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INTRODUCTION

Net primary productivity is considered an important indicator of ecosystem health and an
essential component in understanding the global carbon cycle (Pan et al., 2014). Because of its
importance in evaluating ecosystem function and the urgency to understand how ecosystems will react
to global climate change, there has been increased interest in finding ways to accurately measure and
predict NPP at different temporal and spatial scales (Field, Randerson, & Malmstrom, 1995a; Goetz et
al., 1999; Nemani et al., 2003; Randerson, Chapin, Harden, Neff, & Harmon, 2002). Changes in the rates
of projected height growth and in the amount of foliage accumulated by vegetation are two measures

that are worth investigating.

One of the main limitations researchers face when monitoring NPP is the paucity in repeated
measurements necessary to accurately estimate it. Traditional methods of monitoring terrestrial
primary production have relied either on inventory plots or on growth curves derived from ground-
based measurement of tree heights, which are later used to create growth and yield tables, and to
classify areas with different growth potentials (Skovsgaard & Vanclay, 2008). Although these methods
are considered to be accurate, they require continuous measurement over long periods, making them
difficult to implement over large areas as well as costly. Also, because they make use of statistical
relations to convert specific tree measurements to volumes and total biomass, traditional approaches
describe a site’s growth potential rather than actual growth unless tree densities and ages are recorded.
Even then, the assumption of a stable environment may be invalid under intense management practices

and a changing climate.

Recent developments in remote sensing allow researchers to address some of the challenges

associated with the need to make repeated measurements of tree height, stand wood volume and leaf



area density. For more than four decades, satellite-borne sensors have used the sun’s energy to provide
a reflected spectral image from which land-cover types and disturbances can be mapped (Landgrebe,
1997). These passive sensors are unable, however, to penetrate dense vegetation. To accomplish the
latter requires pulsed energy generated from light-emitted lasers (Light Detection and Ranging - LiDAR)
(Wulder, Bater, Coops, Hilker, & White, 2008) or from long-wave radio waves (RADAR) (Imhoff, Story,
Vermillion, Khan, & Polcyn, 1986). Although LiDAR is not yet available from satellite-borne instruments
with adequate resolution, aircraft -mounted instruments provide the appropriate resolution where

coverage is available for both tree heights and leaf area density.

In addition to height measurements from remote sensing, modeling approaches have provided
new insights into forest growth and the factors limiting it at a given time. If uniformly-aged forests grow
at locations where the environmental conditions are well known, it is possible to use process-based
models to estimate growth at regular intervals (Weiskittel, Hann, Kershaw, & Vanclay, 2011). Because
physiological processes are directly affected by climate and soil properties, process models can identify
the relative importance of different climatic variables, as well as soil properties affecting the storage of
water and nutrients. Oftentimes parameterization of such models is, however, challenging as
traditional inventory based observations cannot provide vegetation parameters in spatially continuous

fashion across the landscape.

To overcome some of the limitations in estimating vegetation growth, this thesis combines
estimates of height and vegetation cover obtained from remote sensing with the insights provided from
a process-based growth model in a study of more than 100 plantations of Douglas-fir scattered over
much of western Oregon. While we believe our efforts represent an improvement over conventional
methods, we are aware that repeated coverage and reliable meteorological data are essential to

advance the approach. To compensate for the lack of repeated measurements we established a



chronological sequence of different aged Douglas-fir plantations. In doing this, we made a number of
assumptions: ( 1) that we were able to classify each stand correctly according to its site index, (2) that
extrapolated climatic data provides a reliable estimates of monthly averaged precipitation, incident
solar radiation, and temperature extremes,. 3) that the date of stand establishment following harvesting
was correctly identified, 4) that estimates of leaf area density and stand heights were accurately
measured, and (5) that stands were not thinned or otherwise manipulated since their establishment.
We simplified our analysis by also assuming that climatic conditions have remained stable for the short

period over which we collected data on plantation growth (27 years).



LITERATURE REVIEW AND BACKGROUND

Forests cover more than one third of the global land area and are important for climate
regulation and carbon sequestration (FAO, 2015; Muning et al., 2011). There is uncertainty of how
changing climate will affect forest productivity, which is directly linked to biomass production and
carbon storage (Kohl et al., 2015). Understanding the mechanisms by which forests interact with the
atmosphere to produce biomass, and therefore the influence that forest have on the earth’s energy and
water balance are important if we are to predict future climate scenarios (Randerson et al 2002; Steffer,
Nobel, & Canadell, 1998). Recent changes in climatic conditions highlight the value of developing
accurate models to account for gains and losses in carbon storage by forests (Law & Waring, 2015).
Likewise, knowing the current state of carbon storage and understanding the components of carbon
fluxes creates a baseline against which foresters and decision makers can compare policies that are

designed to be both economically and ecologically sound (Gibbs, Brown, Niles, & Foley, 2007) .

The total carbon balance of forests can be separated into carbon uptake (or gross primary
productivity, GPP) and carbon loss through plant and soil respiration. The difference between GPP and
plant respiration is net primary productivity (NPP), an estimate of annual net accumulation of biomass,
above and below-ground. Above-ground tree biomass can be estimated by periodically measuring stem
diameter and height growth on inventory plots, and using measurement and allometric equations to
convert dimensional measurements to volume and mass. Accounting for below-ground biomass in roots
and leaf turnover rates is much harder. A disturbance by fire, erosion, or removal of plant material can
cause the carbon balance of an ecosystem to go negative (Kira & Shidei, 1967). Although empirical stem
growth models based on biometric analyses are commonly used in forestry, these rarely consider the
effect of different management practices and climate on growth (Battaglia & Sands, 1998; Constable &

Friend, 2000).



More recently, Light Detection and Ranging (LiDAR), a remote sensing technique were pulsed
laser light is reflected off of tree canopies and the ground, has been used as an inventory tool to
measure attributes of forests that are of interests to managers (Korhonen, Korpela, Heiskanen, &
Maltamo, 2011; Lim, Treitz, Wulder, St-Onge, & Flood, 2003; van Leeuwen & Nieuwenhuis, 2010;
Woulder et al., 2012) . LiDAR facilitates measurements of the three-dimensional distribution of
vegetation components and sub-canopy architecture, thereby providing high spatial resolution
topographic elevation data, and accurate estimates of vegetation height, cover density, and other
aspects of canopy structure (Hilker et al., 2008; Lefsky et al., 2005). Measurement errors for individual
tree heights (of a given species) are typically in the order of less than 1.0 m (Persson, Holmgren, &
Séderman, 2002) and less than 0.5 m for plot-based estimates of maximum and mean canopy height
with full canopy closure(Naesset & Okland, 2002). LiDAR systems can be classified into discrete return
and full waveform sampling systems. Full waveform LiDAR systems compensate for a coarse spatial
resolution (10 — 100 m) with a finer, and fully digitized, vertical resolution, providing full sub-meter
vertical profile (Coops et al., 2007). Discrete return systems on the other hand typically record only up to
five returns per laser footprint (Lim et al., 2003) at a footprint size of about 0.2m (Coops et al., 2007).
These systems are optimized for the derivation of sub-meter accuracy terrain surface heights (Schenk,

Seo, & Csatho, 2001).

LiDAR’s advantage over passive remote sensing techniques lays in its ability to penetrate dense
forest canopies and to give accurate estimates of tree heights, canopy leaf area and volume, as well as
variations in micro-topography over large areas (Coops et al., 2007; Magnussen & Boudewyn, 1998;
Naesset, 1997; Xiaoye Liu, 2008). However, using LiDAR alone to measure above-ground growth requires

repeated observations (Dubayah et al., 2010). Repeated surveys with LiDAR are uncommon because



currently, suitable sensors are only designed to be flown on fixed winged aircraft. Once suitable

satellite-borne LiDAR is available, data from repeat surveys will be much easier to acquire (REF).

Because of the paucity of repeat measurements, even on the ground, foresters often describe
growth potential instead of actual stand growth to characterize site quality and to avoid the need for
repeated measurements. One common measure of potential productivity is site index (Sl) which
classifies forest land into growth categories based on the average total height of dominant and co-
dominant trees, typically referenced to age 50 or 100. In Oregon, a five-class system is commonly used,
with site 1 (S1) represented the highest and site 5 (S5) the lowest category (Mcardle, Meyer, & Bruce,
1949). Sl incorporates all the environmental factors that affect growth but does not distinguish the
constraints imposed by any single variable. While a valuable and widely applied method, site index may
not predict actual growth rates for a variety of reasons (Skovsgaard & Vanclay, 2008). First of all, site
index is assumed to be invariable over time, which assumes no change in soil properties, climate
conditions or management practices (Monserud & Rehfeldt, 1990; Monserud et al., 2008; Valentine,
1997). Also, Sl classification requires the presence of identifiable tree species of similar ages that have
grown without overhead competition or injury throughout their lives (Ford & Bassow, 1989). Changes
in Sl can go unnoticed unless frequent assessments are made. Lastly, forest inventory observations are

typically spatially discrete, scaling across the landscape presents additional challenges.

As an alternative to site indices, stand growth can also be estimated using process-based growth
models. Such models make growth predictions based on detailed knowledge of environmental factors
and physiological processes that include light interception by the canopy, photosynthesis, leaf stomatal
responses, respiration, carbon allocation, leaf turnover, soil water and nutrient dynamics (Weiskittel et
al., 2011). Process-based growth models have the potential to estimate productivity in areas where

forests are absent, and to quantify the effect of disease and drought. For these reasons, process-based



models have gained popularity in recent years (Almeida et al., 2004; Constable & Friend, 2000).
However, testing the validity of process-based models requires a much larger set of measurements
than those required to validate Sl (Battaglia & Sands, 1998). When extrapolating across landscapes,
reliable climatic and soils data are particularly difficult to obtain, limiting the use of process-based

growth models in many situations.

Efforts to parameterize growth models across the landscape using passive optical remote sensing
often rely on satellite derived estimates of incident photosynthetically active radiation (PAR), the fraction
of PAR absorbed by the forest canopy (farar), precipitation and temperature (Coops & Waring, 2001a,
2001b; Goetz et al., 1999; Powell et al., 2010). Some of the main limitations with this approach are well
known problems associated with passive optical remote sensing, namely instrument saturation at high
leaf area index (LAI) (McLeod & Running, 1988; Franklin et al., 1997), coarse spatial resolution (Powell et
al., 2010), and inaccuracy in extracting forest attributes (Waring, Coops, & Landsberg, 2010).

While single method forest growth estimation has many advantages, there are also significant
limitations associated with each approach. More recently, researchers have favored a multiple method
approach to forest growth estimation taking advantage of the strengths of each approach while
minimizing their limitations (Field, Randerson, & Malmstrom, 1995b; Moran, Maas, & Pinter, 1995).
LiDAR has been used as a complement for other forms of passive optical remote sensing and process-
process based growth modeling because it is able to accurately measure the vertical structure of forest
canopies. While it is possible to extract forest height from optical passive remote sensors, LiDAR offers
independent validation of forest attributes such as stand height and leaf area index (LAI) useful for the
estimation of forest productivity and biomass estimation (Koetz et al., 2007).

Previous attempts to estimate growth using the multiple method approach have used a

combination of satellite optical remote sensing, full waveform LIDAR, and process-based growth models



(M.A. Lefsky, Turner, Guzy, & Cohen, 2005). While this approach allows for increased spatial coverage,
provided that LiDAR coverage is available throughout the region of interest, model parameterization is
independent of the remotely sensed data. Instead, temporally separated LiDAR surveys are used to
estimate periodic increases in above ground biomass which are later compared to the growth model
predictions. However, the large footprint size of the waveform LiDAR instrument (5-10 meters) may be
too coarse to correctly estimate tree-level biomass and other attributes necessary for accurate growth
estimation at different spatial scales (Popescu, Wynne, & Nelson, 2003). Similarly, statistical techniques
have been used to aid in the parameterization of process-based growth models across areas where little
or no data is available. This approach combines a tree-level forest growth model (Forest Vegetation
Simulator (FVS)), ground measurement of forest attributes, and nearest neighbor imputation (kNN) to
create “virtual” forest inventories from which growth projections can be made (kNN)(Falkowski et al.,
2010). Harkonén et al., (2013) approached the problem of growth estimation using airborne LiDAR, a
simplified process-based growth model, and climate data to predict growth Scots Pine plots in Finland.
While the quality of the LiDAR data they used was low, the growth model parameterized using LiDAR
derived forest attributes performed better than well-known empirical growth models, and
underperformed as compared to growth predictions of the same process-based model parameterized
using ground data. The predictions of the LiDAR-parameterized growth model in this study were
contingent on the correct soil fertility parameters and LAl estimation. While LiDAR LAl estimates are
relatively easy to obtain reasonably good even without ground validation (Korhonen et al., 2011) soil
properties are difficult to obtain at the spatial scale required for appropriate process-based model
growth predictions (Coops, Waring, & Hilker, 2012)

More recent methods of growth estimation use the multiple method approach involve Landsat
forest disturbance detection to estimate stand ages, IKONOS stereo imagery in combination with

airborne LiDAR to estimate forest stand heights, and Forest Inventory and Analysis National Program



ground data to develop regression predictions of above ground biomass as a function of LiDAR first
returns (Neigh et al., 2016). While this approach may produce estimates of growth across large areas, it
only measures the difference between two points in time and may not be useful in making predictions

of growth over time.



MATERIALS AND METHODS

Study area

Western Oregon is characterized by two major mountain ranges separated by an extensive
valley system. Outside the valley system the majority of the area is covered by coniferous forests
dominated in large part by successional and old growth Douglas-fir forests which vary in productivity
from 3 to 35 Mg ha year™ (Jarvis & Leverenz, 1983). The climate of the region varies greatly but is
characterized by wet, mild winters and warm, dry summers. Mean monthly minimum temperatures
range from -5°C in the high Cascade Mountains to 5°C in the coastal areas, whereas mean maximum
temperatures range from 20°C along the Oregon coast to 30°C in the southern parts of the region.
Total annual precipitation is highly variable across the region with the lowest values recorded in the
southern portion (500mm year?) and up to 5000mm year? in some coastal regions and higher
elevations in the Cascades (Franklin & Dyrness, 1988). Of the more than 12 million hectares of forested
land in Oregon, more than 60% are publically owned. Commercial timber companies own about 2.4
million hectares of forestland in Oregon, while thousands of small private owners account for some 1.9
million more. The U.S. Department of Agriculture’s Forest Service (5.8 million hectares) and the U.S.
Department of the Interior’s Bureau of Land Management (1.5 million hectares) are by far the largest
managers of Oregon’s public forestlands. Typical rotation for managed forests is between 30-40 years
but varies by ownership

(http://oregonforests.org/sites/default/files/publications/pdf/Federal_Forestlands.pdf).

Landsat Disturbance Index and Stand age estimation

Landsat Thematic Mapper (TM) data for this project were acquired from USGS Earth Resources

Observation and Science (EROS) Center Science Processing Architecture (ESPA)
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(https://espa.cr.usgs.gov) spanning observations from 1983-2012 (path 46, rows 28-31). The images
were stacked according to path/row and later merged into monthly mosaic composites of the best
available pixels. All images were atmospherically corrected using the LEDAPS algorithm (Masek et al.,
2013) . LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) processes Landsat imagery
to surface reflectance, using atmospheric correction routines developed for the Terra MODIS instrument
(Vermote et al., 1997). The algorithm provides calibration, TOA reflectance, cloud masking, and an
atmospheric correction preprocessing chain. This atmospheric correction incorporates routines
previously applied to the Terra MODIS instrument. Additional cloud screening was performed using
fmask (Zhu & Woodcock, 2012). Finally, images were composited for each year using best available
pixels observed between June and September of each year. This period was chosen to minimize

seasonal changes in composited images and to allow change detection on an annual basis.

Stand ages for most of the managed forested area were estimated from the 30 year Landsat
archive, by assuming that the date of a recorded disturbance was close to the date of reforestation (as is
required by law in the Oregon Forest Practices Act). We estimated stand level disturbances using Healy’s
et al. (2005) disturbance index (DI). This index is a transformation of the Tasseled Cap algorithm
calculated using three variables (brightness, greenness and wetness) from Landsat TM/ETM+ data.
Disturbance was quantified as the normalized spectral distance of any given pixel from a nominal
“mature forest” class and is usually an indication of a clear cut leading to stand replacement. The
perceived date of disturbance was mapped at 30m resolution at yearly intervals over the entire study

area.
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Estimates of site growth potential using Site index and stand selection

Stands were selected in regions where LiDAR coverage and detected disturbances within the
past 30 years overlapped. In order to estimate stand age, only detected disturbances as a result of
harvests (clear cuts) were considered. Ortho-rectified aerial images were used to as used to assess
stand height homogeneity and to exclude stand where detected disturbance were likely the result of
recent fire. Areas designated by a single disturbance date were considered the origin of a new
plantation and therefore a stand. Adjacent areas separated by 100 m or less where the year of
disturbance was the same were considered a single stand. Using a map of site index at 50 years from
Latta, Temesgen, & Barrett (2009) we assigned each forest stand to one of 5 different site index regions

in western Oregon using McArdle, Meyer, & Bruce (1949) site index classification (Table 1) (Figure 1).

Table 1. McArdle et al., (1949) site index at 50 years height ranges (meters). Site index 1 (S1) represents the best site while site
index 5 (S5) the worst.

S1 S2 S3 S4 S5
Lower Limit 40 34 28 21 <17
Upper Limit >40 38 32 26 19

12
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Figurel. Map of western Oregon showing site classes and approximate stand locations (red dots). Grey shaded areas represent
current LiDAR coverage for the state of Oregon available through DOGAMI (http://www.oregongeology.org/sub/projects/olc/).
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Climate data

Long-term weather observations (1981-2010) across the region were obtained from Climate-
WNA (Western North America) (http:// http://cfcg.forestry.ubc.ca/projects/climate-
data/climatebcwna/#ClimateWNA). Climate-WNA is based on the Parameter-elevation Regressions on
Independent Slopes Model (PRISM), which accounts for variations in precipitation and temperature
associated with mountainous terrain through interpolation of a digital terrain model described by Wang
et al. (2012). ClimateWNA outputs climate layers at 1 Km resolution (Figure 2-5).

Mean monthly daytime vapor pressure deficits (VPDs) were estimated by assuming that the
saturated water vapor during the day would be equivalent to that held at the monthly mean minimum
temperature (Kimball, Running, & Nemani, 1997). The maximum mean VPD was calculated each month
as the difference between the saturated vapor pressure at the mean maximum and minimum
temperatures. Mean daytime VPD was calculated at two thirds of the maximum value. The number of
days per month with subfreezing temperatures (<2 °C) was estimated from empirical equations with
mean minimum temperature. Monthly estimates of total incoming short-wave radiation were obtained
by combining the synoptic and zonal variation captured by the North American Regional Re-Analysis
(NARR) with topographically-driven variation based on Fu and Rich (2002), similar to the approach

applied by Schroeder et al (2009).
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Figure 2. Map of total annual precipitation for western Oregon showing stand locations as red spots.
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Figure3. Map of mean daily short wave radiation for western Oregon showing stand locations as red spots.
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Figure4. Map of mean annual maximum temperatures for western Oregon showing stand locations as blue spots
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Figure5. Map of mean annual minimum temperatures for western Oregon showing stand locations as blue spots.
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LiDAR data

Airborne Laser Scanning (LiDAR) data were acquired from the Oregon Department of Geology

and Mineral Industries (DOGAMI). The institution was instrumental in forming the Portland Lidar

Consortium, a collaboration that brought together 17 agencies ranging from national agencies to

municipalities to acquire 5500 km? of public domain observations. This dataset consists out of numerous

acquisitions by various vendors and was acquired over multiple years, providing coverage for the

majority of forested areas in western Oregon (http://www.oregongeology.org/sub/projects/olc/) (Table

2).

Table 2. LiDAR information for each DOGAMI delivery corresponding to stand locations.

X . Acquisition Avg Point 5
DOGAMI Delivery Location . Survey Altitute  Pulse Rate
Date Density/sq meter
OLC YAMBO Central Coast Range 2010 9.4 900m and 1300m >105kHz
OLC NORTH COAST  North Coast 2009 8.5 N/A N/A
OLC CENTRAL COAST Central Coast Range 2012 11.5 900m and 1400m >105kHz
OLC GREEN PETER West Cascades 2012 9.8 900m 105kHz
OLCSOUTH COAST  South Coast 2008 8.8 N/A N/A
OLC WILLAMETTE West Cascades 2009 7.8 N/A N/A
OLC ROGUE Klamath Mountains 2012 >8 900m and 1300m 52kHz

Existing LiDAR acquisitions were clipped to the extent of the delineated stands minus a 30m

buffer to minimize edge effects and to prevent trees in neighboring stands to affect stand height

estimates. Ground returns were identified using FUSION/LDV software (Mc Gaughey, 2007) and a

continuous surface model was generated at 1m spatial resolution for each selected stand. To determine

stand height we used the surface normalized LiDAR point cloud to run the CloudMetrics function in

FUSION/LDV. CloudMetrics computes a series of descriptive statistics for an input LIDAR dataset

including stand heights and height percentiles, a metric that is closely related to height distributions
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(Magnussen & Boudewyn, 1998; Naesset, 1997). For the purpose of this study, stand heights were

defined as the 95™ height percentile of the LiDAR point cloud.

Besides stand heights, we used LiDAR data also to estimate leaf area index (LAl) a parameter
that is strongly related to plant growth and soil water balance (McLeod & Running, 1988; Running &
Grier, 1977; R.H. Waring, 1983). LiDAR LAl estimation followed methods previously described by
several authors (Nicholas C. Coops et al., 2007; Lovell, Jupp, Culvenor, & Coops, 2003; Riafo, Meier,
Allgbéwer, Chuvieco, & Ustin, 2003). The probability of gap function (Eq. 1) sums the total number of hits

(#z) above 2m (z) and divides them by the total number of independent hits (N):

{#zjlz;>z}

1. Fygp(z2) =1— N

2. L(z) = c(—log(Fyqp (2)))

The total cumulative foliage area index (LAI) for the height interval from z to stand height is
given by equation 2. The value of c is an empirical factor that depends on footprint size, lidar return
density and vegetation type under investigation. In order to derive ¢, we compared the LiDAR estimates
of LAl to ground measurements taken by Waring, et al (Pers. Communication) in three different location

in the Coast Range. A value of c = 6 was identified in this study.

Growth modeling

Vegetation growth over time and sensitivity of changes in climate were evaluated using a
physiological growth model. Different techniques are available. In this study we choose 3PG
(Physiological Principles Predicting Growth) is a simplified process-based growth model developed by
Landsberg and Waring (1997). The model is optimized for growing conditions in the Pacific North-West

of the United States. It predicts stand growth in even aged Douglas-fir plantations but it can be
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parameterized for other economically important timber species (Riafio et al., 2003). There are several
simplifying assumptions included in the model: 3PG assumes that monthly mean climatic data
adequately captures trends in forest growth; NPP and autotrophic respiration are approximately equal
fractions of gross photosynthesis across diverse ecosystem types ( Landsberg & Sands, 2011; Waring et
al., 1998); and that the percentage of NPP allocated to roots increases from 25% to 80% as soil fertility
decreases ( Landsberg & Waring, 1997). The model estimates the fraction of incoming visible radiation

absorbed by the canopy as an exponential function of increasing LAI (Eq. 3)

3. ¢apa,: 1- exp(‘kLAl)

where ¢apa, is the absorbed photosynthetically active radiation (MJ m2 month?), k is the light

extinction coefficient for conifers (0.5), and LA/ is the (projected) leaf area index. Predicted LAl and

¢apar set limits on monthly estimates of gross photosynthesis, canopy evaporation and transpiration,

growth allocation, and litter production.

A series of modifiers ( f) ranging between 0 (complete restriction) to 1 (no restriction) impose
restrictions on stomatal conductance, photosynthesis, and transpiration. The combined effect of these

modifiers on GPP are expressed through their product as presented in a wide range of equation 4.

4. Pe= Per gapar f(T) f(F) fID) f(8s) f(N) f(CO2)

where Pg is gross photosynthesis (MG C m2month™), Pgis photosynthetic light-use efficiency
(mol C mol photon™), duyar is the photosynthetically active radiation absorbed by the canopy, T
represents limitations imposed by deviation from optimum temperature (7o), F is the proportion of

days below -2 °C per month, D is daytime vapor pressure deficit constraints in kPa, 6; is the restriction
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on canopy stomatal conductance (G) due to rooting zone soil water deficits, N represents nutritional
restrictions, and CO; refers to the effect of varying atmospheric carbon dioxide (ppm) on Pgs (J.

Landsberg & Sands, 2011)

The outputs of the 3-PG model include a number of stand characteristics of interest to
ecologists and land managers. The most important outputs are stem density, diameter at breast height

(DBH), standing volume, basal area, LAI, NPP, GPP and transpiration, (Landsberg & Waring, 1997).

Model Parameterization

The model was parameterized for Douglas-fir using previously published parameters ( Coops,
Gaulton, & Waring, 2011; Waring & McDowell, 2002;Waring, Coops, & Running, 2011) (Table 3).
Previous studies on forest sites west of the Oregon Cascades have shown an inverse relationship
between soil fertility and available soil water. Sites with favorable temperatures and reliable water
supply throughout the growing season show greater sensitivity to nutritional limitations whereas
nutritional constrains are more likely to affect growth on sites with higher vapor pressure deficits,
freezing temperatures, and summer drought(Runyon et al., 1994). For this reason we parameterized 3-
PG with maximum ASW offset at 300mm, which proved to be sufficient in most cases to prevent
drought-imposed restrictions on GPP throughout the growing season (Waring et al., 2008; Coops et al.

2012).

To assess the soil fertility rating (FR) at each stand, we inverted the 3PG model using a multiple
forward mode technique similar to Peddle et al., (2004), by adjusting FR in increments of 0.05, starting
at 0.1, until the simulated LAl came within 0.1 of that recorded at the designated stand age by LiDAR on

each stand. Based on previous studies of soil fertility ( Waring & Youngberg, 1972), it would be
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unreasonable to assume that low fertility would be able support the leaf densities observed in this

study. For this reason soil fertility values during model inversion were not allowed to take values below

0.1.

Table 3. 3PG parameters used in this study.

Functions and

Variable Source
parametervalues

Max fraction of NPP to roots 0.8 Landsberg & Waring (1997)
Max litter fall rate (1/mo) 2% per month Landsberg & Waring (1997)
Temperatue limits on light Tmin=2"C

. Topt=18°C Landsberg & Waring (1997)
conversion

Tmax=40°C

Production daylost per frost 1
Canopyquantum efficiency 0.055 molC/molPAR Landsberg & Waring (1997)
Ratio NPP/GPP 0.47 Landsberg & Waring (1997)
LAI for max canopy 5 Landsberg & Waring (1997)
Max canopy conductance 0.012m/s Landsberg & Waring (1997)
Age at canopy cover 15 Landsberg & Waring (1997)
Wood density 300kg/tree Landsberg & Waring (1997)
Specificleaf area 5.5 Landsberg & Waring (1997)
Stomatal response to VPD 0.05 Landsberg & Waring (1997)
Soil storage capacity (ASW) 300mm This study
Soil fertility ranking (FR) Variable This study

Convertion of solar

2.3
radiation to PAR (mol/MJ)

Landsberg & Waring (1997)
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RESULTS

Figure 6 demonstrates a visualization of a LiDAR based height model retrieved for one sample
plot area (plus surrounding environment for illustration purposes). The figure at the top illustrates tree
heights, that is vegetation heights normalized to the ground elevation, the figure at the bottom
illustrates a scene including both ground and tree heights as height above GPS ellipsoid. The height
levels are illustrated in different colors and shades. In both images, differences in forest structure are

easily recognizable, as are landscape features including roads.

Figure 6. Visualization of surface normalized LiDAR point cloud of different forest in our sampling area. Clear stand delineations,
based on height, can be observed on the top image. Dark blue represents ground returns while red represent trees in heights
height categories. Image below represent a digital terrain model where dark green represents low elevation and purple
represent highest elevation.
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Figure 7 shows the Landsat estimated disturbances across western Oregon between 1983 and
2012. The number of disturbances > 1 ha detected with Landsat imagery in the state of Oregon
between 1983 and 2012 ranged from< 10,000 to ~1 million ha annually, except in 2002 when the Biscuit
Fire (Thompson, Spies, & Ganio, 2007) in southwestern Oregon burnt across 2 million hectares (Figure
7-8). Similarly, total disturbance rates varied between 700 and 1200 km? for most years, with the
exception of 2002-2003, as a result of the biscuit fire (Thompson et al., 2007) which destroyed large
forested areas in south-western Oregon (also visible as green area in the south of the map presented in
Figure 7). Also visible in the histogram is the impact of the economic crisis in 2008. During “normal”
years, disturbances presented can mostly be interpreted as the result of harvesting activities across the
Coast Range and the parts of the Cascades, as well as naturally occurring fires. It should be noted in
Figure 8 that the Landsat record utilized in this study started only in 1984. As a result, disturbances
detected during the first years, may not be as reliable and should be interpreted with care, as limited

visibility due to cloud cover may have prevented a clear view of “baseline” disturbances at the beginning

of the time series.
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Our goal to derive values of FR that resulted in a close match of simulated LAl with those
assessed with LiDAR (r?> = 0.91) were met (Figure 9). LiDAR estimates of LAl ranged between 0.5 and 9.7 .
While the relationship of predicted vs observed LAl was near perfect for stands in site class 2, there was
somewhat less agreement on S3 and S4. On sites where the LiDAR-derived estimates of LAl were below
3, the 3-PG model overestimated LAl value. This is particularly apparent in S4 stands which showed the

most departure from the expected 1:1 relationship between predicted vs observed values.
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Figure 9. Relationship between 3PG modeled v. LiDAR- derived estimates of LAl. Colors differentiate site classes with blue, red,
and green representing S2, S3, and S4 respectively.

The area sampled for S2 and S3 stands both encompassed more than 400 ha, whereas that for

S4 stand area totaled only 223 ha (Table 4). The sampling on S2 and S3 stands also included a larger
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range in size than S4. The smaller area sampled in S4 reflects our decision to avoid very young stands; as

a result, the majority of stands contained trees of older age classes.

Table 4. Sampling statistics of selected forest stands by site class.

Count Mean (ha) Min (ha) Max (ha) Sum (ha)
S2 37 111 11 34.2 412.2
S3 47 114 15 40.6 5394
S4 27 8.2 2.2 24.5 2233

Total all stands 11749

Although no direct ground validation of estimated LIDAR stand heights was available, we
assumed that LiDAR provided measurement accuracies in the range of previously published literature
(about 1.5m) (Naesset, 1997). Both of these assumptions will be discussed in more detail subsequently,
but appear to apply generally, and particularly for the highest site class where a linear relation between
estimated age and tree height accounts for 61% of the recorded variation. The limits to measuring
height with LIDAR probably account, in part, for the reduced correlation on less productive sites (Figure

10).
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Figure 10. Derived age-height relationship for 111 stands sampled. Height was estimated using the 95th percentile of LiDAR
returns, and age was determined as the number of years since disturbance assessed with sequential sets of Landsat imagery.

Estimates of soil fertility ranking (FR) derived by inverting the 3-PG model to match LiDAR-

derived LAI, showed progressively less variation and lower mean values going from the most productive

to least productive sites (Figure 11). The largest mean and standard deviation variation in FR were

recorded at the highest site class (S2) (xX=0.23, SD + 0.1) and the least in the lowest (S4) (Xx= 0.1, SD

0.01). The maximum FR derived for the S2, S3, and S4 were 0.5, 0.4, respectively. No value of FR< 0.1

was permitted in this analysis.
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Figurell. Derived soil fertility rankings (FR) from inverting the 3-PG model while assuming that the available soil water storage
capacity was fixed at 300mm and that stand leaf area index (LAI) was equivalent to that estimated by LIDAR.

Observed LAl values at the better site class categories stands were consistently higher than
those recorded at the next lowest site class category albeit the large variations observed in some age
classes for S2 and S3 stands (Figure 12). Although the strength of these relationships were weak (S2, r? =
0.15, S3, r> = 0.26, and S4, r> = 0.17), the expected trend of greater LAl at better site class categories was
observed, a result consistent with previous observations of LAl on a productivity gradient (Runyon et al.,

1994).
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Figure 12. Observed LiDAR LAl plotted against estimated stand age using McArdle et al., (1949) lower to upper height limits for
each site class. Error bars represent standard deviations.

DISCUSSION

We used single-flight coverage by LiDAR in combination with sequential annual Landsat
composites to assess the ages and heights of 111 Douglas-fir plantations, as well as their leaf area
indices. With LAl serving as a reference, we estimated values of soil fertility, derived with a process-
based growth model driven with WNA —derived climatic data. Although some of the stands selected
contained trees of more than one age class, our LiDAR analysis sought to exclude those not representing

the dominant age class. Sometimes harvesting activities appeared to follow fire-induced mortality,

32



particularly on site class 4. As a result, more errors in the estimation of stand age are likely on the less

productive sites, for which fewer samples were also acquired.

Landsat-derived stand ages combined with LIDAR measures of heights allowed us to estimate
site indices from age and stand height. Because our sampling precluded ground-based estimates of
stand height and ages, we used published height -age relationships from forestry yield tables to assign
stands to different site classes. The best results were obtained on the most productive sites, that the
maximum annual height growth on these sites come close to the accuracy of LiDAR, + 1.5m (Naesset,
1997). The high variability in heights within all site classes may indicate artifacts associated with our
sampling design. We assumed that differences in LiDAR point densities would not affect estimates of
stand heights in fixed area cells and that the associated quantile estimator reflected the true height
value for each cell. LiDAR point density is cited as an important aspect for stand height estimation since
the probability of hitting the highest point in grid cell decreases when LiDAR point densities are low

(Magnussen & Boudewyn, 1998).

By assuming that soil water storage capacity was 300 mm, drought effects were not expressed
in this analysis. It was, therefore, a simple process to adjust FR to closely match the LiDAR estimates of
LAl Although we expected higher FR values on all site classes based on bioassays of soils in
southwestern Oregon ( Waring & Youngberg, 1972), the general trend of higher FR values with
improving site classes was observed (Figure 9). Previous attempts to derive soil fertility by inverting the
3-PG model produced estimates of soil fertility in the coast range >0.5 (Coops et al., 2012). The lack of
agreement between predicted vs. observed estimates of LAl at the low ranges of LAl in site classes 3 and

4 are likely, at least partially, the result of excluding values of FR generated below 0.1.
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Based on a comparison with other climate data sources, we found that WNA point-source data
generated larger temperature extremes than those derived from the PRISM model in our study area,
which results in higher values in calculated incident radiation (Coops, Waring, & Moncrieff, 2000) and
predicted GPP than reported at a number of field sites across western Oregon, as well as measured
incident radiation (Runyon et al. 1994). Differences in projected monthly temperature extremes may
account for more than 90% of the variation in solar radiation generated by climate models (Coops et al.,
2000) (See Appendix A), and selecting lower values would result in increasing the derived estimates of
FR. Estimates of monthly precipitation also varied, but were generally sufficient to not create drought

conditions with maximum ASW set at 300 mm.

While LiDAR remote sensing is able to provide independent estimates of LAl for forest stands
excluding understory vegetation, we expected stronger relationships between stand age and LAl within
each site class. Previous studies have found weak relationships when comparing age and LAI (Bryars et
al., 2013) due to variation in microclimatic conditions, as well as the effect of competition between
young trees and other vegetation. The 3PG model provided estimates of the maximum LAl given a stable
climate; it does, however, not account for competition. On the other hand, at intensively managed
plantations, competition is minimized so that maximum LAl for any site class may be achieved before
age 15 years (Waring, pers. communication). In contrast, the yield tables (McArdle et al., 1961), from
which site indices were derived, are based on measurements from stands that established naturally

following disturbance.

Misclassification of mapped site classes may also account for some variation in the observed
pattern of height growth with age. We assumed mid-point site classes in our analysis, but upper and
lower limits of height overlap with adjacent classes in McArdle et al. (1961) (Figure 13). A difference of

two meters in height at a given age is often sufficient to shift the classification of a stand to a lower or
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higher class. While changing the site classification of some stands may improve the relationship
between LAl and age (Figure 14) unaccounted for factors may have affected LAl estimation and
weakened the expected relationships among site classes. Because we were limited to areas with LiDAR
coverage the distance between our estimated site classes may not have been appropriate to make a
clear differentiations. Obviously, the best solution would be to acquire consecutive LiDAR coverage at
all sites, and thereby determine actual height growth over a known interval. In addition, stand height
heterogeneity may have played a considerable role in assigning LAl values to forest stands. For instance
inaccuracies in assigned stand boundaries would allow trees of different height classes to be assigned to
the same stand. Future efforts to select even aged forest stand should concentrate on stand height

homogeneity if correct LAl estimation is desired.

Figure 13. Site index classification in western Oregon using McArdle et al., (1949) yield tables. Red markers represent stand
locations. Areas are classified using the lower, mid, and upper limits of height at age 50 which differ from the mid values by 5-
7% in height. . Dark blue, light blue, yellow, orange represent S1, S2, S3, S4 respectively.
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Figure 14. LiDAR LAl v age using the lower limit of the next higher site class height category as the upper limit of the lower site
class. By eliminating the 2 meter height gap between site classes it may be possible to improve the relationship between LAl
and age. Error bars represent standard deviations.

The derived relationship between LiDAR and 3-PG estimates of LAl suggests that once canopies
have closed, this variable alone is a useful index of productivity. Part of the reason for the lack of strong
relationships between fertility rate and SI may be incompatibilities of measurements and definitions. For
instance the approach used in this paper provides an indirect way to derive soil properties that are
otherwise difficult to quantify for deeply rooted trees occupying landscapes with well-developed soil
horizons. Once space-borne LiDAR is available, repeat coverage will become more widely available, but

challenges will remain in scaling height and LAl measurements across landscapes.
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Other factors which may have limited the accuracy of our results include using errors in climate
data such as mean monthly solar radiation estimates daily minimum and maximum temperatures. For
instance, we found considerable variations in solar radiation estimates as compared to those from
ground station measurements. Further efforts to estimate growth in Douglas-fir plantations using 3-PG
must include a close examination of climate inputs to ensure that soil fertility and growth estimates are

consistent with previously published estimates of soil fertility across Oregon.

CONCLUSION

Using single-flight LiDAR coverage and sequential annual Landsat composites to assess both leaf
area index and stand ages in combination with a process-based growth model may improve site growth
potential estimation across different climatic regions. Although not without challenges driven mainly by
limited data availability and variations in vegetation growth unrelated to soil properties our approach
represents an improvement on traditional methods of assigning site growth potential in that it more
explicitly accounts for climatic effects included in the growth model (here 3PG) . The need for better
management approaches to understand effects of climate change on one hand, but also an operational
capacity to derive site based growth potential on the other hand, requires modeling approaches that are
relatively easy to implement but account for a wide variety of growing and climate scenarios. We
believe our approach addresses some of these challenges. Future studies will have to address the effect
of different management regimes on forest growth, as well as differences in species distribution. In
addition information on age, thinning and brush control histories may further improve estimates of soil

fertility and site growth potential.
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This study utilized mean leaf area as observed from LiDAR to infer soil fertility rates and
therefore stand growth potential. Future research may benefit from the combination of multiple stand
parameters, remotely sensed, as well as retrieved from ground observations to allow for improved
model parameterization. Furthermore, Forest stands were selected based on stand disturbance date
and using aerial photos to exclude disturbances other than clear cuts. While this method is relatively
quick and may address the problems associated with disturbance detection of recent fires it cannot
detect or exclude stands recently defoliated by insects, or other disturbances. Our study assumed a
homogenous stand structure, as one LAl value was assigned per stand. While this approach has the
advantage that it allows a more direct comparison to current inventory metrics, heterogeneous
vegetation types, such as naturally regenerated stands, or mixed vegetation types may not be
measured using a simple approach like the one described. In summary, this study should be interpreted
as a demonstration of a possible approach to more accurately define vegetation growth potential, but a
technigue as demonstrated would have to be more refined to replace or complement conventional

inventory methods.

38



LITERATURE CITED

Almeida, A. C., Landsberg, J. J., Sands, P. J., Ambrogi, M. S., Fonseca, S., Barddal, S. M., & Bertolucci, F. L.
(2004). Needs and opportunities for using a process-based productivity model as a practical tool in
Eucalyptus plantations. Forest Ecology and Management, 193(1-2), 167-177.
doi:10.1016/j.foreco.2004.01.044

Battaglia, M., & Sands, P. J. (1998). Process-based forest productivity models and their application in
forest management. Forest Ecology and Management, 102(1), 13-32. doi:10.1016/S0378-
1127(97)00112-6

Bryars, C., Maier, C., Zhao, D., Kane, M., Borders, B., Will, R., & Teskey, R. (2013). Fixed physiological
parameters in the 3-PG model produced accurate estimates of loblolly pine growth on sites in
different geographic regions. Forest Ecology and Management, 289, 501-514.
doi:10.1016/j.foreco.2012.09.031

Constable, J. V. ., & Friend, A. . (2000). Suitability of process-based tree growth models for addressing
tree response to climate change. Environmental Pollution, 110(1), 47-59. doi:10.1016/50269-
7491(99)00289-4

Coops, N. C., Gaulton, R., & Waring, R. H. (2011). Mapping site indices for five Pacific Northwest conifers
using a physiologically based model. Applied Vegetation Science, 14(2), 268-276.
doi:10.1111/j.1654-109X.2010.01109.x

Coops, N. C,, Hilker, T., Wulder, M. A,, St-Onge, B., Newnham, G., Siggins, A., & Trofymow, J. A. (Tony).
(2007). Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees,
21(3), 295-310. doi:10.1007/s00468-006-0119-6

Coops, N. C., & Waring, R. H. (2001a). Estimating forest productivity in the eastern Siskiyou Mountains of
southwestern Oregon using a satellite driven process model, 3-PGS. Canadian Journal of Forest
Research, 31(1), 143-154. doi:10.1139/cjfr-31-1-143

Coops, N. C., & Waring, R. H. (2001b). The use of multiscale remote sensing imagery to derive regional
estimates of forest growth capacity using 3-PGS. Remote Sensing of Environment, 75(3), 324-334.
doi:10.1016/S0034-4257(00)00176-0

Coops, N. C., Waring, R. H., & Hilker, T. (2012). Prediction of soil properties using a process-based forest
growth model to match satellite-derived estimates of leaf area index. Remote Sensing of
Environment, 126, 160-173. doi:10.1016/j.rse.2012.08.024

Coops, N. C., Waring, R. H., & Moncrieff, J. B. (2000). Estimating mean monthly incident solar radiation
on horizontal and inclined slopes from mean monthly temperatures extremes. International
Journal of Biometeorology, 44(4), 204—211. doi:10.1007/s004840000073

Dubayah, R. O., Sheldon, S. L., Clark, D. B., Hofton, M. A,, Blair, J. B., Hurtt, G. C., & Chazdon, R. L. (2010).

39



Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva,
Costa Rica. Journal of Geophysical Research, 115, GOOEQ9. doi:10.1029/2009JG000933

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010).
Landscape-scale parameterization of a tree-level forest growth model: a k- nearest neighbor
imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184—
199. doi:10.1139/X09-183

FAO. (2015). Global Forest Resources Assessment 2015. Retrieved from
http://www.fao.org/forestry/fra2005/en/

Field, C. B., Randerson, J. T., & Malmstrom, C. M. (1995a). Global net primary production: Combining
ecology and remote sensing. Remote Sensing of Environment, 51(1), 74—88. d0i:10.1016/0034-
4257(94)00066-V

Field, C. B., Randerson, J. T., & Malmstrom, C. M. (1995b). Global net primary production: Combining
ecology and remote sensing. Remote Sensing of Environment, 51(1), 74—88. d0i:10.1016/0034-
4257(94)00066-V

Ford, E. D., & Bassow, S. L. (1989). Modeling the dependence of forest growth on environmental
influences. In Biomass Production by Fast-Growing Trees (pp. 209-229). Springer.

Franklin, J. F., & Dyrness, C. T. (1988). Natural vegetation of Oregon and Washington. Corvallis: Oregon
State University Press.

Fu, P., & Rich, P. M. (2002). A geometric solar radiation model with applications in agriculture and
forestry. Computers and Electronics in Agriculture, 37(1-3), 25-35. doi:10.1016/50168-
1699(02)00115-1

Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon
stocks: making REDD a reality. Environmental Research Letters, 2(4), 045023. doi:10.1088/1748-
9326/2/4/045023

Goetz, S. J., Prince, D., Goward, N., Thawley, M. M., Small, J., & Johnston, A. (1999). Mapping net
primary production and related biophysical variables with remote sensing: Application to the
BOREAS region. Journal of Geophysical Research, 104, 27719-27734.

Harkonen, S., Tokola, T., Packlen, P., Korhonen, L., & Makela, A. (2013). Predicting forest growth based
on airborne light detection and ranging data, climate data, and a simplified process-based model.
Canadian Journal of Forest Research, 43, 364-375.

Hilker, T., Coops, N. C., Hall, F. G., Black, T. A., Chen, B., Krishnan, P., ... Huemmrich, K. F. (2008). A
modeling approach for upscaling gross ecosystem production to the landscape scale using remote
sensing data. Journal of Geophysical Research, 113(G3), G03006. doi:10.1029/2007JG000666

Imhoff, M., Story, M., Vermillion, C., Khan, F., & Polcyn, F. (1986). Forest canopy characterization and

40


http://www.fao.org/forestry/fra2005/en

vegetation penetration assessment with space-borne radar. Geoscience and Remote Sensing, IEEE
Transactions on, (4), 535-542.

Jarvis, P. G., & Leverenz, J. W. (1983). Productivity of temperate, deciduous and evergreen forests. In
Physiological plant ecology IV (pp. 233—280). Springer.

Kimball, J. S., Running, S. W., & Nemani, R. (1997). An improved method for estimating surface humidity
from daily minimum temperature. Agricultural and Forest Meteorology, 85(1-2), 87—-98.
doi:10.1016/50168-1923(96)02366-0

Kira, T., & Shidei, T. (1967). Primary production and turnover of organic matter in different forest
ecosystems of the western pacific. Japanese Journal of Ecology, 17(2), 70-87. Retrieved from
http://ci.nii.ac.jp/naid/110001882793/en/

Koetz, B., Sun, G., Morsdorf, F., Ranson, K. J., Kneubihler, M., Itten, K., & Allgéwer, B. (2007). Fusion of
imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy
characterization. Remote Sensing of Environment, 106(4), 449—-459. doi:10.1016/j.rse.2006.09.013

Kohl, M., Lasco, R., Cifuentes, M., Jonsson, O., Korhonen, K. T., Mundhenk, P., ... Stinson, G. (2015).
Changes in forest production, biomass and casbon: result from the 2015 UN FAO Global Forest
Resource Assessment. Forest Ecology and Management, 352, 21-34.
doi:10.1016/j.foreco.2015.05.036

Korhonen, L., Korpela, I., Heiskanen, J., & Maltamo, M. (2011). Airborne discrete-return LIDAR data in
the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote
Sensing of Environment, 115(4), 1065-1080. doi:10.1016/j.rse.2010.12.011

Landgrebe, D. (1997). The Evolution of Landsat Data. Photogrammetric Engineering & Remote Sensing,
63(7), 859—-867. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.4072&amp;rep=repl&amp;type=pd
f

Landsberg, J. J., & Waring, R. H. (1997). A generalised model of forest productivity using simplified
concepts of radiation use efficiency carbon balance and partitioning. Forest Ecology and
Management, 95(3), 209-228. doi:10.1016/50378-1127(97)00026-1

Landsberg, J., & Sands, P. (2011). Physiolocical Ecology of Forest Production (First). London: Academic
Press.

Latta, G., Temesgen, H., & Barrett, T. M. (2009). Mapping and imputing potential productivity of Pacific
Northwest forests using climate variables. Canadian Journal of Forest Research, 39(6), 1197-1207.
doi:10.1139/X09-046

Law, B. E., & Waring, R. H. (2015). Carbon implications of current and future effects of drought, fire and
management on Pacific Northwest forests. Forest Ecology and Management, 355, 4—14.

41


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.4072&amp;rep=rep1&amp;type=pd
http://ci.nii.ac.jp/naid/110001882793/en

doi:10.1016/j.foreco.2014.11.023

Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Del Bom Espirito-Santo, F., ... de
Oliveira, R. (2005). Estimates of forest canopy height and aboveground biomass using ICESat.
Geophysical Research Letters, 32(22), L22S02. doi:10.1029/2005GL023971

Lefsky, M. A., Turner, D. P., Guzy, M., & Cohen, W. B. (2005). Combining lidar estimates of aboveground
biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest
productivity. Remote Sensing of Environment, 95(4), 549-558. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0034425705000258

Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2003). LiDAR remote sensing of forest structure.
Progress in Physical Geography, 27(1), 88—106. doi:10.1191/0309133303pp360ra

Lovell, J. L., Jupp, D. . B., Culvenor, D. S., & Coops, N. C. (2003). Using airborne and ground-based ranging
lidar to measure canopy structure in Australian forests. Canadian Journal of Remote Sensing, 29(5),
607—-622. d0i:10.5589/m03-026

Magnussen, S., & Boudewyn, P. (1998). Derivations of stand heights from airborne laser scanner data
with canopy-based quantile estimators. Canadian Journal of Forest Research, 28(7), 1016—1031.
doi:10.1139/cjfr-28-7-1016

Masek, J. G., Vermote, E. F., Saleous, N., Wolfe, R., Hall, F. G., Huemmrich, K. F., ... Lim, T. K. (2013).
LEDAPS Calibration, Reflectance, Atmospheric Correction Preprocessing Code, Version 2. ORNL
Distributed Active Archive Center. doi:10.3334/ORNLDAAC/1146

Mc Gaughey, R. J. (2007). FUSION/LDV: software for LIDAR data analysis and visualization. USDA Forest
Service. Pacific Northwest Research Station, 28-30.

Mcardle, R. E., Meyer, W. H., & Bruce, D. (1949). The Yield of Douglas Fir in the Pacific Northwest. US
Department of Agriculture. Technical Bulleltin No. 201., (201), 82. Retrieved from
http://naldc.nal.usda.gov/download/CAT40000043/PDF

MclLeod, S. D., & Running, S. W. (1988). Comparing site quality indexes and productivity in ponderosa
pine stands of western Montana. Canadian Journal of Forest Research, 18, 346—-352.

Monserud, R. A., & Rehfeldt, G. E. (1990). Genetic and environmental components of variation of site
index in inland Dougls-fir. Forest Science, 36(1), 1-9. doi:S

Monserud, R. A., Yang, Y., Huang, S., & Tchebakova, N. (2008). Potential change in lodgepole pine site
index and distribution under climatic change in Alberta. Canadian Journal of Forest Research, 38(2),
343-352. doi:10.1139/X07-166

Moran, M. S., Maas, S. J., & Pinter, P. J. (1995). Combining remote sensing and modeling for estimating
surface evaporation and biomass production. Remote Sensing Reviews, 12(3-4), 335-353.
doi:10.1080/02757259509532290

42


http://naldc.nal.usda.gov/download/CAT40000043/PDF
http://www.sciencedirect.com/science/article/pii/S0034425705000258

Muning, R., Thiaw, I., Thopmson, J., Ganz, D., Girvetz, E., & Rivington, M. (2011). Sustaining Forests:
Investing in our common future. UNEP Policy Series - Ecosystem Management.

Naesset, E. (1997). Determination of mean tree height of forest stands using airborne laser scanner
data. ISPRS Journal of Photogrammetry and Remote Sensing, 52(2), 49-56. doi:10.1016/50924-
2716(97)83000-6

Naesset, E., & Okland, T. (2002). Estimating tree height and tree crown properties using airborne
scanning laser in a boreal nature reserve. Remote Sensing of Environment, 79(1), 105-115.
doi:10.1016/S0034-4257(01)00243-7

Neigh, C. S. R., Masek, J. G., Bourget, P., Rishmawi, K., Zhao, F., Huang, C., ... Nelson, R. F. (2016).
Regional rates of young US forest growth estimated from annual Landsat disturbance history and
IKONOS stereo imagery. Remote Sensing of Environment, 173, 282—-293.
doi:10.1016/j.rse.2015.09.007

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., ... Running, S. W.
(2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999.
Science (New York, N.Y.), 300(5625), 1560-3. d0i:10.1126/science.1082750

Pan, S., Tian, H., Dangal, S. R. S., Ouyang, Z., Tao, B., Ren, W,, ... Running, S. (2014). Modeling and
monitoring terrestrial primary production in a changing global environment: Toward a multiscale

synthesis of observation and simulation. Advances in Meteorology, 2014.

Peddle, D. R., Johnson, R. L., Cihlar, J., & Latifovic, R. (2004). Large area forest classification and
biophysical parameter estimation using the 5-Scale canopy reflectance model in Multiple-Forward-
Mode. Remote Sensing of Environment, 89(2), 252—263. doi:10.1016/j.rse.2002.08.001

Persson, A., Holmgren, J., & S6derman, U. (2002). Detecting and measuring individual trees using an
airborne laser scanner. Photogrammetric Engineering and Remote Sensing, 68(9), 925—932.

Popescu, S. C., Wynne, R. H., & Nelson, R. F. (2003). Measuring individual tree crown diameter with lidar
and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote
Sensing, 29(5), 564-577. doi:10.5589/m03-027

Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, G. G., Pierce, K. B., & Ohmann, J. L.
(2010). Quantification of live aboveground forest biomass dynamics with Landsat time-series and
field inventory data: A comparison of empirical modeling approaches. Remote Sensing of
Environment, 114(5), 1053-1068. doi:10.1016/j.rse.2009.12.018

Randerson, J. T., Chapin, F. S., Harden, J. W., Neff, J. C., & Harmon, M. E. (2002). Net ecosystem
production: A comprehensive measure of net carbon accumulation by ecosystems. Ecological
Applications, 12(4), 937-947. doi:10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2

Riafio, D., Meier, E., Allgéwer, B., Chuvieco, E., & Ustin, S. L. (2003). Modeling airborne laser scanning

43



data for the spatial generation of critical forest parameters in fire behavior modeling. Remote
Sensing of Environment, 86(2), 177-186. doi:10.1016/50034-4257(03)00098-1

Running, S. W. ., & Grier, C. G. . (1977). Leaf Area of Mature Northwestern Coniferous Forests : Relation
to Site Water Balance. Ecology, 58(4), 893—899.

Runyon, J., Waring, R. H., Goward, S. N., & Welles, J. M. (1994). Environmental Limits on Net Primary
Production and Light-Use Efficiency Across the Oregon Transect. Ecological Applications, 4(2), 226—
237.

S. E. Franklin, M. B. Lavigne , M. J. Deuling, M. A. W. & E. R. H. J., Franklin, S. E., Lavigne, M. B., Deuling,
M. J., Wulder, M. A, Jr., E. R. H,, ... Hunt, E. R. (1997). Estimation of forest Leaf Area Index using
remote sensing and GIS data for modelling net primary production. International Journal of Remote
Sensing, 18(16), 3459—-3471. d0i:10.1080/014311697216973

Schenk, T., Seo, S., & Csatho, B. (2001). Accuracy study of airborne laser scanning data with
photogrammetry. International Archives of Photogrammetry and Remote Sensing, 34(part 3), W4.

Schroeder, T. A., Hember, R., Coops, N. C., & Liang, S. (2009). Validation of Solar Radiation Surfaces from
MODIS and Reanalysis Data over Topographically Complex Terrain. Journal of Applied Meteorology
and Climatology, 48(12), 2441-2458. d0i:10.1175/2009JAMC2152.1

Skovsgaard, J. P., & Vanclay, J. K. (2008). Forest site productivity: a review of the evolution of
dendrometric concepts for even-aged stands. Forestry, 81(1), 13-31. doi:10.1093/forestry/cpm041

Steffer, W., Nobel, I., & Canadell, J. (1998). The terrestrial carbon cycle: implication for the Kyoto
protocol. Science, 280, 1393—-1394.

Thompson, J. R., Spies, T. A., & Ganio, L. M. (2007). Reburn severity in managed and unmanaged
vegetation in a large wildfire. Proceedings of the National Academy of Sciences of the United States
of America, 104(25), 10743-8. doi:10.1073/pnas.0700229104

Valentine, H. (1997). Height growth, site index, and carbon metabolism. Silva Fennica, 31(3), 251-263.
Retrieved from http://helda.helsinki.fi/handle/1975/8524

van Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR
remote sensing. European Journal of Forest Research, 129(4), 749-770. doi:10.1007/s10342-010-
0381-4

Vermote, E. F., El Saleous, N., Justice, C. O., Kaufman, Y. J., Privette, J. L., Remer, L., ... Tanre, D. (1997).
Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces:
Background, operational algorithm and validation. NASA Publications, 31.

Waring, R. H. (1983). Estimating forest growth and efficiency in relation to canopy leaf area. Advances in
Ecological Research, 13, 327-354. doi:10.1016/S0065-2504(08)60111-7

44


http://helda.helsinki.fi/handle/1975/8524

Waring, R. H., Coops, N. C., & Landsberg, J. J. (2010). Improving predictions of forest growth using the 3-
PGS model with observations made by remote sensing. Forest Ecology and Management, 259(9),
1722-1729. doi:10.1016/j.foreco.2009.05.036

Waring, R. H., Coops, N. C., & Running, S. W. (2011). Predicting satellite-derived patterns of large-scale
disturbances in forests of the Pacific Northwest Region in response to recent climatic variation.
Remote Sensing of Environment, 115(12), 3554—3566. doi:10.1016/j.rse.2011.08.017

Waring, R. H., Landsberg, J. J., & Williams, M. (1998). Net primary production of forests: a constant
fraction of gross primary production? Tree Physiology, 18(2), 129-134.
doi:10.1093/treephys/18.2.129

Waring, R. H., & McDowell, N. (2002). Use of a physiological process model with forestry yield tables to
set limits on annual carbon balances. Tree Physiology, 22, 179-188.

Waring, R. H., & Youngberg, C. T. (1972). Evalutating forest sites for potential growth response of trees
to fertilizer. Northwest Science, 46(1), 67 — 75. Retrieved from
http://www.fsl.orst.edu/~waring/Publications/pdf/Waring and Youngberg 1972.pdf

Weiskittel, A. R., Hann, D., Kershaw, J. A. )., & Vanclay, J. K. (2011). Forest Growth and Yield Modeling.
Somerset, NJ, USA: John Wiley & Sons. Retrieved from
http://site.ebrary.com/lib/oregonstate/docDetail.action?doclD=10575545

Woulder, M. A,, Bater, C. W., Coops, N. C., Hilker, T., & White, J. C. (2008). The role of LiDAR in sustainable
forest management. The Forestry Chronicle, 84(6), 807—826. doi:10.5558/tfc84807-6

Waulder, M. A., White, J. C., Nelson, R. F., Naesset, E., @rka, H. O., Coops, N. C., ... Gobakken, T. (2012).
Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment,
121, 196-209. doi:10.1016/j.rse.2012.02.001

Xiaoye Liu. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical
Geography, 32(1), 31-49. doi:10.1177/0309133308089496

Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery.
Remote Sensing of Environment, 118, 83—94. doi:10.1016/j.rse.2011.10.028

45


http://site.ebrary.com/lib/oregonstate/docDetail.action?docID=10575545
http://www.fsl.orst.edu/~waring/Publications/pdf/Waring

APPENDIX A
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Figure A1l. Differences in mean annual precipitation (mm) projected by ClimateWNA in comparison to the PRISM model in
western Oregon. Red dots represent stand locations.
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Figure A2. Range in PRISM maximum and minimum temperatures across western Oregon for the months of April (4) to September (9). Temperatures are in °C.
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Figure A3. ClimateWNA maximum and minimum temperature ranges for the months of April to September across western Oregon. Temperatures are in °C.
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