
AN ABSTRACT OF THE THESIS OF

Parag Shantu Shah for the degree of Master of Science in Electrical and Computer

Engineering presented on July 8, 1998. Title: Low-Power High-Performance 32-Bit

0.5p.m CMOS Adder.

Abstract approved:

Shih-Lien Lu

Currently, the two most critical factors of microprocessor design are performance and

power. The optimum balance of these two factors is reflected in the speed-power product

(SPP). 32-bit CMOS adders are used as representative circuits to investigate a method of

reducing the SPP. The purpose of this thesis is to show that sizing gates according to fan-

out and removing buffer drivers can reduce the SPP. This thesis presents a method for

sizing gates in large fan-out parallel prefix circuits to reduce the SPP and compares it to

other methods. Three different parallel prefix adders are used to compare propagation

delay and SPP. The first adder uses the depth-optimal prefix circuit. The second adder is

based on Wei, Thompson, and Chen's time-optimal adder. The third adder uses a

recursive doubling formation where all cells have minimum transistor width dimensions.

The component cells in the adders are static CMOS as described by Brent and Kung. For

all circuits, the smallest propagation delay occurs when the highest voltage supply is

applied. The smallest SPP occurs when the lowest voltage supply is applied, but with the

lowest performance. The Recursive Doubling Adder always has the lowest propagation

delay for a particular set of parameters. However, its SPP is nearly equal to the Brent-

Kung Adders and lower than Wei's Adder. The power-frequency analysis reveals that a

decrease in Vt causes higher power consumption due to leakage.
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Low-Power High-Performance 32-Bit 0.5µm CMOS Adder 

1. INTRODUCTION 

In microprocessors, the adder is one of the most frequently used hardware 

structures for arithmetic operations. The adder is used extensively by multiplication and 

division algorithms. Besides arithmetic instructions, it is also used for address 

calculations. If the adder is not designed correctly, it can be a major bottleneck to a 

microprocessor. A frequently used, improperly optimized, adder will consume high 

amounts of power in comparison with other logic. 

1.1 Problem Definition 

There are many different ways of designing an adder both at the gate (or logic) 

level and the transistor (or circuit) level. At the gate level, different implementations for 

an adder include the carry-look-ahead adder, conditional sum adder, carry-skip adder, and 

the carry-save adder [4]. Some implementations at the circuit level include the static 

CMOS full adder, mirror adder, dynamic adder, and Manchester carry-chain adder [5]. 

Previously, the speed or area of an adder was the primary concern, with little 

attention being paid to power consumption. To create a high performance adder, the 

speed-power product (SPP) must be minimized, while reducing area. The SPP is equal to 
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the product of the adder's propagation delay and the average power consumption. This 

thesis presents a method to produce a static CMOS circuit that has an optimal SPP. 

1.2 Statement of Purpose 

The purpose of this thesis is to show that by sizing gates according to fan-out and 

removing buffer drivers then the SPP can be reduced. Adder circuits are used to test the 

transistor sizing method. The adder scheme used is the carry look-ahead adder. The main 

research began from Wei, Thompson, and Chen's "Time-Optimal Design of a CMOS 

Adder." [3] Their paper focused only on finding the fastest adder. This thesis examines 

different designs, and finds the SPP-optimal design. This thesis presents circuit 

simulations done in HSPICE. The adders were stimulated with several hundred random 

numbers. A method of sizing the transistors similar to [3] was used. This thesis intends to 

show that this new method is more energy efficient. 



2. REVIEW OF LITERATURE
 

Before looking at the simulations and results, base concepts related to addition in 

computer arithmetic must be reviewed. To meet today's high performance requirements, 

the primary adder used for many microprocessors is the carry look-ahead adder (CLA). In 

an n-bit adder, the sum value for the ith bit is a function of the 1th bits of the two operands 

and the carry out from the previous bit position. In a CLA, the core of the logic calculates 

the carry values for each bit position in a parallel fashion. The parallel prefix computation 

uses an associative operation to calculate the carry values. We begin with a discussion of 

parallel prefix computation. Following the description of parallel prefix computation is the 

description of associative operation used in adders. The chapter concludes with a brief 

discussion of power consumption in CMOS digital design. 

2.1 Parallel Prefix Computation 

The prefix problem occurs when given a particular associative operation (x/ x, 

x; ... xk-) the product of k different numbers must be calculated. Ladner and Fisher 

presented a solution to the prefix problem in [1]. A recursive solution can solve the 

problem. The recursive solution from [1] allows multiple solutions that have different 

depths and sizes. 

The parallel prefix computation circuit is represented by a directed acyclic graph 

where each node is a separate operation. An example of a graph where the depth is three 
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and the size is four is shown in Figure 2.1 It computes the end product xl x2 x2 x3 

x4 along with some other sub-products such as xl x2 and x2 x3. 

Figure 2.1 Sample Product Circuit 

The depth is the number of nodes on the graph in the longest path (from top to 

bottom). Depth affects the propagation delay of the circuit. The size is the total number 

of nodes in the graph. Size determines the area of the circuit. 

Pk(n) denotes the family of circuits that solves the prefix problem for n inputs. The 

parameter k ranges from 0 to [/og2n 7 The depth is less than k [Iog2n 7and the size is 

bounded below 2(1 1`)n 4. For k=-0, the reverse construction of Po(n) is shown in 

Figure 2.2. For k>0, the reverse construction of Pk(n) is shown in Figure 2.3. For the 

recursive solutions shown, exact solutions exist when n is a power of two. 

So(n) = 4n F(5 + log2n) I, 

S1(n) = 3n F(4 + log2n), and 

Sk = 2(1 + 2-k)n - F(5 + log2n -k) + 1 k. 



Ln/2] inputs 51121 inputs 

V V V
 

Po ( Ln/2] ) Pi ( rn/21 ) 
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Figure 2.2 Recursive Construction of P o(n) 
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The function F(m) is the nil' Fibonacci number. F(m) ( O'n) where (1 

(11/5).,2 and O'n = V5) 2. 

Wei, Thompson, and Chen introduced a new family of circuits, R(n), where the 

blocks have an arbitrary size (Figure 2.4) instead of a reduction of half. [3] Therefore, 

R(n) is a super set of Po(n). The most significant bit (MSB) of the right block (bit m) has 

a large fan-out. When the depth of R(n - m) is larger than the depth of R(m), a 

n-m inputs m inputs 
. . . 

R(m) 

R(n-m) 

V V 

Figure 2.4 Drivers Used in Recursive Construction of R(n) 

multi-stage driver is placed on the MSB of R(m) as shown in Figure 2.4. The main 

objective for the new construction was to find the time-optimal adder. The multi-stage 

driver was used to solve the problem of delays associated with certain nodes having large 

fan-out. 
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In Figure 2.5, the construction of Pk(n) for the basic graphs are shown, where 1 

n 5. The basic graphs shown are used to construct more complicated graphs for larger 

values of n. 

Pk(1) Pk(2) Pk(3 ) Pk(4) 

Po(5) Pk(5) k 1 

Figure 2.5 Base Pk(n) Circuits for 1 5 n 5 

2.2 Circuit Formulations 

Now that the concept of parallel prefix computation has been reviewed, the 

formulations of the nodes in the graphs for an adder can be introduced. The typical 

method used to compute the sum (snsn_i .. so) of two n-bit operands (artan_i ao and bribn-i 

bo) is given by the equations 
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Co 0, 

c, = a,b, + atcfri + b,c,,i, and 

s, = a, 0 b, G ci_i. 

The symbol G is the exclusive-or operation, and c, is the carry generated by the bit 

position. The generate and propagate values (g, and p,) are calculated for each bit position 

to offer an alternate way to determine c,. The equations are 

g, = a,b
 

pi= a, + b
 

co = 0, and
 

c, = g, + 

The latter equation is based upon the fact that a carry is generated if both input bits are 1 

(high), or if at least one of the bits is high and there is an incoming carry from the previous 

bit. The equations above can be grouped into an associative operation, , such that 

P) 

(G P,)= (g p,) if i = 1, 

(G P,)= (g p,) (G,_1, P,_1) if 2 _ n, and 

c, = G 

where g, p, g', and p' are binary variables. The first equation represents the logic that 

each node in the prefix array evaluates. The left portion of the output is the G subcell and 

the right portion of the output is the P subcell. To make the nodes more efficient there are 

two types of circuits for each subcell, one with positive weighted inputs and one with 

negative weighted inputs. The static CMOS implementations of the various cells are 

shown in Figure 2.6 and Figure 2.7. 
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Figure 2.6 Static CMOS Implementations of G and P Subcells (positive weighted inputs) 
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Figure 2.7 Static CMOS Implementations of G and P Subcells (negative weighted inputs) 

The subcells in Figure 2.6 take in positive signals and output complemented 

signals. The subcells in Figure 2.7 take in complemented signals and output positive 

signals. The P and G subcells produce the output signals pout and gout, respectively. For 
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the inputs, the first letter stands for propagate or generate. The second letter stands for 

the direction the signal is coming from, either left or right. [3] 

Typically, one uses minimum-length and minimum-width transistors for the pull-

down transistors (NMOS). To produce a similar circuit response for the pull-up 

transistors (PMOS), minimum-length is used; however, the width needs to be increased by 

a factor of two. The minimum width for PMOS transistors is double the minimum width 

of NMOS transistors because the effective resistivity for PMOS is double the effective 

resistivity for NMOS. The higher resistivity slows response time, so the width must be 

increased to compensate. [5,8] 

2.3 Propagation Delay 

In the adder circuits, propagation delay is a function of fan-in, fan-out, and the 

depth. Here the main focus is propagation delay of the transistors with large loads. The 

propagation delay of a transistor is often calculated by using a simple first-order RC 

network. The resistance is dependent upon the width and length of the transistor's n-

channel (NMOS) or p-channel (PMOS). Increased widths decrease the resistivity of the 

device, while decreasing the width causes a larger resistance. The capacitance is 

dependent upon the output capacitance of the driving transistor and the input capacitance 

of the load transistors. Typically, the gate capacitance, Co, dominates all other 

capacitances by a factor of five to ten. The total resistance multiplied by the total load 

capacitance is the time constant, T, of the network. The goal of minimum propagation 
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delay is to minimize i by sizing transistors to provide minimum resistance and minimum 

capacitance. However, decreasing the width of a transistor, increases resistance and 

decreases capacitance, while increasing its width reduces resistance and increases 

capacitance. [8] 

2.4 Power Consumption 

The power consumption in a circuit is just as critical as the propagation delay. To 

optimize SPP, both must be reduced. In a CMOS circuit, power consumption is affected 

by several factors which include dynamic switching, short-circuit current, and static 

leakage current. 

Dynamic switching is the dominant factor of power consumption. A capacitor is 

either charged or discharged any time an input changes and an output node voltage 

changes. The power dissipated in doing so is given by Pd,.,, CL. V021: The power is 

dependent upon the size of the capacitor, the voltage supply, and the frequency. Larger 

capacitors store more energy. If the output switches from 0 V to Vdd, then one or more 

PMOS transistors will dissipate energy while the output is charged up to Vdd. If the 

output switches from Vdd to 0 V, then a capacitor is being discharged and the energy is 

dissipated through one or more NMOS transistors. Frequency is also a factor since 

increased activity of a circuit will require more power. 
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While dynamic switching contributes to most of the power usage, other factors are 

more apparent with lower supply and threshold voltages. Power consumption due to a 

short-circuit current occurs due to non-zero rise and fall times. There exists a direct path 

from Vdd to ground for a brief time when inputs are changing. This short circuit current 

occurs when both PMOS and NMOS transistors are on at the same time. The power due 

to direct-path currents is given by Ps, = V2(tf+ tr) Vdd "peak f 

The third factor, static leakage, is partially caused by leakage current through the 

reversed-biased diode junctions in the transistors. The junction is either the source-

substrate junction or the drain substrate junction. Another cause of static leakage is the 

subthreshold current. Smaller threshold voltages cause higher leakage currents. The 

static power, Pstat , is equal to the product IleakageVdd. 

2.5 Summary of Review 

At the beginning of this chapter, parallel prefix computation was described. There are 

two main families of parallel prefix circuits. The first is known as the Pk(n) family and the 

second is the R(n) family. Furthermore, the R(n) family is a superset of the Po(n) family. 

Typical CMOS circuits used to evaluate logic in the nodes of a prefix circuit were also 

discussed. The third concept discussed was propagation delay. It is dependent upon a 

transistor's effective resistance and the total capacitive load on the output. The final topic 

of this chapter was power consumption. We described the major contributing factors 

including dynamic switching, short-circuit current, and static leakage current. 
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3. DESIGNS 

Having reviewed the concepts of parallel prefix computation, propagation delay, 

and power consumption, different designs may now be examined in detail. The circuit 

simulator HSPICE was used to simulate three different parallel prefix designs. The first 

adder is based on the Pk(n) family[1][2]. The second design is from the R(n) family[3]. 

The final and third design is based on the basic concept of recursive doubling. All of the 

designs simulated are 32-bit adders. Besides having two 32-bit operands and an output 

sum, they each have a and a Coin. The carry propagation with look-ahead portion of 

the circuit is the main difference among the three designs. Some XOR and XNOR gates 

are interchanged in the summation portion to maintain polarity correctness. 

3.1 Brent-Kung Adder 

The first design is based on the Pk(n) family from Ladner and Fisher's work [1]. It 

is labeled as Brent-Kung because of the formulation of each node in the carry look-ahead 

array. The CMOS circuits for the node formulations are in Section 2.2. Brent and Kung 

used these CMOS circuits for their adder in [2]. They used a variation of recursive 

doubling for their carry look-ahead circuit. Unlike the Brent-Kung(BK) Adder, the other 

adders are named according to the carry look-ahead implementation. The particular design 

examined here is P0(32). This design has the smallest depth in the family and it has the 

largest number of nodes in its graph. This would imply that this circuit has the smallest 

delay and will use the most power. 



Figure 3.1 Brent-Kung Adder .' 
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The P0(32) circuit used in the simulations is shown in Figure 3.1. For symmetry 

and simplicity, Po(n) is recursively constructed from two sets of Po(n/2) instead of P0(n/2) 

and Pl(n/2) (Figure 2.2). The top row of XOR gates and other combinational logic are for 

the pre-calculations of generate and propagate terms. Inverters are included in selective 

places because the signal changes polarity between positive weight and negative weight 

after each level of nodes. The bottom row of XOR and XNOR enable the final summation 

of the operands and the carries that were calculated in the parallel prefix computation. 

The bottom node for each column in the carry look-ahead (CLA) is different from the 

regular nodes since they only need to evaluate the G subcell. 

There is a relationship between the capacitive load of a node and the delay that a 

node will experience when evaluating a new value. The nodes that act as loads to other 

nodes increase the capacitive load. Since some nodes are driving multiple nodes at the 

same time, there must be an increase in drive capability to offset the increased delay. 

Many of the nodes near the bottom of the CLA have large fan-out. The bottom 

node in sum bit 15 has a load of 16 other nodes (to the left) plus an XOR gate. This large 

fan-out creates a large delay, which hinders fast propagation of the signals. A common 

solution is to put in a multi-stage driver between the node and its load. However, in this 

type of circuit it would not be feasible since it would actually increase the overall logic 

depth. The minimum depth of this design was the reason it was chosen. There are other 

CLA designs where multi-stage drivers are more appropriate. The multi-stage driver will 

be presented in the next section where Wei[3] found the time-optimal design. 
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A progressive sizing approach to find a power and time optimal design is used for 

this adder. Instead of putting in a multi-stage driver, the transistors in the node will have 

widths that are a fraction of the load. For instance, if the load is 16 nodes and the ratio is 

two, then the loaded node is given a relative size of eight. A loaded node is a node that 

has a fan-out of two or more. A fan-out of one is equivalent to the load of one inverter. 

For the circuit in Figure 3.1, the bottom loaded nodes are not minimum size (sum bits 15, 

7, 3, and 1). Also, the second-to-last loaded nodes in the left half of the circuit are not 

minimum size (sum bits 23, 19, and 17). The intention is to show that circuits are more 

effective with re-sized nodes than those with larger depth and multi-stage drivers. 

The node size ratio equations begin with the load of the C.ut node and they go back 

along the bottom row of nodes, among other nodes mentioned previously. The equations 

are included in Appendix C and are repeated here in a more readable form. 

WCa =Wmin 

WCbara=Wmin 

WCb=r(3*Wmin)*r' 

WCbarb='(17*Wmin+WCb)*r' 

WCc='(9*WMil7+WCbarb)*r' 

WCbarc='(5*Wmin+WCc)*r' 

WCd='(3*Wmin-f-WCbarc)*r' 

WGP(1=Wmin 

WGPbara= Wmin 
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WGPb='(9*Wmit) *r' 

WGPbarb='(4*WMillTh WGPb) *r' 

WGPc= '(2 *Wmin-H WGPbarb) *r' 

The "W' stands for transistor width. A "C" following the "W' stands for a partial node 

that is in the bottom generating the final carry for its respective bit. When a "GP" follows 

the name, then that is a full node with both outputs. The small letter at the end is used to 

differentiate the different loaded nodes. An "a" is a minimum sized node. A "b" is the 

first loaded node at the bottom-left portion of the carry generator, and so on until the last 

loaded node. The "bar" in some of the names refers to a node that inputs and outputs 

signals opposite in polarity to that of the regular node (refer to Section 2.2). The nodes 

whose sizes are being increased are on the critical delay paths. 

3.2 Wei, Thompson, and Chen Adder 

The second design, part of the R(n) family [3], is henceforth referred to as Wei's 

Adder. The adder has the same type of pre-computation circuit and sum circuit, while the 

carry generator is different. Since the block size can vary greatly (refer to Figure 2.4), 

Wei created a model to find out which combination of block sizes works the best. He 

included the use of multi-stage drivers for loaded nodes. The time-optimal circuit is 

shown in Figure 3.2. 

There are no published results on the power usage optimization for this design. 

Wei's goal was to find a circuit that was optimized only for time delay. Once again, 
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Figure 3.2 Wei's Adder 
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minimum-sized inverters are placed to keep the signal polarity correct. Here, the depth of 

the carry generator graph is eight, two levels more than the BK adder. The extra multi

stage drivers also affect the size of the adder. There are 115 nodes in Wei's Adder versus 

81 nodes in the BK adder. 

A simple ratio was not used to find the proper ratio of the multi-stage driver. For 

the cascaded driver, propagation time is a function of the fan-out, f , the ratio between 

stages, r , and the number of stages, s. The driver ratio is r =14'1) for minimum 

propagation delay [3]. As one saw earlier in Section 2.1 and Figure 2.3, the drivers are 

placed between each of the recursive blocks. From Figure 3.2, it can be seen that the 

number of stages in a driver ranges from one to three. 

The intent of the design is that it be the fastest with the multi-stage drivers to 

compensate for the large fan-out. However, the BK Adder will be faster if specific nodes 

are increased in size as described in Section 3.1. The power consumption for Wei's Adder 

will be higher than the BK Adder because Wei's Adder requires more transistors. 

3.3 Recursive Doubling Adder 

The third design is the Recursive Doubling Adder (Figure 3.3). The maximum fan-

out in this adder is two. For the top row, signals go to a node on the current bit and to the 

node on the next bit over to the left. For the second row, signals go to the current 
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node and two nodes over to the left. The number of nodes that the signals skip doubles 

each time. For the last row (not including the Cout node), signals skip over 16 bits. 

The Recursive Doubling Adder has a total of 130 nodes and its depth is six. Since 

there are no nodes with large fan-out, all of the nodes are minimum size. The power 

usage for this adder will be greater than or equal to the power usage of Wei's Adder 

(Section 3.2) because it requires more nodes than Wei's Adder. The Recursive Doubling 

Adder is the fastest of the group because it has the minimum depth possible for a 32-bit 

adder. Signals propagate quickly through all parts of the circuit due to the low fan-out. 

3.4 Summary of Designs 

The three different 32-bit adder designs simulated in HSPICE were presented. 

The first design was the BK Adder, part of the P k(n) family (Figure 3.1). The BK Adder 

uses the least amount of transistor devices and its carry look-ahead circuit has a minimum 

logical depth of six levels. Wei's Adder was the second adder, and it is part of the R(n) 

family (Figure 3.2). This adder's carry look-ahead portion has a logical depth of eight 

levels and has a bigger size. The third adder was the Recursive Doubling Adder. Its carry 

look-ahead is six levels, and it uses the highest number of transistors. 

Table 3.1 summarizes all three designs with respect to size and depth without 

accounting for the re-sized nodes. The Depth column shows the total number of logic 

levels for each adder's carry look-ahead circuit. The Size column shows the total number 

of nodes in each adder's carry look-ahead circuit. Since depth and size roughly 
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approximate delay and power, respectively, the Depth*Size column estimates the speed-

power product for each adder. From Table 3.1, one should expect the BK Adder to have 

the best overall performance. 

Depth (levels) Size (nodes) Depth*Size 
1. BK 6 81 486 
2. Wei 8 115 920 
3. Recursive Doubling 6 130 780 

Table 3.1 Depth and Size Variations Between the Three Designs 
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4. EXPERIMENTAL RESULTS
 

There are four separate sets of propagation delay and power data from the designs 

described in Chapter 3. The product of the propagation delay(tp) and power was 

computed to present the speed-power product (SPP). Wei's Adder and the Recursive 

Doubling Adder each has one set of data, while the Brent-Kung (BK) adder has two sets 

of data. The difference between the two sets of data for the BK adders is that one used a 

fan-out size ratio of two (r=2), and the other one used a fan-out size ratio of three (r=3). 

Section 4.1 describes the variations for the simulations that were run. Section 4.2 

presents the propagation delays from each simulation, and Section 4.3 presents the SPP 

results. Section 4.4 describes simulations run to compare power leakage for various 

values of Vt. Interconnect is briefly discussed in Section 4.5. The HSPICE simulation 

files are in Appendix A, Appendix B, and Appendix C. Please note that the parameter r 

(driver size ratio) has a multiplicative inverse meaning in the netlist file in Appendix C. 

4.1 Simulation Variations 

For each of the four different adders, simulations were run with two different 

variations using a constant input frequency. The two variations were voltage supply, Vad, 

and change in threshold voltage, dVt. Vdd was varied from 1.5 V to 3.0 V in steps of 0.5 

V, and dVt was varied from -0.2 V to 0.6 V in steps of 0.1 V. A positive value for dVt 

means a decrease in the threshold voltage, Vt, and a negative value means an increase in 
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Vt. A simple C-program created a file for random input vectors to the adders (Appendix 

D). There were 500 vectors simulated for each design. Since HSPICE integrates over the 

entire time interval of the 500 random vectors, the power measurement calculation 

represents a good average. 

4.2 Propagation Delay 

The propagation delay measurements taken were a measurement of the 50% point 

on the input rise (or fall) to the 50% point on Co.,' s rise (or fall). Slightly over half of the 

500 random input vectors caused a voltage swing in the Cott bit line. Cott has the largest 

theoretical delay since it is the bit line with the largest depth for each design. However, 

the actual worst case delay may differ due to transistors in series for each of the gates of a 

particular path. So, the delay data for each particular set of voltage parameters is the 

worst case of about 250 raw measurements from SPICE. 

The following four pages contain the propagation delay data in graphical and in 

table format. The four different tables and the four different figures account for the four 

different Vdd values beginning with 3.0 V and ending with 1.5 V. The tables contain delay, 

power, and SPP values, so the data will not be repeated in the Section 4.3. 

In the top graph of each figure, the delays are graphed with respect to Vt. In the 

bottom graph of each figure, the delays are graphed with respect to VddIVt. In every 
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Type of Adder Brent-Kung r =2 Brent-Kung r =3 Wei Recursive Doubling 
dVt Vt Vdd/Vt tp Power SPP tp Power SPP tp Power SPP tp Power SPP 
-0.2 0.9 3.5 3.6 5.5 19.7 3.7 5.4 19.8 3.8 6.1 23.3 3.3 5.8 19.1 
-0.1 0.8 3.9 3.3 5.6 18.6 3.4 5.5 18.5 3.5 6.2 22.1 3.0 5.9 18.0 
0.0 0.7 4.5 3.1 5.7 17.7 3.2 5.6 17.6 3.3 6.4 21.1 2.8 6.1 17.1 
0.1 0.6 5.3 2.9 5.9 17.0 2.9 5.7 16.8 3.1 6.6 20.2 2.6 6.2 16.4 
0.2 0.5 6.4 2.7 6.1 16.4 2.8 5.9 16.3 2.9 6.8 19.9 2.5 6.4 15.9 
0.3 0.4 8.2 2.5 6.3 16.2 2.6 6.1 15.9 2.8 7.1 19.7 2.4 6.7 15.7 
0.4 0.3 11.2 2.4 6.9 16.8 2.5 6.6 16.3 2.6 7.9 20.9 2.2 7.2 16.2 
0.5 0.2 17.9 2.3 9.4 21.9 2.4 8.9 21.0 2.6 11.7 30.0 2.1 10.3 21.9 
0.6 0.1 44.5 2.2 14.8 33.2 2.3 13.7 31.6 2.5 19.8 49.5 2.0 17.0 34.6 

* dVt (Volts), Vt (Volts), Vdd/Vt (Volts/Volts), tp (ns). Power (mW), SPP (pJ) 

Table 4.1 Propagation Delay (Vdd = 3.0 Volts) 
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Figure 4.1 Propagation Delay (Vdd = 3.0 Volts) 
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Type of Adder Brent-Kung r=2 Brent-Kung r =3 Wei Recursive Doubling 
dVt Vt Vdd/Vt tp Power SPP tp Power SPP tp Power SPP tp Power SPP 

-0.2 0.9 2.9 5.0 3.8 19.0 5.1 3.7 19.0 5.3 4.2 22.3 4.5 4.0 18.2 
-0.1 0.8 3.3 4.5 3.8 17.3 4.6 3.7 17.3 4.7 4.3 20.3 4.1 4.1 16.7 

0.0 0.7 3.7 4.1 3.9 16.1 4.2 3.8 16.2 4.3 4.4 18.9 3.7 4.2 15.5 
0.1 0.6 4.4 3.7 4.0 15.0 3.8 3.9 14.9 4.0 4.5 17.8 3.4 4.3 14.5 

0.2 0.5 5.3 3.4 4.1 14.2 3.5 4.0 14.1 3.6 4.6 16.9 3.1 4.4 13.8 
0.3 0.4 6.8 3.2 4.3 13.7 3.2 4.2 13.5 3.4 4.8 16.4 2.9 4.6 13.2 
0.4 0.3 9.3 2.9 4.6 13.5 3.0 4.4 13.3 3.2 5.2 16.6 2.7 4.8 13.1 
0.5 0.2 14.9 2.8 5.8 16.2 2.8 5.5 15.5 3.0 7.0 21.3 2.5 6.2 15.8 
0.6 0.1 37.1 2.7 9.1 24.1 2.7 8.5 22.9 3.0 11.9 35.1 2.4 10.2 24.8 

* dVt (Volts), Vt (Volts), Vdd/Vt (Volts/Volts), tp (ns), Power (mW), SPP (pJ) 

Table 4.2 Propagation Delay (Vdd = 2.5 Volts) 
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Figure 4.2 Propagation Delay (Vdd = 2.5 Volts) 
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Type of Adder Brent-Kung r =2 Brent-Kung r =3 Wei Recursive Doubling 
dVt Vt Vdd/Vt tp Power SPP tp Power SPP tp Power SPP tp Power SPP 
-0.2 0.9 2.3 8.4 2.4 20.0 8.6 2.3 20.0 8.7 2.7 23.3 7.4 2.6 19.0 
-0.1 0.8 2.6 7.1 2.4 17.2 7.3 2.4 17.2 7.4 2.7 20.2 6.3 2.6 16.4 
0.0 0.7 3.0 6.2 2.5 15.2 6.3 2.5 15.5 6.4 2.8 17.8 5.5 2.6 14.5 
0.1 0.6 3.5 5.4 2.5 13.6 5.5 2.5 13.5 5.7 2.8 16.0 4.8 2.7 13.1 
0.2 0.5 4.3 4.8 2.6 12.4 4.9 2.5 12.3 5.0 2.9 14.5 4.3 2.8 11.9 
0.3 0.4 5.4 4.3 2.7 11.5 4.3 2.6 11.4 4.5 3.0 13.6 3.9 2.9 11.1 

0.4 0.3 7.5 3.8 2.9 11.0 3.9 2.8 10.8 4.1 3.2 13.2 3.5 3.0 10.6 
0.5 0.2 11.9 3.5 3.3 11.6 3.6 3.2 11.3 3.8 3.9 14.7 3.2 3.5 11.3 
0.6 0.1 29.7 3.3 5.2 17.0 3.3 4.8 16.2 3.6 6.6 23.9 3.0 5.7 17.2 

* dVt (Volts), Vt (Volts), Vdd/Vt (Volts/Volts), tp (ns), Power (mW), SPP (pJ) 

Table 4.3 Propagation Delay (Vdd = 2.0 Volts) 
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Type of Adder Brent-Kung r=2 Brent-Kung r=3 Wei Recursive Doubling 
dVt Vt Vdd Vt tp Power SPP tp Power, SPP tp Power SPP tp Power SPP 

0.0 0.7 2.2 12.5 1.3 16.6 12.7 1.3 17.1 13.0 1.5 19.6 10.9 1.5 15.8 

0.1 0.6 2.6 9.8 1.4 13.5 10.0 1.3 13.5 10.3 1.6 16.0 8.7 1.5 12.9 

0.2 0.5 3.2 8.0 1.4 11.3 8.1 1.4 11.3 8.3 1.6 13.3 7.1 1.5 10.8 

0.3 0.4 4.1 6.7 1.5 9.9 6.8 1.4 9.8 6.9 1.6 11.5 6.0 1.6 9.5 

0.4 0.3 5.6 5.7 1.6 8.9 5.8 1.5 8.8 6.0 1.7 10.4 5.1 1.7 8.5 
0.5 0.2 9.0 4.9 1.7 8.6 5.0 1.7 8.4 5.2 2.0 10.3 4.5 1.8 8.2 
0.6 0.1 22.3 4.4 2.6 11.5 4.5 2.4 10.9 4.8 3.2 15.6 4.0 2.8 11.4 

* dVt (Volts) Vt (Vo ts), Vdd/Vt (Volts/Volts), tp (ns), Power (mW), SPP (pJ) 

Table 4.4 Propagation Delay (Vdd = 1.5 Volts) 
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Figure 4.4 Propagation Delay (Vdd = 1.5 Volts) 
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case, the Recursive Doubling adder outperforms the other designs with respect to 

propagation delay. Wei's Adder, designed to be time-optimal, is actually the slowest. 

The two BK Adders have delays very close to each other. As expected, the BK Adder 

with r=2 has a slightly better propagation delay than the adder with r=3. 

Each adder follows an interesting trend on every graph. One will notice that as Vt 

decreases, the slope of the delay line approaches zero. In other words, there is a critical 

point where the performance stops improving with the reduction of Vt. This is mainly 

because Vt is only one of the many factors that affect propagation delay such as Vdd, line 

resistance, line capacitance, load capacitance, and circuit design. Propagation delay is also 

squarely dependent upon the difference between Vdd and Vt. Increasing Vt causes an 

increase in the propagation delay. On the lower half of each figure, one will notice that 

higher values of Vt cause time delay to increase squarely. The lower values of Vdd are 

more susceptible to a change in Vt. For example, when Vdd=3.0 V and Vt is lowered to 

0.1 V (Figure 4.1), tp decreases by 1/3. Yet, when Vdd=1.5 V and Vt is lowered to 0.1 V, 

tp decreases by 2/3. A higher voltage supply causes a faster design. For two different 

figures where the Vdd/Vt ratio is equivalent, the one with a higher Vdd is faster. 

4.3 Speed-Power Product 

The speed-power product (SPP) is equal to the propagation delay (in ns) times the 

power consumption (in mW). SPP is a measure of a circuit's energy efficiency. In 

microprocessors, energy consumption is important in circuit design. 
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Similar to the propagation delay figures, the SPP uaphs are also split up into four 

separate figures. The SPP data from Tables 4.1 through 4.4 are graphed in Figures 4.5 

through 4.8. Also, the top half of each figure shows SPP versus V,, and the bottom half of 

each figure shows SPP versus Vdd/Vt. 

The first observation to make from the SPP graphs is that there exists a positive 

curvature for each of the sets of data. In other words, there exists a minimum SPP at a 

particular threshold value in between the highest and lowest values of V,. The SPP data 

does not plateau as the delay did. The trend of the data of different designs for the SPP 

graphs is similar for each particular voltage. The minimum SPP occurs at a lower V, for 

lower voltage supplies. At Vdd=3.0 V (Figure 4.5), the minimum SPP is around V1=0.4 V, 

and at Vdd=1.5 V (Figure 4.8), the minimum SPP is around V,=0.2 V. 

The rate at which the SPP increases as V, increases or decreases is different for 

different voltage supplies. For rising values of Vt, SPP rises slowly at higher voltages and 

quicker at lower voltages. For decreasing values of V,, SPP rises slower at lower voltages 

than at the higher voltages. Both propagation delay and power consumption are 

dependent upon the voltage supply, Vdd, and the transistor currents. An increase in Vdd 

decreases delay and increases power. A decrease in Vdd increases delay and decreases 

power. As mentioned previously, the current in a transistor, which affects delay and 

power, is directly proportional to the difference between Vac! and Vt. 

In the previous section, one saw that all of the designs ran faster at higher 

voltages. However, when the power is included, the best design is not the fastest. Power 
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consumption is much greater at higher voltages. The smallest values of SPP occur at 

lower supply voltages. For example, the lowest SPP at Vdd=3.0 V is 15.7 pJ (Table 4.1) 

while the lowest SPP at Vdd=1.5 V is 8.3 pJ (Table 4.4). 

The device count is an important factor that affects the power consumption of a 

circuit since it contributes directly toward the overall capacitive load. Table 4.5 contains 

the total MOSFET count for each of the designs. Also, Table 4.6 lists the effective 

transistor count by taking into account that some designs have various transistor sizes. 

Designs that use more transistors consume more power. The BK Adder has fewer 

MOSFET devices than Wei's Adder and the Recursive Doubling adder. Remember from 

Chapter 3 that the BK Adder uses the least amount of nodes in the prefix carry 

Adder Design Total Number of Transistors 
BK 1930 
Wei 2342 

Recursive Doubling 2358 

Table 4.5 Actual MOSFET Count 

Adder Design Effective Number of Transistors 
BK (r=2) 2181 
BK (r=3) 2043 

Wei 2389 
Recursive Doubling 2358 

Table 4.6 Effective MOSFET Count 
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computation. Although the Recursive Doubling Adder has more nodes in its design, the 

multi-stage drivers make the effective MOSFET count in Wei's Adder greater than the 

effective MOSFET count for the Recursive Doubling Adder. 

The total number of transistors were counted for 32-bit adders. The size of n-bit 

adders can be predicted by deriving equations for the total number of nodes, S(n), in the 

carry look-ahead portion of the adder. The sizes of 4-bit, 8-bit, 16-bit and 32-bit adders 

were used to derive approximate equations. San) (ni2)log7n for BK Adders, and 

SRD(n) c,,,nlog2(n/2) for Recursive Doubling Adders. It is difficult to predict the size of an 

n-bit Wei's Adder, STve,(n), because it is designed from dynamic programming[3]. Swe,(n) 

is close to San) for small n, and it increases towards SRD(n) for larger 

4.4 Power Leakage 

For the BK Adder, where the ratio between the load and driving node is two, 

simulations with different input frequencies were run. Here, Vdd was constant at 3 V and 

dVt had values of 0.0 V, 0.2 V, 0.4 V and 0.6 V. The power leakage data is shown in 

Figure 4.9 and Table 4.7. The two far right columns in Table 4.11 contain power 

consumption values at f=0 MHz that were extrapolated from the data at the other 

frequencies. The calculated values are estimated power consumption due to current 

leakage (see Section 2.3). 
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dVt = 0.0 dVt = 0.2 dVt = 0.4 dVt = 0.6 Power Leakage
 

Freq. lvdd Power lvdd Power lvdd Power lvdd Power dVt Power
 

50 1.0 2.9 1.0 3.1 1.2 3.6 3.7 11.2 0.0 0.04
 
100 1.9 5.7 2.0 6.1 2.3 6.9 4.9 14.8 0.2 0.04
 
200 3.8 11.4 4.1 12.1 4.5 13.5 7.3 22.0 0.4 0.33
 
300 5.7 17.1 6.1 18.1 6.7 20.1 9.7 29.2 0.6 7.58
 

* Freq. (MHz), lvdd (mA), Power (mVV), dVt (Volts) 

Table 4.7 Power Leakage Effects of Decreasing V, 

The top graph in Figure 4.9 shows what happens when one decreases the threshold 

voltage. There is little change in power consumption when Vt is decreased by 0.4 V. Yet, 

when dV,=0.6 V (a decrease of 0.6 V), power consumption increases significantly by 

about 9 mW for each particular frequency. By extending the lines to the 0 MHz axis, one 

can get the excess power consumption that is not caused by transistor switching. The 

lower part of Figure 4.9 graphically shows the extrapolated values. There is very little 

power leakage until Vt is close to zero. 

4.5 Interconnect Wires 

The simulations did not take interconnect delays into account. However, the total 

number of interconnects between CLA nodes are totaled in Table 4.8. Also, a spreadsheet 

program was used to determine the trend for n-bit adders based on 4-bit, 8-bit, 16-bit, and 

32-bit adders. The BK Adder requires fewer interconnecting wires than Wei's Adder and 

the Recursive Doubling Adder. Also note that interconnect affects the Recursive 



39 

Doubling Adder more since the average wire length in the Recursive Doubling Adder is 

greater than in the other two adders 

BK Wei Recursive Doubling 
32-bit 243 416 363 
n-bit 0.34114°2 0.24n4 57 0.27114" 

Table 4.8 Total Number of Interconnects Between CLA Nodes 

4.6 Experimental Results Summary 

In this chapter, the variations in the HSPICE simulations run on the designs 

described in Chapter 3 have been explained. Section 4.2 presented the experimental data 

for propagation delay. For most variations, the Recursive Doubling Adder was the fastest. 

Section 4.3 presented the experimental data for power consumption as the speed-power 

product (SPP). Except for Wei's Adder, all of the adders had similar SPP values when the 

parameters were varied. The SPP of Wei's Adder was higher than the other adders. Also 

in Section 4.3, we found that the BK Adder (r=2) had the lowest effective MOSFET 

transistor count and Wei's Adder had the highest effective MOSFET transistor count. In 

Section 4.4, it was seen that the power leakage is not significant until V, is close to 0 V 

(within 0.1 V). Finally, the trend of wires interconnecting CLA nodes for the designs 

were compared. The BK Adder was found to have the fewest number of interconnects for 

an n-bit adder. 
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5. CONCLUSIONS 

Conclusions reached are presented below. Section 5.1 provides a summary of the 

thesis. It includes the simulated designs and results after simulations, where different 

parameters were adjusted. Following the summary, Section 5.2 presents ideas for further 

research on this subject. 

5.1 Summary 

In the preceding chapters, three different adder designs were presented as well as 

the results of simulating the designs under several different voltage supplies, threshold 

voltages, and frequencies. 

For all of the adder designs, the smallest propagation delay occurred with Vdd=3.0 

V, while the lowest SPP occurred with Vdd= 1.5 V. The Recursive Doubling Adder was 

always the fastest for any specific set of parameters. 

Considering the speed-power product, the Recursive Doubling Adder and the BK 

Adders were nearly equal, and they were also all lower than Wei's Adder. Each set of 

data had a minimum SPP. The threshold voltage at which the minimum SPP occurred 

increased as Vdd was increased ranging from 0.2 Volts to 0.4 Volts. Also, the Brent-Kung 

Adders were the smallest in terms of the total number of MOSFET devices. 



41 

When V, is decreased, power consumption increases. The power is linearly 

dependent on frequency. The increase in power is not significant until dV,=0 6 V (V, is 

close to zero). The power-frequency data provided the power leakage in each circuit. 

The power leakage difference between dV,=0.0 V and dVt=0.4 V is insignificant relative 

to the 7.6 mW of leakage that occurred at dVt=0.6 V. 

Looking at each of the results for the various parameters, an adder suitable to 

particular criteria may be chosen. If one is looking for just a fast adder, the Recursive 

Doubling Adder is best. However, considering size and area, the best alternative would be 

the BK Adder (r=2). The optimum speed-power product occurs at a supply voltage of 

1.5 V and a threshold voltage of 0.2 V. 

5.2 Future Research 

The design approach for reducing the effects of fan-out can be applied to other 

circuits besides an adder. There are portions of a microprocessor where it may also be 

more suitable to size the driving gates or cells accordingly instead of placing multi-stage 

drivers. The need to use greater depth and include multi-stage drivers is not necessary 

when the design approach is used with the BK Adder. The threshold value must also be 

varied to get the optimum efficiency of a circuit if Vdd changes. Further studies should 

include the RC delays caused by interconnects. 
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APPENDIX A HSPICE Command File 

* 32-bit Adder using Brent-Kung * 
* Parag Shah * 

.include "infs/staldul/s/shahp/mentorklass/ECE503/include/leve13.param"
 

.include "infs/staldu1 /s/shahp/mentor/class/ECE503/brentKung/adder5.n1"
 
include "infs/stalc/u1/s/shahp/mentor/class/ECE503/include/200mhz250Ons3Ov.wav"
 

* increase Vp to get better speed 
decrease Vn to get better speed 

Vp pwell 0 0 
Vn nwell 0 Vd 
VDD VDD 0 Vd DC 
.GLOBAL VDD pwell nwell 

.param Vd=3 

.param dVt=0.0 

.tran In 2500n
 

.meas tran avg_power avg power
 

.meas tran avg_ivdd avg i(vdd)
 

.meas tran avg_ipwell avg i(vp)
 

.meas tran avg_inwell avg i(vn)
 

.probe v(cout)
 
plot v(cout)
 
option post ingold=2 probe
 

xadder AO Al A10 All Al2 Al3 Al4 Al5 Al6 Al7 Al8 Al9 A2 
+ A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A3 A30 A31 
+ A4 A5 A6 A7 A8 A9 BO B1 BIO B11 B12 B13 B14 B15 
+ B16 B17 B18 B19 B2 B20 B21 B22 B23 B24 B25 B26 B27 
+ B28 B29 B3 B30 B31 B4 B5 B6 B7 B8 B9 CIN COUT SUMO 
+ SUM1 SUM10 SUM11 SUM12 SUM13 SUM14 SUM15 SUM16 SUM17 
+ SUM18 SUM19 SUM2 SUM20 SUM2I SUM22 SUM23 SUM24 SUM25 
+ SUM26 SUM27 SUM28 SUM29 SUM3 SUM30 SUM31 SUM4 SUMS SUM6 
+ SUM7 SUM8 SUM9 adderla 

END 

http:s/shahp/mentor/class/ECE503/brentKung/adder5.n1
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APPENDIX B Level 3 HSPICE Parameters 

.MODEL N NMOS LEVEL=3 PHI=0.700000 TOX=9.5000E-09 XJ=0.200000U TPG=1 
+ VT0=0.6674 DELTA=1.4270E+00 LD=6.3300E-08 KP=1.7146E-04 
+ U0=471.7 THETA=1.6690E-01 RSH=3.3470E+01 GAMMA=0.5219 
+ NSUB=1.0840E+17 NFS=5.9080E+11 VMAX=2.2650E+05 ETA=2.0550E-02 
+ KAPPA=2.1270E-01 CGDO=9.0000E-11 CGS0=9.0000E-11 
+ CGB0=3.6007E-10 CJ=5.69E-04 MJ=0.661 CJSW=2.00E-11 
+ MJSW=0.609 PB=0.99 
* Weff = Wdrawn - DeltaW 
* The suggested Delta_W is 3.3260E-07 

.MODEL P PMOS LEVEL=3 PHI=0.700000 TOX=9.5000E-09 XJ=0.200000U TPG=-1 
+ VT0=-0.9188 DELTA=3.5350E-01 LD=7.8860E-08 KP=3.8312E-05 
+ U0=105.4 THETA=3.3670E-02 RSH=1.6950E+01 GAMMA = 0.7396 
+ NSUB=2.1770E+17 NFS=5.9080E+11 VMAX=1.5650E+05 ETA=1.7260E-02 
+ KAPPA=8.8780E+00 CGDO=9.0000E-11 CGS0=9.0000E-11 
+ CGBO= 3.6237E -10 CJ=9.19E-04 MJ=0.321 CJSW=4.60E-10 
+ MJSW=0.100 PB=0.42 
* Weff= Wdrawn - DeltaW 
* The suggested Delta_W is 3.3680E-07 
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APPENDIX C HSPICE Adder Net list 

* Net list for Brent-Kung 32-bit adder * 
* For transistor size variations r * 
* Parag Shah 
* March 17, 1998 

.param L=0.5u 

.param Wmin=lu 

.param r=0.5 

.param k=0 

.param Cw=1Wmin*k' 

param Winv=Wmin 
.param Wnand=Wmin 
.param Wnor=Wmin 
.param Wxor=Wmin 
.param Wxnor=Wmin 

.param WGPa=Wmin
 

.param WGPbara=Wmin
 

.param WGPb='(9*Wmin+9*Cw)*r'
 

.param WGPbarb='(4*Wmin+4*Cw+WGPb)*r'
 

.param WGPc='(2*Wmin+3*Cw+WGPbarb)*r'
 

.param WCa=Wmin 

.param WCbara=Wmin 

.param WCb='(3*Wmin+2*Cw)*r' 

.param WCbarb=1(17*Wmin+17*Cw+WCb)* 

.param WCc=1(9*Wmin+9*Cw+WCbarb)*e 
param WCbarc='(5*Wmin+5*Cw+WCc)*r' 

.param WCd='(3*Wmin+3*Cw+WCbarc)*r 

SUBCKT inverter. 

+ IN OUT width=lu length=Wmin deltaVt=dVt 
Vbn Nin in deltaVt 
Vbp in Pin deltaVt 
MXI 2 OUT Nin 0 pwell N w=width 1=length AS=16.0P AD=16.0P PS=12.0U 
+ PD=12.0U 
MXI_l OUT Pin VDD nwell P w='2*width' 1=length AS=16.0P AD=16.0P PS=12.0U 
+ PD=12.0U 
.ENDS * inverter * 

http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
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SUBCKT nor 
+ PLBAR POUT PRBAR width=Wnor length-L deltaVt-dVt 
VbAn PLBARn PLBAR deltaVt 
VbAp PLBAR PLBARp deltaVt 
VbBn PRBARn PRBAR deltaVt 
VbBp PRBAR PRBARp deltaVt 
MXI_4 POUT PRBARp N_6 nwell P w=2*width' Hength m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI_3 N_6 PLBARp VDD nwell P w='2*width' 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD-12.0U 
MXI 2 POUT PRBARn GND pwell N w=width 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 1 POUT PLBARn GND pwell N w=width 1= length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
.ENDS * nor * 

.SUBCKT nand 
+ PL POUTBAR PR width=Wnand length=L deltaVt-dVt 
VbAn PLn PL deltaVt 
VbAp PL PLp deltaVt 
VbBn PRn PR deltaVt 
VbBp PR PRp deltaVt 
MXI_4 POUTBAR PLp VDD nwell P w='2*width' 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI_3 POUTBAR PRp VDD nwell P w='2*width' 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD-12.0U 
MXI 2 POUTBAR PLn N_10 pwell N w=width 1=length m=1 AS=16.0P AD=16.0P 
+ PS-12.0U PD-12.0U 
MXI 1 N_10 PRn GND pwell N w =width 1=length m=1 AS-16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
.ENDS * nand * 

SUBCKT Ga 
+ GL GOUTBAR GR PL width =Wmin length=L deltaVt=dVt 
VbGLn GLn GL deltaVt 
VbGLp GL GLp deltaVt 
VbGRn GRn GR deltaVt 
VbGRp GR GRp deltaVt 
VbPLn PLn PL deltaVt 
VbPLp PL PLp deltaVt 
MXI 18 GOUTBAR GLn GND pwell N w=width 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 17 GOUTBAR GLp N_6 nwell P w='2*width' !=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD-12.0U 
MXI_4 N_6 GRp VDD nwell P w ='2 *width' 1=length m=1 AS=16.0P AD=16.0P 

http:AD=16.0P
http:AS=16.0P
http:PD-12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS-16.0P
http:PD-12.0U
http:PS-12.0U
http:AD=16.0P
http:AS=16.0P
http:PD-12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD-12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
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+ PS=12.0U PD=12.0U
 
MXI_3 N_6 PLp VDD nwell P w=2*width' 1=length m=1 AS=16.0P AD=16.0P 
+ PS-12.0U PD=12.0U 
MXI 2 GOUTBAR PLn N_5 pwell N w=width 1-length m=1 AS-16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 1 N_5 GRn GND pwell N w=width 1-length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
.ENDS * Ga * 

.SUBCKT Gbara 
+ GLBAR GOUT GRBAR PLBAR width=Wmin length=L deltaVt=dVt 
VbGLn GLBARn GLBAR deltaVt 
VbGLp GLBAR GLBARp deltaVt 
VbGRn GRBARn GRBAR deltaVt 
VbGRp GRBAR GRBARp deltaVt 
VbPLn PLBARn PLBAR deltaVt 
VbPLp PLBAR PLBARp deltaVt 
MXI 6 N_10 GRBARn GND pwell N w=width 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 5 GOUT GRBARp N_14 nwell P w=12*width' 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 4 N_14 PLBARp VDD nwell P w='2*width' 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI_3 GOUT GLBARp VDD nwell P vv='2*width' 1=length m=1 AS=16.0P 
+ AD=16.0P PS=12.0U PD=12.0U 
MXI 2 GOUT GLBARn N_10 pwell N w=width 1-length m=1 AS-16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 1 N_10 PLBARn GND pwell N w=width 1-length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
.ENDS Gbara 

SUBCKT gpgen 
+ AB[O] ABM GP[O] GP[1] 
XI 621 N_620 GP[O] inverter 
XI 620 ABM N_620 AB[O] nor 
XI 215 N_213 GPM inverter 
XI _4 ABM N_213 AB[O] nand 
ENDS * gpgen * 

.SUBCKT xor 
+ A B OUT width=Wxor length=L deltaVt-dVt 
VbAn An A deltaVt 
VbAp A Ap deltaVt 
VbBn Bn B deltaVt 
VbBp B Bp deltaVt 

http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS-16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS-16.0P
http:PD=12.0U
http:PS-12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
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MXI 8 N II N_203 GND pwell N w=width 1=length m=1 AS=16.0P AD=I6 OP 
+ PS=12.0U PD=12.0U 
MXI 7 N_9 Bn GND pwell N w=width 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 6 OUT N_18 N_11 pwell N w=width 1length m=1 AS=16.0P AD=16 OP 
+ PS=12.0U PD=12.0U 
MXI 5 OUT An N_9 pwell N w =width 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI_4 OUT N_203 N_4 nwell P w'2*widthi1=length m=1 AS=16.0P AD=16.0P 
+ PS =12.0U PD =12.0U 
MXI_3 OUT N_18 N_4 nwell P w='2*width' 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI_2 N_4 Bp VDD nwell P w='2*width' 1=length m=1 AS-16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 1 N_4 Ap VDD nwell P w='2*width' 1=length m=1 AS=16.0P AD=16.0P 
+ PS-12.0U PD=12.0U 
XI_2 B N_203 inverter width=Wxor 
XI_210 A N_18 inverter width=Wxor 
.ENDS * xor * 

.SUBCKT inverter2 
+ IN[0] IN[1] OUT[0] OUT[1] 
XI _2 IN[1] OUT[1] inverter 
XI _1 IN[0] OUT[0] inverter 
.ENDS * inverter2 * 

SUBCKT Ca 
+ COUTBAR GPLEFT[0] GPLEFT[1] GR 
XI 465 GPLEFT[1] COUTBAR GR GPLEFT[0] Ga width=WCa 
ENDS * Ca * 

SUBCKT GPbara 
+ GPLEFTBAR[0] GPLEFTBAR[1] GPOUT[0] GPOUT[1] GPRIGHTBAR[0]
 
GPRIGHTBAR[1]
 
XI 213 GPLEFTBAR[1] GPOUT[1] GPRIGHTBAR[1] GPLEFTBAR[0] Gbara
 
+ width=WGPbara 
XI_S GPLEFTBAR[0] GPOUT[0] GPRIGHTBAR[0] nor width=WGPbara 
ENDS * GPbara * 

.SUBCKT GPa 
+ GPLEFT[0] GPLEFT[1] GPOUTBAR[0] GPOUTBAR[1] GPRIGHT[0] GPRIGHT[1]
 
XI 207 GPLEFT[0] GPOUTBAR[0] GPRIGHT[0] nand width=WGPa
 
XI 415 GPLEFT[1] GPOUTBAR[1] GPRIGHT[1] GPLEFT[0] Ga width=WGPa
 
.ENDS * GPa *
 

http:PD=12.0U
http:PS-12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS-16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AS=16.0P
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SUBCKT GPb 
GPLEFT[0] GPLEFT[1] GPOUTBAR[0] GPOUTBAR[1] GPRIGHT[0] GPRIGHT[1] 

XI_207 GPLEFT[0] GPOUTBAR[0] GPRIGHT[0] nand width =WGPb 
XI 415 GPLEFT[1] GPOUTBAR[1] GPRIGHTP GPLEFT[0] Ga width=WGPb 
ENDS * GPb * 

SUBCKT Cbara 
+ COUT GPLEFTBAR[0] GPLEFTBAR[1] GR 
XI 213 GPLEFTBAR[1] COUT GR GPLEFTBAR[0] Gbara width = WCbara 
ENDS * Cbara * 

SUBCKT Cbarb 
+ COUT GPLEFTBAR[0] GPLEFTBAR[1] GR 
XI_213 GPLEFTBAR[1] COUT GR GPLEFTBAR[0] Gbara width=WCbarb 
ENDS * Cbarb * 

SUBCKT GPc 
+ GPLEFT[0] GPLEFT[1] GPOUTBAR[0] GPOUTBAR[1] GPRIGHT[0] GPRIGHT[1]
 
XI 207 GPLEFT[0] GPOUTBAR[0] GPRIGHT[0] nand width=WGPc
 
XI 415 GPLEFT[1] GPOUTBAR[1] GPRIGHT[1] GPLEFT[0] Ga width=WGPc
 
.ENDS * GPc *
 

.SUBCKT Cd 
+ COUTBAR GPLEFT[0] GPLEFT[1] GR 
XI_465 GPLEFT[1] COUTBAR GR GPLEFT[0] Ga width=WCd 
ENDS * Cd * 

.SUBCKT xnor 
+ A B OUT width=Wxnor length-1_, deltaVt=dVt 
VbAn An A deltaVt 
VbAp A Ap deltaVt 
VbBn Bn B deltaVt 
VbBp B Bp deltaVt 
XI_26 B N_19 inverter width = Wxnor 
MXI 20 N_8 N_19 GND pwell N w=width 1=length m=1 AS=16.0P AD=16.0P 
+ PS =12.0U PD =12.0U 
MXI 18 OUT N_204 N_10 pwell N w=width 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 17 OUT An N_8 pwell N w=width 1=length m=1 AS=16.0P AD=16.0P 
+ PS=12.0U PD=12.0U 
MXI 21 N_10 Bn GND pwell N w=width 1=length m=1 AS=16.0P AD=16.0P 
+ PS =12.0U PD =12.0U 
MXI 15 OUT Bp N_2 nwell P w=12*width' l= length m=1 AS=16.0P AD=16.0P 
+ PS =12.0U PD =12.0U 
MXI 14 OUT N_204 N_2 nwell P w=2*width' 1=length m=1 AS=16.0P AD=16.0P 

http:AD=16.0P
http:AS=16.0P
http:AD=16.0P
http:AS=16.0P
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:PD=12.0U
http:PS=12.0U
http:AD=16.0P
http:AS=16.0P
http:AD=16.0P
http:AS=16.0P


PS=12.0U PD=12.0U 
MXI 12 N_2 N_19 VDD nwell P w='2*width'1=length m=1 AS=I6 OP AD=16.0P 
+ PS=12.0UPD=12.0U 
MXI 11 N_2 Ap VDD nwell P w ='2 *width' 1=length m=1 AS=16.0P AD=16.0P 
+ PS =12.0U PD =12.0U 
XI_9 A N_204 inverter 
.ENDS * xnor * 

.SUBCKT Cb 
+ COUTBAR GPLEFT[0] GPLEFT[1] GR 
XI_465 GPLEFT[1] COUTBAR GR GPLEFT[0] Ga width=WCb 
ENDS * Cb * 

SUBCKT Cc 
+ COUTBAR GPLEFT[0] GPLEFT[1] GR 
XI_465 GPLEFT[1] COUTBAR GR GPLEFT[0] Ga width=WCc 
ENDS * Cc * 

SUBCKT GPbarb 
+ GPLEFTBAR[0] GPLEFTBAR[1] GPOUT[0] GPOUT[1] GPRIGHTBAR[0] 
+ GPRIGHTBAR[1]
 
XI 213 GPLEFTBAR[1] GPOUT[1] GPRIGHTBAR[1] GPLEFTBAR[0] Gbara
 
+ width=WGPbarb 

GPLEFTBAR[0] GPOUT[0] GPRIGHTBAR[0] nor width=WGPbarb 
.ENDS * GPbarb * 

SUBCKT Cbarc 
+ COUT GPLEFTBAR[0] GPLEFTBAR[1] GR 
XI_213 GPLEFTBAR[1] COUT GR GPLEFTBAR[0] Gbara width= WCbarc 
ENDS * Cbarc * 

SUBCKT adder 1 a 
+ A[0] A[1] A[10] A[11] A[12] A[13] A[14] A[15] A[16] A[17] A[18] A[19] A[2] 
+ A[20] A[21] A[22] A[23] A[24] A[25] A[26] A[27] A[28] A[29] A[3] A[30] A[31] 
+ A[4] A[5] A[6] A[7] A[8] A[9] B[0] B[1] B[10] B[11] B[12] B[13] B[14] B[15] 
+ B[16] B[17] B[18] B[19] B[2] B[20] B[21] B[22] B[23] B[24] B[25] B[26] B[27] 
+ B[28] B[29] B[3] B[30] B[31] B[4] B[5] B[6] B[7] B[8] B[9] CIN COUT SUM[0] 
+ SUM[1] SUM[10] SUM[11] SUM[12] SUM[13] SUM[14] SUM[15] SUM[16] 
+ SUM[17] SUM[18] SUM[19] SUM[2] SUM[20] SUM[21] SUM[22] SUM[23] 
+ SUM[24] SUM[25] SUM[26] SUM[27] SUM[28] SUM[29] sum[3] SUM[30] 
+ SUM[31] SUM[4] SUM[5] SUM[6] SUM[7] SUM[8] SUM[9] 
XI 4895 B[3] A[3] N 4191[0] N 4191[1] gpgen 
XI 4898 A[3] B[3] N 4240 xor 
XI 4894 B[5] A[5] N 3610[0] N_3610[1] gpgen 
XI 4892 B[7] A[7] N 4095[0] N 4095[1] gpgen 

http:AD=16.0P
http:AS=16.0P
http:PS=12.0UPD=12.0U
http:AD=16.0P
http:PD=12.0U
http:PS=12.0U
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XI4215 
XI 3885 
XI 3872 
XI 3858 
XI 3870 
XI_3895 
XI_3894 
XI 3906 
XI 4896 
XI 4878 
XI 4877 
XI 4876 
XI 4167 
XI 4176 
XI 4180 
XI 4174 
XI 4181 
XI_4182 
XI 4179 
XI 4875 
XI 4874 
XI 4873 
XI 4881 
XI 4879 
XI 4880 
XI 4897 
XI 3953 
XI 3952 
XI 3951 
XI 3950 
XI_3900 
XI_3898 
XI_3897 
XI 4872 
XI 4871 
XI 4870 
XI 4867 
XI_3960 
XI 4194 
XI 4901 
XI 4900 
XI 4899 
XI 4213 
XI 4212 
XI 4211 

N_3633[0] N_3633[1] N 4098[0] N4098[1] inverter2 
N 4154 N4191[0] N 4191[1] N 4170 Ca 
N_3640[0] N 3640[1] N_3665[0] N_3665[1] N_3641[0] 
N_4199[0] N 4199[1] N_3681[0] N_3681[1] N4095[0] 
N_3637[0] N 3637[1] N_3666[0] N 3666[1] N_3681[0] 
N_3673[0] N_3673[1] N_3696[0] N_3696[1] N_3746[0] 
N_3671[0] N_3671[1] N 4079[0] N 4079[1] N3746[0] 
N_3699[0] N_3699[1] N_3764[0] N_3764[1] N_3696[0] 
B[26] A[26] N4215[0] N4215[1] gpgen 
B[24] A[24] N4213[0] N 4213[1] gpgen 
B[22] A[22] N4211[0] N 4211[1] gpgen 
B[20] A[20] N4209[0] N4209[1] gpgen 
A[30] B[30] N_3979 xor 
A[21] B[21] N4006 xor 
A[17] B[17] N4018 xor 
A[23] B[23] N4000 xor 
A[16] B[16] N4021 xor 
A[15] B[15] N4024 xor 
A[18] B[18] N4015 xor 
B[18] A[18] N4207[0] N4207[1] gpgen 
B[14] A[14] N4205[0] N 4205[1] gpgen 
B[12] A[12] N_4203[0] N_4203[1] gpgen 
B[29] A[29] N_4222[0] N4222[1] gpgen 
B[31] A[31] N_4221[0] N4221[1] gpgen 
B[30] A[30] N4219[0] N4219[1] gpgen 
B[28] A[28] N_4217[0] N4217[1] gpgen 
N_4116 N 4078[0] N 4078[1] N 4186 Ca 
N_4118 N 4080[0] N 4080[1] N4186 Ca 
N 4120 N 4082[0] N 4082[1] N4186 Ca 
N 4122 N 4084[0] N 4084[1] N 4186 Ca 
N 4178 N 4091[0] N 4091[1] N 4148 Cbara 
N 4174 N_3681[0] N 3681[1] N 4148 Cbara 
N 4172 N 4096[0] N 4096[1] N4148 Cbara 
B[10] A[10] N4201[0] N4201[1] gpgen 
B[8] A[8] N4199[0] N4199[1] gpgen 
B[6] A[6] N4197[0] N4197[1] gpgen 
B[0] A[0] N_4188[0] N4188[1] gpgen 
N 4102 N 3768[0] N_3768[1] N 4186 Ca 
A[2] B[2] N 4063 xor 
B[16] A[16] N4247[0] N4247[1] gpgen 
A[11] B[11] N4245 xor 
B[1] A[1] N3606[0] N3606[1] gpgen 
N 4095[0] N 4095[1] N 4096[0] N4096[1] inverter2 
N_3614[0] N_3614[1] N4094[0] N4094[1] inverter2 
N 4092[0] N4092[1] N4093[0] N4093[1] inverter2 

N 3641[1] GPbara 
N 4095[1] GPa 
N_3681[1] GPbara 
N 3746[1] GPb 
N_3746[1] GPa 
N_3696[1] GPbara 



XI 4210 N 3666[0] N 3666[1] N 4091[0] N 4091[1] inverter2 
XI_3935 COUT N 4165[0] N 4165[1] N 4100 Cbara 
XI_3889 N_4090[0] N 4090[1] N_3689[0] N_3689[1] N_3666[0] N_3666[1] GPa 
XI_3869 N_4097[0] N 4097[1] N 3660[0] N 3660[1] N_3633[0] N_3633[1] GPbara 
XI_3949 N 4124 N 3746[0] N 3746[1] N 4186 Ca 
XI_3888 N 4234[0] N 4234[1] N_3687[0] N_3687[1] N_3666[0] N_3666[1] GPa 
XI 3873 N_4089[0] N4089[1] N_3664[0] N_3664[1] N3641[0] N_3641[1] GPbara 
XI 3860 N 4203[0] N4203[1] N_3641[0] N3641[1] N4234[0] N_4234[1] GPa 
XI 3859 N 4201[0] N_4201[1] N_3637[0] N 3637[1] N 3614[0] N_3614[1] GPa 
XI 3905 N_3698[0] N 3698[1] N 3766[0] N 3766[1] N3696[0] N3696[1] GPbara 
XI_3904 N 3697[0] N3697[1] N3768[0] N3768[1] N 3696[0] N3696[1] GPbara 
XI 3903 N_3695[0] N 3695[1] N 3770[0] N 3770[1] N3696[0] N3696[1] GPbara 
XI 3865 N_4211[0] N_4211[1] N 3646[0] N3646[1] N3624[0] N 3624[1] GPa 
XI 4891 B[9] A[9] N 3614[0] N_3614[1] gpgen 
XI 4890 B[11] A[11] N_4234[0] N 4234[1] gpgen 
XI 4889 B[13] A[13] N 3618[0] N_3618[1] gpgen 
XI 4888 B[15] A[15] N4235[0] N_4235[1] gpgen 
XI 4887 B[17] A[17] N 3621[0] N_3621[1] gpgen 
XI 4886 B[19] A[19] N_4236[0] N_4236[1] gpgen 
XI 4885 B[21] A[21] N_3624[0] N_3624[1] gpgen 
XI 4884 B[23] A[23] N_4076[0] N_4076[1] gpgen 
XI 4883 B[25] A[25] N 3628[0] N_3628[1] gpgen 
XI 4882 B[27] A[27] N_4190[0] N_4190[1] gpgen 
XI 3957 N 4108 N 3762[0] N 3762[1] N 4186 Ca 
XI 3956 N 4110 N 3760[0] N 3760[1] N 4186 Ca 
XI 3955 N 4112 N 3758[0] N 3758[1] N 4186 Ca 
XI 3954 N 4114 N 3756[0] N 3756[1] N 4186 Ca 
XI3887 N 4150 N 3660[0] N_3660[1] N_4170 Ca 
XI 4170 A[27] B[27] N_3988 xor 
XI 4175 A[221 B[22] N 4003 xor 
XI 4171 A[26] B[26] N 3991 xor 
XI 4178 A[19] B[19] N_4012 xor 
XI 4172 A[25] B[25] N_3994 xor 
XI 4177 A[20] B[20] N 4009 xor 
XI 4173 A[24] B[24] N_3997 xor 
XI 4869 B[4] A[4] N 4195[0] N 4195[1] gpgen 
XI 4205 N_3624[0] N_3624[1] N 4085[0] N_4085[1] inverter2 
XI 4204 N 4083[0] N 4083[1] N 4084[0] N 4084[1] inverter2 
XI 4203 N 4081[0] N 4081[1] N4082[0] N 4082[1] inverter2 
XI 4241 A[1] B[1] N 4066 xor 
XI 4240 A[0] B[0] N 4069 xor 
XI 4214 N 3610[0] N 3610[1] N 4097[0] N 4097[1] inverter2 
XI 5105 N 4170 N 4240 SUM[3] xor 
XI_3948 N 4126 N_3744[0] N_3744[1] N4186 Ca 
XI_3947 N 4128 N 4088[0] N 4088[1] N 4186 Ca 



XI_3946 N_4130 N_4235[0] N_4235[1] N 4186 Ca 
XI_3909 N_4184 N 3691[0] N_3691[1] N_4148 Cbara 
XI 3902 N 4182 N 3689[0] N_3689[1] N 4148 Cbara 
XI_3907 N_4072[0] N 4072[1] N 3762[0] N 3762[1] N_3696[0] N 3696[1] GPbara 
XI_3901 N 4180 N 3687[0] N 3687[1] N 4148 Cbara 
XI_3942 N_4213[0] N 4213[1] N_3702[0] N_3702[1] N 4076[0] N 4076[1] GPa 
XI 3941 N_4217[0] N_4217[1] N_3653[0] N_3653[1] N_4190[0] N_4190[1] GPa 
XI 4163 N 3621[0] N 3621[1] N 3973[0] N 3973[1] inverter2 
XI 3880 N 4168 N 4099[0] N 4099[1] N 4160 Cbara 
XI 3864 N_4209[0] N 4209[1] N 3647[0] N 3647[1] N4236[0] N4236[1] GPa 
XI 3910 N 4186 N 3693[0] N 3693[1] N 4148 Cbarb 
XI 3908 N_4074[0] N 4074[1] N 3760[0] N 3760[1] N_3696[0] N3696[1] GPbara 
XI 3959 N 4104 N 3766[0] N 3766[1] N 4186 Ca 
XI_3958 N_4106 N_3764[0] N_3764[1] N_4186 Ca 
XI 5104 N 4168 N 4063 SUM[2] xor 
XI 3892 N 4236[0] N4236[1] N4083[0] N4083[1] N3746[0] N3746[1] GPa 
XI 3891 N_3665[0] N 3665[1] N3693[0] N3693[1] N_3666[0] N3666[1] GPa 
XI 3857 N4197[0] N4197[1] N_3632[0] N3632[1] N3610[0] N3610[1] GPa 
XI 4199 N3628[0] N 3628[1] N 4075[0] N 4075[1] inverter2 
XI 4198 N4073[0] N4073[1] N4074[0] N4074[1] inverter2 
XI 4197 N 3678[0] N 3678[1] N 4072[0] N 4072[1] inverter2 
XI 4196 N 3653[0] N 3653[1] N4071[0] N 4071[1] inverter2 
XI 4195 N4222[0] N 4222[1] N 4070[0] N4070[1] inverter2 
XI 3878 N 3649[0] N3649[1] N3678[0] N3678[1] N 3702[0] N3702[1] GPbara 
XI 3875 N_3973[0] N 3973[1] N 3744[0] N3744[1] N4087[0] N4087[1] GPbara 
XI 4251 N_3606[0] N 3606[1] N4099[0] N4099[1] inverter2 
XI3861 N_4205[0] N 4205[1] N3640[0] N3640[1] N 3618[0] N3618[1] GPa 
XI 3862 N 4247[0] N 4247[1] N 4087[0] N 4087[1] N_4235[0] N 4235[1] GPc 
XI 3937 N3702[0] N 3702[1] N_3758[0] N_3758[1] N_3696[0] N 3696[1] GPbara 
XI_3868 N_3632[0] N 3632[1] N 3661[0] N 3661[1] N 3633[0] N_3633[1] GPbara 
XI 4192 A[5] B[5] N 4054 xor 
XI 4190 A[7] B[7] N 4048 xor 
X1_3856 N 4195[0] N 4195[11N 3633[0] N 3633[1] N 4191[0] N 4191[1] GPa 
XI_3884 N_4160 N_4188[0] N_4188[1] CIN Cd 
XI3863 N_4207[0] N 4207[1] N_3643[0] N_3643[1] N 3621[0] N 3621[1] GPa 
XI3945 N_4219[0] N 4219[1] N_3652[0] N_3652[1] N4222[0] N4222[1] GPa 
XI3879 N 4075[0] N 4075[1] N4073[0] N4073[1] N 3702[0] N3702[1] GPbara 
XI 3944 N_3676[0] N_3676[1] N 3697[0] N 3697[1] N_3678[0] N3678[1] GPa 
XI 4209 N 3641[0] N3641[1] N4090[0] N 4090[1] inverter2 
XI 4208 N_3618[0] N_3618[1] N 4089[0] N4089[1] inverter2 
XI 4207 N 4087[0] N 4087[1] N 4088[0] N4088[1] inverter2 
XI 4206 N 3647[0] N 3647[1] N4086[0] N 4086[1] inverter2 
XI 4193 A[4] B[4] N 4057 xor 
XI_4230 N 4128 N 4018 SUM[17] xnor 
XI3871 N_4094[0] N 4094[1] N 4092[0] N 4092[1] N3681[0] N_3681[1] GPbara 
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XI4453 N 4221[0] N 4221[1] N 4165[0] N4165[1] inverter2 
XI 4229 N 4126 N 4015 SLTM[18] xnor 
XI 4228 N_4124 N_4012 SUM[19] xnor 
XI 4227 N 4122 N4009 SUM[20] xnor 
XI 4226 N 4120 N 4006 SUM[21] xnor 
XI 4225 N_4118 N 4003 SUM[22] xnor 
XI 4224 N_4116 N 4000 SUM[23] xnor 
XI 4223 N_4114 N_3997 SUM[24] xnor 
XI 4222 N4112 N_3994 SUM[25] xnor 
XL 4221 N_4110 N_3991 SUM[26] xnor 
XI 4220 N 4108 N_3988 SUM[27] xnor 
XI 4219 N 4106 N_3985 SUM[28] xnor 
XI 4218 N 4104 N_3982 SUM[29] xnor 
XI 5113 N_4186 N_4024 SUM[15] xor 
XI 5112 N 4184 N 4027 SUM[14] xor 
XI_5111 N_4182 N_4030 SUM[13] xor 
XI 4185 A[12] B[12] N 4033 xor 
XI 4187 A[10] B[10] N 4039 xor 
XI 4184 A[13] B[13] N 4030 xor 
XI_4868 B[2] A[2] N 4193[0] N 4193[1] gpgen 
XI 3899 N 4176 N 4093[0] N 4093[1] N 4148 Cbara 
XI_3886 N 4152 N 4098[0] N 4098[1] N 4170 Ca 
XI 3936 N 4190[0] N 4190[1] N 3699[0] N 3699[1] N 3678[0] N 3678[1] GPa 
XI 3893 N_4086[0] N 4086[1] N4081[0] N4081[1] N3746[0] N3746[1] GPa 
XI3877 N4085[0] N 4085[1] N3671[0] N3671[1] N_3647[0] N3647[1] GPbara 
XI 5106 N 4172 N 4045 SUM[8] xor 
XI 4188 A[9] B[9] N 4042 xor 
XI 4189 A[8] B[8] N 4045 xor 
XI_3940 N 4215[0] N 4215[1] N 3649[0] N_3649[1] N3628[0] N_3628[1] GPa 
XI 3939 N 4071[0] N 4071[1] N 3698[0] N_3698[1] N 3678[0] N 3678[1] GPa 
XI 3882 N_3652[0] N 3652[1] N_3677[0] N_3677[1] N 3653[0] N 3653[1] GPbara 
XI_3883 N_4070[0] N 4070[1] N 3676[0] N 3676[1] N 3653[0] N 3653[1] GPbara 
XI 5110 N_4180 N 4033 SUM[12] xor 
XI 5109 N_4178 N 4245 SUM[11] xor 
XI 5108 N 4176 N 4039 SUM[10] xor 
XI_3943 N3677[0] N 3677[1] N 3695[0] N 3695[1] N 3678[0] N_3678[1] GPa 
XI 4217 N 4102 N_3979 SUM[30] xnor 
XI 4216 N_4100 N 3976 sum[31] xnor 
XI 4169 A[28] B[28] N 3985 xor 
XI 4168 A[29] B[29] N 3982 xor 
XI 5107 N_4174 N 4042 SUM[9] xor 
XI 3855 N_4193[0] N 4193[1] N_3607[0] N_3607[1] N_3606[0] N 3606[1] GPa 
XI_3876 N_3646[0] N 3646[1] N 3673[0] N 3673[1] N_3647[0] N3647[1] GPbara 
XI_3961 N_4100 N 3770[0] N3770[1] N_4186 Cb 
XI 4183 A[14] B[14] N 4027 xor 
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XI 4166 A[31] B[31] N_3976 xor 
XI_3896 N 4148 N_3661[0] N_3661[1] N_4170 Cc 
XI4191 A[6] B[6] N_4051 xor 
XI 4249 N_4160 N 4066 SUM[ 1 ] xnor 
XI 5103 CIN N 4069 SUM[0] xor 
XI 4246 N 4154 N 4057 SUM[4] xnor 
XI 4245 N 4152 N 4054 SUM[5] xnor 
X1 4244 N_4150 N 4051 SUM[6] xnor 
XI 4243 N 4148 N 4048 SUM[7] xnor 
XI 3874 N3643[0] N 3643[1] N 3746[0] N3746[1] N4087[0] N4087[1] GPbarb 
XI 4231 N_4130 N_4021 SUM[16] xnor 
XI 4202 N_4079[0] N 4079[1] N 4080[0] N4080[1] inverter2 
XI 4201 N_3696[0] N 3696[1] N 4078[0] N4078[1] inverter2 
XI 4200 N 4076[0] N 4076[1] N4077[0] N 4077[1] inverter2 
XI 3890 N 3664[0] N 3664[1] N 3691[0] N 3691[1] N 3666[0] N 3666[1] GPa 
XI_3881 N 4170 N 3607[0] N 3607[1] N 4160 Cbarc 
XI3938 N 4077[0] N4077[1] N3756[0] N 3756[1] N3696[0] N_3696[1] GPbara 
.ENDS * adderla * 
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APPENDIX D Random Input Generator
 

#include <stdio.h>
 

/* genclk.c generates clock waves for simulations
 
Usuage: genclk freq(Mhz) edgerate(ns) maxsimtime(ns)
 

outputfile_seed_name
 
VCC(volts) deadtime(ns) start(1/0) maxwave( #)
 

*/
 

main (argc, argv)
 
int argc; 
char *argv[]; 
{ 

float tl,tmax,v1,v2,freq,edge,vcc,deadtime,startv,maxwav;
 
char *outfileseed;
 
int i,j,k;
 
FILE *fp;
 
char filename[100];
 

if (argc != 9)
 
{
 

printf(" number of arguments incorrect\n");
 
printf(" Usuage: genclk frequency(Mhz) edgerate(ns)
 

maxsimtime(ns)");
 
printf(" outputfile_seed_name vcc(volts) deadtime(ns)
 

start(1/0)");
 
printf(" NumberOfWaves(n)\n");
 
exit(-1);
 

sscanf(argv[1], "f", &freq);
 
sscanf(argv[2], "%f", &edge);
 
sscanf(argv[3], "%f", &tmax) ;
 
sscanf(argv[5], "%f", &vcc);
 
sscanf(argv[6], "%f", &deadtime);
 
sscanf(arav[7], "%f", &startv);
 
sscanf(argv[8], "%f", &maxwav);
 

outfileseed = argv[4];
 

sprintf(filename,"%s.wav",outfileseed);
 
fp = fopen(filename,"w");
 

for (i=0; i<=maxwav; i++)
 
{
 

if (startv == 1)
 
v2 = vcc;
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1 

else
 
v2 = 0;
 

srand(time(0));
 

if (i < maxwav/2)
 
fprintf(fp,"Va%d a%d 0 pwl OnS %gV ",i,i,v2);
 

else if (i < maxwav)
 
{
 

j=i-maxwav/2;
 
fprintf(fp,"Vb%d b%d 0 pwl OnS %gV ",j,j,v2);
 

1
 

else
 
fprintf(fp,"Vcin cin 0 pwl OnS %gV ",v2);
 

for(t1=deadtime;t1<tmax;t1=t1+(1 /freq)*1000)
 
1
 

vl = (rand()%2) * vcc;
 
if ((v2 != v1) && (tl >= deadtime))
 
{
 

k++;
 
if k==4
( )
 

1
 

fprintf(fp, "\n + ");
 
k=0;
 

1
 

fprintf(fp,"%gnS %gV u, t1, v2) ;
 
fprintf(fp,"%gnS %gV ",t1+edge, v1);
 
v2 = v1;
 

1
 

fprintf(fp, "\n");
 
sleep(1);
 

}
 

fclose(fp);
 
return 0;
 




