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NUMERICAL INTEGRATION 
OF LINEAR INTEGRAL EQUATIONS 

WITH WEAKLY DISCONTINUOUS KERNELS 

I. INTRODUCTION 

I.1 Review of Numerical Integration of Integral Equations 

In this thesis we consider integral equations of the 

second kind only. Consider first a Fredholm equation of 

the form 

C1 
x(s) - K(s,t)x(t)dt = f(s), 0 < s < 1, (1-1) 

0 

where K and f are given real valued functions, the 

domain of K is the unit square, and x is the unknown 

function. One technique to find an approximation, xn, 

to x is to first approximate the integral with a finite 

sum: 

n 
f(s) = xn(s) -J¿1 wnjK(s,tnj )xn(tnj ) , (1 -2) 

where {tnj} forms a partition of [0,1], and where 
j =1 

the wnj are weights that depend on n and the integra- 

tion formula used. Note that for each s, equation (1 -2) 
n 

is an equation in the n unknowns {xn(tnj)} . We 
j =1 

let s take on the n values of the partition, genera- 

n 

n3 

j =1 



ting a system of n equations in n unknowns. By sol- 

ving the system of equations we obtain xn(s) at the 

partition points in [0,1] . Finally, to approximate 

x(s) at the remaining points in [0,1] , we use equation 

(1 -2), which thus serves as an interpolation formula. 

Consider next a Volterra integral equation of the 

form 

2 

s 

x(s) - 
S 

K(s,t)x(t)dt = f(s), 0 < s < 1, (1-3) 

0 

where x and f are as in the Fredholm case, but now 

the domain of K is the triangle 0 < t < s , 0 < s < 1. 

One technique to approximate x is to first replace K 

with a Fredholm kernel which is identically zero for 

s < t < 1. The resulting Fredholm equation would then be 

solved as above. 

The difficulty with treating Volterra equations as 

though they are Fredholm equations is that the approxima- 

tion corresponding to equation (1 -2) is usually not very 

good; that is, to guarantee a reasonably accurate answer 

the number of partition points, and hence the size of the 

algebraic system, usually must be very large. The source 

of the difficulty is the discontinuity of the new kernel 

along the line s = t. Disposal of this difficulty is 

the motivation behind this thesis. 



I.2 Theorems to be Used in the Thesis 

In this section we develop the theorems that will be 

used later, so as not to interrupt the continuity of the 

later discussion. The first three theorems parallel the 

work of Milne (1949). 

Definition. For any nonnegative integer, n, define 

a function G 
n 

as follows: 

Gn(t) = 

3 

Note that for n > 1, Gn is continuous, and for n = 0, 

G0(t) 
() 

is discontinuous at t = O. Two important pro- 

perties of Gn are as follows: 

Theorem 1. For Gn(t) as defined above, the deri- 

vative of G 
n 

is 

n(t) = 

except for the case when n = 1 with t = O. Further, 

the anti -derivative of Gn is n+ n+1. 

Proof: Differentiating formally, we have 

d n (t) = 

d 
n) = ntn-1 , t > 0, 

dt(tn) 

át(0) = 0 , t < O. 

tn, t > 0, 

0, t < 0. 

(nGn_1(t), n > 1, 

0, n = 0, 
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This formula obviously holds except when n = 1 and 

t = 0, for then the difference quotient 

h[Gn(0+h) - Gn(0)] 

has two different limits according as h - 0 or h 0 +. 

Hence, with this single exception 

d n(t) = nGn-1(t)' 

The second part of the theorem follows directly from 

the proof of the first. 

Theorem 2. Let f be a function defined on [a,b]. 

If the (n +l)th derivative of f exists and is integrable 

on [a,b], then with G defined as above, and for y in 

[a,b] 

f(y) = f(a) + / 
(yká) kf (k) (a) + 

n 
! J 

bGn (y-u) f (n+l) (a) du. 
k=1 a 

Proof: By the fundamental theorem of integral cal- 

culus, 

f (y) = f(a) + yf' (u) du = f(a) + y (y-u) Of' (u) du f 
a a 

for y in [a,b]. Integration by parts n times yields 

n 
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11 f (y) = f(a) + (yká) 
( 

) 

( a ) (a) + 
J y 

(yñu) n (n+l) (u)du. 
k=1 J a 

From the definition of Gn(y -u) we can write 

V(17-ton (n+1) 
= 

b (n+l) 
f (u)du Gn(yu -) f (u)du, 

a a 

since the integrand is zero for u > y. The desired re- 

sult follows immediately. 

When approximating a definite integral by a finite 

sum, one can define a remainder operator which acts on 

functions: 

pb n 
R(f) = af ( t) dt - 

1wn7 f( tn 
J 

See, for example, Milne (1949), or Hildebrand (1956). If 

the integral is indefinite we do the analogous thing: 

Definition. Let f be defined on [a,b] and let s 

be in [a,b] . If the integral from a to s is approx- 

imated by a finite sum with weights that are functions of 

s, then we define a remainder operator acting on f and 

s by 

R(f,$) - `f (t)dt - w (s) f (tn ) . 

j=1 

) kf 

rs n 

n. 

a 

a 



Note that if we construct the weights so that a poly- 

nomial of degree m or less is integrated exactly, and 

if f is such a polynomial, then R(f,$) = 0 . Further, 

since the integral and summation are linear operators, 

R will be a linear operator with respect to its first 

argument. 

Theorem 3. Let R be a remainder operator such that 

R(tk,$) = 0 for k = 0, 1, ..., m, and s in [a,b], 

and let M = sup I 
f (m +l) I . If f 

(m+1) 
(t) is Riemann 

a <t <b 

integrable, then 

b 
R ( f , s ) = mR 

J 
Gm(t-u)f(m+l) (u)du, s 

a 

and further, 

IR(f-s) I < m! T 

b 

a 
R [ Gm ( t-u du, 

where R operates on Gm(t -u), as a function of t, 

and s only. 

Proof: By the previous theorem, if s is in [a,b], 

then we have 

f(t) = f(a) + (tká)f (k) (a) + 
m! 5:Gm(t_u)f(m±U (u)du. 

Letting R operate on f(t) we have 

6 

. 

, 

s] 

L 
k=1 a 

rI 
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R(f,$) = mR 
b 

(m+1) 
Gm(t-u)f (u)du, s , 

a 

since R is linear in its first argument, and R of a 

polynomial of degree m or less is zero. From the defi- 

nition of R we have 

Os rb 
R(f,$) = m 1 J Gm(t-u)f(m+l) (u)dudt 

a a 

n b (m+1) 
- 

7lwnj 
(s) aGm(tnj°u) f (u)du . 

From the theorem on iterated Riemann integrals (Fulks, 

1961), the order of integration may be interchanged, lead- 

ing to 

Sa(SaGm(t_l1t R(f,$) = - wnj(s)Gm(tnj-u) 
j=1 

b 

= m, S R[Gm(t-u), s] f(m+l) 
a 

and the final result follows directly. 

Theorem 4. [Weierstrass Approximation Theorem] Let 

f be a real valued continuous function on a compact inter- 

val [a,b]. Then, given any E > 0, there is a poly- 

nomial p (which may depend on s ), such that 

If (t) - p (t) I 
< s for every t in [a,b]. 

n. 

m f(m+l) (u)du 

a a 

l 

(u)du, 
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Proof: See, e.g., Goldberg (1964), page 261. 
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II. The Special Integration Rule and the Volterra Case 

II.1 Generating a Smooth Kernel 

Consider the Volterra integral equation of the sec- 

ond kind: 

s 

x(s) - K(s,t)x(t)dt = f(s), 0 < s < 1, 

0 

with the kernel, K, and the known function, f, having 

at least r + 1 continuous derivatives on their respec- 

tive (closed) domains. A Volterra equation may be thought 

of as a Fredholm equation with a kernel 

N(s,t) = 
K(s,t) , 0 < t < s, 

0, s < t < 1. 

As mentioned in I.1, the discontinuity of N along the 

line s = t is the principal source of difficulty when 

approximating the integral by a sum. 

In order to eliminate the difficulty, we subtract the 

discontinuity as follows: 

's 
f(s) = x(s) - J {K(s,t) - K(s,$) + K(s,$) } x(t)dt 

0 

1 cs 
= x(s) - 

S 
N (s,t)x(t)dt - K(s,$) 

J 
x(t)dt, (2-1) 

0 0 0 



where 

K(s,t) - K(s,$), 0 < t < s, - - 
0, s < t < 1 

10 

is continuous across the line s = t We can also gener- 

ate a kernel, N1(s,t) , which has a continuous partial 

derivative with respect to t across the line s = t 

{K(s,t) f(s) = x(s) - - K(s,$) + (s-t)K(1) (s,$)} x(t)dt 
0 

- K(s,$) Ssx(t)dt + K(1) (s,$) s(s-t)x(t)dt 
0 0 

1 = x(s) -SN1(s,t)x(t)dt - (-1n) (s,$)Js(s-t)x(t)dt, QK(R,) 

0 Q=0 0 

where K(Q) (s,$) - 
a with the convention 

t=s 
QK(s,t) 

at 

that K(0) (s,$) = K(s,$) , and where 

N1 (s,t) = 
K(s,t) - K(s,$) + (s-t)K(1) (s,$) , 0 < t< s, 

0, s < t < 1 , 

In general then, subtracting r terms of Taylor's 

series generates Nr(s,t), a kernel with r continuous 

partials with respect to t across the line s = t 

NO (s t) 

: 

: 

= 

, 



1 

f(s) = x(s) - S Nr(s,t)x(t)dt 
0 

- ( kQ ( Q) (s,$) Ss(s-t)Rx(t)dt, Q=0 0 

where 

Nr (s,t) = 

11 

(2 -2) 

K(s,t) 
(-1)IS-t) QK(Q)(s,$) 0 < t < s, 

2=0 

s < t < 1. 

Clearly Nr(s,t) is smooth across the line s = t. 

If x(t) also has r continuous derivatives on [0,1] , 

then we can accurately approximate the first integral in 

(2 -2) by a finite sum of the form (1 -2). It is easy to 

show that with the differentiability assumptions on K 

and f that x is forced to have r continuous deriva- 

tives. 

We deal with the indefinite integrals in (2 -2) in 

section II.2. Presently, we consider the choice of r -- 

the number of terms of Taylor's series subtracted from 

K(s,t) . Integration rules under consideration here have 

error bounds which depend on a derivative, (p +1)th say, 

of the integrand, assuming the pth derivative is contin- 

uous. Therefore, it makes sense to choose r no greater 

than p. For example, with Simpson's rule p = 3 

(Hildebrand, 1956). Of course if K and f don't have 

, 

0, 
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sufficiently many continuous derivatives, then we must 

choose a smaller r. 

We elaborate on the above by applying a low "order" 

rule repeatedly n times. For fixed s the jump dis- 

continuity of the kernel K occurs in at most one of the 

subintervals of application. Let cP(t) = K(s,t)x(t) for 

fixed s. If we apply Simpson's rule n times on [0,1], 

then is discontinuous on at most one subinterval. 

Consequently, the error will be bounded by 

5 4 

ñM0 + (n-1) (T) M4 = ñ [MO 
+ (n-1) (ñ) M4] , 

where M0 °C 01I(t) 1 and M4 c[ 0 T I qlv (t) 1 . We 

therefore have first order convergence for piecewise con- 

tinuous functions which have only one discontinuity. 

(Note: we would have kth order convergence if the error 

bound was divided by 2k when n was doubled.) In the 

same way, if is continuous, then we would have second 

order convergence. The extension is obvious, for if (I)" 

is continuous then we will have fourth order convergence. 

For Simpson's rule (which has fourth order conver- 

gence if the integrand is sufficiently differentiable), 

a good choice for r in the general case is r = 2. In 

this case, N2(s,t)x(t) will have a continuous second 

derivative with respect to t, a piecewise continuous, 

hence bounded, third derivative with respect to t, and 

4 

4 

0 



13 

we will have fourth order convergence. Choosing r = 3, 

as predicted in the earlier discussion, will not give 

higher order convergence. 
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II.2 The Quadrature Rule for Indefinite Integrals 

We now develop a formula to approximate the integral 

(s-t)x(t)dt. 
0 

We start with a quadrature rule to approximate the inte- 

gral with Nr in (2 -2). This rule will be called the 

"regular" rule as contrasted with the "special" rule to 

be developed. Using the same abscissas as in the regular 

rule, we obtain a special rule with weights that are 

functions of s and Z. It is necessary to use the 

same abscissas in both rules so that the same n unknowns, 

n 
{xn(tn3)} , arise from both approximations. Thus, when 

j =1 

s is allowed to take on the values of the partition, as 

in I.1, the system of equations will be n x n and, if 

nonsingular, can be solved. The theory for the special 

Simpson's rule is developed below. 

For fixed k, and for 0 < s < 2h, where h = l 
2n 

we require 

2 rs 
(s-t) x(t)dt = w. (s,k)x(ih) + R(x,$) , (2 -3) 

0 i=0 1 

where R is defined by equation (2 -3). We naturally re- 

quire that w0(2h,0) = w2(2h,O) = 
3, 

and that 

- - 

J 
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wl(2h,0) = 
4h 

; that is, the special rule reduces to the 

regular rule for s = 2h and Q = O. To find the three 

weights let R(x,$) = 0, and then let x(t) be succes- 

sively the functions 1, t, and t2. We arrive at a 

system of three equations whose solution is 

w0 E w0(s,Q) = CsQ+1[2s2-3sh(Q+3)+2h2(Q+2)(Q+3)], (2-4a) 

wl = wl(s,Q) = - 4CsQ+2[s - h(Q+3)]. 

w2 = w (s 
2 

= CsQ+2 [2s - h(Q+3) ] , 

(2 -4b) 

(2 -4c) 

where C = [2h2(Q +1)(Q +2)(Q +3)] -1. Note that by construc- 

tion of the wi, R(x,$) for a polynomial of degree two 

or less will be identically zero. 
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II.3 The Sum of the Absolute Values of the Weights 

Let V = Iw11 + 1w21 + Iw31 . This sum will be used 

in 1I.8. It is also important in that it provides a mea- 

sure of the amplification of the errors in the ordinates 

(Hildebrand, 1956). 

From equations (2 -4) note that w0 > 0 and wl > 0 

for s in [0,2h] and for all R > 0. For w2 we have 

three cases: 

>0, R= 0, 22 
< s < 2h (case 1), 

<0, Q= 0, 0 < s 2 w2(s,Q) 
h 

(case 2), 

<0, 2, > 1, 0 < s < 2h (case 3). 

Case 1: Since w2 > 0, V = w0 + wl 

by construction of the weights. 

Case 2: Here w2 < 0, so V = w0 + wl 

+ w2 = s < 2h 

V = 
s 

( - 4s2 + 6sh + 12h2). 
12h2 

and 

Taking the derivative of V with respect to s we have 

2 

V' = 1 + - 
h 

s2, 
h 

which is a parabola that is concave downward. Since 

V'(0) = 1 and V' 
( 

zh) = 
T' 

we conclude that V must be 

increasing throughout [0, 2h] so that 

le 

< 

- w2 
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V < V(2h= áh < 2h. 

Case 3: Again w2 < 0, so 

V = C[- 4sk +3+ 2h (k +3) sk +2+ 2h2 (k +2) (k +3) sk 
+1] 

where C = [2h2(k +l)(k +2)(k +3)] -1. Taking the derivatives 

as in case 2, we have V' = C(k +3)ska(s), where 

a(s) = - 4s2 + 2h(k+2)s + 2h2(k+l)(k+2). 

Since the product C(k +3)s9' is always non- negative, the 

sign of V' is determined by the sign of a(s). And since 

a(s) is a parabola that is concave downward with a(0) > 0 

and a(2h) > 0, we conclude that V is increasing through- 

out [0,2h]. Thus, 

where 

V < V(2h) = g(k) (2h) 
k+1 

g(k) _ 
k2 + 72, + 4 

(k+1) (k+2) (k+3) 

for k > 1. We have thus established 

Result I. The sum of the absolute values of the 

weights of the special Simpson's rule is given by 

- 
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V < g(9) (2h) 
,Z+1 

, 

g(R) 

where 

, k - 0 

2,2 + 7!Z + 4 
Q 

> 
1. 

(Q+l) (lZ+2) (Q+3) ' 

Note that g(R) is decreasing for 2 > 0 so that 

for 2 > 0 the maximum of g(R) is one at R, = O. 

Therefore, the sum of the absolute values of the weights 

is bounded for all Z and for all s in [0,2h]. 

_ 
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II.4 The Remainder for the Special Integration Rule 

From equation (2 -3) we have the remainder of an 

arbitrary function x : 

cs 2 

R(x,$) E 
5 

(s-t) x(t)dt - wo (s,Q)x(ih), (2-5) 
0 i=0 1 

where 0 < s < 2h . From theorem 2 of I.3, x(t) may be 

written 

2 2h 
x(t) = x(0) + tx' (0) + 2 x" (0) + 2 G2 (t-u)x"' (u)du. 

0 

Applying the remainder function to this equation, we-have 

2h 
R(x,$) = R 

2. 
` G2(t-u)x"' (u)du, s 
JO 

and applying theorem 3 we can interchange R and the 

integral to get 

M3 
2h IR(x,$)I < 

2 
IR[G2(t-u), s]Idu, (2 -6) 

0 

where M sup t1I = Os<llx 
'I 

To determine R(G2,$) apply (2 -5) with x(t) re- 

placed by G2(t -u). With W = Ii wi (s R,) G2 (ih -u), 

we have 

R(G2,$) = 
'0 

19 

- W. 
0 

(s-t) kG2 (t-u)dt 

, 
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Integrating by parts k times (using theorem 1), and then 

integrating Gk 
+2 

directly yields 

R(G k1 2k(k-1)...(k-i) xk-iG. 
(-u) 

2 
,$) _ - (i+2)! i+3 

- 
2k1 
k+3)T [G (-u) - G 

k+3 
(s-u) ] - W . 

Since 0 < u < 2h, Gn( -u) E 0, so we have 

Result II. If x has a continuous second derivative 

and a bounded third derivative, then 

M3 2h 2 

IR(x,$)I < 
2 

ILGk+3(s-u) - wi(s,k)G2(ih-u)Idu, (2-7) 

0 i=1 

where M3 = sup I x "( ) I 

0<s <2h 
and L = 2[(k +l) (k +2) (k +3)] -1. 

Analytic integration of (2 -7) for arbitrary k is 

difficult due to the absolute value inside the integral. 

The case for k = 0 will be worked out below. For a gen- 

eral k, note that the integrand is continuous and its 

first derivative is piecewise continuous. Therefore, we 

are assured that the integral exists and can be accurately 

approximated by the repeated midpoint rule, say. A com- 

puter program to estimate the remainder at selected points 

in [0,2h] was written and is presented in Appendix A. The 

results for k = 0, 1, 2, and 3 are presented graphically 

in figure 1 on the next page. 

-- 

i =0 



0.15 

0.1 

0.05 

in units of 

M 
3 
hQ+4 

Q max 

0 0.04166... = 1/24 

1 0.04444... = 2/45 

2 0.08888... = 4/45 

3 0.15238... 

h 

Figure 1 

2h 

Sketch graph of the remainder for Q = 0, 1, 2, 3. 

21 

IR1 

Q = 1 

/ 
= 0 R 



22 

For 2, = 0 we have from (2 -7) 

M3 ç2h 
IR(x,$)I < 2 13G3(s-u) - wl(s,0)G2(h-u) 

0 

- w2(s,0)G2(2 )Idu. 

This splits into two cases: For 0 < s < h we have 

-w2(s,0) (2h-u)2, u [h,2h] 

R(G2,$) = -wl(s,0)(h -u)2 - w2(s,0)(2h -u)2, u e [s,h] 

3(s-u)3 -wl(s,0) (h-u)2-w2(s,0) (2h-u)2, 
ue[0,s]. 

And for h < s < 2h we have 

-w2 (s,0) (2h-u) 2, u e [s,2h] 

R(G2,$) = 4(s_u)3 - w2 (s,0) (2h-u) 2, u E [h,s] 

3(s-u) 3- wl (s,0) (h-u) 
2- 

w2 (s,0) (2h-u)2, u e[O,h]. 

Thus in both cases we can split the integral into three 

parts and deal with each part separately. By writing out 

wl(s,0) and w2(s,0) and noting the signs of wl and 

w2 it can be shown (the algebra is tedious) that for 

Q = 0 

M3h4 

I R(x) I 

< 24 ' 

for all s in [0,2h], which is what the program calcu- 

lated for 9, = O. 

The fact that the integrand of (2 -7) is continuous 

on [0,2h] shows that there is a number e2 depending 

J 

e 

- 
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on k and suplxt(s)I for s c (0,2h) such that 

hQ+4 ; 

k 

that is, the bound on the remainder can be made independent 

of s. This fact will be used in II.7 to prove a uniform . 

convergence theorem. 

IR(x,$)I < e 
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II.5 Applying the Formula 

Let us reconsider the original problem: 

cs 
f(s) = x(s) - 

J 
K(s,t)x(t)dt, 0 < s < 1. (2-8) 

0 

Recall that to approximate the function x we choose an 

integration rule and a corresponding partition of [0,1], 

convert (2 -8) to a Fredholm equation with a kernel N(s,t) 

which is zero for t > s, and approximate the Fredholm 

integral with a finite sum. This approximation leads to 

an n x n system of equations whose solution determines 

an approximation to x at the partition points. 

Suppose we choose Simpson's rule repeated n times 

2n 
so that the partition is {ih 

}i =0' 
h = 1/2n. First note 

in (2 -8) that if s = 0 then the integral is zero, so 

x(0) = f(0). Consequently, we assume 2jh < s < (2j +2)h, 

for some j = 0, 1, 2, ..., n -1. The Fredholm problem can 

then be written 

f(s) = x(s) 
2jh 1 

K(s,t)x(t)dt - 
S 

N(s,t)x(t)dt.(2-9) 
0 2jh 

If K and x have continuous third and bounded 

fourth derivatives with respect to t on [0,2jh], then 

we can approximate the first integral in (2 -9) using the 

regular Simpson's rule j times: 

- 
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2jh hj-1 
K(s,t)x(t)dt 

3 
1 {K(s,t2i)x2i + 4K(s,t2i+1)x2i+1 

0 i=0 

+ K(s,t2i+2)x2i+2}, 

where xk = x(tk) and tk = kh. We use the regular rule 

because it has a higher order remainder than the special 

rule and, hence, is likely to be more accurate. 

Next, consider the second integral in (2 -9). Since 

N(s,t) = 0 for t > s, we have 

c1 (' 
(2j+2)h 

N(s,t)x(t)dt = J N(s,t)x(t)dt . 

2jh 2jh 

When s takes on the partition points there will be two 

cases: s = (2j+l)h and (2j +2)h. In the second case 

N(s,t) = K(s,t) on [2jh,(2j +2)h], so the integral can 

be approximated by the regular Simpson's rule applied once. 

In the first case we use the results of II.1 as 

follows: 

(' 
(2j+2)h (2j+2)h 

J K(s,t)x(t)dt = S Nr(s,t)x(t)dt 
2jh 2jh 

- ! 
(-1) 

k K(Q) (s,$) s (s-t)Qx(t)dt, 
i=0 2jh 

where s = (2j+l)h. To approximate this integral use the 

regular rule on the integral with Nr and the special 

rule on the integral with (s -t) . Recalling that Nr E 0 

for t > s, and letting K2 +1 = K()(s2j +l's2j +1)' 
we 

r 

! 



have 

5 

(2j+1)h 
K(s,t)x(t)dt 

-3Nr(s,t2j)x2j 

2jh 

2 

L ( Q! QK2j4 wi (h' Q) s2j+1 
Q=0 i=0 

Summarizing the above work, we have three cases: 

S (' 
s = 0: J K(s,t)x(t)dt = 0, 

0 

(s j-1 
s = (2j+l)h: 

J 
K(s,t)x(t)dt 

3 
{K(s,t2i)x2i 

0 i=0 

+ 4K(s,t2i+1)x2i+1 + K(s,t2i+2)x21+2} 

r Q 

+ 3Nr (s't2 ) x2 
(-1) 

Q. Q 

2Q 

j j i=0 
+1 

2 

X wi (h, Q) x2j+i' 
i=0 

SK(s,t)x(t)dt 
s 

s = (2j+2)h: 
3 

i=0 
{K(s,t2i)x2i 
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(2 -10a) 

(2 -10b) 

+ 4K(s,t2i+1)x2i+1 + K(s,t2i+2)x2i+2}. (2-10c) 

Substituting approximations (2 -10) into equation (2 -8) 

generates a system of 2n + 1 equations in the 2n + 1 

unknowns that will be of the form indicated in Figure 2. 

The *'s indicate generally nonzero entries. The elements 

1 

° 

j. 

h 
- 

L 

0 
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inside the dashed lines are given in Figure 3. The ele- 

ments are shown with a general subscript, and as indicated, 

the two -by -two system is repeated n times. Hence, the 

* i 

* 

* 

* 

* 

* 

* 

0 

** 
* 

* 

* 

* 

* 

0 

* 0 

* 

* 

* 

* ; 

0 

0 

r* 

* 

* 

* 

0 

0 

0 

*¡ 

*! 
*! 
* ; 

0 

0 

0 

0 

0 

* 

* 

0 

0 

0 

0 

0 

* 

* 

0 

xl 

x2 

x3 

x4 

x5 

x6 

f0 

fl 

f2 

f3 

f4 

f5 

f6 

AX = F 

Figure 2. A Schematic for the Array A for n = 3. 

system is reducible; that is, from the zeroth equation 

x0 = f0. Substitution of x0 = f0 into the first through 

(2n)th equation reduces the system to (2n)x(2n). From 

equations one and two xl and x2 can be found using 

Cramer's rule; substitution for xl and x2 in equations 

three through 2n reduces the system to (2n- 2)x(2n -2). 

Repeating this process on the pairs (x3,x4), (x5,x6)..., 

(x2n- l,x2n) 
will solve the system. 

It is important to note that since a general formula 

for the elements of the system can be written, it is unnec- 

essary to store the whole array. In fact, only the two -by- 

two subsystems are stored as the elements are calculated. 

A computer program using Simpson's rule is presented in 

r--I 

= 
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row column 2j +1 column 2j +2 

0) 0 0 

2j) 0 0 

2j+1) 1- (-1) K(Q) w (h,Q) _ (-1)Q K(Q) w (h,Q) 
Q=0 

Q! 2j+1 1 
Q=0 

Q! 2j+2 2 

4h h 
2j+2) -3 K2j+2,2j+1 1 3 K2j+2,2j+1 

4h 2h 
2j+3) -TT K2j+3,2j+1 

3 K2j+3, 2j+2 + T2j+3 

4h _2h 
2j+4) - 3 K2j+4,2j+1 3 K2j+4,2j+2 

4h 
2n) - 3 K2n,2j+1 

Column 0 is a special case: 

A0,0 = 1; A1,0 = -3x1,0 
+ T1; Av,0 

Key: Ku = K(su,sv), su 

T = rCC (-1) 
2 K(k) hQ+1 

L i u 
Q,=O 

k u 

_2h 
K 

3 K2n,2j+2 

v = 2,3,...,n. 
v,0 

w0 (h, Q) 

3. General Formulas for the Elements of the 

Array A. 

uh 
v = 

= 

3 

Figure 

- 
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Appendix B. When solving an actual problem, one needs the 

following information: 

1) The known functions f and K, and 

2) The partial derivatives of K with respect 

to t. 

These formulas are used as indicated-by-the-comment state- 

ments in the program. The only- inputs are n (which de- 

termines h and hence the error bound) and r (the num- 

ber of terms of Taylor's series to be used). 

Some examples are given in II.10. 
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II.6 Interpolation Using the Special Rule 

Further consideration of the approximations in the 

previous section and the development-of-the special rule 

in II.1 and II.2 indicates that an interpolation formula 

may be easily obtained. 

Suppose we have approximated the solution, x, at the 

points of some partition of [0,1]. Further, suppose that 

an arbitrary s is given, 0 < s < 1, and the number 

x(s) is desired. If s = 0, then we have immediately 

x(0) = f(0). Consequently, assume 2jh < s < (2j +2)h for 

some j = 0, 1, 2, ..., (n -1). As before, we arrive at 

equation (2 -9) on page 24 but now we solve for x(s): 

2jh (2j+2)h 
x(s) = f(s) + K(s,t)x(t)dt + N(s,t)x(t)dt. (2-11) 

0 2jh 

The first of these integrals is approximated as before 

using the regular Simpson's rule j times. In the second 

integral we generate a smooth kernel as in II.5. The in- 

tegral with Nr is approximated with Simpson's rule once 

on the interval [2jh,2jh +2h], and the integral with 

(s -t)2' is approximated with the special rule. The final 

approximation is as follows: 

S 

r 
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JK(s,t)x(t)dt 3 

JCl{K(s't2i)x2i 

0 i=0 

+ 4K(s,t2i+1) 
+ K(s't2i+2)x2i+2} 

+ 3Nr(s't2j)x2j + 3 

+ ( -tl K(Q) (s,$) wi(s- 2jh,Q)x2j +i 
i =0 i=0 

(2 -12) 

Notice that for 2jh < s < (2j +2)h the approximation 

involves the previous calculated values of x up through 

x2j +2 = 
x(2jh +2h). Hence, the formula for x(s) is not 

an extrapolation but an interpolation: 

x(s) f ( s ) + [approximation (2-12)]. 

2 

G 

o{K(s,t2i)x2i 

- 
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II.7 Convergence of the Approximation for Smooth Functions 

We now investigate convergence of the approximations 

of the last two sections to their respective integrals as 

n cc. Our hope, to be established in I1.9, is that if 

these approximations converge to their integrals then the 

corresponding approximate solutions, xn, will converge 

(in some sense) to the correct solution, as n 

Let us fix x and choose an arbitrary s in the 

half -open interval (0,1] . [There is no loss of generality, 

for if s = 0, then x(0) = f(0) by (2- 10a).] In order 

to investigate convergence, we write 

rs 
E E. 

5 
K(s,t)x(t)dt - [Approximation (2-12)]. (2-13) 

0 

Assume r is a non -negative integer and let p 

= min {3, r +1 }. Assume K has p + 1 partial derivatives 

with respect to t and x has p + 1 derivatives. It 

is well -known (Hildebrand, 1956) that for each application 

of Simpson's rule, the error bound is hp 
+2MP +1 

where 

in this case 

p+1 Mp+l OstPl atp+1 

ap+l 
K(s,t)x(t) 

If p = 3, for example, then C4 = 1/90. In the first 

three terms of (2 -12) we applied Simpson's rule j times 

to the integral with K(s,t)x(t) and once to the integral 

of Nr(s,t)x(t) . 

+ 

x, - 

n 

_. 

= 



If 

M * = C sup 
p p 0 <t<1 

a N (s, t) x (t) 
atp 
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then the magnitude of the error from these three terms will 

be bounded by 

JMp+lhp+2 + Mp*hp+1 p+1 
n 

By the results of II.4, the error bound for approxi- 
s 

mation of (s- t)x(t)dt will be less than or equal 
J 2jh 

to Apkhk +p +1, where Apk = Qp"k sup (x(p)(t). Q3,k 
0 <t<1 

for example are the numbers from equation (2 -7) and sug- 

gested in figure 1. Therefore, 

IEI np+l + 
hp+1 

Q 
Ap,kNkhk 

r 

= [C + 2 
_ 
P-1 ¿ 

Q!A ,kNk hk] +l 
k=0 p np 

where N = sup IK(k)(s,$)I. (Note that this requires 
0<t <t<1 

r < 3.) By the above work we have established 

Result III. If K(s,t) and its first p + 1 partial 

derivatives with respect to t are bounded for 0 < t < s 

and 0 < s < 1, and if x(t) and its first p + 1 deri- 

vatives are bounded on 0 < t < 1, where r is the high- 

r 

< 
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est order derivative subtracted from the kernel and p 

= min {3, r +l }, then there is a constant depending 

on the above bounds, such that the error in approximating 

VoK(s,t)x(t)dt, 0 < s < 1, 

with n applications of Simpson's rule and its modifica- 

tion on [0,1] is bounded by 

iEl np+l 

That is, the approxiamtion converges uniformly to the 

integral as n 00. 

Note that by Result III there is no gain in taking 

r > 2 for the Simpson's rule case. This confirms the 

prediction in II.1 that r = 2 is a good choice. 

°, 

± 

o 
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II.8 Convergence of the Approximation for Continuous 

Functions 

In the previous section strong assumptions were made 

on the solution. Uniform convergence of the approximation 

operator to the integral operator can also be established 

if the solution, x, is only known to be continuous. 

The starting point is the Weierstrass approximation 

theorem (see I.2 Theorem 4): given e > 0, there is a 

polynomial q(s) such that lq(s) - x(s)1 < e for every 

s in [0,1]. Knowing that such a polynomial exists, we 

look to equation (2 -12). - Recalling the definition of E 

in equation (2 -13) we subtract and add q wherever x 

occurs. Using the associative and distributive laws and 

the linearity of the integral and summand, we have, for 

example, 

JsK(s,t)x(t)dt = sK(s,t)g(t)dt + JsK(s,t) [x(t) -q(t)]dt. 
0 0 0 

Next, we use the triangle inequality and the property of 

integrals If (t)dti < !J (t)ldt for any integrable func- 

tion 4, to write 

IEI < 

s 
K(s,t)q(t)dt - [Approximation of K(s,t)q(t)] 

0 

+ [The remaining terms of (2 -12) with q(t)] 

+ [(2 -12) with lx(t) -q(t)1 wherever x occurs]. (2 -14) 
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Note that the first two terms of (2 -14) constitute 

the error in approximating the integral of K(s,t)q(t). 

So, by Result III, the error of this approximation is less 

than or equal to n-13-1, for some depending on 
q 

q. Finally, we use the assumption that 1K(s,t)1 < M0, 

that lx(t)-q(t)1 < c, and that the sum of the weights 

of the special rule is less than or equal to (2h)2 
+1 

to 

assert that the sum of the absolute values of all the 

weights will be bounded by 

2 

1 + (2h) 
2 +1 < 2, say, 

2 =0 

for n sufficiently large, and using this to conclude that 

1E1 <-7Jc+i'jnp-l-0-/7c, as 00 

q 

uniformly. Further, 97 is independent of c, and since 

c is arbitrary 1E1 - 0 as n co. 

% 
q 

+ 
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II.9 Convergence to the Solution 

In II.7 and II.8 we showed that the Simpson's rule 

approximations converged to the integral as n -} co. Fol- 

lowing the lead of Anselone (1965), define the operators 

K and K 
n 

as follows: 

's 
(Kx) (s) E \ K(s,t)x(t)dt 

JO 

(Knx)(s) = [the approximation (2 -12)]. 

Then our results have shown that 

Knx -> Kx uniformly as n + 00. 

The integral equation and the approximate equation 

have their corresponding operator equations: 

x - Kx = f, (2-15a) 

xn - Knxn = f. (2 -15b) 

Solving for x in equation (2 -15a) and subtracting (2 -15b) 

from the result we have 

x - xn - Knx + Knxn = Kx - Knx, 

after subtracting Knx from both sides. This equivalent 

to 
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(I-Kn)(x-xn) = Kx - Knx, 

where I is the identity operator. If the operator 

(I -Kn) has an inverse, that is, if the determinant of the 

matrix A represented in Figure 2 is non -zero, then we can 

operate on the left by (I -Kn) -1 to get 

x - xn = (I-Kn)-1 (Kx-Knx), 

and taking norms we have that 

(l x-xn I I < 
II (I- -1II -1 II II Kx-Knx 

I I 

. 

Now, if 
-1 

(I -Kn) 
II < B for some B and for all n, then 

H x -xn ( I 
< B II Kx -Knx 

II 
0 as n } co, since Knx -- Kx 

uniformly as n + co. Thus we have 

for some B as defined in Result III. 

Note that since K is a Volterra operator (I -K) 

exists and it can be shown (Anselone, 1965) that II(I -Kn) 
1II 

II(I -111 for all x continuous on [0,1] as n 00. 

This implies that 
II 
II(I Kn) -1II< B for some B. 

II 

-9- 

IIx-xnll<B ;AT 
n 

-1 

n 

a + 

n 
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II.10 Examples 

In this section we present four examples that illus- 

trate the results predicted in section II.9. The data are 

presented in TABLES 1 through 4. The numbers are the max- 

imum of the errors listed on the computer print out, and it 

is suggested that they "close to" the norm of the error, 

using the max norm. The numbers in parentheses are the 

convergence factors- -the error at one value of n is di- 

vided by the convergence factor to obtain the error for 

twice the value of n. The columns are for the various 

values of r, with * indicating regular Simpson's rule 

and 0 indication that K(s,$) only was subtracted. 

Examples one and two are initial value problems: 

1) x' (s) = x(s), x(0) = 1 => x(s) = es. 

2) x' (s) - (3s2-4s+1)x(s) = 0, x(0) = 1 

3 2 

=>'x(s) = es -2s +s® 

The results speak largely for themselves --using the best 

value for r we obtain a convergence rate of 16 just as 

predicted. Note also that the error with just two appli- 

cations of the modified rule is many times better than the 

error using 32 applications of the regular rule. This sug- 

gests a significant savings in computer time to obtain a 

desired degree of accuracy by using the modification. 
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Worst Error at Grid Points 

n 

2 

* 

0.763 

0 

0.000492 
(2.0) (13.7) 

4 0.374 0.0000360 
(2.0) (14.7) 

8 0.188 0.00000244 
(2.0) (15.3) 

16 0.0941 0.000000159 
(2.0) (15.9) 

32 0.0471 0.0000000101 

Worst error of grid points and 

* 

0.764 

0.01, 0.02, 

0 

0.000497 

..., 0.99, 1.0 

n 

2 

(2.0) (13.8) 
4 0.375 0.0000361 

(2.0) (14.7) 

8 0.188 0.00000244 
(2.0) (15.3) 

16 0.0941 0.000000159 
(2.0) (15.9) 

32 0.0471 0.0000000101 

s 

x' (s) = x(s) , x(0) = 0, or x(s) - x(t)dt = 1.0 
0 

TABLE 1. Example 1: A listing of the worst error 

at the grid points and at the points j(0.01), for 

j= 1, 2, ..., 100. 



Worst Error at Grid Points 

n * 0 1 2 

2 0.0442 0.0332 0.00153 0.00148 
(< 1) (3.3) (18.9) (19.5) 

4 0.0457 0.00992 0.0000809 0.0000756 
(1.4) (3.8) (16.0) (16.0) 

8 0.0336 0.00258 0.00000506 0.00000472 
(1.8) (4.0) (16.2) (16.1) 

16 0.0190 0.000651 0.000000312 0.000000292 
(1.9) (4.0) (16.1) (15.9) 

32 0.00999 0.000163 0.0000000194 0.0000000183 

Worst of Grid and interpolation points 

n * 0 1 2 

2 0.0735 0.0332 0.00403 0.00148 
(1.3) (3.3) (13.7) (19.5) 

4 0.0557 0.00992 0.000394 0.0000756 
(1.7 (3.8) (8.8) (16.0) 

8 0.0336 0.00258 0.0000447 0.00000472 
(1.8) (4.0) (8.3) (16.1) 

16 0.0190 0.000651 0.00000536 0.000000292 
(1.9) (4.0) (8.1) (15.9) 

32 0.00999 0.000163 0.000000658 0.0000000183 

TABLE 2. Example 2: x'(s) - (3s2- 4s +1)x(s) = 0, x(0) = 1 or 

s 

x(s) - (3t2-4t+1)x(t)dt = 1. x(s) = exp(s3-2s2+s). 
0 



n 

2 

4 

8 

16 

32 

n 

2 

4 

8 

16 

32 

Worst Error at Grid Points 

* 0 1 2 

0.211 0.0103 0.000404 0.000262 
(1.9) (2.8) (14.2) 

0.113 0.00369 0.0000284 0.0000191 
(2.0) (3.4) (15.5) 

0.0572 0.00107 0.00000183 0.00000127 
(2.0) (3.7) (15.8) 

0.0287 0.000288 0.000000116 0.0000000816 
(2.0) (3.9) (16.1) 

0.0144 0.0000743 0.00000000722 0.00000000536 

Worst error of grid points and 0.01, 0.02, ..., 0.99, 1.00. 

* 

0.211 

0 

0.0103 
(1.9) 

0.113 0.00369 
(2.0) 

0.0572 0.00107 
(2.0) 

0.0287 0.000288 
(2.0) 

0.0144 0.0000743 

(2.8) 

(3.4) 

(3.7) 

(3.9) 

0.000404 

2 

0.000274 
(5.3) 

0.0000765 0.0000194 
(9.5) 

0.00000795 0.00000128 
(8.9) 

0.000000894 0.0000000816 
(8.4) 

0.000000106 0.00000000536 

(13.7) 

(15.0) 

(15.6) 

(15.2) 

(13.6) 

(15.1) 

TABLE 3. Example 3: 

s 

x(s) - 
S 

sin(s)cos(t)x(t)dt = sin(s) + (1-sin(s) )exp(sin(s) ) . x(s) = exp [sin(s) ] . V 
0 

1 

(15.7) 

(15.2) 
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Example 3 is the problem 

cs 
x(s) - 

5 
sin(s)cos(t)x(t)dt = sin(s) + (1-sin(s))e 

sin(s) 

0 

and the solution is x(s) = exp[sin(s)]. The results are 

very similiar to those of examples 1 and 2. An unexpected 

result is fourth order convergence on the grid points for 

r = 1. Notice that this occurred in example 2 also. We 

originally expected the convergence factors to be 2, 4, 8, 

16 for r = *, 0, 1, 2 respectively. No adequate expla- 

nation has been presented as to why this phenomenon occurs. 

Example 4 is the problem 

s 
x(s) - sin(Trst)x(t)dt = 

0 

with solution x(s) = 

ts, 1 

cos (Trs2) sin (Trs2) < 1 s+ 
Tr - 2s2 ' - - Tr 

Trs 1ff5) 
(l+cos (Trs2) 

sin(s)-i-sin(Trs2) 1 
< s< 1 

(Tr-1) 7s 
2 

1-s 1 s - < 1, 

which was chosen to test the results of II.8. Note that 

the orderly convergence patterns are disrupted and we are 

no longer quite so sure convergence is occurring. But re- 

call that no convergence rate was predicted for this case, 

simply that convergence would occur. 

0< 
Tr s 

Tr - 

0 < s < 

- 
Tr -1 Tr - 

, 
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Worst Error at Grid Points 

n * 0 1 

2 0.0234 0.00321 0.000720 
(1.4) (4.5) (z 1) 

4 0.0166 0.000683 0.000670 
(1.9) (< 1) (z. 1) 

8 0.00860 0.000771 0.000714 
(2.1) (10.0) (9.5) 

16 0.00406 0.0000761 0.0000744 
(2.0) (3.3) (3.3) 

32 0.00203 0.0000230 0.0000227 
(2.0) (5.2) (7.4) 

64 0.00102 0.00000441 0.00000307 

Worst error of Grid Points 

and 0.01, 0.02, ..., 0.99, 1.00. 

n * 0 1 

2 0.0234 0.00321 0.000870 
(1.4) (4.8) (1.3) 

4 0.0166 0.000683 0.000676 
(1.9) (< 1) (< 1) 

8 0.00860 0.000777 0.000716 
(2.1) (10.0) (9.6) 

16 0.00406 0.0000761 0.0000744 
(2.0) (3.3) (3.8) 

32 0.00203 0.0000230 0.0000227 
(2.0) (5.2) (7.4) 

64 0.00102 0.00000441 0.00000307 

's 
TABLE 4. Example 4: x(s) - 

5 
sin(frst)x(t)dt = f(s) 

0 
< 

where x(s) 

1-s 1 < s < 1, 

is a continuous function. 

< 

Tr- 
r, - 

- 

= 

s, 0 < s < 
- 
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III. Applications to Fredholm Equations 

III.1 Fredholm Equations with Jump Discontinuities 

An easy extension of II.1 applies to Fredholm integral 

equations of the type 

where 

N(s,t) 

1 

N(s,t)x(t)dt = f(s) 
0 

K(s,t) , 0 < t < s, 

R(s,t) , s < t < 1, 

and where both K and R are continuous on their closed 

triangles of definition. That is, along the line s = t 

there is a jump discontinuity in N with magnitude 

K(s,$) - R(s,$) . 

If in addition we assume that the rth partial deri- 

vatives with respect to t of K and R are at least 

piecewise continuous on their closed domains, then we can 

define a jump function 

J(Q) (s) E 

tQ 

[K(s,t) - R(s,t)lt=s, 
a 

and proceed as in II.1: 

x(s) - 

_ 

R 



f(s) = x(s) - 

where 

Nr(s,t) = 

1 

Nr(s,t)x(t)dt 
0 

Q-(k) (s) (s-t)%c(t)dt, 
Q=0 0 
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(3 -1) 

K(s,t) C( QiQ(s t)kJ(R,) (s) , < t < s 
k=0 

R(s,t) , s < t < 1 

is a continuous kernel and has r continuous derivatives 

across the line s = t. Since both integrals in (3 -1) can 

be well approximated by finite sums, it is reasonable to 

expect that the corresponding approximations, xn, to the 

solution, x, will also be good. If r is large enough 

we would also expect fourth order convergence using repeat- 

ed Simpson's rule and its modification. 

J 

- 

- 



III.2 An Example 

The one -dimensional Green's function 

t(1 -s), 0 < t < s 

G(s,t) 

s(1 -t), s < t < 1 

arises in two -point boundary value problems. As seen, 

G(s,t) is continuous, but its first derivative has a jump 

discontinuity along the line s = t. The problem 
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1 

x(s) - 10 G(s,t)x(t)dt = (1 - 12)sin(Trs) 
0 r 

was solved by first using the regular Simpson's rule ap- 

proximation of the integral and then using the special rule. 

Since J(Q)(s) = 0 for Q = 0, and Q > 2, r was chosen 

to be 1. The data are presented in table 5. Note that as 

predicted in II.7 there is fourth order convergence using 

the special rule, which is a significant improvement over 

the first order convergence of the regular Simpson's rule. 

= 

S 



The worst error at the Grid Points 

n 

2 

Regular Special with r = 1 

0.869 0.735 
(1.5) (24.2) 

4 0.582 0.0303 
(2.3) (16.0) 

8 0.252 0.00189 
(3.4) (16.0) 

16 0.0770 0.000119 

TABLE 5. The worst error at the 

partition points of the problem 

1' 
0 
G(s,t)x(t)dt = (1 - )sin(ffs), 

x(s) = sin(Trs). 
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x(s) - 
n 
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III.3 Generalizations 

A generalization of the problem in III.1 is one in 

which the discontinuity in N is along a continuous curve, 

g(s), 0 < s < 1. The procedure is nearly the same, except 

that 

and 

Nr (s, t) 

J(k) (s) - 
ak 

[K(s,t) - R(s,t) ] 

at 
=g(s) 

K(s,t) -1( Q)k[g(s)-t]kJ(k) (s), 0< t < g(s), 
k=0 

R(s,t), g(s) < t < 1. 

The equation corresponding to (2 -2) is 

1 

f(s) = x(s) - 
S 

Nr(s,t)x(t)dt 
0 

( Q ) J(k) 
(s) 

\g(s) 
[g(s)- t]kx(t)dt. 

k =0 0 

Note that now the upper limit of integration is a function 

of s, so that the special rule developed in II.2 will no 

longer work (unless g(s) E s of course). It should be 

relatively straight forward, however, to develop weights 

that are functions of both 2, and g(s), using the same 

technique in II.2. 

C 

E 
r 

R! 
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IV. Summary and Conclusions 

We started with the Volterra integral equation (1 -3) 

and generated a Fredholm integral equation with a continu- 

ous kernel. This was done by subtracting from K(s,t) the 

value of the discontinuity at s = t, namely K(s,$), 

leaving a Fredholm kernel which is zero for s 5 t S 1. 

The Fredholm kernel was made smoother across the line 

s = t by subtracting terms of Taylor's series; the result- 

ing kernel was 

Nr(s,t) = 

K(s,t) - _(-1) R (s-t) K(R) (s,$) , 0 < t < s 

k=0 !' 

0, s < t < 1. 

Assuming that K and x have r continuous partials with 
1 

respect to t, we showed that Nr(s,t)x(t)dt was well 
0 

approximated by existing integration rules. 

In order to preserve equality, terms of the form 

(-1) 
Q 

K(Q) 
R! 

s,$) 
rs 

JJ 

(s-t 
0 

£ 
x (t) dt 

were added. In II.2 we developed a generalization of Simp- 

son's rule which approximated the indefinite integral. In 

II.5 we combined this new rule with the regular Simpson's 

rule, and showed in II.7 that the resulting approximation 

has fourth order convergence assuming enough differentia- 

bility of the integrand. We also showed in II.8 that with- 

out differentiability the approximation still converges 

L 

S 
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uniformly to the integral as n } 00. The work of II.5 

developed an algorithm for solving linear Volterra integral 

equations of the second kind. 

In the last chapter we extended the results to Fred - 

holm integral equations with jump discontinuities in the 

kernel or one of its partial derivatives with respect to 

t along the line s = t. 
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APPENDICES 



Appendix A 

begin 

comment a program to estimate 
s 

IR[x(s)] I 
<(M3/2)hQ +4 ( 

-11)] Idu 
JO 

where the h has been parameterized out of the 

integral. The integral is approximated by the 

repeated midpoint rule; 

integer n,tn,i,j,l; 

real s,t,rem,prod; 

real procedure Gn(a,b); 

value a,b; 

integer a; real b; 

Gn:= if b >0 then b +a else 0.0; 

real procedure WB(b,c); 

value b,c; 

real b; integer c; 

WB:= b +(c +2) x ((2- b) /(c +1) + (2xb)- 2) /(c +2)- b /(c +3)); 

real procedure WC(b,c); 

value b,c; 

real b; integer c; 

WC: = -0.5 x b+ (c +2) x 
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( (l-b)/(c+l) + (2xb-1)/(c+2)-b/(c+3) ) ; 

comment the program body appears below; 

inreal (60,n); 

inreal (60,k); 

comment a statement to print n and R, and set up a 

table for the output would occur here; 

tn: =2xn; 

prod : = (R, +1) x (i +2) x (k+3); 

for j: =0 step 1 until to do 

begin 

real temb, temc; 

s: =j /n; 

temb: =WB (s, R,) ; 
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temc:= WC(s,k); 

rem: =0.0; 

for i: =1 step 1 until to do 

begin 

t:= (2xi- 1) /tn; 

rem: =rem + abs(2xGn(Z +3,s -t) /prod 

-temc x Gn(2,2 -t) - temb x Gn(2,1 -t)); 

end; 

rem:= rem /n; 

comment a statement to output s and the remainder, 

rem, at s would go here; 

end; 

end of program; 
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Appendix B 

begin 

comment a program to solve a Volterra integral equation 

of the second kind using a modified Simpson's rule. 

integer n,r,tn,i,Q,fac,j,P; 

real s,h,th,hsq,D,sn,hpw,tl,t,xs; 

real array X,F[O:UL]; 

comment UL is the upper limit of the array, i.e., UL > 2xn; 

comment the three weight functions are below. s =a, Q =b, 

h =c and hsq = e; 

real procedure WA(a,b,c,e); 

value a,b,c,e; 

real a,c,e; 

integer b; 

WA: =a +(b +l) x (a x (2.0xa- 3.0xcx(b +3)) + 2.0xex(b +2) 

x (b +3)) /(2.Oxex(b +l) x (b +2) x (b +3)); 

real procedure WB(a,b,c,e); 

value a,b,c,e; 

real a,c,e; 

integer b; 

WB: =2.0 x a +(b +2) x (cx(b +3)- a) /(ex(b {ex(b +l) x (b +2) x (b +3)); 

real procedure WC(a,b,c,e); 

value a,b,c,e; 

real a,c,e; 

integer b; 

WC: =a+ (b +2) x (2.0xa -cx (b +3)) / (2.0xex (b +l) x (b +2) x (b +3)) ; 

real procedure KER(a,b); 

value a,b; 

real a,b; 

comment evaluates the kernel K(s,t) at s =a and t =b; 

KER: =[the kernel]; 
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real procedure PK(a,b); 

value a,b; 

integer b; 

real a; 

comment evaluate the bth partial of K(s,t) with respect to 

t at s =t =a; 

begin 

switch Q:= PO,Pl,P2; 

real RL; 

20 to Q[b +l]; 

PO: RL:=[the zeroth partial]; 

coo to fin; 

Pl: RL: =[the first partial]; 

go to fin; 

P2: RL: =[the second partial]; 

fin: PK: =RL; 

end; 

real procedure NR(a,b,c); 

value a,b,c; 

real a,b; 

integer c; 

comment evaluates the kernel Nr at s =a, t =b, and r =c; 

begin integer LL; 

real temp, nn,ff,dd,pp; 

if b >a then 

begin temp: =0.0; go to BBB end; 

temp: = KER(a,b); 

nn: = -1.0; 

dd: =a -b; 

for LL: =0 step 1 until c do 

begin 

ff:= if LL =0 then 1.0 else ffxLL; 

nn: = -nn; 
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pp:= if LL =0 then 1.0 else dd x pp; 

temp := temp - nn x pp X PK(a,LL) /ff; 

end; 

BBB: NR: =temp; 

end of procedure Nr; 

real procedure FUN(a); 

value a; 

real a; 

comment evaluates the known function at s =a; 

FUN: =[the known function]; 

comment the program begins here. n is the number of 

times the rule is applied and r is the number 

of derivatives to be subtracted; 

eof (finished) ; 

inreal (60,n); 

inreal (60,r); 

tn: =2 X n; 

for is =0 step 1 until to do 

begin 

s: =i /tn; 

F[i] : =FUN (s) ; 

end; 

X[0] : =F [0] ; 

h:= 1.0 /tn; 

the =2.0 X h; 

hsq:= 1.0 /(tnxtn); 

D: = -h X KER(h,0.0) /3.0; 

sn: = -1.0; 

hpw: =1.0; 

for Q: =0 step 1 until r do 

begin 

fac:= if 2 =0 then 1 else fac X 2; 

sn: = -sn; 

hpw: =h X hpw; 
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D: =D + sn x PK(h,k) x (hpw/3.0 - WA(h,R,,h,hsg) )/fac; 

end; 

f[1]:=f[1] - D x X[0]; 

for i: =2 step 1 until to do 

begin 

s: =i /tn; 

F[i] :=F[i] + h x KER(s,0.0) x X[0]/3.0; 

end; 

for j: =0 step 1 until n -1 do 

begin 

real temp,D1,D2,D3,D4,DET; 

integer p,q; 

p: =2 x j + 1; 

q: =P + 1; 

s: =p /tn; 

D1:= if r < 0 then 1.0 - 4.0 x h x KER(s,$) /3.0 

else 1.0; 

sn: = -1.0; 

for 2,: =0 step 1 until r do 

begin 

fac:= if k =0 then 1 else fac x k; 

sn: = -sn; 

D1: =D1 - sn x PK(s,k) x WB(h,k,h,hsq) /fac; 

end; 

D2 : =0.0; 

sn: = -1.0; 

for k: =0 step 1 until r do 

begin 

fac:= if k =0 then 1 else fac x k; 

sn:=-sn; 

D2:=D2 - sn x PK(s,k) x WC(h,i,h,hsq) /fac; 

end; 

s:=q/tn; 

t:=p/tn; 
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D3: = -4.0 X h X KER(s,t) /3.0; 

D4: =1.0 - h x KER(s,$) /3.0; 

DET: =D1 X D4 - D2 X D3; 

if abs(DET) < 10 -7 
then 

begin 

comment a statement here would print "The problem 

generated a singular matrix. 

go to finished; 

end; 

X [p] : = (F [p] XD4 - F [q] XD2) /DET; 

X [q] : = (F [q] XDl - F [p] XD3) /DET; 

if j = n -1 then 22 to otpt; 

s:= (q +l) /tn; 

temp: =4.0 X h X KER(s,t) /3.0; 

t: =q /tn; 

D: =2.0 X h X KER(s,t) /3.0; 

sn: = -1.0; 

hpw: =1.0; 

for k: =0 step 1 until r do 

begin 

fact= if k =0 then 1 else fac X k; 

sn: = -sn; 

hpw: =h X hpw; 

D: =D - sn X PK(s,k) x (hpw /3.0- WA(h,Q,,h,hsq)) /fac; 
end; 

F[q+l]:=F[q+1] + temp x X[p] + D X X[q]; 

tl: =p /tn; 

for i:=441.1-2 step 1 until to do 

begin 

s: =i /tn; 

F[i]: =F[i] + 4.0'x h X KER(s,tl) X X[p] /3.0 + 2.0 x h 

X KER(s,t) X X[q] /3.0; 

end; 

end; 

"; 

- 
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otpt: comment a statement to print the problem, the 

values of n and r, and column headings 

would go here; 

for i : =0 step 1 until to do 

begin 

s : =i /tn; 

comment a statement to output s and 

X[i] = x(s) would go here; 

end; 

comment the interpolation begins here. Values of s are 

input until there are no more, whereupon the 

eof (finished) command halts the program; 

begin real xs,tl,t2,t3; integer Il; 

inter: comment a statement goes here to input s; 

if s =0.0 then begin j: =0; coo to AAA end; 

for is =0 step l until n -1 do 

if 2 x i x h< s A (2xi +2) x h> s then 

begin j: =i; coo to AAA end; 

AAA: xs:= FUN(s); 

for is =0 step 1 until j -1 do 

begin 

I1 =2 x i; 

tl: =ll x h; 

t2:= (I1 +1) x h; 

t3:= (I1 +2) x h; 

xs: =xs + ( KER( s, tl)xX[I1] +4.0xKER(s,t2)XX[I1 +1] 

+KER(s,t3)xX[I1 +2]) x h /3.0; 

end; 

11;=2 x j; tl:=Il x h; t2:=(I1+1) x h; 

xs:=xs + (NR(s,tl,r)xX[I1]+4.0xNR(s,t2,r)xX[11+1]) x h/3.0; 

sn:=-1.0; 

tl:=s - 2.0 x h x j; 

for i:=0 step 1 until r do 

begin - 
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fac:= if i =0 then 1 else fac x i; 

sn:=-sn; 

xs:=xs + sn x PK(s,i) x (WA(tl,i,h,hsq)xX[Il] 

+WB(tl,i,h,hsq)xX[I1+1]+WC(tl,i,h,hsq) 

xX[I1+2] )/fac; 

end; 

comment a statement here would output s and xs = x(s); 

end; 

finished: end of program; 


