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The Line Integral Convolution (LIC) is a mainstay of flow visualization. It is, 

however, computationally intensive, which limits its interactivity. Also, when used to 

view three-dimensional (3D) vector fields, the resulting images are dense and 

cluttered, making it difficult to perceive the flow on the interior parts of the field. 

This thesis describes research to make the 3D LIC more interactive by implementing 

it on the Graphics Processor Unit (GPU). It also includes methods to improve the 

clarity of the 3D LIC images. The volume dataset and a 3D noise volume are placed 

in GPU memory as 3D textures. The GPU is then used to perform the LIC 

computations and display the resulting volume. This allows the user to dynamically 

adjust LIC parameters and derive more insight into the 3D flow field. Various 

techniques such as introduction of sparsity and the use of stereographics help to de-

clutter the scene. Resulting images and timing benchmarks are included.  
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INTERACTIVE 3D LINE INTEGRAL CONVOLUTION ON THE GPU 

 

1. INTRODUCTION 

 

Vector Field Visualization has been an active area of research in scientific 

visualization. Vector fields are differentiated from scalar fields in that they have both 

magnitude and directional information. Vector field visualization is needed to 

visualize and hence to better understand flow patterns. It has wide spread applications 

in areas including scientific visualization, computational fluid dynamics and even 

artistic domains. Figure 1.1 shows a two-dimensional circular flow field. In this 

simple visualization, the directional information is encoded using the arrow heads. 

Scalar information like the magnitude of the field is encoded with color as well as 

with the length of the arrows. Thus areas in the center part of the field have low 

magnitude. The magnitude of the field increases with distance from the center of the 

field.  

 

 
Figure 1.1: A 2D circular vector field 

 
 

 A major application area of vector field visualization is in computational fluid 

dynamics. Fluid flow plays an important role in several fields of study such as in 

determining the air flow around the wings of an aircraft, representing the interaction 
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of molecules, studying the flow of fluids through pipes, depicting weather patterns, 

traffic flow, portraying the blood flow through arteries etc. In these cases the vector 

field is the velocity field of the element under study. Visualization of these vector 

fields, which have directional information, is crucial for understanding and analyzing 

the flow characteristics, such as convergence and divergence, curl and vorticity. 

 

Techniques for vector field visualization can be grouped into three categories: (1) 

icon based-techniques (an example is shown in Figure 1.1), (2) particle tracing-based 

techniques, and (3) texture-based techniques. The first two methods tend to be 

dependent on the initial placement of icons and seed points respectively. They are 

likely to miss important details in the field as well. Icon-based techniques also clutter 

the screen. 

 

At present, texture-based methods are a popular means of vector field visualization. 

These methods give dense and detailed stream-lined images. Streamlines are curves 

that are everywhere tangential to the flow. The dense representation of texture-based 

methods has the advantage that important features of the vector field can be better 

maintained. One of the well-known texture-based methods used for visualizing vector 

fields is Line Integral Convolution (LIC) [1]. It takes an input texture image and a 

vector field and filters the input texture along local streamlines defined by the vector 

field to produce an output image. The output image clearly shows almost all aspects 

of a vector field like sinks, sources, vortices and discontinuities. Thus, LIC is not 

dependent on the placement of streamlines or seed points. However we have to note 

that since LIC is dependant on the sampling rate, features can still be missed. Figure 

1.2 shows the LIC representation of the circular vector field shown in Figure 1.1. 
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Figure 1.2: A 2D circular field mapped on to a texture 

 

LIC has been widely used for many purposes including the following: 

• Image processing to produce painterly effects of images by using the edge field of 

the image as the underlying vector field [1] 

• Motion blurring using variable length LIC [1] 

• Wind velocity visualization [1] 

• Interactive flow visualization for an improved medical diagnosis of blood vessel 

malformations [2] 

• 3D combustion simulation [3] 

• 3D tornado simulation [3] 

• Radiation therapy treatment planning [5] etc. 

  

Line integral convolution enables us to visualize large and detailed vector fields in a 

reasonable display area. It selectively blurs a reference image as a function of the 

vector field to be drawn. LIC is widely used for viewing 2D vector fields. However, 

when LIC is used to visualize 3D vector fields it becomes difficult to view the interior 

of the vector field i.e. the vector values in the interior of the volume domain. The 

field is cluttered and dense. As a result of this, the inner part of the field remains 

hidden. Also LIC is computationally expensive in 3D. Hence the use of LIC for 3D 
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vector field visualization has always been limited [6]. Figure 1.3 shows a 3D vector 

field mapped using LIC. The vector field that is mapped describes a flow around a 

corner. The dense nature of the texture occludes most of the details of the vector field 

inside the cube. 

 

 
Figure 1.3: A 3D field mapped using LIC 

 

This thesis focuses on ways to enhance the clarity of the images of 3D flow using 3D 

LIC. The implementation of 3D LIC is done on the GPU. We have implemented 

various techniques that would allow the user to explore different parts of the field 

interactively. Several methods are employed to introduce sparsity into the field so that 

the user can peer through the field and gain a good impression of the inner details of 

the field that are otherwise hidden. Figure 1.4 shows a 3D LIC image that we have 

obtained as a result of applying our techniques. We have used the same field that is 

mapped in Figure 1.3. The vector field is more discernible now, especially when it 

can be interactively manipulated on the screen. 
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Figure 1.4: A clearer 3D LIC image  

 

We use OpenGL shaders to implement 3D LIC. This greatly enhances the speed of 

rendering by removing computational burden from the CPU and by delegating the 

workload to the Graphics Processor Unit (GPU). Our user interface allows the user to 

explore the 3D vector field at interactive rates. The implementation is done in C++ 

with OpenGL as the API. GPU programming is done using the OpenGL Shading 

Language. 

 

This thesis discusses the various features of our implementation and is organized into 

several chapters. The second chapter describes the related work done by earlier 

authors on vector field visualization, texture based methods in vector field 

visualization and in particular Line Integral Convolution. The third chapter provides a 

detailed description of the LIC algorithm in 2D and its implementation details on the 

GPU. The fourth chapter discusses our implementation of the LIC algorithm in 3D. It 

also provides an insight into our volume rendering approach. The next chapter 

presents the techniques that we have used to improve the clarity of 3D LIC images 

and thus overcome some of the limitations of 3D LIC. The sixth chapter dwells on the 

results of our implementations and observations. The final chapter concludes by 

providing some avenues for future enhancements. 



 
 
 

 

 

                                                                                                                                      6 

 

2. PREVIOUS WORK 

 

Some of the early methods to visualize vector fields include icon-based methods, 

particle traces and streamlines. Icon-based methods make use of 3D objects like 

arrows that are aligned with the vector field at a point [31]. The color of the object is 

used to encode scalar information like the magnitude of the vector field at that point. 

However these methods tend to clutter the screen and hence they are mostly used to 

visualize small vector fields (i.e. fields with less density). 

 

Particle methods trace out the path of a weightless particle according to the vector 

field [31]. Suppose the initial position of the particle, i.e. the seed point, is given by 

(x(0),y(0),z(0)), then the aim is to find out how the path (x(t),y(t),z(t)) evolves over 

time. This method is also known as particle advection. The positions of the particles 

along a path are animated to give a sense of flow through the field.  

 

Streamlines are lines that are everywhere tangential to the flow [18]. They can be 

rendered as lines or as thin flat ribbons or as tubes. Streamlines are good for showing 

the flow direction. However, particle traces and streamlines have the disadvantage 

that they may miss some eddies or currents in the vector field. They are heavily 

dependent on the placement of seed points or streamlines respectively. 

 

Texture-based techniques are currently gaining popularity because they consider all 

the information provided by the data and give dense and detailed representations of 

the vector field. They are independent of the initial placement of seed points and they 

capture all details of the field as well. 

 

One of the prominent methods of flow visualization is spot noise texture synthesis 

[7]. Spot noise texture is generated as weighted and randomly positioned spots. 

Variations of spot size, width, shape etc. lead to local control of the texture. A strong 
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relationship exists between the features of the spot and the features of the texture. 

When used for vector field visualization, the spots are elliptically stretched along a 

line tangential to the vector field direction. However, if the ellipse major axis exceeds 

the local length scale of the vector field, the spot noise will inaccurately represent the 

vector field. 

 

Image Based Flow Visualization (IBFV) [8] is one of the well-known texture-based 

methods for vector field visualization. This method distorts a mesh at each time-step 

according to the flow at that instance of time. Then it maps the image obtained from 

the previous iteration to the distorted mesh. The distorted image is then blended with 

a new noise image and this becomes the image for the current iteration. Blending 

helps to keep the distortion within the viewport. This method gives smooth 

animations of pathlines and it handles unsteady fields as well.  

 

One of the popular texture-based techniques is Line Integral Convolution (LIC). The 

LIC algorithm, proposed by Brian Cabral and Leith (Casey) Leedom [1], is a 

modification of the DDA convolution algorithm. In the DDA convolution algorithm, 

a DDA generated filter kernel is defined as a line tangential to the vector field at a 

given point and extending for a fixed distance L in the positive and the negative 

direction. The pixels in the input texture are then filtered along this kernel to produce 

the output image. The main defect of this algorithm is that the output is heavily 

dependent on the shape of the filter. Also, if the length of the kernel is larger than the 

local radius of curvature at a point, then minute variations in the field are missed. The 

LIC algorithm described in [1] defines the filter kernel to be the local streamline at a 

point. Hence small details in the vector field are not missed by the LIC algorithm. We 

should note here that the same modification that was applied to the DDA algorithm 

can be applied to the spot noise algorithm that was discussed earlier. But the 

algorithm to stretch the spots along the local streamline direction is more complex 

and expensive than LIC. 
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However, the LIC algorithm is quite expensive, since to calculate the intensity at each 

point, all points on the streamline that passes through it are accessed. A method for 

increasing the speed of LIC by reducing the number of streamline computations is 

described in [4]. The method is based on the fact that adjacent pixels on the same 

streamline need to access almost the same pixels to perform integration. 

Recalculation of the streamline is avoided. This method makes LIC resolution 

independent and provides smooth texture animations. 

 

Also, when LIC is applied to 3D vector fields, the parts of the vector field at the 

farther end of the user are obscured by the parts of the vector field near the user. This 

is due to the dense nature of the texture based methods. To overcome such 

limitations, many solutions have been proposed. The use of transfer functions and 

clipping mechanisms for the interactive exploration of 3D LIC images is discussed in 

[2].  This method defines a region of interest (ROI) to explore a part of the field 

alone. However once it is specified the ROI is fixed and cannot be changed. Two 

approaches to animation are also used. The first one uses a precomputed 3D LIC 

texture that is animated by color look-up tables. The second approach uses time 

volumes to interactively clip the 3D LIC volume.  

 

The use of dye advection to highlight local features in the flow is explained in [3]. 

LIC is used for the global vector field view. When dye is introduced at a point, LIC 

smears the dye across the local streamline at the point. To get a sense of flow 

direction, only points in the downstream direction that correspond to cells whose 

negative streamlines pass through the dyed areas are colored. So to easily locate such 

cells, the method makes use of a flow back directed graph. A ‘bivariate’ volume 

rendering technique is used to display the propagation of the dye through the volume. 

Both of the methods described above provide means of visualizing the local features 

of the flow. Yet, the streamlines in the 3D flow are still cluttered together and 

obstruct each other. Depth information is also obscure. 
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Several ways to indicate the presence of depth discontinuities in 3D LIC images are 

proposed in [6]. It uses a sparse input noise texture to reduce cluttering of streamlines. 

It also uses color coding of streamlines and visibility impeding halos for the 

streamlines. To display the halos, two noise textures are used; one with larger scan 

converted spots. When LIC is performed on both the textures and when the resulting 

images are combined, each streamline in the second texture becomes the halo of the 

corresponding streamline in the first texture. The halos are rendered in the following 

manner. The number of times a ray has already hit a halo is kept track of. The opacity 

of a halo is then reduced as a function of the number of times the ray has encountered 

a halo. Thus halos of streamlines that are closer to the user are brighter. This method 

is not very efficient in cases where the streamlines are short and lack continuity 

information. The use of LIC to illustrate the surface shape is described in [5]. The 

vector field (i.e. the tensor field) in this case is taken to be the principal direction. In 

this method, a sparse input texture is used. When the sparse texture is advected 

strokes are obtained. The stroke width, length, color etc. are used to encode some 

scalar information. In [17], a multi-pass approach is introduced to visualize the 

anisotropy in symmetric 2D and 3D tensor fields.  The method is similar to LIC 

except that instead of using noise texture values along the streamline, noise texture 

values in the vicinity of the streamlines are also used [17].  

 

Several methods employ the capabilities of the underlying hardware to speed up the 

visualization of 3D vector fields. A means of applying lighting to the streamlines 

using the texture mapping capabilities of the underlying graphics hardware is 

provided in [16]. Reflection on streamlines increases the perception of depth. 

Transparency is used as a means of differentiating between the forward and the 

backward direction of the streamlines. The placement of streamlines in regions of 

interest is guided by statistical methods. A method is discussed in [10] for texture 

advection using the graphics hardware capabilities. It makes use of texture maps, 

pixel textures, hardware frame buffers etc. The disadvantage of this method is that 
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hardware resources like buffers are limited in number. 

 

Unsteady flows are visualized using the GPU in [11]. It uses Image Based Flow 

Visualization (IBFV) as the underlying algorithm for both 2D and 3D visualizations. 

Texture advection is performed on the GPU in [12]. On every iteration, a single slice 

of the 3D texture is advected. Texture based volume rendering is used to display the 

final result. An implementation of LIC on hardware is described in [9]. It implements 

LIC using pixel textures. To implement LIC using pixel textures, the noise values are 

provided in a luminance texture. The vector field is encoded using two textures; one 

for the positive component and the other for the negative component of the field. For 

each integration step, the pixels are accessed from the frame buffer and appropriate 

mapping is done. Numerical integration, interpolation of the vector field and the input 

noise field are all done taking advantage of the texture mapping capabilities of the 

hardware.  

 

Thus methods have been employed to access the local features of the LIC images, to 

enhance the depth relationships of streamlines in 3D LIC and to perform LIC on the 

hardware. However, the problem of cluttering of streamlines and the inability to view 

the 3D vector field clearly has not been completely solved.  

 

In this thesis we use different techniques and propose ways to improve the display of 

3D LIC images. We focus on implementing 3D LIC using GLSL GPU programming 

and on ways to improve the clarity of the 3D LIC images, exploiting the capabilities 

of the GPU. The use of shaders for 3D LIC improves the performance of the LIC 

process. Also it allows for faster interactive exploration of the 3D LIC flow volume. 
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3. 2D LINE INTEGRAL CONVOLUTION (LIC) 

  

In this chapter, we discuss our implementation of 2D LIC on the Graphics Processor 

Unit (GPU). Before discussing the implementation details of 2D LIC on the GPU, we 

provide an overview of the OpenGL Shading Language. 

 

3.1 Basics of the OpenGL Shading Language (GLSL)  
  

GLSL stands for the GL Shading Language [23]. It is a high level programming 

language that includes many features of the C programming language. It incorporates 

many features of the C++ programming language as well. It has been created by the 

OpenGL ARB as a means of providing programmers access to the lowest level 

graphics hardware. 

 

GLSL allows programmability in the vertex and the fragment processing parts of the 

pipeline. Figure 3.1 shows the fixed functionality graphics pipeline and the 

highlighted regions indicate the functionalities that are programmable. 
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Figure 3.1: Graphics pipeline 

 

The vertex processor replaces the following functionality of the OpenGL pipeline: 

• Vertex transformations 

• Normal normalization 

• Normal transformations 

• Texture coordinate generation and transformation 

• Per vertex lighting 

 

The fragment shader replaces the following functionality of the OpenGL pipeline: 

• Color computation 

• Fog 

• Texture application 

• Normal computation for per-pixel lighting 

 

Vertex Processing 

Primitive Assembly 

Rasterization 

Frame buffer operations 

Display 

Fragment Processing 

Vertices from the CPU

Fragments 
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If a vertex (or a fragment) processor is used to implement one of the above mentioned 

functions, then the vertex (or fragment) processor should be used to implement all the 

functions that it replaces. 

 

The datatypes supported by GLSL include int, float, bool, vectors, matrices, arrays, 

structures and samplers for texture access. For the purpose of communication, GLSL 

provides four types of variable qualifiers. The qualifiers and their purpose are shown 

below. 

 

Table 3.1: GLSL Qualifiers 

Qualifiers Purpose 

Attribute Used to pass frequently changing per vertex information from the 

application to the vertex shader. They are read-only variables in 

the vertex shader. 

Uniform Used to pass infrequently changing information from the 

application to the vertex and the fragment shaders. They are also 

read-only variables in both the shaders. 

Varying Used to pass interpolated data from the vertex shader to the 

fragment shader. Varying variables are written in the vertex 

shader but are read-only in the fragment shaders. 

Const Used to indicate compile time constants.  

 

3.2 The LIC algorithm 

 

A 2D vector field is mapped on to a 2D image by the following process: 

• Each output pixel is obtained as the sum of the values of the pixels in equally 

spaced intervals along the local streamline originating at that point and 

moving in both directions [1]. 
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• The sum is normalized so that the intensity of the pixels remains constant over 

the image.  

• Thus, given a point p in the input vector field, the local streamline at that point 

is taken as the convolution kernel K(p). 

•  The corresponding output pixel F’(p) is obtained as the weighted sum of the 

values of the input image F along K(p). The discretized version of this 

equation can be given as 

  
∑

∑

−=

−== L

Li

L

Li

ih

ihiKF
pF

)(

)())((
)('  

where L is the user defined distance for which we move in the positive and the 

negative direction along the local streamline. 

 

We have made use of a noise texture as our input image. This is because a noisy 

image is highly uncorrelated without patterns and hence when a vector field is 

mapped to it, the vector field is seen clearly. We discuss noise in more detail later in 

this chapter. 

 

Figure 3.2 describes the basic operation of Line Integral Convolution. It shows how 

LIC is applied to a single pixel on the image. The same procedure is applied to all the 

pixels in the image. At the end, the noise texture is squished and stretched along the 

local streamlines of the vector field.  
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Figure 3.2: A single step of the LIC process 

 

3.3 LIC Implementation on the GPU 

 

3.3.1 Vertex Shader  

 

In the vertex shader, the texture coordinates for the vertex are computed and stored in 

the varying variable gl_TexCoord[i], where i indicates the multi texturing level. The 

texture parameters and the texture wrapping modes are defined by the application 

 - a pixel on the input noise texture. 

 - the local streamline (defined by the 
input vector field) that originates at the 
pixel and goes for a user-defined 
distance in the positive and negative 
directions. The green dots show the 
pixels along the streamline. 

 - the pixels in the input image 
corresponding to the positions on the 
local streamline are accessed. 

 - the value of the pixel in the final 
image is obtained as the normalized 
sum of the values along the local 
streamline. The values are weighted as 
a function of distance. 
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itself. The function ftransform() transforms the incoming vertex by the ModelView 

and the Projection matrices and the final transformed vertex position is written to the 

special output variable gl_Position. 

 

 
Figure 3.3: Vertex shader performing 2D LIC 

 

3.3.2 Fragment Shader 

 

Both the input texture (ImageTexture) and the vector field (VectorTexture) are passed 

as uniform variables from the application as texture samplers. The user defined length 

of convolution and other user defined parameters are also passed as uniform 

variables. The texture coordinates for the incoming fragment are obtained using vec2 

st = gl_TexCoord[0].st. The texture values of the incoming fragment are obtained 

using the texture2D function. This function takes the texture unit and the texture 

coordinates  (s and t) as arguments and returns the corresponding texel value. The 

vector field at that position is obtained as vec2 v = vec2( texture2D( VectorTexture, st 

)). The value of the input image corresponding to that position is obtained as vec3 

color = vec3(texture2D( ImageTexture, st )). We then move along the local 

streamline in the positive (negative) direction using vstst ±= . At each point the 

corresponding color of the input image is added to the net color. The normalized sum 

of the colors at the points that we visit is the final color of the fragment and it is 

assigned to the special built-in variable gl_FragColor.  

 

 

void main(void) 
{ 
 gl_TexCoord[0] = gl_MultiTexCoord0; 
 gl_TexCoord[1] = gl_MultiTexCoord1; 
 gl_Position = ftransform(); 
} 
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Figure 3.4: Fragment shader performing 2D LIC 

 

 

 

 

uniform sampler2D ImageTexture;  
uniform sampler2D VectorTexture; 
uniform int Length;  
uniform float TwoOverRes; 
uniform float OneOverNum; 
uniform int Bias; 
int i; 
vec2 v;  
int LengthP; 
void main( void ) 
{ 
 vec2 st = gl_TexCoord[0].st;  
 v = vec2( texture2D( VectorTexture, st ) );  
 v -= vec2(.5,.5); 
 v *= TwoOverRes; 
 vec3 color = texture2D( ImageTexture, st ); 
 st = gl_TexCoord[0].st; 
 LengthP = Length - Bias; 
 for(i=0;i<LengthP;i++) 
 { 
  st -= v;   
  st = clamp( st, 0., 1. ); 
  color += texture2D( ImageTexture, st ); 
  v = vec2( texture2D( VectorTexture, st ) );  
  v -= vec2(.5,.5); 
  v *= TwoOverRes; 
 } 
   st = gl_TexCoord[0].st; 
 LengthP = Length + Bias; 
 for(i=0;i<LengthP;i++) 
 { 
  st += v; 
  st = clamp( st, 0., 1. ); 
  color += texture2D( ImageTexture, st ); 
  v = vec2( texture2D( VectorTexture, st ) ); 
  v -= vec2(.5,.5); 
  v *= TwoOverRes; 
 } 
 color *= OneOverNum;    
 gl_FragColor = color; 
} 
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3.3.3 User Interface and Parameters 

 

Our user interface for 2D LIC is created using the Graphics User Interface Library 

(GLUI) [25]. Range sliders are provided to let the user vary parameters like the length 

and bias. Length indicates the number of steps we take from a point, in the positive 

and the negative direction along the local streamline at that point. Bias is used to 

provide an animation effect. It is used to increase (and decrease) the distance for 

which we move in the positive (and negative) direction. Hence as the user moves the 

slider corresponding to this parameter, the vector field has the effect of moving. We 

have tested our implementation using a circular vector field. 

 

3.4 Noise 

 

Noise is used as the input image. Some of the desired characteristics of noise are that 

noise needs to be continuous and repeatable and yet give the appearance of 

randomness. This means that the function that is used to create noise should be able to 

provide the same output value for a given input. This is essential in cases where we 

need to draw an object in different angles or when we want to draw the same object in 

an animation sequence [23]. If noise is not repeatable, the object would look different 

every time it is drawn. But noise should not have regular patterns.  

 

Since a noise image is highly uncorrelated, when a vector field is mapped to it, the 

streamlines are more clearly seen. Our input noise image is created using a positional 

noise function.  

 

3.4.1 Positional Noise 

 

Positional noise depends on the placement of random numbers and so it may not be 

well distributed in the given range (Figure 3.5). But it is simple to generate and serves  
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our purposes well. 

 

 
Figure 3.5: Positional noise 

 

We have used a circular vector field to test our implementation of 2D LIC. We have 

tested with simple images as well as with the noise images created. (Figure 3.6, 3.7). 

 

 
Figure 3.6: 2D noise  

 
Figure 3.7: 2D LIC - A circular vector 

field 
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3.5 Time Varying Fields 

 

LIC has been traditionally used for viewing static vector fields. We have 

experimented with the use of LIC for time varying 2D vector fields as well. In order 

to do this, we have made use of a simple vector field defined as: 

));*2(sin(
));*2(cos(

TimesyV
TimesxV

−=
−=

 

where xV  is the horizontal component of velocity 

           yV is the vertical component of velocity 

             s  is the s value of the texture coordinate. 

 

The Figure 3.8 shows the field at different times. In our user interface we have a 

slider that controls the value of time. As the user moves the slider, the field moves 

showing the vector field at different times.  

 

 
(a)                                                 

 
(b)
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(c) 

 
(d)

 
(e) 

 
(f)

Figure 3.8: Time varying vector field (a) Time = 0 (b) Time = .1 (c) Time = .2  
(d) Time = .3 (e) Time = .4 (f) Time = .5 

 

 

 

 
 

 

 



 
 
 

 

 

                                                                                                                                      22

 

4. 3D LINE INTEGRAL CONVOLUTION 

 

The process of mapping a 3D vector field to a 3D texture image is the same as 

discussed for mapping a 2D vector field to a 2D texture image. The input noise 

texture is blurred locally by using the local streamline at a given point as the 

convolution kernel at that point.  The local streamline originates at the given point 

and goes in the positive and the negative direction for a user defined distance. In the 

case of 3D LIC, the local streamline is in three dimensions. Hence in the output 

image, the intensity values are related to the vector field’s flow direction. 

 

4.1 Volume Rendering 

 

4.1.1 3D Noise generation 

 

3D LIC requires volumetric data to which the 3D vector field can be mapped. In 3D 

LIC, the vector field is mapped to a 3D texture image. The 3D input texture image is 

a 3D noise data set. We create our volumetric noise data as an RGBA volume. The 

RGBA volume is described as a 3D four-vector data set. The R, G and B values 

correspond to the Red, Green and the Blue components of the noise. In our case, we 

create grayscale noise and hence these values are the same for a given point. A stands 

for the Alpha/Opacity value that controls the transparency. We create the noise using 

positional noise as described in the previous chapter. The 3D noise data set is written 

to a file and is read into a 1D unsigned character array in the application. 

 

4.1.2 Volume rendering approach 

 

We now describe the method that we have used to render the volumetric noise data. 

Volume rendering refers to the process of representing a 3D scalar field data. In our 
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case, the scalar field is the noise data. Volume rendering techniques do not make use 

of intermediate geometric representations.  

 

Our volume rendering approach can be described as follows:  

1 The volume is drawn plane by plane from back to front. A routine is used to 

determine which axis closely represents the viewing direction of the user and 

whether it is the positive side of the axis or the negative side of the axis. 

2 Depending on the rotation of the volume and the axis that is facing the user, 

the parallel planes in the X, Y or the Z direction are drawn. For instance, if the 

Z axis is facing the user, then the XY planes along the Z direction are drawn.  

3 The planes are composited from the positive to the negative direction or from 

the negative to the positive direction depending on whether it is the negative 

side of the axis or the positive side of the axis that faces the user. Thus the 

direction of the axis that is facing the user determines the direction of 

composition of the planes. 

 

The images below show the 3D noise data rendered using the method described 

above. The alpha values of all the points are taken to be 1, which means that they are 

completely opaque. In Figure 4.1(a) the positive z axis faces the user. In Figure 4.1 

(b) the negative z axis faces the user. 
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(a) (b)

Figure 4.1: Volume Rendering (a) Positive Z direction (b) Negative Z direction 
 

4.2 Mapping a 3D Vector field to a Texture Image  

 

The 3D vector field is also represented as a 3D texture. At each point in the 3D space 

under consideration, the x, y and the z components of the vector field are calculated 

using the given vector field equation. Then the values of all three components of the 

field, for all the points in the 3D space, are written to a file in the form of bytes. The 

values are initially calculated as floating point numbers. They are then converted to 

lie in the range from (0-255). Hence the three components of the vector field are 

encoded as the red, green and blue colors respectively. We do not use floating point 

textures since not all hardware support them.  In the application program, the file is 

read into an unsigned character array and is passed to the fragment shader to be used 

in performing LIC. 

 

4.3 3D Textures  

 

Texture mapping is a technique that allows us to map a value from an array to a 

corresponding point in space. Texture maps are rectangular arrays of data that can 
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contain color data, luminance data, alpha data etc. The individual values in a texture 

map are called texels [24]. The texture maps can be 1D, 2D, 3D or cube maps. In 3D 

texture mapping, for each point in the 3D space, we find the corresponding texel in 

the 3D texture map space. The 3D point is then colored based on the value of the 

corresponding texel. 

 

3D Texture mapping capability was added to Version 1.2 of OpenGL. A 3D volume 

scene can be created from layers of parallel 2D rectangles. In memory, the rectangles 

are arranged in a sequence [24]. The steps involved in 3D texture mapping and the 

corresponding commands in the OpenGL API and GLSL are as follows [24][23]: 

1 Create a texture object with the glBindTexture command.   

• glBindTexture( GL_TEXTURE_3D_EXT, VectorTextureID ) 

2 Specify how the texture object is accessed with the glTexParameter 

command. This specifies the wrapping mode which can be clamp or repeat. It 

also sets the type of filtering that is used during texture access, which can be 

linear or nearest filtering. The choice of the filtering technique affects the 

clarity of the output of our application. This issue is discussed in detail in a 

later section. 

• glTexParameteri(GL_TEXTURE_3D_EXT, 

GL_TEXTURE_WRAP_S,   GL_CLAMP ) 

• glTexParameteri( GL_TEXTURE_3D_EXT, 

GL_TEXTURE_WRAP_T, GL_CLAMP ) 

• glTexParameteri(GL_TEXTURE_3D_EXT, 

GL_TEXTURE_WRAP_R_EXT, GL_CLAMP) 

• glTexParameteri( GL_TEXTURE_3D_EXT, 

GL_TEXTURE_MAG_FILTER, GL_LINEAR ) 

3 Specify a texture for the texture object. To specify a 3D texture we use the 

function glTexImage3D. There are no universal image file formats for 3D 

data. Hence we store our 3D data in a file of our own design and read it into a 
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1D unsigned character array. This array is provided as the last parameter to 

the function. Our noise data consists of four components – RGBA as 

discussed earlier. Hence the third parameter of the glTexImage3D function is 

set to GL_RGBA to indicate that the number of components in the texture is 

four. Similarly the eight parameter, which indicates the format of the pixel 

data is also set to GL_RGBA. The other parameters of this function indicate 

the resolution, level of detail etc. of the 3D texture. 

• glTexImage3D( GL_TEXTURE_3D, 0, GL_RGBA, NUMX, NUMY, 

NUMZ, 0, GL_RGBA, GL_UNSIGNED_BYTE, VectorTex ) 

4 Enable texture mapping with the glEnable command with 

GL_TEXTURE_3D as its argument.  

• glEnable( GL_TEXTURE_3D ) 

5 Set the active texture unit with the glActiveTexture command. The texture 

unit that is set by this command is the one that is accessed by texture 

coordinate processing commands. The texture unit itself is an underlying 

piece of graphics hardware that performs various texturing operations. 

• glActiveTexture( GL_TEXTURE1 ) 

6 Pass the active texture unit number to the vertex and the fragment shaders as 

a uniform variable. 

• glUniform1i( VectorTextureLoc, 1 ) 

 

The noise data as well as the vector field data are read from a file by the application 

as 3D textures. Each of these textures is bound to a separate texture unit and is passed 

to the vertex and the fragment shaders for processing. 
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4.4 Implementation on the GPU 

 

We now describe the implementation of 3D LIC on the GPU using the OpenGL 

shading language.  

 

4.4.1 Vertex Shader 

 

In the vertex shader, the incoming vertices are transformed by the ModelView and the 

Projection matrices using the ftransform() function. The vertices are written to the 

special output variable gl_Position in clipped coordinates [23]. Compilers may 

generate an error message or the results are undefined if the vertex shader is used for 

vertex processing and no value is stored in gl_Position [23]. The texture coordinates 

are passed from the application using the attribute variable gl_MultiTexCoord0. They 

are stored in the varying variable gl_TexCoord[i], where i indicates the multi-

texturing level used. 

 

 
Figure 4.2: A simplified version of the vertex shader performing 3D LIC 

 

4.4.2 Fragment Shader 

 

As in 2D LIC, the input noise texture (ImageTexture) and the vector field texture 

(VectorTexture) are passed as samplers from the application to the fragment shader. 

The vector field is also represented as a 3D texture. At each point, the x, y and z 

component of the vector field is encoded using the RGB colors of the texture. In the 

fragment shader, the texture coordinates for the incoming fragment are obtained using 

void main( void ) 
{ 
 gl_TexCoord[0] = gl_MultiTexCoord0; 

gl_TexCoord[1] = gl_MultiTexCoord1; 
 gl_Position = ftransform(); 
} 
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vec3 stp = gl_TexCoord [0].stp. The texel value is obtained using the texture3D 

function. This function takes the texture unit and the texture coordinates as arguments 

and returns the corresponding texel value. The vector field at that position is obtained 

as vec3 v = vec3(texture3D( VectorTexture, stp )). The value of the input image 

corresponding to that position is obtained as vec4 color = texture3D(ImageTexture, 

stp ). Then we move along the local streamline in the positive (negative) direction 

using stp = stp ±v.  At each point along the streamline, the corresponding color of the 

input image is added to the net value. Finally the sum is normalized. This is taken to 

be the final color of the fragment and is assigned to the special output variable 

gl_FragColor.  

 

Two other uniform variables - TwoOverRes and OneOverNum are sent to the 

fragment shader from the application. TwoOverRes is defined as (2 / Resolution of 

the volume). The value two in the numerator is used to get the velocity range to be (-

1.,-1.) to (1.,1.). It is divided by the resolution of the image to make the step size to be 

one pixel. OneOverNum is defined as (1/2L) where L is the user defined LIC length. 

It is used to normalize the sum of the colors. Rather than performing the division in 

the fragment shader, these values are sent from the application. This is because the 

division needs to be done only once this way rather than for each incoming fragment. 
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Figure : A simplified version of the fragment shader performing 3D LIC 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: A simplified version of the fragment shader performing 3D LIC 

 

uniform sampler3D ImageTexture;    
uniform sampler3D VectorTexture;   
uniform int Length;                
uniform float TwoOverRes; 
uniform float OneOverNum; 
uniform int Bias; 
int i; 
vec3 v;  
int LengthP;                      
 
void main( void ) 
{ 
 vec3 stp = gl_TexCoord[0].stp;  
 v = vec3( texture3D( VectorTexture, stp ) );  
 v -= vec3(.5,.5,.5); 
 v *= TwoOverRes; 
 vec4 color = texture3D( ImageTexture, stp ); 
 stp = gl_TexCoord[0].stp; 
 LengthP = Length - Bias; 
 for(i=0;i<LengthP;i++)  
 { 
  stp -= v;   
  stp = clamp( stp, 0., 1. ); 
   
  color += texture3D( ImageTexture, stp ); 
   
  v = vec3( texture3D( VectorTexture, stp ) );  
  v -= vec3(.5,.5,.5); 
  v *= TwoOverRes; 
 } 
 stp = gl_TexCoord[0].stp; 
 LengthP = Length + Bias; 
 for(i=0;i<LengthP;i++)   
 { 
  stp += v; 
  stp = clamp( stp, 0., 1. ); 
   
  color += texture3D( ImageTexture, stp ); 
    
  v = vec3( texture3D( VectorTexture, stp ) ); 
  v -= vec3(.5,.5,.5); 
  v *= TwoOverRes; 
 } 

color *= OneOverNum;    
 gl_FragColor = color; 
} 
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4.4.3 User Interface and Parameters 

 

Our user interface for 3D LIC is created using the Graphical User interface Library. 

(GLUI) [25]. Length indicates the number of steps we take from a point, in the 

positive and the negative direction along the local streamline at that point. When 

length increases, the output image is blurred more in the direction of the vector field 

as more pixels are taken into consideration. For our application, the results are good 

for values of length between 7 and 12. This is because enough pixels have to be 

accessed on the streamline to blur the image in the direction of the streamlines of the 

vector field. But if the length is increased further, then it leads to over blurring. Bias 

is used to provide an animation effect in the same way as done for 2D. Both of these 

parameters are user defined and are passed to the fragment shader as uniform 

variables. Our user interface for 3D LIC has several other functionalities as well. 

Those functionalities are described in a later chapter. A snapshot of the user interface 

is provided in the Results chapter. 

 

4.5 Tests with a vector field 

 

The vector field shown in Figure 4.4 is created using an equation that describes flow 

around a corner [19]. The equation is described as follows: 

Vx = -3 + 6.*x – 4.*x*(y+1.) – 4.*z 

Vy = 12.*x – 4.*x*x – 12.*z + 4.*z*z 

Vz = 3. + 4.*x – 4.*x*(y+1.) – 6.*z + 4.*(y+1.)*z 

where Vx,Vy and Vz are the x,y,z components of the vector field.  

           x,y,z are the coordinates of the point under consideration. 
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4.6 Images 

 

The following images show the effect of the length parameter on the output of LIC. 

 

 
(a) 

 
(c) 

 
(b) 

 
(d)

Figure 4.4: Different lengths of LIC (a) Length = 3 (b) Length = 6 (c) Length = 10  
(d) Length = 20 
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5. IMPROVING THE CLARITY OF 3D LIC 
 

The implementation of 3D LIC was discussed in the previous chapter. Some of the 

limitations of 3D LIC include the cluttering of streamlines, inability to efficiently 

perceive depth differences, the dense nature of the 3D LIC images etc. In this chapter, 

we discuss in detail the various methods that we have used to improve the clarity (i.e. 

to reduce the effects of denseness of the 3D texture and cluttering of the streamlines) 

of 3D LIC images. Several techniques are employed to overcome the limitations of 

using 3D LIC for visualizing 3D vector fields.  

 

We have classified the techniques that we have employed into three categories: 

• Methods for improving the global display of the vector field: These methods 

enable the user to get a good global view of the vector field. They aim at 

providing the user with good insight into the inner parts of the vector field as 

well. They also encode scalar data so that as much information as possible is 

conveyed to the user.   

• Methods for enhancing the local display of the vector field: The goal of these 

methods is to allow the user to view and analyze local regions of interest in 

the vector field. 

• Methods for improving depth perception: They increase the clarity of the 

spatial organization of the streamlines in the 3D vector field, thus enabling 

the user to distinguish near parts of the vector field from the far away parts. 

 

5.1 Viewing the vector field globally 

 

Texture-based methods are efficient to display 2D vector fields. But when they are 

used to view 3D vector fields, it can be difficult to obtain a clear global view of the 

field. We have used several methods to enhance the global display of 3D fields. 
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Particularly, the introduction of sparsity into the dense texture lets the user look 

through the field clearly. The following are the techniques employed: 

 

5.1.1 Transparency 

 

The opacity of each point in the 3D space is determined by the alpha value at that 

point. The alpha value is given by the fourth component of the RGBA vector. When 

the alpha value is 1, the point is completely opaque. When the alpha value is 0, the 

point is completely transparent. To introduce transparency, the alpha value is reduced 

below 1.  

 

5.1.1.1 Alpha Blending 

 

In Computer Graphics, transparency is obtained using the method known as Alpha 

Blending. The alpha value (α ) actually specifies how the foreground colors are 

merged with the background colors when they are laid on top of one another. The 

equation for alpha blending is 

Colorfinal = α Colorforeground + (1-α )Colorbackground 

 

In our implementation, as discussed in chapter 3, the planes are composited on top of 

one another. When α  has a value less than 1, the colors of the planes are blended 

together according to the above equation. Initially the alpha value is 1 and only the 

bounding planes are seen. When a lower value of alpha is assigned, the user can see 

through the vector field.  
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5.1.1.2 Implementation 

 

In OpenGL, alpha blending is implemented using the glBlendFunc() function. It 

defines how much of the foreground and the background colors will be used. Before 

using this function, blending is enabled using the glEnable() function with 

GL_BLEND as its argument.  

 

Our implementation allows the user to interactively change the alpha value using a 

slider in the user interface. The alpha value as set by the user is sent as a uniform 

variable to the fragment shader. In the fragment shader, the alpha value that is passed 

as the uniform variable replaces the actual alpha value of the incoming fragment. 

Thus the opacity of the fragment is varied.  

 

The following images show the effect of introducing transparency. We find that 

introducing transparency has limited usage as the vector field is still dense and details 

may be missed because of the transparency factor. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5.1: Transparency (a) Alpha = 1 (b) Alpha =. 2 (c) Alpha =. 5  
(d) Alpha =. 2 (Perspective View) 

 

5.1.2 Encoding magnitude with color 

 

Basic Line Integral Convolution is used to view only the directional information of 

the vector field. It does not show information like the magnitude of the vector field. 

Viewing scalar information like the magnitude of the vector field is important in 

gaining a deep understanding of the nature of the vector field. In our implementation, 

we have encoded this scalar quantity using colors.  

 

5.1.2.1 Implementation 

 

The magnitude of a vector denotes the length of the vector at a point. In other words, 

it shows how strong the vector field is at a particular point. Given a vector R(xv,yv,zv) 

at a point P(x,y,z) the magnitude of the vector at P is given by 

2 2 2
v v vx y z+ + . 
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At each point in the 3D space, we find the magnitude of the vector field. Then we 

encode regions of larger magnitude with red color and regions of lesser magnitude 

with cooler shades. Hence the user is able to get an idea of the magnitude of the 

vector field at a particular region by looking at the colors in that region.  

 

The following images show the effect of encoding magnitude with color in a vector 

field. The red regions are parts of the vector field with a very high magnitude. The 

blue regions are parts of the vector field with lesser magnitude. Regions colored 

yellow indicate the moderate parts of the vector field.     

 

 
(a) 

 
(b)
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(c) 

Figure 5.2: Encoding magnitude with color (a) Without adding Color (b) With Color 
and Transparency (Alpha =. 2) (c) With Color (encoding Magnitude) 

 

5.1.3 Highlighting areas with larger magnitude 

 

As discussed in the previous section, the presence of the portions of the vector field 

with low magnitude is a hindrance to viewing areas with more activity. In some 

applications, areas of low magnitude are not of great significance. Hence it becomes 

useful to highlight areas with high magnitude by reducing the opacity of the areas 

with low magnitude. 

 

5.1.3.1 Implementation 

 

We multiply the input texture’s alpha value by the magnitude of the vector field. 

Hence we assign a low opacity value to those areas with low magnitude. Areas of the 

vector field with a large magnitude are highlighted, giving a clearer display. 
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(a) 

 
(c) 

 
(b) 

  
(d)

Figure 5.3: Highlighting larger magnitude areas (a) Without Magnitude (b) With 
Magnitude (c) With Magnitude and Color (d) With Magnitude and Transparency 

 

5.1.4 Sparsity 

 

Sparsity techniques involve strategically removing part of the detail to reveal the 

overall function. If sparsity is introduced, the individual streamlines are more clearly 

seen. This is because the user can look through the vector field and get a global view 

of the field.  
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5.1.4.1 Define a new texture image  

 

We have introduced sparsity by defining a 3D texture “T2” with certain evenly-

distributed points set to black. The rest of the points in the texture are set to white. 

This texture is then passed on to the shaders. In the fragment shader, every time a 

point is accessed in the streamline computation, a check is made to see if the 

corresponding point in the input texture T2 is equal to black. If so, the current 

fragment is discarded. A fragment is discarded using the discard keyword in the 

shader. This keyword causes the fragment shader to terminate without writing the 

current fragment to the frame buffer [23]. In effect all points on all streamlines that 

pass through the “black” point are not drawn. This introduces gaps between the 

streamlines, enabling the user to look through the vector field and gain knowledge 

about the inside of the field as well.  

 

5.1.4.2 Sampling 

 

The black points should have the following properties: 

• They should not have a regular pattern. The sampling theory states that when 

the samples are regular, the coherence of the samples interfere with the 

coherence of the images to produce aliasing [29]. Aliasing effects appear as 

“jagged edges” in images when high frequencies appear as low frequencies 

producing regular patterns that are easy to see. In our application, if the 

distribution of points is too regular, then the streamlines are broken into smaller 

parts and there is no continuity. 

• They should be as equally spaced as possible. I.e., they should be well 

distributed. If the points are cluttered together in one region, then in our 

application, the streamlines would be discarded to a large extent in that region 

alone. The other regions would still be dense. 
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We have made use of the following sampling methods: (1) Stochastic Sampling and 

(2) Low-discrepancy sequences. We now discuss these methods in detail. 

 

5.1.4.2.1 Stochastic Sampling Methods 

 

The main idea behind stochastic sampling is that when the sampling is irregular, the 

higher frequencies appear as noise rather than as aliases [29]. The human visual 

system is more sensitive to aliases than to noise. Hence better results are obtained 

with stochastic sampling. 

 

(a) Checkerboard distribution 

 

In this method, the texture T2 is created as a 3D checkerboard pattern, with 

alternating black and white texels. In our implementation, the user can control the 

ratio of the number of black texels to white texels using a slider. However this 

distribution lacks randomness. It is a form of regular sampling and hence it leads to 

aliasing effects. This is shown in Figure 5.4. 

 

 
 (a) 

 
(b)

Figure 5.4: Checkerboard distribution (a) Before applying Sparsity (b) With Sparsity 
(~ 23,250 random points) 
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(b) Poisson disk distribution 

 

Poisson disk sampling is a generalization of Poisson Sampling. This distribution is an 

even-looking one. Each random value that is generated is retained only if it satisfies a 

minimum distance constraint. A radius around the point is defined and no two points 

are allowed to be closer than the radius [13]. Also, the points are placed as close as 

the radius will allow. This distance constraint decreases the magnitude of noise. 

Without the constraint the points may tend to clutter together at some areas alone. 

Hence this method is more effective.  

 

However, Poisson disk distribution is a computationally expensive method. We use 

an approximation to the algorithm as described in [14]. This method generates m*n 

candidate points to generate the (n+1)th sample; where m is a constant. Hence the 

number of candidate points is proportional to n.  

 

The pseudo code for the method that we have used is given as follows:   

 
 

Figure 5.5 illustrates how the third sample point is calculated with Poisson-Disk 

Distribution, given the first two sample points. 

For every new point that is to be generated 
 Generate m*n random candidate points  
 For every point P that has already been generated until now 

Find the closest of the candidate points to P (use the Euclidean 
distance) 

 EndFor 
Now there are n candidate points; where n is the number of points that 
are already added. Associated with each candidate point is its distance 
to the already existing point 
Among the n candidate points, find the point P’ with the largest 
distance associated with it 

 Add P’ to the set of already generated points 
EndFor 
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Figure 5.5: Poisson disk distribution-illustration 

- The samples (n = 2) that are 
already generated. 

- Generate m*n candidate 
points. Here n = 2, m =2. 
Hence four candidate points 
are generated. 

- Find the candidate point 
that is the closest to each 
of the sample points. Now 
n candidate points are 
selected among the m*n 
points 

- The candidate point that 
has the largest distance 
among the n candidate 
points is added to the 
sample 

Sample points generated 

Candidate points 

Selected candidate points 
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This method generates good sampling patterns. However, it is still an O(n3) 

algorithm; where n is the number of random points to be generated. So to speed up 

the process, we have generated the points on a few planes and then replicated them 

over the rest of the planes. We have used a value of m=10 for our purposes.  

 

 
(a) 

 
(b) 

Figure 5.6: Poisson disk distribution (a) Before applying Sparsity (b) With Sparsity 
(~134,544 random points) 

 

Advantages 

• As seen in Figure 5.6 this method introduces sparsity in the vector field with 

good spacing between the streamlines. This is the due to the even distribution 

of points. 

• The streamlines are continuous. This is because of the irregular distribution of 

points without bunching. 

 

Disadvantages 

• This method is time consuming. The method that we have used cannot be used 

for interactive sampling. 

• This method is just an approximation to the Poisson disk method. The actual 

method might give better results. 
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(c) Jittering 

 

Jittering is a straightforward and a fast approximation to Poisson disk distribution [5]. 

This method perturbs the original points randomly. A point is set to black if its 

neighbors do not fall inside a user defined radius. Thus it avoids samples from 

bunching together at any region. We allow the radius to be user defined, and hence 

the user can interactively change the radius thus increasing/decreasing the sparsity.  

 

The pseudo code for generating samples using jittering is given as follows:  

 
 

 
 (a) 

 
 (b)

Perturb the original points randomly 
For each point P in the 3D space 
 Check if any of P’s neighbors fall inside the user defined radius 
 If not, then add P to the set of already generated points 
EndFor 
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(c) 

Figure 5.7: Jittering (a) Before applying Sparsity (b) With Sparsity (~ 373,313 
random points) (c) With Sparsity (~467,754 random points) i.e.; with a larger radius 

than Figure 5.7 (b) 
 

Advantages 

• This method is easier than Poisson disk distribution. 

• It is straight forward. 

• It works at interactive rates. 

 

Disadvantages 

• Jittering contains more low frequency energy in its spectrum [14] and hence it 

does not give results as good as Poisson disk distribution. 

• This method does not produce samples that are as well distributed as the 

Poisson disk method. As a result, as seen in Figure 5.7, the spacing between 

the streamlines and the continuity of the streamlines is not as good as that of 

Poisson disk distribution.  
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5.1.4.2.2 Low Discrepancy Sequences 

 

The Hammersley and the Halton point sets are low discrepancy sequences which are 

used for Quasi-Monte Carlo methods. The purpose of Quasi-Monte Carlo methods is 

to find the integral of a function as the average of the function at certain points. In 

Quasi-Monte Carlo methods these points are generated using low discrepancy 

sequences such as the ones mentioned above. In these methods, a deterministic 

formula generates a uniformly distributed and stochastic-looking pattern [15]. 

 

Discrepancy measures how uniformly distributed the sampled points are [15]. Low 

discrepancy indicates that the samples are well distributed. These low discrepancy 

sequences have the following property: If we consider (1/8)th of the volume, (1/8)th of 

the samples belong to this part of the volume. Such uniform distribution is an 

important requirement of our application. Hence we have used these low discrepancy 

sequences for generating a set of evenly distributed points in 3D space. We now 

discuss these methods in detail.  

 

(a) Hammersley points 

 

This method of sample generation generates a fixed sequence of samples that are well 

distributed. The general method of point generation is given as follows: The ith “d” 

dimensional point is given by  

(i/N, φ p1(i),φ p2 (i),…..,φ pd-1 (i)) 

where p1,p2,,….,pd-1 are any sequence of prime numbers with p1<p2<….<pd-1 and 

N is the total number of samples . We have used 2 and 3 as the prime bases. 

 

To obtain φ px(i), 

• Convert “i” to the representation of i in base px.  

• Reflect this number about the decimal point  
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• Convert the reflected value to a decimal number again.  

 

For example, the first 3D point is given by (1/250000, φ 2(1), φ 3 (1)), assuming that 

N = 250000, p1 = 2 and p2 = 3. Here i = 1. 

 

φ 2(1) is calculated as: 

• The representation of 1 in base 2 is 12. 

• After reflection about the decimal point it becomes 0.12. 

• 0.12 in decimal is 0.5. 

 

φ 3(1) is calculated as: 

• The representation of 1 in base 3 is 13. 

• After reflection about the decimal point it becomes 0.13. 

• 0.13 in decimal is 0.333333. 

 

Hence the first 3D point is (1/250000, 0.5, 0.333333) for the given assumptions. 

 

 
(a) 

 
(b)

Figure 5.8: Hammersley points (a) Before applying Sparsity (b) With Sparsity (~ 
250,000 random points) 



 
 
 

 

 

                                                                                                                                      48

 

Advantages 

• This method is computationally fast. The user can interactively control the 

number of points which are assigned the black color using a slider in our user 

interface.  

• Figure 5.8 shows that this technique gives well spaced and continuous lines. 

This is because of the low discrepancy of the generated points.  

 

Disadvantages 

• As the base value increases, the samples tend to become more and more 

regular [15]. 

 

(b) Halton points 

 

This method produces another low discrepancy sequence. In this method, the ith “d” 

dimensional point is given by  

(φ p1(i),φ p2 (i),…..,φ pd (i))  

where p1,p2,,….,pd are any sequence of prime numbers with p1<p2<….<pd. We 

have used 2, 3 and 5 as the base values. 

 

To obtain φ px(i), we have used the same method as discussed for Hammersley point 

generation. 
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 (a) 

 
(b)

Figure 5.9: Halton points (a) Before applying Sparsity (b) With Sparsity (~ 250,000 
random points) 

 

Advantages 

• This method is also fast. The user can interactively change the number of 

points generated using a slider in our interface, thus controlling the sparsity 

introduced in the vector field. 

• Because of the low discrepancy property of the generated point set, the 

streamlines are well spaced and continuous as shown in Figure 5.9. 

 

Disadvantages 

• As the base value increases, the samples exhibit patterns. This is shown in the 

fact that Hammersley distribution gives slightly better results than Halton 

distribution in terms of the continuity of the streamlines. This is because of the 

fact that we have used 5 as the base value for the third dimension in the 

Halton distribution, which is higher than any of the base values used by the 

Hammersley distribution. 
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Figure 5.10 shows the results of applying the different distributions. It shows the 

effects on a particular plane in the volume. 

 

  
(a) (b) 

  
         (c)                                                      (d) 

Figure 5.10: Results of using different distributions 
(a) Poisson disk distribution (b) Jittering (c) Hammersley points (d) Halton points 

 

The performance of these distributions in terms of the time taken to generate the 

points is discussed in the next chapter. In spite of the fact that introducing sparsity 

helps us to gain a global view of the vector field, we have to note that some details of 
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the field might be missed as a result of creating empty space between the streamlines. 

Yet it aids the user in gaining a good understanding of the vector field.  

 

5.2 Viewing the vector field locally 

 

The previous section discussed ways to get a clear global view of the vector field. 

Introducing sparsity, transparency, encoding magnitude with color, highlighting areas 

with larger magnitude etc. help to get a better view of the field. The next section 

focuses on ways to view local, specific areas of the field and regions of interest. It 

discusses techniques such as using clipping planes and 3D patterns. 

 

5.2.1 Cutting planes 

 

Salama et al. [2] have described and used different clipping mechanisms to view more 

localized regions in the vector field. We have made use of OpenGL clipping planes to 

allow the user to interactively clip the volume and view regions of interest on the 

inside. 

 

The view volume that is defined forms six cutting planes. Objects that lie outside this 

volume are clipped and are not drawn in the final scene [24]. OpenGL allows us to 

define six additional clipping planes to remove unwanted parts of the object and thus 

to clip the volume further. Each of these planes is defined by the coefficients of the 

plane equation: Ax + By + Cz + D = 0. These clipping planes are transformed by the 

modeling and viewing transformation matrices. Thus the final volume that is 

displayed is the one that passes the clip tests of the view volume and user defined 

clipping planes. 
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5.2.1.1 Implementation 

 

Clip planes are defined using the command glClipPlane(), which takes the plane 

number and the coefficients of the plane equation as its arguments. The 

corresponding clip plane is enabled using the command glEnable(). The vertices that 

emerge from the vertex processor are the ones that are clipped against the planes. 

Thus they should be in the same coordinate space as the planes [23]. The user defined 

clipping planes are defined in eye coordinates. Hence the vertices are converted to 

eye coordinates in the vertex shader and written to the output variable gl_ClipVertex. 

The results are undefined if the output variable is undefined. In our implementation, 

we have made use of sliders to allow the user to vary the value of D in the plane 

equation, thus allowing the user to move the clipping planes through the volume as 

shown in Figure 5.11. 
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Figure 5.11: Exploring the vector field interactively by moving the clip planes

 

5.2.2 Regions of interest with 3D patterns 

 

3D patterns allow the user to select a region of interest and explore it interactively. 

Our interface allows the user to choose one of several 3D patterns (such as cube, 

sphere, and cylinder) with an appropriate size for the pattern. The user can then 

translate the pattern to a desired region in the volume and explore it by using clip 

planes or by rotating the selected pattern. 

 

5.2.2.1 Implementation 

 

We have implemented patterns by defining a radius in the case of spheres and 

cylinders and by defining a width in the case of cubes. They are defined with respect 

to a center.  In the fragment shader, all fragments that fall outside the radius/width are 

discarded so that only the part of the volume that falls within the 3D pattern is 

displayed. Thus the user is able to have a closer examination of a specific region of 

interest alone. Our interface provides sliders using which the user can change the 
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center of the pattern, thus allowing the user to translate the pattern and slide it across 

the volume. When the pattern translates through the volume it has the appearance of 

moving through the volume. The user can also rotate the selected region alone. To get 

the effect of rotating the pattern through the vector field, the texture coordinates are 

also rotated by the same amount as the vertices. To do this rotation, the texture 

coordinates are translated to the origin, rotated and then translated back again. The 

texture coordinate transformations are saved in the texture matrix that is accessed in 

the vertex shader as gl_TextureMatrix[i], where i is the texture unit number. The 

texture coordinates are multiplied by this matrix in the vertex shader to apply the 

texture transformations. The following figure shows the use of patterns to explore 

different parts of the vector field. 
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Figure 5.12: Exploring the vector field using different patterns and 
translating/rotating them 

 

5.3 Improving Depth Perception 

 

The previous section discussed ways of examining the local parts of the vector field. 

Next, we discuss another aspect of 3D field visualization. Spatial organization and 

depth perception play an important role in the effective visualization of 3D vector 
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fields. This section discusses ways on improving the perception of the depth relation 

of the different parts of the field. 

 

5.3.1 Intensity Depth cueing 

 

Intensity depth cueing can be used to obtain rendering effects like fog, haze, etc. It 

can also be used to make objects far away from the user get darker with distance from 

the user. Hence depth perception is increased by having objects blend into the 

background color.  

 

5.3.1.1 Implementation 

 

We enable intensity depth cueing with the command glEnable() with GL_FOG as its 

argument. A fog blending factor f is used to blend the background color with the 

color of the incoming fragment. We use the linear mode of blending in which f is 

calculated using the following equation 

)(
)(

startend
zendf

−
−

=  

where z is the eye-coordinate distance between the viewpoint and the fragment center 

           start is the distance to the start of the fog effect 

           end is the distance to the end of the effect [24].  

The fog mode, the start value, end value and the background color are specified using 

the glFog() function.  

 

In the vertex shader, the z value that is specified in the equation is calculated for each 

vertex in the eye coordinate space and is written to the special output variable 

gl_FogFragCoord. The fog blending factor f is then calculated in the fragment shader 

according to the above equation. Then the final color of the incoming fragment in the 
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fragment shader is calculated as the linear blend of the original color and the 

background color. This is done using the GLSL mix() function. Our interface allows 

the user to vary the start and the end values using sliders. 

 

Figure 5.13 (b) shows fog effects. The fog color is taken to be black. The part of the 

volume far away from the user has more fog applied to it than the part of the volume 

nearer to the user. This method is useful for recognizing far away objects from nearby 

ones. However, it is not efficient in portraying the minute depth differences. 

 

 
(a) 

 
(b)

Figure 5.13: Fog (a) Without Fog (b) With Fog 

 
5.3.2 Stereographics 

 

In this section, we discuss the use of stereo graphics to de-clutter a complex 3D scene 

[30]. When we look at the world around us, 3D stereographic effects arise from the 

fact that our left and right eyes see the world from slightly different perspectives. 

Perception of depth is improved greatly by using stereo graphics which uses both the 

left and the right eye views.  
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If the left and the right eye views are generated in the orthographic projection mode, 

then perspective shortening causes a point to have different vertical positions in both 

the views. This is known as vertical parallax. To avoid it, stereographics is generally 

done in the perspective mode. The left eye view is obtained by translating the eye by 

–E in the X direction. This is done by translating the scene by +E in the X direction. 

The right eye view is obtained by translating the scene by –E in the X direction. Here 

(2*E) is the horizontal distance between the left and the right eye views. 

 

The function glFrustrum() is used to specify a monoscopic perspective projection 

viewing frustum.  This function takes the left, right, bottom, top, near and far planes 

of the near clipping plane as its arguments. We define the plane of zero parallax as 

the plane where a 3D point projects to the same window location for both eyes. The 

left (L0p), right (R0p), bottom (B0p) and top (T0p) boundaries of the viewing 

window on the plane of zero parallax are measured as: 

L0p = -Z0p*tan( )2/φ  

R0p = +Z0p*tan( )2/φ  

B0p = -Z0p*tan( )2/φ  

T0p = +Z0p*tan( )2/φ  

where Z0p is the distance to the plane of zero parallax and φ  is the field-of-view 

angle. Next the boundaries in the left eye view are shifted by +E to match the +E shift 

in the scene. Similarly, the boundaries in the right eye view are shifted by –E. Only 

the left and the right boundaries are affected by this scene shift. 
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5.3.2.1 Implementation 

 

We enable stereo graphics by or’ing GLUT_STEREO into the argument of the 

function glutInitDisplayMode(). Then we draw the left eye view into the left back 

buffer and the right eye view into right back buffer.  Using appropriate glasses, the 

left and the right eye views (as shown in Figure 5.14) can be combined to give an 

image with better depth order relationships. We find stereographics to be a very 

effective means of providing depth perception. 

 

 
(a) 

 
(b) 

Figure 5.14: Using stereo graphics to de-clutter the field  
(a) Left – Right View (b) Right – Left View 
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5.3.3 Lighting 

 

We now discuss how applying lighting helps to improve the overall visualization of 

the 3D vector field. Lighting helps to brighten up areas of the image which otherwise 

appear dull. Hence certain parts of the image appear bright and are highlighted. 

Specular highlights help to establish a spatial relationship with respect to the position 

of the light source.  

 

5.3.3.1. Implementation 

 

Lighting is applied by the following procedure: 

• A normal is assigned to each point. The normals can be passed to the shaders 

using the command glNormal() in OpenGL. However, we use the normals 

only when we need to apply lighting. Hence we recomputed the normals and 

pass the normals as a texture to the fragment shader. 

• The normal for the incoming fragment is accessed in the fragment shader. 

Then the color as the result of applying lighting is calculated by the following 

equation: 

Cl = Ca + Cd * max(abs(dot(N,L),0.0)) + Cs * pow(max(dot(R,E),0.0),Coeffs) 

where  Cl is the color obtained after lighting calculations 

                        Ca is the ambient color of light 

             Cd is the diffuse color of light 

            Cs is the specular color of light 

                        Coeffs is the specular coefficient 

N is the normal at that position. It is obtained by considering the vector   

field at that point as the tangent. The normal is thus calculated 

considering the local TNB coordinate system. 

            L is the light vector that is calculated as the vector Light Position -   

 Vertex Position  
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            R is the reflection vector that is calculated using the reflect() function 

            E is the eye vector that is calculated as the vector Eye Position -    

 Vertex Position  

 

The final color is obtained by blending the color obtained after applying LIC with Cl. 

The Figure 5.15 (b) shows the results of applying lighting. 

 

 
(a) 

 
(b)

Figure 5.15: Lighting (a) Without Lighting (b) With Lighting (depth differences are 
seen)  
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6. RESULTS 
 

In this chapter, we discuss the results that were obtained. We have made use of the 

graphics processing unit (GPU) to accelerate the computation of LIC in order to 

visualize 3D vector fields at interactive rates. The implementation is done in C++ and 

OpenGL. GPU programming is done in the OpenGL Shading Language (GLSL) [23]. 

The entire work is done on a 4 GHz Pentium 4 CPU with 2GB of RAM, with an 

NVIDIA Quadro 3400 FX graphics card with 256MB of memory. 

 

Figure 6.1 shows the user interface window, created using the GL User Interface 

toolkit (GLUI). Range sliders (a GLUI extension our research group added) are 

provided to let the user vary range parameters like the length and bias. The user also 

has the option of viewing the vector field with or without sparsity and of choosing the 

distribution to be used to produce the sparse input texture. The user can vary the ratio 

of the white texels to black texels in the case of checkerboard distribution, the disc 

radius in the case of jittering and the number of sample points in the case of 

Hammersley and Halton distribution. Range sliders are also provided for the clipping 

planes along the x, y and z axis. The fog parameters and the alpha value can also be 

changed using the sliders. The radius and the center of the 3D patterns used to view 

localized regions of interest can be changed by the user as well. The user can 

interactively change the length and bias values, control sparsity, use the clip planes to 

view local planes, introduce transparency and view localized regions of interest.  

Thus the user can interactively explore the entire 3D volume. 
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Figure 6.1: User Interface  

 

6.1 Timing Benchmarks 

 

6.1.1 If Constructs 

 

We have investigated the timing of some GLSL constructs.  The presence of if 

statements has a large effect on the performance of the fragment shader. This makes 

sense, since the GPU is essentially a SIMD computing device.  The table and graph 

show the performance of the fragment shader with and without the if statements in a 

for loop. 
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Table 6.1:  Effect of If constructs 

 

 

 

 

 

 
Figure 6.2: Performance of the GPU with and without If constructs 

 

But, with all the different display modes, we really need the if tests in the fragment 

shader. One approach would be to have different versions of the fragment shader, and 

load the appropriate one every time the user changes display modes.  But, 

maintaining these many versions of the fragment shader would raise the ugly 

possibility of version skew. In our implementation, we have used the preprocessor 

directive #ifdef to simulate if blocks. We load four “different” fragment shaders. The 

fragment shaders differ only in the values of the #define statements pre-appended to 

LIC 

Length 

Without if 

(in FPS) 

With if (in 

FPS) 

2 10 -12 7.5 - 9.5 

4 6 - 7 4.5 - 6 

6 4.5 - 6 3.5 - 4.5 

8 3.5 - 4.5 2.5 - 3 

10 2.7 - 4 2 - 2.6 
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them. The first time an option is selected, the proper #ifdef is set and the fragment 

shader is linked and compiled. When the option is selected again, the corresponding 

code is just executed. Hence the efficiency of the code is improved without 

maintaining multiple versions of it. This is found to give much better performance 

than using the if statements or by loading the appropriate shader every time the user 

switches display modes.  

 

6.1.2 Resolution and Length 

  

As the LIC length increases, the frame rate drops as more texels have to be accessed 

in the fragment shader, on the local streamline at every point. Also, when the 

resolution is less, the frame rate is more. We have tested with a 128*128*128 and a 

64*64*64 volume data. The performance graph is shown in Figure 6.3. The rendering 

time differs approximately by a factor of 2, since for a 128*128*128 volume, we 

draw twice as many planes in each direction. However, each plane takes the same 

time since it accesses the same number of fragments.  
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Figure 6.3: Effect of resolution and length on performance 
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6.1.3 Different distributions 

 
We have introduced sparsity as a means of de-cluttering the otherwise dense 3D 

scene, obtained as a result of applying LIC to the noise texture. In chapter 5, we 

discussed the various techniques that we used to obtain the sparse input texture. To 

recap, we have used the Poisson-Disk distribution, jittering, Halton and Hammersley 

distributions to generate a set of evenly distributed points in the sparse input texture. 

As seen in Figure 6.4(a), Poisson disk is an expensive method. Particularly, as the 

number of points increase, the time taken to generate them increases to a great extent. 

Also, as shown in Figure 6.4(b), when compared to Halton point generation, the 

Hammersley method is slightly faster. This is because in this method, one reflection 

about the prime base is substituted by a division operation, which is faster. Jittering 

always takes the same time since irrespective of the number of samples found; each 

and every point needs to be checked against its neighbors. Hence in jittering, the time 

complexity is independent of the number of samples needed.    

 

Poisson Disk Distribution

0

20

40

60

80

100

120

140

160

180

Number of Samples

Ti
m

e 
ta

ke
n 

to
 g

en
er

at
e 

th
e 

ra
nd

om
 p

oi
nt

s 
(in

 s
ec

s.
)

           250                           500                        750                         1000                   1500

 
(a) 



 
 
 

 

 

                                                                                                                                      67

 

Hammersley vs Halton
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(b) 

Figure 6.4:  Performance of the distributions (a) Performance of Poisson disk 
distribution (b) Performance of Hammersley point generation  

vs. Halton point generation 
 

6.1.4 Effect of size on the screen 

 
As the size of the volume increases on the screen, the frame rate drops. This is 

because it takes longer to render the volume on the screen. This is shown in the graph 

in Figure 6.5. We have tested with different sizes of the volume on the screen and for 

different lengths of LIC. Irrespective of the length, the time taken to render the 

volume is lesser when it size is lesser. Again, for different lengths, the time taken to 

render the volume for smaller lengths of LIC is lesser. 
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Effect of size
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Figure 6.5: Effect of size on the screen 

 

6.2 Vector Fields Used  

 

We have tested our implementation of LIC using two different vector fields. The 

vector field shown in Figure is created using an equation that describes flow around a 

corner [19]. The field in Figure 6.6(b) is created using an equation that describes a 

solenoidal vector field. A solenoidal vector field has zero divergence. It is generated 

using the equation: 

Vx = (y2+z2)yz 

Vy = (x2+z2)xz 

Vz = (x2+y2)xy 

where Vx, Vy, and Vz are the x, y and the z components of the vector field [27]. 
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(a)                                                                   (b)  

Figure 6.6: Different  vector fields  
(a) Flow around a corner (b) A solenoidal vector field 

 

The following images show the results that we obtained with the solenoidal vector 

field. 

 

  
                              (a)                                                                       (b) 

Figure 6.7: Solenoidal field (a) Solenoidal vector field (b) With sparsity (Hammersley 

distribution) 
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(a) 

 

 
(b) 

                             (c)                                                                      (d) 

Figure 6.8: Sparsity with different distributions (a) Poisson disk distribution  
(b) Halton points (c) Jittering (d) Hammersley points 

 

6.3 Zoom In 

 

The purpose of introducing sparsity is that the observer can peer through the stream 

lines to get a better look of the inner part of the vector field and thus understand the 

inner details of the field. This is shown in Figure 6.9.  Note that Figure 6.9 looks very 
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much like zooming into an Impressionist painting.  We believe that there are some 

interesting interactive painterly rendering opportunities with this method.  

 

 
Figure 6.9: A zoomed in view 

 

6.4 Nearest Vs. Linear Filtering 

 
Nearest filtering takes into account the color of the texel in the texture map that is 

closest to the center of the point being textured. Linear filtering takes the weighted 

average of the colors of the eight neighboring texels (in the case of 3D texture maps). 

Nearest filtering is slightly faster, but linear filtering produces nice smooth lines. In 

our case however, there is more value in clearly viewing the streamlines than in 

having a smooth blended appearance. Nearest filtering (Figure 6.10(a)) does a better 

job of maintaining the distinction between individual streamlines than linear filtering 

(Figure 6.10(b)) which blurs the lines too much. Hence we make use of nearest 

filtering for our application. 
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                             (a)                                                                       (b) 

Figure 6.10: Effects of different types of filtering for texture mapping (a) Nearest 
filtering (b) Linear filtering 

 

6.5 Limitations of 3D LIC and how they are overcome 

 

The following are some of the disadvantages of using LIC for 3D vector field 

visualization. We follow each limitation with a note on how we overcome such 

limitations. 

 

(a). The computation of streamlines is expensive. The cost of computation increases 

as the length of the convolution kernel (i.e. the user defined length) increases. This is 

because at each point, more pixels have to be accessed. The use of GPU speeds up 

this process. 

 

(b). As shown in the images of Figure 4.4, LIC provides only a global behavior of the 

3D vector field. The resulting images are cluttered and limited information is 

available about the local nature of the field. Cutting planes and 3D patterns enable 

the user to explore local regions. 
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(c). The resulting images are dense. Hence it is difficult to perceive the flow. The 

flow on the inside of the volume is not seen. Introduction of sparsity overcomes this 

limitation. 

 

(d). As seen in Figure 6.11, unnecessary details (such as regions of low magnitude 

which the user is not interested in viewing) are present in the flow. In Figure 6.11 the 

highlighted areas indicate areas of the vector field where the magnitude of the field is 

very low. They represent areas of the vector field that are of little or no significance. 

In some applications it may be desirable that they are not present in the output image. 

Varying opacity as a function of magnitude highlights regions of higher magnitude.  

 

 
Figure 6.11: Unnecessary details in the 3D LIC image 

  

(e) Scalar information of the flow like the magnitude of the vector field is not present. 

Color coding of the vector field incorporates such scalar information. 

 

(f) Spatial organization of the vector field is not clear. Subtle depth differences are 

not perceived. i.e. the relative positions of the streamlines are not portrayed 

effectively. The use of stereographics and lighting improves depth perception. 
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7. CONCLUSIONS AND FUTURE WORK 

 

In this project we have implemented several techniques to allow the users to gain a 

good insight into the three-dimensional vector field under study that is displayed 

using the LIC algorithm. These techniques make use of the capabilities of the GPU to 

speed up the process. The methods that we have employed, such as the introduction 

of sparsity and the use of stereographics, make it easier for the user to explore and 

analyze the 3D vector field, which is otherwise dense and cluttered. Overall, we are 

very pleased with using the GPU to perform interactive 3D LIC analysis. The speed 

allows us to change LIC parameters, employ the various techniques and have the 

display respond at interactive rates.  This has given us a much more complete insight 

into the overall nature of a 3D flow field, unlike anything we have achieved with 

other methods. 

  

One interesting characteristic of fragment program methods is that they are generally 

window-size dependent, not data-size dependent. That is, increasing the size of the 

window causes more fragments to need to be drawn, which increases the number of 

calls to the fragment code. This characteristic cuts both ways. The good news is that 

the viewer can automatically increase the density of the LIC display simply by 

enlarging the window. The bad news is that the display time goes up with the square 

of window dimension. 

 

However, GPU speed trends soften that bad news. As shown in Figure 7.1, GPU 

performance is on an even steeper path than Moore’s-law general processors. Thus, 

we know that any visualization methods that employ GPU programming are going to 

be faster in the future. This will let us deal with larger 3D flow datasets and higher 

resolution displays. 
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Figure 7.1: GPU Speed Trends  

 

Also, one of the disadvantages of using shaders is that debugging is difficult. There is 

no standard way to help programmers debug and detect errors.  

 

LIC volumes are inherently difficult to look at in that the data in front hides the data 

behind it. Among the methods that we used to introduce sparsity, Poisson-Disk 

distribution gives good results. Changing the number of points interactively was not 

possible due to the complexity of the algorithm. One venue for future work would be 

to use more complex data structures and implement quicker versions of Poisson-Disk 

distribution.  

 

Further, we would like to expand our techniques to incorporate the capability to 

visualize unsteady vector fields as well. We would also like to analyze how the 

increase in the number of vertex and fragment processors on the GPU will increase 

the speed of our LIC implementation.  
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