analysis that follows.

One important specification for any asynchronous

multiple input change machine is a time interval during

which several input signals may change. The machine is to

consider these input changes to be simultaneous. That is,

these input signal changes are to be considered as only one

input state change. Given this specification and the

required machine behavior, a circuit is designed to realize

the machine. One result from the design is the determination

of a second time interval. The inputs must remain stable

during this second interval while the machine perambulates

from one state to the next state. If the inputs do not

remain stable, unpredictable behavior will result.

28

Definition: 61 is the time interval following the

first input change in which the other input signals

are permitted to change. The machine is to behave as

if all input changes occurring during this interval

are simultaneous.

Definition: 62 is the time interval following 61

that the inputs must remain stable for the machine

to properly change to the final stable state.

62 starts with the end of 61 and separates groups of input

changes. The minimum time between input state changes is the

sum of the two intervals, 61+62.

It is unfortunate that the traditional symbol for the

next-state transition function, 6, is also the traditional

symbol for the two time intervals. The subscript and the

context should provide the key as to whether an interval or

a mapping function is being referenced.

Huffman-Moore MIC Machine Analysis

The Huffman-Moore model was shown in Figure 1. As

stated earlier, careful analysis of the transition function

is required when an asynchronous machine is built based on

this model using level-sensitive logic. This model has

served as a basis for most timing analysis (Unger, 1969) and

29

has been the only basis for all previous unbounded input

change design (Unger, 1971).

It has been shown (Unger, 1969) that, for proper MIC

operation, changes to the present-state variables induced by

the first input signal change must not reach the inputs of

the combinational logic before all the changes induced by

the last input change reach the combinational logic outputs.

The earliest a change can reach the logic inputs is Dm+dm

while the latest a change reaches a logic output is ol+dm.

Thus the inequality,

Dm+dm(Si+dm.

This results in a minimum delay element value of

Dmz61+(dm-dm).

When any machine generates multiple output states, it

does so by perambulating through intermediate total states

generating output states. If the inputs do not remain stable

until the final stable state is reached, the fundamental

mode assumption is violated. (Lift the fundamental mode

restriction and the machine is in UIC mode.) The time

between successive intermediate states (and thus successive

output states) is determined by the propagation delay

through the combinational logic block and the delay element.

The time for one intermediate state transition (D+d) is

bounded by a minimum of Dm+dm and a maximum of DM +dM.

The last changes caused by the final input change of an

input state, including any state variable change, must reach

30

the combinational logic outputs before the first change of

the next input state. If n is the number of intermediate

internal state transitions required to produce all the

output states, then

(52+dmdm+n(Dm+dm).

Thus the time between input states must satisfy the

inequality

0+62=.61-Fn(Dm+dm)+(dm-dm).

The term for the maximum time between intermediate

states in the expression above (DM +dM) can be reduced by Dm

if transient spurious pulses on the outputs can be

tolerated. Transient spurious next-state outputs of duration

less than Dm can be filtered by the delay elements and the

proper next state will still be reached. Intentionally

designing a machine with transient spurious outputs is not

in the spirit of the work presented herein.

If the machine is designed to operate in single output

change mode, then n=1. If the transition function has no

essential hazards, then state assignments exist (Tracey,

1966) that can result in a delay-free realization (Dm=0).

For any level-sensitive Huffman-Moore machine, a proper

state assignment must be found. This assignment is

customized, based on the transition function, using the

techniques developed by Liu and others.

31

Self-Synchronized SOC Machine

While the Huffman-Moore model could be used to describe

a self-synchronized machine, it is better to augment the

model slightly as shown in Figure 6.

Inputs

Present

State

Combinational >Outputs

Logic

State

RegistersH H
Clock

Generator

Figure 6

Clock

Pulse

Next

State

Self-Synchronized Asynchronous State Machine

The generalized delay elements have been replaced by

edge-triggered flip-flops organized as state registers and a

clock generator block has been added. With proper clock

generator design, only one delay element is required (inside

32

the clock generator). This delay element is used to properly

time the pulse edge that clocks the flip-flops. The first

self-synchronized machine was built in just this fashion

(Bredeson and Hulina, 1971). It operated only in normal

fundamental mode. This model can realize a multiple input

change machine, but is not suitable for a multiple output

change machine since there is no way for the clock generator

to determine when the final stable state has been reached.

For any self-synchronized machine, the pulse edge that

clocks the flip-flops must not affect the flip-flops before

the input changes propagate through the transition function

combinational logic and set up the flip-flops. The minimum

delay through the combinational logic of the clock generator

and delay element is Dm +d'm, where dt refers to the delay

from the input through the combinational logic to the clock

generator delay element. The maximum delay through the

combinational logic and flip-flop set-up time is dm+s. This

results in the restriction

Dm+dtra61+dm+s,

and a minimum clock generator delay value of

The clock pulse caused by the first input change of the

next input state must not reach the flip-flops before the

last state variable changes caused by the previous input

state reach and set up the flip-flops. Thus the inequality,

62+Dm+dlniDm+dim+fm+dm+s,

33

and the minimum time between input states for a SOC self-

synchronized machine is given by

(51+62:.(51+fm+dm+s+((Dm+d'm)-(Dm+dtm))

It is now possible to compare the speeds of the self-

synchronized machine and the level-sensitive Huffman-Moore

SOC machine (n=1 state transition). Each expression can be

decomposed into two parts: a minimum combinational logic

delay term plus a propagation delay uncertainty term.

Assuming equivalent technologies, the combinational logic

delays (dm) should be equal. The uncertainty term is simply

the difference between the fastest and slowest state

variable change (dm-dm) or clock pulses ((Dm+d)m)-

(Dm+d1m)). The magnitude of the two uncertainty terms should

also be nearly equal for equivalent technologies. The two

machines operate at the same speed when the right hand side

of the input state timing inequalities are equal. Equating

the two right hand sides and canceling these approximate

equalities results in

Dm=fm+s.

Examining this expression leads to the following

conclusions. The Huffman-Moore machine will always be faster

if the machine does not have an essential hazard since there

exists a delay-free (Dm=0) state assignment (Tracey,

1966). The flip-flop set-up time (s) and propagation delay

(fm) for the self-synchronized machine are technology

dependent constants, but DM for the Huffman-Moore machine

34

increases with 61. Conclusion: the greater di, the greater

the advantage for self-synchronization if the machine has an

essential hazard.

It should be noted that fm+s can be very small. Typical

set up time values for common commercially available parts

are 4 nanoseconds for a 74F374 or 1.4 nanoseconds for a

10H131. Typical values for the maximum propagation delay

are 10 nanoseconds for a 74F374 and 2.1 nanoseconds for a

10H131.

Self-Synchronized MOC Machine

The model given in Figure 6 must be modified if the

machine is to produce multiple output changes in response to

a single input state change. The clock generator must have

additional inputs to be able to determine if additional

clock pulses are required. Without additional inputs, the

clock generator can never determine when the final stable

state is reached. The first of two methods for solving this

problem is shown in Figure 7 on the next page.

The architecture of Figure 7 has appeared in the

literature (Huertas and Acha, 1976), but no timing analysis

or implementation method was given. This scheme has

simplicity as a benefit. If the clock generator is provided

with present-state and next-state information, it can

determine if another state is to follow.

35

Inputs

Present

State

[....Combinational > Outputs

Logic

State

RegistersRegisters H
lrClock Pulse

HClock

GeneratorGenerator

Figure 7

Next

State

MOC Clock Generator - Present and Next State

Clock pulses must be generated until the final stable

state is reached. This occurs when the transition function

maps the total state to the present internal state. As in

the previous case, the pulse edge that clocks the flip-flops

must not reach the flip-flops before the input changes have

propagated through the transition function combinational

logic and reach and set up the flip-flops. The total delay

from input change to clock generator delay element is d'ill

This includes the delay through the transition function

combinational logic (dm). As in the previous cases,

36

Dm+d'illOi+dmi-s,

and the minimum clock generator delay value is

D/1161+dm+s-dlm

The maximum state transition time is the time for a

signal to propagate through the flip-flops (fm), the clock

generator combinational logic (d'14) and delay element (DM).

The clock pulse generated for the next input state must not

reach the flip-flops before the last changes caused by the

previous input state reach and set up the flip-flops. Thus

the restriction,

62+Dm+d'mn(Dm+d'm+fm)+dm+s,

and the minimum time between input states for this

configuration is

(51+62Z61+n(Dm+dlm+fm)+dm+s-(Dm+dtm).

However, this architecture must also meet an additional

restriction which forces it to operate at less than the

ultimate speed. The clock generator must be able to detect

when one intermediate state transition is complete. Again,

a clock pulse is generated (after a suitable delay) only

when the next state changes to being different from the

present state. Before another clock pulse can be issued, the

logic must reach the condition of next-state and present-

state equal. This condition may be very temporary for an

intermediate state transition during a multiple output

change perambulation.

The necessary condition that present-state equals next-

37

state can cause real problems if not properly met for a MOC

machine. Consider what might happen if the minimum delay

through the next-state and clock generator combinational

logic is less than the maximum delay through the clock

generator combinational logic. In that case, at time fm

after the clock pulse changes state si to sj, state sj

appears at the inputs of both the transition and clock

generator combinational logic. If the next state in the

sequence, sk, comes out of the transition combinational

logic and penetrates to the clock generator delay element

before it can reset, the clock generator may never detect

present-state equals next-state for sj. This will cause the

machine to lock up in intermediate state sj and even

subsequent input changes may not be able to dislodge it.

This clock generator scheme could use either a

monostable multivibrator or an inertial delay for the delay

element. Suppose a monostable multivibrator is used in the

clock generator. As outlined above, the maximum propagation

delay from the state register through the clock generator

logic to the monostable multivibrator must be less than the

minimum propagation delay through the transition function

combinational logic and the clock generator logic to the

same point. Since the monostable multivibrator is triggered

by a change from equal to different, when this condition is

not met, there will be no trigger for the next clock pulse.

Thus a monostable multivibrator imposes the restriction

38

fm+(d'm-dm)<fm+d'm.

When an inertial delay is used, the equality of next

and present states described above must persist for an

time DM before the inertial delay output can go low. This

imposes the restraint

fm+(d'm-dm)+Dm<fm+d'in.

(As noted above, d'm includes dm as one component.)

Inputs

Present

State

Combinational >Outputs

Logic

State

Registers

PH H
V

Clock

Generator

Figure 8

Clock

Pulse

Next

State

MOC Clock Generator - Input and Present State

The second method of MOC clock synthesis is illustrated

in Figure 8. The advantage of this structure is that a

39

"standard" clock generator can be designed without using any

information about the behavior of the machine. This

universal approach reduces the design effort without any

sacrifice in performance. Clock generators for this

structure monitor the inputs and state variables to produce

a clock pulse any time an input or state variable changes.

However, all previous clock generators for this structure

produce one extra clock pulse as the final stable state is

entered. The clock generator does not "know" that it is

done. This structure was used by Rey and Vaucher (Rey and

Vaucher, 1974).

As in all the previous cases, the first clock pulse

edge must not reach the flip-flops before the input-

generated changes have gone through the combinational logic.

Here again,

Dm+d,raz61+dM4-51

Dma.(51+dm+s-dtm.

The state transition time is the sum of the delay

through the flip-flops, the combinational logic, and the

set-up time for the flip-flops (fm+dm+s). Because there must

be a clock pulse generated after every state change, n state

transitions will generate n+1 clock pulses. Thus,

(52+Dm+dtmz(n+1)(fm+dmi-s)+DM+VM,

and input state changes are separated by

(5145261+(n+1)(fM+dM+5)+((pM+VM)-(Dm+dtm))

The time between input states is proportional to n+1, but an

40

optimum machine would have a delay proportional to n.

The clock generator logic could also be customized to

the behavior of the machine (Chuang and Das, 1973). It could

compute the next state and generate a clock pulse if

required. This form of clock generation is then functionally

identical to the previous case (Figure 7) and the same

timing restrictions apply. Closer inspection shows that a

clock generator based on present-state equals next-state

(Figure 7) is only a special case of the more general form

shown in Figure 8. Since the clock generator has available

to it all the information that is available to the

combinational logic, it can duplicate any required

calculations and operate in exactly the same mode as Figure

7. This is exactly the mode of operation in the Chuang and

Das machine.

41

SELFSYNCHRONIZING CLOCK GENERATORS

It has been known since at least 1962 (Unger, 1977),

that the many advantages of synchronous design could be

realized in an asynchronous machine by generating a pulse

each time an input changed. The problem has been to develop

a clock generator that works reliably and does not

compromise the inherent speed advantage of an asynchronous

machine.

Inputs

IIIMOMMOMMir

Change

Detector

DIFFER

Figure 9

Delay

Element

Clock Generator Expanded

i.)1' CHANGE

The structure of the clock generator is shown in

Figure 9. There are two parts: change detector circuitry to

determine when a clock pulse is needed and a delay element

to generate the clock pulse. As discussed earlier, the

change detector could be customized to the machine behavior

and generate a clock pulse when required. This approach

42

introduces additional timing restrictions which reduce the

speed of the machine. A better (faster) solution is to use a

generalized change detector.

The purpose of the change detector is to output the

signal DIFFER when a change in the input signals is

detected. After DIFFER has propagated through the delay

element, it emerges a predictable time later as the signal

CHANGE. This signal may be fed back to the change detector

which turns off DIFFER. A short while later, DIFFER off

propagates through the delay element and CHANGE goes off.

Alternately, if a monostable multivibrator is used as the

delay element, this feedback path is not needed. In either

case, it is usually the final transition on CHANGE that

clocks the state register flip-flops. If, for some special

reason, the flip-flops are clocked from the leading edge of

CHANGE then the previous timing analyses must be modified

to take into account the interval in which CHANGE is high

after the flip-flops have been clocked.

Single Input Change Mode Clock Generation

A normal fundamental mode machine was the first machine

for which a practical clock pulse generator was developed

(Bredeson and Hulina, 1971). Since only a single input is

permitted to change, the modulo 2 sum of the input vector

components changes for each input state. Thus a modulo 2

43

adder can be used for the change detector and the problem is

solved. Notice in this case, feeding CHANGE back into the

change detector (as shown in Figure 9) is not required.

This clock generation method is not suitable for a

multiple output change machine unless only a single state

variable changes for each state change (required for the

modulo 2 adder to work as a change detector). State

encodings with this property do exist. The best known

encoding with this property is based on a Hamming code

(Unger, 1969), but special codes can be designed for

specific machines. These encodings are, in general, not

unicode state assignments - one code per machine state. If a

unicode state assignment is desirable, another change

detector method must be found. One reason for a self-

synchronized machine is to simplify the state assignment.

Constraining the state encoding erases this advantage.

Multiple Input Change Mode Clock Generation

Two clock pulse generation methods have been proposed

for MIC machines. Rather than a generalized change detector,

the first approach uses a combinational logic network

customized for the required machine behavior (Chuang and

Das, 1973). The combinational logic uses the inputs and

state variables to determine when and if a clock pulse is

needed. This approach requires an inertial delay to filter

44

spurious outputs from the combinational logic, requires a

new design for each machine, and has been shown (Unger,

1977) to be slower than a generalized change detector.

The second approach (Rey and Vaucher, 1974) used

monostable multivibrators on the inputs to convert changes

in the level-sensitive inputs into pulse-mode inputs. These

pulse-mode inputs are then combined in an OR gate which

triggers another monostable multivibrator to form the clock

pulse. This kind of change detector is fundamentally sound,

but any implementation may have practical problems. Since

each input has an edge-to-pulse converter, one multivibrator

is required for each input signal. High operating speeds

require short clock pulses. It is difficult to build

accurate multivibrators for narrow pulse widths.

An improved version (Unger, 1977) of this second

approach is shown in Figure 10 on the next page. This

network solves the problems present in a clock generator

built with monostable multivibrators. This kind of network

is called a digital differentiator since it converts a

change in input level into a level. To understand its

operation, assume that the present input state is stored in

the latch and the enable (CHANGE) is off. When one or more

inputs change, the appropriate EXCLUSIVE-OR gate outputs a

high and DIFFER goes high. After a time determined by a

delay element (not shown), CHANGE goes high and the latch is

opened. When the latch outputs match the input state,

45

DIFFER, and eventually CHANGE, again go low. The change

detector is now ready to accept the next input state.

CHANGE

D1
L

Q1

D2
A

Q2

T

C

Dn
H

Qn

)

)

Figure 11,

relationships for

change (I1) starts

be part of this

Figure 10

Digital Differentiator

DIFFER

on the next page, shows the timing

this change detector. The first input

the cycle while In is the last change to

input state change. This form of clock

generator is particularly economical to realize. For

example, a clock generator that accepts up to eight inputs

46

can be built with only two parts: one 74F373 eight bit latch

and one 74F521 eight bit equality comparator. The min/max

propagation delay from input to DIFFER is 3/11 nanoseconds

and from CHANGE to DIFFER is 8/24 nanoseconds. Thus d'm is

11 nanoseconds and dim is 35 nanoseconds.

I1 IMI11

In

DIFFER -I

CHANGE

1+ 61 14- 62
dm+s

4- Dm+dtm
14- Dm/2 +1

Figure 11

Symmetrical Delay Element MIC Timing Diagram

If a self-synchronized machine with a symmetrical delay

element uses this clock generator, an additional timing

restriction forces the machine to operate at less than

ultimate speed. The trailing edge of CHANGE, which clocks

the flip-flops, is delayed by Dm. However, the delay element

itself only delays a signal by Dm/2. If the delay element is

a pure delay, then DIFFER had better not go low while the

inputs are still permitted to change. If DIFFER does go low,

any input signal changing near the end of the period will

drive DIFFER high again and generate additional clock pulses

which will pass through a pure delay. Thus the restriction

47

Dm/2461,

61+624261.

DIFFER can be permitted to change Dm/2 before the end

of 61 if an inertial delay is used. Any pulse shorter than

Dm/2 will not pass through the delay element. But since the

delay is inertial, any input change that occurs at the end

of 61 will extend the trailing edge of the clock pulse by

an additional Dm/2. Thus, if an inertial delay element is

used, there are the additional restrictions

624Dm/29

61+62(3/2)61-

These delay induced restrictions have always prevented a

self-synchronized machine from operating at optimum speed.

The new asymmetrical delay element was designed to avoid

this delay induced restriction.

An Optimum Clock Generator

Three problems caused by the structure of the clock

generator must be overcome if ultimate operating speed is to

be achieved: the symmetrical delay element limitations must

be overcome, the extra clock pulse generated (when the final

stable state is entered) must be eliminated, and the time

between intermediate internal state transitions (due to a

multiple output change perambulation) must be optimized. In

an optimum solution, the ultimate speed will be limited only

48

by the fundamental considerations of implementation

technology and the machine behavior.

The first problem to solve is the limitation imposed by

the symmetrical delay element. It would be desirable if

DIFFER were high for the entire input change period. With a

symmetrical delay element, the length of time DIFFER is high

is also the minimum time that DIFFER must remain low. By

separating these two times, each can be optimized. In fact,

the optimum low time is zero.

The answer is to delay the rising and falling edge of

CHANGE by different amounts. The asymmetrical delay element

presented earlier has a rising edge delay that is set by

design while the falling edge delay is limited only by the

technology. As such, it represents an optimum choice. Figure

12 is the timing diagram for a MIC machine using such an

asymmetrical delay element.

Il....1
In 1

DIFFER ..--..1

CHANGE

14- 61 +I+ 62 ÷
14- dm+s +

14- Dm+d'm +

14- Dm +1

Figure 12

Asymmetrical Delay Element MIC Timing Diagram

49

The beauty of this delay element is that Dm can be

chosen based on the problem specification and technology.

The asymmetrical delay element can easily be designed so

Differ remains high throughout the time the inputs are

permitted to change without forcing an extension of the

overall period between input state changes. A monostable

multivibrator that is not retriggerable is the only other

delay with this property, but it is difficult to build a

monostable multivibrator when the pulse width required

is less than 50 nanoseconds. It is easy to build an

asymmetrical delay element to provide this delay.

The second problem to solve is the extra clock pulse

that occurs at the end of a MOC internal state change. An

early indication that the next state is stable is needed. A

transition into a stable state is easy to determine from the

transition function. If the present internal state and the

next internal state are equal then the total state is

stable; if not equal, then more states follow.

As a first step, an output called MORE has been added

to the combinational logic block. The resulting machine

architecture is illustrated in Figure 13 on the next page.

If there are additional transitions required, MORE will be

high, otherwise MORE will be low. This "early finish"

indication needs to be incorporated into the change detector

with minimum impact. This is very easy. MORE is connected to

the T input of a T flip-flop which is clocked by the

50

trailing edge of CHANGE. When the machine is clocked with

MORE high, the flip-flop output changes. But a change on a

signal is exactly what the change detector is designed to

process. This flip-flop output change causes another clock

pulse. If a clock pulse occurs with MORE low, then the T

flip-flop does not change and the sequence ends.

Inputs

Present

State

Combinational

LogiconalLogic

.....1
State

Registers

drClock Pulse

Clock

Generator

Figure 13

>Outputs

Next

State

leNNINIMIN

MORE

MOC Machine With Early Final State Indication

It is essential that the T flip-flop be clocked on the

trailing edge of CHANGE to guarantee the clock generator is

ready to accept the next T flip-flop output change, if there

51

is one. The following timing diagram illustrates one state

transition caused by an input state change and two

additional state transitions caused by the T flip-flop. The

output of the T flip-flop is named NEXT.

I1 J
In

DIFFER

CHANGE

MORE

NEXT

1-4- 61 41-4--

4 dm+s
Dm+d'm

Dm

Figure 14

62
dm+s+fm
Dm+d'm

I -4-Dm+ I

L_

4-41-4-÷

dm+s+fm +
Dm+d'm +

14--Dm+1

Early Final State Indication Timing Diagram

Figures 13 and 14 also illustrate the solution to the

third problem - to optimize the internal state transitions

during a multiple output change perambulation. The delay

element time for a state transition is defined to be Dm, but

notice it is not a constant. The first Dm value was selected

so the first state transition would not malfunction. All

total state transitions except the first are under complete

control of the machine designer. Since the input state must

remain stable, every state transition except the first

appears as a single input change transition to the clock

52

generator; NEXT is the only clock generator input changing.

For the combinational logic block, only the state variables

change, and since they come from the state register clocked

by CHANGE, they arrive at the combinational logic block

simultaneously. Thus, for all state transitions after the

first, Dm can be reduced.

This approach and the programmable asymmetrical delay

element of Figure 5 also gives the designer a new freedom he

has never had in the past. The designer may be privy to

special information about the machine being designed. For

example, he may know when state si is reached, only one

input will change to cause the next state transition, but in

state sj, the next state transition will be caused by a

multiple input change. In the past, he had to design the

machine for the worst case (sj) and the less demanding case

would take longer than necessary. There was no way to use

this auxiliary information. Suppose an additional set of

output signals, called DELAY, are produced just as are the

state variables. DELAY is a function of the states and

inputs just as are the state variables. As shown in Figure

5, these additional outputs are used to control the delay

time Dm. The delay time leaving each state can be

customized, on a state by state basis, based on the required

machine behavior. The number of different Dm times needed

determines the number of bits in DELAY. The timing diagram

of Figure 14 shows two values for Dm, a long time for the

53

first state transition following an input state change and a

short time for all subsequent state transitions, but each

state transition could have had different delay times.

Caution! Since DELAY and NEXT change at the same time,

the maximum propagation delay for DELAY to the multiplexer

in the programmable asymmetrical delay element of Figure 5

must be less than the minimum propagation delay for NEXT

through the change detector to DIFFER and eventually the

multiplexer. This is required so the multiplexer in the

delay element is properly set up. Otherwise, the select

inputs to the multiplexer would be changing at the same time

the data inputs are changing. This restriction is not a

problem in practice since the NEXT-DIFFER path is

considerably longer.

54

EXTENDING SELF-CLOCKED MACHINES

The self-synchronized MIC machine presented can be

easily extended to operate in unrestricted input change

(UIC) mode, pulse mode, or speed independent mode.

Unrestricted Input Change Mode

Almost all asynchronous designs assume the machine will

operate in fundamental mode - once an input state change is

perceived by the machine, the machine will reach a final

stable state before the next input state change is

permitted. When a machine is operating in UIC mode the

fundamental mode assumption is violated. The problem is to

describe what is a satisfactory outcome for a state

transition.

As a first step in defining a satisfactory outcome, the

concept of an n-cube and spanning must be introduced. There

are 2n binary vectors with n components. This set of all 2n

vectors is said to form an n-cube. A subset of 2m n-

dimensional vectors having the same value in n-m locations

is said to form a subcube.

55

Definition: Given a set of n-dimensional binary

vectors, V, the set of vectors spanned by V is the

smallest subcube containing every member of V. This

set of vectors spanned is written T(V).

The concept of spanning is best illustrated by example. If

V={ 01001,01100} ,

then T(V) would be

T(V)=(01000,01001,01100,01101),

={01-0-}.

Notice Unger's definition of spanning differs from the

definition of spanning used in linear algebra.

T(ia,ib) would be all the input states that might be

passed through as an input vector changed from is to ib. The

machine

the set

machine

occur:

(01001,

will not necessarily respond to all input states in

of states spanned. For example, with T as above, the

may respond as if any of these input sequences

(01001, 01000, 01100), (01001, 01101, 01100), or

01100). but not the sequence (01001, 01000, 01101,

01100) since

If more than

once an input changes, it will not change back.

one input changes, some input states in the set

of states spanned must be skipped. However, observe the

states in the input sequence are not necessarily all single

input changes (Hamming distance one). The following

definition, first presented by Unger, describes a

satisfactory outcome (Unger, 1971).

56

Definition: A satisfactory outcome of an input

change from i1 to in with initial state A is any

stable state (s,in) which could have been reached

by a sequence of input changes i2, ... in where,

for j=2 to n, ij is a member of T(ij-1,in)

The extension of the MIC machine to UIC mode is

straight-forward. All the inputs are to pass through a

transparent latch before they are presented to the machine.

While the machine is in a stable state, the gate signal for

the latch is true and the latch inputs pass through to the

machine. While the machine is in transition to a final

stable state, the gate signal is false and the latch outputs

are frozen. Since the machine is busy if DIFFER, CHANGE, or

MORE are true, the latch gate signal is the complement of

(DIFFER OR CHANGE OR MORE). When an input changes, the gate

is turned off, freezing a member of T(ia,ib) in the latch.

This input state is processed and the latch is opened to

capture another input state. As far as the machine is

concerned, it sees only multiple input changes and operates

in fundamental mode. Thus, the input latch groups the input

changes into a sequence of batches for the machine to

process, and any such sequence eventually leaves the machine

in a satisfactory outcome.

It should be noted that the UIC latch may exhibit

metastable behavior since the set-up or hold time

57

specification may be violated. (Metastable behavior is an

increase in propagation delay due to violation of set-up or

hold time.) To compensate for this metastable behavior,

61 must be extended.

Pulse Mode

Pulse-mode circuits have a separate input terminal for

each input state. The pulse widths on these inputs, as well

as the spacing between pulses, are bounded both above and

below. Pulse-mode circuits are generally designed using

synchronous techniques. Suppose however, the asynchronous

design includes some pulse-mode inputs and some level

inputs. The problem is then to change the pulse-mode inputs

into suitable level signals.

Pulse-mode input durations are, in general, narrower

than state transition times. A pulse can be converted to a

suitable level by presenting the pulse to the clock input of

a T flip-flop (T input held true). Every pulse will change

the state of the flip-flop. The output of the T flip-flop is

exactly the kind of input the change detector needs for

proper operation. Every pulse changes the T flip-flop output

(which is a change detector input). In the traditional

definition of pulse mode, only one input is allowed to

pulse. Once the pulses are converted to levels, the

remaining machine operates in single input change mode.

58

While T flip-flops provide an easy way to convert a

pulse into a level, pulse-mode inputs also provide an

opportunity to implement a different kind of change

detector, illustrated in Figure 15.

D R Q
E

G

CLR

I (N -1) ED

"1"

D R Q
E

G

CLR

"1"

D R Q
E

G

CLR

I

D R Q
E

G

CLR

II:Z DIFFER

Figure 15

Pulse Mode Alternate Change Detector

C=I CHANGE

This change detector has the block diagram shown in

Figure 9. If the pulse-mode inputs drive the clock input on

a D flip-flop with the D input fixed high, the output of the

flip-flop will go high when the input pulse occurs. Whether

the flip-flop clocks on the positive or negative transition

is an implementation detail - the change detector operates

59

the same in either case. By connecting the reset input on

the flip-flops to CHANGE, the EXCLUSIVE-OR gates shown in

Figure 10 can be eliminated and the flip-flop outputs can be

connected directly to the OR gate. When CHANGE goes high,

the flip-flop will be reset and the cycle can be repeated.

Speed Independent Mode

Speed independent designs are characterized by a

completion handshake. Such a design is based on a chain of

individual sub-circuits, each one sending completion signals

to its predecessor and responding to completion signals from

its successor. In addition to the special completion

signals, the input states are separated by a special

input state called a spacer.

Each sub-circuit cycles continuously through a

sequence: output data, request spacer, output spacer,

request data. When a sub-circuit has responded to the input

data from its predecessor, and its output data has been

accepted by its successor, the sub-circuit sends a

completion signal (traditionally called S) to its

predecessor requesting a spacer. A sub-circuit outputs the

spacer when it is requested by its successor and its

predecessor has output a spacer. When a sub-circuit has a

spacer input and the successor is requesting data, the sub-

circuit requests data by sending a signal (traditionally

60

called D) to its predecessor.

The operation of a speed independent sub-circuit can be

clarified by examining the asymmetrical delay element of

Figure 5. It is really a sub-circuit operating in the speed

independent mode. The predecessor is the change detector,

but there is no speed independent successor. The special

input state, spacer, occurs when DIFFER is low, while DIFFER

high is the data input state. The request for spacer (S) is

indicated by CHANGE true and the request for data is

indicated by CHANGE false. Notice how the machine

continuously cycles through request data, data, request

spacer, spacer. This cycle can be clearly seen in the timing

diagram of Figure 14. Had there been a speed-independent

successor sub-circuit, there would have been an S/D input

from this successor into the asymmetrical delay element.

A self-synchronized machine itself is not speed

independent, but it can be made to operate in a chain of

speed independent sub-circuits. For a self-synchronized

machine to operate in speed independent mode, the S and D

completion signals must be added to send to the predecessor

sub-circuit and the machine must respond to completion S and

D signals from the successor sub-circuit. There is no timing

relationship between sub-circuits, so the self-synchronized

sub-machine must operate in UIC mode.

Suppose a self-synchronized machine is built, using

the structure depicted in Figure 13, to operate in a chain

61

of speed independent sub-circuits. Request for data and

spacer from the successor would be normal inputs to the sub-

circuit and the S/D output to the predecessor would be a

normal output. One input state and one output state would be

designated as the special spacer. When the successor

requests data, the sub-circuit requests data from its

predecessor. When the data is supplied, the sub-circuit

performs the task it was designed to do and passes its data

to the requesting successor. The successor, after some

period of time, will send to the sub-circuit a request for

spacer. At that time, the sub-circuit requests a spacer from

its predecessor. When the spacer appears at the sub-circuit's

inputs, it then sends a spacer to the requesting successor

and the cycle repeats. The key is to realize that since the

sub-circuits are time-independent, each must operate in UIC

mode.

62

TWO DESIGN EXAMPLES

This chapter presents two examples of the application of

the ideas presented in this dissertation. The first example

demonstrates the simplicity of the design process when a

self-synchronization scheme is used. The second design

example is a practical application of interfacing two

machines operating with different clocks. This second

example uses nearly all the ideas presented herein in one

coherent design.

The Crumb Road Traffic Control Machine

There is a rather well known example of all the things

that can go wrong in asynchronous design. This hypothetical

problem involves the design of a sequential machine to

control the traffic at the intersection of Crumb Road and

Route 1. (For a complete description of the problem, see

Unger, 1969.) Beginning with a verbal description of the

problem, Unger developed the flow matrix of Figure 16 as a

first attempt to solve the problem. From this flow matrix,

he derived logic equations and developed the sequential

circuit of Figure 17. As a demonstration, this first design

63

1

2

3
4

X
1

x2

0 0 0 1 1 1 0 0

1,0 2,0 4,0 1,0
2,0 2,0 3,0 3,1
1,0 2,0 3,1 3,1
2,0 2,0 4,0 4,0

Figure 16

Yi Y2

0 0
0 1

1 0
1 1

Crumb Road Problem Flow Matrix

ID
YE a

z = xly1y2 + x1y,Y2

a

Y
1
= x1x2y1y2 +x1 y1 Y 2 + x1y1

I. T1 y
2

+ XIX2Y1Y2
Y2 X1- X2 + Y1Y2

Figure 17

Crumb Road Problem Sequential Machine

64

attempt intentionally ignored the design issues of

unrestricted input change mode, critical races, essential

hazards, and logic hazards. Unger then demonstrated how

proper operation of this sequential circuit depends upon

the relative magnitude of the stray delays.

However, if this circuit did operate correctly, what

would be the speed of operation? To answer this question

assume the gates and inverters have a min/max propagation

delay of 3/7 nanoseconds and the delay element maximum

delay is 1.5 times the minimum delay. These values fairly

represent the real times for 74Fxx series parts. Since the

two input variables, x1 and x2, can change at any time, the

machine operates in unrestricted input change mode and

61 is 0. Using these values and the previously developed

timing analysis, the minimum delay element time is

now calculated as

Dm81+dm-dm=0+(7+7)-(3+3)=8 ns,

and the time between input states is calculated as

(51+62.161+n(dM+DM)+(dM-dm),

a0+1(21+1.5x8)+(21-6)=48 ns.

As a demonstration of the power and simplicity of the

self-synchronized design style, this abysmal failure of an

asynchronous machine (Unger, 1969) will be converted into a

practical design by simply adding a change detector, UIC

latch, and state registers. The resulting design is shown in

Figure 18.

D 0

En g

D

En g

0-

7

D

CLK

65

O

NEGATIVE-EDGE
SENSITIVE CLOCK

D

CLK II

re

D

En g

D 0

En g 0-

DIFFER

0
CHANGE

Figure 18

Crumb Road Problem Self-Synchronized Machine

Again, assuming the flip-flops have a set-up time of 2

nanoseconds and a maximum propagation delay of 10

nanoseconds, with the gate delays the same as the previous

case, the delay element time is found to be

Dm?..61+dm+s-dtm=4x10+(7+7)+2-(31-3)=50 ns.

61 now is assigned the value of 4 times the flip-flop

propagation delay to compensate for the potential metastable

66

condition in the UIC latch. This condition occurs when the

latch inputs are changing at a time that violates the

manufacturer's specified set-up or hold time. Thus the

minimum time between input states is

151+62zO1 +fm+dm+s+((Dm+d'm)-(Dm+d'm)),

40-1-10+(14)+2+((75+14)-(50+6))=99 ns.

If the probability of simultaneous input changes is

considered so improbable the UIC latch is unnecessary

(reasonable in this design problem), the minimum delay

element time can be reduced to 10 nanoseconds. This also

reduces the time between input states to 39 nanoseconds. The

resulting self-synchronized design will then be essentially

the same speed as the Huffman-Moore machine without self-

synchronization. But even more importantly, it will work.

A Practical Design Example

Consider the practical design problem of interfacing

two digital machines, each with its own independent clock.

Assume the purpose of one machine is to monitor the behavior

of the other. This assumption greatly simplifies the

interface; now the information flow across the interface is

one direction only. The monitoring machine must gather

information about the machine under test, but ideally, the

monitored machine should not be affected by the monitoring

machine.

67

This scenario is common. A test equipment manufacturer

builds such equipment to help his customers diagnose, test,

and evaluate their designs. One critical component of such

test equipment is the sub-circuit that monitors the

customer's signals and generates suitable clock signals for

the test equipment.

Consider the design issues relevant to this sub-

circuit. Besides the obvious design goals of high speed,

reliable operation, and reasonable cost, this circuit must

have a high degree of flexibility. It must interface

with a wide variety of customer's circuits, each with its

own set of signals - each circuit different in signal

numbers, polarity, waveform, timing relationships, and so

on. The essential behavioral characteristics of this machine

must be programmable. That is, bit patterns written into

registers and memory locations to program this circuit will

customize this machine to a customer's specific requirement.

These parameters are subject to change under control of a

microprocessor in this test equipment.

Machine Block Diagram and Overview

A block diagram of such an interface machine is shown

in Figure 19. The overall structure of the interface is

identical to Figure 13, but two new blocks have been

included. The transition function combinational logic and

DIF(4113),DIF(0) 3)...

Ij
UR
gf.
11 ED EX-QUAL(0.3)
(i)

MORE

CHANGE

DIFFER

DELAY

CHANGE

DIFFER

0(9115).RESET,,,AWE,,DWE,CUE

LATCH

MORE

8

INTERFACE

MAP

T(0.2)

LOG(I,3)

TRANSACTION

NS(9)3)

CHANGE--

LOS

C: TRANSACT ION

69

state register blocks of Figure 13 have been labeled Map and

Register in Figure 19. The clock generator block of Figure

13 has been expanded, using the form shown in Figure 9, into

the change Detector and programmable asymmetrical Delay

blocks. One new block, the unbounded input change Latch, has

been added to the scheme of Figure 13 to extend the machine

to UIC mode. The other new block, the microprocessor

programming Interface, is essential to customize the

interface machine to a customer's requirements.

The purpose of this chapter is to demonstrate a

practical implementation of the ideas presented in this

dissertation. Knowledge of the actual machine behavior, as

determined by the transition function and output function,

is not required to understand this example. For a similar

reason, the nature of the programming signals from the test

equipment microprocessor need not be detailed. The mnemonics

chosen for these microprocessor signals suggest the actions

performed, but timing and other details are not necessary.

however, implementation details will be given as required to

aid in understanding circuit operation.

The actual customer's circuit is at the end of a probe.

Static protection circuits and buffers to protect the test

equipment from damage are in the probe. By the time the

customer's signals reach this interface, they have been

converted from his levels to differential ECL signal levels.

These inputs are labeled DIF(0:3) and EX_QUAL(0:3) in the

70

block diagram, change detector diagram, and UIC diagram.

To meet the design issue of high speed, this machine is

implemented in the fastest logic family, emitter-coupled

logic (ECL). The output of an ECL device is an emitter

follower. This type of output structure permits the

construction of the OR function by simply connecting outputs

together. This is called WIRE-OR or "emitter dotting." Using

an emitter follower output structure also requires every

node to have an external pull-down resistor. Since the

emitter follower can only pull high, the external resistor

pulls the node low when all emitter followers are off.

The Change Detector

The waveforms, timing relationships, polarities, or

even the number of signals the test equipMent must monitor

to generate the clocks it requires are not known at the time

of manufacture. These design issues dictate that the

change detector be implemented using the alternate pulse-

mode method of Figure 15 because this method can accept

either pulse-mode inputs or level-sensitive inputs.

The complete change detector, shown in Figure 20, can

process both pulse mode inputs and level-sensitive inputs.

This is accomplished by having two flip-flops (10H131's) for

each input signal - one for the positive edge and one for

the negative edge. That way, either polarity pulse can be

,
,
,
y
N
N
W
,

M
O
C
C
U
O
M
M
U
U

O
Q1

0

A

;
21

M
O
C
C
U
M
P
M
U
U

0
1

O
;
;
;
;
:
j
t
e
,

5
)
I

ddlo

n
1

op

oa

il
L
.

1
2
1

P

.
.
<
E
s
S
3
J
I
a
.
(
C
.
1
1
)
4
1
f
t

?
6

`

F
i
g
u
r
e

2
0

P
r
a
c
t
i
c
a
l

E
x
a
m
p
l
e

C
h
a
n
g
e

D
e
t
e
c
t
o
r

7
1

0-1","

72

accommodated and, by enabling both flip-flops, a level-

sensitive input can be accommodated. The choice is made by

programming the signals RISE(0:3) and FALL(0:3). A high on

the appropriate signal enables a clock pulse while a low

inhibits a clock pulse on that edge.

The cost of an ECL circuit can be reduced by careful

use of WIRE-OR's. Notice the individual outputs from each

flip-flop are combined in a two stage process. First, four

outputs are WIRE-ORed. Next, these nodes are ORed using a

standard 10H105 OR gate. This configuration results in the

best compromise of speed and parts count.

Consistent with the design goal of high speed, Figure

20 also shows the MORE-NEXT early final state indication

implementation. Since the ECL family does not have T flip-

flops, the D flip-flop equivalent is used (the 10H107 and

10H131). The output of this "T flip-flop" provides the input

for a one-bit version of the standard digital differentiator

built as shown in Figure 10; the other inputs are processed

using the alternate pulse-mode change detector. The output

from this digital differentiator is then ORed with the pulse

mode change detector outputs to make DIFFER.

73

The Delay Element

For high speed, an asymmetrical delay element should be

used. But Si is not known, so a programmable version must

be used. The temperature drift associated with the scheme of

Figure 4 makes the improved asymmetrical delay of Figure 5

the best choice. As the customer will be specifying the

delay times, they must be fixed and well defined. Again, the

gated oscillator used in the scheme of Figure 5 satisfies

this design issue. The complete delay element is shown in

Figure 21 on the next page.

The gated oscillator (shown as a block in Figure 4) has

been implemented using the SP9685 comparator and the 10H105

OR gate. This oscillator operates at 100 Megahertz, so each

tap on the shift register (the 10H186's) is 10 nanoseconds

away from its nearest neighbor. The propagation delays

through the 10H105, the first two 10H186 stages, and the

10H164 are such that the minimum delay is approximately 20

nanoseconds. This first tap is the one selected for all

internal state transitions when MOC perambulations are

required. The customer has a choice of eight Dm's since one

of eight different delay times is selected by the three bit

code on the signals T(0:2). The delay time for the next

state transition is clocked into a register (10H176) at

every state transition.

7
4

a0
0

.0; "00 X
 ;

.1-

OOO

>

O

O

7
.
,

F
i
g
u
r
e

2
1

P
r
a
c
t
i
c
a
l

E
x
a
m
p
l
e

-

A
s
y
m
m
e
t
r
i
c
a
l

D
e
l
a
y

75

State Variable Register

Since this is a self-synchronized design, the present

state of the machine must be stored in an edge-sensitive

register. The state variable register is nothing more than a

package of D flip-flops (10H186). When the clock goes high,

the next state code, NS(0:3), presented to the D inputs, is

transferred to the outputs and becomes the new present state,

PS(0:3). The complete state register is shown in Figure 22.

Every sequential machine needs an orderly method of

starting. The LOAD signal connected to the reset input (RST)

on the flip-flops provides this method. When LOAD is true,

the flip-flops are cleared. When LOAD goes false, the

sequential machine begins processing the customer's signals.

Thus, the all zeros state is always the start state for this

machine.

Ni CD
WOO) N99

1914196 PS(013),LOAD
PSI

c> SDI
DO 99

DI 01

D2 92

D3 03

D4 04

DS 05

CLII

RST

Nil
;

PSI

142 PSI

NS3 le PS3

Dile-
14

1

[::
Dtrrat-

sirru. LOAD

Figure 22

Practical Example - State Register

76

Transition Function Map Array

The timing relationships between customers' signals are

as diverse as the customers themselves. While a transition

function implemented with dedicated AND-OR-INVERT gates

would be fastest (smaller dm), only a programmable

transition function can meet these diverse requirements.

A random access memory, made possible because of the self-

synchronized architecture, can provide this high degree of

flexibility. The transition function is stored in a mapping

array RAM. Outputs from this mapping array include the next

state variables NS(0:3), early final state indicator MORE,

test instrument specific outputs LOG(1:3) and TRANSITION,

and the delay time selector T(0:2). The complete transition

function map array is shown in Figure 23 on the next page.

UIC Latch

In addition to clock inputs, the customer may require

inputs to affect the behavior of the machine, but changes in

these inputs do not generate state transitions. Special

inputs, such as these, are called qualifiers - they qualify

or affect the behavior of the machine, but never cause a

self-synchronizing clock pulse.

2
2

U

d

7
7

1
4
.
0
4
.
M
a
a

W
e
n
a
u
t
a
y
i

;
:

g`'

i
t
v
,
1
2
:
v
v
a
n
n
T
h

o
n
0
0
0
-

w
o
n
.

m
O
a
C
i

f
4
4
d
d
d
d
d
d

a a u'u u u

E
n
E
E
E
n

n

N

n

0

a

0

m

n

.

E
:

as
(C

11)113'(C
)S

A

F
i
g
u
r
e

2
3

P
r
a
c
t
i
c
a
l

E
x
a
m
p
l
e

-

T
r
a
n
s
i
t
i
o
n

F
u
n
c
t
i
o
n

u3t1

1911139

78

S
QUALIFY EX_OUAL8 D

SXI

R Q

CIECLIOO

0164
1911139

S
EXOUAL1

elECLIO

AL

D1S5
1911139

S
EXOUAL2 0L2

CCECLIO

D166
19H139

EX-121 II
CE

Yq

MORE

10106

DIFFER

CHANGE 1=0

Figure 24

Practical Example - UIC Latch

When a customer uses these qualifier inputs, labeled

EX_QUAL(0:3) in Figures 19 and 24, he is supposed to

maintain these qualifiers at a steady state during a state

change. Since there is no guarantee the customer will

observe this restriction, an unbounded input change latch

has been added so if this restriction is violated, the test

equipment will operate in the manner programmed in the

transition function. If these qualifier inputs are not

stable, the test equipment may not do what the customer

expected, but it will not fail in an unpredictable way.

79

If the customer chooses not to use a qualifier input,

the reset line on the appropriate UIC latch is programmed to

be asserted. This holds the latch in the reset condition and

disables the input.

Microprocessor Interface

This interface machine must have great flexibility;

that is, the ability to be programmed to behave as a

customer requires. The purpose of the microprocessor

interface, shown in Figure 25 on the next page, is to

convert the microprocessor output levels to ECL levels and

to program the sequential machine. The signals on the bus

labeled PROGRAM are from the microprocessor.

The design issue of low cost requires making one part do

double duty, if possible. This interface was designed so the

level conversion process, from microprocessor levels to ECL

levels, also forms a vital part of the programming process.

During the level conversion process, the programming signals

RISE(0:3), FALL(0:3), and DIS(0:7) are latched or saved so

the sequential machine will be properly configured during

its execution.

An important issue is the efficient loading of the

transition function into the RAM. Since there are 4096

locations, a twelve bit counter (the 74H0193's) has been

added to aid in loading the transition function. The

on=
a

g

2

2

2

2

2

2

2

g

g

2

2

:

6

S

22222222
2 22,2 g : :tS

9
eat

N
7
0
8
1

4
0
1
1
I
4
(
2
(

0
)
1
1
'
(
C
(

)
9
0
1
1

C
(
0
)
S
H
I

e

22g22222
22,22,:22.S

es.
en

z
x X

2
1
2
1
f
d
t

2
2
2
2
2
2
2
2

'

2

g

o

t

nm
uo

en

O
teD

n,(L
eO

>
SIC

I'(C
,0 11U

!,(C
eO

,3SIN
'C

t(8)A
1D

'U
(13)15.(C

eeaSd

K
;

O

eneu.n.
3
g
4
g

2
2

-

3
g
S
g

2
1
3ge.

,i.!!!;7:1!"-1!)
2
.
2
2
2
,
g

2
g

F
i
g
u
r
e

2
5

P
r
a
c
t
i
c
a
l

E
x
a
m
p
l
e

-

P
r
o
g
r
a
m
m
i
n
g

I
n
t
e
r
f
a
c
e

8
0

81

microprocessor programs the first RAM address into the

counter, then writes data into the RAM. The address counter

is automatically incremented after each write. This method

simplifies and speeds the transition function programming.

Readers who are familiar with ECL components may have

noticed that one unusual aspect of this design is the power

supply. ECL components usually use the power supply voltages

of 0 and -5.2 volts. To ease the burden of interfacing the

programming microprocessor to the ECL, this machine operates

all the ECL parts level-shifted to +5 and 0 volts. This

permits other positive logic families, such as CMOS, to

drive the ECL directly and removes the need for a separate

-5.2 volt supply.

Notice the addresses to the transition function RAM

must come from one of two places, either the customer's

signals (when the machine is running) or the 4096 bit

address counter (when the transition function is being

loaded). The ECL WIRE-OR is put to good use here. Both

signal sources are WIRE-ORed together and connected to the

RAM address pins. The signals not being used are forced to a

low, so the other signals will control the address. When the

RAM is being loaded, the DIS(0:7) lines and the LOAD signal

are asserted, disconnecting the customer's signals and the

PS(0:3) signals. When the machine is running, the 4096 bit

counter is cleared, allowing the customer's signals to

control the address.

82

SUMMARY AND CONCLUSIONS

This dissertation has presented a design style for a

multiple input change self-synchronized machine that

achieves an optimum speed solution. This design style is

applicable to both SOC and MOC behavior. While the design

style presented herein is not faster than the standard

Huffman-Moore solution without self-synchronization when no

essential hazard is present (no machine is), the greater

di, the greater the advantage of this solution.

This optimum solution was made possible by these key

concepts introduced in this dissertation:

* the asymmetrical delay element

* the early final state indicator

* customizing the delay time to the state and input of

the machine

* extending the self-synchronized machine to UIC mode

It is the asymmetrical delay, the early final state

indicator, and the customized delay time that permit the

design of a self-synchronized machine to processes input

states at a speed determined only by the required machine

behavior and the technology of implementation.

83

It seems incredible that a change detector customized

to the required behavior of the machine should process input

changes at a rate slower than a generalized change detector

- custom-built is supposed to be better. The reason is now

clear. After the inputs become stable, a customized change

detector decides what to do and then does it - two distinct

operations performed serially. A generalized change detector

assumes that something is to be done. The task of producing

a clock pulse proceeds in parallel with determining what is

to be done, a distinctly faster solution.

While previously published self-synchronized machines

have been analyzed by others for possible use in UIC mode

(Unger, 1971), they have been shown to be unsuitable. This

dissertation is the first to demonstrate a self-synchronized

machine to operate properly in UIC mode.

Self-synchronized machines are important because they

achieve the speed of a standard Huffman-Moore machine, yet

free the design process from the difficult task of finding a

race-free assignment and designing hazard-free logic. The

final design using only the Huffman-Moore machine, without

self-synchronization, could easily require more circuitry

than a self-synchronized machine equivalent. The clock

generator circuitry can be very small (two integrated

circuits) compared to significant circuitry for hazard

suppression, additional state variables (to suppress races),

and multiple delay elements (one per state variable).

84

Unfinished work in this field includes investigation

into self-synchronized unbounded output change machines.

A closely related topic is the effect of lifting the

traditional restriction of only one single pulse-mode input

change per input state. This dissertation has assumed the

flow table for the machine being designed was a design

specification. There is still much work to be done in the

area of machine equivalence and flow table reduction. This

is especially true in asynchronous flow table reduction

where the fundamental mode assumption, time dependent

assumption, or time independent assumption dramatically

affect the reduction process (Unger, 1969).

85

BIBLIOGRAPHY

Bredeson, J. G. and Hulina, P. T., "Generation of a clock
pulse for asynchronous sequential machines to eliminate
critical races," IEEE Trans. Comput., vol. C-20, pp. 225-226,
Feb. 1971.

Chiesa, G. L., "Asynchronous processor control," IBM Tech.
Disclosure Bull., vol. 22, pp. 2375-2376, Nov. 1979.

Chuang, H. Y. H., and Das, S., "Synthesis of multiple-input
change asynchronous machines using controlled excitation and
flip-flops," IEEE Trans. Comput., vol. C-221 pp 1103-1109,
Dec. 1973.

Clare, C. R., Designing Logic Systems Using State Machines,
McGraw-Hill, New York, 1973.

Fletcher, W. I., An Engineering Approach to Digital Design,
Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

Friedman, A. D., and Menon, P. R., "Synthesis of asynchronous
sequential circuits with multiple-input changes," IEEE Trans.
Electron. Comput., vol. C-17, pp. 559-566, June 1968.

Hartmanis,J., and Stearns, R.E., Algebraic Structure Theory
of Sequential Machines, Prentice-Hall, Englewood Cliffs, New
Jersey, 1966.

Hayes, A. B., "Stored state asynchronous sequential
circuits," IEEE Trans. Comput., vol. C-30, pp. 596-600, Aug.

1981.

Hill, F. J., and Peterson, G. R., Switching Theory & Logical
Design, 3rd Edition, Wiley, New York, 1981.

Huertas, J. L., and Acha, J. I., "Self-synchronization of

asynchronous sequential circuits employing a general clock
function," IEEE Trans. Comput., vol. C-25, pp. 297-300, Mar.

1976.

Huffman, D. A., "The synthesis of sequential switching
circuits," J. Franklin Inst., vol. 257, pp 151-190, 275-303)
March and April 1954.

86

Kohavi, Z., Switching and Finite Automata Theory, 2nd
Edition, McGraw-Hill, New York, 1978.

Liu, C. N., "A state variable assignment method for
asynchronous sequential switching circuits," J. ACM, vol. 10,
pp. 209-216, 1963.

Mealy, G. H., "A method for synthesizing sequential
circuits," BSTJ, vol. 34, pp. 1045-1079, Sept. 1955.

Miller, R. E., Switching Theory, Krieger, New York, 1979.

Moore, E. F., "Gedanken-experiments on sequential machines,"
Automata Studies, Annals of Mathematics Studies No. 34, pp.
129-153, Princeton University Press, New Jersey, 1956.

Muller, D. E., "The general synthesis problem for
asynchronous digital networks," IEEE Conference Record of
Ei hth Ann. Symp. Switching, Automata Theory, pp. 71-82, Oct.

1967.

----, "Asynchronous logics and application to information
technology," Proc. of a Symp. on the Application of Switching
Theory in Space Technology, Stanford University Press, Mar.
1962.

Muller, D. E., and Bartky, W. S., "A theory of asynchronous
circuits I," Report No. 75, University of Illinois, Digital
Computer Laboratory, Nov. 1956.

"A theory of asynchronous circuits II," Report No. 78,
University of Illinois, Digital Computer Laboratory, Mar.
1957.

----, "A theory of asynchronous circuits," Proc. of an Int.
Symp. on the Theory of Switching, vol. 29, Annals of the
Computation Laboratory of Harvard University, Harvard
University Press, pp. 204-243, 1959.

Rey, C. A., and Vaucher, J., "Self-synchronized asynchronous
sequential machines," IEEE Trans. Comput., vol. C-23, pp.
1306-1311, Dec. 1974.

Sholl, H. A., and Yang, S. C., "Design of asynchronous
sequential networks using read-only memories," IEEE Trans.
Comput., vol. C-24, pp. 195-206, Feb. 1975.

Stone, H. S., Discrete Mathematical Structures and Their
Applications, Science Research Associates, Chicago, 1973.

87

Tan, C. J., "State assignments for asynchronous sequential
machines," IEEE Trans. Comput., vol. C-20, pp. 382-391, April
1971.

Thomas, B., and Chandrasekharan, P. C., "Economical
realization of asynchronous sequential circuits using random-
access memories," IEE Proc., vol. 128, pp. 129-132, May 1981.

Tracey, J. H., "Internal state assignments for asynchronous
sequential machines," IEEE Trans. Electronic Computers, vol.
EC-15, pp. 551-560, Aug. 1966.

Unger, S. H., "Hazards and delays in asynchronous sequential
switching circuits," IRE Trans. Circuit Theory, vol. CT-6,

pp. 12-25, Mar. 1959.

----, Asynchronous Sequential Switching Circuits, Wiley
Interscience, New York, 1969.

"Asynchronous sequential switching circuits with
unrestricted input changes," IEEE Trans. Comput., vol. C-20,
pp. 1437-1444, Dec. 1971.

"Self-synchronizing circuits and nonfundamental mode
operation," IEEE Trans. Comput., vol. C-26, pp. 278-281, Mar.
1977.

