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dicts.
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Numerical Computation of Free Surface Water Flow

Chapter 1: Introduction

The present thesis deals with the research that I have undertaken during my en-

rollment as a graduate student in the Department of Mathematics at Oregon State

University.

Based on already existing and well known physical models in fluid mechanics, the

topic of my research was to develop and investigate a mathematical model and a

related numerical method to solve for the velocity distribution of a fluid (water) in

one of the wave tanks of the OS U wave laboratory. Thus, the aim was to simulate

the motion of the water in the tank.

A wave tank is made to simulate natural processes that deal with water waves in

order to make measurements and thereby to understand what processes accompany

the habitual appearance of a wave.

Computing the velocity field of a fluid flow is a very old, as well as a very difficult,

topic. Whenever a fluid is flowing in any application (cars, airplanes, medical in-

struments, etc.), engineers are immediately interested in knowing the velocity and

pressure distributions, since these are necessaray for calculating stresses arising from

the fluid acting on a solid body as well as for computations concerning the 'energy-
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flux' related to the fluid flow. Stresses and energy have a huge informative value for

engineers who construct new machines and instruments, and it is finally the stresses

and the flow of energy that must be known before a new application can be set in

motion.

Further, the simulation of the velocity distribution in the wave tank, is a means of

calculating the stresses acting from the water on the ground of the wave tank and

thereby comprehending the water-ground interaction. This interaction takes place in

nature (at ocean or river shores) at every second of earth's life and for ages people

have tried to change this interaction to their advantage by constructing dams, wave

breakers etc. On one hand, people are interested in knowing effects of the changes

prior to establishing them. On the other hand, people would like to know the basic

processes taking place when water and ground interact. Thus we recognize many

practical applications for the simulation of the waterflow in the wave tank. This was,

indeed, a very good motivation to make any effort in approaching the final aim.

The wave tank I dealt with was about 100 meters long and 4 meters wide. Its depth

was approximately 6 meters. The ground of the wave tank can be adapted to the

particular shapes researchers like to investigate. At one end of the wave tank there is

a wave board that generates water waves by moving back and forth. The wave board

can be controlled such that different kinds of waves can be produced.
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f(xj+1,y, z)

r-/

z)

Zk-Fi Zk-1

f(x, y, z) is any function defined in the region where the partial differential equations

are defined. Applying finite differences requires establishing a grid of discrete points

with possibly small distances to the neighbor points for good approximation of the

4

The task for my thesis can be formulated simply.

Suppose we know the time dependent motion of the wave board. Moreover, suppose

we know the velocity distribution of the water at an initial point of time (namely

exactly at the time when we start our observations). Then the goal is to approximately

compute the velocity distribution over all the water in the wave tank and the motion

of the surface at any time after the wave board started to move.

In order to solve this problem, we have to deal with the physical model for incom-

pressible free surface fluid flow which we will introduce in chapter 2. A brief look

over this chapter shows that we need to consider a set of three partial differential

equations representing the law of conservation of mass in a moving fluid, the law of

conservation of momentum acting on a fluid particle (Navier-Stokes equations) and

the formulation of the surface motion.

Our first approach to solving these differential equations was to employ a finite dif-

ference method. The idea of finite differences consists in approximating the partial

derivatives belonging to a differential equation by finite differences of the form

f (x, y3+1, z) f (x, z)

Y3+1 y.7-1

f (x, y, zk+i) f(x,thzk-i)
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derivatives. In order to apply a finite difference scheme, we studied the very educa-

tional doctoral thesis of Dr. Wilhelm Heinrichs [5] on spectral multigrid methods for

the Navier-Stokes equations. We thank Dr. Heinrichs for immediately supplying his

thesis to support our research.

Applying a difference scheme requires transforming and normalizing the region of

the fluid flow into a rectangular box and rewriting all differential equations for the

transformed region [2]. For our problem, the boundaries of the region of the fluid flow

are the very curvy free surface and the ground as well as the vertical walls. Thus,

the transformation to be performed considerbly complicates our differential equations

since one of the normalization parameters is the height of the surface itself. However,

this height is not known in advance and changes as time increases. Therefore, the

transformation results in highly nonlinear equations. Unfortunately, Dr. Heinrichs'

work does not contain ideas how to deal with problems in free surface flow.

Furthermore, we reviewed the literature dealing with fluid dynamics. Thereby, we

made three observations.

First : Papers about research on numerical methods for three dimensional flow

involving the Navier- Stokes equations are hardly available. A relatively rich source for

this topic are the journals 'Computer methods in applied mechanics and engineering'

and 'Computers and fluids'. Unfortunately, numerical computation of free surface

flow by solving the Navier-Stokes equations was not found.

Second : A very important part of literature on numerical methods for free sur-

face flow is to be found in the oceanography section. There are interesting papers

about three dimensional free surface flow, for instance the collection of papers on ship
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hydrodynamics, water waves, and asymtotics of Fritz Ursell [14] or the book about

ocean wave modelling by the SWAMP Group [12]. We notice that free surface flow

in oceanography is considered as potential flow. That is one assumes that the fluid

flow has zero vorticity. This implies that the fluid flow is non viscous. The differ-

ential equations simplify considerably and become linear. For example engineers in

ship building employ the concept of potential flow for the calculation of the ship's

wave resistance [6]. However, our intention in the present problem is computing the

stresses acting on solid bodies caused by the fluid motion. Hence, we cannot assume

a non-viscous (potential) flow. So, the work on potential flow is, unfortunately, not

helpful for us.

Third : There is some literature in oceanography where even stresses are involved in

the mathematical considerations. This is done by dealing with mean values of stresses

over the length of one wave as for instance in Paul Martinez' and John Harbaugh's

book on simulation of nearshore environments [8]. There exist already software pack-

ages for computing the wave propagation involving mean values of stresses acting on

the free water surface and the ground. We may not employ these algorithms for our

problem since we require a high resolution of our results.

Other papers on numerical methods in free surface flow, for instance [7], employ the

shallow water model. This model is based on neglecting velocity changes in vertical

direction. Again, we are unable to employ this idea since our wave tank is very deep

compared to the length of the waves, so we clearly have no shallow water.

This whole situation was the motivation for us to come up with completely new ideas.

With our methods, we attempt to compute three dimensional free surface water flow

by numerically solving the Navier-Stokes equations. As the literature research shows,
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computations of this kind were not performed before, so we can assume that our

numerical program represents a new quality in computational fluid mechanics.



In the following we introduce some symbols that are used most often in this thesis:

(x, y, z, t) or simply (t) . . . a vector indicating the velocity field of the fluid through-

out the wave tank

v(x, y, z ,t) or simply v(t) ... a vector indicating an approximation to i)-(t) of the

form

V(t) V(t) = V E b(t) . e(0

V = (17,, Vy, Vz)T ... a function satisfying certain conditions at the boundary of

the wave tank aS2

e(i) = (e), ei), e))T ... a set of linearly independent basis functions for i = 1 N

having the property e(i) 0 at the boundary as)

N ... number of basis functions (also number of weight functions) used

w(k) (w(k),wk),w(k))T a set of linearly independent weight functions for

k = 1 N having the property W(k) 0 at the boundary as/

p ... the density of the fluid ( in our case water )

g ... the gravity constant

Uo ... the generalized velocity

8



T ... the generalized time

L ... the length of the wave tank

H ... the global height of the wave tank

A = ... one half the ratio of length to height

... the nondimensionalized component of length pointing in x-direction

= ... the nondimensionalized component of length pointing in z-direction

Gr(x) ... a function that represents the height of the ground of the wave tank above

the point z 0

gr(x) = Gr(x) ... the nondimensionalized ground function

v ... the viscosity of the fluid

Re= L _Ta the Reynolds number

St = u.L.T ... the Strouhal number

Fr -=the Froude numberU,

Vw(y,Z,i) ... the velocity describing the motion of the wave board

9



V0(t) ... the velocity of the wave board in the height H

Ig, ... an interval [ -1,a ] on the axis where special conditions are satisfied

I ... the identity matrix

v __=( a a a \( a a a \
ax , ay, az ) axi, ax2, ax3

XIE(,) characteristic function of the interval 1-E(,) where the function E(i) is non-zero

10
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Chapter 2: Physical Model and Mathematically Modelling the
Problem

2.1 Physical Model and Boundary Conditions

The present problem of fluid mechanics (as explained in Chapter 1) is physically

uniquely described by the Navier-Stokes-equations (law of conversation of momen-

tum) and the continuity equation (law of conservation of mass) and the conditions at

the boundary Of2 which must be known at every time. These three criteria are called

the physical model of the problem and have the following forms:

1.) Navier-Stokes-equations:

0-7 v) =v A

where A is a tensor due to pressure, viscosity and gravity forces:

2 + 2va-u pz poi).
a. ay I a.)

(2.1)

Remark: The tensor A. is valid in this form only if the gravity points exactly in



negative z-direction (which is satified in our case).

Continuity equation:

V = 0 . (2.2)

The equation in this form is valid only for incompressible fluids (which is satisfied in

our case) and must be satisfied throughout a

Boundary conditions:

figure 2.1: Sketch of the wave tank in two dimensions

0,SZ5
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If we take into account the wind acting on the surface then n 0 !
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The above picture is a sketch of the wave tank in two dimensions where the bound-

aries are given special symbols:

Of28 denotes the surface,

i3S21 denotes the vertical (left) wall were the wave board is located,

ac/2 denotes the ground of the wave tank,

af23 denotes the right end of the wave tank.

Consider afis:

To determine a boundary condition for the surface, one needs to know the forces that

act from the medium above the water (air) on the water surface. These are mainly

dependent on the state of motion of the air. A means of considering the air's action

on the surface is to consider it with respect to the normal to the surface line.

If there are no forces acting on the surface (i.e. there is no significant wind) then at

least the condition

i n = 0 (2.3)

must hold at a, where is the so called stress tensor and is given by

+2v v(341 + ) vC9'thas -57 -4- 5-;

you j_ 2paii yin atb)
\,ay as) g ay az ay )



In this case we have

T.n=s(x,y) (2.4)

where s(x , y) must be known at every time and could be the result of preceding fluid

dynamical computations concerning the air flow adjacent to the surface.

Consider 001:

The fluid flow at Ofii is defined by the motion of the wave board. Let Vw (y, z, t) be

the velocity of the wave board; then,

Vw(y,z,t) throughout aQi . (2.5)

The fluid cannot have any velocity different from Vw(y,, z, t) since the Stokes no slip

condition forces the fluid to stick on the board.

Consider af/2:

Again, the Stokes no slip condition requires that the fluid sticks on the ground. So,

the equation

must be satisfied everywhere at 3f-22.

consider 5S23:

Again, the Stokes no slip condition requires that the fluid sticks on the right wall.

So. the equation

14



must be satisfied everywhere at 0Q3.

2.2 Differential Equation describing the Motion of the Surface

The differential equation that decribes the motion of the surface results from the

assumption that the surface moves with the same velocity as the set of particles

being instantly on the free surface.

15



vi= veLoc;t. of particte.

where s = (s sy, h)T represents a point on the surface.

figure 2.2: Model of the surface motion

So, we have the differential equation

ds
= V (particle)dt

Equation 2.8 actually consists of the three differential equations

16

(2.8)



ds,
dt

dsy
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(2.9)

dt
= , (2.10)

dh
(2.11)

dt

For numerically solving for the surface motion, the equation (2.11) is the most im-

portant: if we consider the height of the surface h as a function in x and y, then

equation (2.11) gives us the partial differential equation

ah
at +uax (2.12)

This is the primary differential equation that we used in our numerical applications

for computing the motion of the surface.



2.3 Transformation into a Mathematical Model

2.3.1 Transforming Navier Stokes equations and Continuity

equations

The physical model as introduced in the previous sections is not ready yet for direct

use to compute the velocity distribution in the tank. In the following, we shall, based

on the physical model, develop a mathematical model that allows us to compute ap-

proximations for the velocity distribution.

Ansatzfunction and appropriate requirements

We do not attempt to compute the exact function"V' (t); rather we try to find an

approximation v(t) in the sense that

y, z, v (x , y, z, t) = V (x , y, z, t) E b(t) e(i)(x,y,z) (2.13)
=1

where

18

1.) e(1)...e(N) is a set of linearly independent basis functions. Each of the basis func-

tions has to satisfy the conditions



and

V must satisfy the explicitly given boundary conditions at aQ,, 3f/2 and 0Q3 as they

were stated in section 2.1 , (2.17)

b(t) are factors that need to be computed by the numerical method.

At this point we realize that, no matter which values the k's take on, any function of

the form v(t) V (x ,y , z ,t) =11),(0 e(')(x. y, z) ( Ansatzfunction (2.13) ) already

satisfies V v = 0 ( condition (2.2) ) as well as the boundary conditions at 09,i, 0522

and ac23. However, the boundary conditions at 0Q, may not be satisfied immedi-

ately. Please refer to the next section where the conditions at af2, are involved in the

computations.

19

V e(° =- 0 throughout CI (2.14)

at Ofli , OC22 0Q3 (2.15)

2.) V(x, y, z, t) has to satisfy the condition

VV = 0 (2.16)



Using Galerkins Method for evaluating the numbers bi

Since continuity and the conditions at 01-21, 3f12 and 0Q3 are already satisfied by

cleverly choosing the Ansatzfunction, the remaining task is to use the Navier Stokes

equations to evaluate the bi's in the Ansatzfunction (2.13) as well as to take care of

the conditions at the surface.

We will use Galerkins method to obtain an expression for the bi's and we shall see

that. if we use a weak formulation, the Ansatzfunction obeys the boundary conditions

at. 0.cIs.

Galerkins method, applied to our problem:

Suppose there is a set of N linearly independent weight functions w(k) with k =1...N,

and lets furthermore require that these weight functions satisfy the conditions

w(k) 0 throughout fl , (2.18)

w(k) 0 at 0Q1 , 32 0523 . (2.19)

Galerkins method then states that the Navier Stokes equations need not be exactly

satisfied for v, but that the equation

is true for k =1...N.

fT av
w(k)

at
+ (v v) v) clf2 = W(k)T (V A) d(2

20

(2.20)



to rewrite (2.20) as follows

I w(k) dc2 ek)
at

.v T((v 7) v) c/S2 = 1 V (AT .w(k)) dc-2
T aV (

2

v (AT wT (v A) +

Now, using Gauss' divergence theorem, from (2.22) it follows that

w(k)T w,LNT
((v V) v) c/S2 = w(k)T (A n) d(aS2)

at
01-2

awi
axi

Furthermore using the fact that A = T gz I , (2.23) then looks like this:

f w(k) T dc2 f W(k)T ((v. V) v) =
ci (2.24)

aw(k)f w(k)T (T n) d(3s2) f gz (W(k)T n) d(D) f (E Az3 a; )
as-2 80 ci 2,3

T is the same as T except that we use v instead of .Cr to compute it.

21

We should note that the matrix A has the same meaning as matrix A., but A is

computed using the approximative velocity v instead of

All further modifications of equation (2.20) are performed in order to obtain an ex-

pression for v (i.e. an expression for the k's in Ansatz (2.13) ).

We use the identity

(2.21)

aw(k)

a X1j
) dcl (2.22)



Hence, (2.24) has now the following form.

w(k)T Ov
a

f w(k)T . v) v) dc2 f g z (w(k)T n) d(8c2)
at

2 02

Another way of expressing A is A = P- ST gz I, which would (based on

(2.25) ) lead to the following equation.

f w(k)T d9. f w(k)T V) dS2

aw(k
f gz (W(k)T n) d(3(1) f( P 113 az!) ) c/f2

as/ Q JO P

Eiw(k) (k)aWf(E c/SIf (Egz ox )dla
Q

Ti ij 3

This equation is equivalent to

22

At this point, we are able to incorporate the boundary condition (2.3) and the con-

dition (2.19) set forth to the weight functions, which yield

IW(k)T (T n) d(051) = 0 .

(2.26)



I \f wkk ,v + f wTkk) ((v.737 "" )d(2 =

g z (w(k)T n) d(OQ)
80

f 2 (V W(k)) d (2.27)
s-2 P

ow(k)

f (E ST ---.)clf2 fgz(V.w()dQas,

With requirement (2.18), we obtain finally

w(k)T Ov + w(k)T ((v v) .v) dc2 gz (w(k)T n.) d(aQ)
at

2 an

w(k)T f w(k)T Ai
c2

I( E (sT)rim atk) ) g z (w(k)T n)
n,m

1\ b, b., f w(k)T ((e() V) e(.7)) c/Si

Note, that we now eliminated the terms containing the pressure p. This is of impor-

tance, since v is the only unknown remaining in the equation. Hence, we try to find

an expression for the bi's.

Thus, we incorporate Ansatz (2.13) and rearrange the order of the terms to obtain

f w(OT e(z) dS2 E bi f W(k)T ((/ V) e(2)) cif/ +
2=1 c2 2=1 2

j\EI bi f w(k)T ((e(') V) V) (1St f ( E (STe(z)),m awn(k) ) c/1"2
i=1 °xrnz=1 ri,m,

23

T2 awi) dS-2
axi

(2.28)

(2.29)



where ST = STe STv

Here,

aeo) aeo)2v e(-')as ij ay + 8x' vOff aeo)
as az

and

STe(i) =

ST=

19e(i) ae(i) 9v
(i)

X _I_
ay I as ay

v(aaesO) (r1) V( aec
-r

,i) aev) aeo)t.:
az ay )

9vaz

2vav, vfav, axi-\ av. )\
as ay as) 14 as az )

LV2 av2v-1 av, ay, \
ay as ) ay az r By)

viav,

av,)
\ (BY _L_ av,) 2pav,\ var -r" az az By ) az

are the parts of ST due to the functions e(i) and V .

The next step is to approximate. We define a certain timestep At and discrete

time points tn, with

t, = to + m At . (2.30)

ae(i) aeo)
11797-z- + )

94

to is the initial point of time where we start our computations. We denote furthermore



Using (2.31), we approximate t- by

The vector R is denoted by

bm) = bi(tm) . (2.31)

Equation (2.32) provides the oppotunity to rewrite (2.29) as an implicit scheme for

the unknowns bm+1) ( k = 1...N ), provided that all bin) are known from the previous

time step computations:

b$ kt- f w(OT f w(OT ((7 V) e(a)) clf2

f w( V) V) Al f( E (STe ) ) ) Al]

b, 972) f W(k)T e(i) d5?, f w(k)T
i=1 o

f w(k)T V) AZ f( E (STN,, av;;:nk))
N

gz (w(k)T n) c/S2 E b,r+1) br." f W(k)T ((e(i) V) e(3)) c1S2

In order to make this huge equation readable, we denote the matrix L by

L(k'i) =

f w(k)T c/C2 f w(k)T ((7 V) e(i)) dit

I w(k)T ((e(i) V) V) c/C2 f( E (STe(z))n,, `97;m(k) dcl
non

25

(2.32)

(2.33)

(2.34)



R(k)

b( W(k)T e() d) f w(k)T
i at=1 -

f w(k) T ( V ) V) c/S1 f ( (ST),,,, 8 va'T;m( k ) ) d
n,m,

f gz (w(k)T n) c/S1 e+1) b(im+1) f w(k)T ((e(i) V) e(3)) dfl
i,j

and the vector b by :

bl(m)

b(;:i)

With these abbreviations we can write equation (2.33) simply as

13(m+1) R (2.37)

At this point, we have gained our aim to derive an expression for the bt's in the

Ansatzfunction (2.13). Thus we can completely determine the approximate velocity

distribution throughout the wave tank.

Taking into account that the vector R is dependent on b(m+1), we realize that equation

(2.37) is an implicit time scheme for the Navier-Stokes-equations for the problem

introduced in Chapter 1.

26

(2.35)

Conclusion : We realize that L(k'i) and R(k) depend only on the choice of the basis

and weight functions and 011 the parameter At. So we could compute L(k'i) and WO

b(m) = (2.36)



if we knew the region at the time tm+1. Thus the conclusion is that the surface

must be known prior to solving for the coefficients .13r44-1).

The next section shows how to compute the surface at time tm+1 (thereby computing

the region 12, at tm+i).

2.3.2 Surface

Fixed x-y-grid for discretization

We have already seen that the differential equation modelling the motion of the

surface is

27

ah Dh ,011

-a+t +u-a-x-+y ay
(2.38)

In the following, we shall derive an time-implicit difference scheme which approxi-

mates the motion of the surface.

In order to do that, we establish a rectangular x-y-grid that covers the x-y-plane of

the wave tank. We call the discrete grid points (xi, y) where i 0 Mf + 1 and

j =0... Nf +1. Mf + 2 is the number of intervals in x-direction, Nf + 2 is the number

of intervals in y-direction:



11.11

3,4

9t
Si

So
xo x, X2 X.3

figure 2.3: x-y-grid for discretization of the surface

ahWe approximate ah and ay by

ah h(tm+i,x,Y x2, Y3)
at At

ah h(tm+1,xi+i, Yi) h(tm+1, xii,
ax

X Ili >C11.4.1
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Oh h(trn+i, xi, y3+1) h(trrt+i, x Y3-1)

Y1+1 Y3-1

Thus, from the original differential equation (2.38), we obtain

h(tm-f-i,s,,Y7)h(tm,xt,Y3)
At

U(tm+i, xi, y3 )
Si+i -Xi-1

h(tm+1,S1,Y7+1)-h(t777+1,Xx Y3-1)V(trn+i, xi. y3)
Y3+1 -Y3-1

w(tm+i, xi, yj)

This gives us finally the time implicit difference scheme for the surface:

At U(tAtX11 -r_1m+i) h(tm+1, Xi+1, Yi) U(tm+i) h(tm+1, Xi-1, Yj )

At V(tm+i) h(trn+1, XI7 Y:7+1)
At

U(tm-F1) h(trn+1, Xi, Yj-1)YJ+1VJ-1 y3-1-1 -

h(tm+i, Xi, y

h(tm, xi, Y3) + At w(tm+i,x,,Y3)

29

(2.39)

(2.40)
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Advantages of this scheme based on the fixed grid
Since the x-y-grid-points are fixed. we can imagine the approximation of the surface

by table tennis balls that swim on the surface and are allowed to move up and down

(in z-direction) only. This has the advantage that the table tennis balls do not drift

away and we do not necessarily have to add new balls as we would have to in the case

of moving grid if a gap between any two balls or the distance to the boundary grows

too large. Moreover, we do not have to remove balls from the surface in case they

come too close together. This means that setting up this scheme on a computer is

very simple and is basically the implementation of a hyperbolic differential equation

which is quite well understood.

Disadvantages

1.) The scheme above provides only M1 Nf equations for the (Mf +2)* (Nf +2) +4

unknowns ( h(tm+i,x,,y3) for i = 0...M + 1 and j = 0...Nf + 1 ). The unknowns

that cannot be calculated are the table tennis balls being directly at the boundary

09 of the wave tank. So, the values for those points must be obtained by another

method, for example by assuming that the slope formed by the surface close to the

boundary is nearly constant in a sufficiently small neighborhood of OIL In this case,

if the shape of the surface at the boundary looks like the following picture



figure 2.4: Example of a certain surface shape

then we can make the assumption that

h(Xi) - h(X0) h(X2) - h(X1)
- X0 X2 -

31

(2.41)

2.) If the surface of the fluid becomes very steep (for example when a wave breaks)

then this scheme fails and numerical instabilities occur in higher and higher spikes

growing on the surface. It is very difficult to prevent these instabilities, since the

mechanism for these occurences is quite simple: the steeper the surface, the larger

X, XL
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the distance between adjacent table tennis balls, hence the approximation of the

surface at steep points is less accurate and so the probability of making large errors

rises and the spikes probably grow larger. So the process is self supporting. One

mechanism to prevent this would be to inject more table tennis balls (i.e. to establish

more grid points) when the surface becomes sufficiently steep. However, then the

whole algorithm would lose its simplicity.

Moreover, breaking waves tend to form overhanging shapes, but the present scheme

is unable to calculate an overhanging wave formation.

3.) The scheme above, viewed as a system of linear equations, gives an (M N) x

(M N)-Matrix which might be inconveniently large depending on how many table

tennis balls are chosen. The benfit is that the matrix is extremely sparse such that

we can use algorithms for sparse matrices.

Nevertheless, for our test runs we used mainly this surface scheme due to its easy

handling.

Floating x-y-grid-points

We remember that the original differential equation for the surface (2.8) was

ds

dt v



We now approximate the surface as a set of Nm points

Si,

si= siy

\ hi

We recognize furthermore, that (2.8) is an ordinary differential equation, and we use

the implicit Euler method to set up the scheme

dsi si(tm+i) s(t1)
dt At v(si(-1,-4-1))

Note that At is the same as the At used in scheme (2.33).

The above equation gives us

si(tm+i) = At v(si(tm+i)) s (2.42)

which is easily recognized as an implicit Euler scheme for the above ordinary differ-

ential equation.

Advantages of this scheme

1.) For the N unknown surface points, the scheme provides exactly N, different

equations. So there is no need to find other conditions for the table tennis balls on

the boundary. Moreover, these IV, equations are decoupled, one could solve every

single of them without regarding the other N, 1 equations, which means that we

33



figure 2.5: Surface discretization at the boundary
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do not have to handle a huge N, x Nm-matrix.

2.) We will be able to deal even with overhanging wave formations. In our test runs

using this kind of surface model, no numerical instabilities occured.

Disadvantages

We have the situation that (mainly at the left end of the wave tank where the wave

board oscillates) the table tennis balls drift considerably and disappear behind the

boundary or the gap between the balls and the wall could grow too large. It needs a

lot of effort to handle these occurances. Most of all, adding new points to the surface

when the gap becomes too large is a problem that is not well understood yet.

For this reason we use the following idea. If the surface looks like the picture below,

Xi X
2- X.3 X.11,



ha

h.,/ - - I

figure 2.6: Injection of new discrete points

One example of solutions where the idea of floating grid points has been employed,

is exhibited in chapter 6.

Conclusion : At the end of section 2.3.1 we concluded that the coefficients W2+1)

can be evaluated only if the region 12 is known at the time tm+1.
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then we add points in the gap between the last point x1 and the boundary. The new

points are on a line which has the same slope as the line drawn from the point x2 to

Si.

The summarizing conclusion of the present section is that the surface at tm+i ( i.e. 52

at tm+i) cannot be computed unless the velocity v at time tm+i ( i.e. the coefficients
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bm+1) ) are known. This is a contradiction in itself, and the way out of this is the

establishment of the following iteration algorithm.
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2.3.3 Iteration algorithm for the velocity and the surface at the

time trn+i

define cs (break condition for surface iteration)

define cv (break condition for velocity iteration)

define initial surface s(°)

define initial velocity v(°)

define initial time to

set m = 0 (counter for discrete timesteps)

LOOP (over all time steps)

Compute tm+i = t, + At,

m+1)guess a new surface s(m+1) for time t or let simply s( ' = s(m)(0) m-1-1 (0)

(m+1)guess a new velocity v(0) for time trn+i or let simply v((071) = v(m)

set i = 0 (counter for iteration steps)



s(74') - s(m+i)
WHILE (t) 0-1) Ilv)2+1)-vYTT)

Ils(;)+1) II Ils(m+1)
> cs or (m+,) "-, m)+1) >

-1) Hy 0) + vb_i) II

set i =-- i 1

(m+1)iterate scheme (2.37) using s as integration boundary to obtain
(m+1)a new velocity v(i)

iterate scheme (2.40) using v(m+1)(i) as velocity to obtain

a new surface (m+1)
(i)

END WHILE

set v(m+1) v(m+1)
(i)

and save

set s(m+1) s((7)+1) and save

set m = m + 1

END LOOP

38
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2.3.4 Restriction of the Mathematical Model to 2 Dimensions

and Nondimensionalization

Although the models (2.33) and (2.40) / (2.42) may be used in 3 dimensions, we will

make a restriction of these schemes to the dimensions x and z only. Here are several

reasons for this step:

Due to their unavoidable complexity, these algorithms run very slowly on a com-

puter, even in the limited two dimensions case. Computation of the three dimensions

case would take far too long.

Involving the y-dimension is not reasonable for some basic test runs of the algo-

rithms, since one can assume that in several cases the change of velocity in y-direction

is negligible in comparison to the other dimensional directions. This is due to the fact

that the wave tank is very narrow. However, we took into account that there are cases

where the y-direction is not negligible at all, namely when crosswaves are occuring.

That is why the basic mathematical model was established for 3 dimensions.

Computing in 3 dimensions would be possible with much more powerful computer

equipment. Refer to chapter 4 for more detailed information.

Please note that from now on all considerations are done in the 2-dimensional case.

We neglect the y-direction.



Nondimensionalization and Characteristic Numbers

Nondimensionalization is a standard tool useful for the study of problems in fluid

mechanics. This technique generalizes the problem, and all necessary parameters

characterizing the problem will be contained in the so called characteristic numbers

(as we shall see in this section). Whenever two different problems have the same

characteristic numbers and the same nondimensionalized boundary conditions, then

the problems are similar and need not to be considered seperately.

For our problem, we introduce the usual nondimensionalizations.

For the variables with the dimension 'length' we choose

2

x 1

z

71 H
Cr (x (0)

gr(e) H

For the variables with the dimensions 'velocity' we choose

where U0 is a characteristic velocity.
Uo

40



Finally, for the variables with the dimension 'time' we choose

where T is a characteristic time.

We establish furthermore the characteristic numbers

Re=

StLUoT

Fr 9.L
v 0

A 2H

In the following section we shall see how these numbers fit into the existing mathe-

matical model.

Transformation of the scheme (2.33) into a nondimensionalized scheme

Using the nondimensionalizations introduced in the previous section, one obtains

the following expressions for all the single terms used in equation (2.33). We exhibit

these equations here since it is exactly this set of equations that is implemented in
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1.)

1
Kt- fwT ex =(k) (i) u2H St

° AT J(187(xk) w(z" e(.zi) ) dri)

3.)

4.)

5.)

f w(k) ((V V) WO) c/S2 =

06(xj) (k) - ael)
ae + V, ae + A 4k z ± A WY') V, '1') )<c197

f w(k) ((e(2) V) V) c1S2 =

Tr2 f(wV.0 ,;(i) ,(i) , A.
wk)e(i)z m

A. w(k) e(zi) Dr, ,
o J ae ae -r- an ) deaq

f( E (ST (0)e nm

H f (2 PYK(L) 8°Y)
Re at + A

awe) ae(;) , A aw(k) aezo)
at ac -r 877

awn(k))dQ
ax., )

aw(k) ae(i)aiac
2A2 aw(zk)

f ( E (ST(i)) awn(k)) d) =V 71712 asm

A2 a _w_Lo a-t (L.)
an an

ae(z') dri )

42

the computer program and the integrals appear exactly under the same number in

the source code.

(2.43)

(2.44)

(2.45)

(2.46)

n,rn

U2 H ( f(21 ay,co , A awCrk) av(i) (k) -
° \ Re at

A2 14_Lx._
+ay (2.47)an at a7) a,7

aw(zk) av(i) aA vvc,k) (1,) (i)
F

2 A2 awz -vz
r, A an ) dri )at a

2.)

U,? H f (Nsrk)
rz



6.)

f W(k)TH (St f(w(k) av, (k) aVz+ w z a, ) de 61 )

7.)

8.)

9.)

w(k)T . ((e(i) . p) . e(i)) dc-2

(2.51)77 n2 ro (k) -(i) aew (k) (i) 860) (k) _(i) aeo) (k) _(i) a-owuosr e e + Ax
_

wz x ' ez + A wz ez ck chian a7,

Notice that these nine equations allow us to operate completely in the nondimen-

sionalized model. We need to know only the characteristic numbers Re, St, Fr,
A and the nondimensionalized boundary conditions which together would uniquely

determine the problem.

In our computer application, we neither compute the matrix 1-1(k't) nor the vector R(k),

but we compute
1

L(k'i) L(k'i)
Ud H

f W(k)T cl,c2 =

H f (\q,) -vs *r w(!) 1.71. aav- + A w(k) T 8aV7;, + A WI° V, 8,9177/z )dc177

(2.49)

Ig z (w(k)T n) d(acl) = U H (Fr fw d (hi)
ail
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(2.48)

(2.50)



and

ft(k) =
1 R(k)

tii(? H

which are their appropriate nondimensionalized forms.

Thus, scheme (2.37) appears as

1:,(km .13(-44) == ft(k) . (2.37/2)

It is exactly equation (2.37/2) which is implemented in our computer application.

Nondimensionalization for the schemes of the surface motion

In nondimensionalized notation, the scheme for the surface motion in the two di-
mensional case with fixed x-y-grid (2.39) appears as follows.

u(7.-1-1, 6) iierm+i, 6+0 ,(7m+1 , 6) h(Tm+1 , 6_1) + h(Tm+,,

h(Trn, AT w(Trn-H., ei)
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(2.52)

Moreover, the scheme for the floating grid (2.42) has the following nondimensionalized



appearance,

Six(Trn+1) = AT U(Si Tm+1) Six(7m)

(2.53)

hierrn+1) = jtt AT U(Si, rrn+1) hi(m)

Again, concerning the surface motion, we recognize that we can work completely

under nondimensionalized notation.
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Chapter 3: Numerical Implementation

In this chapter we will discuss the numerical implementation of the algorithms derived

in chapter 2 and we will give an answer to the question which kind of basis functions

(e(i)'s ) and weight functions ( w(k)'s ), and what kind of the special function V do

we have to choose in order to obtain realistic results.

The main problem is obvious:

the best estimate v(t) for the function i'r(t) would be

00

v(t) V (t) + b(t) e(z)
i=1

This, viewed as a numerical Ansatz, is indeed impossible since we can deal with only

a finite number of basis functions. Therefore, it is wise to choose the functions V, e(z)

and w(k) such that the numerical computations yield the most realistic output.

Moreover, a mathematical method is not ideal for use as a numerical application if

the algorithms consume too much time. The integrals that we have to compute are

very lengthy and may be very complicated if the surface or the functions V, e(i) and

w(k) are complicated. So, the goal is to choose these functions in order to solve for

the occouring integrals in the least time consuming manner.

These two aspects may contradict each other. Here, we exhibit a suggestion for

assembling them in a clever way.
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3.1 What do Basis Functions and Weight Functions look like

3.1.1 Basis Functions

We refer to what was already said in chapter 2. There we stated that the basis

functions have to satisfy the two conditions (2.14) and (2.15). Equation (2.14) writ-

ten in another way gives

ae(i) ae(i)X + Z

ax az
= 0 .

Using the nondimensionalization introduced in chapter 2, we obtain

ae(xt) ae(i)+ A z = 0 . (3.1)
04- 071

Equation (2.15) states that

e(i) = 0 at 0i, al-12 0123 (3.2)

which means
6(0( 77) = 0

-6() ( , = gr() ) = 0 (3.3)

e(0 ( -= 1 , ) = 0

Based on the conditions (3.1) and (3.3), we define a function E(i), given by
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and use this function to establish e(i) by

8E()
8,7

1 8E()
\ A De

aw(k) aw(k)
z

DX aZ

It is easy to verify that condition (3.1) is satisfied.

Furthermore, we easily verify that the factor ( 1) gr() ) belongs to
both ande(;), which is sufficient to satisfy condition (3.3) . For this factor makes

e(i) zero at 77 = gr(6) (denoting the ground), at 6 1 (denoting the left boundary)

and at = 1 (denoting the right boundary).

3.1.2 Weight Functions

Again, we refer to what was already said in chapter 2. There we stated that the

basis functions have to satisfy the two conditions (2.18) and (2.19). Equation (2.18)

written in another way gives

= 0 .

= eo) .
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(3.5)

E(i) = ( 62 1 )2( 9r(6) )2 G6z)(6) HP(77) (3.4)



Using the nondimensionalization introduced in chapter 2, we obtain

aw(k) aw(k)
s + A = 0 . (3.6)

49 all

Equations (2.19) states that

w 0 at 0C21, aC22 , OC23 (3.7)

which means

Nv(k)( --1 , 77) = 0
w(k)( , = gr()) = 0 (3.8)

w(k)( = 1 . 77) = 0 .

Based on the conditions (3.6) and (3.8) we define a function W(k)

W(k) e 1 )2( gr(0 )2 G(lic) ) Ht(k) (q) (3.9)

and use this function to establish W(k) :

1 aw(k)

w(k)

w(zk)

It easy to verify that condition (3.6) is satisfied.

Furthermore, we easily verify that the factor ( 1) gr() ) belongs

w(k) (3.10)

49
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to both Wrgv) and w1k), which is sufficient to satisfy condition (3.8) . It is this factor

that makes w(k) zero at = 1 (left boundary), at 77 = gr() (on the ground), and
at = 1 (right boundary).

3.1.3 The functions G(b2) ,
H1), and Hz(pk)

In general, the four functions G(bz) , , G, .) and He) introduced in sections 3.1.1 and

3.1.2 can be anything. The only requirement is that the sets G(') and make the

set E(i) be a set of linearly independent functions. Similarly, the sets G(j,c) and lie)

have to be chosen such that the set W(k) is a set of linearly independent functions.

Choosing polynomials for G(bi), G,(c) and He)

One possibility is to choose polynomials of certain degrees for the functions G(bi),

.142), G.1,') and Htc,k), because clever choice of the polynomials easily yields a set of
linearly independent functions.

In order to succeed in this matter, we follow three steps:

I.) split i into two separate numbers t and i77.



split k into two separate numbers Ic and kr, .

use these numbers to choose

GV) () to be a polynomial in of i-th degree

.fit()i) (71) to be a polynomial in 77 of in-th degree

G. ..)() to be a polynomial in of kOh degree

Iie)(q) to be a polynomial in 77 of kv-th degree

51



Patterns for splitting i and k into separate numbers

For our experiments with the polynomial-Ansatz we used two different patterns of

splitting i as well as k into two separate numbers.

In the following, these two patterns will be introduced and named for the purpose of

further reference.

First pattern (psI)

52

k , i k, i k77, i77

1 0 0

2 1 0

3 0 1

4 2 0

5 1 1

6 0 2

7 3 0

8 2 1

9 1 2

10 0 3

11 4 0

12 3 1

: :



Second pattern (psll)

Use of ie, ke, ii and k defining the functions E(i) and WO

For our experimental investigations, we employed the following four patterns which

make use of the split numbers ie , i, k, k in order to define E(i) and W(k) .
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k , i ke, ie k7, i77

1 0 0

2 1 0

3 0 1

4 1 1

5 2 0

6 2 1

7 0 2

8 1 2

9 2 2

10 3 0

11 3 1

12 3 2

: - . :



Gti,c) = cos(k arccos()) He) ( 71 - gr())k"
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First pattern (ppI)

G(bi) = H -,-- (71 gr() )"

= He) = gr(Mk

Second pattern (ppII)

G(bi) = cos(i arccos()) =( gr() )"

G) Elk ) - gr(0

Third pattern (ppIII)

= = - gr()

= cos(k arccos()) He) , _ gr())k71

Fourth pattern (ppIV)

= cos(i arccos()) 14,i) ( 71 - gr(M"



At this time, please note that the functions H/(,i) and Htf,k) are always of the form

= (17 grW))i"

and
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The reason for this is the employment of a convenient and fast method for numerically

computing the integrals introduced in equations (2.43) through (2.51). A detailed ex-

planation of this method is to be found in the section 3.3 'Numerical Integration'.

Choosing finite elements for E(i) and WO

If we relax our requirement that E(i) and 147(k) have to be polynomials in and

77, then we are able to define functions E(i) that are different from zero only in certain

intervals, [a,CE (1 , and functions T1'' (k) that are different from zero only in certain

intervals, [49 , 4]. Hence we require that

U[4, = [ 1, 1],

k() (k),
fa c = [ 1, 1],L w

and that adjacent functions should preferably overlap each other.

This has several advantages:
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Only overlapping pairs (k, i) of basis and weight functions contribute to the matrix

L(k'i) (that is. pairs (k, i) which satisfy

[4, n {a (1,19 0 ),

and we can say that L(k'') = 0 for all other pairs (k, i) of basis and weight functions.

If the functions are chosen cleverly, the matrix will be extremely sparse.

The integrations concerning a pair (k z) must be performed only for the interval
(k) (k)

[a E(i) , cE(i)] n [a, c] and not for the whole length of the wave tank. This saves time,

and smaller intervals require less computing time.

The functions modelling the flow at the left end of the wave tank can be chosen

such that they are decoupled from the functions modelling the fluid flow at the right

end of the wave tank. This might be of huge advantage, because our test runs

employing polynomials showed considerable disturbances at the right boundary( OC/3

) as soon as the action started at the left boundary ( OC21 ). We know that this is not

true in praxis.

One disadvantage is that many more basis functions are required in order to obtain

reasonable results than were required when polynomials were used.

Since the topic of finite elements is very extensive, we have established a separate

chapter for the related considerations. Please refer to chapter 5 for detailed explana-

tions on the finite element idea.



3.2 What does V look like ?

Our considerations concerning the special function V are based on the two assump-

tions

and

These two assumptions on gr() are very r

ground at the wave board should be flat.

Requirement (3.12) states that the ground

19r adjacent to the wave board. The wave

The requirements on V itself are outlined in chapter 2. Conditions (2.16) and (2.17)

state that the equation

dgr
= = 0

(14-

OV,

0
+A = 0

4- ag

has to be satisfied and that
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(3.11)

Ig, [ 1, a] (3.12)

ealistic. Assumption (3.11) states that the

Clearly, this is satisfied in the wave tank.

does not vary too much in a certain region

tank staisfies this condition, too.

(3.13)

V must satisfy the conditions at the boundaries 3C21 , aQ2 and 0123 . (3.14)

dgr
= very small

where a is a number between -1 and 1.



For example, the function

V =
(7) r()) ( )

+J() gr(e))2 ( (77 gr()) grV) ( )]

58

Vo(t)
(3.15)

L70

would satisfy the two conditions (3.13) and (3.14) . Here, Vo(t) is the velocity of the

wave board at the height H. We see that at ,; = 1 (denoting the left boundary)

the velocity V is equal to the velocity of the wave board Vw, since it is easily verified

that V, = 0 and that V, rises linearly as 77 increases.

The functions V, and V,, evaluated at 7/ = 1, are plotted in the figure below. For this

plot, we set gr() = 0.
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0.4 0.6 0.8

0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8
xi

figure 3.1: Function V evaluated at the surface

The following observation shows that (3.13) is not the best way to set up V

Suppose the initial velocity of the water throughout the wave tank is equal to zero

and the wave board starts to move at the present instant. Performing one time step

and using the polynomial model, we computed a velocity distribution after one time

step as shown below for 77 = 1.
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Using 25 basis functions:
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figure 3.2: Completion of one time step - 25 basis functions
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Using 36 basis functions:

nondimensionalized height of the surface
1
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figure 3.3: Completion of one time step - 36 basis functions
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Using 49 basis functions:

nondimensionalized height of the surface

CFI 0.9998 -
_a

.c
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figure 3.4: Completion of one time step - 49 basis functions

We see that the region where the fluid has nonnegligible velocity is at the left boundary

of the wave tank (where the board moves). When more basis and weight functions

are used, this region is squeezed the closer to the left wall. So we conclude that it

would be wise to choose a function V that looks similar to the velocity shape shown,

for instance, in the attempt with 49 basis and weight functions.

/

0.8
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Following this idea, we obtained convincing results. On one hand, using the function

in (3.15) for V and using 25 basis functions, the model was too weak to compute waves

that actually run down the wave tank, unless the wave board was stopped. Rather,

it happend that the waves, produced by a forward movement of the wave board, were

completely swallowed by the subsequent backward movement. The reason is that

the region R marked in figure 3.2 was too broad. Even with 36 basis functions we

obtained almost the same disaster - no wave running down the tank; and 49 basis

functions consumed so much computation time that we did not succeed in calculating

any result for this number of basis functions.

On the other hand, if we choose a function V that looks like the following picture

(velocities evaluated at 77 = 1) , then the model was able to produce waves which

actually were running down the wave tank without being swallowed by the subsequent

backward movement of the wave board.

All our results, exhibited in chapter 6, were computed by using this special choice of

V.
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figure 3.5: A more sophisticated kind of V

Thus, a more general set-up for the function V would be

(77 gr(e)) f (c;)

V= [ gr())2 () (77 gr()) grt f()]

We demand that the function f() satisfy four requirements.
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V0(t)
. (3.16)

Er0



V=

In combination with condition (3.12), condition (3.17) amounts to neglecting the term

(77 gr ()) grV) f() in the function (3.16), since either gr' () is very small (due to

(3.12)) or f = 0 ( due to (3.17) ).

This, finally, leads to the general setup for V

gr.W ) f

(77 gr())2 j

V0(t)

Uo
(3.21)

Here we see that a power of the term (77 gr()) is a factor of both Vx. and V. In

section 3.3, we will see that this is a necessary property of the function V in order to

employ a fast algorithm for computing complicated integrals.
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f() = 0 if f 0 -Tar (3.17)

f(e = = 1 (3.18)

= ) = 0 (3.19)

f() must be continuous (3.20)



3.3 Numerical Integration

According to section 2.3.3, we see that we have to solve several integrals over the

whole region Q. The fact that (/ is time dependent (it changes with every time step)

requires recomputing all these integrals after each time step. This makes the whole

algorithm very slow, since it is the computation of the integrals that is most time

consuming.

Thus, it is very important to determine how to solve the concerned integrals effi-

ciently.

3.3.1 Analytical solution of the occuring integrals

Solving the integrals analytically would require

knowing the surface in terms of an algebraic function in and

obtaining integrands that are analytically integrable for all integrals exhibited in

section 2.3.3 . However, refering to section 3.3, our modelling of the surface is done

by discrete points and not by algebraic functions. Moreover, even if we use ordi-

nary polynomials for the functions E(z) and W(k), the integrands become complicated

rather than analytically solvable. Thus, numerical solution of the integrals seems to

be a much more convenient way than to perform the integrations by hand.
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3.3.2 A simple way to solve occurring integrals numerically

The easiest way to solve the integrals numerically would be to divide 52 by a grid

into little rectangles. For instance, by the following:

figure 3.6: Grid for computing the Riemann sum

Then the numerical integration would consist of the two steps:

compute the values of the integrand at every grid point and multiply it by the

area of the little rectangle surrounding it.

sum up over all little rectangles.
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This method is very slow and it would consume too much time if one would like to



and

He) = (77 -

then we noticed that all integrals mentioned in section 2.3.3 have the form:

1 D(0 gr() d71 (14- (3.22)
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compute the integrals very accurately.

Here a convincing example. One can imagine that if the wave length of the waves is 2

meters then the distance of the grid points need to be at least 0.5 meters in order to

compute reasonable approximations for the integrals. This would mean we had 200

grid points in x-direction and maybe 20 gridpoints in z-direction, which would give

a total of 4000 grid points distributed over all the wave tank. Employment of (psI)

and (ppI) with 25 basis functions caused a computation time of one hour on a SUN

SPARC 5 station for one time step (ignoring that this blew up the allocated memory

considerably).

3.3.3 A fast solver for the occurring integrals

In order to develop a new method to solve the integrals, we considered the inte-

grands very carefully. Taking into account the properties of the general set-up for V

as discussed at the end of section 3.2 and taking furthermore into account that the

functions and H, L,k) have the form

4,2) (71 gr() )"
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where D() is a function that depends only on the choice of the functions and

G). The exponent c varies from integral to integral, too. If we know c, then the

integral (3.14) can be simplified as follows:

1 h(e)f D() (7/ gr())c c/52 = f f D() (77 grV))c chi ck
0 171=9rW

= D() (h()grW)c+1 (14.
(3.23)

This allows us to reduce the two dimensional grid mentioned in the beginning of this

section to a one dimensional grid along the x-axis only.

Now we can gain the same accuracy (which needed 4000 grid points in the two dimen-

sional case) with only 200 grid points. This increases the speed of the computations

by, roughly, a factor of 20.



Chapter 4: Several Problems

In this chapter, we will exhibit some problems that occured while investigating our

algorithms.

One problem arose due to the nature of fluid flow: that is the phenomenon of the

water climbing up and down the wall when the fluid is strongly excited by the wave

board. This problem and a suggested solution are explained in detail in section 4.1 .

A second problem occurred due to the numerical algorithms themselves. The condi-

tion number of the matrix L(k'i) requires a smaller number of basis functions than we

would like. This very annoying problem is outlined in section 4.2 .

A third problem, concerning the speed of the numerical computations, is presented

in section 4.3 .

70



71

4.1 A Global Problem

4.1.1 Description of the Problem

Let us, again, consider the differential equation for the surface motion (compare

with chapter 2):
Oh Oh Oh

u Ox v w

For the two dimensional case (which is the only one to be considered here), this

equation reduces to
Oh

+ Oh = w
at ax

which is valid for 09.9 091 093. It cannot be valid at the points 011, n 3(11 and

n 093 where the surface intersects with the other parts of the boundary.

Here are two examples which illustrate this fact:

1.) Let us assume that equation (4.1) is valid even at the point 01-2, n 01-21. Let us

furthermore assume that the wave board does not move. The boundary conditions

set forth by the Stokes no slip condition require

u = 0 and w = 0 at as/1

So, the surface (if (4.1) were valid at 591 ) would actually be described by the equation

oh Oh
-ax- = 0

(4.1)



which means that
Oh

So,

h = constant

The illustration of this result is that the surface does not move up and down at the

wall.

This, indeed, contradicts our daily experience. For example, when swimming in a

swimming pool, we usually notice a visible rise and fall of the surface directly at the

wall at the instant when waves (caused by our swimming) gently hit against the wall.

2.) Now let us assume the wave board moves. If the differential equation (4.1) were

valid at the point a,Q, n 0(21, then (4.1) would reduce to

ah ah
= (vw)xat ax

at the point asis n Ofil (since w is zero directly at the board and u is equal to the

x-component of Vw).

Now imagine that (Vw)x > 0 (meaning the wave board moves the water forward)

and the surface close to 891 looks like the picture below.
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figure 4.1: Exampled state of motion

From the picture we conclude that E > 0. According to our differential equation

above, we clearly have
Oh

Tt < °
and thus the surface would fall at ac-21.

But again, this contradicts our daily experience. Carefully observing the wave tank

in action, we notice that in this situation the water is more likely to rise than to fall.

However, if differential equation (4.1) were valid at 3f21 then a rising surface in that

situation would be impossible.
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figure 4.2: Wetting angle
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4.1.2 What is the mechanism for rising and falling surface at
the boundary?

Since we deal here with a viscous fluid, the Stokes no slip condition is indeed valid

for aQi and as23. So, the instantaneous velocity of the fluid particles at the wall is

actually zero. But also, arbitrarily close to the wall, the velocity in z-direction ( w )

must be very large. Otherwise a rise or fall of the surface would not be possible. So,

it must be true that the term ti close to the wall is extremely large. (FACT 1)

Another fact is that the angle a as shown in the picture
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cannot be larger than a certain value aw, the so-called wetting angle, which is due to

adhesive and cohesive forces at the wall. (FACT 2)

(FACT 1) and (FACT 2) lead to the hypothesis that the rising and falling of the

surface depends mainly on the adhesive and cohesive forces and on the fact that the

vorticity of the fluid does not vanish at the wall.

So. the mechanism of surface motion is the following. If a rises quickly because of

(FACT 1) and even exceeds the wetting angle au, then, due to (FACT 2), the surface

at the wall must either rise or fall in order to make a smaller. We notice that this

surface motion is possible due to the huge vorticity at the wall.

4.1.3 How to model the rise and fall mechanism numerically

For the numerical programming, we employ the same mechanism that nature does.

After each time step the value of the angle a will be calculated. If this value becomes

strictly larger than the wetting angle aw, we rise or lower the surface point at the

wall until the angle is equal to the wetting angle.

Using the polynomial model for the function E(i) with only a few basis functions (for

example 25 or 36 basis functions), one observes quickly that the term

Ow ay, N 0 e(z)
+ E b,

Ox Ox Oxi=1

is not large enough to model rising or falling surface at the wall. That means we need
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to support this process somewhat by introducing more sophisticated functions E(i)

(refer to equation (3.4) ) and TV') (refer to equation (3.9) )

E(i) = ( )2( gr() )2 G) 111(;) ( ) (4.2)

W(k) ( )2( gr() )2 G(uk) ) Hlk)(77) (4.3)

Please note the power of we require that a must be an even number. The

larger the number a, the larger is the terma' at the wall in our computed results,ax

and the more realistic is the computed surface while using only few basis functions.

Note that we did not change the model for computing v. The use of the Galerkin

method remains undisturbed by the introduction of a.

We used a = 20 for our test runs with few basis functions. If one uses more basis

functions then the number a is of less importance, since then the large number of

basis functions is flexible enough to produce a sufficently large t at the boundary.

For instance, this is the case when we employ the finite element model with about

500 basis functions.

Conclusion: The surface correction mechanism produces very realistic results.

chapter 6 (`Results') demonstrates the difference in the numerical outputs for test

runs with and without surface correction. For the results without surface correction

one can observe the phenomena discussed at the beginning of this section. For the

results with surface correction one can notice the rise and fall of the surface.



4.2 A special problem: Matrix condition number of L(k'i)

Let us consider the following graph. It shows the condition number of the matrix

L(k'i) in the 2-norm versus the number of basis functions N. The values were com-

puted for a flat surface and for realistic numbers Re, St, Fr, and A. The type of

basis and weight functions used is the polynomial model (ppIV) and the associated

pattern of splitting i and k is (psI).

matrix condition number of "L"
1013

101

10'1

101°

'.109
0

107

106

number of basisfunctions

figure 4.3: Matrix condition number for polynomial model
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77

105
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It is easy to recognize that the condition number of the matrix rapidly increases as

the number of basis function increases. The condition number is 1012 when 50 basis

functions are used.

However, we know from standard numerical algebra that reliable solutions of a linear

system of equations

A x = b

are obtained only if the condition number is sufficiently small. In our case, we im-

plemented our program in MATLAB, which works with 8-byte-real numbers. Thus,

a condition number of 1012 is very large. Thus, we can expect that the solution for

the system A b has only three reliable decimal places. MATLAB itself does

not perform a Gaussian elimination to obtain the solution x if the matrix condition

number of A is larger than 1014 .

Therefore, we are not able to use more than 70 basis functions if the polynomial

model (refer to section 3.1.3) is employed. However, there might be cases where one

needs to use more basis functions, for instance if the waves are very short and are

distributed over a significant part of the wave tank.

For these cases, there are two possible solutions:

1.) Use real numbers with more than 8 byte memory size. This can be done on

special kinds of powerful workstations, but it will probably require more computation

time. This, indeed, does not give us any information about the convergence of the

polynomial Ansatz. So, using more basis functions does not actually imply that the

results become better.
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2.) Search for other types of reasonable basis functions. We tried to introduce another

type of basis functions (finite elements) in order to work around the matrix condition

problem. Refer to chapter 5, where the idea of the finite elements is introduced in

detail. There, we shall consider the matrix condition numbers again and come up

with more convenient results.

4.3 A problem due to hardware and software

We already mentioned that the algorithms are computationally very expensive. For

example, using the finite element model (which will be presented in chapter 5) one

time step requir, .; approximately 2 109 floating point operations, depending on how

many iteration steps are necessary to complete a whole time step.

A workstation that performs 2 floating point operations per second would take

100 seconds to perform one time step. This means, with this computer we would

perform 36 timesteps per hour. For computing realistic results the time steps should

be small (about 0.01 ... 0.05 seconds). Thus, for a simulation of 30 seconds, 1500

time steps have to be performed. With the mentioned computational speed of the

workstation, the whole simulation process would take two days!

We implemented the program in MATLAB. If one intends to apply WHILE- or FOR-

loops in MATLAB, then MATLAB itself drastically reduces the rate of operations per

second. Even if we searched patiently for ways to increase the speed of the program,
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so

we could not avoid using WHILE-loops. This resulted in a rate of appoximately

106 floating point operations per second on a SUN SPARC station 5. So, MATLAB

dropped the rate by a factor of 10 to 20. For the example above we would have to

wait for about a month!

Moreover, in MATLAB, to avoid WHILE-loops and the loss of speed, one has to

program in matrix- or vector-form. For instance, in order to perform the numerical

integration of the function f (x) over the interval [ a, b], one often applies the Riemann-

SUM

(x) dx E f (xi) xi
a

In MATLAB, however, it is not wise to implement this Riemann-sum as a loop. To

increase the speed, one has to create a vector v1 of length N with all the values f (xi)

and a vector v2 of length N with all the values ( x xi_1) and, in order to compute

the Riemann-sum, calculate the scalar product \TT v2.

In fact, this method is relatively fast, but it is very memory extensive. In general,

the rule the faster a MATLAB-program the more memory must be allocated' is

true. One can imagine, how much computer memory will be required to compute all

integrals mentioned in chapter 2. From time to time, our experimental runs allocated

the whole memory of a workstation, which made either the program break down

or other machine users completely frustrated about the slowness of their processes.

Nevertheless, this was the only way to make the program run fast enough.

One way out of this situation could be implementing the whole algorithms in FOR-

TRAN or in C++. This would increase the speed condiderably, but one might lose

the overview of the whole program. One of the important advantages of MATLAB is
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the ability to program in a very compact manner. For our purposes, this property of

MATLAB was of considerable importance.



Chapter 5: A Finite Element Model

Considering the results exhibited in chapter 6, one remarks that using polynomials

for the functions E(i) and III(k) causes several nonnegligible problems, two of which

are:

As discussed in chapter 4, we cannot use more than 50 basis functions. But

we can imagine a case where more than 50 basis functions would be necessary: for

instance, when the wave length of the water waves is about 2 meters, and waves are

distributed throughout the wave tank, then we have 50 waves in the wave tank. At

the surface the sign for the velocity in the z-direction would switch about 100 times.

This kind of velocity-field is impossible to be modeled using only 50 basis functions!

So we see that the use of only 50 basis functions is too restrictive. We need more

freedom.

Again referring to the results in chapter 6, we notice that the velocity of the water

at the right end of the wave tank is disturbed immediately after the wave board starts

to move at the left end. These disturbances grow steadily as time increases until

they become nonnegligible in certain examples. These disturbances are due to the

properties of the polynomials and, in particular, to the fact, that the supports of the

polynomials are not locally bounded. However, these disturbances do not coincide

with our practical experience; we observe that the water motion in the wave tank

is such that the right end is only slightly disturbed (almost invisible motion of the

water!) when the wave board starts to move.
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Conclusion : We should make an effort to find basis functions that are of finite

support and that provide a convenient matrix condition number for even a large num-
ber of basis functions.

5.1 The Idea

In order to resolve problem 2.) mentioned above, we will use basis functions with
locally bounded support. We introduce the function E(i) given by

E(i) = Wt" 1)2 (77 gr() )2 cos[ '±.( 4- 1 0 f f set (ie 1)- E )] ( 77 grW)I E(,) (5.1)

where

2E is one half of the length of the intervals 'E() where the functions PO are

non-zero.

E(,) = [-1+ o f fset 1) , 1 + o f fset 1) E]

is the interval where E(i) is non-zero.

nbs is the number of different intervals 'E() that belong to the current set of basis

functions.

offset is a parameter for translating the basis functions along the x-axis. This

parameter has no importance yet, but later on we will discover its usefulness.
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and i77 are (as already mentioned in chapter 3) results of spliting the number i in

two separate numbers.

i is the index of the particular basis function under consideration.

Again, as already done in chapter 3, we set up the basis functions as

For the purpose of illustration, here is a plot of the basis functions for of f set = 0,

nbs = 15, ic = 1...nb, and in = 1:

I

\

sE(.1) e(i)

6(0z

= e(i) . (5.2)

1 SE(i)
A N
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figure 5.1: Basis Functions according to model (5.1)

We see that the iiAerval ./E() of a certain basis function is divided into two even pieces

by the overlapping basis functions.

Likewise, we could set up the function E(2) as
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- 2E(i) = (ea 1)2 ( 77 r() )- co si (e+ o f f set (ie 1). E )] ( gr(e))Z E(,) (5.3)



where

E = 3 is one half of the length of the interval 'E(i) where the function E(i) 1Snb,-2

non-zero.

IE(,) = [-1 -I- of f setE 1). E E , 1 + of f set 1)

is the interval where E(i) is non-zero.

All other parameters as described above.

This would result in the following plot of the basis functions (again for offset = 0,

nb, = 15, ie = 1...nbs and = 1).
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xi

figure 5.2: Basis Functions according to model (.5.3)

Here we see that each interval 11,() is divided into three even pieces by the overlapping

basis functions.

In the same fashion as (5.1) or (5.3), we could define

E(i) =( 1)2 (77 gr(e))2.cos[T,71 (+1of fsetE---6-2 (i-1).E)].(71 gr())i' xi-E() (5.4)



Here,

E = 6nb-5 1S one half of the length of the certain interval IE(,) where the functionx

E(i) is non-zero.

IE(i) = {-1+ offset -E+ 1)- E E , 1+ offset -E+ 1) _E]

is the interval where E(i) is non-zero.

Below, we exhibit a plot of the basis functions (5.4) (again for offset = 0, nb, = 15,

i4 = 1...nbx and in = 1) .
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10

,01111116.
I 41411/111V'.:

/
/

n

./

figure 5.3: Basis Functions according to model (5.4)
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We see that each interval 1-E(i) is divided into six even sub-intervals by the overlapping

functions.

For all our further considerations, we define

W(k) = E(7) iff i= k . (5.5)

Furthermore we introduce the following two numbers.

nbx is the number of different intervals IE,i) that cover the whole length of the wave

tank, and

nb, is the highest power that can be taken by the (77 gr())-term in the equation

for

With these definitions, we may determine a pattern for splitting the numbers i and

k into two separate numbers:

ie = int( m7,1) + 1

nb, it

ke = int(kn-b) + 1

= k rtb,

(5.6)

At this point, note that the number N of basis functions (weight functions) must be

N = rib (5.7)



90

Thereby, the setting of the functions E(`) and W(k) for the finite element model is

completed. We notice that the functions in (5.1), (5.3), and (5.4) are twice differen-

tiable with respect to e and 77 which is sufficient for our purposes.

5.2 Further Investigations on the Models (5.1), (5.3), and (5.4)

One of the problems we had with the polynomial model was the considerably large

matrix condition number of the matrix L(k.1). Now, we wish to study how the condi-

tion numbers behave when using the models (5.1), (5.3), and (5.4).

In the following pictures, we plotted the matrix condition number versus the number

nbx, always using nb, = 5 .



In the plot below we employed (5.1).
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figure 5.4: Matrix condition numbers for model (5.1)
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In the next plot we employed (5.3).
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figure 5.5: Matrix condition numbers for model (5.3)
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In the next plot we employed (5.4).
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figure 5.6: Matrix condition numbers for model (5.4)

We recognize that model (5.4) would not work for our purposes because the matrix

condition number of 11'4') is too large. However, it could work if we could use 16 byte

real numbers.

102-
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But (5.1) and (5.3) show suitable numbers up to ribs = 100. So, using 8-byte-real

numbers, we can work with up to 500 basis functions! Compared to the polynomial
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model, this is an improvement by a factor of 10, which means that we can model

waves of 2 meters length distributed over the whole length of the wave tank.

5.3 Some Problems with the Finite Element Set-up

Suppose we had rib, = 20 and nb, = 1. Suppose furthermore we had bi =

Using these assumptions, the following picture shows a plot of the function

=

evaluated at 77 = 1.
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figure 5.7: Example for velocity distribution for model (5.1)

We observe the 'corners' that appear in the z-component of the velocity. These spikes

are very large and grow sometimes larger if the velocity V becomes more sophisticated.

Some of our experiments with this model (5.1) showed that the final results are not

reliable.
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figure 5.8: Example for velocity distribution for model (5.4)

We see that the 'corners' have almost disappeared. The z-component of the velocity

seems to be smooth enough such that model (5.4) can be used as a reliable model.
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A plot using model (5.3) for the same function would show that the corners became

smaller, and finally, a plot of the same function using model (5.4) looks like this:

xcomponent of velocity

The problem now is the following: on one hand, we cannot use model (5.4) because

the matrix condition number is far too large for the model to be employed for our

0.2 0 0.2
xi

zcomponent of velocity

0.4 0.6 0.8
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algorithms. On the other hand, models (5.1) and (5.3) cause such large corners that

the computations do not give good results.

The way out : A relatively smooth solution (like the one provided by (5.4) ) using

models (5.1) and (5.3) can be obtained by the following idea.

If there is a set of n approximate solutions to the problem (call them cri Vn) then

the mean value of these approximate solutions

- (5.8)
i=1

must be an approximate solution. too. We make use of this in the following sense.

Using models (5.1) or (5.3), we compute n different approximate solutions to the

problem and find ( according to (5.8) ) the mean value of all these solutions, thereby

hoping that the annoying 'corners' will be smoothed out. To find n approximate

solutions, we perform the same computations for n different sets of basis functions,

which vary only in the parameter offset. So we compute one approximate solution

using a set of basis functions, then we translate this set of basis functions by a small

distance and compute another approximate solution and so forth. The parameter

offset will be cleverly chosen such that the 'corners' become smaller as more basis

functions are chosen.

Example : Suppose we employ model (5.1). Suppose furthermore we want to

compute three different approximate solutions V2, V. Then these three solutions
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respectively. While each of the three sets of basis functions causes large corners in

the approximate solutions 2 and V3, their mean value

smoothes out those corners, and thus the mean value solution has the quality of model

(5.4). The smoothing of the corners occurs because the three sets of basis functions

overlap each other in the same way as the basis functions in model (5.4) .

However, there are still small 'corners' in the computed solution even if the quality

of (5.4) is reached. For those examples exhibited in chapter 6 which were computed

using the finite element model, one can easily see the ugly 'corners' in the surface

which are due to the 'corners' in the z-component of the basis functions rather than

to numerical instabilities.

5.4 Increasing Speed by Parallel Computing

When studying the algorithm for the finite element model carefully, one will notice

that the whole process is easily parallelizable.

are computed using three sets of basis functions with the offsets

of fseti 0

of f set2
6

2
of fset3

6
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This is a fact that we would like to illustrate here by considering the steps to be

completed for computing the matrix L(k.i). Here is an example: Suppose we use

model (5.1) and, moreover, suppose we have nb, = 10 and nb, = 5, so that we have

50 basis- and weight functions. Remember that 147(k) = if = k.
To compute L(10 we need to perform the steps below.

Step 1:

take the first five weight functions (k = 1, 2, 3, 4, 5) (since their intervals of

support I E(k) coincide) and determine the indices of all basis functions overlapping

this subset of weight functions (here i = 1, 2, 3, 4, 5).

compute the entries of the matrix L(') for the values k = 1, 2, 3, 4,5 and i -=-

1, 2, 3, 4, 5.

Step 2:

take the next five weight functions (k = 6, 7, 8, 9,10 ) (again, the intervals /E(k)

coincide) and determine the indices of all basis functions overlapping this subset of

weight functions (here i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

compute the entries of the matrix L(k'i) for the values k = 5,6, 7,8, 9, 10 and

i = 1,2,3,4,5,6, 7,8,9,10.

and so on until

Step 10:

10.a) take the next five weight functions (k = 46,47,48, 49, 50 ) (again, the intervals

E(k) coincide) and determine the indices all of basis functions overlapping this subset

of weight functions (here: i = 46, 47, 48, 49, 50).
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10.b) compute the entries of the matrix L() for the values k = 46, 47, 48,49, 50 and

i = 46,47,48,49,50.

Each of the steps outlined above is very time consuming; and it would take a very

long time to perform them each after another in a FOR-loop on a computer with

no parallel computing utilities. However, we see that those ten steps are not linked

to one another; so the matrix entries can be produced separately, which means they

can be computed at the same time if a parallel computer is available. Moreover,

the computing time from step to step does not vary much since the same number

of floating point operations is required for each step (except for the case when the

weight functions are at the boundary; in our example this concerns steps 1,2,9,10).

So the process is almost perfectly parallelizable.

In the example above, we could increase the speed by a factor of at most ten if we

had a computer with at least ten parallel processors.

For more realistic applications we would use ribs = 50...100 (for instance example 4

and 5 in chapter 6 were computed by using nbx = 50 and nb, = 5). In such a case

the speed could be increased easily by factor nb, provided that a computer with at

least nbx parallel processors is available.

If Npr denotes the number of processors in the computer, then the speed of the

computations can possibly be increased by the factor

parallel speed nb,
Finc (5.9)sequential speed int( + 1

Apr
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We see that this factor increases as nbx increases (which means more basis functions

could cause a larger factor).

There are, indeed, more possibilities to parallelize the whole computations. For in-

stance, each of the different integrals (2.43) .. (2.51) may be calculated independently

from the others, so it may be possible to compute these integrals in parallel. Unfor-

tunately, the problem is that the number of floating point operations might differ

considerably from integral to integral; so, in this case, the parallelization would be

less effective.

The ideas above have not been set into practice yet. Obviously, setting up the algo-

rithms of this thesis on a parallely working machine requires first to have the machine

and then to determine the parallelization that would work best on the machine.



Chapter 6: Results

In this chapter, we exhibit five of the workstation computed results.

The first is an example employing the polynomial model introduced in chapter 3.

The second is an example employing the moving grid surface model. Again, the

basis functions were polynomials.

The third example impressively demonstrates the problems of the Stokes no

slip condition for the boundary. This result was produced without applying the

mechanism for surface correction.

Examples four and five were produced by using the finite element model intro-

duced in chapter 5.

For all examples, we used realistic values for Re, St, Fr and A. The length of the

wave tank was assumed to be L = 100 m and the height of the water was assumed

to be H = 6m. Furthermore, we used gr() = 0 for all

While the first three examples demonstrate the large number of problems with em-

ploying the polynomial model, they also demonstrate that the whole model is able to

work and to deliver realistic results. We exhibit these polynomial results since they

102



were the first results we obtained and they motivated further investigations.

The last two examples demonstrate the capacity of the finite elements method to

compute results close to reality. At least, our imagination should tell us that the

solutions as computed in example 4 or 5 could happen in nature. Unfortunately, the

examples do not demonstrate the amount of computation time each required.

The results for each example show a sequence of graphs, each after a certain number

of time steps. For each time step, we plotted three graphs:

The first (upper) one represents the shape of the surface in nondimensionalized

coordinates.

The second one shows two curves. The solid curve represents the x-component of

the nondimensionalized velocity, evaluated at the surface. The dashed curve repre-

sents the z-component of the nondimensionalized velocity, evaluated at the surface.

The third (lower) plot shows the tracks of certain molecules of the water as they

moved from the beginning of the computations.

The horizontal axis of all three plots is the -axis.
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6.1 Example 1

For this example, we started with v = 0 (motionless water) and let the wave board

move back and forth periodically, beginning with a small amplitude and increasing it

up to a maximum value.

basis and weight functions used: polynomial model

number of basis functions: 36

pattern of splitting i and k: (psI)

frequency of the wave board: one cycle in 2 seconds

max. velocity of the wave board at height 6 m: 2

generalized velocity U0 = 10

timestep At = 0.02s

plotted results every 50 timesteps (one plot after each second), beginning with timestep

50

We employed the idea of rising and falling surface at the boundary.

Remarks:

The waves that were produced in this example do not look very realistic. This could

have two reasons:

The waves almost break, but the surface model does not allow breaking waves.

The resolution of the polynomial model is not high enough to match the (in nature

complicated) velocity field and produces a more or less intermediate result.

104

Furthermore, we observe that the disturbances of velocity at the right boundary of
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the wave tank grow steadily as time increases and become nonnegligible in appearance

after a certain amount of time. Also, the slight disturbances in the middle of the tank

grow larger as time increases, and by the last timestep their magnitude exceeds that

of the waves.
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6.2 Example 2

Example 2 was produced under the same assumptions as experiment 1. The only

difference is that we used the moving grid surface model instead of the fixed grid

model.

Remarks: We see clearly that computing "overhanging" waves is possible with this

kind of surface model. We see also that, from a certain point of time on, the breaking

waves do not look realistic. This is due to the weakness of the polynomial model and

its insufficient flexibility. However, no computations using the moving surface model

combined with the finite elements were performed. Thus, we cannot compare, and it

is impossible to judge, how powerful the moving surface model really is.
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6.3 Example 3

Example 3 was produced under the same assumptions as experiment 1. The difference

from example 1 is that we eliminated the surface correction mechanism introduced in

chapter 4. This has a huge effect on the surface behavior close to the boundary. The

differences between example 1 and example 3 can be detected simply by comparing

the plots.
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6.4 Example 4

This example demonstrates the high capability of the finite element model as it was

intoduced in chapter 5. The initial condition is v 0. The wave board completes a

whole cycle (thereby giving the water a large push) and then stops.

basis and weight functions used: finite element model

pattern of finite elements used: equation (5.3)

number of computed approximate solutions (according to section 5.3): 2

frequency of the wave board: one cycle in 2 seconds

max. velocity of the wave board at height of 6 m: 2

nbx = 50

nb, = 5

Uo = 10

timestep At = 0.02 s

plotted results every 50 timesteps (one plot after each second), beginning with timestep

50

We employed the idea of rising and falling surface at the boundary.

Remark : From time to time, we notice little disturbances (little "corners") in the

surface and in the velocity field. These disturbances are due mainly to the "corner"-

problem discussed in section 5.3 and are not due to numerical instabilities. However,

they could cause numerical instabilities as it will be seen in example 5 of this chapter.

Nevertheless, we see that the results already are much improved compared to the first

three examples.
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6.5 Example 5

For this experiment we employed the finite element model. The initial condition

is v = 0. The wave board moves periodically back and forth starting with a very

small and successively increasing amplitude.

basis and weight functions used: finite element model

pattern of finite elements used: equation (5.3)

number of computed approximate solutions (according to section 5.3): 2

frequency of the wave board: one cycle in 2 seconds

max. velocity of the wave board at height of 6 m: 2

nbs = 50

nb, = 5

Uo = 10?

timestep At = 0.02.s

plotted results every 50 timesteps (one plot after each second), beginning with timestep

50

We employed the idea of rising and falling surface at the boundary.

Remark

Now, we may compare this experiment with example 1. We notice that the only

difference between these two experiments is the kind of basis functions employed.

The differences in the results are considerable: one immediately recognizes that em-

ploying the finite element-model yields far more realistic results than employing the

polynomial model does.
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The right end of the wave tank remains undisturbed by the motion of the wave board.

Moreover, we see that the z-component of the velocity looks much more realistic in

the finite element experiment than in the polynomial experiment.

Finally we see that numerical instabilities occur when the amplitude of the moving

wave board becomes too large. For this case, the model is still too weak because the

"little corners" due to basis functions become too large. To prevent this occurance,

the basis functions should be more dense, which is equivalent to having more basis

functions.
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figure 6.5 cont.: Example 5, results after 400 timesteps
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Chapter 7: Conclusions and Proposals for Future Research

We recognize that this thesis is the first step of a sequence of steps to be done in

order to approach the final goal of the present research project.

We developed a mathematical model based on the well known physical model for in-

compressible free surface flow by solving the Navier-Stokes equations. We suggested

a method to model the phenomenon of rising and falling water surface at a verti-

cal boundary. By implementing the mathematical model as a computer program in

MATLAB and by introducing different types of basis functions we showed experimen-

tally that the model delivers reasonable, realistic results. Our computer program is

very flexible. For further research, new kinds of basisfunctions can easily be added

to the already existing program.

However, we did not make any attempt to show that the set of functions

B = { bie(z) , bi ER, N 1, 2,3...}

is dense in the set of functions

F = f (x,y, z) E C3([-1,11 x [-1,1] x [0, H]), R3 , V. f = 0 }.

Furthermore, we did not prove the consistency and stability of our time discrete

schemes for the velocity and the surface. At this point we can already say that the

stability of all iteration methods performed will depend on the time step size At.
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In our experiments, we chose a conveniently small step size such that all iterations

converged. It would be highly informative to give estimates for choosing At such that

the iterations will converge.

Another point is to search for new types of basis functions, especially, basis functions

that lead to small matrix condition numbers for the matrix Vi'k) and that reduce the

computational cost. One idea would be the use of an orthonormal basis. This would

simplify certain integrals which would result in increasing computational speed.

Another very important step consists in the extension of the numerical algorithms

exhibited in this thesis to the third dimension. This would allow us to study very

complex phenomena, for example the occurence of crosswaves close to the wave board.
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