AN ABSTRACT OF THE THESIS OF

Ahmed Monssaoui for the degree of \qquad presented on July 9. 1985.

Title: Real Roots Of Polynomials: An Interactive Computer Approache

Abstract approved:

Redacted for Privacy

Michael J. Shaugrinessy

This is an interactive, selfexplanatory computer program on real roots of polynomials with real coefficients. This program called POLYROOT has the double feature of tutoring and problem solving. It allows the user to enter on one line any polynomial with real coefficients. Then, the user can find :

1. characteristics of the polynomial, such as degree, number of terms, leading and constant terms.
2. the number of possible positive and negative real roots using Descartes' Rule of signs.
3. all the possible rational roots using the Rational Root Theorem.
4. all the rational roots, and their maltiplicities using Synthetic Division.
5. approximations for real roots using the Bisection Method and the Newton's Method.
6. approximations for real roots using the graph of the polynomial over any given interval.

This compiled program is witten in BASIC langage and is supported by all IBM compatible machines. POLYROOT contains four units which can be run in any order.

This program will support the study of polynomials in Precalculus and Calculus courses. POLYROOT is also useful for Mathematics and Engineering students solving inear differential equations using methods such as finding the zeros of the characteristic equation or forming partial fractions.

REAL ROOTS OR POLYNONIALS : AN INTREACTIVE COMPUTER APPROACH

by

Ahmed Moussaoui

```
A THESIS
submitted to
Oregon State University
```

```
in partial fulfillment of
the requirements for the
            degree of
            Master of Arts
```

 Completed Jaly 9 , 1985
 Commencement June 1986

Approved:

Redacted for Privacy

Chairman of Department of Mathematics

Redacted for Privacy

Dean of Graduate School
\qquad

ACENOWLEDGEMENTS

I Wish to give thanks to Dr. Michael J. Shanghessy for his guidance during the writing of the computer program and the thesis.

I also vishtothant Gary L. Masser, and William F. Burger for their interest.

Special regards to my briher Abdennacer who helped debug the program in numerous occasions, and tomy brother Mohamed for his support.

I dedicate this thesis to my mother and father.

TABLE OF CONTENTS

I. INTRODUCTION 1
1.1 Computer Based Instruction 1
1.2 Rationale of POLYROOT 2
1.3 Organization 3
II. LITBRATURE REVIBM 5
2.1 Educational computer programs:quality,types 5
2.2 Present market: a summary 6
III. PROCEDURE AND DOCUMENTATION OF POLYROOT. 13
3.1 Suporting hardware and software 13
3.2 Ranning POLYROOT 13
3.3 Features:capabilities, limits,andefficiency 17
IV. OVERVIET OF POLYROOT 21
4.1 Getting familiar with polynomials 21
4.2 Finding rational roots 28
4.3 The bisection method 41
4.4 Newton's method. 41
∇. PURPOSE AND IMPORTANCE OF POLYROOT 57
5.1 Roots of polynomials and their importance 57
5.2 POLYROOT and search for rational roots. 57
5.3 POLYROOT, graphing, and numerical analysis 58
5.4 POLYROOT and its place in the curriculum 60
VI. BIBLIOGRAPHY 66
VII. APPENDIX 69

LIST OF FIGURES

1. Mainmenu 15
2. Prompt following a user's error 16
3. Virtual Y axis 19
4. Sub-menu I. 22
5. Definitions I 23
6. Definitions II 24
7. Test I in process 25
8. End of test 1 26
9. Directions 27
10. Homework I in process 29
11. End of homework 1 30
12. Sub-menu II 31
13. Descartes' rule of signs 32
14. Rational root theorem 33
15. Synthetic division 1 34
16. Synthetic division II 35
17. Synthetic division III 36
18. Synthetic division IV 37
19. Synthetic division V 38
20. Test II in process 39
21. End of test II 40
22. Homework II in progress 42
23. End of homework II 43
24. Sub-mena III 44
25. Explanation I 45
26. Explanation II 46
27. Search for anb-interval 47
28. Search II for a sub-interval 48
29. A step of homework III 49
30. Sub-menu IV 50
31. Explanation III 51
32. Explanation IV 52
33. Search for agess. 54
34. Search II for a guess 55
35. A step of homework IV 56
36. POLYROOT and rational roots 59
37. POLYROOT and graphing I. 61
38. POLYROOT and graphing II 62
39. POLYROOT and Newton's method I 63
40. POLYROOT and Newton's method II 64

REAL ROOTS OF POLYNOMIALS :

AN INTERACTIVE COMPUTER APPROACH

I. INTRODUCTION

1.1 Computer Based Instruction

We have heard much about computers being the technology of the future. Computers, however, are the technology of the present. Onlymisinformation may create iryational fear of the machinery, andmay be responsible forpreventing the effective utilization of computers in oducational activities. Thechallenge is clear : tomake the educational use of computersmaximallybeneficial to all concerned.

Because of the decreasing quantity and quality of available human resources, the institutionalization of the computer-based instruction can :

1. offer a uniformly high quality in education available on large scale.
2. reduce reliance on trained instructors.
3. provide rapid update of instructional material.
4. manage instruction by setting objectives, analyzing results, and reporting.
5. provide hands-on, performance-oriented instruction.
6. permit individualization of instruction.
7. angment student involvement and learning.

A computer is not only machine doing arithmetic rapidly and accurately which is one of its important features, but it can be a valuable tool in teaching mathematics and interacting with the user.

It offers two qualitiesevery student wouldike to have from his or her teacher:

1. patience: The student sets his or her own pace.
2. persistence: The student can go over the same subject many times until assimilated.

One wordof cation:one must be sensitive to potential misuses and abuses of the computer. The ease of access to themachine encouragestrial anderrormethods rather than systematic analysis and may lead to lazy analysis. The computer based learning element should enhance the role of the teacher and should be seen as a complementary component of the learning process offering, not a replacement for the teacher.

1.2 Rationale of POLYROOT

POLYROOT is a program on finding the real rootsof polynomials with real coefficients. This subject matter was selected because from high school through higher education,
polynomials with their special properties and appications are often studied. One of the principal task is to find roots of polynomial equations. This task can be tedious and time consuming. Finding rational roots involves a considerable number of repetitive, simple, but dull operations, especially if the coefficients of the leading and constant terms are large. Thus the computer is far better suited than human for performing this job. In Numerical Analysis, another important area of computer applications, POLYROOT not only gives the real roots quickly and accurately to the precision sought, but also provides the $u s r^{\prime}$ ith graphics that make the learning effective, convincing, and pleasant.

1.3 Organization

In chapter $I I$, 'Literature Review', many programs from the present software market dealing with polynomials are listed and discussed. 'Procedure and Documentation of POLYROOT', chapter III, describes how to runthe program, the hardware required, the programing langage used, and the performance of POLYROOT and its diverse features. In chapter IV, 'Overview of POLYROOT', thefunctions of the different units of POLYROOT are discussed and some examples of how the mathematics works are demonstrated. Also included are some frames from displays of the computer.

The last chapter deals wh the importance of the theory of polynomials and their applications, discussestherationale for finding the roots of polynomials through the use of computers, and describes places in thecurriculum where POLYROOT could be implemented or used. An appendix contains a set of challenging exercises that serve to motivate the interest of the user and to demonstrate the power and versality of POLYROOT.

II. LITERATURE REVIET

2.1 Bducational computer programs :quality, types

Even though possibilities for classoom use of preprogrammed computer software areboundiess, our knowledge base for developping good educational computer programs in Mathematics is stillin its infancy. We rely primarily on our eager desire to get something started and on onr intuitive notions of 'good' teaching. Several criteria enter into determining the quality of a softare product. A computer program shonld be defined by its Validity with respect to its stated specifications,its efficiency relative to the complexity of its task, and its clarity of both its structure and its function. A good software package should protect the usersfrom their own errors as well as protect the softwarefrom user error. Aftergaining operational experience withaprogram, the users often desire additional features. The software must be designed so that new featires and enhancements to existing featurescan be accomplishedwithaminimum of programming.

In the present market we can find different types of programs. The ones for drill and practice help the student rehearse different elements of thinking. Tutorial programs
try to simalate a teacher's live instruction in developing a new skillor concept. Simulation programs model some processors stem tomake the student gain insights into some real life phenomenon. The most motivating programs for students and teachers alike are the ones involving games. They use andio and visual effects to present the game situation and reward success. They incorporate fantasy elements and can time the player's responses and calculate scores.

2.2 Present market: a sumary

To date thereis stilla shortage of good software and more research is desperately needed. However the production is increasing rapidiy becanse computer hardware is becoming more generally availabledueto its lower cost. By the end of the decade, the edicational softraremarket may be as large as 1.5 million dollars (Karen Pipper Mc Graw, 1985). However, among thecurrent softwareprograms already available, very few are interactive and related to the field of polynomials.

MuMath (David Stoutemeyer and Albert Rich,1979) is a powerful symbolic math processing system which performs a host of mathematical operations from simple algebra to complicated differentiation, from high precision arithmetic to taylor series expansions. All processing can be done in
symbolic form so that mathematical fuctions can be manipulated, simplified, integrated, and differentiated algebraically withotrequiring numerical values. The modular construction of the program allows preservation of adequate working space by only loading the parts of Math needed for the operations at hand. In addition to allthe built-in functions, MuMath can also define new functions by using the 'muSimp' languge that MaMath itselfis written in. The documentation is excellent but not forthenovice mathematician. No attempt was made to provide any tutorial in the mathematics used. This program is suported by Microsoftcorporation and rins on Apple II, IIt, IIe, and IBM personnel computers.

An entirely new conceptin personal computing software, the 'TK! Solver' (Software Arts, Inc, 1983), allows one torite a series of equations which describe the problemmach like mainframe financial modeling package does. Like a spreadsheet, it is capable of solving tabular problems. Unifice apreadsheet, it is capable of solving equations 'backards' without restricturing the model. There are eight sheets whehare included in theprogram, each containing different information. The Rule Sheet contains the equations that define the model and the Variable Sheet contains all the variables with their characteristics, suchas units and values. The Onit Sheet
defines conversions between units of measurements and the Global Shect sets limits and required constraints for the program, the solvers, and the user's printer. In addition, the lists of values in the model are includedinthe list Sheetand the fanctions that have been created are contained in the User Function Sheet. The information that is necded to produce a plot of values is featuredin the Plot Shect wifle all the information needed to produce a table of values is contained in the Table Shoot. TK! Solver has certain limitations. Themathematicalmodelmast be algebraice one cannot do matrix operations or differential/integral equations. This program runs on Apple IIe, Apple Macintosh, and IBM Personal Computer.

A good graphing program is Arbplot (Harper and Row and Conduit, 1982). This program is actually a teaching tool designed for use in colleges and adranced High School mathematics courses. It provides visual representation of geometric processes and conceptsin Analytic Geometry, Differential and Integral Calculns. Arbplot is easy to use becanse it is completelymenu driven. The package is broken down into three groups of programs. Thefirst group plots curves from continuous and discontinuous functions defined in several ways. The second illustrates concepts in Calculus such as limits, derivatives, and integration. The third creates and rans 'side shows', an aid to presenting
preplanned sequences of graphic illustrations. Arbplot whichruns on Apple II computers alsofindstherootsofan equation using the Bisection, Newton, and Regula Falsi methods.

Hewlett-Packard Company has arogram called Solntion to $F(X)$ on an Interval. Given a first guess, this program will search for real root of the equation $F(X)=0$, where the user defines the continuous real-valued function $F(X)$ starting at line 5000. Roots arefound by marching along at a given step size until a change of sign is encountered. A modified secantmethodis then used to determine the zero of the function. The user is required to specify the error tolerances for the root and for the function evaluation, as well as the step size and the maximum number of steps and iterations allowed.

Mathematics Series (Spectrum Softiare, 1982) is a set of programs. One of them is numerical analysis which graphs any two variable equations that the user wites using standard Basic arithmetic functions. It finds roots, maxima andminima, and will plot the integral and derivative of the function. This program includes standard data base management routines for editing, and printer reports of both data and results.

The'book of $1 B M$ Software 1984' did not list any

Edition IBM PC Exansian and Software Guidé (1984) there is a programealled 'Roots' whichiteratively secks all the roots imaltaneously. The convergence is cubic (and therefore rapid), and stable, requiring no explicit initial guesses from the user. Accuracy is usualy within two digits of the precision of the BASIC omployed. In addition todisplaying the calculatedsolntions, 'roots' also shows theresults of subtituting those values into the original polynomial. Any order polynomial may be treated. This program is not an interactive one and has no graphing or tutoring.

Another program calculating the roots of polynomials is witten by Hewlett-Packard Company and is called roots of polynomials'. This one nses Barstow's Method. the user must provide the order of the polynomial and its coofficients in order from left to right. The roots of some forms of polynomials cannot be determined by this program. execution time for polynomialsof highordermay be excessive since many iterations may be required.

For spocial cases of polynomials, 'Cubicequation Solver'(Albert E. Hayes, Jr) is a program that solves cabic 32
equations of the form
$\mathbf{X}+\mathbf{A X}+\mathbf{B X}+\mathbf{C}=\mathbf{0}$
It provides both real and imaginary roots.
The 'Quadratic Equation Solver' witten by Hewlett

Packard Co. takes care of all the cases of quadratic equations and provides araphic representation of the function and its roots.

For the producer of educational programs, the availability of electronic spreadshectsallows an eas implementation of algorithms that are recursive, iterative, or suitable for tabular format.

Data Pro Directory of Microcomputer Software(volume 1 1985) lists many electronic spreadsheets. Among them 'Smart Spreadsheet with Graphics' (Innovative Software, Inc.) combines spreadsheet, graphics and information management capabilities. It supports matrix of 999 columns by 999 rows and handles up to 80 characters/cell (values and text), and up to 1920 characters/cell(formulas). Multiple windows can be opened on the screen, allowing up to 32 spreadsheets or portions of larger spreadshet to be viewed at a time. The Smart Spreadsheet's graphics capabilities include 1,2 , and $3-D$ bar charts, 1 ine, point, scatter graphs, and histograms. A slide show featurefor presentations is also provided along with 8087 chip floating-point processor conversion.

The 'Directory of $I B M$ volume 1 number 2' (1985) 1ists a program called Private Tutor 2.0 which could be atery useful tool to the producer. It is a complete instructional system. It includes four programs on a
'Author Program' lets the user write his own lessons on any topic for any age gronp. 'Preparer Program' takes files fronthe Author Programand createscodethat can beread by the Presenter Program. 'Presenter Program' lets one take courses athored with Private Tutor. The last one, 'Reporter Program', lets the teacher keep student records, list students, and print conrse completion certificates.
III. PROCEDURE AND DOCUMENTATION OF POLYROOT
3.1 Suporting Hardvare And Software

POLYROOT runs on all IBM compatible computers, with monochrome, graphic, or color monitors. It requires 64 KB of memory and one double sided disc drive. However the frame relating to numerical analysis cannot be run on the monochrome display becanse of the graphics involved. Since the program is written in BASIC and is compiled, one needs to store BASRON (IBM software) in the same disc of POLYROOT. In case one wants to dumpthe graphic display into the printer, GRAPHICS, an IBM software, should be run. The IBM personal computer was chosen instead of the APPLE machine, because the former offers not only a better Basic Editorbutalsothe Personnel Editor which allows one to write programs with ease, especially large ones. The Basic Compiler, another plus for this machine, lets one rin programs a lot faster. Also, the graphic mode of the IBM PC has a higher resolution (640×200) andallows programers to write anywheren the graphic scref itself. This is very helpful for tutoring.

3.2 Running POLYROOT

This program is selfexplanatoryandneeds noguide
book or any knowledge of the machine on the part of the user in order to be rin. This allows easy access for a large group of people, but one should follow all the directions displayed at the bottom of the screen to run the program properly. Otherwise either information is providedor a sonndofa bellis heardtoremindthe user tobe alert. In case of an error, no major disaster happens, as thecomputer waits for a bettermore. At this point the user shonld read what is on the screen and act accordingly (Fig. 2, Pg. 16).

After booting the system, type POLYROOT and press RETURN key. When you see the display of the title press any key to continue.Themainmennthen appears (Fig. 1, Pg. 15). From this level on, the user is on his own. When entering a polynomial, after typing (the only variable allowed), the cursor jumps antomatically one ine up to let you enter your exponent. If the exponent is a single digit, press 'space bar' to go one line down. If the exponent is two digits, as soon as the second digit is typed the curor will antomatically move down. A space of a certain length is reserved for answers. By holding the shift key and pressing 'PrtSc', the screen can be dumped into the printer while the program is running. To get a hard copy of the curves displayed, one shouldrin GRAPHICS (IBM software) before POLYROOT.

Fig. 1 Main menu

TOO LONG.FFESS 1 TO ENTER SHORTER TERM, OR SFACE BAR TO ENTER CONSTANT TERM|

Fig. 2 Prompt following a user's error
Attempt to enter a term longer than the space allocated. POLYROOT does not accept it and comes up with an appropriate prompt.

3.3 Features: capabilities, limits, and efficiency

This program is the combination of four relatively small units compiled and chained together. This method allows one to load the program one part at atime, and thereforeassures afastering and maximum use of the memory space of themachine. A special effort wasmade in this program to give to the user the ability tomovefrom one part of the program to anotheras quickigas possible without going all the way through anit. This feature makes the program flexible when following any arbitrarify complicated paththroughthematerial, and is especialiy helpful if the user errs. All the different features of the IBM (highlight, blinking, inversing, sound) were used for pedagogical purpose, and to enhance the learning process. Questions, remarks, and prompts willalways appear boredin the bottom of the screen. The usercanthus quickiy learn Where to look for thenext step. for answers, the user is limited by a space ofadetermined lengthand byarangeof specified inputs depending on thenature of thequestion. For example if the input is an integer number, then only + , -, and digits from 0 through 9 are allowed and only in the borassigned. In fact the user does nothave the control of the cursor. This was decided to prevent the user from destroying the screen, to prevent extravagant inputs, to
avoid carelesserrors, and to exclude data values which Will cansethe program to fail. During any hometork session, allinfornation on a polynomial is recordedand orderedon the screen so that one can dumpit into the printer and get a hard copy of the solution:

Even with the screen limitation, polynomials are always displayedas in anymathematical book, with $\boldsymbol{*}, \hat{1}, \mathrm{l}$ symbols unnecessary. In the first unit which deals with the terminology of polynomials, the user literally types his polynomial exactly as he will wite it on a piece of paper. Two lines are reserved for this purpose, one for exponents and the other for cofficients. The program moves the cursor up or down depending on the input and takes care of, at the same time, the spacing and the neatness of the witing prompting directions when necessary. Coefficients are real numbers and allowed five spaces (0 99999, without the sign. Exponents which are positive integers may take two spaces ($0-99$) Computations of rational roots are done with double precision.

When graphing polynomials the user is asked to enter a closed domain interval. The program computesthemaximm and the minimum function values, and antomatically scales the function. Even if the domain interval does not contain zero, the \quad axis in the form of a dotted line is still showninthegraph to let the user determinethe value of

CAN YOU GIVE 2 UALUES OF X AT WHICH P(X) HAS OPPOSITE SIGNS, Y OR N ?
Fig. 3 Virtual y axis
The domain interval does not contain 0
but a virtual y axis is shown.
the polynomial at different points (Fig. 3, Pg. 19). The sketchofthepolynomialinany interval is very helpful for the user to find a subinterval for the Bisection Method and a first guss for the Newton Method. The high resolution mode was used for this part instead of the medium resolution even though the former does not offer the possibility of color, but it does give a more precise graphics, and thus is more approprite for finding the zeros of polynomials graphically.

The graph of any polynomial is computed at 640 points since the wholewidh of the screen is used, and a high precision of the picture is sought. As one can imagine this involves for each point a very large number of operations, that is, naditions and $2 n-1$ multiplications for an n degree polynomial if we save the successive powers of X. To speddupthecomputation andthereforethegraphing, an efficient method, the Horner's Method, was chosen. In this method $P(X)$ is witten most simply as:

Inthis formtherearenadditionsandnmultiplications, a considerable savings. The use of this method jointly with the compilation of the programmakesthegraphing quite fast. All computations in this part are done with a single precision.

IV. OVERVIET OF POLYROOT

The main menu of POLYROOT (Fig. 1,Pg. 15) consists of four independent units that can be rin in any order. All units have a tutorial that explains the mathematical concepts, and $\begin{gathered}\text { homework part where the user enters his own }\end{gathered}$ polynomial to find the roots by applying the method studied. The first two $u n i t s$ have, in addition, a test part where the user can get a better graspof the topicin question. At any step of the test or the homenork, help can be provided by branching to the coresponding tutorial part Without loss of the work achieved at the call.
4.1 Getting familiar with polynomials

This unit has three parts.The first one (Fig.4, Pg. 22) presents two pages of definitions and terminology used throughout the program (Figures 5 and 6). The test (figures 7 and 8) helpsthe user assimilate what has been learned previousiy. $P(X)=-4 \mathrm{X}^{5}+7 / 3 \mathrm{X}^{2}-21+16 \mathrm{X}^{7}+.51 \mathrm{X} \quad$ i given and questions such as degree, number of terms, coefficients of leading and constant terms are asked and answered. In the homework part, the user follows special directions (fig. 9, Pg. 27) to enter any polynomial with real coefficients in any order, then interacts with the

select the tofic ey friessing the numeef in front of your choice
1
Fig. 4 Sub-menu I
Menu of first unit of POLYROOT

DEFINITONS

A FOLYNOMIAL FUNCTION IN x IS AN EXFFESSION OF THE FORM:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a{ }_{1} x+a_{0}
$$

a is called the coefficient of x. in this frogram we restrict our study n
TO REAL COEFFICIENTS ONLY.
$a x^{n}$ is called a term . TERMS Will always ee sefarated from one another
$B Y+D R-S I G N$.
a IS THE CONSTANT TEFM
0

FFESS "SFACE EAR' TO CONTINUE OR "M" TO GD EACK TO THE MENU
1
Fig. 5 Definitions I
First part of definitions

END of this unit.fress 1 to see it again.fress m to go back to the menu. I
Fig. 6 Definitions II
Second part of definitions

WHAT IS THE CONSTANT TEFM?
1

Fig. 7 Test I in progress
Right answers recorded and last question is asked.

```
F(x)=-4 (4 T E ST
IT HAS dEgREE 7 .
IT HAS 5 TERMS.
+ 16 IS THE COEFFICIENT OF THE LEADING TERM .
- 21 IS THE CONSTANT TEFM.
```

END OF THIS UNIT. FRESS 1 TO SEE IT AGAIN.FFESS M TO GO EACK TO THE MENU. I

Fig. 8 End of Test I Records of test and options offered.

```
\begin{tabular}{llllllll}
\(H\) & \(O\) & \(M\) & \(E\) & \(W\) & \(O\) & \(R\) & \(K\)
\end{tabular}
USING YOUR OWN POLYNOMIAL, THIS FART HELFS YOU FIND THE ANSWERS TO THE SAME QUESTIONS ASEED IN THE FRECEDENT TEST.
WHILE ENTEFIING YOUR FOLYNOMIAL REMEMEER THE FOLLOWING DIRECTIONS :
* COEFFICIENTS SHOLLD BE INTEGERS DR DECIMAL NUMEEFS WITH + OR - SIGN.
* COEFFICIENTS CAN DCCUFY AT MOST 5 SFACES AND EXFONENTS AT MOST 2.
* YOUF FOLYNIMIAL CANNOT EXCEED ONE LINE .
* THE COMFUTER WILL LET YOU ENTER YOUR EXFONENTS BY JUMFIMG ONE LINE UF.
* IF YOU WANT TO GO DNE LINE DDWN , FFESS THE SFACE BAR -
* WHEN YOU FINISH ENTERING YOUR FOLYNOMIAL, FRESS RETURN
* WHEN ENTERING YOUF ANSWER, YOU CAN USE 'BACK SFACE' TO COFFEECT IT, OR
* "ESC" TO CANCEL IT ALTOGETHER .
IF YOU FORGET OF MAKE A MISTAKE THE COMFUTER WILL REMIND YOU .
```

FFESS "SPACE EAF' TO CONTINUE OR 'M' TO GO BACK TO THE MENU

Fig. 9 Directions
Directions to type in a polynomial.
computer to find the answers to the questions asked in the test (Figures 10 and 11).
4.2 Finding rational roots

This program (Fig. 12, Pg. 31) states Descartes's rule of signs which works on any polynomial P(X) with real coefficients, written in descending powersof X. In the example, the method is applied to
$P(X)=3 X^{5}-7 X^{4}-2 X^{3}-9 X^{2}+21 X-32 \quad$ and finds the namber of positive and negative zeros (Fig. 13, Pg. 32) All steps of the procedure are shown in a dyamic approach and can be replayed.

Inorder tofindall possiblerational rootsofany polynomial with integer coefficients poLYROOT applies the rational root theorem, for example, to
$P(X)=6 X^{5}+7 X^{3}-12 X^{2}+X+3(F i g .14, P g .33)$
Synthetic division is usedinthis program tocheck if a nomber is a root of a polynomial. This is shown on the polynomial $3 X^{4}+2 X^{3}-9 X^{2}+4 \quad$ using $1,-2,3$, and $-2 / 3$ as trial numbers (Figures 15,16,17,18 and 19).

In the test part (Figures 20 and 21),
$P(X)=16 X^{5}-88 X^{4}+172 X^{3}-146 X^{2}+56 X-8$ is used to ask for the number of positive and negative real roots, the

WHAT IS THE COEFFICIENT OF THE LEADING TERM ?
Fig. 10 Homework I in progress
After typing a polynomial and answering the two first
questions, the user is asked a third question.


```
    IT HAS DEGREE 38.
    IT HAS & TERMS.
    - 226 IS THE COEFFICIENT OF THE LEADING TERM.
    + 1687 IS THE CONSTANT TERM .
```

FRESS 1 to ENTEF ANOTHER FOLYNOMIAL. FRESS M TO GO EACK TO THE MENL.

Fig. 11 End of Homework I
All four questions were asked and answered.

```
FINDIND RATIONAL ROOTS
    IN THIS FART WE WILL EE USING POLYNOMIALS WITH INTEGER COEFFICIENTS ONLY.
    1 DESCARTES'RULE OF SIGNS
    2 RATIONAL ROOT THEOREM
    S SYNTHETIC DIVISION
    4 TEST
    5 HOMEWORK
    G MAIN MENU
    7 OUIT
```

SELECT THE TOFIC EY FRESSING THE NUMBER IN FRONT OF YOUR CHOICE 1

Fig. 12 Sub-menu II
Menu of the second unit of POLYROOT.

> DESCARTESTRULE OF SIGNS

LET $F(X)$ BE A POLYNOMIAL WITH REAL COEFFICIENTS WRITTEN IN DESCENDING FOWERS OF X. COUNT THE NUMBER OF SIGN CHANGES IN THE SIGNS OF THE CDEFFICIENTS.

1. THE NUMBER OF POSITIVE REAL ZEROS IS EQUAL TO THE NUMBER OF SIGN CHANGES IN $F(X)$ OR IS EQUAL TO THAT NUMEER DECFEASED EY AN EVEN INTEGER.
2. the numger of negative real zeros is equal to the number of sign changes IN $F(-x)$ DR is EQUAL TO THAT NUMEER DECREASED EY AN EVEN INTEGER.

EXAMPLE:

```
                            5
    F(x)=3x-7x-2x-9x+21x-32
3 SIGN CHANGES. THUS 3 OR 1 FOSITIVE REAL ZEROS.
    5 4 4 3 2
    F(-X)=-3x-7x+2 X-9 X - 21 X - 32
2 SIGN CHANGES. THUS 2 DR O NEGATIVE REAL. ZEROS.
```

END OF THIS UNIT. FRESS 1 TO SEE IT AGAIN.FRESS M TO GO EACK TO THE MENU.

Fig. 13 Descartes' Rule of Signs
End of tutorial.

```
FATIONAL ROOT THEOFEM
```



```
p IS A FACTOR OF a AND q IS A FACTOR OF a IS A RATIONAL ZERO, THEN
```

TO USE THIS THEOREM, MAKE A LIST OF ALL FACTORS OF a AND DIVIDE THESE
INTEGERS EY THE FACTORS OF a .
n
EXAMFLE: $\quad F(x)=6 x^{5}+7 x^{3}-12 x^{2}+x+3$
$a_{n}=6$, WITH FACTORS $\pm 1, \pm 2, \pm 3, \pm 6 \mid a_{0}=3$, WITH FACTORS $\pm 1, \pm 3$
$\mathrm{P} / \mathrm{q}: \pm 1, \pm 1 / 2, \pm 1 / 3, \pm 1 / 6, \pm 3, \pm 3 / 2$ ARE FOSSIELE RATIONAL ROOTS.
END OF THIS UNIT.FRESS 1 TO SEE IT AGAIN.FRESS M TO GO BACK TO THE MENU. \quad,

Fig. 14 Rational Root Theorem
End of tutorial

SYNTHETICDIVISIDN

SYNTHETIC DIUISION IS A CONDENSED FOFM OF THE DIVISION OF A FOLYNOMIAL EY $X-r$ (r FOSITIVE OR NEGATIVE). IN THIS FFIGGFAM WE USE IT TO CHECK IF THE VALUE r IS A FIODT.

$$
1,-2,3,-2 / 3
$$

EXAMF:LE: $F(X)=$
LET US CHECK IF THE NLMEEFS IN THE BOX AFE FOOTS DF F (X). WE STAFT WITH 1.

Fig. 15 Synthetic Division I Beginning of tutorial.

Fig. 16 Synthetic Division II Rewriting the coefficients of the polynomial.

FRESS " GFACE EAF" TO CONTINUE OF" M " TO GO BACF゙ TO THE MENU

Fig. 18 Synthetic Division IV Showing 1 as a root of $P(X)$.

END DF THIS UNIT. PRESS 1 TO SEE IT AGAIN. PRESS M TO GO EACK TO THE MENU.
Fig. 19 Synthetic Division V End of tutorial.

\square
WHAT ARE THE FOSSIELE FATIONAL ROOTS ?

Fig. 20 Test II in progress
4 questions were answered. 5th question and procedure of its solution displayed.

END OF THIS UNIT.FFESS 1 TO SEE IT AGAIN. FRESS M TO GO EACK TO THE MENL. ।
Fig. 21 End of Test II
All results displayed.
divisors of the constant and the leading terms, the possible rational roots, and finally for the rational roots and their moltiplicities.

The homework part is exactly the same as the test part but here the user is invited to enter his own polynomial (Figures 22 and 23).
4.3 The Bisection method

This program (Fig. 24, Pg. 44) starts by explaining themethod step by step showing graphically how it works (Fig. 25, Pg. 45). The user is then warned about the weakenesses of this method (Fig. 26, Pg. 46). In the homework part, after entering a polynomial, the user is asked to enter a sub-interval containing aceroto start themethod. Incase hefails, the program helpshim find one by graphing the polynomial in any domain of definition (Figures 27 and 28). By pressing space bar, the search continues one more iteration until a zero is found (fige 29, Pg. 49).

4.4 Newton's method

Here again the program (Fig. 30, Pg. 50) presentsthe method (Fig. 31, Pg. 51) and warnings (Fig. 32, Pg. 52). This time, the program asks the user to provide an initial guess of a root, and helpshimfindone incaseof failure

WHAT ARE THE RATIONAL ROOTS ?

Fig. 22 Homework II in progress 4 questions were answered. 5th question and procedure for its solution displayed.

FFESS 1 TO ENTEF ANOTHER FOLYNOMIAL. FRESS M TO GO BACK TO THE MENU.

Fig. 23 End of Homework II
All results displayed.

SELECT THE TOFIC BY FRESSING THE NUMEEF IN FFONT OF YOUR CHDICE 1

Fig. 24 Sub-menu III
Menu of the Bisection Method.

PRESS 'gPace bar' To continue or 'M' to go Back to The menu

END OF THIS UNIT.PRESS 1 TO SEE IT Again. press M TO GO BACK TO THE MENU. -

Fig. 26 Explanation 11
Warnings on the Bisection Method.

$P(X)=+3 x-8 x-30 x+72 x+47$
 1 WILL GRAPH YOUR POLYMOMIAL IF YOU GIUE ME AN INTERUGL LARGE ENOUGH TO INCLUDE ALL THE ZEROS. THIS WIL HEL YOU FIND THE SUBINTERUALS FOR THE BISECTION METHOD WHAT IS THE LOWER BOUNO OF YOUR INTERVAL?

Fig. 27 Search I for a sub-interval

CAN YOU GIVE 2 vallues of X AT MHICH P(X) HAS OPPOSITE SIGNS, Y OR N ?
Fig. 28 Search 11 for a sub-interval

PRESS SP. BAR FOR ONE MORE STEP, 1 TO LOOK FOR OTHER ZEROS, E TO END THIS UNIT

Fig. 30 Sub-menu IV
Menu of Newton's Method.

press 'gpace bar' To CONTINUE OR 'm' TO go BACK TO THE MENU
0

Fig. 31 Explanation III

NEWTON'S	MET H O O
THE NEWTON'S METHOD WHEN IT WORKS IS	
FAST BUT THERE ARE RESTRICTIONS:	
INFLECTION POINT:	
THE METHOD DOES NOT CLOSE IN ON A	
ZERO.	

END OF THIS UNIT.pRESS 1 TO SEE IT Again. PRESS M TO GO BACK TO THE MENU. O
by graphing the polynomial in any interval (figures 33 and 34). At each iteration, an apporimatedzerois given and shown on the graph by drawing the tangent to the cirve (Fig. $35, P_{g}$. 56).

$2 x^{2} 2^{2}$
 Mu ALL THE Zeros. THIS WIIL HELP YOU FIND A GUESS OF A ROOT OF P(X). WHAT IS THE LOWER BOUND OF YOUR INTERUAL?

Fig. 33 search I for a guess
POLYROOT is asking for an interval to graph $P(X)$ after a user failed to provide a guess to start the Newton's Method.

CAN YOU GIUE A value of X Close enough to a root of $P(X)$, Y OR N ?
Fig. 34 Search II for a guess
POLYROOT came up with a graph of $P(X)$ to help find a guess.

Fig. 35 A step of Homework IV
Approximate root given at step 2. Different options offered.

∇. PURPOSE AND IMPORTANCE OF POLYROOT

5.1 Roots of polynomials and their inportance

The problem of finding the real zeros of agiven continuous function arises frequentig in science and
 means of the fundamental algebraic operations of addition,
 classical subject of Mathematics, and are anong the first examples of continuous functions encountered by students. In the study of polynomials the challenge is to find their roots. Finding the zeros of polynomials can be very helpfil to the student involved in the solution of mathematical problems in the physical, chemical, engineering, and related sciences. Among their most common use, one can ift contributionstothesolntionof differential equations, using methods such as the characteristicequation, or partial fractions.
5.2 POLYROOT and search for rational roots

Finding therational rootsofa polynomial can bea very time consuming process. Generally many operations are involved in finding all divisorsof the cofficientsof constant and leading terms, especially if these two numers
are large. Then, dopending on luck, the trial of quotients of these divisors will be another more or less lengthy, and always boring task. For example, a polynomial such as

$$
20 x^{4}-24 x^{3}-221 x^{2}+360 x-63=0
$$

has 72 possiblerational roots obtained by dividing each factor of the constant term 63 by each factor of 20 , the coefficient of the leading term. Since this task is sequential and repetitive, it is suited for a computer which if well programmedcan savetime anderrors (figure 36, Pg. 59).
5.3 POLYROOT, graphing, and numerical analysis

This program can graph the same polynomial repeatedy over different intervals in just seconds, task imposible to do in class on the blackbard. For the Bisection Method and the Newton's Method, a subinterval and a first guess of a root are respectively necessary to start the process. Usually one has to evaluate the polynomial at different points and study its sign. No matter how small the chosen stepsize axis, one always runstherisk of missing some zeros. There may be two zeros (or indeed any positive even number of zeros) in a missedentirely. If there are an oddnumber oferosina subinterval then the bisection process will isolate only


```
#'S OF POSSIBLE FOSITIVE REAL ROOT (S): 3,1.
#'S OF FOSSIbLE NEGATIVE REAL ROOT(S): 1.
DIVISIORS OF 63 : 土1, \pm3, \pm7,\pm9, \pm21,\pm63.
DIVIGORS OF 20:\pm1,\pm2,\pm4,\pm5,\pm10,\pm20.
FOSSIBLE R. RODTS: }\pm1,\pm1/2,\pm1/4,\pm1/5,\pm1/10, \pm1/20, \pm3, \pm3/2, \pm3/4, \pm3/5, 土3/10, \pm3/20,
\pm7, \pm7/2, \pm7/4, \pm7/5, \pm7/10, \pm7/20, \pm9, \pm9/2, \pm9/4, \pm9/5, \pm9/10, \pm9/20, \pm21, \pm21/2, \pm21/4,
\pm21/5,\pm21/10,\pm21/20, \pm6.3,\pm6.3/2,\pm6.3/4,\pm6.3/5,\pm6.3/10,\pm6.3/20
RATIONAL ROOTS: 1/5,3,3/2,-7/2
```

FRESS 1 TO ENTEF ANOTHER FQLYNOMIAL. FRESS M TO GO BACK TO THE MENU. 1

Fig. 36 POLYROOT and rational roots Performance of POLYROOT in finding rational roots.
one of them. Because of the graphing features of this program, one does not have to be especially knowedgeable to avoid these two problems. The user asks the computer to graph his polynomial in any domain of definition and he has the picture before his eyes instantiy. By reducing the lengthofan interval, the usercanack offoraglobal view and find where alltheroots lie (Figure 3 7, Pg. 61), or zoomin onafinedetail and findanapproximaterootat a desired precision (figure 38, Pg. 62). In both casesthe antomatic scaling willalways provide the value of the polynomial at all points.

In numerical analysis the power and the ease with wich a computer performs is obvions to everyone. POLYROOT does it even better by showing a visul illustration of the search of real roots, making the whole process aynamic one. A problem such as \# 12, page 71, which needs some insight for its explanation can be easily solved with POLYROOT (Figure 39,40).
5.4 POLYROOT and its place in the curriculum

This program willfit in Precalculus, Calculus, and Engineering courses. Thematerial dealing with rational roots and the search for real zeros by the Bisection Methodis within the graspof anyone with reasonable knowledge of College Algebra. The part using Newton's

CAN YOU GIUE a valle of X Close enough to a root of $P(X)$, Y OR N ?
Fig. 37 pOLYROOT and graphing I
Backing off for a global view of the graph of $P(X)$.

CAN YOU GIVE A UALUE OF X CLOSE ENOUGH TO A ROOT OF P (X), Y OR N ? 0

CAN YOU GIVE A VALUE OF X CLISE ENOUGH TO A ROOT OF P(X), Y OR N ?
Fig. 39 POLYROOT and Newton's Method
From this graph one can see that the tangent to the curve at ($-.02, P(-.02)$) will cross the x axis on the right of 4 .

press sp.bar for one more step, 1 TO LOOK for other Zeros, e for else

By taking $\mathbf{- 0 . 0 2}$ as a first guess pOLYROOT finds the extreme right root 4 .

Method requires the understanding of the conceptof the derivative of a continuousfunction, and the use of the 'point slope formala' of a line.
VI. BIBLIOGRAPHY

Addison-Mesley Book of Apple Softrare 1985(Addison-Wesley Publishing Company, Inc., 1985)

Atkinson, Kendall E. An_Introduction to Nomerical_Anglysis (John Wiley and Sons,Inc.,1978).52-56, 78-85.

Crothamel, David A. Graphing functions_on the Microcompater Video Displaye Computing Teacher 7 (Dec.1979-Jan.1980) 17-20.

Data Pro Directory Of Microcomputer Software, Volnme (Data Pro Research Corporation, 1984)
 Equations (John Wiley and Sons,Inc.,1939). 6-29,76-80 95-101.

Dobbs, David E. and Hanks, Robert A Modern Congseonthe Thoory Of Equations (Polygonal Pubiishing House, 1980). 113-120, 141-144, 156-165, 171-179

Dorn, Wiliam S. Numerical_Methods With_Fortran_4th_Case Studies (John Wiley and Sons, Inc., 1972). 3-16, 25-35. Hamming, Richard W. Introdnction_To_Numerical__Anglysis
(Mc Graw-Hi11,Inc.,1971). 33-45, 49-51, 82-99.
 National Council Of Teachers Of Mathematics, 1984 Yearbook.
 Unit: Graphing Strait_Lines . Mathematics Teacher 76 (Mar.1983): 181-186.

Hewlett-Packard. Hewlet-Packard Series 80 Softrare Catalog, (Reston Publishing Company, Inc., 1982).
 Assistance. Mathematics Teacher 74 (0ct.1981).516-519 Lappan, Glenda, and Tinter, M.J.A_Unit On_S Using__A_Computer_In_Mathematics_Class. Mathematics Teacher 75 (Feb.1982):118-22.

Norifs, Donald 0. Some Thoughts On Using_Microcompnters_To Teach _Calcings. Journal Of Computers In Mathematics And Science Teaching 2 (Spring 1983): 28-30.
$0^{\prime} N e i l$, Jr. Harold F. Computer Based-Instraction A State Of The Art Agsesment (Academic Press, Inc., 1981).
 Computers (Prentice-Hal1 Inc.,1983). 69-78, 107-112, 152-160, 204-205.

Piper McGraw, Karen. Triting_Edncationagl_Software: what gooes_in_before_the_1abel_goes_on. In 1985 Programer's Market. (Mriter's Digest Books, 1985).

Stanton, Jeffrey. and Wells, Robert P. The Addison Wesiey Boóㅡ﹎́f_Apple_Softrare 1985 (Addison-Tesley Publishing Company, Inc., 1985) .

Waliace, W.H. What's_In_Print_The_Snbiect_G프으르́_To Microcompnter Magazines (Tab Books Inc.,1984).
 In Mathematical Methods For Digital Computers (John Wiley,1961)

APPENDIX

VII. APPENDIX

One of the most usefulsills any studentofmathematics can acquire is that of constructing his own meaningful problems. This offortwill gain him insight into the mathematical structure and promote discovering of unexpected phenomenon. The following is a set of problems one might try to solve, and use to inspire nem ideas.

1. Find an integral polynomial whose roots coincide with the roots of the rational polynomial :

$$
P(x)=(3 / 2) x^{3}+(15 / 8) x^{2}-(21 / 4) x+(3 / 4) .
$$

2. The 'Weak Version Of Eisenstein's Criterion'states that an integral polynomial :

$$
P(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots .+a_{1} x_{0}
$$

of degreen $\quad=2$ has no rational roots if there exists a positive prime integer with the following three properties :p does not divide the coefficient of the leading term but divides all others, and the square of p does not divide the constant term.
Show that $X^{8}+294 x^{6}+7 X^{4}-98 X^{4}+28$ has no rational
roots.
3. Vhich method(s) should you use to find the cube root of 2, the fourth root of 3?. Find these values.
4. Show that $\mathrm{I}-1=0$ has just two rational roots when n is even and only one rational root when n is odd.
5. Show that the square root of 2 is not a rational number. And, more generally, show that, if a is an integer, the squareot of a is either an integer or it is not rational.
6. A rectangular bor is 15 inches $10 n g, 10$ inches wide, and 8 inches high. Each of the three dimensions is to be increased by the same amount X so as increase the volune of the box by 300 cubic inches. Find X to an accuracy of . 00001 .
7. What rate of interest is implied in an offer to sella computer for 2,700 dollars cash, or in annal installmentseach of 1000 dollars payable 1, 2 , and 3 years from date?
8. Find an equation whose roots are those of

$$
x^{4}+x^{3}-3 x^{2}-x-4=0 \quad \text { diminished by } 2 .
$$

9. Find an equation whose roots are those of

$$
x^{3}+x^{2}-3 x+9+0 \quad \text { increased by } 3 .
$$

10. Does there exists a real number that exceeds its cube by 1 ?
11. Find three consecutive integers whose product is 720 .
12. The equation $X^{4}-7 X^{3}+12 X^{2}+4 X-16=0 \quad$ has
 with a first guess $X_{0}=\mathbf{- 0 . 0 2}$, we rech another root at +4. Explain.
13. Attempt to apply the Newton's Method to the equation:
$x^{5}+8 x^{4}+17 x^{3}-8 x^{2}-14 x+20=0$. What happens?
14. Applyalithe methods studied in POLYROOT to the following polynomial:
$X^{7}-28 X^{6}+322 X^{5}-1960 X^{4}+6769 X^{3}-13132 X^{2}+13068 X-5040$ and compare them.
15. Consider the cubic equation

$$
P(X)=x^{3}+9 x^{2}-x-105
$$

If X_{1}, X_{2}, and X_{3} are roots of $P(X)=0$, show that

$$
\begin{aligned}
9 & =-\left(x_{1}+x_{2}+x_{3}\right) \\
-1 & =x_{1} \mathbf{x}_{2}+\mathbf{x}_{1} \mathbf{x}_{3}+\mathbf{x}_{2} \mathbf{x}_{3} \\
-105 & =-\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3}
\end{aligned}
$$

In general, if $P(X)=x^{3}+a_{2} X^{2}+a_{1} X+a_{0}$ show that

$$
\begin{aligned}
& \mathbf{a}_{2}=-\left(X_{1}+X_{2}+X_{3}\right) \\
& \mathbf{a}_{1}=\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{x}_{1} \mathbf{x}_{3}+\mathbf{x}_{2} \mathbf{x}_{3} \\
& \mathbf{a}_{0}=-\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3}
\end{aligned}
$$

 the sum of their productstwo by two is - $\mathbf{3} \mathbf{7}$. Find the
numbers.
17. The following familiar puzzle problem leads to the solution of a quartic equation.

Two 1 adders, one 20-ft long and the other 30-ft long, lean against buildings across an alley, as shownelow. If the point at which the ladders cross is 8-ftabove the ground, how wide is the alley?

Hint: Gruenberger and Jeffrey, in 'Problems For Computer Solution' (New York: Wiley, 1964) show that this problem can be formulated to require solution of the following equation:

$$
Y^{4}-16 Y^{3}+500 Y^{2}-8000 Y+32,000=0
$$

Then $X=\sqrt{\left(400-Y^{2}\right)}$.

