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TERNARY DIGITAL SYSTEMS 

I. INTRODUCTION 

The ternary digital system is one possible form of 

digital system. Although binary switching theory has 

been used in almost every digital system developed so 

far, this is mainly due to the fact that basic switching 

elements in common use are two -state devices and that 

design techniques for the binary system are well- devel- 

oped. However, it is useful to broaden the study of 

two -leveled logical systems to that of three -leveled 

systems. The motivation for such an extension is based 

upon the following reasons: 

1. Some of the operating systems in use actually 

involve three discrete states in logical relations. For 

example, industrial control systems can be most directly 

handled with mathematical models of three -valued logical 

systems. 

2. Three- valued systems offer an alternative 

approach to ameliorate some of the complicated problems 

which arise in two -valued systems. 

3. The advance of electronic technology should 

make reliable three -state devices available in the not - 

too- remote future. It is shown in (8) that if the 

amount of the equipment required is proportional to the 
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number base, then the most efficient base to use is base 

three. 

4. Ternary systems can provide several advantages 

over binary systems such as speed, cost, space, weight, 

etc. Also, they have been proposed to enhance reliabil- 

ity by using the third value to indicate error situa- 

tions. 

5. In the fields of communication and data trans- 

mission, the greater base implies more accurate trans- 

mission per transmitted digit. In this regard, the 

study of the ternary system can be thought of as a start 

for systems utilizing even higher bases. 

With a three -valued system, three -valued switching 

functions must be used. To this end, a number of 

authors have been concerned recently with the design of 

ternary switching circuits. A ternary number system was 

introduced by Morris (9). A comparison of base three vs. 

base two systems is given by Santos (14). Lee and Chen 

(5), Muehldorf (10), and Vacca (16) consider the alge- 

braic aspects of the ternary system. Lowenschuss (6) 

and Muehldorf (9) have suggested the application of the 

Rutz transistor to the design of ternary circuits. 

Other ternary devices also have been suggested in the 

literature (1), (4), (13). Diode -transistor schemes 

were introduced by Hallworth and Heath (2) and Santos 



3 

(15). Other papers on switching theory and logical 

design include (6), (7), (10), and (17). An extension 

of the application of binary devices and Boolean algebra 

to the realization of three -valued logic circuits was 

recently introduced by Pugh (12). 

This paper develops a design theory fora ternary 

digital system that is based on familiar binary algebra, 

including the simplification and circuit design tech- 

niques of binary systems. The main text is divided into 

four parts. The first part introduces the ternary num- 

ber systems and arithmetic; the second part discusses 

the algebraic properties of the ternary system; the 

third part gives three minimization methods for ternary 

functions; the last part presents some techniques 

appropriate for hardware realizations. 
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II. TERNARY NUMBER SYSTEMS AND ARITHMETIC 

The most commonly used number system in computers 

and other switching circuits is the well -known binary 

number system. This is due to the fact that most phys- 

ical devices in common use exhibit two easily distin- 

guished states. Ternary (base 3) number systems, how- 

ever, have been shown to be the most efficient number 

system if the assumption that the required equipment is 

proportional to the number base is met. In this chapter, 

the ternary number system will be introduced. Algorithms 

for base conversions will be developed and illustrated 

by means of examples. Finally, ternary arithmetic will 

be defined. 

A. Ternary Number Systems 

Definition 2.1. A number N is said to be in ternary 

form if and only if 

m-1 
N = ti31 

i= -n 

= tm-l3m-l+tm-23m-2+...+t131+to3o+t-13-1..+ 

t 3-n 
-n 

where m is the number of integral digits, 

n is the number of fractional digits, 

and tiE { 0,1,2 }. 
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In general, we simply write 

N - tm-ltm-2...t1to,t-l...t-n 

where the "." is called the "ternary point," and ti is a 

"ternary digit." 

Definition 2.2. The complement of a ternary digit, t, 

denoted by t, is the difference between that digit and 

the number 2, thus 

t = 2 - t. 

There are three ways to represent a negative ter- 

nary number, and these are analogous to the usual binary 

conventions. 

Negative of N = -N sign magnitude 

= 3m -N 3's complement 

= 3m -N -L 2's complement. 

L represents one in the 

least significant place 

of N. 

B. Base Conversions 

Since most present digital devices utilize the 

binary number system, the conversion between a base 2 

number and a base 3 number is very important. The con- 

version between ternary and decimal systems is, of 

course, also of great interest. Table I defines such 

conversions on a digit basis. 
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Table I. Base Conversions Between (a) Base 2 

Digits and Base 3 Digits, (b) Base 3 

Digits and Base 10 Digits. 

(a) 

(b) 

Base 2 Base 3 

0 0 0 

0 1 1 

1 0 2 

Base 3 Base 10 

0 0 0 0 

0 0 1 1 

0 0 2 2 

0 1 0 3 

0 1 1 4 

0 1 2 5 

0 2 0 6 

0 2 1 7 

0 2 2 8 

1 0 0 9 

Two algorithms are now presented for conversions 

between any two number systems. One is for integral 

numbers, and the other is for fractional numbers. 

Algorithm A: (for base conversion of integral numbers) 

1. Express the "new base," b2, in terms of the 

"old base," b1. 

2. Divide the "old number" and its successive 

quotients by the number found in step one until 
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the quotient is zero. Name the successive 

remainders as r1, r2, r3, °. Note that the 

remainders are still in the "old base." 

3. If b2< bl, then the remainders obtained in step 

two are in correct form. If b2> b1, then the 

remainders must be converted into the "new base." 

4. The remainders in correct form are then taken 

in reverse order to produce the "new number." 

Example: Convert the number 101001 in base 2 to its 

representation in base 3. 

1. 3 is represented by 11 in base 2 

2. 11 1101001 10 (r1) 

11 11101 1 (r2) 

11 1100 1 (r3) 

11 I 1 1 (r4) 

0 

3. Since 

base 2 

r1: 

3 >2, 

to base 

10 

the remainders are converted from 

3 

-42 
r2: 1 1 -4 

r3: 1 1 --4 

r4: 1 1 - 4 

4. The number in base 3 form is 

N3 = r4r3r2r1 = 1112. 
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Algorithm B: (for base conversion of fractional numbers) 

1. Express the "new base," b2, in terms of the 

"old base," bl. 

2. Multiply the given fractional number by the 

number found in step one. The resulting 

integral part is designated as I and the 

fractional part as F1. 

3. Again multiply the fractional part, F1, by the 

number found in step one. The resulting 

integral part is designated as I2 and the 

fractional part as F2. 

4. Continue the process in this fashion until F. 
i 

becomes zero or i reaches the desired degree 

of significance. 

5. If b2< bl, then no conversions are made to the 

successively obtained integral parts. If 

b2> bl, each integral part is converted into 

the "new base." 

6. The "new number" is formed by taking integral 

parts in right order, i.e., I1I2I3- . 

Example: Convert the binary number 0.101001 into a 

ternary number. Express the ternary number to five 

places if the conversion is not exact within this range. 

1. 3 is represented by 11 in binary 

2. 0.101001x11 = 1.111011 11 =1, F1= 0.111011 
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3. 0.111011x11 10.110001 12 =10, F2= 0.110001 

4. 0.110001x11 = 10.010011 13 =10, F3= 0.010011 

0.010011x11 = 0.111001 14= 0, F°4= 0.111001 

0.111001x11 = 10.101011 15 =10, F5= 0.101011 

5. Since b2> b1, conversions to base 3 equivalents 

are made on the I's, 

11; 1 - 1 
12: 10 --> 2 

13: 10 -> 2 
14: 0 -4 0 
15: 10 --> 2 

6. The "new number" in ternary form is 

N3 = 0.1112131415 = 0.12202 

The conversion is not exact in this case. 

C. Ternary Arithmetic 

Ternary arithmetic is similar to binary arithmetic 

or to decimal arithmetic. The following tables define 

the addition, subtraction, and multiplication of 

ternary digits. 

= 
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Definition 2.3. Ternary addition: 

Table II. Ternary Addition 

(Entries define the results of A + 

1 1 

2 2 

sum carry 

1 2 0 0 0 0 

2 0 1 0 0 1 

0 1 2 0 1 1 

Definition 2.4. Ternary subtraction: 

Table III. Ternary Subtraction 

(Entries define the results of A - B) 

1 

1 

1 2 0 

2 1 2 

difference 

2 

2 0 0 

1 1 1 0 0 

0 2 1 1 0 

borrow 

B) 

2 

0 0 

1 2 

0 0 0 0 

1 A 0 

B 
O 
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Definition 205. Ternary multiplication: 

Table IV. Ternary Multiplication 

(Entries define the results of A B) 

1 2 

0 0 0 0 0 0 0 0 

1 0 1 2 1 0 0 0 

2 0 2 1 2 0 0 1 

product carry 

The arithmetic operations can easily be performed 

by following the above definitions. 

- 
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III. TERNARY ALGEBRA 

A. General Description 

The mathematical model for a ternary switching cir- 

cuit is the three -valued propositional calculus or com- 

position algebra. The form used here was first intro- 

duced by E. L. Post in his "Introduction to General 

Theory of Elementary Propositions" (11). Various people 

have made contributions in this area (6), (10), (17), 

and the resulting algebra is often referred to as "Post 

Algebra." 

The truth table used in two -valued switching theory 

can be readily extended to the three -valued case. All 

possible combinations of input variables are listed at 

the left and the corresponding value of the function is 

written at the right. In a ternary system, the truth 

table for n -input variables has 3n different combina- 

tions of the values of the input variables (i.e., 3n 

rows). The function can have any one of the three dif- 

ferent values for each input combination. Hence there 

are 33 
n 

functions of n- variables in a ternary system. 

1 
The 27 (33 ) functions of one input variable are shown 

in Table V. 
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Table V. Ternary Functions of One Ternary Variable. 

f 
fl f2 f3 f4 f5 f6 f7 f8 f9 f10 fll 

0 0 0 0 0 0 0 0 0 0 1 1 1 

1 0 0 0 1 1 1 2 2 2 0 0 0 

2 0 1 2 0 1 2 0 1 2 0 1 2 

f12 f13 f14 f15 f16 f17 f18 f19 f20 

1 1 1 1 1 1 2 2 2 

1 1 1 2 2 2 0 0 0 

0 1 2 0 1 2 0 1 2 

21 122 123 f24 125 L2 

2 2 2 2 2 2 

1 1 1 2 2 2 

0 1 2 0 1 2 

Ternary algebra is developed in three steps. The 

first step is to define symbols and operations. The 

second step is to select a set of postulates which are 

the basis for the algebra. The third step is to formu- 

late some fundamental theorems. These theorems together 

with the postulates are the working rules for the 

algebra. 

X 
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B. Basic Operations 

Definition 3.1. Cycling- operation (i): The Cycling of 

x, denoted as x', is defined as 

x' _ (x +l) mod 3 where x and xl E {O,1,2. 

This definition is also given in Table VI. 

Table VI. C clin -operation 

X X 
0 1 

1 2 

2 0 

Definition 3.2. And -operation (): X and y, denoted as 

x.y (or simply xy), is defined as the smaller of the two, 

i.e,, 

xy = min {x,y) . 

This definition is also given in Table VII. 
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Table VII. And -operation 

x y x 

0 0 0 

1 0 

0 2 0 

1 0 0 

1 1 1 

1 2 1 

2 0 0 

2 1 1 

2 2 2 

It was shown by Post (11) that these two operations 

constitute a functionally complete set; that is, all 

ternary functions can be synthesized by some composition 

of these two operations. Although the two operations as 

defined constitute a logically complete set, the result- 

ing algebraic expressions can be very long and compli- 

cated, hence circuit realizations corresponding to such 

expressions can be costly. Fortunately other logical 

gates can be devised that correspond to additional alge- 

braic operations to be introduced. The set of opera- 

tions will still be logically complete as long as the 

Cycling and And operations are included. 

Definition 3.3. Or- operation ( +): x Or y, denoted as 

x +y, is defined as the larger of the two, i.e., 

x +y = max (x,y) . 
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Table VIII gives this definition in truth table form. 

Table VIII. Or- operation 

0 

1 0 1 

1 1 1 

1 2 2 

2 0 2 

2 1 2 

2 2 2 

The set 50,1,2} and the two binary operations And 

and Or form a distributive lattice with zero element 0 

and universal element 2. 

Definition 3.4. Negation- (complementation -) operation 

( ): the negation of x, denoted as x, is defined as 

x = 2 - x. 

The truth table of this definition is given in Table IX, 

Table IX. Negation- operation 

0 2 

1 1 

2 0 

x Y x-1-y 

0 0 0 

i 1 

0 2 2 

X X 
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Additional operations have been used in the litera- 

tures. Some of the more important ones are given in the 

Appendix, together with theorems associated with them. 

C. Postulates 

Definition 3.5. An algebraic structure f = 

<T,0,1,2,-,+,/, => , where T is a set, 0,1,2 E T, 

and + are binary operations on T, ' is a unary opera- 

tion on T, and = is the equality relation on T, is 

called a ternary algebra if and only if it satisfies the 

following postulates. For all a,b,c E T 

Pl. Idempotent a +a =a aa =a 

P2. Commutative a +b =b +a ab =ba 

P3. Associative (a +b) +c= a +(b +c) (ab)c= a(bc) 

P4. Distributive a +bc= (a +b)(a +c) a(b +c) =ab +ac 

P5. Identity a+0=a a-2=a 

Note that usually 1 is used as the symbol for the 

identity operation of And. The symbol 2 is used as the 

identity element in this paper so that it agrees with 

Table VII which defines the And operation. 

D. Theorems 

From the above basic definitions and postulates, 

the following theorems of ternary algebra can be formu- 

lated and proved. 



Theorem 3.1. a "'= a 

Proof: We use finite induction 

Let a =0, then a' = 0' = 1 Def. 3.1 

a" = (a')'=11=2 

a'" = (a" )'=2'=0 

Let a =1, then a' = l' =2 

a" = (a1)' =2' =0 

a'' = (a" P=01=1 

Let a =2, then a' = 2' =0 

a" = (a1)1=01=1 

a"' = (a" )' =1' =2 

Theorem 3.2. aa' -a" = 0, a +a' +a" = 2 

Proof; Let a =0, then a' =1, a" =2 Def. 3.1 

Let a =1, then a' =2, a" =0 

Let a =2, then a' =0, a" =1 

0.1.2 =0 Def. 3.2 and P3 

0 +1 +2 =2 Def. 3.3 and P3 

Theorem 3.3. a0 =0, a +2 =2 

Proof: a0 = a (a -a' a" ) 

= (a-a)- '.a" 

aa' .a" 

= 0 

Th. 3.2 

P 3 

P 1 

Th. 3.2 

.ß 

= 
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a+2 = a+ ( a+a' +a " ) Th. 3.2 

= ( a+a ) +a' +a " P 3 

= a+a'+a" P 1 

= 2 Th. 3.2 

Theorem 3.4. a(a +b) =a, a +ab =a 

Proof: a.(a+b) = a'a+ab P 4 

= a+ab P 1 

= a.2+ab P 5 

= a (2+b) P 4 

= a2 Th. 3.3 

= a P 5 

a+ab = (a+a)(a+b) P 4 

= a(a+b) P 1 

= (a+0)(a+b) P 5 

= a+0b P 4 

= a+0 Th. 3.3 

= a P 5 

Theorem 3.5. ab +ab' +ab" = a 

(a+b)(a+b')(a+b" ) = a 

Proof: ab +ab' +ab" = a (b +b' +b" ) P 4 

= a.2 Th. 3.2 

= a P 5 
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(a+b)(a+b')(a+b " ) = a+bb'b" P 4 

= a+0 Th. 3.2 

= a P 5 

Theorem 3.6. áb =á +b 

a+b=a b 

Proof: By perfect induction 

Table X. Proof of Theorem 3.6. 

a b a+b a b a b ab a+b a+b ab 

0 0 0 2 2 2 2 0 2 2 

0 1 1 1 2 1 1 0 2 2 

0 2 2 0 2 0 0 0 2 2 

1 0 1 1 1 2 1 0 2 2 

1 1 1 1 1 1 1 1 1 1 

1 2 2 0 1 0 0 1 1 1 

2 0 2 0 0 2 0 0 2 2 

2 1 2 0 0 1 0 1 1 1 

2 2 2 0 0 0 0 2 0 0 

i i 

Note that the principle of duality also holds in 

the ternary algebra. The application of these theorems 

will be illustrated in the next chapter. 
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IV. MINIMIZATION OF TERNARY FUNCTIONS 

A. Definitions 

One of the basic problems of logical design is the 

simplification of a given function. The problem of 

determining the minimal representation of a function is 

very complicated and has not been completely solved even 

for the binary case. Minimization in the ternary case, 

as in the binary case, will depend greatly on the switch- 

ing devices available. The usual procedure is to estab- 

lish one parameter, and then the circuitry is minimized 

with respect to that parameter. There are many ways to 

select the parameter of interest and the one used here 

is represented by the cost function, C. 

Definition 4.1. The cost function, C, is defined as the 

number of variable occurrences plus the number of opera- 

tions in a given function. All three states of a vari- 

able are assumed to be available, i.e., the Cycling 

operation on individual variables is not included in the 

cost function. 

There are basically three ways to minimize a logic 

function. These are: 

1. The algebraic method, 

2. the map method, and 

3. the tabular method. 
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Before these methods are discussed, the following 

terms will be defined. The definitions used here are 

analogous to those used for the binary system. 

Definition 4.2. 

e.g., a, a' , a", 

Definition 4.3. 

ab, abc", etc. 

Literal -- a variable or its cycling, 

etc. 

Monomial -- a product of literals, e.g., 

Definition 4.4. Elementary monomial -- a monomial which 

contains all the variables on which the function is 

defined. 

Definition 4.5. Implicant -- there are two types of 

implicants of a function f of n variables. 

1) An h -type implicant, Ih, is a monomial satisfy- 

ing the condition 1.Ih (d) <_ f(d) for every 

Tn . 

2) A g -type implicant, Ig, is a monomial satisfy- 

ing the condition Ig(d) < f(d) for every etETn. 

Definition 4.6. Essential -- a literal is essential in 

an implicant if the deletion of that literal will make 

it a non -implicant. 

Definition 4.7. Prime implicant -- there are two types 

of prime implicant of a function f of n variables. 
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1) An h -type prime implicant, Ph, is an h -type 

implicant in which every literal is essential. 

2) A g -type prime implicant, Pg, is a g -type 

implicant in which every literal is essential. 

Definition 4.8. Cover -- a function covers a function 

f if and only if 

f= ]E=.- 0 

f = 1 = 1 

f = 2 = 2 

Definition 4.9. Prime implicant table -- a prime im- 

plicant table is a table in which columns are represented 

by prime implicants and rows represented by elementary 

monomials of a given function. The entries are filled 

with check marks where the column covers the row. 

Definition 4.10. Minimal function -- a function is 

said to be minimal if covers f and the cost function 

is minimal. 

Theorem 4.1. Any ternary function can be written in the 

form 

f = l.h(x1,...,xn) + g(x1,...9xn) 

where h(x1,- - -,xn) represents the subfunction whose out- 

put is 1 and g(xl, ° °,xn) represents the subfunction 

whose output is 2. 

I 

I 

I 

0 --=-4 

==.4 I 

..0 



24 

A function in the form of Theorem 4.1 is called in 

canonical form. Note that the h- subfunction and the 

g- subfunction cannot contain the same terms. 

Example: Give an algebraic expression for the function 

defined by Table XI. 

Table XI. An Arbitrary Function to 
be Expanded in Canonical 
Form. 

O 0 0 

O 1 0 

O 2 2 

1 0 1 

1 1 2 

1 2 2 

2 0 1 

2 1 1 

2 2 2 

Notation: If w is a variable, let 

w represent w = 0 

w' represent w = 1 

w" represent w = 2 

then, for this example 

h(x,y) = x' y +x "y +x" y' 

g(x,y) = xy " +x' y' +x' y" +x "y" 

f = 1h +g = 1 [x'y +x "y+ x "y') +xy " +x'y' +x'y " +x "y" 

x y f 
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Example: Write the logic equations for a sequential 

10- counter. 

The truth table of a possible 10- counter is given 

below. 

Table XII. Truth Table for a 10- Counter. 

P3 P2 p1 P3 P2 P1 

0 0 0 0 0 1 

0 0 1 0 0 2 

0 0 2 0 1 0 

0 1 0 0 1 1 

0 1 1 0 1 2 

0 1 2 0 2 0 

0 2 0 0 2 1 

0 2 1 0 2 2 

0 2 2 1 0 0 

1 0 0 0 0 0 

The logic equations can be written as 

131 
= l 

(p3p2p1 
+p3p2p1 +p3p2P1) +P3P2Pi +P3P2P1 +P3P2P1 

P2 = l p3p2pl +p3p'2p1) 
(P3p2p1+ p3p2p1 +p3P2p1) +p3p2p1 +p3p2p1 +p3P2P1 

P3 = 1 ° CP3P2P0 

1 11 11 p 1 
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B. Algebraic Method 

The algebraic method of simplification is performed 

by utilizing the properties of the ternary algebra 

stated in Chapter III. Since the g- subfunction repre- 

sents the input combinations that produce the output 

value 2 and the h- subfunction represents the input com- 

binations that produce the output value 1, the complete 

function is represented by f = 1h +g. By the nature of 

"" and " +" operations, the terms in the g- subfunction 

can be used as "don't care" terms for the simplification 

of h- subfunction but not vice versa. 

In the binary logic, a very useful relationship for 

minimization is 

AB +AB = A. 

The counter part of this relationship in the ternary 

logic is 

AB +AB' +AB'' = A. 

Several examples are given below to illustrate the 

algebraic method of simplification. 

Example: Simplify the function obtained in Section A, 

page 24. 

f = 1 (x'y +x "y +x "y') +xy +x'y' +x'y " +x "y" 

Each subfunction will be minimized individually. 
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1-h = 1. (x' y +x "y +x "y') don't care (from g) 

1 ((x' y +x "y +x "y') +xy "+ x' y' +x'y " +x "y ") 

1. (x' (y +y' +y") +x" (y +y'+ y")) 

1 (x' +x ") 

g = xy" + x' y' +x'y" +X "y" 

= y" (x+x' +x")+x'y' 
y"+x'y' 

f = 1h+g = 1 (x'+x")+y" +x'y'. 

Example: Simplify the logic equations of the 10- 

counter in Section A. 

P1 = 1(P3P2P1+P3P2P1+P3P2P1)+P3P2P1+ P3P2P1+P3P2P1 

= 1 (P3P1 (P2+p2+P2 )) +p3p1 (p2+p2 
4-P12') 

= l'(P3101)+1D3P1 

P2 = 1 (p3p2p1+P3P2P1+P3P2P1) +P3P2P1+ 

II I 

p3p2P1+p3P2P1 

1 I 1 1 

11 

= 1(p3p2p1+p3p2pl+p3p2p1+p3p2p1)+p3p2pl+ 

P3p2p1+P3P2p1 

= 1. ( P P P +P P1 (p +p il +P 
1 ) ) +P (P1 P +P 1 P +P 1 P 3 2 1 3 2 1 1 3 2 1 2 1 2]) 

= 1(p3p2p1+p3p2)+p3(p2p1+p2(P1+P1)3 

= 1 (P3 (P2prl+p2 )] +p3 (p2p'1+P2 (P1+P1)) 

P3 = 1(p3p2p1) 

= 

is s 
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Example: Simplify the following functions as much as 

possible. 
(a) f = 1.(x) + (x +y +z) (x' +y +z) 

(b) f = 1(xy' +xy" +xyz +xz' +xy' z) +x +x' +x'z 

(c) f = 1(x(x +y) +x' (x' +z) +x" (x " +w)) +x(y +x'x ") 

(a) f = 1(x) + (x+y+z)(x'+y+z) 

g = (x+y+z)(x'+y+z) 

= xx ' +xy+xz+x' y+y+yz+x' z+yz+z 

= xx'+y+z 

1h = 1(x) 
f = 1 h+g = 1 (x) +xx' + y+ z 

(b) f = 1(xy'+xy " +xyz+xz ' +xy' z) +x+x'+x'z 

g = x+x'+x'z 

= x+x' 

1-h = 1 (xy' +xy" +xyz+xz'+xy'z) 

= 1, ((xy' +xy" +xyz+xz' +xy' z) +x) 

= 1.(x) 
f = 1 h+g = 1 [x) +x+x' 

( c ) f = 1-(x (x+y)+x' (x'+z)+x" (x"+w)) +x(y+x'x" ) 

g=x(y+x'x") 
= xy+xx'x" 

= xy 



29 

1h = 1 (x (x +y) +x'(x' +z) +x " =(x" +w)) 

= 1 (x +x +x " J 

= 1.2 

= 1 

f = 1h+g = l+xy 

As in the binary system, the algebraic manipulation 

may be difficult for a large number of variables or 

terms, and one is not certain that the function so 

obtained is minimal. 

C. Map Method 

Although the map method is easy and convenient, its 

applicability to the ternary system is very limited due 

to the large number of combinations. In the binary sys- 

tem, the map method is efficient up to about five or 

six variables. In the ternary system, the limit is 

three. 

A two -variable map is given in Figure 1. The min- 

imization procedures are similar to those used in binary 

minimization. These procedures consist of joining cor- 

responding cells into blocks as large as possible. 
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0 

y 1 

2 

x 

1 4 7 

2 5 8 

3 6 9 

Figure 1. A two -variable map. 

The rules for map method of simplification are: 

1. Joining of adjacent cells with equal outputs. 

The required conditions are 3x1, 3x2, 3x3 

arrays. 

2. Multiple use of cells for different blocks is 

permitted. 

3. Cells with output value 2 can be considered as 

"don't care" cells for the formation of blocks 

with output value 1. 

4. Always block the largest possible blocks first. 

Example: Use map method to simplify the function given 

by Table XI, Section A. 

The table is converted into map form as shown in 

Figure 2. 

0 1 2 
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y 1 

2 

x 

0 1 2 

I 1 
, 

:2; 1 

_____ 
:2 ---'---"---^ 

^_^ 
2 

_ 
2: 

Figure 2. Ternary map for the function 
given in Table XI. 

1. The cells in third row have the same output 

value, that is, 2. They are combined as one 

block since they satisfy the condition 1x3. 

This block is represented by y" . 

2. The center cell (cell 5) cannot be combined 

with its adjacent cells, hence no simplifica- 

tion can be made here. It is represented by 

x'y'. 

3. For the cells 4 through 9, the three cells with 

output value of 2 can be used as "don't care" 

cells for the other three cells according to 

rule 3. Hence a block containing 3x2 cells can 

be formed. The term that represents this block 

is 1 (x' +)"). 

The function that results from this simplification 

technique is therefore 

f = 1. (x' +x ") +y" + x' y' , 

0 

--, 
_.J 



32 

which agrees with what was obtained by algebraic 

manipulation in Section B, page 27. 

For a three -variable function, a three -dimensional 

map can be used. But with pencil and paper, it is more 

convenient to use a two -dimensional map as shown in 

Figure 3. In this map, cell 14 is considered to be 

adjacent to cells 11, 13, 15, 17 and also cells 5 and 23. 

0 

z 1 

2 

0 0 0 1 1 1 2 2 2 

1 4 7 10 13 16 19 22 25 

2 5 8 11 14 17 20 23 26 

3 6 9 12 15 18 21 24 27 

0 1 2 0 1 

Y 

2 0 1 

Figure 3. A three- variable map. 

2 

Cell 11 is adjacent to cells 10, 12, 14 and cells 2 and 

20, but not to cell 8. It is probably easier to visu- 

alize the adjacencies if the x- variable is displayed in 

a third dimension as shown in Figure 4. The front -back 

adjacencies are then clear. 

The rules for combination of cells are the same as 

given for the case of two variables except that now the 

front -back adjacencies should also be considered. This 

will complicate the determination of the minimal set of 

implicants to a great extent. 

x 
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2 

z 

x 

0 

1 

0 

1 
19 22 25 

10 13 16 
26 

1 4 7 
17 27 

2 5 8 
18 

2 

3 6 9 

1 

Y 

Figure 4. Three- dimensional 
representation of a 
three -variable map. 

2 

0 2 

2 
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Example: Simplify the function given in Table XIII 

(d stands for "don't care "). 

Table XIII. A Three -variable Function 

x y z f 

0 0 0 1 

0 0 1 0 

0 0 2 1 

0 1 0 2 

0 1 1 0 

0 1 2 d 

0 2 0 1 

0 2 1 2 

0 2 2 1 

1 0 0 1 

1 0 1 2 

1 0 2 d 

1 1 0 2 

1 1 1 0 

1 1 2 0 

1 2 0 2 

1 2 1 2 

1 2 2 2 

2 0 0 1 

2 0 1 0 

2 0 2 1 

2 1 0 2 

2 1 1 1 

2 1 2 0 

2 2 0 1 

2 2 1 1 

2 2 2 d 

The map that corresponds to this given function is 

shown in Figure 5. For clarity, the simplifications of 

the h- subfunction and that of the g- subfunction are 

. 

; 

: 

, 



shown in Figure 6 (a) and (b) respectively. 

0 

z 1 

2 

0 1 

x 

1 1 2 2 

1 2 1 1 2 2 1 2 1 

0 0 2 2 0 2 0 1 1 

1 d 1 d 0 2 1 0 d 

2 1 

Y 

Figure 5. Map for the function given 
in Table XIII. 

(a) 

o 

z 1 

2 

(b) 

0 

z 1 

2 

0 0 

x 
1 1 2 2 2____z 

IBIEFilEEN11 BM 
Eil Ili 0 0 12 1 2 0 121 0 

E-I1 d Lin o LID- ° II 

1h = 1- (y " +z +yz" +x "y'z') 

-- - -`' 
o , '"Ó 1 1 1,' ,2 

1 i2 1 1 L2 2 2 1 

!!'P:: 0 

1 0 d 

/0 1 2 /0 1 2 \ 1 2 

xy"z' x' yz' y x' y" 

g = )C17." + y' z +xy"z'+ x'yz' 

Figure 6. The simplification of 
(a) h- subfunction 
(b) g- subfunction 

x " y' z' 

35 

0 0 2 

0 1 0 1 2 

- 
- 

yzII 

0 

x 

2 

0 1 1 

1 
--- 

2 0 

0 1 

O 1 2 

y` 

2 
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From these maps, it is determined that 

f = 1h +g = 1. (z +y "+ yz " x" y'z' ) + x'y " +y'z +xy "z' +xyz. 

It is obvious that the map method is also very 

limited, and is not as straightforward as that of the 

binary system. 

D. Tabular Method 

For a greater number of variables than about three, 

neither algebraic nor map methods are practical. How- 

ever, the tabular method described in this section may 

be used in these cases. This method can also be pro- 

grammed for automatic machine simplification. 

The procedures for tabular simplification are 

described by the following algorithm. The algorithm 

provides a systematic method of applying a limited set 

of reduction rules in a converging process in order to 

obtain a minimal function. 

Algorithm C: 

1. List all elementary monomials corresponding to 

f =1 as group 1, to f =2 as group 2, and to the 

don't care as group 3. 

2. Minimize each group using the relationship 

AB +ABI +AB "= A. 

Note that groups 2 and 3 can both be used as 

don't care terms to minimize group 1, and 
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group 3 alone as don't care terms for the 

minimization of group 2. 

3. Check those monomials which have been used to 

form new monomials. Also, monomials can be 

repeatedly used if so applicable. Note that if 

a monomial in group 2 is used as a don't care 

term for group 1, no check mark is made for the 

monomial in group 2, as it must be accounted 

for in group 2. 

4. The process continues until no further simpli- 

fication can be made. All unchecked monomials 

in groups 1 and 2 are prime implicants. 

5. Make prime implicant tables for groups 1 and 2. 

Choose appropriate prime implicants to form a 

minimal function. 

Example: Simplify the function given in Table XIII 

using the tabular method. 

1. The three groups are listed below in column 1. 

For ease in tracing the steps of the process, 

each monomial is assigned an identifying number. 

2. The "new monomials" are shown in column 2 to- 

gether with the identifying number of the 

"parent monomials." 

3. Each monomial used in forming a reduced mono- 

mial is checked. No check mark is placed for 
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the monomial in group 2 if it is used as a 

don't care for reducing the monomials of 

group 1. 

4. The successively generated "new monomials" are 

given in successive columns. Note that the 

"parent monomials" for each "new monomial" are 

contained in the column immediately preceding 

the new column. 
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Table XIV. Minimization of the Three -variable 
Function of Table XIII. 

Group Column 1 Column 2 Column 3 

1. 0001 1. (1,3,11) OX011. (1,9,10) *XXO 

2. 002 V 2. (1,5,6) X0012. (6,7,12rX2X 

3. 020V 3. (2,4,19) 0X2 

4. 022V 4. (2,7,20) X02 

1 5. 1001 5. (3,4,12) 02X V 

6. 2001 6. (3,9,15) X201 
7. 202 7. (4,17,21) X221 

8. 211 8. (5,13,20) 10X 

9. 2201 9. (5,14,15) 1X0 

10. 221110. (6,9,18) 2X01 

11. (9,10,21) 22X 

12. (10,12,16) X21 

11. 010113. (11,14,18) X10 

12. 021 14. (15,16,17) 12X 

13. 101 

14. 110 
2 

15. 120 
16. 121 

17. 122 

18. 210 

19. 012 

3 20. 102 

21. 222 

* also from (2,6,13) 
** also from (5,11,14) 
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5. The unchecked monomials that remain after the 

process terminates are the desired prime 

implicants. They are, in this case: 

h -type prime implicants 211 

0X2 

X02 

10X 

XXO 

X2X 

g -type prime implicants 021 

101 

X10 

12X 

6. Prime implicant tables for selection of appro- 

priate prime implicants. 

Table XV. h -Type Prime Implicant Table. 

211 0X2 X02 10X XXO X2X 

000 v/ 

002 N/ 

020 V ./ 

022 V" 

100 ./ 

200 

202 

211 

220 V 
221 
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Table XVI. g -type Prime Implicant Table. 

021 101 X10 12X 

010 

021 

101 

110 

120 

121 

122 V 
210 V 

The most economical function from Table XV is the 

combination of X2X, XXO, X02, 211, and that from Table 

XVI is the combination of 12X, X10, 101, 021 (all prime 

implicants in this case). The function can be written 

as 

f = 1Cy " +z +yz " +x" y'z'J +x'y " +y'z +x'yz' +xy "z' 

which agrees with that obtained in Section C, page 36. 
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V. TERNARY SWITCHING CIRCUITS AND STORAGE DEVICES 

If the advantages of the ternary logic are to be 

realized, it is necessary to use a simple, inexpensive 

ternary element. Most of the electromagnetic and elec- 

tronic switching elements are, however, two -valued 

devices. There is, at present, no device in common use 

that inherently has three stable states. 

The nearest approximation to this requirement is 

the non -linear Hall- effect ternary logic element (4) and 

the thin magnetic film for storage in (17). A magnetic 

ternary device was developed by Anderson and Dietmeyer 

(1). But none of these devices are well -developed, and 

each is either expensive, or not practical for other 

reasons. 

Ternary switching circuits could also be built up 

with devices of a basically binary type. Hallworth and 

Heath (2) have devised several circuits using p -n -p and 

n -p -n transistor pairs to fulfill the purpose. A set of 

tunnel -diode circuits for ternary logic have been devel- 

oped by the faculties of Engineering in Osaka University, 

Japan (3). The tunnel -diodes are fast but expensive, 

and always present the problem of synchronization. The 

circuits presented in this chapter may not be the best 

but they will do the job. More development effort is 

needed to make them more suitable. 
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A. Basic Gates 

The basic gates of ternary logic together with the 

symbols that represent each gate are shown in Figures 

7, 8, 9 and 10. The diode -transistor scheme will be 

employed as other ternary devices are not practically 

usable yet. The representations of logic levels by 

voltages are given below. 

logic 0 V > + 2v (typical value 2v) 

logic 1 -1v <_ V + lv ( " Ov ) 

logic 2 V S - 2v ( °B -2v) 

Note that the ternary Or -gate and And -gate (Figures 

7 and 8) are the same as binary Or -gate and And -gate 

realizations, hence no explanation will be given here. 

In Figure 9, if the input represents "0" ( +2v), 

the base of T2 is near +2v. R1, R2, and R3 are designed 

so that T2 is saturated, and T3 keeps the output propor- 

tionately as far below the emitter of T3 as point X is 

above it. This gives an output of approximately Ov, or 

the "1" state. If the input is "1" (0v), the base of 

T2 is near ground potential, and R1, R2 and R3 still 

keep T2 saturated. Thus the output is kept proportion- 

ately below the emitter of T3 by T3. This gives an out- 

put of -2v, which represents the truth value "2 ". If 

the input is "2" ( -2v), T2 is cut off. R1, R2 and R6 

ii 



xl 

x2 
x3 

1 

Inputs 
2 

x3 

x1 
x2 

x3 

1 

Inputs x2 

x3 

Figure 7. Or -gate 

f (x1 

xl+x2+x3 

Output 
f (x1,x2,x3)= 

xl +x2 +x3 

f (x1,x2,x3)= 

x1x2x3 

Output 
f (x1 ,x2 ,x3) - 

X1X2x3 

Figure 8. And -gate 
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x f(x)=x1 

45 

Figure 9. Cycling -gate. 

} C I 



x 
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I f(X)=X 

Figure 10. Inverter 
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together with the circuit of T3 now give an output of 

+2v, which is adequate for the truth value "0 ". 

In Figure 10, if the input is positive ( +2v), T1 

acts as an amplifier and is saturated while T2 is cut 

off. The output is then determined by R4, R7 and R8 and 

the output is negative. If the input is at zero volt- 

age, both transistors are cut off, and the output is 

approximately zero volts, because of the symmetry of the 

circuit. If the input is negative ( -2v), T2 is satu- 

rated while T1 is cut off. The output is determined by 

R1, R7 and R8 and is positive. 

B. Memory Elements 

The work -horse of the binary digital system is the 

bistable circuit or flip -flop. The ternary versions of 

such a circuit will be referred to as tristable circuit 

or ternary -flip -flop or simply TFF. Several circuits 

are proposed below. They are designed by making analogy 

with binary circuits. 

A RCS TFF is shown in Figure 11. 



Inverter Inverter 
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output 

S 

Figure 11. R -S TFF composed of two inverters. 

Table XVII defines the operation of R -S TFF. 

Table XVII. Operation of R -S TFF 

R S Output 

0 or 2 0 

1 and 1 1 

2 or 0 2 

Note the similarity between this circuit and the 

binary R -S FF in Figure 12 which is composed of two 

NOR -gates. 

S 

NOR NOR 
output 

Figure 12. R -S FF in binary system. 

R i 

R 
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While the R -S TFF is not very useful in its present 

form, the R -S -T TFF shown in Figure 13 should be of 

great use. The circuit is composed of three Cycling - 

gates. A triggering voltage of positive polarity 

applied to R will produce the following logical outputs: 

r : 1 

s : 2 

t . 0 

If the triggering is applied to S, the outputs are 

: 0 

s . 1 

t : 2 

If the triggering is applied to T, the outputs are 

: 2 

S. 
t . 1 

Cy- 
cling 

R 

y- 
cling 

r s 

-- 4 

T 

Cy- 
cling 

Figure 13. R -S -T TFF. 

0 

t 



An astable TFF is shown in Figure 14. 

C 

D 

C 

C 

D 

C 

D 

Figure 14. Astable TFF. 
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A monostable TFF can be constructed by simply 

short -circuiting one of the coupling circuits in Figure 

14. 

C. Ternary Memory 

The greatest drawback of the ternary digital system 

is the unavailability of economical storage devices. 

Several authors have tried to develop a ternary storage 

element but all failed under the criteria of practical- 

ity, simplicity and economy. Figure 15 shows one method 

of accomplishing this task. It is composed of two two - 

state magnetic cores to provide one ternary digit of 

storage. 

7 

C C 



+ 
write o 

reset 

Figure 15. Ternary core switch. 
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output 

The cores are wired in series as shown. Initially, 

one core is in +B 
m state while the second core is in the 

-Bm state. The input pulses to write the value "2" are 

of negative polarity, and thus can only switch core B. 

The input pulses to write the value "0" are of positive 

polarity and can only switch core A. The zero is repre- 

sented by no pulse, and the core states are not changed 

in this case. The reset pulse which occurs subsequent 

to the write pulse is driven through both cores in such 

a way that it will return either of the cores back to 

its original state. An output pulse of positive or 

negative polarity or no pulse is obtained on the output 

winding (when the cores are reset) to indicate if a 

"0 ", "2 ", or "1" was previously written. The magnitude 

of the write and reset currents in both cores will have 

to be of sufficient amplitude to switch the cores. 

-Bm +Bm 

A B 
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A storage unit of the "coincident current" type is 

shown in Figure 16. This circuit can be used in the 

matrix form shown in Figure 17. The A write pulse will 

be of positive or negative polarity according to the 

digit which is to be stored. The B write pulses are 

A write 

B write reset 

output 

Figure 16. Coincident current core storage unit. 

always of positive polarity. All write current pulses 

have an amplitude of Im /2, thus only one chosen core 

will get the full switching current. The selection of 

any core in the matrix is effected by selecting a row 

and a column as in the case of binary coincident current 

memory. 



A write 

Illlq 
"and DEW 

ohmenst 
4611111110Frot 
shimmint 

Reset 

B write 

Figure 17. Ternary core memory. 
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VI. CONCLUSION 

In this paper, a systematic method of designing a 

ternary digital system was described. The system of 

logic described is characterized by a rather close anal- 

ogy to the systems of Boolean algebra which are normally 

employed in the cases where two values only are per- 

mitted. The method described here is not the only pos- 

sible method, but it is one of the simplest and can be 

easily understood and applied by designers familiar with 

binary techniques. 

Apart from the arithmetic computer applications, 

the technique provides a very practical method for the 

realization of special logical functions concerned with 

three -valued digital system. It is foreseeable that a 

completely ternary -based computer will find a useful 

place in a digital control system. The advancing micro- 

electronic techniques may well lead to more economical 

ternary -based circuits where thin -magnetic film assem- 

blies are integrated with thin -film semiconductor 

assemblies. 

At present, however, binary systems are still 

preferred. Much work still needs to be done, in both 

theory and hardware, before ternary systems can be 

practically realized. Whether ternary systems ulti- 

mately will be widely used or not depends mainly on 
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the development of economical ternary switching elements 

and storage devices. The problems are both challenging 

and interesting. It is hoped that digital technology 

will see further advances in this area. 
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APPENDIX 

Two more operations have been widely discussed in 

ternary switching theory. These additional operations 

will, in many instances, reduce the hardware cost, al- 

though at the same time they will complicate the alge- 

braic manipulation. The definitions of these two opera- 

tions are given below. 

Definition A.1. J1- operation is defined as 

0 if i = x 

Ji (x) = 

2 if i x 

i,xE (0,1,2} . 

Definition A.2. Ki- operation is defined as 

0 if i k x 

Ki (x) 

2 if i = x 

i,xE { 0,1,2} . 

Definitions A.1 and A.2 are summarized in Table 

XVIII. 

k 

_ 
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Table XVIII. 
Ji -, 

Ki- operation 

X Jo(x) J1(x) J2(x) Ko(x) K1(X) K2(x) 

0 0 2 2 2 0 0 

1 2 0 2 0 2 0 

2 2 2 0 0 0 2 

Note that Ki (x) = Ji (x) and Ji (x) = Ki (x) 

The Ji- operation and Ki- operation can be expressed 

in terms of two fundamental operations, And and 

Cycling. 

Jo (x) = (x' -x" )" 

J1(x) = (x-x' )" 

= (x"-,x)" 

Ko (x) = (x-x1 
) (x.x')". (x.x" )" 

K 
1 
(x) (x' .x" ) (x,x")" 

(x'-x")"- (x-x' )" . 

The relationships between Ji- operation and Ki- 

operation are: 

Jo (x) = K1(x)+K2(x) 

J1(x) = Ko(x)+K2(x) 

J2(x) = K0(x)+K1(ç) 

Ko (x) = J1 (x) -J2 (x) 

Kl(x) = Jo(x)-J2(x) 

K2 (x) = Jo (x) -J1 (x) 

_ 

= 
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Also the following relations are useful in 

reducing algebraic expressions. 

K(x)+K1(x)+K2(x) = 2 

Jo(x)J1(x)J2(x) = 0 

Ki (x) if i = j 

Ki(x)*Kj(x) _ 

0 if i j 

'Ji(x) if i = j 

Ji (x)+Jj (x) _ 

2 if i j 

It is well -known that binary functions can be ex- 

panded in disjunctive normal form and conjunctive 

normal form by applying the expansion theorems (due to 

Shannon): 

f(xl,x2,...,xn) = xlf(1,x2,... ,xn) +3 1f(O,x2,... ,xn) 

or, 

f(xl,x2,...,xn) _ 

[xl+f(1,x2,-,xn)) 

Not surprisingly, there exists a similar pair of 

expansion theorems in the ternary system: 

f(xl,x2,...,xn) = Jo(xl)f(0,x2,...,xn)+ 

J2(xl)f(2,x2, .,xn) 

or, 

(xl+f(O,x2,...,xn)) 

; 

= 

J1(x1)f(1,x2,.,xn)+ 
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f(xl,x2,...,xn) = (K0(x1)+f(o,x2,.,xn)) 

lKl(xl)+f (1,x2,....,xn)) 
[1<2 (xl)+f (2,x2,"'' ,xn)) 

If the cost of a Ji -gate or a K.-gate is the same 

as that of an And -gate or an Or -gate, then the use of 

J.-operation and K.- operation will tend to reduce the 

cost of a given function. 

Example: Reduce the following equation (a) without 

Ji -, Ki- operation, (b) with Ji -, K.-operation. 

f = 1 (x+yz+yz" + x") +y' z' +yz' +y"z+y"z" + y"z' 

(a) g = y'z'+yz'+y"z+y"z"+y"z' 

= z' (y+y' )+y" (z+z'+z" ) 

= z'(y 
)+y" 

l'h = 1 (x+yz+yz " + x ") don't care (from g) 

= 1 ((x+yz+yz " + x" )+y z') 

= 1 (x+x"+ y(z+z'+z" ) 
= 1(x+x"+ y) 

f = 1 h+g = 1. [x+x" +y] +z (y+y' ) +y" 

cost = 14 



(b) g = z' (y+y" 
) +y" 

= z'J2(y)+y" 

1h = 1 (x +x " +y) 

= 1 (J1 (x) +y) 

f = 1h +g = 1'(J1(x) +y) +z'J2(y) " 

cost = 11. A saving of 3. 

from part (a) 

from part (a) 

Example: Simplify the following expression as much 

as possible. 

f = xx' +xx " +x'x " +x" 

(a) Without Ji -, Ki- operation 

f = xx' +xx" +x' x" + x" 

= xx' +x'! cost = 5 

(b) With Ji -, K.2. -operation 

f = xx' +xx " +x'x" +x" 

= x (x' +x ") +x" (x' +x" ) 

= (x' +x ") (x +x" ) 

= Jo(x)'J1(x) 

= K2(x) cost = 2 
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There are many operations in ternary algebra which 

are analogous to the sheffer stroke operation in binary 

algebra. One of these is the following: 
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Table XIX. Another Binary Operator for 
the Ternary System. 
(Analogous to the binary 
"stroke" function) 

x Y 

o 

o 

o 

1 

1 

1 

2 

2 

2 

o 

1 

2 

o 

1 

2 

o 

1 

2 

xy 
1 

1 

1 

1 

2 

2 

1 

2 

o 

It can be seen that x' = xlx 

x'y = (x) y) " 

The operation "I" is therefore logically complete. 

The simplification achieved, however, would only be one 

of notation, whereas the actual physical circuits would 

be more complicated, both because of the lesser flexi- 

bility of the operation and because of the fact that a 

physical circuit realizing the operation would be 

rather complicated in itself. 


