

AN ABSTRACT OF THE THESIS OF

Vasumathi Lakshmanan for the degree of Master of Science in Computer Science

presented on September 21, 2006.

Title: Interactive 3D Line Integral Convolution on the GPU.

Abstract approved:

__

Mike Bailey

The Line Integral Convolution (LIC) is a mainstay of flow visualization. It is,

however, computationally intensive, which limits its interactivity. Also, when used to

view three-dimensional (3D) vector fields, the resulting images are dense and

cluttered, making it difficult to perceive the flow on the interior parts of the field.

This thesis describes research to make the 3D LIC more interactive by implementing

it on the Graphics Processor Unit (GPU). It also includes methods to improve the

clarity of the 3D LIC images. The volume dataset and a 3D noise volume are placed

in GPU memory as 3D textures. The GPU is then used to perform the LIC

computations and display the resulting volume. This allows the user to dynamically

adjust LIC parameters and derive more insight into the 3D flow field. Various

techniques such as introduction of sparsity and the use of stereographics help to de-

clutter the scene. Resulting images and timing benchmarks are included.

©Copyright by Vasumathi Lakshmanan

September 21, 2006

All Rights Reserved

Interactive 3D Line Integral Convolution on the GPU

by

Vasumathi Lakshmanan

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 21, 2006

Commencement June 2007

Master of Science thesis of Vasumathi Lakshmanan presented on September 21,

2006.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Vasumathi Lakshmanan, Author

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Mike Bailey for his guidance,

encouragement and motivation throughout my graduate study and for providing me

the opportunity to work in my area of interest. I thank Dr. Ron Metoyer and

Dr. Eugene Zhang, whose courses have helped me in gaining considerable insight in

my field of study, for consenting to be on my committee. I thank Dr. John Dilles for

accepting to be on my committee.

I would like to thank my fellow students in the Visualization and Graphics group for

their valuable suggestions and comments and especially my friend Avneet Sandhu for

her support. I extend my gratitude to the EECS department for providing financial

assistance through the course of my study.

I thank my parents for their love and constant support. I would like to thank my

brother and sister-in-law who have guided and helped me throughout my course of

study here at OSU. My special thanks to all my friends here and back in India for

their support. I am grateful to have had the grace of the Almighty which enabled me

to do everything.

TABLE OF CONTENTS

Page

1. INTRODUCTION .. 1

2. PREVIOUS WORK.. 6

3. 2D LINE INTEGRAL CONVOLUTION (LIC) .. 11

3.1 Basics of the OpenGL Shading Language (GLSL) .. 11

3.2 The LIC algorithm .. 13

3.3 LIC Implementation on the GPU.. 15

3.3.1 Vertex Shader... 15

3.3.2 Fragment Shader .. 16

3.3.3 User Interface and Parameters ... 18

3.4 Noise ... 18

3.4.1 Positional Noise ... 18

3.5 Time Varying Fields ... 20

4. 3D LINE INTEGRAL CONVOLUTION .. 22

4.1 Volume Rendering.. 22

4.1.1 3D Noise generation .. 22

4.1.2 Volume rendering approach... 22

4.2 Mapping a 3D Vector field to a Texture Image.. 24

4.3 3D Textures... 24

4.4 Implementation on the GPU ... 27

4.4.1 Vertex Shader... 27

4.4.2 Fragment Shader .. 27

TABLE OF CONTENTS (Continued)

Page

4.4.3 User Interface and Parameters ... 30

4.5 Tests with a vector field.. 30

4.6 Images... 31

5. IMPROVING THE CLARITY OF 3D LIC .. 32

5.1 Viewing the vector field globally ... 32

5.1.1 Transparency.. 33

5.1.2 Encoding magnitude with color ... 35

5.1.3 Highlighting areas with larger magnitude.. 37

5.1.4 Sparsity .. 38

5.2 Viewing the vector field locally.. 51

5.2.1 Cutting planes .. 51

5.2.2 Regions of interest with 3D patterns.. 53

5.3 Improving Depth Perception... 55

5.3.1 Intensity Depth cueing ... 56

5.3.2 Stereographics.. 57

5.3.3 Lighting.. 60

6. RESULTS ... 62

6.1 Timing Benchmarks.. 63

6.1.1 If Constructs... 63

6.1.2 Resolution and Length ... 65

6.1.3 Different distributions.. 66

6.1.4 Effect of size on the screen .. 67

6.2 Vector Fields Used.. 68

TABLE OF CONTENTS (Continued)

Page

6.3 Zoom In... 70

6.4 Nearest Vs. Linear Filtering.. 71

6.5 Limitations of 3D LIC and how they are overcome ... 72

7. CONCLUSIONS AND FUTURE WORK.. 74

REFERENCES ... 76

LIST OF FIGURES

Figure Page

1.1 A 2D circular vector field .. 1

1.2 A 2D circular field mapped on to a texture ... 3

1.3 A 3D field mapped using LIC .. 4

1.4 A clearer 3D LIC image... 5

3.1 Graphics pipeline... 12

3.2 A single step of the LIC process... 15

3.3 Vertex shader performing 2D LIC ... 16

3.4 Fragment shader performing 2D LIC.. 17

3.5 Positional noise.. 19

3.6 2D noise ... 19

3.7 2D LIC - A circular vector field... 19

3.8 Time varying vector field ... 21

4.1 Volume Rendering.. 24

4.2 A simplified version of the vertex shader performing 3D LIC......................... 27

4.3 A simplified version of the fragment shader performing 3D LIC 29

4.4 Different lengths of LIC ... 31

5.1 Transparency .. 35

5.2 Encoding magnitude with color ... 37

5.3 Highlighting larger magnitude areas .. 38

5.4 Checkerboard distribution ... 40

5.5 Poisson disk distribution-illustration... 42

5.6 Poisson disk distribution.. 43

5.7 Jittering .. 45

5.8 Hammersley points... 47

5.9 Halton points.. 49

5.10 Results of using different distributions .. 50

LIST OF FIGURES (Continued)

Figure Page

5.11 Exploring the vector field interactively by moving the clip planes................. 53

5.12 Exploring the vector field using different patterns ... 55

5.13 Fog .. 57

5.14 Using stereo graphics to de-clutter the field .. 59

5.15 Lighting ... 61

6.1 User Interface ... 63

6.2 Performance of the GPU with and without If constructs................................ 64

6.3 Effect of resolution and length on performance ... 65

6.4 Performance of the distributions .. 67

6.5 Effect of size on the screen.. 68

6.6 Different vector fields .. 69

6.7 Solenoidal field ... 69

6.8 Sparsity with different distributions ... 70

6.9 A zoomed in view .. 71

6.10 Effects of different types of filtering.. 72

6.11 Unnecessary details in the 3D LIC image .. 73

7.1 GPU Speed Trends.. 75

LIST OF TABLES

Table Page

3.1 GLSL Qualifiers .. 13

6.1 Effect of If constructs .. 64

INTERACTIVE 3D LINE INTEGRAL CONVOLUTION ON THE GPU

1. INTRODUCTION

Vector Field Visualization has been an active area of research in scientific

visualization. Vector fields are differentiated from scalar fields in that they have both

magnitude and directional information. Vector field visualization is needed to

visualize and hence to better understand flow patterns. It has wide spread applications

in areas including scientific visualization, computational fluid dynamics and even

artistic domains. Figure 1.1 shows a two-dimensional circular flow field. In this

simple visualization, the directional information is encoded using the arrow heads.

Scalar information like the magnitude of the field is encoded with color as well as

with the length of the arrows. Thus areas in the center part of the field have low

magnitude. The magnitude of the field increases with distance from the center of the

field.

Figure 1.1: A 2D circular vector field

 A major application area of vector field visualization is in computational fluid

dynamics. Fluid flow plays an important role in several fields of study such as in

determining the air flow around the wings of an aircraft, representing the interaction

 2

of molecules, studying the flow of fluids through pipes, depicting weather patterns,

traffic flow, portraying the blood flow through arteries etc. In these cases the vector

field is the velocity field of the element under study. Visualization of these vector

fields, which have directional information, is crucial for understanding and analyzing

the flow characteristics, such as convergence and divergence, curl and vorticity.

Techniques for vector field visualization can be grouped into three categories: (1)

icon based-techniques (an example is shown in Figure 1.1), (2) particle tracing-based

techniques, and (3) texture-based techniques. The first two methods tend to be

dependent on the initial placement of icons and seed points respectively. They are

likely to miss important details in the field as well. Icon-based techniques also clutter

the screen.

At present, texture-based methods are a popular means of vector field visualization.

These methods give dense and detailed stream-lined images. Streamlines are curves

that are everywhere tangential to the flow. The dense representation of texture-based

methods has the advantage that important features of the vector field can be better

maintained. One of the well-known texture-based methods used for visualizing vector

fields is Line Integral Convolution (LIC) [1]. It takes an input texture image and a

vector field and filters the input texture along local streamlines defined by the vector

field to produce an output image. The output image clearly shows almost all aspects

of a vector field like sinks, sources, vortices and discontinuities. Thus, LIC is not

dependent on the placement of streamlines or seed points. However we have to note

that since LIC is dependant on the sampling rate, features can still be missed. Figure

1.2 shows the LIC representation of the circular vector field shown in Figure 1.1.

 3

Figure 1.2: A 2D circular field mapped on to a texture

LIC has been widely used for many purposes including the following:

• Image processing to produce painterly effects of images by using the edge field of

the image as the underlying vector field [1]

• Motion blurring using variable length LIC [1]

• Wind velocity visualization [1]

• Interactive flow visualization for an improved medical diagnosis of blood vessel

malformations [2]

• 3D combustion simulation [3]

• 3D tornado simulation [3]

• Radiation therapy treatment planning [5] etc.

Line integral convolution enables us to visualize large and detailed vector fields in a

reasonable display area. It selectively blurs a reference image as a function of the

vector field to be drawn. LIC is widely used for viewing 2D vector fields. However,

when LIC is used to visualize 3D vector fields it becomes difficult to view the interior

of the vector field i.e. the vector values in the interior of the volume domain. The

field is cluttered and dense. As a result of this, the inner part of the field remains

hidden. Also LIC is computationally expensive in 3D. Hence the use of LIC for 3D

 4

vector field visualization has always been limited [6]. Figure 1.3 shows a 3D vector

field mapped using LIC. The vector field that is mapped describes a flow around a

corner. The dense nature of the texture occludes most of the details of the vector field

inside the cube.

Figure 1.3: A 3D field mapped using LIC

This thesis focuses on ways to enhance the clarity of the images of 3D flow using 3D

LIC. The implementation of 3D LIC is done on the GPU. We have implemented

various techniques that would allow the user to explore different parts of the field

interactively. Several methods are employed to introduce sparsity into the field so that

the user can peer through the field and gain a good impression of the inner details of

the field that are otherwise hidden. Figure 1.4 shows a 3D LIC image that we have

obtained as a result of applying our techniques. We have used the same field that is

mapped in Figure 1.3. The vector field is more discernible now, especially when it

can be interactively manipulated on the screen.

 5

Figure 1.4: A clearer 3D LIC image

We use OpenGL shaders to implement 3D LIC. This greatly enhances the speed of

rendering by removing computational burden from the CPU and by delegating the

workload to the Graphics Processor Unit (GPU). Our user interface allows the user to

explore the 3D vector field at interactive rates. The implementation is done in C++

with OpenGL as the API. GPU programming is done using the OpenGL Shading

Language.

This thesis discusses the various features of our implementation and is organized into

several chapters. The second chapter describes the related work done by earlier

authors on vector field visualization, texture based methods in vector field

visualization and in particular Line Integral Convolution. The third chapter provides a

detailed description of the LIC algorithm in 2D and its implementation details on the

GPU. The fourth chapter discusses our implementation of the LIC algorithm in 3D. It

also provides an insight into our volume rendering approach. The next chapter

presents the techniques that we have used to improve the clarity of 3D LIC images

and thus overcome some of the limitations of 3D LIC. The sixth chapter dwells on the

results of our implementations and observations. The final chapter concludes by

providing some avenues for future enhancements.

 6

2. PREVIOUS WORK

Some of the early methods to visualize vector fields include icon-based methods,

particle traces and streamlines. Icon-based methods make use of 3D objects like

arrows that are aligned with the vector field at a point [31]. The color of the object is

used to encode scalar information like the magnitude of the vector field at that point.

However these methods tend to clutter the screen and hence they are mostly used to

visualize small vector fields (i.e. fields with less density).

Particle methods trace out the path of a weightless particle according to the vector

field [31]. Suppose the initial position of the particle, i.e. the seed point, is given by

(x(0),y(0),z(0)), then the aim is to find out how the path (x(t),y(t),z(t)) evolves over

time. This method is also known as particle advection. The positions of the particles

along a path are animated to give a sense of flow through the field.

Streamlines are lines that are everywhere tangential to the flow [18]. They can be

rendered as lines or as thin flat ribbons or as tubes. Streamlines are good for showing

the flow direction. However, particle traces and streamlines have the disadvantage

that they may miss some eddies or currents in the vector field. They are heavily

dependent on the placement of seed points or streamlines respectively.

Texture-based techniques are currently gaining popularity because they consider all

the information provided by the data and give dense and detailed representations of

the vector field. They are independent of the initial placement of seed points and they

capture all details of the field as well.

One of the prominent methods of flow visualization is spot noise texture synthesis

[7]. Spot noise texture is generated as weighted and randomly positioned spots.

Variations of spot size, width, shape etc. lead to local control of the texture. A strong

 7

relationship exists between the features of the spot and the features of the texture.

When used for vector field visualization, the spots are elliptically stretched along a

line tangential to the vector field direction. However, if the ellipse major axis exceeds

the local length scale of the vector field, the spot noise will inaccurately represent the

vector field.

Image Based Flow Visualization (IBFV) [8] is one of the well-known texture-based

methods for vector field visualization. This method distorts a mesh at each time-step

according to the flow at that instance of time. Then it maps the image obtained from

the previous iteration to the distorted mesh. The distorted image is then blended with

a new noise image and this becomes the image for the current iteration. Blending

helps to keep the distortion within the viewport. This method gives smooth

animations of pathlines and it handles unsteady fields as well.

One of the popular texture-based techniques is Line Integral Convolution (LIC). The

LIC algorithm, proposed by Brian Cabral and Leith (Casey) Leedom [1], is a

modification of the DDA convolution algorithm. In the DDA convolution algorithm,

a DDA generated filter kernel is defined as a line tangential to the vector field at a

given point and extending for a fixed distance L in the positive and the negative

direction. The pixels in the input texture are then filtered along this kernel to produce

the output image. The main defect of this algorithm is that the output is heavily

dependent on the shape of the filter. Also, if the length of the kernel is larger than the

local radius of curvature at a point, then minute variations in the field are missed. The

LIC algorithm described in [1] defines the filter kernel to be the local streamline at a

point. Hence small details in the vector field are not missed by the LIC algorithm. We

should note here that the same modification that was applied to the DDA algorithm

can be applied to the spot noise algorithm that was discussed earlier. But the

algorithm to stretch the spots along the local streamline direction is more complex

and expensive than LIC.

 8

However, the LIC algorithm is quite expensive, since to calculate the intensity at each

point, all points on the streamline that passes through it are accessed. A method for

increasing the speed of LIC by reducing the number of streamline computations is

described in [4]. The method is based on the fact that adjacent pixels on the same

streamline need to access almost the same pixels to perform integration.

Recalculation of the streamline is avoided. This method makes LIC resolution

independent and provides smooth texture animations.

Also, when LIC is applied to 3D vector fields, the parts of the vector field at the

farther end of the user are obscured by the parts of the vector field near the user. This

is due to the dense nature of the texture based methods. To overcome such

limitations, many solutions have been proposed. The use of transfer functions and

clipping mechanisms for the interactive exploration of 3D LIC images is discussed in

[2]. This method defines a region of interest (ROI) to explore a part of the field

alone. However once it is specified the ROI is fixed and cannot be changed. Two

approaches to animation are also used. The first one uses a precomputed 3D LIC

texture that is animated by color look-up tables. The second approach uses time

volumes to interactively clip the 3D LIC volume.

The use of dye advection to highlight local features in the flow is explained in [3].

LIC is used for the global vector field view. When dye is introduced at a point, LIC

smears the dye across the local streamline at the point. To get a sense of flow

direction, only points in the downstream direction that correspond to cells whose

negative streamlines pass through the dyed areas are colored. So to easily locate such

cells, the method makes use of a flow back directed graph. A ‘bivariate’ volume

rendering technique is used to display the propagation of the dye through the volume.

Both of the methods described above provide means of visualizing the local features

of the flow. Yet, the streamlines in the 3D flow are still cluttered together and

obstruct each other. Depth information is also obscure.

 9

Several ways to indicate the presence of depth discontinuities in 3D LIC images are

proposed in [6]. It uses a sparse input noise texture to reduce cluttering of streamlines.

It also uses color coding of streamlines and visibility impeding halos for the

streamlines. To display the halos, two noise textures are used; one with larger scan

converted spots. When LIC is performed on both the textures and when the resulting

images are combined, each streamline in the second texture becomes the halo of the

corresponding streamline in the first texture. The halos are rendered in the following

manner. The number of times a ray has already hit a halo is kept track of. The opacity

of a halo is then reduced as a function of the number of times the ray has encountered

a halo. Thus halos of streamlines that are closer to the user are brighter. This method

is not very efficient in cases where the streamlines are short and lack continuity

information. The use of LIC to illustrate the surface shape is described in [5]. The

vector field (i.e. the tensor field) in this case is taken to be the principal direction. In

this method, a sparse input texture is used. When the sparse texture is advected

strokes are obtained. The stroke width, length, color etc. are used to encode some

scalar information. In [17], a multi-pass approach is introduced to visualize the

anisotropy in symmetric 2D and 3D tensor fields. The method is similar to LIC

except that instead of using noise texture values along the streamline, noise texture

values in the vicinity of the streamlines are also used [17].

Several methods employ the capabilities of the underlying hardware to speed up the

visualization of 3D vector fields. A means of applying lighting to the streamlines

using the texture mapping capabilities of the underlying graphics hardware is

provided in [16]. Reflection on streamlines increases the perception of depth.

Transparency is used as a means of differentiating between the forward and the

backward direction of the streamlines. The placement of streamlines in regions of

interest is guided by statistical methods. A method is discussed in [10] for texture

advection using the graphics hardware capabilities. It makes use of texture maps,

pixel textures, hardware frame buffers etc. The disadvantage of this method is that

 10

hardware resources like buffers are limited in number.

Unsteady flows are visualized using the GPU in [11]. It uses Image Based Flow

Visualization (IBFV) as the underlying algorithm for both 2D and 3D visualizations.

Texture advection is performed on the GPU in [12]. On every iteration, a single slice

of the 3D texture is advected. Texture based volume rendering is used to display the

final result. An implementation of LIC on hardware is described in [9]. It implements

LIC using pixel textures. To implement LIC using pixel textures, the noise values are

provided in a luminance texture. The vector field is encoded using two textures; one

for the positive component and the other for the negative component of the field. For

each integration step, the pixels are accessed from the frame buffer and appropriate

mapping is done. Numerical integration, interpolation of the vector field and the input

noise field are all done taking advantage of the texture mapping capabilities of the

hardware.

Thus methods have been employed to access the local features of the LIC images, to

enhance the depth relationships of streamlines in 3D LIC and to perform LIC on the

hardware. However, the problem of cluttering of streamlines and the inability to view

the 3D vector field clearly has not been completely solved.

In this thesis we use different techniques and propose ways to improve the display of

3D LIC images. We focus on implementing 3D LIC using GLSL GPU programming

and on ways to improve the clarity of the 3D LIC images, exploiting the capabilities

of the GPU. The use of shaders for 3D LIC improves the performance of the LIC

process. Also it allows for faster interactive exploration of the 3D LIC flow volume.

 11

3. 2D LINE INTEGRAL CONVOLUTION (LIC)

In this chapter, we discuss our implementation of 2D LIC on the Graphics Processor

Unit (GPU). Before discussing the implementation details of 2D LIC on the GPU, we

provide an overview of the OpenGL Shading Language.

3.1 Basics of the OpenGL Shading Language (GLSL)

GLSL stands for the GL Shading Language [23]. It is a high level programming

language that includes many features of the C programming language. It incorporates

many features of the C++ programming language as well. It has been created by the

OpenGL ARB as a means of providing programmers access to the lowest level

graphics hardware.

GLSL allows programmability in the vertex and the fragment processing parts of the

pipeline. Figure 3.1 shows the fixed functionality graphics pipeline and the

highlighted regions indicate the functionalities that are programmable.

 12

Figure 3.1: Graphics pipeline

The vertex processor replaces the following functionality of the OpenGL pipeline:

• Vertex transformations

• Normal normalization

• Normal transformations

• Texture coordinate generation and transformation

• Per vertex lighting

The fragment shader replaces the following functionality of the OpenGL pipeline:

• Color computation

• Fog

• Texture application

• Normal computation for per-pixel lighting

Vertex Processing

Primitive Assembly

Rasterization

Frame buffer operations

Display

Fragment Processing

Vertices from the CPU

Fragments

 13

If a vertex (or a fragment) processor is used to implement one of the above mentioned

functions, then the vertex (or fragment) processor should be used to implement all the

functions that it replaces.

The datatypes supported by GLSL include int, float, bool, vectors, matrices, arrays,

structures and samplers for texture access. For the purpose of communication, GLSL

provides four types of variable qualifiers. The qualifiers and their purpose are shown

below.

Table 3.1: GLSL Qualifiers

Qualifiers Purpose

Attribute Used to pass frequently changing per vertex information from the

application to the vertex shader. They are read-only variables in

the vertex shader.

Uniform Used to pass infrequently changing information from the

application to the vertex and the fragment shaders. They are also

read-only variables in both the shaders.

Varying Used to pass interpolated data from the vertex shader to the

fragment shader. Varying variables are written in the vertex

shader but are read-only in the fragment shaders.

Const Used to indicate compile time constants.

3.2 The LIC algorithm

A 2D vector field is mapped on to a 2D image by the following process:

• Each output pixel is obtained as the sum of the values of the pixels in equally

spaced intervals along the local streamline originating at that point and

moving in both directions [1].

 14

• The sum is normalized so that the intensity of the pixels remains constant over

the image.

• Thus, given a point p in the input vector field, the local streamline at that point

is taken as the convolution kernel K(p).

• The corresponding output pixel F’(p) is obtained as the weighted sum of the

values of the input image F along K(p). The discretized version of this

equation can be given as

∑

∑

−=

−== L

Li

L

Li

ih

ihiKF
pF

)(

)())((
)('

where L is the user defined distance for which we move in the positive and the

negative direction along the local streamline.

We have made use of a noise texture as our input image. This is because a noisy

image is highly uncorrelated without patterns and hence when a vector field is

mapped to it, the vector field is seen clearly. We discuss noise in more detail later in

this chapter.

Figure 3.2 describes the basic operation of Line Integral Convolution. It shows how

LIC is applied to a single pixel on the image. The same procedure is applied to all the

pixels in the image. At the end, the noise texture is squished and stretched along the

local streamlines of the vector field.

 15

Figure 3.2: A single step of the LIC process

3.3 LIC Implementation on the GPU

3.3.1 Vertex Shader

In the vertex shader, the texture coordinates for the vertex are computed and stored in

the varying variable gl_TexCoord[i], where i indicates the multi texturing level. The

texture parameters and the texture wrapping modes are defined by the application

 - a pixel on the input noise texture.

 - the local streamline (defined by the
input vector field) that originates at the
pixel and goes for a user-defined
distance in the positive and negative
directions. The green dots show the
pixels along the streamline.

 - the pixels in the input image
corresponding to the positions on the
local streamline are accessed.

 - the value of the pixel in the final
image is obtained as the normalized
sum of the values along the local
streamline. The values are weighted as
a function of distance.

 16

itself. The function ftransform() transforms the incoming vertex by the ModelView

and the Projection matrices and the final transformed vertex position is written to the

special output variable gl_Position.

Figure 3.3: Vertex shader performing 2D LIC

3.3.2 Fragment Shader

Both the input texture (ImageTexture) and the vector field (VectorTexture) are passed

as uniform variables from the application as texture samplers. The user defined length

of convolution and other user defined parameters are also passed as uniform

variables. The texture coordinates for the incoming fragment are obtained using vec2

st = gl_TexCoord[0].st. The texture values of the incoming fragment are obtained

using the texture2D function. This function takes the texture unit and the texture

coordinates (s and t) as arguments and returns the corresponding texel value. The

vector field at that position is obtained as vec2 v = vec2(texture2D(VectorTexture, st

)). The value of the input image corresponding to that position is obtained as vec3

color = vec3(texture2D(ImageTexture, st)). We then move along the local

streamline in the positive (negative) direction using vstst ±= . At each point the

corresponding color of the input image is added to the net color. The normalized sum

of the colors at the points that we visit is the final color of the fragment and it is

assigned to the special built-in variable gl_FragColor.

void main(void)
{
 gl_TexCoord[0] = gl_MultiTexCoord0;
 gl_TexCoord[1] = gl_MultiTexCoord1;
 gl_Position = ftransform();
}

 17

Figure 3.4: Fragment shader performing 2D LIC

uniform sampler2D ImageTexture;
uniform sampler2D VectorTexture;
uniform int Length;
uniform float TwoOverRes;
uniform float OneOverNum;
uniform int Bias;
int i;
vec2 v;
int LengthP;
void main(void)
{
 vec2 st = gl_TexCoord[0].st;
 v = vec2(texture2D(VectorTexture, st));
 v -= vec2(.5,.5);
 v *= TwoOverRes;
 vec3 color = texture2D(ImageTexture, st);
 st = gl_TexCoord[0].st;
 LengthP = Length - Bias;
 for(i=0;i<LengthP;i++)
 {
 st -= v;
 st = clamp(st, 0., 1.);
 color += texture2D(ImageTexture, st);
 v = vec2(texture2D(VectorTexture, st));
 v -= vec2(.5,.5);
 v *= TwoOverRes;
 }
 st = gl_TexCoord[0].st;
 LengthP = Length + Bias;
 for(i=0;i<LengthP;i++)
 {
 st += v;
 st = clamp(st, 0., 1.);
 color += texture2D(ImageTexture, st);
 v = vec2(texture2D(VectorTexture, st));
 v -= vec2(.5,.5);
 v *= TwoOverRes;
 }
 color *= OneOverNum;
 gl_FragColor = color;
}

 18

3.3.3 User Interface and Parameters

Our user interface for 2D LIC is created using the Graphics User Interface Library

(GLUI) [25]. Range sliders are provided to let the user vary parameters like the length

and bias. Length indicates the number of steps we take from a point, in the positive

and the negative direction along the local streamline at that point. Bias is used to

provide an animation effect. It is used to increase (and decrease) the distance for

which we move in the positive (and negative) direction. Hence as the user moves the

slider corresponding to this parameter, the vector field has the effect of moving. We

have tested our implementation using a circular vector field.

3.4 Noise

Noise is used as the input image. Some of the desired characteristics of noise are that

noise needs to be continuous and repeatable and yet give the appearance of

randomness. This means that the function that is used to create noise should be able to

provide the same output value for a given input. This is essential in cases where we

need to draw an object in different angles or when we want to draw the same object in

an animation sequence [23]. If noise is not repeatable, the object would look different

every time it is drawn. But noise should not have regular patterns.

Since a noise image is highly uncorrelated, when a vector field is mapped to it, the

streamlines are more clearly seen. Our input noise image is created using a positional

noise function.

3.4.1 Positional Noise

Positional noise depends on the placement of random numbers and so it may not be

well distributed in the given range (Figure 3.5). But it is simple to generate and serves

 19

our purposes well.

Figure 3.5: Positional noise

We have used a circular vector field to test our implementation of 2D LIC. We have

tested with simple images as well as with the noise images created. (Figure 3.6, 3.7).

Figure 3.6: 2D noise

Figure 3.7: 2D LIC - A circular vector

field

 20

3.5 Time Varying Fields

LIC has been traditionally used for viewing static vector fields. We have

experimented with the use of LIC for time varying 2D vector fields as well. In order

to do this, we have made use of a simple vector field defined as:

));*2(sin(
));*2(cos(

TimesyV
TimesxV

−=
−=

where xV is the horizontal component of velocity

 yV is the vertical component of velocity

 s is the s value of the texture coordinate.

The Figure 3.8 shows the field at different times. In our user interface we have a

slider that controls the value of time. As the user moves the slider, the field moves

showing the vector field at different times.

(a)

(b)

 21

(c)

(d)

(e)

(f)

Figure 3.8: Time varying vector field (a) Time = 0 (b) Time = .1 (c) Time = .2
(d) Time = .3 (e) Time = .4 (f) Time = .5

 22

4. 3D LINE INTEGRAL CONVOLUTION

The process of mapping a 3D vector field to a 3D texture image is the same as

discussed for mapping a 2D vector field to a 2D texture image. The input noise

texture is blurred locally by using the local streamline at a given point as the

convolution kernel at that point. The local streamline originates at the given point

and goes in the positive and the negative direction for a user defined distance. In the

case of 3D LIC, the local streamline is in three dimensions. Hence in the output

image, the intensity values are related to the vector field’s flow direction.

4.1 Volume Rendering

4.1.1 3D Noise generation

3D LIC requires volumetric data to which the 3D vector field can be mapped. In 3D

LIC, the vector field is mapped to a 3D texture image. The 3D input texture image is

a 3D noise data set. We create our volumetric noise data as an RGBA volume. The

RGBA volume is described as a 3D four-vector data set. The R, G and B values

correspond to the Red, Green and the Blue components of the noise. In our case, we

create grayscale noise and hence these values are the same for a given point. A stands

for the Alpha/Opacity value that controls the transparency. We create the noise using

positional noise as described in the previous chapter. The 3D noise data set is written

to a file and is read into a 1D unsigned character array in the application.

4.1.2 Volume rendering approach

We now describe the method that we have used to render the volumetric noise data.

Volume rendering refers to the process of representing a 3D scalar field data. In our

 23

case, the scalar field is the noise data. Volume rendering techniques do not make use

of intermediate geometric representations.

Our volume rendering approach can be described as follows:

1 The volume is drawn plane by plane from back to front. A routine is used to

determine which axis closely represents the viewing direction of the user and

whether it is the positive side of the axis or the negative side of the axis.

2 Depending on the rotation of the volume and the axis that is facing the user,

the parallel planes in the X, Y or the Z direction are drawn. For instance, if the

Z axis is facing the user, then the XY planes along the Z direction are drawn.

3 The planes are composited from the positive to the negative direction or from

the negative to the positive direction depending on whether it is the negative

side of the axis or the positive side of the axis that faces the user. Thus the

direction of the axis that is facing the user determines the direction of

composition of the planes.

The images below show the 3D noise data rendered using the method described

above. The alpha values of all the points are taken to be 1, which means that they are

completely opaque. In Figure 4.1(a) the positive z axis faces the user. In Figure 4.1

(b) the negative z axis faces the user.

 24

(a) (b)

Figure 4.1: Volume Rendering (a) Positive Z direction (b) Negative Z direction

4.2 Mapping a 3D Vector field to a Texture Image

The 3D vector field is also represented as a 3D texture. At each point in the 3D space

under consideration, the x, y and the z components of the vector field are calculated

using the given vector field equation. Then the values of all three components of the

field, for all the points in the 3D space, are written to a file in the form of bytes. The

values are initially calculated as floating point numbers. They are then converted to

lie in the range from (0-255). Hence the three components of the vector field are

encoded as the red, green and blue colors respectively. We do not use floating point

textures since not all hardware support them. In the application program, the file is

read into an unsigned character array and is passed to the fragment shader to be used

in performing LIC.

4.3 3D Textures

Texture mapping is a technique that allows us to map a value from an array to a

corresponding point in space. Texture maps are rectangular arrays of data that can

 25

contain color data, luminance data, alpha data etc. The individual values in a texture

map are called texels [24]. The texture maps can be 1D, 2D, 3D or cube maps. In 3D

texture mapping, for each point in the 3D space, we find the corresponding texel in

the 3D texture map space. The 3D point is then colored based on the value of the

corresponding texel.

3D Texture mapping capability was added to Version 1.2 of OpenGL. A 3D volume

scene can be created from layers of parallel 2D rectangles. In memory, the rectangles

are arranged in a sequence [24]. The steps involved in 3D texture mapping and the

corresponding commands in the OpenGL API and GLSL are as follows [24][23]:

1 Create a texture object with the glBindTexture command.

• glBindTexture(GL_TEXTURE_3D_EXT, VectorTextureID)

2 Specify how the texture object is accessed with the glTexParameter

command. This specifies the wrapping mode which can be clamp or repeat. It

also sets the type of filtering that is used during texture access, which can be

linear or nearest filtering. The choice of the filtering technique affects the

clarity of the output of our application. This issue is discussed in detail in a

later section.

• glTexParameteri(GL_TEXTURE_3D_EXT,

GL_TEXTURE_WRAP_S, GL_CLAMP)

• glTexParameteri(GL_TEXTURE_3D_EXT,

GL_TEXTURE_WRAP_T, GL_CLAMP)

• glTexParameteri(GL_TEXTURE_3D_EXT,

GL_TEXTURE_WRAP_R_EXT, GL_CLAMP)

• glTexParameteri(GL_TEXTURE_3D_EXT,

GL_TEXTURE_MAG_FILTER, GL_LINEAR)

3 Specify a texture for the texture object. To specify a 3D texture we use the

function glTexImage3D. There are no universal image file formats for 3D

data. Hence we store our 3D data in a file of our own design and read it into a

 26

1D unsigned character array. This array is provided as the last parameter to

the function. Our noise data consists of four components – RGBA as

discussed earlier. Hence the third parameter of the glTexImage3D function is

set to GL_RGBA to indicate that the number of components in the texture is

four. Similarly the eight parameter, which indicates the format of the pixel

data is also set to GL_RGBA. The other parameters of this function indicate

the resolution, level of detail etc. of the 3D texture.

• glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA, NUMX, NUMY,

NUMZ, 0, GL_RGBA, GL_UNSIGNED_BYTE, VectorTex)

4 Enable texture mapping with the glEnable command with

GL_TEXTURE_3D as its argument.

• glEnable(GL_TEXTURE_3D)

5 Set the active texture unit with the glActiveTexture command. The texture

unit that is set by this command is the one that is accessed by texture

coordinate processing commands. The texture unit itself is an underlying

piece of graphics hardware that performs various texturing operations.

• glActiveTexture(GL_TEXTURE1)

6 Pass the active texture unit number to the vertex and the fragment shaders as

a uniform variable.

• glUniform1i(VectorTextureLoc, 1)

The noise data as well as the vector field data are read from a file by the application

as 3D textures. Each of these textures is bound to a separate texture unit and is passed

to the vertex and the fragment shaders for processing.

 27

4.4 Implementation on the GPU

We now describe the implementation of 3D LIC on the GPU using the OpenGL

shading language.

4.4.1 Vertex Shader

In the vertex shader, the incoming vertices are transformed by the ModelView and the

Projection matrices using the ftransform() function. The vertices are written to the

special output variable gl_Position in clipped coordinates [23]. Compilers may

generate an error message or the results are undefined if the vertex shader is used for

vertex processing and no value is stored in gl_Position [23]. The texture coordinates

are passed from the application using the attribute variable gl_MultiTexCoord0. They

are stored in the varying variable gl_TexCoord[i], where i indicates the multi-

texturing level used.

Figure 4.2: A simplified version of the vertex shader performing 3D LIC

4.4.2 Fragment Shader

As in 2D LIC, the input noise texture (ImageTexture) and the vector field texture

(VectorTexture) are passed as samplers from the application to the fragment shader.

The vector field is also represented as a 3D texture. At each point, the x, y and z

component of the vector field is encoded using the RGB colors of the texture. In the

fragment shader, the texture coordinates for the incoming fragment are obtained using

void main(void)
{
 gl_TexCoord[0] = gl_MultiTexCoord0;

gl_TexCoord[1] = gl_MultiTexCoord1;
 gl_Position = ftransform();
}

 28

vec3 stp = gl_TexCoord [0].stp. The texel value is obtained using the texture3D

function. This function takes the texture unit and the texture coordinates as arguments

and returns the corresponding texel value. The vector field at that position is obtained

as vec3 v = vec3(texture3D(VectorTexture, stp)). The value of the input image

corresponding to that position is obtained as vec4 color = texture3D(ImageTexture,

stp). Then we move along the local streamline in the positive (negative) direction

using stp = stp ±v. At each point along the streamline, the corresponding color of the

input image is added to the net value. Finally the sum is normalized. This is taken to

be the final color of the fragment and is assigned to the special output variable

gl_FragColor.

Two other uniform variables - TwoOverRes and OneOverNum are sent to the

fragment shader from the application. TwoOverRes is defined as (2 / Resolution of

the volume). The value two in the numerator is used to get the velocity range to be (-

1.,-1.) to (1.,1.). It is divided by the resolution of the image to make the step size to be

one pixel. OneOverNum is defined as (1/2L) where L is the user defined LIC length.

It is used to normalize the sum of the colors. Rather than performing the division in

the fragment shader, these values are sent from the application. This is because the

division needs to be done only once this way rather than for each incoming fragment.

 29

Figure : A simplified version of the fragment shader performing 3D LIC

Figure 4.3: A simplified version of the fragment shader performing 3D LIC

uniform sampler3D ImageTexture;
uniform sampler3D VectorTexture;
uniform int Length;
uniform float TwoOverRes;
uniform float OneOverNum;
uniform int Bias;
int i;
vec3 v;
int LengthP;

void main(void)
{
 vec3 stp = gl_TexCoord[0].stp;
 v = vec3(texture3D(VectorTexture, stp));
 v -= vec3(.5,.5,.5);
 v *= TwoOverRes;
 vec4 color = texture3D(ImageTexture, stp);
 stp = gl_TexCoord[0].stp;
 LengthP = Length - Bias;
 for(i=0;i<LengthP;i++)
 {
 stp -= v;
 stp = clamp(stp, 0., 1.);

 color += texture3D(ImageTexture, stp);

 v = vec3(texture3D(VectorTexture, stp));
 v -= vec3(.5,.5,.5);
 v *= TwoOverRes;
 }
 stp = gl_TexCoord[0].stp;
 LengthP = Length + Bias;
 for(i=0;i<LengthP;i++)
 {
 stp += v;
 stp = clamp(stp, 0., 1.);

 color += texture3D(ImageTexture, stp);

 v = vec3(texture3D(VectorTexture, stp));
 v -= vec3(.5,.5,.5);
 v *= TwoOverRes;
 }

color *= OneOverNum;
 gl_FragColor = color;
}

 30

4.4.3 User Interface and Parameters

Our user interface for 3D LIC is created using the Graphical User interface Library.

(GLUI) [25]. Length indicates the number of steps we take from a point, in the

positive and the negative direction along the local streamline at that point. When

length increases, the output image is blurred more in the direction of the vector field

as more pixels are taken into consideration. For our application, the results are good

for values of length between 7 and 12. This is because enough pixels have to be

accessed on the streamline to blur the image in the direction of the streamlines of the

vector field. But if the length is increased further, then it leads to over blurring. Bias

is used to provide an animation effect in the same way as done for 2D. Both of these

parameters are user defined and are passed to the fragment shader as uniform

variables. Our user interface for 3D LIC has several other functionalities as well.

Those functionalities are described in a later chapter. A snapshot of the user interface

is provided in the Results chapter.

4.5 Tests with a vector field

The vector field shown in Figure 4.4 is created using an equation that describes flow

around a corner [19]. The equation is described as follows:

Vx = -3 + 6.*x – 4.*x*(y+1.) – 4.*z

Vy = 12.*x – 4.*x*x – 12.*z + 4.*z*z

Vz = 3. + 4.*x – 4.*x*(y+1.) – 6.*z + 4.*(y+1.)*z

where Vx,Vy and Vz are the x,y,z components of the vector field.

 x,y,z are the coordinates of the point under consideration.

 31

4.6 Images

The following images show the effect of the length parameter on the output of LIC.

(a)

(c)

(b)

(d)

Figure 4.4: Different lengths of LIC (a) Length = 3 (b) Length = 6 (c) Length = 10
(d) Length = 20

 32

5. IMPROVING THE CLARITY OF 3D LIC

The implementation of 3D LIC was discussed in the previous chapter. Some of the

limitations of 3D LIC include the cluttering of streamlines, inability to efficiently

perceive depth differences, the dense nature of the 3D LIC images etc. In this chapter,

we discuss in detail the various methods that we have used to improve the clarity (i.e.

to reduce the effects of denseness of the 3D texture and cluttering of the streamlines)

of 3D LIC images. Several techniques are employed to overcome the limitations of

using 3D LIC for visualizing 3D vector fields.

We have classified the techniques that we have employed into three categories:

• Methods for improving the global display of the vector field: These methods

enable the user to get a good global view of the vector field. They aim at

providing the user with good insight into the inner parts of the vector field as

well. They also encode scalar data so that as much information as possible is

conveyed to the user.

• Methods for enhancing the local display of the vector field: The goal of these

methods is to allow the user to view and analyze local regions of interest in

the vector field.

• Methods for improving depth perception: They increase the clarity of the

spatial organization of the streamlines in the 3D vector field, thus enabling

the user to distinguish near parts of the vector field from the far away parts.

5.1 Viewing the vector field globally

Texture-based methods are efficient to display 2D vector fields. But when they are

used to view 3D vector fields, it can be difficult to obtain a clear global view of the

field. We have used several methods to enhance the global display of 3D fields.

 33

Particularly, the introduction of sparsity into the dense texture lets the user look

through the field clearly. The following are the techniques employed:

5.1.1 Transparency

The opacity of each point in the 3D space is determined by the alpha value at that

point. The alpha value is given by the fourth component of the RGBA vector. When

the alpha value is 1, the point is completely opaque. When the alpha value is 0, the

point is completely transparent. To introduce transparency, the alpha value is reduced

below 1.

5.1.1.1 Alpha Blending

In Computer Graphics, transparency is obtained using the method known as Alpha

Blending. The alpha value (α) actually specifies how the foreground colors are

merged with the background colors when they are laid on top of one another. The

equation for alpha blending is

Colorfinal = α Colorforeground + (1-α)Colorbackground

In our implementation, as discussed in chapter 3, the planes are composited on top of

one another. When α has a value less than 1, the colors of the planes are blended

together according to the above equation. Initially the alpha value is 1 and only the

bounding planes are seen. When a lower value of alpha is assigned, the user can see

through the vector field.

 34

5.1.1.2 Implementation

In OpenGL, alpha blending is implemented using the glBlendFunc() function. It

defines how much of the foreground and the background colors will be used. Before

using this function, blending is enabled using the glEnable() function with

GL_BLEND as its argument.

Our implementation allows the user to interactively change the alpha value using a

slider in the user interface. The alpha value as set by the user is sent as a uniform

variable to the fragment shader. In the fragment shader, the alpha value that is passed

as the uniform variable replaces the actual alpha value of the incoming fragment.

Thus the opacity of the fragment is varied.

The following images show the effect of introducing transparency. We find that

introducing transparency has limited usage as the vector field is still dense and details

may be missed because of the transparency factor.

(a)

(b)

 35

(c)

(d)

Figure 5.1: Transparency (a) Alpha = 1 (b) Alpha =. 2 (c) Alpha =. 5
(d) Alpha =. 2 (Perspective View)

5.1.2 Encoding magnitude with color

Basic Line Integral Convolution is used to view only the directional information of

the vector field. It does not show information like the magnitude of the vector field.

Viewing scalar information like the magnitude of the vector field is important in

gaining a deep understanding of the nature of the vector field. In our implementation,

we have encoded this scalar quantity using colors.

5.1.2.1 Implementation

The magnitude of a vector denotes the length of the vector at a point. In other words,

it shows how strong the vector field is at a particular point. Given a vector R(xv,yv,zv)

at a point P(x,y,z) the magnitude of the vector at P is given by

2 2 2
v v vx y z+ + .

 36

At each point in the 3D space, we find the magnitude of the vector field. Then we

encode regions of larger magnitude with red color and regions of lesser magnitude

with cooler shades. Hence the user is able to get an idea of the magnitude of the

vector field at a particular region by looking at the colors in that region.

The following images show the effect of encoding magnitude with color in a vector

field. The red regions are parts of the vector field with a very high magnitude. The

blue regions are parts of the vector field with lesser magnitude. Regions colored

yellow indicate the moderate parts of the vector field.

(a)

(b)

 37

(c)

Figure 5.2: Encoding magnitude with color (a) Without adding Color (b) With Color
and Transparency (Alpha =. 2) (c) With Color (encoding Magnitude)

5.1.3 Highlighting areas with larger magnitude

As discussed in the previous section, the presence of the portions of the vector field

with low magnitude is a hindrance to viewing areas with more activity. In some

applications, areas of low magnitude are not of great significance. Hence it becomes

useful to highlight areas with high magnitude by reducing the opacity of the areas

with low magnitude.

5.1.3.1 Implementation

We multiply the input texture’s alpha value by the magnitude of the vector field.

Hence we assign a low opacity value to those areas with low magnitude. Areas of the

vector field with a large magnitude are highlighted, giving a clearer display.

 38

(a)

(c)

(b)

(d)

Figure 5.3: Highlighting larger magnitude areas (a) Without Magnitude (b) With
Magnitude (c) With Magnitude and Color (d) With Magnitude and Transparency

5.1.4 Sparsity

Sparsity techniques involve strategically removing part of the detail to reveal the

overall function. If sparsity is introduced, the individual streamlines are more clearly

seen. This is because the user can look through the vector field and get a global view

of the field.

 39

5.1.4.1 Define a new texture image

We have introduced sparsity by defining a 3D texture “T2” with certain evenly-

distributed points set to black. The rest of the points in the texture are set to white.

This texture is then passed on to the shaders. In the fragment shader, every time a

point is accessed in the streamline computation, a check is made to see if the

corresponding point in the input texture T2 is equal to black. If so, the current

fragment is discarded. A fragment is discarded using the discard keyword in the

shader. This keyword causes the fragment shader to terminate without writing the

current fragment to the frame buffer [23]. In effect all points on all streamlines that

pass through the “black” point are not drawn. This introduces gaps between the

streamlines, enabling the user to look through the vector field and gain knowledge

about the inside of the field as well.

5.1.4.2 Sampling

The black points should have the following properties:

• They should not have a regular pattern. The sampling theory states that when

the samples are regular, the coherence of the samples interfere with the

coherence of the images to produce aliasing [29]. Aliasing effects appear as

“jagged edges” in images when high frequencies appear as low frequencies

producing regular patterns that are easy to see. In our application, if the

distribution of points is too regular, then the streamlines are broken into smaller

parts and there is no continuity.

• They should be as equally spaced as possible. I.e., they should be well

distributed. If the points are cluttered together in one region, then in our

application, the streamlines would be discarded to a large extent in that region

alone. The other regions would still be dense.

 40

We have made use of the following sampling methods: (1) Stochastic Sampling and

(2) Low-discrepancy sequences. We now discuss these methods in detail.

5.1.4.2.1 Stochastic Sampling Methods

The main idea behind stochastic sampling is that when the sampling is irregular, the

higher frequencies appear as noise rather than as aliases [29]. The human visual

system is more sensitive to aliases than to noise. Hence better results are obtained

with stochastic sampling.

(a) Checkerboard distribution

In this method, the texture T2 is created as a 3D checkerboard pattern, with

alternating black and white texels. In our implementation, the user can control the

ratio of the number of black texels to white texels using a slider. However this

distribution lacks randomness. It is a form of regular sampling and hence it leads to

aliasing effects. This is shown in Figure 5.4.

 (a)

(b)

Figure 5.4: Checkerboard distribution (a) Before applying Sparsity (b) With Sparsity
(~ 23,250 random points)

 41

(b) Poisson disk distribution

Poisson disk sampling is a generalization of Poisson Sampling. This distribution is an

even-looking one. Each random value that is generated is retained only if it satisfies a

minimum distance constraint. A radius around the point is defined and no two points

are allowed to be closer than the radius [13]. Also, the points are placed as close as

the radius will allow. This distance constraint decreases the magnitude of noise.

Without the constraint the points may tend to clutter together at some areas alone.

Hence this method is more effective.

However, Poisson disk distribution is a computationally expensive method. We use

an approximation to the algorithm as described in [14]. This method generates m*n

candidate points to generate the (n+1)th sample; where m is a constant. Hence the

number of candidate points is proportional to n.

The pseudo code for the method that we have used is given as follows:

Figure 5.5 illustrates how the third sample point is calculated with Poisson-Disk

Distribution, given the first two sample points.

For every new point that is to be generated
 Generate m*n random candidate points
 For every point P that has already been generated until now

Find the closest of the candidate points to P (use the Euclidean
distance)

 EndFor
Now there are n candidate points; where n is the number of points that
are already added. Associated with each candidate point is its distance
to the already existing point
Among the n candidate points, find the point P’ with the largest
distance associated with it

 Add P’ to the set of already generated points
EndFor

 42

Figure 5.5: Poisson disk distribution-illustration

- The samples (n = 2) that are
already generated.

- Generate m*n candidate
points. Here n = 2, m =2.
Hence four candidate points
are generated.

- Find the candidate point
that is the closest to each
of the sample points. Now
n candidate points are
selected among the m*n
points

- The candidate point that
has the largest distance
among the n candidate
points is added to the
sample

Sample points generated

Candidate points

Selected candidate points

 43

This method generates good sampling patterns. However, it is still an O(n3)

algorithm; where n is the number of random points to be generated. So to speed up

the process, we have generated the points on a few planes and then replicated them

over the rest of the planes. We have used a value of m=10 for our purposes.

(a)

(b)

Figure 5.6: Poisson disk distribution (a) Before applying Sparsity (b) With Sparsity
(~134,544 random points)

Advantages

• As seen in Figure 5.6 this method introduces sparsity in the vector field with

good spacing between the streamlines. This is the due to the even distribution

of points.

• The streamlines are continuous. This is because of the irregular distribution of

points without bunching.

Disadvantages

• This method is time consuming. The method that we have used cannot be used

for interactive sampling.

• This method is just an approximation to the Poisson disk method. The actual

method might give better results.

 44

(c) Jittering

Jittering is a straightforward and a fast approximation to Poisson disk distribution [5].

This method perturbs the original points randomly. A point is set to black if its

neighbors do not fall inside a user defined radius. Thus it avoids samples from

bunching together at any region. We allow the radius to be user defined, and hence

the user can interactively change the radius thus increasing/decreasing the sparsity.

The pseudo code for generating samples using jittering is given as follows:

 (a)

 (b)

Perturb the original points randomly
For each point P in the 3D space
 Check if any of P’s neighbors fall inside the user defined radius
 If not, then add P to the set of already generated points
EndFor

 45

(c)

Figure 5.7: Jittering (a) Before applying Sparsity (b) With Sparsity (~ 373,313
random points) (c) With Sparsity (~467,754 random points) i.e.; with a larger radius

than Figure 5.7 (b)

Advantages

• This method is easier than Poisson disk distribution.

• It is straight forward.

• It works at interactive rates.

Disadvantages

• Jittering contains more low frequency energy in its spectrum [14] and hence it

does not give results as good as Poisson disk distribution.

• This method does not produce samples that are as well distributed as the

Poisson disk method. As a result, as seen in Figure 5.7, the spacing between

the streamlines and the continuity of the streamlines is not as good as that of

Poisson disk distribution.

 46

5.1.4.2.2 Low Discrepancy Sequences

The Hammersley and the Halton point sets are low discrepancy sequences which are

used for Quasi-Monte Carlo methods. The purpose of Quasi-Monte Carlo methods is

to find the integral of a function as the average of the function at certain points. In

Quasi-Monte Carlo methods these points are generated using low discrepancy

sequences such as the ones mentioned above. In these methods, a deterministic

formula generates a uniformly distributed and stochastic-looking pattern [15].

Discrepancy measures how uniformly distributed the sampled points are [15]. Low

discrepancy indicates that the samples are well distributed. These low discrepancy

sequences have the following property: If we consider (1/8)th of the volume, (1/8)th of

the samples belong to this part of the volume. Such uniform distribution is an

important requirement of our application. Hence we have used these low discrepancy

sequences for generating a set of evenly distributed points in 3D space. We now

discuss these methods in detail.

(a) Hammersley points

This method of sample generation generates a fixed sequence of samples that are well

distributed. The general method of point generation is given as follows: The ith “d”

dimensional point is given by

(i/N, φ p1(i),φ p2 (i),…..,φ pd-1 (i))

where p1,p2,,….,pd-1 are any sequence of prime numbers with p1<p2<….<pd-1 and

N is the total number of samples . We have used 2 and 3 as the prime bases.

To obtain φ px(i),

• Convert “i” to the representation of i in base px.

• Reflect this number about the decimal point

 47

• Convert the reflected value to a decimal number again.

For example, the first 3D point is given by (1/250000, φ 2(1), φ 3 (1)), assuming that

N = 250000, p1 = 2 and p2 = 3. Here i = 1.

φ 2(1) is calculated as:

• The representation of 1 in base 2 is 12.

• After reflection about the decimal point it becomes 0.12.

• 0.12 in decimal is 0.5.

φ 3(1) is calculated as:

• The representation of 1 in base 3 is 13.

• After reflection about the decimal point it becomes 0.13.

• 0.13 in decimal is 0.333333.

Hence the first 3D point is (1/250000, 0.5, 0.333333) for the given assumptions.

(a)

(b)

Figure 5.8: Hammersley points (a) Before applying Sparsity (b) With Sparsity (~
250,000 random points)

 48

Advantages

• This method is computationally fast. The user can interactively control the

number of points which are assigned the black color using a slider in our user

interface.

• Figure 5.8 shows that this technique gives well spaced and continuous lines.

This is because of the low discrepancy of the generated points.

Disadvantages

• As the base value increases, the samples tend to become more and more

regular [15].

(b) Halton points

This method produces another low discrepancy sequence. In this method, the ith “d”

dimensional point is given by

(φ p1(i),φ p2 (i),…..,φ pd (i))

where p1,p2,,….,pd are any sequence of prime numbers with p1<p2<….<pd. We

have used 2, 3 and 5 as the base values.

To obtain φ px(i), we have used the same method as discussed for Hammersley point

generation.

 49

 (a)

(b)

Figure 5.9: Halton points (a) Before applying Sparsity (b) With Sparsity (~ 250,000
random points)

Advantages

• This method is also fast. The user can interactively change the number of

points generated using a slider in our interface, thus controlling the sparsity

introduced in the vector field.

• Because of the low discrepancy property of the generated point set, the

streamlines are well spaced and continuous as shown in Figure 5.9.

Disadvantages

• As the base value increases, the samples exhibit patterns. This is shown in the

fact that Hammersley distribution gives slightly better results than Halton

distribution in terms of the continuity of the streamlines. This is because of the

fact that we have used 5 as the base value for the third dimension in the

Halton distribution, which is higher than any of the base values used by the

Hammersley distribution.

 50

Figure 5.10 shows the results of applying the different distributions. It shows the

effects on a particular plane in the volume.

(a) (b)

 (c) (d)

Figure 5.10: Results of using different distributions
(a) Poisson disk distribution (b) Jittering (c) Hammersley points (d) Halton points

The performance of these distributions in terms of the time taken to generate the

points is discussed in the next chapter. In spite of the fact that introducing sparsity

helps us to gain a global view of the vector field, we have to note that some details of

 51

the field might be missed as a result of creating empty space between the streamlines.

Yet it aids the user in gaining a good understanding of the vector field.

5.2 Viewing the vector field locally

The previous section discussed ways to get a clear global view of the vector field.

Introducing sparsity, transparency, encoding magnitude with color, highlighting areas

with larger magnitude etc. help to get a better view of the field. The next section

focuses on ways to view local, specific areas of the field and regions of interest. It

discusses techniques such as using clipping planes and 3D patterns.

5.2.1 Cutting planes

Salama et al. [2] have described and used different clipping mechanisms to view more

localized regions in the vector field. We have made use of OpenGL clipping planes to

allow the user to interactively clip the volume and view regions of interest on the

inside.

The view volume that is defined forms six cutting planes. Objects that lie outside this

volume are clipped and are not drawn in the final scene [24]. OpenGL allows us to

define six additional clipping planes to remove unwanted parts of the object and thus

to clip the volume further. Each of these planes is defined by the coefficients of the

plane equation: Ax + By + Cz + D = 0. These clipping planes are transformed by the

modeling and viewing transformation matrices. Thus the final volume that is

displayed is the one that passes the clip tests of the view volume and user defined

clipping planes.

 52

5.2.1.1 Implementation

Clip planes are defined using the command glClipPlane(), which takes the plane

number and the coefficients of the plane equation as its arguments. The

corresponding clip plane is enabled using the command glEnable(). The vertices that

emerge from the vertex processor are the ones that are clipped against the planes.

Thus they should be in the same coordinate space as the planes [23]. The user defined

clipping planes are defined in eye coordinates. Hence the vertices are converted to

eye coordinates in the vertex shader and written to the output variable gl_ClipVertex.

The results are undefined if the output variable is undefined. In our implementation,

we have made use of sliders to allow the user to vary the value of D in the plane

equation, thus allowing the user to move the clipping planes through the volume as

shown in Figure 5.11.

 53

Figure 5.11: Exploring the vector field interactively by moving the clip planes

5.2.2 Regions of interest with 3D patterns

3D patterns allow the user to select a region of interest and explore it interactively.

Our interface allows the user to choose one of several 3D patterns (such as cube,

sphere, and cylinder) with an appropriate size for the pattern. The user can then

translate the pattern to a desired region in the volume and explore it by using clip

planes or by rotating the selected pattern.

5.2.2.1 Implementation

We have implemented patterns by defining a radius in the case of spheres and

cylinders and by defining a width in the case of cubes. They are defined with respect

to a center. In the fragment shader, all fragments that fall outside the radius/width are

discarded so that only the part of the volume that falls within the 3D pattern is

displayed. Thus the user is able to have a closer examination of a specific region of

interest alone. Our interface provides sliders using which the user can change the

 54

center of the pattern, thus allowing the user to translate the pattern and slide it across

the volume. When the pattern translates through the volume it has the appearance of

moving through the volume. The user can also rotate the selected region alone. To get

the effect of rotating the pattern through the vector field, the texture coordinates are

also rotated by the same amount as the vertices. To do this rotation, the texture

coordinates are translated to the origin, rotated and then translated back again. The

texture coordinate transformations are saved in the texture matrix that is accessed in

the vertex shader as gl_TextureMatrix[i], where i is the texture unit number. The

texture coordinates are multiplied by this matrix in the vertex shader to apply the

texture transformations. The following figure shows the use of patterns to explore

different parts of the vector field.

 55

Figure 5.12: Exploring the vector field using different patterns and
translating/rotating them

5.3 Improving Depth Perception

The previous section discussed ways of examining the local parts of the vector field.

Next, we discuss another aspect of 3D field visualization. Spatial organization and

depth perception play an important role in the effective visualization of 3D vector

 56

fields. This section discusses ways on improving the perception of the depth relation

of the different parts of the field.

5.3.1 Intensity Depth cueing

Intensity depth cueing can be used to obtain rendering effects like fog, haze, etc. It

can also be used to make objects far away from the user get darker with distance from

the user. Hence depth perception is increased by having objects blend into the

background color.

5.3.1.1 Implementation

We enable intensity depth cueing with the command glEnable() with GL_FOG as its

argument. A fog blending factor f is used to blend the background color with the

color of the incoming fragment. We use the linear mode of blending in which f is

calculated using the following equation

)(
)(

startend
zendf

−
−

=

where z is the eye-coordinate distance between the viewpoint and the fragment center

 start is the distance to the start of the fog effect

 end is the distance to the end of the effect [24].

The fog mode, the start value, end value and the background color are specified using

the glFog() function.

In the vertex shader, the z value that is specified in the equation is calculated for each

vertex in the eye coordinate space and is written to the special output variable

gl_FogFragCoord. The fog blending factor f is then calculated in the fragment shader

according to the above equation. Then the final color of the incoming fragment in the

 57

fragment shader is calculated as the linear blend of the original color and the

background color. This is done using the GLSL mix() function. Our interface allows

the user to vary the start and the end values using sliders.

Figure 5.13 (b) shows fog effects. The fog color is taken to be black. The part of the

volume far away from the user has more fog applied to it than the part of the volume

nearer to the user. This method is useful for recognizing far away objects from nearby

ones. However, it is not efficient in portraying the minute depth differences.

(a)

(b)

Figure 5.13: Fog (a) Without Fog (b) With Fog

5.3.2 Stereographics

In this section, we discuss the use of stereo graphics to de-clutter a complex 3D scene

[30]. When we look at the world around us, 3D stereographic effects arise from the

fact that our left and right eyes see the world from slightly different perspectives.

Perception of depth is improved greatly by using stereo graphics which uses both the

left and the right eye views.

 58

If the left and the right eye views are generated in the orthographic projection mode,

then perspective shortening causes a point to have different vertical positions in both

the views. This is known as vertical parallax. To avoid it, stereographics is generally

done in the perspective mode. The left eye view is obtained by translating the eye by

–E in the X direction. This is done by translating the scene by +E in the X direction.

The right eye view is obtained by translating the scene by –E in the X direction. Here

(2*E) is the horizontal distance between the left and the right eye views.

The function glFrustrum() is used to specify a monoscopic perspective projection

viewing frustum. This function takes the left, right, bottom, top, near and far planes

of the near clipping plane as its arguments. We define the plane of zero parallax as

the plane where a 3D point projects to the same window location for both eyes. The

left (L0p), right (R0p), bottom (B0p) and top (T0p) boundaries of the viewing

window on the plane of zero parallax are measured as:

L0p = -Z0p*tan()2/φ

R0p = +Z0p*tan()2/φ

B0p = -Z0p*tan()2/φ

T0p = +Z0p*tan()2/φ

where Z0p is the distance to the plane of zero parallax and φ is the field-of-view

angle. Next the boundaries in the left eye view are shifted by +E to match the +E shift

in the scene. Similarly, the boundaries in the right eye view are shifted by –E. Only

the left and the right boundaries are affected by this scene shift.

 59

5.3.2.1 Implementation

We enable stereo graphics by or’ing GLUT_STEREO into the argument of the

function glutInitDisplayMode(). Then we draw the left eye view into the left back

buffer and the right eye view into right back buffer. Using appropriate glasses, the

left and the right eye views (as shown in Figure 5.14) can be combined to give an

image with better depth order relationships. We find stereographics to be a very

effective means of providing depth perception.

(a)

(b)

Figure 5.14: Using stereo graphics to de-clutter the field
(a) Left – Right View (b) Right – Left View

 60

5.3.3 Lighting

We now discuss how applying lighting helps to improve the overall visualization of

the 3D vector field. Lighting helps to brighten up areas of the image which otherwise

appear dull. Hence certain parts of the image appear bright and are highlighted.

Specular highlights help to establish a spatial relationship with respect to the position

of the light source.

5.3.3.1. Implementation

Lighting is applied by the following procedure:

• A normal is assigned to each point. The normals can be passed to the shaders

using the command glNormal() in OpenGL. However, we use the normals

only when we need to apply lighting. Hence we recomputed the normals and

pass the normals as a texture to the fragment shader.

• The normal for the incoming fragment is accessed in the fragment shader.

Then the color as the result of applying lighting is calculated by the following

equation:

Cl = Ca + Cd * max(abs(dot(N,L),0.0)) + Cs * pow(max(dot(R,E),0.0),Coeffs)

where Cl is the color obtained after lighting calculations

 Ca is the ambient color of light

 Cd is the diffuse color of light

 Cs is the specular color of light

 Coeffs is the specular coefficient

N is the normal at that position. It is obtained by considering the vector

field at that point as the tangent. The normal is thus calculated

considering the local TNB coordinate system.

 L is the light vector that is calculated as the vector Light Position -

 Vertex Position

 61

 R is the reflection vector that is calculated using the reflect() function

 E is the eye vector that is calculated as the vector Eye Position -

 Vertex Position

The final color is obtained by blending the color obtained after applying LIC with Cl.

The Figure 5.15 (b) shows the results of applying lighting.

(a)

(b)

Figure 5.15: Lighting (a) Without Lighting (b) With Lighting (depth differences are
seen)

 62

6. RESULTS

In this chapter, we discuss the results that were obtained. We have made use of the

graphics processing unit (GPU) to accelerate the computation of LIC in order to

visualize 3D vector fields at interactive rates. The implementation is done in C++ and

OpenGL. GPU programming is done in the OpenGL Shading Language (GLSL) [23].

The entire work is done on a 4 GHz Pentium 4 CPU with 2GB of RAM, with an

NVIDIA Quadro 3400 FX graphics card with 256MB of memory.

Figure 6.1 shows the user interface window, created using the GL User Interface

toolkit (GLUI). Range sliders (a GLUI extension our research group added) are

provided to let the user vary range parameters like the length and bias. The user also

has the option of viewing the vector field with or without sparsity and of choosing the

distribution to be used to produce the sparse input texture. The user can vary the ratio

of the white texels to black texels in the case of checkerboard distribution, the disc

radius in the case of jittering and the number of sample points in the case of

Hammersley and Halton distribution. Range sliders are also provided for the clipping

planes along the x, y and z axis. The fog parameters and the alpha value can also be

changed using the sliders. The radius and the center of the 3D patterns used to view

localized regions of interest can be changed by the user as well. The user can

interactively change the length and bias values, control sparsity, use the clip planes to

view local planes, introduce transparency and view localized regions of interest.

Thus the user can interactively explore the entire 3D volume.

 63

Figure 6.1: User Interface

6.1 Timing Benchmarks

6.1.1 If Constructs

We have investigated the timing of some GLSL constructs. The presence of if

statements has a large effect on the performance of the fragment shader. This makes

sense, since the GPU is essentially a SIMD computing device. The table and graph

show the performance of the fragment shader with and without the if statements in a

for loop.

 64

Table 6.1: Effect of If constructs

Figure 6.2: Performance of the GPU with and without If constructs

But, with all the different display modes, we really need the if tests in the fragment

shader. One approach would be to have different versions of the fragment shader, and

load the appropriate one every time the user changes display modes. But,

maintaining these many versions of the fragment shader would raise the ugly

possibility of version skew. In our implementation, we have used the preprocessor

directive #ifdef to simulate if blocks. We load four “different” fragment shaders. The

fragment shaders differ only in the values of the #define statements pre-appended to

LIC

Length

Without if

(in FPS)

With if (in

FPS)

2 10 -12 7.5 - 9.5

4 6 - 7 4.5 - 6

6 4.5 - 6 3.5 - 4.5

8 3.5 - 4.5 2.5 - 3

10 2.7 - 4 2 - 2.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18
LIC Length

Ti
m

e
 ta

ke
n

to
 re

nd
er

 w
ith

 a
nd

 w
ith

ou
t I

F
co

ns
tru

ct
s

(in
 s

ec
s.

)

With IF
Without IF

Effect of IF constructs

 65

them. The first time an option is selected, the proper #ifdef is set and the fragment

shader is linked and compiled. When the option is selected again, the corresponding

code is just executed. Hence the efficiency of the code is improved without

maintaining multiple versions of it. This is found to give much better performance

than using the if statements or by loading the appropriate shader every time the user

switches display modes.

6.1.2 Resolution and Length

As the LIC length increases, the frame rate drops as more texels have to be accessed

in the fragment shader, on the local streamline at every point. Also, when the

resolution is less, the frame rate is more. We have tested with a 128*128*128 and a

64*64*64 volume data. The performance graph is shown in Figure 6.3. The rendering

time differs approximately by a factor of 2, since for a 128*128*128 volume, we

draw twice as many planes in each direction. However, each plane takes the same

time since it accesses the same number of fragments.

Effect of Resolution and Length

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 3 5 7 9

LIC Length

Ti
m

e
ta

ke
n

 to
 re

nd
er

 fo
r d

iff
er

en
t L

IC
 le

ng
th

s
an

d
re

so
lu

tio
ns

 (i
n

se
c.

)

RES = 128

RES = 64

Figure 6.3: Effect of resolution and length on performance

 66

6.1.3 Different distributions

We have introduced sparsity as a means of de-cluttering the otherwise dense 3D

scene, obtained as a result of applying LIC to the noise texture. In chapter 5, we

discussed the various techniques that we used to obtain the sparse input texture. To

recap, we have used the Poisson-Disk distribution, jittering, Halton and Hammersley

distributions to generate a set of evenly distributed points in the sparse input texture.

As seen in Figure 6.4(a), Poisson disk is an expensive method. Particularly, as the

number of points increase, the time taken to generate them increases to a great extent.

Also, as shown in Figure 6.4(b), when compared to Halton point generation, the

Hammersley method is slightly faster. This is because in this method, one reflection

about the prime base is substituted by a division operation, which is faster. Jittering

always takes the same time since irrespective of the number of samples found; each

and every point needs to be checked against its neighbors. Hence in jittering, the time

complexity is independent of the number of samples needed.

Poisson Disk Distribution

0

20

40

60

80

100

120

140

160

180

Number of Samples

Ti
m

e
ta

ke
n

to
 g

en
er

at
e

th
e

ra
nd

om
 p

oi
nt

s
(in

 s
ec

s.
)

 250 500 750 1000 1500

(a)

 67

Hammersley vs Halton

0

0.05

0.1

0.15

0.2

0.25

0.3

20000 25000 30000 35000 40000

Number of Samples

Ti
m

e
ta

ke
n

to
 g

en
er

at
e

th
e

ra
nd

om
 p

oi
nt

s
(in

 s
ec

s.
)

Hammersely

Halton

(b)

Figure 6.4: Performance of the distributions (a) Performance of Poisson disk
distribution (b) Performance of Hammersley point generation

vs. Halton point generation

6.1.4 Effect of size on the screen

As the size of the volume increases on the screen, the frame rate drops. This is

because it takes longer to render the volume on the screen. This is shown in the graph

in Figure 6.5. We have tested with different sizes of the volume on the screen and for

different lengths of LIC. Irrespective of the length, the time taken to render the

volume is lesser when it size is lesser. Again, for different lengths, the time taken to

render the volume for smaller lengths of LIC is lesser.

 68

Effect of size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

350 400 450 500 550 600 650 700

Screen size in pixels(Height = Width)

Ti
m

e
ta

ke
n

 to
 re

nd
er

 fo
r d

iff
er

en
t s

cr
ee

n
si

ze
s

(in

se
cs

.)

Length=0

Length=5

Length=10

Figure 6.5: Effect of size on the screen

6.2 Vector Fields Used

We have tested our implementation of LIC using two different vector fields. The

vector field shown in Figure is created using an equation that describes flow around a

corner [19]. The field in Figure 6.6(b) is created using an equation that describes a

solenoidal vector field. A solenoidal vector field has zero divergence. It is generated

using the equation:

Vx = (y2+z2)yz

Vy = (x2+z2)xz

Vz = (x2+y2)xy

where Vx, Vy, and Vz are the x, y and the z components of the vector field [27].

 69

(a) (b)

Figure 6.6: Different vector fields
(a) Flow around a corner (b) A solenoidal vector field

The following images show the results that we obtained with the solenoidal vector

field.

 (a) (b)

Figure 6.7: Solenoidal field (a) Solenoidal vector field (b) With sparsity (Hammersley

distribution)

 70

(a)

(b)

 (c) (d)

Figure 6.8: Sparsity with different distributions (a) Poisson disk distribution
(b) Halton points (c) Jittering (d) Hammersley points

6.3 Zoom In

The purpose of introducing sparsity is that the observer can peer through the stream

lines to get a better look of the inner part of the vector field and thus understand the

inner details of the field. This is shown in Figure 6.9. Note that Figure 6.9 looks very

 71

much like zooming into an Impressionist painting. We believe that there are some

interesting interactive painterly rendering opportunities with this method.

Figure 6.9: A zoomed in view

6.4 Nearest Vs. Linear Filtering

Nearest filtering takes into account the color of the texel in the texture map that is

closest to the center of the point being textured. Linear filtering takes the weighted

average of the colors of the eight neighboring texels (in the case of 3D texture maps).

Nearest filtering is slightly faster, but linear filtering produces nice smooth lines. In

our case however, there is more value in clearly viewing the streamlines than in

having a smooth blended appearance. Nearest filtering (Figure 6.10(a)) does a better

job of maintaining the distinction between individual streamlines than linear filtering

(Figure 6.10(b)) which blurs the lines too much. Hence we make use of nearest

filtering for our application.

 72

 (a) (b)

Figure 6.10: Effects of different types of filtering for texture mapping (a) Nearest
filtering (b) Linear filtering

6.5 Limitations of 3D LIC and how they are overcome

The following are some of the disadvantages of using LIC for 3D vector field

visualization. We follow each limitation with a note on how we overcome such

limitations.

(a). The computation of streamlines is expensive. The cost of computation increases

as the length of the convolution kernel (i.e. the user defined length) increases. This is

because at each point, more pixels have to be accessed. The use of GPU speeds up

this process.

(b). As shown in the images of Figure 4.4, LIC provides only a global behavior of the

3D vector field. The resulting images are cluttered and limited information is

available about the local nature of the field. Cutting planes and 3D patterns enable

the user to explore local regions.

 73

(c). The resulting images are dense. Hence it is difficult to perceive the flow. The

flow on the inside of the volume is not seen. Introduction of sparsity overcomes this

limitation.

(d). As seen in Figure 6.11, unnecessary details (such as regions of low magnitude

which the user is not interested in viewing) are present in the flow. In Figure 6.11 the

highlighted areas indicate areas of the vector field where the magnitude of the field is

very low. They represent areas of the vector field that are of little or no significance.

In some applications it may be desirable that they are not present in the output image.

Varying opacity as a function of magnitude highlights regions of higher magnitude.

Figure 6.11: Unnecessary details in the 3D LIC image

(e) Scalar information of the flow like the magnitude of the vector field is not present.

Color coding of the vector field incorporates such scalar information.

(f) Spatial organization of the vector field is not clear. Subtle depth differences are

not perceived. i.e. the relative positions of the streamlines are not portrayed

effectively. The use of stereographics and lighting improves depth perception.

 74

7. CONCLUSIONS AND FUTURE WORK

In this project we have implemented several techniques to allow the users to gain a

good insight into the three-dimensional vector field under study that is displayed

using the LIC algorithm. These techniques make use of the capabilities of the GPU to

speed up the process. The methods that we have employed, such as the introduction

of sparsity and the use of stereographics, make it easier for the user to explore and

analyze the 3D vector field, which is otherwise dense and cluttered. Overall, we are

very pleased with using the GPU to perform interactive 3D LIC analysis. The speed

allows us to change LIC parameters, employ the various techniques and have the

display respond at interactive rates. This has given us a much more complete insight

into the overall nature of a 3D flow field, unlike anything we have achieved with

other methods.

One interesting characteristic of fragment program methods is that they are generally

window-size dependent, not data-size dependent. That is, increasing the size of the

window causes more fragments to need to be drawn, which increases the number of

calls to the fragment code. This characteristic cuts both ways. The good news is that

the viewer can automatically increase the density of the LIC display simply by

enlarging the window. The bad news is that the display time goes up with the square

of window dimension.

However, GPU speed trends soften that bad news. As shown in Figure 7.1, GPU

performance is on an even steeper path than Moore’s-law general processors. Thus,

we know that any visualization methods that employ GPU programming are going to

be faster in the future. This will let us deal with larger 3D flow datasets and higher

resolution displays.

 75

Figure 7.1: GPU Speed Trends

Also, one of the disadvantages of using shaders is that debugging is difficult. There is

no standard way to help programmers debug and detect errors.

LIC volumes are inherently difficult to look at in that the data in front hides the data

behind it. Among the methods that we used to introduce sparsity, Poisson-Disk

distribution gives good results. Changing the number of points interactively was not

possible due to the complexity of the algorithm. One venue for future work would be

to use more complex data structures and implement quicker versions of Poisson-Disk

distribution.

Further, we would like to expand our techniques to incorporate the capability to

visualize unsteady vector fields as well. We would also like to analyze how the

increase in the number of vertex and fragment processors on the GPU will increase

the speed of our LIC implementation.

 76

REFERENCES

[1] Brian Cabral, Leith (Casey) Leedom. Imaging vector fields using line integral
convolution. Proceedings of SIGGRAPH ’93, pages 263-270.

[2] Rezk-Salama C., Hastreiter P., Teitzel C., Ertl T. Interactive exploration of
volume line integral convolution based on 3D-texture mapping. Proceedings
IEEE Visualization’ 99, pages 233--240.

[3] Han-Wei Shen, Christopher R. Johnson, Kwan-Liu Ma. Visualizing vector
fields using line integral convolution and dye advection. Symposium on
Volume Visualization, pages 63--70, 1996.

[4] Detlev Stalling, Hans-Christian Hege. Fast and resolution independent line
integral convolution. Proceedings of SIGGRAPH '95, pages 249-256.

[5] Victoria Interrante. Illustrating surface shape in volume data via principal
direction-driven 3D line integral convolution. Proceedings of SIGGRAPH ‘97,
pages 109 – 116.

[6] Victoria Interrante, Chester Grosch. Strategies for effectively visualizing 3D
flow with volume LIC. In Yagel and Hagen, editors, Proceedings of
Visualization '97, pages 421-424.

[7] J.J. van Wijk. Spot noise-texture synthesis for data visualization. Proceedings
of SIGGRAPH '91, volume 25, pages 263--272.

[8] Jarke J. van Wijk. Image-based flow visualization. Proceedings of
SIGGRAPH’2002, pages 745-754.

[9] Heidrich, W., Westermann, R., Seidel, H.-P., Ertl T. Applications of pixel
textures in visualization and realistic image synthesis. ACM Symp. Interactive
3D Graphics, pages 127 – 134, 1999.

[10] Bruno Jobard, Gordon Erlebacher, M.Yousuff Hussaini. Hardware accelerated
texture advection for unsteady flow visualization. Proceedings of the IEEE
Visualization’ 2000, pages 155 – 162.

 77

[11] Oleg A.Potiy, Alexey A.Anikanov. GPU-based texture flow visualization.
Proceedings of Graphicon, International Conference on Computer Graphics
and Vision, 2004.

[12] Daniel Weiskopf , Thomas Ertl. GPU-based 3D texture advection for the
visualization of unsteady flow fields. Proceedings of WSCG’2004.

[13] Robert L.Cook. Stochastic sampling in computer graphics. ACM Transactions
on Graphics, vol 5, issue 1, pages 51-72, 1986.

[14] Don P.Mitchell. Spectrally optimal sampling for Distribution Ray Tracing.
Proceedings of SIGGRAPH' 91, pages 157—164.

[15] Tien-Tsin Wong, Wai-Shing Luk, Phen-Ann Heng. Sampling with
Hammersley and Halton points. Journal of Graphics Tools , vol. 2, no. 2,
1997, pages 9-24.

[16] Malte Zockler, Detlev Stalling, and Hans-Christian Hege. Interactive
visualization of 3D-vector fields using illuminated streamlines. Proceedings
of IEEE Visualization '96, pages 107-- 113.

[17] Xiaoqiang Zheng, Alex Pang. HyperLIC. Proceedings of IEEE Visualization
03, pages 249-256.

[18] http://www.princeton.edu/~asmits/Bicycle_web/streamline.html

[19] David Knight and Gordon Mallinson. Visualizing unstructured flow data
using dual stream functions. Visualization and Computer Graphics, IEEE
Computer Society, Vol 2, No 4, pages 355 – 363, 1996.

[20] Interactive Computer Graphics, A Top-Down Approach using OpenGL.
Edward Angel. Third edition, Addison Wesley, 2002.

[21] Fundamentals of Computer Graphics. Peter Shirley. Second edition, AK
Peters Ltd., 2005.

[22] The Visualization Handbook. Charles D.Hansen, Christopher R.Johnson.
Academic Press, 2004.

 78

[23] OpenGL Shading Language. Randi Rost. Addison-Wesley, 2006.

[24] OpenGL Programming Guide. Dave Shreiner, Mason Woo, Jackie Neider,
Tom Davis. Fifth edition, Addison Wesley, 2005.

[25] http://www.cs.unc.edu/~rademach/glui/src/release/glui_manual_v2_beta.pdf

[26] Let us C. Yashavant Kanetkar. Third edition, BPB publications, 1999.

[27] Vector Analysis for Engineers and Scientists. P.E.Lewis and J.P.Ward.
Addison Wesley, 1989.

[28] http://www.lighthouse3d.com/opengl/gls

[29] http://web.cs.wpi.edu/~matt/courses/cs563/talks/antialiasing/stochas.html

[30] http://web.engr.oregonstate.edu/~mjb/cs553/Handouts/Stereo/stereo.pdf

[31] http://www.bluevoid.com/opengl/sig99/advanced99/notes/node314.html

[32] http://developer.3dlabs.com/documents/

[33] http://oss.sgi.com/projects/ogl-
sample/registry/ARB/GLSLangSpec.Full.1.10.59.pdf

[34] http://mew.cx/glsl_quickref.pdf

