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Collective robotic systems are biologically-inspired and exhibit behaviors found in spa-

tial swarms (e.g., fish), colonies (e.g., ants), or a combination of both (e.g., bees). Collec-

tive robotic system popularity continues to increase due to their apparent global intel-

ligence and emergent behaviors. Many applications can benefit from the incorporation

of collectives, including environmental monitoring, disaster response missions, and in-

frastructure support. Human-collective system designers continue to debate how best

to achieve transparency in human-collective systems in order to attain meaningful and

insightful information exchanges between the operator and collective, enable positive

operator influence on collectives, and improve the human-collective’s performance.

Few human-collective evaluations have been conducted, many of which have only

assessed how embedding transparency into one system design element (e.g., models,

visualizations, or control mechanisms) may impact human-collective behaviors, such

as the human-collective performance. This dissertation developed a transparency defi-

nition for collective systems that was leveraged to assess how to achieve transparency



in a single human-collective system. Multiple models and visualizations were evalu-

ated for a sequential best-of-n decision-making task with four collectives. Transparency

was evaluated with respect to how the model and visualization impacted human oper-

ators who possess different capabilities, operator comprehension, system usability, and

human-collective performance. Transparency design guidance was created in order to

aid the design of future human-collective systems. One set of guidelines were inspired

from the results and discussions of the single human-collective analyses and another

set were based on a review of the biological literature.

This dissertation can be used to aid designers achieve transparency in human-collective

systems. The primary contributions are:

1. A transparency definition for human-collective systems that describes the process

of identifying what factors affect and are influenced by transparency, why those

factors are important, and how to design a system to achieve transparency.

2. An expansive set of metrics that successfully evaluated how transparency influ-

enced operators with different individual capabilities, operator comprehension,

system usability, and human-collective performance.

3. The recommendation that system transparency quantification requires evaluating

the transparency embedded into the various system design elements in order to

determine how they interact with one another and influence the human-collective

interactions and performance.

4. Design guidance recommendations with respect to models, visualizations, and

control mechanisms in order to inform designers how transparency can be achieved

for human-collective systems.
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Chapter 1: Introduction

The design of complex systems impacts how efficiently and effectively humans and

machines accomplish tasks in particular environments. Aspects associated with the

human, the machine, and the interactions that occur between the entities, must be

considered in order to maximize desired outcomes, such as high performance. Trans-

parency, the principle of providing easily exchangeable information, such as shared

awareness, intent, and reasoning processes, in order to enhance comprehension, is nec-

essary to provide meaningful and insightful information exchanges between the sys-

tem and the human [2]. Effective human-machine team interactions, such as commu-

nication, cooperation, and ultimately the team’s performance, are influenced by trans-

parency. This dissertation developed and evaluated methods of achieving transparency

for human-collective teaming systems, evaluated transparency metrics, and developed

design guidelines for practical future use scenarios.

Collective robot systems are biologically inspired and exhibit behaviors found in

spatial swarms (e.g., [3]), colonies (e.g., [4]), or a combination of both (e.g., [5]). A hon-

eybee colony searching for a new hive location is an example of collective behavior.

Initially, a subset of the colony population leaves the hive in search of a new hive for a

daughter colony [5]. The subset of honeybees fly a short distance before coalescing, of-

ten on a tree branch, where they wait while a set of scout honeybees search the area for

a new hive location. During the initial flight, the honeybees exhibit spatial swarm be-

haviors typically found in flocks of birds [6] or schools of fish [7], where each honeybee

maintains a particular distance from their neighbor in order to avoid collisions and fol-
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low their neighbor in a particular direction. Scout honeybees explore the surrounding

area for possible hive alternatives, each evaluating the alternatives with respect to the

ideal hive criteria. The scouts return to the waiting swarm to begin a selection process

(i.e., colony behavior) entailing debate, agreement on a best hive location (i.e., best-of-n

[8]), and building consensus. After completing their consensus decision-making pro-

cess, all the honeybees travel to the new hive location, transitioning from colony based

behaviors back to spatial swarm behaviors.

Collective robot systems are technologically simple. System attributes, such as col-

lective intelligence and emergent behaviors, make these systems advantageous for task

completion, because they are: (1) scalable (i.e., can change in size) [3], (2) resilient to

failures (i.e., responsibilities can be redistributed to other collective entities) [9], and (3)

flexible in varying environments [10, 11], as well as the type of robotic entities used

(i.e., heterogeneous members). Many applications can benefit from the incorporation of

collective robot systems, including environmental monitoring, disaster response mis-

sions, infrastructure support, and protection [3]. This dissertation focused on human-

collective systems that include spatial swarms, colonies, and hub-based collectives. A

hub is a centralized point, similar to a honeybee hive, where the collectives’ individual

entities gather to exchange information, receive tasks, refuel, and undergo repairs.

Transparency results from traditional human-machine domains [2] informed design

requirements to be integrated into the human-collective system design. The resulting

system was evaluated in order to assess the impacts on operators with different individ-

ual capabilities, their comprehension, the system usability, and the human-collective’s

performance. Understanding how the transparency embedded in different system de-

sign elements influence interactions between the operators and collectives was used to

inform transparency focused design guidelines for human-collective systems.
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The means of providing transparency for human supervisors when monitoring and

tasking distributed hub-based collectives is challenging. The quantity and quality of

insightful information provided to the operators will impact the perception of the sys-

tem’s state, which includes the collective’s overall mission completion status, resource

allocation, as well as what the system is currently doing, what it plans to do, and any

other future predictive information. The overall understanding and transparency of

the system can be constrained when too little information is available, while too much

information may overload the operators. Determining the correct level of information

necessary is critical to designing optimal transparent human-collective systems.

The ability to provide transparency will become more challenging as the complexity

of the human-collective system increases. Understanding how the human, system, and

environment interact with one another identified crucial aspects to improve the efficacy

of human-collective interactions. The identified aspects have the potential to improve

transparency and desired system outcomes, such as enabling operators with different

individual capabilities to perform relatively the same, as well as promoting operator

comprehension, system usability, and optimal human-collective performance.

This dissertation contributed novel evaluated methods to achieve human-collective

transparency, as well as developed design requirements that better support future human-

collective systems. Chapter 2 summarizes the existing transparency research and met-

rics used to assess transparency from various human-machine domains, as well as pro-

vides background information related to biomimicry that was used for deriving design

guidance. Chapter 3 focuses on the experimental design of the single operator-collective

evaluations. The evaluation analyses hypotheses, results, and discussion for each re-

search question are presented in Chapter 4. Transparency design guidelines, presented

in Chapter 5, were created from the single operator-collective evaluation results and a
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review of the biomimicry literature. The conclusions, dissertation contributions, and

future work are provided in Chapter 6. The questionnaires used prior, during, and at

completion of the single operator-collective evaluations, as well as additional results

not presented in Chapter 4, are provided in the Appendices.
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Chapter 2: Literature Review

The development of highly complex systems are emerging at a rapid rate in various do-

mains, such as transportation and robotics. These more sophisticated systems challenge

designers to consider what factors influence the human operator, the machine, and the

environment. Understanding the interactions that occur between these entities, shown

in Figure 2.1, are necessary in order to achieve high efficiency, productivity, and safety.

Figure 2.1: Human-machine system operating in an environment [1].

Examples of unique behaviors and characteristics associated with biological spatial

swarms and colonies are discussed, which were used as inspiration for the develop-

ment of design guidance for human-collective systems in Chapter 5.2. Definitions of the

robotic spatial swarm, colony, and collective systems are provided, as well as the cur-

rent visualization and interactions transparency research relative to a particular robotic
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system. The collective literature that exemplifies both spatial swarm and colony be-

haviors embedded in one collective system is limited. Only one collective interactions

transparency evaluation has been conducted om the existing literature. This disserta-

tion expands on that literature and is discussed further in Chapter 3. The literature

includes evaluations where an operator served as a supervisor [12] aiding simulated

spatial swarms, colonies, or collectives. Definitions of transparency are provided along

with direct and indirect factors that are either influenced by transparency or affect trans-

parency. Three primary design methods (provide, design, and train), that can be used

to promote or embed transparency into systems, are discussed.

2.0.1 Spatial Swarms

Biological spatial swarms are comprised of a large number (>50) of simplified mem-

bers that exhibit intelligent and emergent behaviors as a unit. Behaviors unique to

biological spatial swarms are provided in order to understand of what characteristics

may be important to incorporate into robotic spatial swarms. Understanding how spa-

tial swarm individual entities communicate and interact with one another to influence

other individual entity and global spatial swarm state changes is necessary to ground

human-spatial swarm system design.

2.0.1.1 Biological Spatial Swarm Behaviors

Six behaviors were identified from the spatial swarm literature that contribute to char-

acteristics discussed in the spatial swarm definition (Chapter 2.0.1.2) and helped inspire

design guidance for future human-collective systems (Chapter 5.2). The first behavior
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is cohesion, which is the degree of connectedness in a group [13]. The most common

benefit of cohesion is increased safety. Honeybees, for example, take off and fly to-

gether as a cohesive group towards their new nest site in order to mitigate risks from

their environment [5]. Higher aggregation cohesion helps lower the number of isolated

individuals or small groups of birds from attacks, such as those from falcons [6]. Fish

that align with each other, rather than away from a predator (e.g., shark), can avoid

collisions with one another and contribute to creating a confusion effect, whereby the

predator is unable to focus on any single individual [14]. Tight aggregation cohesion

can result from selfish individuals using others to their benefit, such as the described

cover from predators [15]. Cohesion can be maintained in a group by having a fixed

number of individuals interacting with one another. The shape and density can fluctu-

ate, all while maintaining some degree of cohesion [6], allowing for complex geometry,

such as parabolic formations used for cooperative hunting in tuna [16]. Ideal reshuf-

fle rates, where individuals in a spatial swarm change positions amongst each other,

are necessary to maintain long-range cohesive order [17]. Members who reshuffle too

quickly can cause detrimental effects to the spatial swarm.

Individual roles may persist or change, as determined by various characteristics.

Physiological characteristics can influence particular behaviors, such as fish body length

determining group size distribution [18] and nutritional state determining where indi-

viduals are placed within a group [14]. Well-fed fish, for example, will move towards

the center of the group, while hungry individuals move towards the outside [19]. En-

vironmental characteristics can also influence behaviors, such as birds located on the

border of a spatial swarm tend to exchange positions with neighbors less than those

internal to the spatial swarm [17]. Individuals inherit some roles due to the collective’s

need. One bird can act as a sentinel, for example, while the others feed, which can help
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reduce the probability of an unnoticed predator attack [20].

Communication among individuals is typically limited in biological spatial swarms,

and the information provided by the members can be presented at the collective or

subgroup level. The number of neighbors individuals’ communicate with varies de-

pending on the species. Starlings communicate with six to seven neighbors [6], while

shoaling fish communicate with three to five [21]. Differences in the number of neigh-

bors may be caused by various characteristics. Fish, for example, may visually occlude

others’ ability to perceive neighbors [22] due to their size or the density of the aggre-

gation. Interacting with few neighbors reduces the noisiness of the information, at the

expense of the information communication range [6]. Birds implement strategies, such

as reshuffling as a way to change the neighbors with whom they interact over time [6].

Characteristics, such as how informed and experienced individuals are, their prox-

imity to others, and physiology, can determine which individual spatial swarm entities

become leaders in spatial swarms. Streakers are informed scout honeybees that pro-

vide flight direction information towards a nest site to the other uniformed honeybees

by flying at the top of the swarm where they can easily be seen against the sun [5]. Scout

honeybees partake in the consensus decision-making process to choose a new nest site;

therefore, scout honeybees that have visited the chosen site know where it is located

and can lead others to it. Experienced fish, that have been trained to do a particular

task, can influence a naı̈ve group of fish to do the same task [23], suggesting that indi-

viduals who are experienced can become leaders. The information provided by close

proximity neighbors has been weighted as more important than the information pro-

vided by neighbors that are further away [24], since perception of others decreases with

increased distance. Better-nourished individuals who forage with poorer-nourished in-

dividuals stop the foraging process after they no longer gain any benefit from foraging
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(i.e., the better-nourished individual is full) [25], which demonstrates how physiologi-

cal characteristics can cause some individuals to lead decision-making.

Leadership for many species is transient and can change due to various circum-

stances, such as large population sizes, long distances that must be travelled, pre-

dictable resources, and navigational habits, as is demonstrated in dolphins [26]. Leaders

do not need to consistently lead others throughout the entire task duration time, which

has been observed by dolphin leaders who typically spend less than 20% of their time

leading. Having a small number of leaders may help reduce discrepancies that can arise

if too many leaders are making decisions, which improves decision-making time and

saves energy during travel. Individuals can also become leaders depending of the time

of the year, which has been observed in heifers [27]. Transient leadership has many

advantages and must be considered in the design guidelines.

2.0.1.2 Definition of Robotic Spatial Swarms

Spatial swarm robots are biologically inspired by self-organized social animals [3], such

as flocks of birds [6] and schools of fish [7]. Spatial swarms are comprised of a large

number (>50) of simplified individual entities that exhibit intelligent, emergent be-

haviors as a unit, and respond to locally available information among the individual

swarm entities to achieve an objective [28–30]. The spatial swarm’s global intelligence

and emergent behaviors make it scalable, resilient, and flexible [10, 11]. Scalability refers

to the spatial swarm’s ability to perform well, regardless of its size [3]. Individual en-

tities may suffer failures; however, the spatial swarm is resilient, as responsibilities can

be redistributed to others in order to achieve the task [9]. The spatial swarm’s ability to

adapt to varying environments and tasks represents flexibility [9].
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Robotic spatial swarms often rely on distributed, localized, often implicit commu-

nication, as well as basic rules of repulsion, attraction, and orientation that enable in-

dividual entities to position themselves relative to neighboring entities [31]. Couzin et

al.’s [31] model states that individual entities in the zone of repulsion attempt to main-

tain a minimum distance from their neighbors, striving to avoid collisions. The zone

of orientation causes individual entities to align themselves with neighbors who are in

close proximity. Entities that are far from their neighbors will move closer, as a factor of

the zone of attraction. Relative motion among spatial swarms, such as those observed

in fish, enrich visually driven communication [32]. Methods to communicate informa-

tion across a spatial swarm include, salient movements warning individual entities that

a predator is in proximity [33] or rapid changes in acceleration, such as a streaking

honeybee guiding a spatial swarm in a particular direction [5].

2.0.1.3 Visualization Transparency for Human-Spatial Swarm Sys-

tems

The spatial swarm transparency literature has typically implemented traditional visual-

izations (i.e., showing the position of every individual spatial swarm entity) has focused

on assessing operator understanding of spatial swarm behaviors and human-spatial

swarm performance. A variety of individual entity features have been visualized for

operators, including current and predicted future position [34] and heading direction

[35], health (i.e., speed, strength, capability, and dispersion [36]), and status. The most

commonly used visual icon for an individual entity has been a circle, where directional

information was observed either as the entity moves across a 2-D space, or the cir-
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cle incorporates a line pointing in the heading direction. Existing visualization design

guidance was derived from subject matter experts [36] and the Gestalt principles [37].

The use of multimodal cues (i.e., visual spatial swarm state color coding and written

messages, spoken messages, and vibrations) aided operators in the identification and

response of signals during a reconnaissance mission (99.9% accuracy), and resulted in

shorter response times, and lower workload. Sharing spatial swarm information via

multimodal cues may alleviate an operator’s high visual loads when managing multi-

ple tasks on various displays by increasing situational awareness [36] and promoting

better transparency. Operators’ using a visualization incorporating Gestalt-based de-

sign principles perceived and approximated optimal spatial swarm performance faster

than operators using visualizations containing only individual entity position infor-

mation [37]. Increased visualization transparency enabled operators to learn when to

approximate optimal input timing.

Information latency, which can occur due to communication bandwidth limitations,

and neglect benevolence, the time allowed for a spatial swarm to stabilize before is-

suing new operator commands, on operator understanding of future spatial swarm

behaviors are important considerations [34]. Latency affected the operators’ ability to

control a spatial swarm, but providing additional transparency via a predictive visual-

ization, which showed each individual entity’s predicted location 20 seconds into the

future, mitigated these effects. Operators using the predictive visualization with la-

tency performed as well as operators who experienced no latency. Transparency of

human-spatial swarm systems can be improved by implementing predictive visualiza-

tions of the spatial swarm and its entities by allowing the operator more time to think

about their future actions. Operators will be able to balance span, the number of indi-

vidual entities they can interact with, and persistence, the duration of the interactions
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with individual entities, by using visualizations that provide heading information [35].

Aspects, such as the presence or absence of Couzin et al.’s [31] communication model

states, visualized individual entities’ velocity, and individual operator characteristics,

such as gender, have impacted the identification of spatial swarming behavior [38].

Understanding the influence of factors is necessary to promote perception and compre-

hension of spatial swarm behavior to inform future operator actions.

Abstract spatial swarm visualizations have been proposed to improve operator un-

derstanding and influence positive spatial swarm behavior. Radial visualizations, us-

ing the three level Situation awareness-based Agent Transparency (SAT) framework

[39] and heuristic evaluations analyzing the application of spatial swarm metrics on

visualizations [13], as well as glyphs [40], bounding ellipses [41], convex hulls, and di-

rected arrows [42] have been assessed. Operators using a glyph were able to acquire

information regarding the spatial swarm’s power levels, task type, and the number of

individual entities, via one icon [40]. Additional information about particular system

features was accessible via pop-up windows. Designers of abstract spatial swarm visu-

alizations can ensure transparency by providing redundant information via the spatial

swarm icon and using supplementary information windows.

Conflicting results were found for evaluations assessing whether traditional or ab-

stract visualizations aided operators better during different tasks. Abstract visualiza-

tions during a go-to and avoid task in the presence or absence of obstacles [42] per-

formed worse than the traditional visualizations, while abstract visualizations performed

as well or better when perceiving biological spatial swarm structure [43] and under

variable bandwidth conditions [41]. Further analysis is needed in order to determine

which spatial swarm visualization will promote better transparency for a common task

by investigating how transparency factors influence human-spatial swarm behaviors.
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2.0.1.4 Influence of Transparency on Human-Spatial Swarm Inter-

actions

Many of the existing transparency evaluations investigated how control mechanisms

influenced human-spatial swarm interactions and behavior (e.g., [44, 45]). Two mech-

anisms were used to control a spatial swarm foraging in simple and complex environ-

ments [44, 46]. Selection, influenced a selected subgroup, and beacon, exerted influ-

ence on entities within a set range. The highest performance occurred when fully au-

tonomous spatial swarms (i.e., no operator influence) foraged in simple environments,

while selection was optimal in complex environments [44]. Selection generally out-

performed beacon; however, as the spatial swarm size increased, beacon became more

advantageous by requiring less operator influence [46]. Improvements must be consid-

ered in order to reduce the learning curve of using beacon and improve its effectiveness

(i.e., learning where to strategically place beacons).

Leader, predator, and mediator control mechanisms were assessed, with regard to

spatial swarm manageability and performance [45]. Leaders attracted entities towards

themselves, predators repelled entities away, and mediators allowed the operator to

mold and adapt the spatial swarm. Operators experienced different workload lev-

els and implemented different control strategies depending on the control mechanism.

Workload increased when using leaders, decreased with predators, and remained rela-

tively stable with mediators. Operators using leaders gathered all of the spatial swarm

entities together and guided them in a particular direction. Spatial subswarms emerged

and were pushed in different directions when the operators used predators. Mediators

were strategically placed in the environment, which resulted in lower workload, sug-

gesting that this control mechanism may be easier to use.
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The quantity and quality of operator influence was investigated to identify when

the influence begins to have a detrimental effect on human-spatial swarm performance

[47]. Operators moved a spatial swarm around in various environments at two levels

of autonomy using an autonomous dispersion algorithm (high autonomy) and user-

defined goto points (low autonomy). Operator influence was required in complex envi-

ronments containing numerous obstacles and small passageways; however, too much

control never allowed the autonomy to operate, resulting in a performance decline. Two

operator interaction strategies emerged: (1) allow the autonomous algorithm to control

spatial swarm movement or (2) manually break the spatial swarm into subgroups and

guide them to explore different areas of the map.

Two evaluations assessed the influence of visualizations on human-spatial swarm

interactions. Four methods of displaying the spatial swarm’s state were assessed based

on the operator’s ability to predict the spatial swarm’s future state [41]. The full in-

formation display showed the position and heading of each individual entity, the cen-

troid/ellipse showed a bounding ellipse at the center of the spatial swarm, the min-

imum volume enclosing ellipse showed leaders at the edge of the spatial swarm, and

random condition clustering showed leaders evenly spaced throughout the spatial swarm.

The full information and centroid/ellipse displays enabled the most accurate predic-

tions when estimating spatial qualities, with a preference for the bounding ellipse in

low bandwidth situations. The leader-based strategies may be more advantageous for

tasks that have a goal, such as the best-of-n decision-making task, which is a selection

process entailing debate and building consensus on the best hive location out of n op-

tions [8]. A metacognition model that enabled individual entities to monitor changes in

the spatial swarm’s state and a visualization that communicated spatial swarm status

during a convoy mission were assessed when information was provided in different
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modalities (e.g., spatial, audio, and tactile cues) in order to increase situational aware-

ness of surroundings and improve visual attention [36]. The task required monitoring

the spatial swarm and responding to display signals, while performing a robotic plan-

ning task. The visualization enabled 99.9% accuracy of signal detection and recognition.

2.0.2 Colonies

The unique biological colony behaviors are provided in order to understand what char-

acteristics may be important when designing systems to provide transparency for robotic

colonies. Determining how colony members communicate and interact with one an-

other to influence other individuals and the global colony state is necessary to ground

human-colony system design.

2.0.2.1 Biological Colony Behaviors

Eight behaviors, five previously mentioned behaviors from Chapter 2.0.1.1 and four

new behaviors, were identified from the colony literature that contribute to characteris-

tics discussed in the colony definition (Chapter 2.0.2.2) and helped inspire design guid-

ance for future human-collective systems (Chapter 5.2). The previous five behaviors

and characteristics specific to colonies are discussed first, followed by the new behav-

iors. The benefits of cohesion in spatial swarms and the desire to maintain cohesion to

increase safety also apply to colonies. Honeybee colonies, for example, will aggregate

into tight, well-insulated clusters in order to survive winter temperatures [5].

Roles are often more clearly defined in colonies than spatial swarms. Particular

members, such as worker honeybees, perform a variety of roles, which vary with age,
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include cleaning cells to feeding larvae, building combs, ventilating the hive, guard-

ing the entrance, and foraging [5]. SiFmilar roles are performed by ants that find food

and bring it back to the nest, build and repair the nest, as well as feed and groom the

larvae [48]. These colony members often proactively make inspections searching for

things to do based on the colony’s needs [5]. Environmental and physiological char-

acteristics can also influence particular role behaviors. Conditions inside a honeybee

colony’s hive (congestion of the adult honeybees, numerous immature honeybees, and

expanding food reserves) and outside the hive (plentiful pollen during the spring), for

example, have been correlated with worker honeybees starting the process of queen

rearing [5]. The changing environment also influences ants that react by performing

other tasks [48]. As honeybees and ants age, their roles change. Nest-site scouts are

elderly honeybees that served previously as common foragers [5]. A general pattern

of role change in ants starts with younger workers staying inside the nest, working on

brood care and nest construction, and then moving to work outside the nest, where they

forage for food when they are older [48].

Communication for colonies can occur inside a hive or nest, outside using strategies

similar to spatial swarm communication, or can be embedded into the environment.

Communication among colony members is also limited, like the spatial swarms, and

the information provided by the members can be presented at the collective or sub-

group level. Honeybees can only observe and react to the actions of their immediate

neighbors; hence, honeybees operate without global knowledge of the information that

percolates among other fellow honeybees [5]. Local sampling, performed in parallel by

large numbers of individuals, allows the colony to accurately tune its average response

to environmental changes [14]. The group-level reporting of information mitigates the

noisy individual-level reporting of information [5].
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Characteristics, such as how informed individuals are and their impact on colony

survival, determines which individuals become leaders in colonies. The colony’s sur-

vival is dependent on its queen’s survival, who carries the new colony’s genes [5]. Due

to the queen’s impact on the colony, she can be perceived as a leader. Scout honeybees

can also be considered leaders, since they are responsible for initiating the departure

of the daughter colony from the mother colony, make the choice of a suitable nesting

cavity, trigger the colony’s takeoff to the new nest site, and steer the colony during its

flight [5]. The scout’s knowledge about the colony state inside the hive, the weather

outdoors, and the selected nest site, enables them to lead the colony. Patrol ants have

similar outdoor knowledge, as they are the first to leave the nest in the morning. Pa-

trollers search the nest mount and foraging area, as well as choose and inform (i.e., lead)

the day’s foraging directions to the respective foragers [48]. Other ants exhibit leader-

ship roles, such as those who have found food and recruit others via tandem-running,

where they lead others to the food site [49]. Some ants that are committed to a new nest

site will assert dominance over passive adults by picking them up and carrying them

to the site location [50]. Dominance is also exemplified in first virgin queen honeybees

that pipe on the combs to transmit messages to the colony, which causes the workers to

cease instantly all movement for the duration of her signal [5].

Colonies sometimes experience undesirable emergent behaviors. A honeybee colony

can experience split decisions, which arise when it attempts to normally take off to-

wards a chosen new nest site and fails to move, because half of the colony is supporting

one choice, while the other is supporting another [5]. The honeybees will resettle and

debate further in order to come to an agreement. Split decisions are wasteful and po-

tentially fatal to honeybee colonies, since the members are exposed to risks associated

with the outside environment throughout the decision-making process.
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The roles suggest that a colony can influence individuals’ actions in order to main-

tain behavior. The most common colony need that influences individuals’ actions are

nutritional. Receiver honeybees will only accept water from forager honeybees if they

require it for themselves or to pass on to other honeybees [14]. Thus, the forager’s

response to finding and unloading water is regulated by the colony’s need. Honeybee

foragers perform two dances to reflect the needs of the colony. The waggle dance results

in the recruitment of more foragers, while the tremble dance results in the recruitment

of more receivers [14]. The nutritional needs of an ant colony also influence an ant’s

decision to leave a pheromone trail to a food source [14]. A change in the rate of forager

return to the nest translates to the colony’s need to send more foragers out [48]. Worker

honeybees will change their interactions towards their queen in preparation for depar-

ture from the mother colony. The workers will begin to show mild hostility towards the

queen by shaking, pushing, and lightly biting her, all of which is intended to help her

lose weight so she will be able to make the journey to a new daughter colony [5].

The colony’s feedback loop behavior is used to gain or mitigate support. Scout hon-

eybees that produce dances for a particular site repeat their dances in order to convert

neutral individuals into supporting individuals for the same site [5]. Scout honeybees

that do not promote enough positive feedback for an optimal nest site may fail to recruit

others, which may result in a suboptimal decision [5]. The selection of a lesser quality

site may also occur if the scout honeybees provide positive feedback too late into a de-

bate. A lesser quality site may have gained supported simply because it was entered

into the debate earlier and had more time to gain support [14]. A naturally occurring

negative feedback loop attempts to mitigate support for poorer sites. Scouts that were

supporting individuals become apathetic voters after a duration of time and rejoin the

pool of neutral scouts [5]. Determining how to balance positive and negative feedback
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loops is necessary in order to embed this method in future human-collective systems.

2.0.2.2 Definition of Robotic Colonies

Robotic colonies are decentralized systems [51] composed of numerous entities (>50)

who exhibit unique roles or states, such as foraging, which adapt over time to maintain

consistent states in changing conditions [52]. Colonies use a centralized space for shar-

ing information, such as inside of a nest, or embed information into the environment,

such as ants depositing pheromones to communicate a route from a food site to the

nest [53]. Colonies use strategies, such as positive feedback loops, to gain a majority

consensus in order to change its behavior [54]. Recruitment for a change will continue

to increase until a quorum has been reached. The colony will transition into a decision-

making state once the quorum is reached. Different strategies, such as the honeybee

waggle dance [5], will be implemented to reach a consensus.

2.0.2.3 Visualization Transparency on Human-Colony Systems

Less existing research investigated visualization transparency aspects in relation to human-

colony systems. Abstract visualizations were designed to convey similar system fea-

tures provided in traditional visualizations. The radial visualizations promoted per-

ception (SAT Level 1) by displaying mission [55] and colony state information [56],

such as the direction the individual entities left the hub to explore targets. Predictions

of future colony headings (SAT Level 3), provided by elongating the radial display in

the direction of more colony support, aided operator actions. Visualizations providing

predictive information are needed to achieve transparency for human-colony systems,
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regardless if the visualization is traditional or abstract. Additional human-colony based

system evaluations are needed to establish a broader understanding of the influence of

visualizations on human-colony system behaviors and performance.

2.0.2.4 Influence of Transparency on Human-Colony Interactions

Only one colony based evaluation assessed operator influence level and information

reliability during a best-of-n decision-making task [56]. Operators placed beacons in the

environment to attract support at particular locations. The direction of the individual

entities was communicated to operators using a radial display surrounding the hub.

Low operator influence resulted in high performance when reliable information was

provided, while high influence was best when inaccurate or incomplete site information

was provided. Further analysis is required to determine if less operator influence can be

achieved when there is imperfect communication. More human-colony based system

evaluations are needed to establish a broader understanding of the influence of different

system design elements, such as control mechanisms, on human-colony interactions.

2.0.3 Collectives

A biological example of collective behaviors is provided in order to understand how

collectives encompass both spatial swarm and colony behaviors. Only one evaluation

assessed the influence of transparency on human-collective interactions and empha-

sized the need for more evaluations, such as the one described in Chapter 3.
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2.0.3.1 Definition of Robotic Collectives

Collective robotic systems exhibit biologically inspired behaviors seen in spatial swarms

[3], colonies [4], or a combination of both [5]. The honeybee colony searching for a

new hive location example described in Chapter 1 exemplifies collective behavior. The

daughter colony transitions from colony behaviors to spatial swarm behaviors when

it initially flies to a nearby tree branch, where the daughter colony waits while scout

honeybees search the surrounding area for a new hive location. The honeybees resume

the colony behaviors during the consensus decision-making process in order to choose

the best site. Once a decision has been reached, the colony transitions back to spatial

swarm behaviors during the flight to the new nest site location.

2.0.3.2 Influence of Transparency on Human-Collective Interactions

Thus far, only one collective evaluation has investigated how humans can influence

collectives based on two decision support models compared to direct control of the

collective to achieve the same task. This same effort investigated the influence over

the collective’s decision-making performance with and without a human operator [57].

Four collectives, consisting of 200 individual entities each, needed to make multiple op-

timal sequential decisions. The sequential best-of-n decision-making model, that com-

pensated for environmental bias, without an operator reached consensus slower, but

made 57% more accurate hard decisions compared to the sequential best-of-n model

that only assessed a target’s value. The addition of an operator using the environmen-

tal bias compensated model required less operator influence and achieved 25% higher

accuracy for the hard decisions. Further details are provided in Chapter 3, since this
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dissertation extended on these results for transparency in such systems.

2.1 Transparency

Transparency represents the means of providing insightful information from the ma-

chine to the human operator and vice versa. Providing too much or too little trans-

parency may overload or underload respectively, the human operator and negatively

affect desired outcomes, such as performance. The use of various design strategies to

integrate transparency can help improve the system’s overall effectiveness.

2.1.1 Transparency Definitions

The most common robotics related transparency definition is “the quality of an interface

to support a human operator’s comprehension of an intelligent agent’s intent, perfor-

mance, future plans, and reasoning process” [39]. The three level Situation awareness-

based Agent Transparency (SAT) framework was developed as a guide for achieving

transparency. The SAT model leverages the human operator trust calibration 3Ps model

(purpose, process, and performance) with performance history [58, 59], Endsley’s situa-

tion awareness model [60, 61], and the Beliefs, Desires, and Intentions Agent framework

[62]. Endsley’s situation awareness (SA) model encompasses the perception, compre-

hension, and projection of future states of an environment and the actions to be taken.

At level one of the SAT framework agents communicate their current status, actions,

and plans. The agent’s 3Ps, desires, and intentions inform the human operator’s per-

ception of the system’s current and future plans. The agent communicates its reasoning

process and potential constraints or affordances to the human operator in order to sup-
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port future action comprehension in SAT level two. SAT level three communicates the

agent’s future outcome projections, uncertainties, limitations, the likelihood of success,

and performance history to the human operator. Teamwork transparency and bidirec-

tional communication were added to the updated SAT framework in order to maintain

a mutual understanding of each teammate’s responsibilities and interactions [63].

Other transparency definitions, across domains, describe transparency as the com-

munication of information regarding the machine’s abilities [64] and capabilities [65].

Transparency has been described as a process [66], method [67, 68], mechanism [69, 70],

property [71], or emergent characteristic [72] that provides information or explanations

[73] to a human operator in order to develop accurate mental models of the system. The

type of information provided, known as information transparency [74], includes what

[75] the human operator or machine is doing [69] and why a particular task is being

conducted [76]. Functional transparency [74], or seeing through a system [72, 77, 78],

addresses how a task is accomplished [79].

This dissertation defines transparency as the principle of providing information that is

easy to use [77] in an exchange between a human operator and collectives to promote compre-

hension [69, 75, 80] of shared awareness [68], intent, roles, interactions [63], performance [39],

future plans, and reasoning processes [81, 82]. The term “principle” is used to describe the

process of identifying what factors affect and are influenced by transparency, why those

factors are important, and how to design a system to achieve transparency.

2.1.2 Factors of Transparency

Designers of human-machine systems must consider the human operators, machines,

and the interactions between them in order to understand why transparency is a critical
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principle. Each entity possesses unique individual and shared factors. Identifying and

understanding how these factors influence the perception, processing, and projection

of actions during tasks is crucial. Factors associated with interactions between human

operators and machines will differ depending on whether the interaction is direct, such

as physically driving an automobile, indirect, for example via a computer interface, or

manipulating the operational environment, such as obstacle removal. This dissertation

investigates the direct and indirect interaction factors.

A human-machine system transparency factor concept map, presented in Figure

2.2, was created after reviewing the human-machine system transparency literature.

The Google Scholar and Oregon State University Valley Library search engines, with

the keywords “transparency and human machine” as well as “transparency and hu-

man robot”, were used for the search. During the literature review, information related

to transparency was transcribed and sorted by reoccurring themes (e.g., performance,

usability, trust, and explainability). Factors that were identified can be used to measure

the effectiveness of design choices intended to achieve transparency. The factors can

either be influenced by transparency or affect transparency. The concept map identifies

factors related directly (solid lines) and indirectly (dashed lines) to transparency, which

were referenced by the supporting literature. The direct factors had immediate connec-

tions related to transparency, such as transparency has been described as observable,

whereas indirect factors typically influenced other factors, for example credibility im-

pacts trust, which impacts transparency. The three indirect factors, feedback, state, and

prompts, were concatenated into one particular nomenclature in order to provide clarity.

Fourteen direct factors surround transparency, of which, the four highest total de-

gree (number of in degree + number of out degree) direct factors are the focus of this

dissertation (dark blue in the figure): performance, usability, trust, and explainability.
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The information, purpose or intent, and understanding factors were not considered

high degree direct factors, because explainability uses information, such as intent, via

explanations, to communicate and promote understanding of each entity type. Many

indirect information factors were considered methods of achieving transparency.

The factors and how they interact with one another are provided in order to address

the “principle” transparency aspect. All the direct factors are defined, and the asso-

ciated indirect factors are indicated. Related research outside of robotics is presented

as “Other Domains”, since the transparency research originates from other system do-

mains. An overall summary concludes each chapter in order to highlight relevant direct

factor elements and applicability for supporting human-machine system design.

2.1.2.1 Performance

Performance is the ability of a human operator or system to produce an output when

executing a task under specific conditions [80]. Performance can be measured subjec-

tively (i.e., surveys) or objectively (i.e., psychophysiological responses or task comple-

tion time). Teamwork can increase performance [83], emphasizing the need to make

effective interactions between team members. Various direct and indirect factors, in

Figure 2.2, impact performance, including explainability (i.e., the form of information

exchange and communication), trust, SA, workload [72, 84], as well as system reliability,

predictability, and capability [39].

Other Domains The effects of explainability, via system reasoning on human oper-

ators’ trust, workload, and performance were evaluated for various aircraft and au-

tonomous automobile applications [81]. Transparency positively influenced perfor-
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mance and calibrated trust, but produced higher workload and longer decision-making

times. This result can be attributed to the amount of information provided. System

transparency impacts on performance were assessed for individuals and groups using

collaborative information-visualization environments [75]. Users had higher net pro-

ductivity when the design accounted for transparency intentionally. Cost-benefit anal-

yses of various visual support systems, using the Human-Automation Collaboration

Taxonomy framework, evaluated how information transparency impacted decision-

making performance in a missile strike coordination application [74]. The framework

was useful when developing cost functions related to money, time, performance, and

safety due to the differing visual support system designs.

Robotic Domains Attributes of decision and control environments [84] impacted real-

time trust and control allocation strategies for collaborative human-robot teams [85].

Decrements in reliability affected subjective performance assessments, trust, as well

as the frequency and timing of switching between autonomy modes. Multiple exper-

iments using the Autonomous Squad Member and Intelligent Multi-Unmanned Vehi-

cles Planner with Adaptive Collaborative/Control Technologies examined the effects of

transparency level on operator performance [86], calibration of trust [64], workload [87],

and perceived usability [88]. Generally, performance benefited and trust was appro-

priately calibrated with better transparency; however, the presentation of uncertainty

information, in SAT level three, did not improve performance consistently.

Summary Performance is an effective metric to assess transparency effects in human-

machine systems. There is a high association between performance and other trans-

parency factors (eleven total degrees in Figure 2.2): three of which are the high degree
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direct factors, seven are indirect factors, and the remaining is transparency. The high

number of interactions imply that performance is necessary for understanding and im-

plementing transparency effectively. Performance is an outcome of interactions, includ-

ing direct and indirect factors, as well as the task and environment. Real life scenarios

make determining exactly what causes performance changes challenging. Studies that

attempt to duplicate realistic use cases can help designers understand the combinations

of factors that result in certain outcomes and inform identifying desired performance

ranges that are robust to variable contexts and environments.

2.1.2.2 Usability

Usability is a multifaceted quality that enables human operators to achieve desired

goals in a manner that can be anticipated, easily learned, and does not cause confu-

sion or hinder progress [89]. Various direct and indirect factors, from Figure 2.2, are

associated with usability: learnability, efficiency, effectiveness, memorability, satisfac-

tion, control, predictability, and transparency [78, 89, 90]. A system designed to lever-

age prior human operator knowledge, from mental models or schemas, can be easier to

learn, which may make using the system more efficient, effective, easier to recall, and

pleasant [90]. Control is the authorization an operator or system has over a particular

task [78], where the human operator and system may assume various roles, such as a

supervisor or teammate, depending on the situation’s context.

Transparency has been described from a usability perspective as observable, di-

rectable, adaptable, and broadening [39]. A system is observable if feedback is pro-

vided to the human operator and machine about a process [39, 91]. The human oper-

ator or system, dependent on the feedback received, may decide to re-direct or mod-
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ify resources, activities, priorities, and assumptions in order to explore other solutions

[39, 91, 92]. Human-machine system adaptability is the system’s ability to adjust to sit-

uations and provide support to a human operator in order to accomplish tasks, which

is necessary when operating in variable environments. Lower levels of automation may

require the human operator to have more influence over tasks compared to higher lev-

els of automation, where the responsibility lies more with the machine [93].

Other Domains Transparency’s impact on government website usability for charac-

teristics, such as website layout, intuitive menu systems, site maps, and search tools

has been analyzed [94, 95]. The human operators’ overall web knowledge impacted

usability and transparency [94]; however, trust was an important factor when human

operators were critical of the provided information [95]. A design intended to improve

usability of security software actually resulted in issues due to a lack of transparency,

as human operators did not know when or how to make security related decisions [96].

Transparency increased usability in web authentication systems; however, interactions

between the users and system decreased, which caused the users to become confused

and develop a lack of trust in the system [97].

Robotic Domains Transparency has, in telerobotic systems and human-robot teams,

reduced operator workload, facilitated operator comprehension, mitigated errors [98],

improved usability [99], and positively impacted perceived system dependability [79].

Identifying and affirming which interface symbology supports developing appropri-

ate mental models can improve the overall usability of human-robot interaction design

[100]. Robots that increased their transparency levels improved human operator per-

formance, but the perceived usability did not improve [88]. A system that provides
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increased transparency can be perceived as more complex, which can negatively influ-

ence perceived usability and workload (both subjective and objective) [64].

Summary Usability influences the human operator’s perception of a system. Figure

2.2 indicates that usability has a higher number of interactions with the transparency

factors (fifteen total degrees) compared to performance, making usability a necessary

factor for understanding and implementing transparency. Two of the fifteen total de-

grees are the high degree direct factors, twelve are indirect transparency factors, and

the last is transparency. The direct and indirect factors related to the system’s character-

istics, such as control, influence the operator’s opinion regarding the system’s usability.

Making hardware or software more reliable, can improve usability; however, because

perceived usability is subjective, the operator’s perception and satisfaction may con-

tribute to overall system usability. Designers must consider objective and subjective

aspects of usability to understand how factors affect operators and identify what trans-

parency modifications can be implemented to maximize the system usability.

2.1.2.3 Trust

Trust is a psychological state [101] and sentiment [102] that compares an operator’s

willingness [68, 103] to be vulnerable [80] and confident [104] regarding the expecta-

tions [105] of honesty, fairness, care, and responsibility [83]. Trust emerges when the

human-machine system can commit, reflect, and adapt to recommendations, actions,

and decisions [83]. Various types of trust exist, including compliance, reliance, disposi-

tional, and history-based. Compliance arises when an action occurs after receiving a cue,

while reliance is avoiding an action because there is no cue [106]. The operator’s attitude
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towards a system provides essential information when designing human-machine sys-

tems [105]. Prior interactions (history-based trust) or no prior interactions (dispositional

trust) contribute to the operator’s attitude towards a system [71].

Trust beliefs, intentions, and actions must be considered when designing systems.

An operator will take control of the system if the system’s action is perceived as inade-

quate [77, 80, 107]. Trust intention and reliability [108, 109] help identify appropriate ex-

pectations and potential sources of uncertainty [110]. Trust in the system may increase

if expected responses emerge from particular commands; however, when the system

responds unexpectedly, trust may diminish. Understanding how much each entity, the

human operator and system, can rely on one another during a task is essential for trust

calibration [80]. Human operators who have too much trust, or overly rely on a system

typically misuse it, while not trusting the system can lead to disuse [111].

Three factors, in Figure 2.2, were identified for developing trust: purpose, process, and

performance [58]. The purpose corresponds to the system’s intended use, the process rep-

resents the human operator’s understanding of the system’s logic, while the system’s

observed behavior represents performance. Trust is influenced by the system’s credibility

and capability [80], individual human operator differences [58], such as workload and

situation awareness [112], and teamwork aspects, such as respective roles, division of

labor, shared environmental awareness, and context [63, 110]. Transparency is not ex-

pected to improve trust, but can calibrate trust appropriately, depending on the context

[39]. For example, increased transparency that reveals information related to system

reliability, can cause the human operator to trust the system less.

Other Domains Participation, transparency, and communication between employees

at two different companies were examined in order to understand the impacts on coop-
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eration and trust [66]. Different communication mechanisms, such as blogs and wikis,

improved the intra-organizational information transparency. Trust in a coffee produc-

tion machine [77] and in a private webmail system [113] was rated lower for higher

transparency levels due to increased perceived complexity. Two transparency factors,

readability and organization, were altered from various code scripts [80]. Readabil-

ity of the code led to the highest trustworthiness, which alludes to the importance of

designing interfaces that are easily understood. The relationship between a human op-

erator’s expectations and system output, in an online peer assessment system, provided

evidence for a bell-shaped relationship between transparency and trust [105]. The bell-

shaped relationship insinuates that an opaque or highly transparent system may pro-

duce equally low levels of trust. Interfaces, used for emergency landing in commercial

aviation produced higher trust and utility with improved transparency [114].

Robotic Domains Transparency effects on human operator’s trust [115], situation aware-

ness [67, 87], and workload [71] were assessed for the Autonomous Squad Member.

Higher transparency levels improved situation awareness, but did not always improve

trust or workload. Presenting the system’s uncertainty information may have intro-

duced ambiguity, lack of relevance, and incomplete knowledge of the system’s op-

erational capabilities, causing mixed human operator responses [81]. The Intelligent

Multi-Unmanned Vehicles Planner with Adaptive Collaborative/Control Technologies

was used to evaluate the impact of transparency on performance, trust [116], work-

load [64], situation awareness, and reliance [88]. Performance improved with increased

transparency; however, trust, did not improve with increased transparency. Trust was

examined by determining whether automation reliability and automation transparency

had different implications on human reliance behaviour and mission performance [117].
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Higher reliance rates and short response times were promoted using either reliability or

transparency based trust. Human-robot trust was investigated in a collaborative table

clearing task [118] as well as a tactical task [84], in which the robots learned the desired

actions with the intention of increasing the human operator’s trust in the system. Peri-

ods of low reliability early during the interaction phase that included real-time feedback

had a detrimental impact on trust [85]. During an unplanned robot encounter reactive

planning techniques were used to build transparency [82], which improved overall un-

derstanding of the system. Different transparency levels of conflict detection and path

re-planning were provided to users tasked to identify and attack hostile targets and

reroute unmanned aerial vehicles’ paths to avoid conflicts [119]. Higher transparency

increased operator dependence on the automation and increased trust.

Summary Trust is highly complex, and various factors can affect trust or are influ-

enced by it. Trust has the highest association with the transparency factors (twenty

total degrees) compared to performance, usability, and explainability, as shown in Fig-

ure 2.2: three high degree direct factors, sixteen indirect factors, and transparency. Trust

must be considered in order to understand and implement transparency effectively. All

three stages of human processing: perception, comprehension, and projection are in-

fluenced by trust. Some factors that impact trust are related to system capabilities and

how it is designed, while other factors are characteristic of the human operator. Re-

search demonstrates that transparency can improve or reduce trust. Designers must

consider strategies, such as providing supplementary information, to improve human

operators’ confidence in the human-machine team, and consider how the system de-

sign influences trust. Building the human operator’s trust and the system’s ability to

execute tasks correctly will be critical for future use.
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2.1.2.4 Explainability

The clarification or justification of actions is the explainability factor, which was touted

to promote trust, positive and constructive interactions, as well as transparency [120].

Principal components of providing effective and comprehensible explanations are the

human-machine systems facts, plans, and goals [121]. Figure 2.2 identifies five goals

from an explanation framework for dynamic problems with high levels of uncertainty:

transparency, how answers are reached; justification, why an answer is correct; rele-

vance, why a question is relevant; conceptualization, clarify ideas or notions; and learn-

ing [122]. Explanations that incorporated components, such as justification, improved

the automated collaborative filtering systems’ acceptance by increasing human opera-

tor involvement in the reasoning process [123]. Classifiers centered on what, why, and

when actions were going to be performed by a robot were used to provide interpretable

explanations of the robot’s needs, behaviors, and intentions [121].

Other Domains Understanding how explanations impact human operators’ percep-

tion of control over the system revealed that a lack of explanations resulted in humans

exerting more control [124]. The possibilities, challenges, and effects of explaining sys-

tem reasoning on the human’s trust, workload, and performance were examined for

fighter aircraft, air defense, and autonomous driving [81]. Explaining the system’s be-

havior and inferences improved collaboration with the human. Multiple explanation

types were evaluated to determine which were effective for human operator under-

standing and performance [125]. Explanations indicating why the system behaved in a

particular manner produced higher understanding and stronger feelings of trust.
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Robotic Domains An experiment in which a simulated autonomous agent controlled

a simulated unmanned ground vehicle examined how the simulated robots learned

behaviors using a case-based reasoning approach [126]. The robot provided simple,

concise, and understandable explanations of why a behavior was executed, resulting

in higher performance. The effects of transparency on the attribution of credit and

blame were assessed using a delivery robot [73]. Transparency was dependent on the

similarity between the robot’s explanation of its actions and the participants’ knowl-

edge. Accountability of a swarm’s actions (i.e., what the swarm did at particular times)

was needed by fire and rescue personnel conducting investigations [127]. Challenges

for human-companion robot collaboration, during plan-based and action-related prob-

lems, were investigated [128]. Plan-based strategies identified the importance of mak-

ing robot behavior legible, which is related to the robot’s understanding of their re-

spective responsibilities and contributions in a joint plan. Human operator trust was

reestablished when working with a turtlebot, which made and apologized for mistakes,

only when the robot’s explanation or apology occurred in a timely manner [129]. Novel

algorithmic explanations, in two human-robot studies, improved decision-making and

team performance, as well as improved transparency and trust [130, 131].

Summary Explainability is an assessment of prior, current, and future information

that must be understood by operators and system entities within human-machine sys-

tems. Explanations are the mechanism to provide transparency. Forms of explanations

include words or figurative icons. Explainability is a bidirectional transparency factor.

Figure 2.2 shows a high number of interactions between the explainability and trans-

parency factors (eleven total degrees): two are the high degree direct factors, eight are

indirect, and the last is transparency. Explainability and the other factors it encom-
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passes (e.g., information, understanding, purpose or intent) are necessary for effective

understanding and implementation of transparency. Providing an appropriate amount

of information is important, as well as providing relevant, useful, and timely infor-

mation. The working environment may impose restrictions on explainability, such as

limited bandwidth, that may affect the human-machine team negatively. Explainability

is subjective, but has objective indirect factors of transparency.

2.2 Design to Achieve Transparency

Three well received and highly used design methods can be implemented to optimize

human-machine system transparency and desired outcomes. The designer can 1) pro-

vide system features, such as providing feedback, 2) design systems using specific guide-

lines, for example, Gestalt principles [37], or 3) train the human operators and system,

which is especially important for complex systems. An ideal system uses a combination

of all three methods (provide, design, and train) to ensure optimality.

2.2.1 Providing Characteristics

Four criteria to provide in a design for transparency were identified: status (S), feedback

(FB), planning mechanisms (PM), and engagement prompts (EP). Three of the four cri-

teria (status, feedback, and engagement prompts) are directly related to the information

factor, identified in Figure 2.2. The planning mechanism does not appear in Figure 2.2;

however, it encompasses various direct and indirect factors.

How the indirect transparency factors can be provided (P) or assessed (A) for each

criterion and the relationship with respect to the direct factors, addressing the “princi-
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ple” aspect of the transparency definition, are provided in Table 2.1. The associations

in Table 2.1 were developed by one researcher and supported by the literature review.

Particular keywords related to the criteria (e.g., status/state, feedback, plan, prompt,

alert, and alarm) were used to identify whether an association (e.g., provide or assess)

existed between the direct and indirect factors. Initially, information about the asso-

ciations was transcribed and sorted by criteria type. The associations were classified

as provide, which used the words provide or a similar synonym, or used the word as-

sess, which used the words assess or a similar synonym. For example, if an evaluation

focused on understanding how providing transparency impacted workload via a sta-

tus, the researcher identified what direct factors were associated with workload from

Figure 2.2; in this case, workload impacts performance and trust. A “P” was assigned

under the status sub-columns corresponding to the direct performance and trust factor

columns for the workload row, which are identified in Table 2.1. A designer can use the

information from Table 2.1 to determine which indirect factors may be used to evaluate

design decisions. System reliability information is an example of a metric that can be

used to evaluate a status to promote transparency. Each criterion is defined, the asso-

ciated advantages for human-machine systems are identified, and how the criteria can

be leveraged to assess transparency at the three SAT levels is provided.

2.2.1.1 Status

Status incorporates the what aspect of the transparency definition by providing the state

of the human operator or system at a particular point in time. The current state’s sta-

tus is necessary in order to evaluate performance of the human operator, machine, and

human-machine system with respect to the human operator’s and system’s available
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capabilities [80]. Various types of indirect factor information, see Table 2.1, can be pro-

vided in a status to help determine whether changes to the strategy by the human op-

erator or system must be initiated to accomplish a task.

SAT Level 1 Operators working with teammates, humans, or system entities, tend to

lose awareness of environmental and system changes [132]. Loss of awareness is prob-

lematic and can result in undesired consequences; hence, providing state and action

[133] information can improve teamwork efficiency and reliability [98], as well as indi-

cate what information is missing, incomplete, or invalid [112]. Providing a status of the

human operator’s, system entities’, and system’s states can indicate where errors are

occurring, aiding in the development of control strategies to mitigate ongoing errors,

which can maintain an appropriate level of trust between the entities. Presenting status

changes can improve the human operator’s effectiveness, by alleviating the time and

effort devoted to integrating information and drawing conclusions about a situation,

which may be impeded by interruptions [134].

Information, such as tracking the task’s completion progress, is helpful for under-

standing progress in relation to goal achievement [133]. The timing of status messages

is crucial and requires consideration of the operator’s capabilities, system limitations,

the task, and the environment in which the human-machine system operates [112]. Pro-

viding too many messages can overload an operator and the frequency of messages can

result in overtrust or mistrust, all of which can lead to substandard performance.

SAT Level 2 SAT level 2 provides information related to the system’s reasoning pro-

cess or motivation, which are types of feedback and are discussed in Chapter 2.2.1.2.

Understanding a machine’s functional status can calibrate and maintain an appropriate
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level of human operator trust in the machine’s reliability and ability to support a task

[72]. Providing status changes can provide a deeper explanation of what those changes

were, as well as why and when they occurred [135].

SAT Level 3 Providing state projections can facilitate the human operator’s under-

standing regarding the current action consequences on the system’s future state [133].

The human-machine system can leverage the projections to develop new, or revise ex-

isting, actions and strategies in order to ensure task completion. Predictive displays

that show state characteristics, such as a robot’s projected position, can alleviate latency

effects, which limit a human operator’s ability to influence a system’s actions [136].

2.2.1.2 Feedback

A feedback mechanism, identified in Table 2.1, can provide explainability, via descrip-

tions, that justify or provide insights into actions, uncertainties, reliability of recommen-

dations, and supplementary information from the human operator or machine system

[81]. The why aspect of the transparency definition is addressed by providing explana-

tions, which is a form of feedback. Multimodal feedback incorporates various sensory

channels (e.g., visual, auditory, and tactile) in order to optimize communication with a

human operator and has been deemed useful in human-machine teams [36].

SAT Level 1 Accessibility to raw data, known as seeing through the system, can en-

able the human operator to feel in control [72] of a situation and assure system infor-

mation accuracy [112]. However, the human operator’s workload may continue to in-

crease with additional information, exceeding their capabilities and potentially limiting
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the system’s perceived usability and trust in it [64]. Lack of feedback, especially in cases

where the system has more control over a large number of tasks, compared to a human

operator, can decrease a human’s situation awareness [132]. Information presented in

formats that leverage human cognitive processes can positively influence trust [112].

Various studies assessing transparency, such as the system’s purpose and range of

applications [58], have resulted in improved trust due to better trust development [112],

decision-making, and team performance [130]. Operators had higher task performance

when effective explanations identified why the system behaved in a particular way

[125]. Explanations of why system errors may occur increases reliance [137] and im-

proves control allocation strategies between the human and machine [85], as well as

mitigates blaming the machine [73]. Suboptimal sensory quality due to environmental

conditions or the age of the information [138] can affect system reliability negatively.

Providing timely feedback regarding the machine’s awareness of environmental con-

ditions, constraints, and task-related limitations may help the human determine what

contributions to make in order to maintain task progress [110, 133].

The quantity of feedback provided to a human operator must accommodate human

capability limitations and available decision time [139]. Providing explicit and implicit

feedback, such as completion of tasks or interruptions, can support the human’s under-

standing of the system’s state [126]. Solely providing information to operators does not

guarantee accurate perception and comprehension. Offering corrective and develop-

mental feedback that highlights mistakes and provides suggestions for future actions

can improve system performance [140]. Understanding how the system responds in

different environments is necessary to provide corrective feedback to the operator [141].
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SAT Level 2 “Seeing into a system” explains how the system collects and uses in-

formation. Revealing the system’s rules and algorithms can improve human opera-

tor trust, if the human understands what is happening [58, 112]. Providing simplified

system process feedback [58] and displaying intermediate results from the algorithmic

process [112] can promote better human operator comprehension. Contextual infor-

mation, such as system settings or environmental conditions [112] that influence the

algorithm’s response, enabled better trust calibration, improved performance related to

time management [137], and enhanced understanding of system vulnerabilities [138].

Relevant feedback can help the human operator maintain control of the system, im-

prove situation awareness, and alleviate workload [81]. Perceptions of trustworthiness

can define reliability and lead to trust, perceived utility, and reliance; however, the per-

ceptions depend on an understanding of human-machine expectations and how those

interactions impact one another [110, 133]. Human operators use cost-benefit analy-

ses to determine their trust in a system [58]. When expected benefits are violated, hu-

man operators instinctually attempt to find possible justifications for inconsistencies

between the expected and actual outcomes [105, 142]. Explanations regarding the vio-

lation must contain causal information about how prior actions led to the current state,

in order to facilitate understanding, acceptance, and trust [120, 123]. The designer must

avoid introducing bias when suggesting evidence and provide an estimation of the sug-

gestion’s reliability [81] without causing cognitive tunneling.

SAT Level 3 Feedback regarding the system’s strengths and weaknesses can educate

human operators [123], which increases acceptance, understanding of information re-

liability, accuracy, and quality, as well as calibrates trust appropriately [81]. Tracking

decisions during task execution, and providing performance information, can facilitate
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the human-machine team’s understanding of what modifications to make in order to

improve task execution [112]. The information can update the human’s mental models

[133]. Feedback must be provided to both the human operator and machine, since trust

is expected to fluctuate as the history of interactions and system performance changes

[67]. Broadening feedback considers various “what if” scenarios based on numerous

combinations of human-machine interactions [92] and may help guide the human op-

erator and machine towards an optimal future desired outcome.

2.2.1.3 Planning Mechanism

Planning mechanisms encompass the allocation of resources and task assignments among

an organization’s members, such as the expectations of a human-machine team to ful-

fill a goal, identified in Table 2.1. The how transparency definition aspect is addressed

by the planning mechanism, due to the various strategies associated with plan devel-

opment and maintenance. Planning occurs at all mission stages and is necessary for

human-machine coordination in order to maximize desired outcomes [128].

SAT Level 1 The anticipatory planning stage begins by establishing the overarching

goal and purpose of the shared human-machine team [110]. Shared representations of

the team’s purpose and how each team member contributes to mission success are nec-

essary to set realistic expectations [92]. During the decision-making process, roles are

defined and acceptable behaviors and interaction expectations outlined, which alleviate

miscommunication or misunderstanding [110, 112]. Team member control coordination

can be identified only if the skills, potential strategies, and procedures are understood

for a desired task [84]. Shared mental models enable teams to coordinate actions and
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adapt their behavior to emerging demands via explicit or implicit coordination. A de-

crease in communication and coordination overhead result from shared mental models

[133], which is advantageous in limited communication situations.

The human-machine system performance will be dependent on the compliance of

each team member to adhere to the proposed plans [58]. Underlying assumptions in

human-robot collaboration scenarios assume that 1) all actions executed by a human

are relevant to a mission goal and that the robot understands the intention of the action,

and 2) that the human will always accept assistance from the robot [143]. Expectations

impact how human operators calibrate and maintain trust, which are frequently reeval-

uated due to changing circumstances [58]. The analytic process evaluates information

using the system’s prior knowledge and experience, while the analogical process devel-

ops trust based on rules and procedures. However, the core influence of trust is based

on the affective aspect, which claims that people make judgments on the impression

of what they feel [58]. The subjective perspective; therefore, hinders the validity of

the traditional assumptions, challenging human-machine system designers to consider

subjective differences and preferences during planning.

SAT Level 2 During mission execution the human-machine system undergoes a pro-

cess that transforms gathered information into an understanding of the implications of

the information received, and uses the information to accomplish a task [144]. The team

members need to maintain shared awareness and perceive, comprehend, and act upon

the information to ensure successful performance [145]. Deviations from shared aware-

ness require the team to re-evaluate whether the initial plan must be modified to ensure

mission success. The coordination required to ensure smooth transitions during in-

processing planning will be impaired if there is a misunderstanding of the team mem-



45

bers’ roles, functional capabilities, and limitations [146]. Providing a mechanism that

enables the human-machine team to modify pre-existing plans and maintain shared

awareness in order to adapt to emergent behaviors is necessary for mission success.

SAT Level 3 Ensuring successful execution of plans requires the human operator to

understand the system’s behavior, operational boundaries, and limitations [83]. Reac-

tive planning can be flexible to unexpected behaviors that may arise during a task [128]

and can support successful plan execution. Information regarding the team’s interac-

tions, such as deviations from previous plans and adapted responses [147], can aid su-

pervisors in the human organization’s leadership when re-tasking team members’ roles

and responsibilities. Effective communication strategies will need to consider plan ex-

plicability, how human operators interpret plans, and offer proposed courses of action

[120]. The likelihood of success or failure, assessed from the human-machine perfor-

mance perspective, must demonstrate how alternative plans affect mission outcomes.

Comparing alternatives, using metrics, such as cost-benefit analysis, ensure selection of

the best future course of action [120, 146].

2.2.1.4 Engagement Prompts

Out-of-the-loop issues, in Table 2.1, such as a lack of context, arise when a human op-

erator becomes isolated from contributing to the human-machine system, and can be

mitigated by engagement prompts. Engagement prompts are cues, alerts, or warnings

that encourage the human operator’s involvement in an attempt to bring the operator

back into-the-loop. Engagement prompts encompass the three aspects of transparency

(what, why, and how) by indicating to the human operator why they became disengaged,
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what action must be taken to continue or return to the task completion, and identify dif-

ferent strategies that can be implemented to fulfill the task.

SAT Level 1 The updated SAT model incorporates bidirectional transparency to de-

scribe the transparency needed to support human-machine collaboration [63], which

addresses the knowledge structures to facilitate the interactions between the human

operator and system. No ideal interaction exists, but there is a range of possibilities

that emerge from varying contexts and resources, including the system’s opacity (in-

verse of transparency) [148]. Suitable information regarding the state of operation can

change with transparency level [141]. Different questions regarding the environment

will emerge as the state’s representation changes. If a human operator becomes disen-

gaged, even temporarily, reintegration into the loop will be challenging. Implementing

system engagement prompts that remind the human operator to engage with the ma-

chine can improve the effectiveness of the interactions and calibrate trust appropriately.

The timing of the engagement prompts is also critical, since the human-machine sys-

tem’s state can vary drastically, dependent on when a prompt is issued [34].

SAT Level 2 Proactive monitoring by the system can alleviate near misses when a hu-

man operator is disengaged or interrupted by other tasks or operators. The system can

use feedback cues, such as lack of commands issued or psychophysiological responses,

to determine if the human is aware of the system’s state and what action to perform

[149]. Depending on the human operator’s state, the engagement prompt may be al-

tered to assure an appropriate reaction. Alarms increase the likelihood of non-reliance

[109], which affects perceived reliability. If the machine senses that a human is fatigued,

issuing an alert may provide the appropriate salience needed for engagement; however,
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if the human is frustrated, a prompt offering additional information may be useful [69].

SAT Level 3 A system can monitor task execution and alert human operators when

failures have been detected or when a failure is likely to occur [133]. Different alerts

can be used to notify the human operator of the severity of the failures. Significant

system reliability changes, that may impact goal completion dramatically [135], such as

low robot battery levels or malfunctions, as well as temporary actions needed to ensure

goal success, may be communicated to the human operator by providing future pro-

jections. Designers must consider the repercussions of using different types of engage-

ment prompts in order to avoid complacent behavior or alarm fatigue, which occurs

when too many alerts are provided to the human operator causing them to ignore the

alerts altogether. Past performance history can indicate which prompt types were more

effective under specific contexts and identify optimal prompt engagement timing.

2.2.2 Using Design Principles

Design principles provide human-machine system designers a set of guidelines, de-

rived from knowledge and experience of various systems, that can be used during

the design process. Typical design processes begin at the problem development stage

where operator needs and the system requirements are identified. Conceptual, prelim-

inary, and detailed designs, also referred to as prototypes, are created to test whether

the requirements and needs have been met. Designers will need to create multiple pro-

totypes and evaluate them based on the needs and requirements. Integrating human

operators during the prototyping phase is advantageous to capture interaction affects.

Once a finalized design is achieved that meets the desired outcomes, the production
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phase begins. This dissertation considered principles from the human factors and cog-

nitive engineering domains that relate to displays and interfaces, such as perceptual,

mental model, attention, and memory principles [150]. Each principle is defined and

how the principle leverages transparency factors are provided at the three SAT levels.

2.2.2.1 Perceptual Principles

A human operator receives information via their sensory system, processes the infor-

mation using cognition, and performs an action through their motor system, which

produces a response. Perception is the ability to acquire information, from an entity

or the environment, via different sensory modalities, such as visual, auditory, tactile,

smell, and taste [151]. The process of integrating the individual stimuli together to for-

mulate meaning is referred to as perceptual organization [1]. Perception is determined

using bottom-up processes driven by the nature of the stimulation, as well as top-down

processes, such as context and expectations. Human operators interacting with visual

displays typically use vision to obtain information from a display, listen for informa-

tion coming from the system, and influencing the system via a mechanism, such as a

computer mouse; therefore, the focus of this dissertation was on these modalities.

SAT Level 1 System displays must be visible, legible, or audible [150] if an operator

is expected to interact and understand the system’s current status, actions, and plans.

Visibility can be achieved by designing the system to be detectable under all viewing

conditions [1]. The brightness, perceived intensity of a light source, and legibility of

the display, such as the contrast of text or icons on the visualization background, as

well as the illumination from the working environment, which may be variable, must
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be designed to ensure information is visually salient to the human operator. Visual per-

ception is impacted by various factors including, color, depth, and motion perception,

as well as pattern recognition. Using color as a strategy to convey intent of the system to

the human operator, such as red to denote danger, is an effective design tool unless the

human operator is color blind. Displaying information redundantly via other strate-

gies can help mitigate situations where human operators are incapable of perceiving

all stimuli. Designers must avoid absolute judgements, which is a human’s capability

to judge the value of a variable [150]. Humans can only discern up to seven levels of

coded variables accurately. Gestalt principles of object perception can aid designers to

create stable, consistent, and simple interpretation of visual interfaces, such as orienting

similar objects or information near one another, or using larger font sizes [152].

SAT Level 2 A designer of human-machine systems can support human operator

comprehension of the system’s reasoning process by using a top-down process. Hu-

mans perceive and interpret information in accordance with their expectations [150],

which are formulated from previous experiences, biases, and heuristics [153]. For ex-

ample, aligning information to read from left to right and top to bottom [154] may be an

effective design strategy that uses top-down processes, if the human operator is from

the United States, since that is the common text formatting in that country. Presenting

information redundantly through alternative forms, such as voice and print or color

and shape [150] increases the probability that the human operator comprehends the

system’s reasoning process and corresponding future actions.

SAT Level 3 Studies that have provided uncertainty information to human operators

in various types of human-machine systems have found conflicting results. The ad-
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dition of uncertainty has had minimal positive influence on performance or SA [86],

and sometimes caused trust to decrease [87]. Misinterpretation of the uncertainty in-

formation may be a reason why this behavior has been observed. Further evaluations

are needed in order to determine how presenting uncertainty information to partici-

pants impacts desired metrics. Describing information in a familiar way to the human

operator and similar to real world conventions is one design strategy that can be im-

plemented to help mitigate misunderstanding and improve the human operator’s com-

prehension of current actions on future system states.

2.2.2.2 Mental Model Principles

Mental models are structures that reflect a human operator’s or system’s understand-

ing of artifacts or concepts, created from their experiences interacting with those ob-

jects or notions [155]. Mental models are continuously used to help human operators

or systems during learning, problem solving, and rationalizing behavior [156]. Mental

models are dynamic and develop over time or can be carefully formed through training

[157]. A human-machine system can develop shared mental models where human op-

erators and the system describe the roles and responsibilities of the teammates, explain

particular behavior and coordinate their actions, and predict adaptive actions that tran-

spire from emergent behaviors [110, 158]. Accurate shared mental models can improve

human-machine interactions and result in better performance.

SAT Level 1 Elements displayed on a visualization, via an icon or picture, to a human

operator must be representative of that particular element and behave in a similar man-

ner [150] in order to ensure consistency between the human and system. Design prac-
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tices that implement measures to improve consistency can help convey the system’s

intent and mitigate errors caused by human operators due to failures in judgement

(mistakes) or failures to execute necessary actions (slips) [159]. Dials, levers, or buttons

within a visualization must consider the principle of moving parts, in which dynamic

movement must be consistent with the expectations of human operators’ mental mod-

els [160]. A dial rotated to the right and a lever pushed up are expected to increment

the associated value proportionally.

SAT Level 2 Providing information to the human operator regarding how a system

processes information and acts upon that information will restructure their mental model,

which in turn will provide better comprehension of the system. Designers that do

not provide sufficient information to human operators hinders their ability to evalu-

ate whether the system is performing appropriately [161] and potentially reduces the

number of interactions between the human and system.

SAT Level 3 Mental models are often incomplete, can be easily confused, and are

structured based on inaccurate information or inappropriate analogies [162]. Poorly

structured mental models can create a lack of confidence in the human operator’s abil-

ity to identify or describe a problem that is not well understood [163]. The designer can

help restructure appropriate mental models by providing feedback about the system’s

limitations and uncertainties. Useful feedback will aid the human operator’s under-

standing of what current actions may do to influence future system state projections.
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2.2.2.3 Principles Based on Attention

Attention represents the human operator’s ability to concentrate on and process infor-

mation from their sensory modalities, at a particular point in time, for a range of ele-

ments within an environment [163]. Various types of attention exist including: selective,

which directs concentration to particular areas of an environment; focused, narrows the

field of concentration to a small size in order to avoid distractions; divided, widens the

field of concentration to accommodate multiple areas of interest; and vigilance, which

sustains attention on a particular area of interest for a long time duration [157]. A hu-

man operator’s attentional ability is influenced by their level of arousal during a task.

The Yerkes-Dodson law suggests that too little or too much arousal will produce poor

performance [164]. High arousal may cause perceptual narrowing, which leads to nar-

rowing of attention, a keyhole effect example [165]. Human operators experiencing the

keyhole effect are described as looking through a soda straw at the environment, which

causes difficulties with perception, comprehension, and projection.

SAT Level 1 The principle of conspicuity refers to how well an element attracts at-

tention [1]. Designers can implement various strategies to increase conspicuity, such as

placing an element in a location that receives a high focus of attention, or increasing the

element’s salience to draw attention to a particular location. Designers must be mind-

ful of how much salience is introduced to the human operator and how frequently.

Increased exposure of saliency objects may reduce the significance of the associated

message being conveyed. Interface, or interaction components, that must be mentally

integrated can be placed closer to one another [150] or grouped together [154] in order

to expedite processing and mitigate an undesired division of attention.
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SAT Level 2 The quality of information provided regarding the system’s reasoning

process is more beneficial to human operators than the quantity of information. Qual-

ity is discerned not only by what the information is, but also by how easy it is to access.

Designers can minimize information access cost, which is the time it takes the human

operator to find the information they want, by placing more important things at the

center of the human operator’s field of view [150] or emphasizing important informa-

tion by increasing saliency, such as the use of larger font size [1]. The best modality to

convey information to the human operator is dependent on various aspects including,

the information complexity, time to deliver the message, whether immediate action is

required or not, and the environmental work conditions [1]. Auditory messages are

simple, short, require immediate action, and are useful in working environments that

have poor visibility as well as tasks that require the human operator to move to differ-

ent locations within the environment. Conversely, messages that are long and complex,

do not require immediate action, and can be implemented in noisy environments where

the human operator remains in one position, benefit from a visual modality.

SAT Level 3 The intelligibility principle seeks to provide clarity regarding the infor-

mation being presented [1]. Designing displays that are clear and concise benefit hu-

man operators, especially in situations that are time critical or have critical safety issues.

Designers can mitigate erroneous behavior that transpired from accidental misinter-

pretation of information by building elements of forgiveness into the interface. Undo

or cancel buttons are examples of good forgiveness implementations; however, these

resources may not always be feasible or practical. Systems that produce emergent be-

haviors, such as collectives, have a low probability of returning to an original state, even

when forgiveness elements are incorporated into the design.
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2.2.2.4 Memory Principles

Memory is the storage of information and is used to recall knowledge that allows hu-

man operators to decide what actions to take [163]. Short-term memory, which encom-

passes working memory, is a temporary and attention demanding form of memory that

examines, evaluates, and transforms information [157]. Three core components consti-

tute working memory: visuo-spatial sketch pad, central executive, and the phonological

loop [166]. The primary role of the visuo-spatial sketch pad is to hold and manipulate

representations, while the phonological loop is concerned with auditory representa-

tions. The central executive allocates resources to the sketch pad or the loop and directs

the flow of information. Long term memory stores information for later recall.

SAT Level 1 Replacing memory with visual information knowledge on a display can

help alleviate expended effort on behalf of the human operator when interacting with

the system [150]. Using standardized words, symbols, and providing checklists can re-

quire less memory processing. The designer must consider the quantity of information,

even if it is presented more concisely, so as to not overburden the human operator.

SAT Level 2 Designing interfaces to use consistent representations, such as color cod-

ing and symbology, to represent particular information can help mitigate encoding the

information into long term memory inaccurately [150]. Repeated exposures will re-

structure the human operator’s mental model by overriding the incorrect encoding as

well as move working memory into long term memory. Consistent feedback to the hu-

man operator will aid in comprehension of the feedback and expedite necessary actions.
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SAT Level 3 Human operators are ineffective at predicting future events, because the

memory process required to compute every possible outcome is expansive and time

consuming. The current system state is considered initially, and simulations of possible

future states are generated in order to find and compare instances that appear realistic

and likely to occur [150]. Designers can implement systems to incorporate predictive

aiding, which mitigates process time, potentially offers more accurate suggestions or

predictions, as well as provides projections that are not susceptible to operator bias.

2.2.3 Training

Training is used to prepare human operators for various scenarios that may arise when

interacting with known or unknown systems to handle abnormalities, operating under

variable and off-nominal conditions, as well as becoming acquainted with new features

in the system. Trainers teach human operators how to identify, analyze, and execute

appropriate actions. Training is intended to support human operators, help prevent

errors, simplify tasks, and promote active learning by providing feedback and imposing

practice. Human organizations concern themselves with providing the best training

program, delivered in the shortest amount of time for the least amount of money, that

leads to the longest retention of knowledge and skill in their human operators [150].

2.2.3.1 Support and Error Prevention

Training can help reduce intrinsic load, which describes the mental workload imposed

on human operators when learning how to use and interact with a system [157]. Train-

ers initially support and guide trainees through a process where the human operator
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learns about the system step-by-step to build confidence. The trainer will gradually

withdraw from the process in order to encourage learning. Human operators learn

how to recognize issues, identify when those issues occur, and more importantly learn

how to mitigate errors or diffuse situations quickly in order to maintain safety.

SAT Level 1 Training can be used to evaluate the trustworthiness of a system based on

transparency design aspects [110]; however, the results will be impacted by the original

level of trust the human operator has in the system. Initial negative perceptions will

impact the ability of the training to effectively instruct human operators to develop the

necessary skills when interacting with the system [84]. Consistent training can calibrate

appropriate trust levels, reduce initial biases, provide knowledge of system capabilities,

and help develop a risk assessment of system behavior [84]. The results of training will

enable human operators to perceive erroneous state information or inconsistent behav-

iors from the accumulated knowledge gained with repeated exposures to the system.

SAT Level 2 Different training strategies must be considered when working with de-

cision support systems that provide informative feedback to human operators. The

quality and quantity of help and guidance can impact a human operator’s trust in the

system [112]. Training the operator to develop appropriate mental models of the sys-

tem’s reasoning process will assure adequate trust and mitigate misconceptions asso-

ciated with the system. Additionally, training can mitigate complacent behavior by in-

structing the human operator when interactions are needed. Training is a supplemental

strategy that must not be used to compensate for poor system design [81].
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SAT Level 3 Four error management principles that apply to training situations with

complex systems are: 1) encouraging trainees to develop their own mental models of

risk assessment and aversion, instead of inflicting one approach, 2) allowing the hu-

man operator to make errors in order to learn how to recover from them, 3) introducing

heuristics that change the attitudes of trainees, and 4) offering training at various exper-

tise levels [167]. Training will affirm the limitations and uncertainties associated with

the system. Human operators can practice implementing various strategies under vari-

able conditions in order to determine how the limitations and uncertainties of the sys-

tem influence future behavior. Providing projections of the human operator’s current

actions will help identify which strategies are more applicable for specific scenarios.

2.2.3.2 Task Simplification

Repeated and consistent practice with systems will help simplify complex tasks and

develop automatic responses. The trainer can help establish appropriate methods and

prioritize steps needed to mitigate issues that arise. Supplemental documentation, such

as checklists, can simplify the task for the human operators. Dependency on docu-

mentation for more simple tasks will decrease with increased system exposure, as the

knowledge gained is stored in long term memory. Jobs that require shift work may ben-

efit from training human operators what techniques work best for smooth transitions

that cause little interruption to the system state.

SAT Level 1 Training can be implemented to calibrate appropriate levels of expectancy

[167]. Initially, the trainer can force low system complexity and slowly introduce more

complex behavior as the human operator becomes more acquainted with the system
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and gains an understanding of how the system works. The human operator, through

practice with the system, will be able to determine what pertinent information to look

for and where to look for that particular information in order to fulfill task objectives.

Human-machine interactions will be quicker and produce more effective outputs.

SAT Level 2 Providing feedback to the human operator improves trust calibration

and understanding of the system’s reasoning process. The quantity of information pro-

duced by the system typically increases with system complexity. Designers will be

challenged to determine how much information can be supplied to the human operator

before feeling overloaded and what information is most crucial. Training can offset the

necessity of providing some information, such as how to use an interface, and educate

the human operator about the reasoning process before completing real world tasks.

The human operator will have a better mental model of what the system is doing, why

it is behaving in a particular way, and the reliability of the actions it is taking [110].

SAT Level 3 Repeated interactions with a system, via training, will help human oper-

ators identify and understand what potential future projections may emerge from cur-

rent actions. Training will help human operators determine when to anticipate looking

for particular information in order to fulfill task objectives. The human operator can

create short cut strategies that yield particular system behavior, such as making deci-

sions quicker or decreasing the number of interactions needed to fulfill an objective.

Future projections of the system state and the associated actions required to attain that

state can be provided to the human operator. Repeated exposures will increase the effi-

ciency of actions taken by the human-machine system, since the complexity of the task

will not appear as complex before training occurred.
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2.2.3.3 Active Learning

Practice with a system under variable conditions and tasks can supplement human op-

erators’ exposure to infrequent behavior and promote learning, which may have been

difficult to accomplish without training [81]. Reoccurring training may help maintain

skills necessary to avoid misses or false alarms, as is defined in Signal Detection The-

ory. Trainers can provide feedback to the human operators regarding common mistakes

and provide strategies to mitigate undesired outcomes. Overlearning, beyond the sole

intention of mitigating errors, has been shown to improve speed of performance and

decrease the rate of forgetting [150]. Developing a training program for highly complex

situations is difficult and may require implementing other methods, such as instruc-

tional scaffolding, which provides support to foster learning from scenarios [110].

SAT Level 1 Automaticity, the ability to execute tasks that become an automatic re-

sponse or habit, is the result of learning, repetition, and practice [167]. Training and

protocols can enable attention focus [168], aiding in the development of automaticity;

however, designers must consider how much automaticity is appropriate, particularly

when human-machine systems are executing multiple tasks. Time-sharing skills that

teach human operators different resource-allocation strategies are essential if attention

must be flexible to various tasks [167]. Designers must consider developing training

programs that incorporate the speed and efficiency of automaticity to expedite human

operator actions, as well as the attentional flexibility of time-sharing skills, in order for

the human operator to not miss important information relative to their tasks. Practice

learning both skills with the system will aid human operators.
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SAT Level 2 Bjork has described the concept of effort as the human operator’s per-

ception of their own memory capabilities [169], a phenomenon that has considerable

implications for learning and training. Human operators often believe that they have

learned information better than they have. Trainers must monitor the human operator’s

actions in order to correct erroneous behaviors and guide the human operator towards

mission success. Feedback can be provided either during a practice scenario or at the

completion of the scenario. Humans cannot recall specific information in great detail

over long durations of time; therefore, the trainer must consider how long a practice

scenario takes in order to determine when to provide necessary feedback.

SAT Level 3 Error-prevention learning techniques that guide human operators step

by step may lead to effective performance and low amounts of effort, because the trainer

is instructing the human operators on what to do [167]; however, new types of errors are

likely to occur that were not anticipated previously [81]. Training human operators to

think strategically through problems via instructional scaffolding, although more time

consuming, may be more advantageous, because better explanations can be provided

about complex relationships or system limitations and uncertainties [110]. The human

operator can develop strategies to understand implications of uncommon future pre-

dictions provided by the system and may adapt appropriate actions by using robust

strategies. Working with human-machine systems that produce emergent behavior will

require human operators to utilize a skill set that can be used across various conditions.

Designing human-machine systems for transparency requires the designer to pro-

vide specific system features that are beneficial to the human-machine team, implemen-

tation of specific design guidelines, and training the human-machine system under

variable conditions. Transparency is an essential principle to ensure that interactions
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between the human operator, machine, and environment produce desired outcomes.

Transparency will impact the effectiveness of the design. Understanding how the de-

sign methods can mitigate challenges in human-machine systems can inform design

choices for human-collective systems.
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Chapter 3: Experimental Analysis

Two human-collective systems were evaluated on the basis of the direct and indirect

transparency factors. The four criteria from Chapter 2.2 were designed into the visual-

izations in order to provide operators information to complete the desired task. A user

evaluation of an abstract human-collective interface system was conducted by Cody et

al.’s [57], discussed in Chapter 2.0.3.2, while this dissertation conducted a second user

evaluation of the same underlying system, but using an interface that visualized each

member of a collective. The results from both user evaluations were analyzed as part

of the dissertation in order to identify which metrics were most useful in achieving

transparency. The analyses contributed towards the effort of developing transparency

metrics for analyzing and design guidelines for future human-collective systems.

3.1 Human-Collective Task

The human-collective task involved a single human operator who supervised and as-

sisted four robotic collectives that performed a sequential best-of-n decision-making

task, where the human-collective team chose the best option from a finite set of n op-

tions [8]. The human-collective team performed two sequential decisions per collec-

tive (i.e., moved the collective to a new hub site two consecutive times). The decision-

making task entailed the identification and selection of the highest valued target within

a constrained 500 m range of the current hub, the collective hub moved to the selected

target, and initiated the second target selection decision, which followed the same iden-
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tification, selection, and move procedure. The consensus decision-making task required

a quorum detection mechanism to estimate when the highest valued target was iden-

tified by 30% of the collective [29]. Each collective of 200 simulated Unmanned Aerial

Vehicles searched an urban area of approximately 2 km2.

The four collective hubs were visible at the start of each trial. Targets became vis-

ible as each was discovered by a collective’s entities. The target’s value was assessed

by the collectives’ entities, who returned to their respective hub to report the target

location and value. The collectives were only allowed to discover and occupy targets

within their search range, but some targets were within proximity of multiple hubs. A

collective’s designated search area changed after it moved to a new target to establish

the new hub site. The operator was instructed to prevent multiple collectives merging

by not permitting their respective hubs to move to the same target. When a collective

moved to a target, the hub moved to the target location, and the target was no longer

visible to the operator or available to other collectives. The collective that moved its

hub to a target’s location first, when two collectives were investigating the same target,

moved to the target location, while the second collective returned to its previous hub

location. Both collectives made a decision when a merge occurred, even though only

one collective moved its hub to the respective target location.

3.2 Interface Environment

The general interface design requirements, related to autonomy, control, and trans-

parency, are: 1) enable the operator to estimate the collectives’ decision-making process,

2) identify appropriate control mechanisms to influence the decision-making process,

and 3) implement the desired control mechanisms [29]. Two models were used. A se-
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quential best-of-n decision-making model (M2) adapted an existing model (M1), which

based decisions on the target’s quality (i.e., value) [170]. Information exchanges be-

tween a collective’s entities was restricted inside the hub, to mimic honeybees. Episodic

queuing cleared messages when the individual collective entities transitioned to differ-

ent states, which resulted in more successful and faster decision completion. Interaction

delay and interaction frequency were added as bias reduction methods in order to con-

sider a target’s distance from the collective hub and increase interactions among the

collectives’ entities regarding possible hub site locations. Interaction delay improved

the success of choosing the ground truth best targets (i.e., highest value target), and

interaction frequency improved decision time. The baseline model (M3) allowed the

individual collective entities to search and investigate potential targets, but was unable

to build consensus. The operator was required to influence the consensus-building ele-

ment and select that final target, based on the consensus. Simulations were ran without

an operator for the M2 model in order to understand the operator’s influence on collec-

tive behavior, referred to as M2SIM. The M3 model required operator influence in order

to perform the decision-making task; thus, simulation only analysis was not conducted.

The interface control mechanisms allowed the operator to alter the collectives’ in-

ternal states, including their levels of autonomy, throughout the sequential best-of-n

selection process. The collective’s entities were in one of four states. Uncommitted enti-

ties explored the environment searching for targets, and were recruited by other entities

while inside of the collective’s hub. Collective entities that favored a target reassessed the

target’s value periodically, and attempted to recruit other entities within the collective’s

hub to investigate the specified target. Collective entities were committed to a partic-

ular target once a quorum of support was detected, or after interacting with another

committed entity. Executing collective entities moved from the collective’s current hub
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location to the selected target’s location. A collective operated at a high level of auton-

omy by executing actions associated with potential targets independently. The operator

was able to influence the collective’s actions in order to aid better decision-making, ef-

fectively lowering the level of autonomy. Communication from the operator with the

collective’s entities occurred inside the hub in order to simulate limited real-world com-

munication capabilities. The control mechanisms, for influencing the collective, were

communicated to the specified hub. Two visualizations were designed and evaluated

in order to determine which visualization provided better transparency by facilitating

the operator’s perception of the collectives’ states, comprehension of the collectives’

decision-making processes, and means to influence future collectives’ actions.

3.2.1 Individual Agents Interface

The Individual Agents (IA) interface, see Figure 3.1, exemplifies a traditional collective

visualization by displaying the location of all the individual collective entities [171].

The interface was divided into three primary areas: 1) the central map, 2) the collective

request area, and 3) the monitor area. The map, located at the center of the interface

visualizes the respective hubs, their individual entities, discovered targets, and other

associated information. Both the collectives and targets were rectangular boxes with

distinguishing identifiers located at the center of the icon. The collectives had Roman

numeral identifiers (I-IV), while the targets used integers (0-15). Discovered targets

initially were white and transitioned to a green color when at least two individual col-

lective entities evaluated the target. The highest valued targets were a bright opaque

green (e.g., Target 0 in Figure 3.1), while lower valued targets had a more translucent

green color (e.g., Target 9 in Figure 3.1). Targets that were within the collective’s 500
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m search range had different colored outlines, depending on the collective’s state: ex-

plored targets that were not currently favored had yellow outlines, explored targets

that were favored had white outlines (e.g., Target 12 in Figure 3.1), and targets that

were abandoned have red outlines (e.g., Target 13 in Figure 3.1).

Figure 3.1: The Individual Agents (IA) interface two and half minutes into a trail, show-
ing four collectives (rectangles with Roman numerals), and the sixteen discovered tar-
gets (rectangles with integers). The target’s value is represented by the green color,
where higher values were brighter. The legend in the lower right corner identifies the
individual collective entity state information and target range information.

The individual collective entities began each trial by exploring the environment in

an uncommitted state, which transitioned to favoring as targets were assessed and sup-

ported. The individual collective entities committed to a target once 30% of the col-

lective (60 individual entities) favored a particular target. The collective executed a

move to the selected target’s location once 50% of the collective (100 entities) favored

the target. The individual collective entities’ state information was conveyed via indi-
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vidual collective entity color coding: uncommitted (yellow), favoring (green), commit-

ted (blue), and executing (blue). A legend of the collective entities’ and target border

colors was provided in the lower right-hand corner, see Figure 3.1. The number of in-

dividual collective entities in a particular state, or supporting a target was provided via

the collective hub and target information pop-up windows, which provided detailed

information, represented as gray rectangular boxes, displayed directly on the map in

Figure 3.1. The information pop-up windows, when accessed, appeared in a particular

location relative to the respective collective’s hub or target. The operator was able to

move the information windows by dragging the pop-up window to a desired location.

The operator had the ability to influence an individual collectives’ current state via

the collective request area, located on the lower left-hand side of Figure 3.1. The investi-

gate command permitted increasing a collective’s support for an operator specific target.

Ten uncommitted entities (5% of the collective population) transitioned to the favoring

state after receiving and acknowledging the investigate command. Additional support

for the same target was achieved by reissuing the investigate command repeatedly. The

abandon command reduced a collective’s support for a specific target by transitioning

favoring individual entities to the uncommitted state. The abandon command only

needed to be issued once in order for the collective to ignore a specified target. A collec-

tive’s entities stopped exploring alternative targets and moved to the operator selected

target when the decide command was issued, which was a valid request when at least

30% of the collective supported the operator specified target. An operator using the IA

interface was no longer able to further influence a collective once the decide command

was issued. The process to issue a command first required the selection of the desired

command from the drop down menu, then selection of the desired collective and tar-

get, and the request was completed by clicking on the commit button. The reset button,
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cleared entered information, allowing the operator to select new request information.

The highlight agents selection box identified which individual entities belonged to a

particular collective. When the highlight agents box was selected, the specific individ-

ual collective entities associated with a hub were highlighted with a white border to

distinguish them from the other entities. The highlight was deactivated by deselecting

the highlight agents selection box, which removed the check mark.

The collective assignments area logged the operator’s issued commands, shown in

the upper right-hand corner of the monitor area in Figure 3.1. The log displayed what

commands were issued with respect to particular collectives and targets (e.g., Collective

I: Abandon Target 3). The green and red circles next to each command signified whether

the command was completed (red) or currently active (green). An investigate command

initially had a green circle and transitioned to red once ten individual entities received

and acknowledged the investigate command for a particular target. Issued abandon

commands for a particular collective and target remained active (constant green circle).

Once a collective reached a decision, all prior commands associated with that particular

collective were removed from the collective assignments log. The only command the

operator was able to cancel was the abandon command, which required selecting the

desired abandon command text line, in Figure 3.1, the “Collective I: Abandon Target 3”,

and then selecting the cancel assignment button.

System messages indicated the operator and collectives’ actions. The illegal message

was displayed when an operator requested an invalid command, and explained why

the requested action was not viable. Three situations resulted in illegal messages. The

first arose when the operator attempted to issue an investigate command for targets that

were outside of the collective’s search region. The second situation occurred when the

operator attempted to abandon newly discovered targets that did not have an assigned
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value (white targets). The last situation arose when the operator attempted to issue

decide commands when less than 30% of the collective supported a target.

3.2.2 Collective Interface

The Collective interface [29], shown in Figure 3.2, provides an abstract visualization

that does not present individual collectives’ entities. The Collective interface was di-

vided into the same three primary areas as the IA interface: 1) the central map, 2) the

collective request area, and 3) the monitor area. The operator commands were and func-

Figure 3.2: The Collective interface mid-way through a trail scenario, showing the cur-
rent locations of the four collectives (rectangles with Roman numerals) and the locations
of the discovered targets (green and blue squares with integer identifiers). The top half
of each target indicates the target’s relative value (green) and the bottom half indicates
the support of the highest supporting collective (blue). The legend in the upper left
hand corner identifies the target range information.
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tioned the same as those in the IA interface. The collectives were represented as gray

and white rectangles with four quadrants and Roman numeral identifiers located at the

top center of the icon. The collective state information was conveyed via the collective

hub icon’s quadrants, color coding, and information pop-up windows. The collective

icon’s contained four state quadrants (uncommitted (U), feedback (F), committed (C),

and executing (X)), which represented the number of individual entities in each state,

where a brighter white quadrant equated to larger numbers of individual collective en-

tities. The square target icons had integer identifiers positioned on the upper right hand

corner. Target icons contained two sections: 1) the top-half green section represented

the target’s value, where the brighter and more opaque the green, the higher the value

(e.g., Target 8 in Figure 3.2), and 2) the bottom-half blue section indicated the number

of individual entities favoring a particular target, where the brighter and more opaque

the blue, the higher the number of collective entities (e.g., Target 12 in Figure 3.2).

The collective interface operated similarly to the IA interface with some distinc-

tions. A target was outlined in blue, demonstrated by Target 0 in Figure 3.2, when the

collective’s support exceeded 30%. The target transitioned to a green outline, and the

collective was outlined in green when the collective began executing a move to the tar-

get’s location. The collective’s outline moved from the hub to the target’s location to

indicate the hub’s transition to the selected target. Once the collective’s outline reached

the selected target location the hub appeared at that location. The interface’s legend

appeared in the upper left corner, see Figure 3.2.
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3.3 IA and Collective User Evaluations Experimental Design

The experimental design for the two single operator-collective evaluations are discussed.

The associated independent variables, the experimental procedure, and the IA and Col-

lective evaluation participants are described in detail.

3.3.1 Independent Variables

The independent variables for the single operator-collective evaluations were the within

model variable (M1, M2, and M3) and the trial difficulty (overall, easy, and hard). The IA

evaluation excluded the M1 model, because the assessment was interested understand-

ing the differences between a more advanced best-of-n model (M2) versus a baseline

model (M3). Trials that had a larger number of high valued targets in closer proximity

to a collective’s hub were deemed easy, while hard trials placed high valued targets fur-

ther away from the collective’s hub. The independent variables associated with each

evaluation are identified in Table 3.1.

Table 3.1: Independent variables associated with single operator-collective evaluations.

Independent Variable IA Evaluation Collective Evaluation
Model M2, M3 M1, M2, M3

Decision Difficulty All All

3.3.2 Experimental Procedure

The experimental procedure for both user evaluations required participants to complete

a demographic questionnaire (Appendix A), and a Mental Rotations test [172]. The IA

participants also completed a Working Memory Capacity assessment. Upon comple-
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tion of the demographic data collection, participants received training and practiced

using their interface. Practice sessions occurred prior to each trial in order to ensure

familiarity with the underlying models. The M2 model trial was always completed first

in the IA evaluation, in order to alleviate any learning effects from using the M3 model.

The collective evaluation randomized the order of the M1 and M2 models, which were

always presented before the M3 model.

The participants were instructed that the objective was to aid each collective in se-

lecting and moving to the highest valued target two sequential times. A trial began

once the practice session was completed. Each trial was divided into two components

(one easy and one hard) of approximately ten minutes each. Splitting each trial into two

components allowed the environment to reset with 16 new (not initially visible) targets.

The easy trial contained higher valued targets close to the hub, while the hard trial

placed high valued targets further away. The easy and hard trial orderings were ran-

domly assigned, and counterbalanced across the participants. The situational aware-

ness (SA) probe questions [29] (Appendix B), were intended to serve as a secondary

task and were asked beginning at 50 seconds into the trial and repeated at one-minute

increments. Six SA probe questions were asked during each trial component, resulting

in twelve total SA probe questions per trial. The trial was terminated once the team

completed eight decisions, two per collective, or once six decisions were made, if the

trial length exceeded the ten-minute limit. Decision times were not limited. A post-trial

questionnaire (Appendix C) was completed after each trial and the post-experiment

questionnaire (Appendix D) was completed before the evaluation termination.
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3.3.3 Participants

Prior to enrollment in the evaluation, potential participants were screened for color

blindness. Individuals who self-identified as color blind were excluded from the eval-

uations. The participants from both evaluations who were successfully enrolled com-

pleted a demographic questionnaire, which collected information regarding age, gen-

der, education level, weekly hours on a desktop or laptop (0, less than 3, 3-8, and more than

8), and their video game proficiency from little to no proficiency (1) to high proficiency (7).

The Mental Rotation Assessment [172] required participants to judge three-dimensional

object orientation to assess spatial reasoning within a scoring range of 0 (low) to 24

(high). The mode is reported in parenthesis for questions that required selection to a

group. The additional Working Memory Capacity assessment, which was only completed

by participants from the IA user evaluation, evaluated the participant’s performance of

higher-order cognitive tasks [173]. A reading span test required participants to deter-

mine whether a sentence was accurate while recalling a series of letters interspersed

between sentences. Letter recall accuracy was measured as the proportion of correctly

recalled letters to the total number of letters.

3.3.3.1 IA Evaluation Participants

Fourteen females and nineteen males completed the IA evaluation at Oregon State Uni-

versity. The main (25) age range was 18 to 30 years, with seven participants between 31

and 50, and one was 60 and older. Many participants were in the process of obtaining

(8) or had an undergraduate degree (13), a master’s degree (9), or a doctorate degree

(1). The mean weekly hours on a desktop or laptop was 3.79, with a standard devia-
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tion (SD) = 0.5, median = 4, minimum (min) = 2, and maximum (max) = 4. The video

game proficiency ranking mean was 4.61 (SD = 1.93, median = 5, min = 1, max = 7). The

Mental Rotation Assessment [172] mean was 12.36 (SD = 5.85, median = 12, min = 3,

and max = 24) [171]. The Working Memory Capacity sentence accuracy mean was 86.14

(SD = 9.73, median = 89.5, min = 59, and max = 98) and letter recall mean was 74.07 (SD

= 14.79, median = 78, min = 43, and max = 94) [171]. Five participants were excluded

from the analysis due to inconsistent methodology (1) and software failure (4).

3.3.3.2 Collective Evaluation Participants

Twenty-eight participants, fifteen females and thirteen males, from Vanderbilt Univer-

sity, completed the Collective evaluation. The majority of participants (24) were be-

tween 18 and 30 years old, with four between 31 and 50. Most of the participants

completed high school and were in the process of obtaining (11) or had completed an

undergraduate degree (13). The weekly hours participant’s used a desktop or laptop

was slightly higher than that of the IA (mean = 3.86, SD = 0.45, median = 4, min = 2,

and max = 4). Video game proficiency was ranked lower than the IA (mean = 3.61, SD

= 2.23, median = 2.5, min = 1, and max = 7). The participants’ Mental Rotations Assess-

ment scores were also slightly lower than the IA evaluation (mean = 10.93, SD = 5.58,

median = 10, min = 1, and max = 24) [171].

3.4 Analyses of Transparency Experimental Design

Two distinct analyses of transparency were conducted, the Visualization Analysis and

the Model with Visualization Analysis, using the results from the IA and Collective
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user evaluations. The research questions and independent variables associated with

the transparency analyses experimental design are discussed. The description of the

dependent variables are associated with the respective research questions in Chapter 4.

3.4.1 Research Questions

The primary between-visualization analysis (Visualization Analysis) research question

was to determine which visualization achieved better transparency? Four secondary ques-

tions were developed in order to investigate how the visualization impacted a direct

transparency factor, exclusive of trust. The first research question (R1) focused on un-

derstanding how the visualization influenced the operator. Individual differences, such as

experience level, will impact an operator’s ability to interact with the visualization and

may cause different responses (e.g., loss of situational awareness or more workload). A

visualization that can aid operators with different capabilities is desired. The explain-

ability factor was encompassed as R2, which explored whether the visualization promoted

operator comprehension. Perception and comprehension of the visualized information are

necessary to inform future actions. Understanding which visualization promoted better us-

ability, R3, will aid designers in promoting effective transparency in human-collective

systems. Which visualization promoted better human-collective performance was also as-

sessed (R4). A system that performs a task quickly, safely, and successfully is ideal.

The primary and secondary research questions for the within-model and between-

visualization analysis (Model with Visualization Analysis) expanded on research ques-

tions R1 - R4. The primary question was to determine which model and visualization

achieved better transparency? Research question R5 focused on understanding how the

model and visualization influenced the operator. The explainability factor was encompassed
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in R6, which explored whether the model and visualization promoted operator comprehen-

sion. Promoting transparency in human-collective systems required understanding which

model and visualization promoted better usability, R7. The final research question (R8) as-

sessed which model and visualization promoted better human-collective performance.

3.4.2 Independent Variables

The independent variables associated with the analyses were the between visualization

variable, IA versus Collective, the within model variable, M2 and M3, and the trial diffi-

culty (overall, easy, and hard). The M1 model was excluded from both analyses for the

same reason mentioned in Chapter 3.3.1, because the assessment was interested under-

standing the differences between an advanced best-of-n model (M2) and the baseline

model (M3). Easy trials had a larger number of high valued targets in closer proxim-

ity to a collective’s hub, while hard trials placed high valued targets further away from

the collective’s hub. The independent variables associated with each analysis and the

respective research questions are identified in Table 3.2.

Table 3.2: Independent variables associated with respective analyses and research ques-
tions.

Independent Variable Analysis Research Question
Visualization Both R1 - R8

Model Model with Visualization R5 - R8

Decision Difficulty Both R1 - R8
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Chapter 4: Results and Discussions

The analyses for all of the research questions are based on a total of 56 participants

from both the IA and Collective evaluations. The first twelve decisions made per par-

ticipant using each model were analyzed. The majority of the objective metrics were

analyzed by SA level (overall (SAO), perception (SA1), comprehension (SA2), and pro-

jection (SA3)), decision difficulty (overall, easy, and hard), timing with respect to a SA

probe question (15 seconds before asking, while being asked, or during response to a

SA probe question), or per participant. Non-parametric statistical methods, including

Mann-Whitney-Wilcoxon tests with one degree of freedom (DOF = 1) and Spearman

Correlations, were calculated due to a lack of normality. The correlations were with re-

spect to SA probe accuracy and selection success rate. The Collective evaluation results

[29] were reanalyzed as part of this dissertation using the same methods. Additional

metrics that were not presented in this chapter are provided in Appendices E - G.

4.1 Visualization Analysis

The primary objective of the between-visualization analysis was to determine which vi-

sualization achieved better transparency. Four secondary research questions were cre-

ated to assess how transparency influenced individuals with different capabilities, op-

erator comprehension, visualization usability, and human-collective performance. The

subset of direct and indirect transparency factors (Figure 2.2) were assessed in the Vi-

sualization Analysis and are identified in Figure 4.1. The hypotheses, metrics, results,
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and discussions for the between-visualization analysis are presented in Chapters 4.1.1

- 4.1.4, which correspond to research questions R1 - R4. A research question specific

representation of the analyzed direct and indirect transparency factors is provided. The

Visualization Analysis is concluded with a final discussion that incorporates the discus-

sions from each respective secondary research question.

Figure 4.1: The analyzed direct and indirect transparency factors included in the Visu-
alization Analysis.

4.1.1 R1: Visualization Influence on Human Operator

Understanding how the visualization influenced the operator, R1, is necessary to determine

if the transparency embedded into the system design aided operators with different ca-

pabilities. The associated objective dependent variables were (1) the operator’s ability

to influence the collective in order to choose the highest target value, (2) SA, (3) visu-
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alization clutter, and (4) the operator’s spatial reasoning capability (Mental Rotations

Assessment). The specific direct and indirect transparency factors related to R1 are

identified in Figure 4.2. The relationship between the variables, the corresponding hy-

potheses, and the direct and indirect transparency factors, are identified in Table 4.1.

Additional relationships (not shown in Figure 2.2) between the variable and the direct

or indirect transparency factors are identified due to correlation analyses.

Figure 4.2: R1 concept map of the assessed direct and indirect transparency factors.

Operators may have performed differently depending on their individual differ-

ences. It was hypothesized (H1) that operators using the Collective visualization will

experience significantly higher SA and lower workload. SA represents an operator’s

ability to perceive and comprehend information in order to project future actions that

must be taken in order to fulfill a task [60]. Usability influences the perception of infor-

mation [2] and will impact workload, which is the amount of stress an operator expe-

riences in order to accomplish a task during a particular duration of time [150]. It was

hypothesized (H2) that operators with different individual capabilities will not perform
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Table 4.1: Visualization influence on the human operator objective (obj) and subjective
(subj) variables (vars), relationship to the hypotheses (H), as well as the associated direct
and indirect transparency factors, are presented in Figure 2.2.
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significantly different using the Collective visualization. An ideal visualization will en-

able operators with different capabilities to perceive, comprehend, and influence collec-

tives relatively the same. Training can alleviate any disparities between operators, but

is only intended to supplement the system’s design. The operator’s attitude and sen-

timents towards a system, which is dependent on system usability, provides essential

information related to the system’s design [105]. Good designs promote higher operator
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satisfaction. It was hypothesized (H3) that operators using the Collective visualization

will experience significantly less frustration (i.e., higher satisfaction).

4.1.1.1 Metrics and Results

Assessing variables, such as the selected target value for each human-collective deci-

sion, is necessary in order to determine whether operators were able to perceive the tar-

get value correctly and influence the collectives positively. The objective of the human-

collective team was to select the highest valued target for each decision from a range

of target values (67 to 100). The selected target value is the average of all target’s re-

spective values that were selected by the human-collective teams during a trial. The

descriptive statistics for the selected target value per decision difficulty (i.e., overall,

easy, and hard) are shown in Table 4.2. Operators using the Collective visualization

were able to influence the collective to chose higher valued targets, regardless of de-

cision difficulty, on average; however, the Mann-Whitney-Wilcoxon test identified no

significant effects between visualizations for the selected target value.

Table 4.2: Selected target value descriptive statistics by decision difficulty, where the
maximum possible value was 100 and the minimum possible value was 67.

Decision Difficulty Mean (SD) Median (Min/Max)

IA
Overall 90.29 (7.11) 95 (67/97)

Easy 90.21 (7.29) 95 (67/97)
Hard 90.4 (6.88) 94 (68/96)

Collective
Overall 92.05 (5.08) 95 (68/96)

Easy 92.09 (5.54) 95 (68/96)
Hard 92 (4.5) 95 (78/96)

The SA dependent variable was SA probe accuracy, the percentage of correctly an-

swered SA probes questions, which assessed the operator’s SA during a trial [29]. Each
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question corresponded to the three SA levels: perception, comprehension, and projec-

tion [60]. Participants were asked five SA1, four SA2, and three SA3 questions. The SA1

questions determined the operator’s ability to perceive collective and target informa-

tion, such as “What collectives are investigating Target 3?” The operator’s comprehen-

sion of information was represented by the SA2 questions, such as “Which Collective

has achieved a majority support for Target 7?” SA3 questions related to the operator’s

ability to estimate the collectives’ future state, such as “Will support for Target 1 de-

crease?” An overall SA value, SAO, represented the percent of correctly answered SA

probes out of 12 total. The SA probe accuracy descriptive statistics are shown in Table

4.3 [171]. Operators using the Collective visualization had higher SA probe accuracy.

The Mann-Whitney-Wilcoxon tests (n = 56) found highly significant effects between vi-

sualizations for SAO (U = 702, ρ < 0.001) and SA1 (U = 714.5, ρ < 0.001). Moderately

significant effects were found for SA2 (U = 572.5, ρ < 0.01) and SA3 (U = 554, ρ < 0.01).

Table 4.3: SA probe accuracy (%) descriptive statistics by SA level.

SA Level Mean (SD) Median (Min/Max)

IA

SAO 65.3 (18.87) 68.33 (16.67/83.33)
SA1 58.57 (23.05) 60 (20/100)
SA2 72.32 (21.88) 75 (25/100)
SA3 65.48 (34.52) 66.67 (0/100)

Collective

SAO 89.88 (10.96) 91.67 (58.33/100)
SA1 91.67 (11.11) 100 (66.67/100)
SA2 88.39 (14.6) 100 (60/100)
SA3 89.88 (20.46) 100 (33.33/100)

Local and global clutter percentages were analyzed for each SA probe question.

Clutter is defined as the area occupied by objects on a display, relative to the total area

of the display [150]. Presenting too much information in close proximity to one another

will require the operator to search longer for information [150] and can negatively in-
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fluence the accuracy of the SA probe question responses. Area coverage for each 2-D

item was calculated by the number of pixels the item covered on the computer visual-

ization. The conversion between meters and pixels was different for each visualization

due to differences in the display monitor size and software program. One meter for the

IA visualization was approximately 1.97 pixels per meter and the Collective visualiza-

tion was approximately 2.3 pixels per meter. The local clutter percentage variable was

the percentage of area obstructed by items that were displayed within the 500 m (i.e.,

approximately 254 pixels for the IA visualization and 218 pixels for the Collective visu-

alization) circular radius from the center of the collective, or target of interest in the SA

probe question. Collective IV, for example, is the collective of interest in the following

SA probe question: “What is the highest value target available to Collective IV?” The

items obstructing the 500 m radius when using the IA visualization, in Figure 3.1, for the

previous SA probe question are: the Collective IV, Targets 9 and 12-15, and 200 individ-

ual entities. Some SA probe questions encompassed more than one collective or target

of interest, which required calculating the local clutter percentage for each collective or

target and summing the values together. Calculations first required converting meters

into pixels in order to ensure equivalent units. The Collective visualization computer

display size was unknown; therefore, local and global clutter percentage calculations

use the corresponding item and computer display dimensions from the IA visualiza-

tion. Local clutter was calculated using Equation 4.1:

LocalClutter(%) = ∑
(

LHA + LHTA + LTA + LAICE + LTIW + LCIW
π · 5002

)
· 100,

(4.1)
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where LHA represented the area corresponding to the number of collective hubs (2464

pixels2 per hub) inside the 500 m radius. The area corresponding to the number of

highlighted targets (2350 pixels2 per highlighted target), which had outlines and were

in range of the selected collective were represented as LHTA, while the targets that

were not highlighted (1720 pixels2 per target) were denoted as LTA. LAICE represented

the area corresponding to the number of individual collective entities (64 pixels2 per

individual entity) inside of the 500 m radius, and was excluded from the Collective

visualization local clutter percentage calculation, because no individual entities were

displayed. The individual collective entities were confined to the 500 m search radius

around their respective collective hub; therefore, the calculation assumes that the 200

entities associated with each collective are inside of the local radius. The area corre-

sponding to the number of target information pop-up windows (32922 pixels2 per tar-

get information pop-up window) was represented as LTIW, and the corresponding col-

lective information pop-up windows (25740 pixels2 per collective information pop-up

window) were represented as LCIW. Only target or collective information pop-up win-

dows that belong to targets or collectives inside of the 500 m radius were considered.

The Collective evaluation did not record which particular collective information pop-up

windows were visible; therefore, LCIW was excluded from the local clutter percentage

calculation for the Collective visualization.

The local clutter percentage descriptive statistics 15 seconds before asking, while

being asked, and during a SA probe response are provided in Table 4.4. The Collective

evaluation did not record the SA probe response time; therefore, the average response

time per SA level from the IA evaluation was used for all calculations during response

to a SA probe question. The maximum local clutter percentage was 177%, which indi-

cated that the area covered by the associated items of the collective or target of interest
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Table 4.4: Local clutter percentage descriptive statistics 15 seconds before asking, while
being asked, and during response to SA probe question by SA level.

Timing SA Level Mean (SD) Median (Min/Max)

IA

Before

SAO 33.6 (21.66) 26.13 (9/124)
SA1 30.79 (19.53) 24.4 (9/122.33)
SA2 41.54 (24.39) 37.75 (9/124)
SA3 28.61 (19.36) 22.23 (9.08/97.7)

Asking

SAO 34.42 (22.16) 28 (9/124)
SA1 31.91 (20.54) 25 (9/122)
SA2 41.67 (24.74) 37.17 (9/124)
SA3 29.73 (19.54) 24.21 (9/97.67)

Responding

SAO 34.26 (22.25) 27.5 (8/124)
SA1 31.84 (20.61) 24.83 (9/122)
SA2 41.28 (24.96) 36.5 (8/124)
SA3 29.68 (19.6) 24 (9/98)

Collective

Before

SAO 35.42 (28.08) 25.44 (9/177)
SA1 34.09 (29.09) 24.04 (9/151.9)
SA2 35.81 (27.53) 26.86 (10.3/177)
SA3 37.98 (26.78) 28.23 (10.38/131.47)

Asking

SAO 35.37 (28.78) 25.75 (9/176.5)
SA1 34.24 (30.37) 23.63 (9/176.5)
SA2 36.47 (26.76) 27.4 (10.2/130.4)
SA3 36.35 (28.27) 27.25 (9/147.56)

Responding

SAO 35.6 (29.19) 25.8 (9/176.4)
SA1 34.29 (29.84) 25 (9/176.4)
SA2 36.55 (27.98) 27 (10/130)
SA3 37.24 (29.86) 26.57 (9/147.57)

in the SA probe exceeded the 500 m radius. Local clutter percentages larger than 100%

were attributed to the area covered by the collective and target information pop-up win-

dows. The location of the information pop-up windows were not recorded; therefore,

the maximum area coverage was considered when information pop-up windows did

not occlude items in the environment. The maximum area coverage condition was not

reflective of the real trial environment, where information pop-up windows covered
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items on the central map. The IA visualization had lower local clutter percentage, re-

gardless of when the metric was collected for SAO, SA1, and SA3. No correlations were

found between local clutter percentage and SA probe accuracy.

The global clutter percentage, calculated using Equation 4.2, was the percentage of

area obstructed by all objects displayed on the entire IA computer display (2073600

pixels2), since the Collective computer display was unknown.

GlobalClutter(%) =

(
ICA + GHA + GHTA + GTA + GAICE + GTIW + GCIW

2073600

)
· 100,

(4.2)

where ICA represented the area of the static interface components (493414 pixels2),

which encompassed the program bar, the Microsoft Windows program bar, the select

trial button, the collective request area, and the monitor area. GHA represented the

area covered by Collective hubs I-IV (9856 pixels2), which were visible throughout the

duration of a trial. The area corresponding to the number of highlighted targets (2350

pixels2 per highlighted target), which had outlines and were in range of the currently

selected collective were represented as GHTA. Remaining targets that were not high-

lighted (1720 pixels2 per target), were represented as GTA. GAICE represented the area

encompassed by 800 individual collective entities (51200 pixels2), which was only con-

sidered for the IA visualization. The area corresponding to the number of target infor-

mation pop-up windows (32922 pixels2 per target information pop-up window) was

represented as GTIW and the corresponding collective information pop-up windows

was represented as GCIW (25740 pixels2 per collective information pop-up window).

The global clutter percentage descriptive statistics 15 seconds before asking, while

being asked, and during response to a SA probe question are shown in Table 4.5. The
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Table 4.5: Global clutter percentage descriptive statistics 15 seconds before asking, while
being asked, and during response to SA probe question by SA level.

Timing SA Level Mean (SD) Median (Min/Max)

IA

Before

SAO 30.2 (3.06) 28.83 (27/40.22)
SA1 29.88 (2.8) 28.5 (27/40.22)
SA2 30.41 (3.05) 29.1 (27/40)
SA3 30.45 (3.45) 28.85 (27/40)

Asking

SAO 30.25 (3.13) 29 (27/40)
SA1 29.95 (2.91) 28.58 (27/40)
SA2 30.41 (3.12) 29 (27/40)
SA3 30.52 (3.49) 29 (27/40)

Responding

SAO 30.09 (3.02) 29 (27/40)
SA1 29.83 (2.81) 28.5 (27/40)
SA2 30.22 (3) 29 (27/40)
SA3 30.37 (3.38) 28.79 (27/40)

Collective

Before

SAO 31.37 (4.97) 29.21 (27.88/53)
SA1 31.38 (5) 29.13 (28/52.4)
SA2 31.25 (5.09) 29.21 (27.88/53)
SA3 31.56 (4.76) 29.54 (28/52)

Asking

SAO 31.43 (5.13) 29.17 (28/53)
SA1 31.24 (5.26) 29 (28/53)
SA2 31.52 (5.2) 29.22 (28/51.8)
SA3 31.69 (4.78) 29.75 (28/48)

Responding

SAO 31.41 (5.15) 29 (28/53)
SA1 31.43 (5.43) 29 (28/53)
SA2 31.34 (5.08) 29 (28/51.5)
SA3 31.49 (4.66) 29.31 (28/48)

IA visualization had a lower global clutter percentage, regardless of when the metric

was assessed across all SA levels. The Mann-Whitney-Wilcoxon tests found highly sig-

nificant effects between visualizations when responding to a SA probe question (n =

670) for SAO (U = 64442, ρ < 0.001). Moderate significant effects were found for SAO

15 seconds before asking (U = 64188, ρ < 0.01) and while being asked a SA probe ques-

tion (U = 63728, ρ < 0.01). Significant effects were found 15 seconds before asking a SA



88

probe question for SA1 (n = 294, U = 12487, ρ = 0.02) and SA3 (n = 152, U = 3445.5, ρ =

0.03); while being asked a SA probe question for SA1 (U = 12301, ρ = 0.03) and SA3 (U =

3452, ρ = 0.05); and during the response to a SA probe question for SA1 (U = 12216, ρ =

0.04). The Spearman correlation analysis revealed a weak correlation for the Collective

visualization for SA1 between global clutter percentage 15 seconds before asking a SA

probe question and SA probe accuracy (r = 0.16, ρ = 0.05).

The Mental Rotations Assessment [172], which assessed the operator’s spatial rea-

soning, identified no significant effects between visualizations. A Spearman correlation

analysis revealed weak correlations between the Mental Rotations Assessment and SA

probe accuracy when using the IA visualization for SAO (r = 0.17, ρ < 0.01), SA1 (r =

0.18, ρ = 0.03), and SA2 (r = 0.27, ρ < 0.01). The Mann-Whitney-Wilcoxon tests iden-

tified no significant effects between visualizations for the weekly hours spent using a

desktop or laptop and video game proficiency. Weak correlations were found between

weekly hours using a desktop or laptop and SA probe accuracy for the IA visualization

for SAO (r = 0.12, ρ = 0.04) and SA1 (r = 0.21, ρ = 0.01), as well as when using the Col-

lective visualization for SA2 (r = 0.21, ρ = 0.02). No correlations were found between

video game proficiency and SA probe accuracy.

The NASA Task Load Index (NASA-TLX) assessed the six workload subscales and

the weighted overall workload [174]. The descriptive statistics for the NASA-TLX de-

mands imposed on the operator are presented in Table 4.6. The Collective visualization

imposed a lower overall workload, had lower physical and temporal demands, and

caused less frustration [57]. The IA visualization imposed a lower mental demand,

which had a significant effect between visualizations (n = 56, U = 515, ρ = 0.04) and less

effort. The IA visualization had a higher performance with a highly significant effect

between visualizations (U = 159.5, ρ < 0.001).
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Table 4.6: NASA-TLX descriptive statistics.

Overall and Subscales Mean (SD) Median (Min/Max)

IA

Overall 62.14 (14.81) 65.67 (24/85.67)
Mental 19.25 (8.8) 20 (0/33.33)

Physical 1.68 (3.32) 0 (0/13)
Temporal 11.75 (8.24) 9.67 (0/28.33)

Performance 10.69 (5.87) 8.83 (2.67/25)
Effort 11.35 (6.68) 11 (2.67/28.33)

Frustration 7.43 (8.36) 4.67 (0/33.33)

Collective

Overall 57.06 (16.47) 56.83 (5.67/83.33)
Mental 23.58 (6.34) 25 (3/31.67)

Physical 0.46 (1.17) 0 (0/4.67)
Temporal 10.94 (7.67) 10.33 (0/24)

Performance 5.1 (4.7) 3.67 (0/21.33)
Effort 12.32 (6.26) 13 (2/25.33)

Frustration 4.65 (6.84) 1.83 (0/30)

The 3-D Situational Awareness Rating Technique (SART) measured the operator’s

perceived situational understanding, demand on attentional resources, and supply of

attentional resources [175]. An overall score was calculated using the standard calcu-

lation. The SART descriptive statistics are shown in Table 4.7 [57, 171]. The minimum

SART score was -1, which was unexpected as a negative score requires the supply of at-

tentional resources to exceed the demand on attentional resources and a low perceived

situational understanding. Both of these conditions are highly unlikely. The Collective

visualization had a higher overall score, more situational understanding, high demands

of attentional resources (although nearly the same as the IA visualization), and more

supply of attentional resources, compared to the IA visualization. The Mann-Whitney-

Wilcoxon test indicated moderately significant effects between visualizations for the

overall score (n = 56, U = 560, ρ < 0.01), situational understanding (U = 561, ρ < 0.01),

and supply of attentional resources (U = 561, ρ < 0.01).
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Table 4.7: SART descriptive statistics (1-low, 7-high).

Overall and Dimensions Mean (SD) Median (Min/Max)

IA

Overall 4.64 (2.6) 4.5 (-1/10)
Situational Understanding 4.96 (1.53) 5 (2/7)

Demands on Attentional Resources 5.04 (1.2) 5 (2/7)
Supply of Attentional Resources 4.71 (1.36) 5 (1/7)

Collective

Overall 6.68 (2.26) 6.5 (3/13)
Situational Understanding 6.07 (0.9) 6 (4/7)

Demands on Attentional Resources 5.07 (1.18) 5 (1/6)
Supply of Attentional Resources 5.68 (1.09) 6 (3/7)

A summary of R1’s results that show the hypotheses with associated significant

results is shown in Table 4.8. This summary table is intended to facilitate the discussion.

4.1.1.2 Discussion

Relationships to the transparency factors provided in Table 4.1 are emphasized using

italics. The analysis of how visualization influenced operators suggests that the Collec-

tive visualization promoted better transparency. The variables that directly supported

H1 are the SA performance (i.e., accuracy) and SART. H1 was supported, because opera-

tors using the Collective visualization had significantly higher objective and subjective

SA and lower overall workload. Transparency embedded into the Collective visualiza-

tion, via explainable color-coded icons and outlines, state information identified on the

collective icon, information provided in the collective and target information pop-up

windows, and feedback provided in the Collective Assignments and System Messages

areas, promoted better observability, comprehension, and predictability of future collec-

tive behaviors, making the overall human-collective team more effective. The Collective

operators; however, had more local and global clutter, even if collective pop-up win-
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Table 4.8: A synopsis of R1’s hypotheses associated with significant results. The SA
probe timings are all timings (AT), 15 seconds Before asking (B), While being asked (W),
and During response (D) to a SA probe question. Hypotheses that were fully supported
(black bold text), partially supported (black text), and not supported (gray bold text) are
identified. Results for which no statistical tests were conducted are shown as merged
cells containing hashmarks.

Variable
Sub- Between Correlation

Variable Visualization IA Coll.
SAO H1

———–
SA Probe SA1 H1
Accuracy SA2 H1

SA3 H1

Global Clutter
SAO H1 − AT

Percentage
SA1 H1 − AT H1 − B
SA2 H1 − B, W

Mental Rotation SAO

———–

H2
Assessment SA1 H2
Weekly Hours SAO H2
on Desktop SA1 H2
or Laptop SA2 H2

NASA-TLX
Mental H1

———–
Performance H1

SART
Overall H1

Situational Understanding H1
Supply of Attentional Resources H1

dows were not considered in the local clutter calculation for the Collective visualiza-

tion. Clutter was mainly attributed to the number of collective and target information

pop-up windows that were visible. The increased clutter has both positive and neg-

ative implications for transparency. Clutter, from an usability perspective, is not ideal

if operators are unable to perform their tasks effectively. The Collective operators who

had more global clutter were able to answer higher SA performance, which suggests that

operators were not hindered by the clutter and performed better than their counterparts.

The dependence on having the collective and target information pop-up windows visi-
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ble suggests that the collective state information provided on the collective icon was not

as effective as the information pop-up window and there is a need to provide support in-

formation on the target icons. Other design strategies must be investigated to improve

the efficacy of the collective and target icons for the Collective visualization. Further

analyses are required to determine what contributed to more mental demand, more ef-

fort, and less perceived performance using the Collective visualization and whether the

additional stress may have been experienced due to positive aspects, such as opera-

tors being highly motivated to complete their tasks. The Collective visualization may

have required more operator effort in order to understand what the collective was doing

compared to the IA visualization that showed the dynamic behavior emerging. Collec-

tive operators may have been distracted by the secondary SA probe question task and

required more time to refocus their attention on the collective behaviors.

The Mental Rotation Assessment and video-game proficiency results supported H2,

since operators with different individual capabilities did not perform significantly differ-

ent using the Collective visualization. One exception to the hypotheses was that more

experienced operators may have performed better because of their extensive use of com-

puters, which may have led to faster and more accurate interpretations of information

[150] (i.e., different types of iconography), or easier access to the supplemental infor-

mation. Since the exception was observed in both evaluations, the behavior is inherent

to working with a computer interface, rather than a particular visualization. Using an

abstract collective visualization will mitigate the need for particular operator capabilities

to perform the sequential best-of-n decision-making task. Collective operators experi-

enced less frustration, which supports H3. Dissatisfaction (i.e., frustration) transpires

when the system is not transparent and prohibits the operator from understanding what

is happening, or there is too much clutter and the visualization appears noisy [163]. The
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abstract visualization may be a solution to mitigate dissatisfaction.

The transparency embedded in the Collective visualization supported operators

with different capabilities better than the IA visualization. A transparent human-collective

system design will mitigate the need for operators to have particular capabilities in order

to effectively interaction with the system and perform tasks successfully. Further inves-

tigation is needed to determine what visualization usability characteristics contributed

to higher mental demand in order to alleviate workload.

4.1.2 R2: Visualization Promotion of Human Operator Compre-

hension

The explainability direct transparency factor was encompassed in R2, which was inter-

ested in determining whether the visualization promoted operator comprehension, by em-

bedding transparency into the system design.

Figure 4.3: R2 concept map of the assessed direct and indirect transparency factors.
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Perception and comprehension of the presented information are necessary to inform

operator actions. The associated objective dependent variables were (1) SA, (2) collec-

tive and target left- or right-clicks, (3) the percentage of times the highest value target

was abandoned, and (4) whether the information pop-up window was open when a tar-

get was abandoned. The specific direct and indirect transparency factors related to R2

are shown in Figure 4.3. The relationship between the variables and the corresponding

hypotheses, and the direct and indirect transparency factors, are shown in Table 4.9.

Table 4.9: Visualization promotion of human operator comprehension objective (obj)
and subjective (subj) variables (vars), relationship to the hypotheses (H), as well as the
associated direct and indirect transparency factors, are presented in Figure 2.2.
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SAObj Vars H
SA Probe Accuracy H4 X X X X X X
Collective Left-Clicks by SA H5 X X X X
Level
Target Right-Clicks by SA H5 X X X X
Level
Highest Value Target H4,

X X X X X
Abandoned H5

Abandoned Target Info. H5 X X X X
Window Open

Subj Vars
SART H4 X X X X
Post-Trial Performance and H4 X X X X
Understanding
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Thirteen human factors display design principles, associated with perceptual oper-

ations, mental models, human attention, and memory [150], suggest that information

must be legible, clear, concise, organized, easily accessible, and consistent. Providing in-

formation, such as the collective state, on the collective icon, rather than using all of the

individual collective entities is more clear, concise, organized, and consistent; therefore,

it was hypothesized (H4) that operators will have a better understanding of the infor-

mation provided by the Collective visualization. Providing information redundantly

via icons, colors, messages, and the collective and target information pop-up windows

can aid operator comprehension and justify their future actions. It was hypothesized

(H5) that the Collective visualization provided information used to accurately justify

actions. An ideal visualization will enable operators to perceive and comprehend infor-

mation that is explainable, which will support taking accurate future actions.

4.1.2.1 Metrics and Results

The operator had access to supplementary information that was not continually dis-

played, such as different colored target borders that identified which targets were in

range and had been abandoned, or information pop-up windows that provided collec-

tive state and target support information, in order to aid comprehension (SA2) of col-

lective behavior and inform particular actions. The results of SA probe accuracy, which is

the percentage of correctly answered SA probes questions used to assess the operator’s

SA during a trial, identified that operators using the Collective visualization had higher

SA probe accuracy, regardless of the SA level. Further details regarding the statistical

tests were provided in Chapter 4.1.1.1.
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Collective left-clicks identified targets that were in range of a collective (i.e., white

borders indicated that the individual collective entities were investigating the target,

while yellow indicated no investigation), whether the targets had been abandoned (i.e.,

red borders), and was the first click required to issue a command. The number of col-

lective left-clicks descriptive statistics 15 seconds before asking, while being asked, and

during response to a SA probe question are shown in Table 4.10. Operators using the

Table 4.10: Collective left-clicks descriptive statistics 15 seconds before asking, while
being asked, and during response to SA probe question by SA level.

Timing SA Level Mean (SD) Median (Min/Max)

IA

Before

SAO 1.64 (1.84) 1 (0/12)
SA1 1.53 (1.75) 1 (0/11)
SA2 1.78 (1.9) 1 (0/12)
SA3 1.65 (1.92) 1 (0/9)

Asking

SAO 0.49 (0.76) 0 (0/5)
SA1 0.3 (0.6) 0 (0/3)
SA2 0.42 (0.77) 0 (0/4)
SA3 0.33 (0.61) 0 (0/3)

Responding

SAO 1.68 (1.79) 1 (0/11)
SA1 1.14 (1.46) 1 (0/7)
SA2 1.46 (1.8) 1 (0/10)
SA3 1.53 (1.98) 1 (0/9)

Collective

Before

SAO 1.95 (1.57) 2 (0/9)
SA1 1.88 (1.47) 2 (0/8)
SA2 2.13 (1.68) 2 (0/9)
SA3 1.83 (1.61) 1 (0/7)

Asking

SAO 0.69 (0.88) 0 (0/5)
SA1 0.51 (0.79) 0 (0/5)
SA2 0.91 (0.89) 1 (0/4)
SA3 0.73 (0.96) 0 (0/4)

Responding

SAO 1.52 (1.21) 1 (0/6)
SA1 1.32 (1.02) 1 (0/4)
SA2 1.57 (1.21) 1 (0/5)
SA3 1.89 (1.48) 2 (0/6)
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IA visualization had fewer collective left-clicks, regardless of when the metric was as-

sessed for all SA levels, except for SAO during response to a SA probe question. The

Mann-Whitney-Wilcoxon tests found highly significant effects between visualizations

for SAO (n = 664) 15 seconds before asking (U = 64213, ρ < 0.001), while being asked (U

= 67670, ρ < 0.001), and during response to a SA probe question (U = 64710, ρ < 0.001).

A highly significant effect was also found when responding to a SA probe question for

SA2 (n = 223, U = 8317, ρ < 0.001). Moderate significant effects were found for SA1 (n =

290) 15 seconds before asking (U = 12534, ρ < 0.01), while being asked (U = 12043, ρ <

0.01), and during response to a SA probe question (U = 12414, ρ < 0.01). An additional

moderate significant effect was found while being asked a SA probe question for SA3

(n = 151, U = 3472, ρ < 0.01). Significant effects were found 15 seconds before asking

a SA probe question for SA2 (U = 7210.5, ρ = 0.04) and during response to a SA probe

question for SA3 (U = 3489, ρ = 0.01). No correlations were found between the number

of collective left-clicks and SA probe accuracy.

Target right-clicks allowed the operator to open or close target information pop-up

windows, which provided the percentage of support each collective had for a respective

target. Operators may have used the support information to justify issuing commands.

The number of target right-clicks descriptive statistics 15 seconds before asking, while

being asked, and during response to a SA probe question are presented in Table 4.11.

The Collective visualization had fewer target right-clicks for all SA levels, 15 seconds

before asking and during response to a SA probe question, and the IA visualization had

fewer while being asked a SA probe question. The Mann-Whitney-Wilcoxon test found

no significant effects between visualizations for the number of target right-clicks. The

Spearman correlation analysis revealed weak correlations between the number of target

right-clicks and SA probe accuracy for the IA visualization 15 seconds before asking a
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SA probe question for SAO (r = 0.17, ρ < 0.01) and SA2 (r = 0.37, ρ < 0.001).

Table 4.11: Target right-clicks descriptive statistics 15 seconds before asking, while be-
ing asked, and during response to SA probe question by SA level.

Timing SA Level Mean (SD) Median (Min/Max)

IA

Before

SAO 1.68 (2.38) 1 (0/13)
SA1 1.92 (2.62) 1 (0/13)
SA2 1.28 (1.91) 1 (0/11)
SA3 1.8 (2.5) 1 (0/12)

Asking

SAO 0.37 (0.79) 0 (0/7)
SA1 0.44 (0.74) 0 (0/4)
SA2 0.31 (0.67) 0 (0/3)
SA3 0.37 (0.75) 0 (0/3)

Responding

SAO 1.07 (1.77) 0 (0/10)
SA1 1.11 (1.69) 0 (0/10)
SA2 1.1 (1.75) 0 (0/9)
SA3 1.68 (2.24) 1 (0/10)

Collective

Before

SAO 1.52 (2.41) 1 (0/18)
SA1 1.79 (2.71) 1 (0/18)
SA2 1.17 (1.94) 0 (0/10)
SA3 1.49 (2.35) 0 (0/11)

Asking

SAO 0.5 (1) 0 (0/9)
SA1 0.49 (0.86) 0 (0/4)
SA2 0.55 (1.31) 0 (0/9)
SA3 0.44 (0.69) 0 (0/2)

Responding

SAO 0.99 (1.7) 0 (0/11)
SA1 1.01 (1.74) 0 (0/11)
SA2 0.84 (1.44) 0 (0/9)
SA3 1.21 (1.98) 0 (0/8)

The abandon command was provided to operators who desired a collective to dis-

continue investigating a particular target. Ideally lower valued targets were aban-

doned, since the objective was to aid each collective in selecting and moving to the

highest valued target two sequential times. The percentage of times the highest value

target was abandoned per participant is presented in Table 4.12. Operators using the IA



99

visualization abandoned the highest value target less frequently, but no significant ef-

fects were found between the visualizations.

Table 4.12: Highest value target abandoned (%) descriptive statistics per participant by
decision difficulty.

Decision Difficulty Mean (SD) Median (Min/Max)

IA
Overall 32.36 (29.53) 26 (0/100)

Easy 31.2 (27.17) 25 (0/75)
Hard 42.1 (40.53) 23 (0/100)

Collective
Overall 43.6 (31.94) 38 (0/100)

Easy 33.25 (35.96) 27 (0/100)
Hard 48.72 (36.85) 38 (0/100)

The instances when a target was abandoned by an operator and the target’s respec-

tive information pop-up window was visible was assessed. The abandoned target infor-

mation pop-up window was open per participant is presented in Table 4.13. The operator

may have used the support information in order to justify abandoning a target. IA op-

erators had fewer abandoned target information pop-up windows open, compared to

the Collective operators. No significant effects were found between visualizations.

Table 4.13: Abandoned target information pop-up window open (%) descriptive statis-
tics per participant by decision difficulty.

Decision Difficulty Mean (SD) Median (Min/Max)

IA
Overall 23.86 (31.43) 10.5 (0/100)

Easy 22.2 (30.95) 13 (0/100)
Hard 28.7 (37.89) 8.5 (0/100)

Collective
Overall 33.8 (34.9) 15 (0/100)

Easy 30.7 (37.85) 15 (0/100)
Hard 36.08 (40.87) 14 (0/100)

The SART results, which measured the operator’s perceived situational understand-

ing, demand on attentional resources, and supply of attentional resources [175], were

ranked higher for the Collective visualization compared to the IA. The statistical test
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details were provided in Chapter 4.1.1.1.

The post-trial questionnaire assessed the operators’ understanding of the collective be-

havior, never (1) to always (7), and their ability to chose the best target for each deci-

sion, never (1) to always (7). The post-trial performance and understanding subjective

ranking descriptive statistics are presented in Table 4.14 [29]. The performance and

understanding rankings were higher for operators using the Collective visualization.

The Mann-Whitney-Wilcoxon test found a significant effect between visualizations for

understanding (n = 56, U = 513, ρ = 0.04).

Table 4.14: Post-trial performance and understanding model ranking descriptive statis-
tics (1-low, 7-high).

Metric Mean (SD) Median (Min/Max)

IA
Performance 5.25 (1.69) 6 (2/7)

Understanding 4.89 (1.75) 5 (1/7)

Collective
Performance 5.54 (1.29) 6 (3/7)

Understanding 5.82 (1.16) 6 (3/7)

A summary of R2’s results that show the hypotheses with associated significant re-

sults is shown in Table 4.15. This summary table is intended to facilitate the discussion.

4.1.2.2 Discussion

The analysis of how visualization promoted operator comprehension (i.e., the oper-

ator’s capability of understanding) identified advantages and disadvantages associated

with both visualizations. The Collective visualization promoted higher comprehension

and SA; however, because the Collective operators abandoned the highest value target

more frequently, H4 was not supported. Ineffective identifiers, such as the distinction

between roman numerals and integers, may have caused poor observability and IA op-
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Table 4.15: A synopsis of R2’s hypotheses associated with significant results. The SA
probe timings are all timings (AT), 15 seconds Before asking (B), While being asked
(W), and During response (D) to a SA probe question.

Variable
Sub- Between Correlation

Variable Visualization IA Coll.
SAO H4

———–
SA Probe SA1 H4
Accuracy SA2 H4

SA3 H4

Collective Left-
SAO H5 − AT

Clicks
SA1 H5 − AT
SA2 H5 − B, W
SA3 H5 − W , D

Target Right- SAO H5 − B
Clicks SA2 H5 − B

SART
Overall H4

———–
Situational Understanding H4

Supply of Attentional Resources H4
Post-Trial Understanding H4

erator confusion. Ensuring that identifiers are unique and distinct, such as integers

versus letters, will improve system explainability and may mitigate misunderstanding.

The target value for the Collective visualization may not have been salient enough to

distinguish it from other potential targets. Further investigations are required to deter-

mine if the target value must use the entire collective hub icon area, similar to the IA

visualization, in order to be recognizable, and to establish what levels of obscurity are

needed to ensure that target values are distinguishable from one another.

The use of target borders (collective left-clicks), information pop-up windows (tar-

get right-clicks), and target value, were assessed to determine if operators used these

types of information to accurately justify actions. Collective right-clicks, which opened

and closed collective information pop-up windows, 15 seconds before asking, while
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being asked, and during response to a SA probe question, were not analyzed in the

Visualization Analysis, because the collective evaluation did not indicate which collec-

tive was selected via the right-click. None of the metrics supported H5, because the

information provided by the Collective visualization did not justify accurate actions.

Collective left-clicks did not support or hinder SA performance (i.e., accuracy) for either

visualization, but fewer target right-clicks 15 seconds before asking a SA probe question

supported higher SAO and SA2 probe accuracy for operators using the IA visualization.

The operators may have learned to anticipate when SA probe questions were going to

be asked and took preventative actions, by opening or closing target information win-

dows, which resulted in higher SA performance. The use of target information pop-up

windows aided Collective visualization users to abandon targets more than 30% of the

time. Further analysis using technology, such as an eye-tracker, may provide more

accurate metrics to determine operator comprehension during SA probe questions by

identifying exactly where an operator is focusing their attention.

The transparency embedded in the Collective visualization did not provide the op-

erator with better comprehension, nor did it hinder it compared to the IA visualization.

Both visualizations influenced operator comprehension differently. Further investiga-

tions are needed in order to understand how to embed transparency into the system

better and identify whether those strategies worked. Unique and distinct information

may need to be presented on different icons, or use different presentation strategies,

such as colors versus patterns, in order to mitigate confusion and improve system us-

ability. The target value on the Collective visualization, for example, was on the same

icon as the collective support, and may have challenged operator perception, compre-

hension, and predictability. The information provided by both of the visualizations in

general did not justify actions.
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4.1.3 R3: Visualization Usability

Understanding which visualization promoted better usability, R3, is necessary to determine

which system characteristics promote effective transparency in human-collective sys-

tems. The associated objective dependent variables were (1) visualization clutter, (2)

Euclidean distance, (3) collective and target left- and right-clicks, (4) metrics associated

with abandoned targets, and (5) the time between the commit state and issued decide

command. The specific direct and indirect transparency factors related to R3 are shown

in Figure 4.4. The relationship between the variables and the corresponding hypothe-

ses, as well as the direct and indirect transparency factors are shown in Table 4.16.

Figure 4.4: R3 concept map of the assessed direct and indirect transparency factors.

The goal of usability is to design systems that are effective, efficient, safe, have good

utility, easy to learn, and are memorable [163]. Ensuring good usability is necessary to

ensure operators will be able to perceive and understand the information presented on

a visualization, and to promote effective interactions. It was hypothesized (H6) that the

Collective visualization will promote better usability by being more predictable and ex-
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Table 4.16: Visualization usability objective (obj) variables (vars), relationship to the
hypotheses (H), as well as the associated direct and indirect transparency factors, are
presented in Figure 2.2.
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Local Clutter H6 X X X X X X X
Global Clutter H6 X X X X X X X
Euclidean Distance

H7 X XBetween SA Probe
Interest and Clicks
Sum of Euclidean H7 X X
Distance Between Clicks
Collective Left-Clicks per H7 X X X
Participant
Collective Right-Clicks H7 X X X X
per Participant
Target Left-Clicks per H7 X X
Participant
Target Right-Clicks per H7 X X X X
Participant
Highest Value Target H6 X X X X X
Abandoned
Abandoned Target Info. H6 X X X X X
Window Open
Abandon Requests

H6 X X X XExceeded Abandoned
Targets
Time Between Commit

H6 X X X X X XState and Issued
Decide Command
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plainable. Providing information that is explainable may aid operator comprehension,

while predictable information may expedite operator actions. An ideal system will not

require constant operator interaction to perform well; therefore, it was hypothesized

(H7) that operators using the Collective visualization will require fewer interactions.

4.1.3.1 Metrics and Results

Many system characteristics were available to the operators in order to aid task com-

pletion. The IA visualization had both lower local clutter percentage, which was the

percentage of area obstructed by items displayed within the 500 m circular radius of

a collective, or target, and global clutter percentage, which was the percentage of area

obstructed by all objects displayed on the visualization. Operators using the IA visual-

ization had fewer collective and target information pop-up windows open throughout

the trial. The statistical test details were provided in Chapter 4.1.1.1.

The Euclidean distance (pixels) between the focus of the SA probe question and where the

operator was interacting with the visualization indicated where operators focused their

attention, because no eye-tracker was used. Euclidean distance can be used to assess

the effectiveness of the object placements on the display. Larger distances are not ideal,

because more time [176] and effort is required to locate and interact with the object. The

first requirement of calculating the Euclidean distance was to determine what the col-

lective, or target of interest was in a SA probe question. For example, Target 3 is the tar-

get of interest for the following question: “What collectives are investigating Target 3?”

The second requirement was to determine where the operator was interacting with the

system. The Euclidean distance between Target 3 and the operator’s current interaction

(e.g., click), which was Collective IV, is identified by a dashed orange line in Figure 4.5.
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Figure 4.5: Example of Euclidean distance between SA probe interest (Target 3) and
clicks (Collective IV), denoted by an orange dashed line.

The Euclidean distance between SA probe interest and clicks descriptive statistics 15

seconds before asking, while being asked, and during response to a SA probe question

are presented in Table 4.17. Operators using the IA visualization had shorter Euclidean

distances between the SA probe interest and their visualization-based clicks, regard-

less of when the metric was assessed for all SA levels. The Mann-Whitney-Wilcoxon

tests found a moderate significant effect between visualizations while being asked a SA

probe question for SAO (n = 464, U = 31052, ρ < 0.01). Highly significant effects were

found between visualizations 15 seconds before asking a SA probe question for SAO (n

= 557, U = 43303, ρ = 0.02) and SA1 (n = 273, U = 10577, ρ = 0.05), while being asked a SA

probe question for SA1 (n = 229, U = 7645, ρ = 0.01), and during response to a SA probe

for SAO (n = 499, U = 35029, ρ = 0.02). The Spearman correlation analysis revealed a
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weak correlation between the Euclidean distance of the SA probe’s focus interest to the

current clicks and SA probe accuracy for the IA visualization 15 seconds before asking

a SA probe question for SA1 (r = -0.18, ρ = 0.04).

Table 4.17: Euclidean distance between SA probe interest and clicks (pixels) descriptive
statistics 15 seconds before asking, while being asked, and during response to SA probe
question by SA level.

Timing SA Level Mean (SD) Median (Min/Max)

IA

Before

SAO 767.1 (262.5) 768.3 (183.4/1425.9)
SA1 759.5 (251.64) 765.1 (269/1425.9)
SA2 768.9 (282.07) 787.9 (184.4/1312.4)
SA3 783.4 (262.89) 757.4 (183.4/1260.5)

Asking

SAO 758.44 (291.48) 744.91 (73.72/1636.46)
SA1 754.4 (284.65) 744.6 (139.7/1636.5)
SA2 768.4 (316.09) 782.4 (160.2/1382.8)
SA3 753.7 (275.04) 730.68 (73.72/1329.14)

Responding

SAO 764.24 (298.84) 757.53 (73.72/1636.46)
SA1 760.9 (297.14) 746.6 (160.6/1636.5)
SA2 774.6 (319.08) 777.6 (160.2/1381.2)
SA3 757.71 (278.14) 749.85 (73.72/1283.9)

Collective

Before

SAO 820.7 (255.67) 855.9 (222.3/1470.5)
SA1 825.6 (264.1) 828.1 (249.8/1470.5)
SA2 812.9 (234.94) 865.2 (317.4/1329.9)
SA3 821.6 (271.03) 873.1 (222.3/1243.9)

Asking

SAO 851.4 (293.91) 859.5 (280.2/1745.2)
SA1 845.5 (282.53) 862.5 (281.5/1745.2)
SA2 879.5 (299.93) 869.2 (280.2/1696.1)
SA3 823.5 (314.47) 787.6 (314.7/1469)

Responding

SAO 827.7 (273.83) 819.8 (258.1/1546)
SA1 827.9 (279.21) 819 (366.6/1484.6)
SA2 845.2 (275.55) 862.7 (258.1/1546)
SA3 799.7 (261.1) 797.3 (314.7/1378.8)

The sum Euclidean distance (pixels) between clicks was the sum of all distances be-

tween the operator’s current interaction and the immediately previous interaction. For

example, if an operator interacted with the visualization four times while a SA probe
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question was being asked, the sum Euclidean distance is the sum between interactions

one and two, interactions two and three, and interactions three and four. The sum of

Euclidean distance between clicks descriptive statistics 15 seconds before asking, while

being asked, and during response to a SA probe question are presented in Table 4.18.

Operators using the Collective visualization had smaller sums of Euclidean distance

between their interactions, regardless of when the metric was assessed for all SA lev-

Table 4.18: Sum of Euclidean distance between clicks (pixels) descriptive statistics 15
seconds before asking, while being asked, and during response to SA probe question
by SA level.

Timing SA Level Mean (SD) Median (Min/Max)

IA

Before

SAO 3386 (2911.78) 2500 (0/21115)
SA1 3185 (2665.35) 2476 (0/18465)
SA2 3389 (3091.22) 2469 (0/21115)
SA3 3732.6 (3071.18) 2901.7 (246.1/17323.6)

Asking

SAO 1748.9 (1779.6) 1250.7 (0/12161.7)
SA1 1387.3 (1328.49) 985.7 (0/6777.4)
SA2 2030.1 (2053.98) 1477.5 (0/12161.7)
SA3 1975 (1954.76) 1362 (0/8949)

Responding

SAO 1383.2 (1416.84) 934.8 (0/9315.1)
SA1 1088.7 (1108.12) 793.5 (0/4999)
SA2 1606 (1610.13) 1310 (0/9315)
SA3 1582.6 (1534.29) 1211.9 (0/6728.2)

Collective

Before

SAO 3187 (1983.72) 2834 (0/9690)
SA1 3085 (1911.3) 2611 (0/8898)
SA2 3235 (2049.38) 3041 (0/9690)
SA3 3331.6 (2047.61) 3097.7 (195.8/8910.7)

Asking

SAO 1741.3 (1323.11) 1434.6 (0/6323.2)
SA1 1778 (1437) 1380 (0/5920)
SA2 1693 (1093.21) 1619 (0/4411)
SA3 1743.8 (1439.54) 1371 (0/6323.2)

Responding

SAO 1218.5 (944.41) 1047.1 (0/4428.2)
SA1 1174.7 (992.56) 995 (0/4277.6)
SA2 1176.8 (801.24) 1074.6 (0/4084.9)
SA3 1373.15 (1041) 1160.81 (65.35/4428.24)
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els, with two exceptions. The IA visualization had a smaller sum for SA1 while being

asked and during response to a SA probe question. The Mann-Whitney-Wilcoxon test

found no significant effects between visualizations. The Spearman correlation analysis

revealed weak correlations between the sum of Euclidean distance between clicks and

SA probe accuracy for the IA visualization 15 seconds before asking a SA probe ques-

tion for SA2 (r = 0.2, ρ = 0.04) and during response to a SA probe question for SAO (r

= 0.14, ρ = 0.02). Weak correlations were revealed for the Collective visualization while

being asked a SA probe question for SAO (r = -0.13, ρ = 0.05) and SA1 (r = -0.2, ρ = 0.05).

Collective and target left- and right-clicks were examined per participant. Target

left-clicks were the second click required in the process of issuing commands, but did

not provide supplementary information. The number of collective and target left- and

right-clicks descriptive statistics are presented in Table 4.19. Operators using the IA

visualization had fewer collective and target left-clicks, while those using the Collective

visualization had fewer collective and target right-clicks. The Mann-Whitney-Wilcoxon

test identified no significant effects between visualizations.

Table 4.19: Collective and target left- and right-clicks per participant descriptive statis-
tics.

Clicks Mean (SD) Median (Min/Max)

IA

Collective Left 107.6 (49.89) 104 (5/235)
Collective Right 30.64 (20.98) 27.5 (0/85)

Target Left 97.64 (58.78) 83 (5/251)
Target Right 97.18 (82.79) 68.5 (4/352)

Collective

Collective Left 121.96 (47.4) 130.5 (35/212)
Collective Right 30.57 (31.95) 19.5 (7/164)

Target Left 185.6 (64.32) 202 (62/290)
Target Right 82.39 (60.22) 75 (23/278)
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Metrics showing how operators used the abandon command were assessed. IA op-

erators had lower percentages of times the highest value target was abandoned and lower

percentages of times an abandoned target information pop-up window was open per par-

ticipant. The statistical analyses of both metrics were provided in Chapter 4.1.2.1. In-

stances may have occurred when the operator accidentally issued an undesired aban-

don command or repeatedly issued the abandon command, although the command

only needed to be issued once; hence, the percent of times abandon commands exceeded

abandoned targets was examined and the descriptive statistics are shown in Table 4.20.

Operators using the IA visualization had fewer repeated abandon commands for all

decision difficulties, compared to those using the Collective visualization. The Mann-

Whitney-Wilcoxon test found no significant effects between visualizations.

Table 4.20: The percentage of times abandon commands exceeded abandoned targets
per participant descriptive statistics.

Decision Difficulty Mean (SD) Median (Min/Max)

IA
Overall 1.18 (3.02) 0 (0/12)

Easy 0.4 (1.55) 0 (0/6)
Hard 1.35 (4) 0 (0/16)

Collective
Overall 2.68 (6.27) 0 (0/22)

Easy 2.05 (5.06) 0 (0/15)
Hard 3.08 (7.74) 0 (0/25)

A collective’s entities moved to the operator selected target when the decide com-

mand was issued. A decide request required at least 30% of the collective support for

the operator specified target. Collectives that reached 50% support for a target transi-

tioned into the executing state and the operator was no longer able to influence the col-

lective behavior. The time difference (minutes) between the committed state and issued decide

command assessed the operator’s ability to predict the collective’s future state changing

from the committed state (30% support for a target) to executing (50% support for a
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target). The time difference between the committed state and when an operator issued

a decide command descriptive statistics are shown in Table 4.21. Operators using the

Collective visualization had smaller time differences between the committed state and

issued decide commands for overall and easy decisions; however, operators using the

IA visualization had smaller time differences for hard decisions. The Mann-Whitney-

Wilcoxon test found no significant effects between visualizations.

Table 4.21: The time difference (minutes) between committed state and issued decide
request per participant descriptive statistics.

Decision Difficulty Mean (SD) Median (Min/Max)

IA
Overall 0.68 (0.27) 0.62 (0.42/1.78)

Easy 0.7 (0.47) 0.63 (0.32/2.56)
Hard 0.72 (0.21) 0.66 (0.41/1.15)

Collective
Overall 0.65 (0.15) 0.63 (0.45/1.18)

Easy 0.56 (0.14) 0.58 (0.27/0.88)
Hard 0.78 (0.3) 0.75 (0.47/1.99)

A summary of R3’s results that show the hypotheses with associated significant re-

sults is shown in Table 4.22. This summary table is intended to facilitate the discussion.

Table 4.22: A synopsis of R3’s hypotheses associated with significant results. The SA
probe timings are all timings (AT), 15 seconds Before asking (B), While being asked
(W), and During response (D) to a SA probe question.

Variable
Sub- Between Correlation

Variable Visualization IA Coll.

Global Clutter Percentage
SAO H6 − AT
SA1 H6 − AT H6 − B
SA2 H6 − B, W

Euclidean Distance Between SA SAO H7 − AT
Probe Interests and Clicks SA1 H7 − B, W H7 − B

Sum of Euclidean Distance
SAO H7 − D H7 −W

Between Clicks
SA1 H7 −W
SA2 H7 − B
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4.1.3.2 Discussion

The analysis of which visualization promoted better usability was inconclusive, because

both visualizations had advantages and disadvantages. The Collective visualization’s

predictability justified operators issuing decide commands faster, after the collective was

in the committed state, compared to those using the IA visualization. H6 was not sup-

ported; however, because the Collective operators abandoned the highest value tar-

get more frequently, and there was a higher percentage of abandon commands, which

exceeded the number of abandoned targets. Collective operators had more local and

global clutter, which suggests that Collective operators relied on the information pop-up

windows to answer the SA probe questions more than IA operators. Sixteen of twenty-

four SA probe questions relied on information provided in the information pop-up win-

dows. The collective and target icons, as well as the target outlines, were intended to

aid Collective operators to answer the SA probe questions correctly; however, the oper-

ators needed to use the information pop-up windows in order to see the numeric values

for the collective support and behaviors in order to answer questions regarding target

support from a specific collective, or multiple collectives. An example question, such as

“What collectives are investigating Target 3?” in Figure 3.2, will require using the target

information pop-up window, because Target 3 is in range of Collective I and III. A target

information pop-up window is not required for Target 1, in Figure 3.2, since it is only in

range of Collective I. The need to use information pop-up windows contributed to the

Collective visualization clutter. The operators may have preferred the numeric value

representations (e.g., more explainable) versus the other visualization techniques, which

may have contributed to their reliance on the information pop-up windows.
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The IA operators may have had an advantage, by deducing the same information

as the Collective operators gained from the information pop-up windows, by observing

the dynamic behavior of the individual collective entities. Relying on supplemental in-

formation pop-up windows is not ideal and suggests that improvements must be made

to the collective icon to ensure the collective’s state information is more understandable.

Usability modifications, such as indicating which collective was the highest supporting

collective on the target icon, instead of only showing that there was support through the

use of color and opacity, may increase the target icon’s effectiveness and reduce reliance

of the target information pop-up window. Additional experimental design modifica-

tions can ensure a more even distribution of questions that may rely on other informa-

tion providing visualization features, such as the icons, system messages, or collective

assignments versus information pop-up windows. Operators using target information

pop-up windows to verify that a target was abandoned by a collective, may have been

confused if the reported target support was greater than zero. The operators may have

reissued additional abandon commands in order to reduce the collective support to

zero, although only one abandon command was needed. There were instances during

the trial when a few individual collective entities became lost, when the collective hub

was transitioning to a new location, and never moved with the hub. The lost entities

may have continued to explore a now abandoned target, because they never received

the message to abandon the target, which was only communicated inside of the hub.

Strategies, such as reporting zero percent support when an abandon command is is-

sued, may help mitigate erroneous issuing of repeated abandon commands, which was

experienced up to 25% for some operators. IA operators may have also experienced

confusion if they saw individual collective entities still travelling to an abandoned tar-

get. Not displaying lost entities after a specific period of time once a collective hub has
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moved to a new location may also reduce the number of reissued abandon commands.

SA1 probe questions that inquired about objects nearby were answered more ac-

curately than those that were further away when using the IA visualization. Asking

SA probe questions about objects at various distances from the operator’s current focal

point is necessary in order to understand how clutter, or moving individual collective

entities, may affect the operator’s ability to identify the object of interest and answer

the question correctly. Smaller sum of Euclidean distances between interactions, sug-

gests Collective operators may have had fewer interactions. Further analysis is required

to determine whether more interactions were needed for operators to answer SA probe

questions correctly and improve decision performance. H7 was not supported by the

analysis. The IA operators may have issued fewer commands, or did not rely on target

borders as much as the Collective operators. Issuing more commands suggests that Col-

lective operators may have wanted more control over the decision-making task, which

may have occurred due to lower trust, or misunderstanding collective behavior. Further

investigations are needed in order to understand how the model and control mecha-

nisms may interact with the visualization of collectives to influence operator behavior.

The effectiveness of the system design will be dependent on all system characteristics

working together to promote optimal human-collective performance.

The transparency embedded in the Collective visualization did not support the best

overall system usability. The IA visualization promoted less clutter by alleviating the

need to use the collective and target information pop-up windows as often, and pro-

moted fewer interactions. Usability and explainability modifications to the Collective

visualization are needed in order to mitigate undesired operator behaviors, such as the

highest value target being abandoned more frequently, as well as reduce the reliance

on the information windows. Transparency embedded into the Collective visualization,
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via the collective hub icons for example, must represent the same types of information

provided in the information windows. The assumption that fewer interactions are op-

timal may not be accurate for all situations. Understanding strategies and justifications

for more interactions is necessary in order to promote transparency that aids operators

during particular situations and results in higher human-collective performance.

4.1.4 R4: Visualization Influence on Human-Collective Performance

Assessing which visualization promoted better human-collective performance, R4, is necessary

to determine whether the human-collective system transparency aided task completion.

An ideal system performs a task quickly, safely, and successfully.

Figure 4.6: R4 concept map of the assessed direct and indirect transparency factors.

The associated objective dependent variables were (1) decision time, (2) selection

success rate, and (3) SA probe accuracy. The specific direct and indirect transparency

factors related to R4 are identified in Figure 4.6. The relationship between the variables

and the corresponding hypotheses, as well as the direct and indirect transparency fac-
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tors, are identified in Table 4.23.

Performance of the human-collective team can be used to assess the effects of visual-

ization transparency on the team’s ability to fulfill tasks. An ideal system promotes high

performance rates. It was hypothesized (H8) that the human-collective performance, ef-

fectiveness, efficiency, and timing will be better using the Collective visualization.

Table 4.23: Visualization influence on human-collective performance objective (obj) and
subjective (subj) variables (vars), relationship to the hypothesis (H8), as well as the as-
sociated direct and indirect transparency factors, are presented in Figure 2.2.

Transparency Factors
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Decision Time Per Decision X X X X
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SA Probe Accuracy X X X X X X
Mental Rotation Assessment X X

Subj Vars
Weekly Hours on a Desktop or

X X
Laptop
Video Game Proficiency X X
Post-Trial Performance and

X X X X
Understanding

4.1.4.1 Metrics and Results

The length of time it took the human-collective team to reach a decision, decision time

(minutes), was examined. Consensus decision-making algorithms are inherently slow,
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which is undesirable in realistic use scenarios. Adding a human operator into the loop

permits the human to influence the decision and has the potential to minimize deci-

sion time. The decision time descriptive statistics per decision are shown in Table 4.24

[57, 171]. Operators using the Collective visualization had faster decision times for over-

all, easy, and hard decisions. Both visualizations had faster human-collective decision

times compared to the simulation (M2SIM). The Collective visualization simulation had

slightly faster decision times for overall and easy decisions, while the IA visualization

simulation had faster decision times for hard decisions. The Mann-Whitney-Wilcoxon

test found significant effects between visualizations with human operators for overall

(n = 672, U = 50921, ρ = 0.03), easy (n = 375, U = 15452, ρ = 0.04), and hard decisions

(n = 297, U = 9521, ρ = 0.04). Highly significant effects were found between human

operators and simulation for the IA visualization overall (U = 74005, ρ < 0.001), easy (n

= 481, U = 37414, ρ < 0.001), and hard decisions (n = 384, U = 23194, ρ < 0.001) and for

the Collective visualization overall (U = 79468, ρ < 0.001), easy (n = 461, U = 38786, ρ <

0.001), and hard decisions (n = 392, U = 26887, ρ < 0.001).

Table 4.24: Decision time (minutes) descriptive statistics per decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 4.32 (1.83) 3.94 (1.74/15.94)
Easy 3.77 (1.63) 3.38 (1.74/13.47)
Hard 5.09 (1.82) 4.68 (1.86/15.94)

M2SIM

Overall 4.8 (1.1) 4.82 (2.46/7.68)
Easy 4.19 (1.06) 4.07 (2.46/8.85)
Hard 5.73 (1.26) 5.54 (3.43/10.15)

Collective

M2

Overall 3.97 (1.37) 3.64 (1.83/9.94)
Easy 3.37 (1.23) 3.09 (1.83/9.94)
Hard 4.67 (1.2) 4.57 (2.46/8.81)

M2SIM

Overall 4.79 (1.11) 4.79 (2.49/7.7)
Easy 4.17 (0.93) 4.1 (2.49/7.55)
Hard 5.77 (1.38) 5.62 (3.67/10.25)
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The selection success rate was the number of correct decisions (the collective moved to

the highest valued target based on selecting the target itself or due to the operator issu-

ing a decide command)) relative to the total number of decisions. Selection success rate

descriptive statistics per decision are shown in Table 4.25 [57, 171]. Collective opera-

tors had higher selection success rates for all decision difficulties. The human-collective

teams had higher selection success rates for both visualizations for all decision difficul-

ties compared to the simulation. The Collective simulation had higher selection success

rates for overall and hard decisions, while the IA simulation had higher selection suc-

cess rates for easy decisions. The Mann-Whitney-Wilcoxon test found highly significant

effects between visualizations with human operators for overall (n = 672, U = 64008, ρ

< 0.001) and easy decisions (n = 375, U = 19845, ρ < 0.001). A moderate significant

effect significant effects between visualizations with human operators was found for

hard decisions (n = 297, U = 12761, ρ < 0.01). Highly significant effects were found

between human operators and simulation for the IA visualization overall (U = 34650, ρ

Table 4.25: Selection success rate (%) descriptive statistics per decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 75 (43.37) 100 (0/100)
Easy 81.44 (38.98) 100 (0/100)
Hard 66.2 (47.47) 100 (0/100)

M2SIM

Overall 73.69 (19.01) 70 (20/100)
Easy 77.15 (27.12) 85.71 (0/100)
Hard 62.05 (27.17) 66.67 (0/100)

Collective

M2

Overall 88.39 (32.08) 100 (0/100)
Easy 94.44 (22.97) 100 (0/100)
Hard 81.41 (39.03) 100 (0/100)

M2SIM

Overall 74.58 (18.39) 70 (20/100)
Easy 76.7 (26.87) 83.33 (0/100)
Hard 64.04 (26.38) 66.67 (0/100)
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< 0.001), easy (n = 481, U = 18242, ρ < 0.001), and hard decisions (n = 384, U = 13088,

ρ < 0.001) and for the Collective visualization overall (U = 22162, ρ < 0.001), easy (n =

461, U = 10795, ρ < 0.001), and hard decisions (n = 392, U = 9449.5, ρ < 0.001).

The Spearman correlation analysis revealed a moderate correlation between human-

collective team decision time and selection success rate using the IA visualization for

easy decisions (r = -0.42, ρ < 0.001). Weak correlations were revealed between the

human-collective team decision time and selection success rate using the IA visual-

ization for overall decisions (r = -0.27, ρ < 0.001) and when using the Collective visual-

ization for overall (r = -0.11, ρ = 0.05), easy (r = -0.18, ρ = 0.02), and hard decisions (r =

0.18, ρ = 0.03). Moderate correlations were revealed between simulation decision time

and selection success rate using the IA visualization for overall decisions (r = -0.53, ρ

< 0.001) and when using the Collective visualization for overall (r = -0.57, ρ < 0.001)

and easy decisions (r = -0.44, ρ < 0.001). Weak correlations were revealed between sim-

ulation decision time and selection success rate using the IA visualization for easy (r =

-0.35, ρ < 0.001) and hard decisions (r = -0.14, ρ = 0.03).

SA probe accuracy, which is the percentage of correctly answered SA probes ques-

tions used to assess the operator’s SA during a trial, results identified that Collective

operators had higher SA probe accuracy, regardless of the SA level. Further details

about the statistical tests were provided in Chapter 4.1.1.1.

Spearman correlation analyses were conducted to see if any correlations were iden-

tified between the weekly hours that participants’ used a desktop or laptop, video game

proficiency, the mental rotations assessment, and selection success rate. A weak corre-

lation was found between weekly hours participants’ used a desktop or laptop and

selection success rate for the IA visualization and easy decisions (r = 0.16, ρ = 0.02).
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The post-trial performance and understanding questionnaire results, assessed the oper-

ators’ understanding of the collective behavior and their ability to chose the best target

for each decision, were ranked higher for the Collective visualization compared to the

IA. The statistical test details were provided in Chapter 4.1.2.1.

A summary of R4’s results that show the hypotheses with associated significant re-

sults is shown in Table 4.26. This summary table is intended to facilitate the discussion.

Table 4.26: A synopsis of R4’s hypothesis (H8) associated with significant results. The
SA probe timings are all timings (AT), 15 seconds Before asking (B), While being asked
(W), and During response (D) to a SA probe question.

Variable
Sub- Between Correlation

Variable Visualization IA Coll.

Decision Time
Overall H8 H8 H8

Easy H8 H8
Hard H8 H8

Selection Success Rate
Overall H8

———–

Easy H8
Hard H8

SA Probe Accuracy

SAO H8
SA1 H8
SA2 H8
SA3 H8

Weekly Hours on Desktop SA1 H8or Laptop
Post-Trial Understanding H8 ———–

4.1.4.2 Discussion

The analysis suggests that the Collective visualization promoted better human-collective

performance. H8 was supported, because the Collective visualization produced higher

selection success rate and SA performance, as well as higher subjective performance. Op-
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erators using the Collective visualization were more efficient by making significantly

faster decisions and having higher selection success rates compared to the IA visual-

ization. Realistic human-collective user scenarios will require high performance in short

decision times, especially in proposed high-risk environments. Longer decision times

contributed to higher success rates for both visualizations for overall decisions and for

easy decisions for the IA visualization; however, faster decision times contributed to

higher selection success for hard decisions using the Collective visualization. The de-

sign of an effective human-collective system must enable the human-collective team to

fulfill primary objectives, without hindering other metrics, such as decision time. Devot-

ing more time to ensure high task performance is a common trade-off behavior observed

in teams. Expedited decisions may have occurred if higher valued targets were more

observable further away from other objects (less clutter), making them more salient, or

if impatient operators were able to predict future collective behaviors and influenced

collectives more to make decisions faster. The explainability of the information pop-up

windows aided Collective operators to answer more SA probe questions accurately.

The Collective visualization enabled operators with different capabilities to perform rel-

atively the same, unlike the IA visualization, which found that individuals with more

weekly desktop or laptop exposure had higher selection success rates.

The transparency embedded in the Collective visualization promoted the fastest de-

cision times, selection success rates, and SA performance. Strategies, such as providing

control mechanisms to undo actions that had negative influence on collective behav-

iors, and providing supplementary information, promoted transparency. Understand-

ing what interactions contributed to higher performance is necessary to determine what

operator strategies are most effective and efficient, as well as identify what visualization

characteristics are being leveraged in order to perform the task successfully.



122

4.1.5 Visualization Analysis Discussion

The research objective was to determine which visualization achieved better trans-

parency, identify what metrics were useful in determining better transparency, and to

create design guidance for human-collective systems. The analysis indicated that the

Collective visualization provided better transparency, because operators with different

individual capabilities performed similarly for both the primary and secondary tasks, and

the human-collective team performed better. The Mental Rotations Assessment, NASA-

TLX, and SART were useful individual operator capability metrics when determining

the influence of the visualization on the operator and can be easily used in other collec-

tive evaluations. Post-trial subjective assessments, such as the NASA-TLX and SART;

however, will be biased by memory limitations, emphasizing the need for objective

metrics that can assess similar information. Operator experience (e.g., weekly hours on a

desktop or laptop) and expertise (e.g., video game proficiency) can indicate the desired

operator knowledge in order to interact with the collective system effectively.

The influence of visualization on human operator comprehension and visualization

usability requires further investigation in order to better understand the influence of op-

erator interactions and identify more reliable metrics to assess operator understanding.

Using correlations between an operator’s interactions and SA performance can be used

to inform designers whether the actions taken by operators aided their responses, but

does not necessarily provide insight regarding comprehension. The use of eye-tracking

technology can provide improved insight regarding operator comprehension and us-

ability by recording where the operator was looking 15 seconds before asking, while

asking, and during response to a SA probe question. Where operators are looking on

the visualization prior to taking action will indicate what types of information the opera-
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tor was potentially perceiving and comprehending, the difficulty to identify the desired

information due to visualization clutter, and the duration of time devoted to looking at

particular information. Clutter will greatly impact an operator’s ability to perceive and

comprehend information on the visualization and is an informative metric to use when

assessing transparency for human-collective systems.

The reliance on collective and target information pop-up windows contributed to

the majority of clutter for both visualizations and suggests alterations to design recom-

mendations for future human-collective systems. Providing supplementary information,

via information pop-up windows, was necessary for successful human-collective perfor-

mance; however, other strategies must be implemented to improve the efficacy of the

collective icon. Indicating which collective state is most supported, by displaying ei-

ther U, F, C, or X, instead of the status of all four states, may be more advantageous

to the operator. The target a collective is favoring, committed, or executing may also

be displayed on the collective icon. For example, if a collective is favoring Target 8,

the collective icon can show F8, which stands for Favoring Target 8. Providing the

most supported state and target may enable the operator to quickly understand what

the collective is doing and determine if interventions, or more support is needed to en-

sure successful decision-making. Showing the predominant collective state; however,

requires the operator to remember what U, F, C, and X stand for, which can be mit-

igated by adding this information to the legend. Bolding the predominant state letter

on the current collective icon can be used as an alternative design change to improve

the operator’s understanding of the most supported collective state. The perceived men-

tal demand and effort associated with the Collective visualization may decrease with

strategies that make the collective state more obvious to the operator.
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The dynamic and streamlined behavior of the individual collective entities on the IA

visualization may have aided operator understanding of collective behavior, mitigating

the need to access as many information pop-up windows. Displaying all of the indi-

vidual entities is not ideal as collectives become larger in size. The increased number

of entities will contribute to more clutter, potentially hindering the operator’s percep-

tion and comprehension. Using iconography, such as arrows pointing in the direction

of the most supported target, or providing predicted hub locations, may improve oper-

ator understanding for abstract collective visualizations. Further analysis is needed to

verify the effectiveness of the proposed strategies. The consistent improvement in deci-

sion time and selection success rate across all decision difficulties suggests that using

visualizations that show all the individual collective entities does not contribute to bet-

ter human-collective performance. The Collective visualization enabled better human-

collective performance, which is valuable as collective systems become more complex,

with improved capabilities and the utilization of heterogeneous collectives. Presenting

individual collective entities may have caused stress, or confusion, and required op-

erators to slow down the collective decision-making process in order to attain higher

selection success rates. SA performance, selection success rates, and decision times were

useful metrics that can be used in other collective system evaluations.

Indicating target value through the use of color and opacity in general embedded

transparency successfully. Further analysis is required to determine if the entire target

icon must represent the target value to be more perceivable, since operators using the

Collective visualization, which used half of the target icon to represent the value and

the other half to represent support from the highest supporting collective, abandoned

the highest value target more frequently. Opacity levels must be validated to ensure the

distinction of low-, medium-, and high-valued targets from one another. Reiterating the
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task objective, to choose and move each collective to the highest value target, numer-

ous times during training may help mitigate operator misunderstanding. Improvements

can be made to the information pop-up windows in order to decrease the number of reis-

sued abandon commands for operators who relied and verified abandonment using the

information pop-up windows. When an abandon command is issued, the correspond-

ing target information pop-up window can immediately report zero support, instead of

the actual collective support, which corresponds closer to operators’ mental models. A

colored bar can be overlaid on the particular collective that abandoned the target as a

secondary measure to ensure the operator understands the collective status. Operators

can focus their attention on collective support values that are not highlighted, in case

the current target is the highest value target for another nearby collective. Using met-

rics, such as the number of times abandoned requests exceed abandoned targets, can be

used as an error metric for collective systems.

Visualization transparency for human-collective systems can be achieved via differ-

ent design strategies and must be assessed holistically by understanding how different

factors impact transparency and are influenced by transparency. The four secondary

research questions assessed categories of transparency factors that contribute to an ef-

fective system: 1) operator individual capabilities, 2) operator comprehension , 3) vi-

sualization usability, and 4) human-collective team performance. An ideal visualization

will enable operators with different individual capabilities to perform relatively the same,

promote operator comprehension, be usable, and promote high human-collective per-

formance. The Collective visualization enabled operators with different individual capa-

bilities to perform relatively the same and promoted better human-collective performance.

The IA visualization enabled operators to perceive collective behaviors and collective

support for targets more readily than the Collective visualization, where operators used
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the collective and target information pop-up windows to affirm these types of collec-

tive behaviors. As collective systems grow in complexity (e.g., number of individual

agents, heterogeneity), visualizations that show all of the individual collective entities

will cause perceptual and comprehension challenges, as well as influence operator ac-

tions negatively, because too many individual collective entities will clutter the display.

The same advantageous observation (i.e., dynamically seeing collective behaviors and

support) from this analysis may not occur with large collectives (> 10000). Abstract col-

lective visualizations may help promote better transparency, than visualizations show-

ing all of the individual collective entities and enable effective human-collective teams.

4.2 Model with Visualization Analysis

The primary objective of the within-model and between-visualization analysis was to

determine which model and visualization combination achieved better transparency.

Four secondary research question’s assessed how transparency influenced operators

with different individual capabilities, operator comprehension, system usability, and

human-collective performance. The subset of direct and indirect factors (Figure 2.2)

were assessed in the Model with Visualization Analysis and are identified in Figure

4.7. The hypotheses, metrics, results, and discussions for the Model with Visualization

Analysis are presented in Chapters 4.2.1 - 4.2.4, which correspond to research questions

R5 - R8. The questions and hypotheses were comparable to those in the Visualization

Analysis from Chapter 4.1 in order to assess the findings from both analyses. A research

question specific representation of the analyzed direct and indirect transparency factors

is provided. The Model with Visualization Analysis is concluded with a final discussion

that incorporates each respective secondary research question discussion.
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Figure 4.7: The analyzed direct and indirect transparency factors included in the Model
with Visualization Analysis.

4.2.1 R5: System Design Element Influence on Human Operator

Understanding how the model and visualization influenced the operator, R5, is necessary to

determine if the system transparency aided operators with different capabilities. The

associated objective dependent variables were (1) the operator’s ability to influence the

collective in order to choose the highest valued target, (2) SA, (3) visualization clutter,

(4) the operator’s spatial reasoning, and (5) the operator’s working memory capacity.

The specific direct and indirect transparency factors related to R5 are identified in Figure

4.8. The relationship between the variables and the hypotheses, as well as the direct and

indirect transparency factors, are shown in Table 4.27.
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Figure 4.8: R5 concept map of the assessed direct and indirect transparency factors.

The hypotheses in this chapter and the subsequent result 4.2.2 - 4.2.4 are phrased

using the M2 model with the Collective visualization, because each individual system

design element provided the best transparency in their respective evaluations, the Col-

lective evaluation [29] and the IA evaluation of Chapter 4.1 [177]. Operators may have

performed differently depending on their individual capabilities; hence, it was hypoth-

esized (H9) that operators using the M2 model with the Collective visualization will

experience significantly higher SA and lower workload. It was also hypothesized (H10)

that operators with different individual capabilities will not perform significantly differ-

ent using the M2 model with the Collective visualization. Ideal system design elements

will enable operators with different capabilities to perceive, comprehend, and influence

collectives relatively the same. Good designs promote higher operator satisfaction. It

was hypothesized (H11) that operators using the M2 model with the Collective visual-

ization will experience significantly less frustration (i.e., higher satisfaction).
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Table 4.27: Interaction of system design elements influence on the human operator ob-
jective (obj) and subjective (subj) variables (vars), relationship to the hypotheses (H), as
well as the associated direct and indirect transparency factors, as shown in Figure 2.2.
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4.2.1.1 Metrics and Results

The selected target value is the average of all target’s respective values that were se-

lected by the human-collective teams during a trial. The mean (SD) for the selected
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target value per decision difficulty (i.e., overall, easy, and hard) are shown in Table

4.28 [177]. IA operators using the M2 model chose higher valued targets compared to

the M3 model, regardless of the decision difficulty, while Collective operators using

the M3 model chose higher valued targets for overall and hard decisions. The target

value median, min, max, and the Mann-Whitney-Wilcoxon significant effects between

models for each model with visualization combination are presented in Figure 4.9. IA

operators had significantly different selected target values between models for over-

all and easy decisions, while no differences were found for the Collective operators.

Additional Mann-Whitney-Wilcoxon tests were conducted between visualizations and

identified moderate significant effects when using the M3 model for overall (n = 672, U

= 63946, ρ < 0.01) and highly significant effects for hard decisions (n = 276, U = 12058,

ρ < 0.001). Collective operators were able to influence the collective to choose higher

valued targets compared to those using the IA visualization.

Table 4.28: Selected target value mean (SD)
by decision difficulty (Dec Diff), where the
maximum possible value was 100 and the
minimum possible value was 67.

Dec Diff IA Collective

M2

Overall 90.29 (7.11) 92.05 (5.08)
Easy 90.21 (7.29) 92.09 (5.54)
Hard 90.4 (6.88) 92 (4.5)

M3

Overall 89.52 (8.05) 92.22 (4.34)
Easy 90.3 (7.31) 91.73 (4.59)
Hard 88.39 (8.93) 92.92 (3.88)

Figure 4.9: Target value median
(min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty
with significance (ρ < 0.001 - ***, ρ
< 0.01 - **, and ρ < 0.05 - *) between
models.
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SA probe accuracy was the percentage of correctly answered SA probes questions [29].

Five SA1 questions determined the operator’s ability to perceive information about the

collectives and targets, four SA2 questions determined the operator’s comprehension

of information, and three SA3 questions were related to the operator estimating the col-

lectives’ future state. Examples of SA probe questions were provided in Chapter 4.1.1.1.

The SA probe accuracy mean (SD) are shown in Table 4.29 [57, 171, 177]. Operators from

both evaluations using the M2 model, when compared to M3 model, had higher SA3,

while the IA operators had higher SA2, and the Collective operators had higher SAO.

The SA probe accuracy median, min, max, and the Mann-Whitney-Wilcoxon significant

effects between models are presented in Figure 4.10. Significant differences between

models were found for IA operators answering SA1 probe questions and for Collective

operators answering SA3 probe questions. Additional Mann-Whitney-Wilcoxon tests

were conducted between visualizations (n = 56) and identified highly significant effects

using the M2 model for SAO (U = 702, ρ < 0.001) and SA1 (U = 714.5, ρ < 0.001); and

moderately significant effects for SA2 (U = 572.5, ρ < 0.01) and SA3 (U = 554, ρ < 0.01).

Table 4.29: SA probe accuracy (%) mean
(SD) by SA level.

Level IA Collective)

M2

SAO 65.3 (18.87) 89.88 (10.96)
SA1 58.57 (23.05) 91.67 (11.11)
SA2 72.32 (21.88) 88.39 (14.6)
SA3 65.48 (34.52) 89.88 (20.46)

M3

SAO 68.15 (16.36) 87.2 (10.75)
SA1 80 (19.63) 94.05 (13)
SA2 65.18 (28.33) 91.43 (12.68)
SA3 52.38 (27.86) 76.79 (16.57)

Figure 4.10: SA probe accuracy me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by SA level with signifi-
cance (ρ < 0.001 - ***, ρ < 0.01 - **, and
ρ < 0.05 - *) between models.
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Highly significant effects between visualizations were found using the M3 model for

SAO (U = 657.5, ρ < 0.001), SA2 (U = 648, ρ < 0.001), and SA3 (U = 645.5, ρ < 0.001).

A moderately significant effect between visualizations was found using the M3 model

for SA1 (U = 564, ρ < 0.01). Operators using the Collective visualization had higher SA

probe accuracy in general.

Table 4.30: Global clutter mean (SD) percentage 15 seconds before asking, while being
asked, and during response to SA probe question by SA level.

Timing SA Level IA Collective

M2

Before

SAO 30.2 (3.06) 31.37 (4.97)
SA1 29.88 (2.8) 31.38 (5)
SA2 30.41 (3.05) 31.25 (5.09)
SA3 30.45 (3.45) 31.56 (4.76)

Asking

SAO 30.25 (3.13) 31.43 (5.13)
SA1 29.95 (2.91) 31.24 (5.26)
SA2 30.41 (3.12) 31.52 (5.2)
SA3 30.52 (3.49) 31.69 (4.78)

Responding

SAO 30.09 (3.02) 31.41 (5.15)
SA1 29.83 (2.81) 31.43 (5.43)
SA2 30.22 (3) 31.34 (5.08)
SA3 30.37 (3.38) 31.49 (4.66)

M3

Before

SAO 31.26 (3.41) 31.76 (5.23)
SA1 31.2 (3.48) 31.51 (5.05)
SA2 31.78 (3.4) 32.11 (5.21)
SA3 30.68 (3.24) 31.51 (5.51)

Asking

SAO 31.49 (3.59) 31.7 (5.23)
SA1 31.6 (3.74) 31.15 (5.05)
SA2 31.83 (3.54) 32.33 (5.52)
SA3 30.82 (3.34) 31.4 (4.9)

Responding

SAO 31.16 (3.36) 31.7 (5.27)
SA1 31.25 (3.4) 31.24 (5.12)
SA2 31.49 (3.41) 32.25 (5.56)
SA3 30.56 (3.2) 31.37 (4.93)
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Global clutter percentages were analyzed for each SA probe question and was the

percentage of area obstructed by all objects displayed on the computer displays. It

was calculated using Equation 4.2 from Chapter 4.1.1.1. The global clutter mean (SD)

percentage 15 seconds before asking, while being asked, and during response to a SA

probe question are shown in Table 4.30 [177]. IA operators who used the M2 model had

lower global clutter percentages compared to when they used the M3 model. Collective

operators in general had lower global clutter percentages using the M2 model. SA3 at all

timings and SA1 while being asked a SA probe question were lower when Collective

operators used the M3 model. The global clutter percentage median, min, max, and

the Mann-Whitney-Wilcoxon significant effects between models are presented in Figure

4.11. Significant differences between models were found for IA operators at all timings

for SAO, SA1, and SA2 probe questions, while only one significant difference between

models was identified for Collective operators during response to SA2 probe questions.

Additional between visualizations Mann-Whitney-Wilcoxin tests were conducted.

Significant differences between visualizations occurred when using the M2 model. A

highly significant effect between visualizations was found when responding to a SA

probe question for SAO (n = 670, U = 64442, ρ < 0.001). Moderate significant effects

between visualizations were found for SAO 15 seconds before asking (U = 64188, ρ

< 0.01) and while being asked a SA probe question (U = 63728, ρ < 0.01). Significant

effects between visualizations were found 15 seconds before asking a SA probe question

for SA1 (n = 294, U = 12487, ρ = 0.02) and SA3 (n = 152, U = 3445.5, ρ = 0.03); while being

asked a SA probe question for SA1 (U = 12301, ρ = 0.03) and SA3 (U = 3452, ρ = 0.05); and

during the response to a SA probe question for SA1 (U = 12216, ρ = 0.04). Correlations

between the global clutter percentage and SA probe accuracy were only revealed when

using the Collective visualization 15 seconds before asking a SA probe question. The
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Spearman correlation analysis revealed a moderate correlation with the M3 model for

SA3 (r = 0.45, ρ < 0.001), and weak correlations with the M2 model for SA1 (r = 0.16, ρ

= 0.05) and with the M3 model for SAO (r = 0.2, ρ < 0.001). The IA visualization had

lower global clutter percentages in general compared to the Collective visualization.

Collective operators using the M3 model; however, had lower global clutter while being

asked and during response to a SA1 probe question.

(a) 15 seconds before asking a SA probe ques-
tion. (b) While being asked a SA probe question.

(c) During response to a SA probe question.

Figure 4.11: Global clutter percentage median (min/max) and Mann-Whitney-Wilcoxin
test by SA level between models a) 15 seconds before asking, b) while being asked, and
c) during response to a SA probe question.

There were no significant effects between visualizations for operator spatial reason-

ing, based on the Mental Rotations Assessment [172]. Correlations between the Mental
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Rotations Assessment and SA probe accuracy only existed for the IA visualization. The

Spearman correlation analysis revealed weak correlations with the M2 model for SAO

(r = 0.17, ρ < 0.01), SA1 (r = 0.18, ρ = 0.03), and SA2 (r = 0.27, ρ < 0.01). Weak corre-

lations were revealed with the M3 model for SAO (r = 0.15, ρ < 0.01), SA1 (r = 0.19, ρ

= 0.03), and SA2 (r = 0.18, ρ = 0.05). A moderate correlation existed between Working

Memory Capacity, which assessed operator higher-order cognitive task abilities [173],

and SA probe accuracy for the IA visualization with the M2 model for SA3 (r = 0.45,

ρ < 0.001). Weak correlations existed with the M2 model for SAO (r = 0.23, ρ < 0.001)

and SA1 (r = 0.17, ρ = 0.04), and with the M3 model for SAO (r = 0.14, ρ = 0.01). The

Mann-Whitney-Wilcoxon tests identified no significant effects between visualizations

for the weekly hours spent using a desktop or laptop. Weak correlations were found

between weekly hours using a desktop or laptop and SA probe accuracy when using

the M2 model with the IA visualization for SAO (r = 0.12, ρ = 0.04) and SA1 (r = 0.21, ρ

= 0.01), and with the Collective visualization for SA2 (r = 0.21, ρ = 0.02).

The NASA-TLX assessed the six workload subscales and the weighted overall work-

load [174]. The mean (SD) for the NASA-TLX overall workload and imposed demands

are presented in Table 4.31 [57, 177]. IA operators using the M2 model had lower

physical demand and effort when compared to M3, while those using the Collective

visualization had lower physical demand, effort, and frustration with the M2 model.

The NASA-TLX median, min, max, and the Mann-Whitney-Wilcoxon significant ef-

fects between models are presented in Figure 4.12. IA operators had significantly dif-

ferent rankings between models for physical demand and frustration, while mental de-

mand was significantly different between models for Collective operators. Additional

between visualizations Mann-Whitney-Wilcoxin tests (n = 56) identified a significant

effect when using the M2 model for mental demand (U = 515, ρ = 0.04) and a highly
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significant effect for performance (U = 159.5, ρ < 0.001). Significant effects were found

between visualizations using the M3 model for overall workload (U = 266.5, ρ = 0.04),

performance (U = 242.5, ρ = 0.01), and frustration (U = 511, ρ = 0.05), as well as a highly

significant effect for physical demand (U = 208, ρ < 0.001). The Collective visualization

imposed a lower overall workload, had lower physical and temporal demands, and

caused less frustration compared to the IA visualization.

Table 4.31: NASA-TLX mean (SD).

TLX IA Collective

M2

Overall 62.14 (14.81) 57.06 (16.47)
Mental 19.25 (8.8) 23.58 (6.34)

Physical 1.68 (3.32) 0.46 (1.17)
Temp. 11.75 (8.24) 10.94 (7.67)
Perfor. 10.69 (5.87) 5.1 (4.7)
Effort 11.35 (6.68) 12.32 (6.36)
Frus. 7.43 (8.36) 4.65 (6.84)

M3

Overall 60.38 (16.5) 50.63 (17.56)
Mental 18.32 (9.4) 16.54 (9.19)

Physical 6.11 (10.27) 1.81 (6.01)
Temp. 8.85 (7.3) 7.49 (6.63)
Perfor. 9.08 (6.7) 5.15 (4.79)
Effort 14.25 (8.06) 12.5 (5.17)
Frus. 3.77 (5.92) 7.14 (8.31)

Figure 4.12: NASA-TLX median
(min/max) and Mann-Whitney-
Wilcoxin test between models.

The post-experiment questionnaire assessed the collective’s responsiveness to requests,

the participants’ ability to choose the highest valued target, and their understanding of

the collective behavior, from best (1) to worst (2 for the IA evaluation and 3 for the

Collective evaluation). The post-experiment questionnaire mean (SD) are presented

in Table 4.32 [29]. The best collective responsiveness as well as operator ability and

understanding occurred when IA operators used the M2 model versus the M3 model.

Collective operators ranked the collective’s responsiveness highest with the M3 model,
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while operator ability and understanding were highest with the M2 model. The post-

experiment questionnaire median, min, max, and the Mann-Whitney-Wilcoxon signifi-

cant effects between models are presented in Figure 4.13. System responsiveness, oper-

ator ability, and understanding were ranked significantly different between models for

IA operators, while Collective operators ranked system responsiveness and operator

understanding significantly different.

Table 4.32: Post-experiment responsive-
ness, ability, and understanding model
ranking mean (SD) (1-best, 2-worst for IA
evaluation and 3-worst for Collective eval-
uation).

Metric IA Collective

M2

Responsive. 1.64 (0.49) 1.5 (0.51)
Ability 1.86 (0.36) 2 (1.02)

Understand. 1.79 (0.42) 2.5 (0.51)

M3

Responsive. 1.36 (0.49) 3 (0)
Ability 1.14 (0.36) 2 (0)

Understand. 1.21 (0.42) 1 (0)

Figure 4.13: Post-experiment respon-
siveness, ability, and understanding
model ranking median (min/max) and
Mann-Whitney-Wilcoxin test between
models. The ranking was from 1-best
to either 2-worst for the IA evaluation,
or 3-worst for the Collective evalua-
tion.

A summary of R5’s results that show the hypotheses with associated significant re-

sults is shown in Table 4.33. This summary table is intended to facilitate the discussion.

4.2.1.2 Discussion

Relationships to the transparency factors provided in Table 4.27 are emphasized using

italics. The analysis of how the model and visualization influenced operators with dif-
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Table 4.33: A synopsis of R5’s hypotheses associated with significant results. The SA
probe timings are all timings (AT), 15 seconds Before asking (B), While being asked
(W), and During response (D) to a SA probe question.

Variable
Sub-

Within Between
Correlation

Variable
Model Visualization

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3

Target Value
Overall H9 H9

—————–

Hard H9 H9
SAO H9 H9

SA Probe SA1 H9 H9 H9
Accuracy SA2 H9 H9

SA3 H9 H9

Global

SAO
H9 H9 H9

Clutter

-AT -AT -B

Percentage

SA1
H9 H9 H9

-AT -AT -B

SA2
H9 H9 H9

-AT −D -B,W

SA3
H9
-B

Mental SAO

—————–

H10 H10
Rotations SA1 H10 H10
Assessment SA2 H10
Working SAO H10 H10
Memory SA1 H10
Capacity SA3 H10
Weekly SAO H10Hours on
Desktop SA1 H10
or Laptop SA2 H10

NASA-TLX

Overall H9

—————–

Mental H9 H9
Physical H9 H9
Perfor. H9 H9

Frus.
H9, H9,
H11 H11
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Variable
Sub-

Within Between
Correlation

Variable
Model Visualization

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3
Post-

Ability H9 —————–
Experiment

ferent individual capabilities suggests that the M2 model promoted transparency as effec-

tively as the M3 model, while the Collective visualization promoted better transparency

compared to the IA visualization. H9, which hypothesized that operators using the M2

model and Collective visualization will experience significantly higher SA and lower

workload, was not supported. SA performance (i.e., accuracy) varied across the SA levels

depending on the model and workload varied across the workload subscales depending

on the model and visualization. The M2 model was effective at enabling operators to

more accurately predict future collective behaviors, while the M3 model enabled bet-

ter observability of the collectives’ behaviors. Better predictability may have occurred,

because the M2 model aligned with the operators expectations: that the model was de-

signed to choose the highest value target. Predictability of future collective states may

have also improved due to the visualization. Favoring entities in the IA visualization

created streamlines between hubs and targets, which may have directed the operator’s

attention to particular targets. The M3 model may have promoted better perception

of the collectives’ behaviors, because the operator was required to direct those behav-

iors in order to achieve the task. Operator workload was alleviated by the M2 model

by requiring less operator capabilities, such as physical demand and effort, as well as

promoting higher performance, which was expected since operator influence was not re-

quired in order to make decisions. The M3 model alleviated operator workload by also

requiring less operator capabilities, such as mental demands, and improving satisfaction
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(i.e., less frustration) by mitigating temporal (i.e., timing) demands. More operator con-

trol of the decision-making process, such making decision quickly or more slowly, may

have contributed to these lower workload subscales.

Transparency embedded into the Collective visualization partially supported H9,

because it promoted higher SA performance via the color-coded icons and outlines, state

information identified on the collective icon, information provided in the pop-up win-

dows, as well as feedback provided in the Collective Assignments and System Mes-

sages areas. Collective operators encountered more clutter; however, due to the long

duration of time the target information pop-up windows were visible. The increased

clutter has both positive and negative implications for transparency. Clutter, from an

usability perspective, is not ideal if operators are unable to perform their tasks effec-

tively. The Collective operators, who had higher clutter were able to answer more SA

probe questions accurately, which suggests that the operators were not hindered by

the clutter and performed better. The dependence on the visible target information pop-

up windows may have been caused by the type of SA probe questions asked. Thir-

teen of twenty-four SA probe questions relied on information provided in the target

information-pop up windows. An example question, such as “What collectives are in-

vestigating Target 3?”, required using the target information pop-up window, if Target

3 was in range of multiple collectives. The operator was able to identify which collec-

tives were within range of a particular target by left-clicking on the respective collective;

however, target information pop-up windows were needed in order to see the numeric

collective support values from a specific collective, or multiple collectives. Experimen-

tal design modifications can ensure a more even distribution of SA probe questions that

rely on other information, such as the icons, system messages, or collective assignments

versus information pop-up windows. Target icon design modifications that indicate



141

which collectives support a particular target may improve explainability, reliability, and

increase the reliance on the target icon instead of the information pop-up window.

The Collective visualization partially supported H9 by requiring less operator capa-

bilities, such as physical demands, and improving satisfaction (i.e., less frustration) by

mitigating temporal (i.e., timing) demands. Not visualizing entities may have reduced

operator stress, because the rate of a collective’s state change was not easily perceived.

The need or desire to influence collective behaviors may not have been as apparent,

which attributed to lower physical demand and frustration. Higher operator mental

demand when using the M2 model and Collective visualization may have occurred if

collective behaviors, or state changes, were not observable and required more interac-

tions to deduce what was happening, such as accessing information pop-up windows.

H10, which hypothesized that operators with different individual capabilities did not

perform significantly different using the M2 model and the Collective visualization, was

partially supported. Individuals with different spatial reasoning and working memory

capacity capabilities performed relatively the same. Operators who had a higher level of

computer knowledge; however, had a better understanding of the collective behaviors.

This finding was anticipated considering the computer simulation environment. Fur-

ther investigations are needed to identify what particular aspects of computer knowl-

edge attribute to better understanding.

Collective operators using the M2 model were more satisfied (i.e., less frustration),

which supported H11. Dissatisfaction transpires when the system is not transparent and

prohibits the operator from understanding what is currently happening, or the inter-

face appears visually noisy due to clutter [163]. A more autonomous model, one with

more decision-making capabilities, and an abstract collective visualization may mitigate

dissatisfaction. More metrics, such as the Questionnaire for User Interface Satisfaction
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[178], are needed to properly assess how the transparency embedded in the models and

visualizations influence operator satisfaction.

The transparency embedded in the Collective visualization in general supported

operators with individual differences better than the IA visualization. The M2 model;

however, did not support all operators. More computer experience, for example, aided

operator SA performance. Mitigating the need for operators to have particular capability

levels is desired in order to design effective human-collective systems. Higher SA per-

formance also varied between the models, which suggests system design changes must

be considered in order to improve the perception, comprehension, and projection of

future collective behaviors when using the M2 model. Usability considerations need to

identify the ideal amount of operator influence in the decision-making process in order

to alleviate workload (e.g., mental demand) and promote better SA.

4.2.2 R6: System Design Element Promotion of Operator Compre-

hension

The explainability direct transparency factor was explored in R6, which was interested

in determining whether the transparency embedded in the model and visualization pro-

moted operator comprehension. The associated objective dependent variables were (1) SA,

(2) collective and target left- or right-clicks, (3) collective and target observations, (4)

interventions, (5) the percentage of times the highest value target was abandoned, and

(6) whether the information pop-up window was open when a target was abandoned.

The specific direct and indirect transparency factors related to R6 are identified in Fig-

ure 4.14. The relationship between the variables and the corresponding hypotheses, as
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well as the direct and indirect transparency factors, are identified in Table 4.34.

Figure 4.14: R6 concept map of the assessed direct and indirect transparency factors.

Models designed to aid operators to fulfill a best-of-n decision-making task can help

mitigate workload by reducing repetitive interactions, ensure task progress in case an

operator becomes distracted or is attending to a different collective’s decision process,

and allow more time to establish SA and understanding. Using display principles may

help improve understanding by providing legible, clear, concise, organized, easily ac-

cessible, and consistent information. It was hypothesized (H12) that operators will have

a better understanding of the M2 model with the information provided by the Collec-

tive visualization. Appropriate expectations of the model’s capabilities and contribu-

tions towards a goal, as well as providing information redundantly via icons, colors,

messages, and the information pop-up windows can aid operator comprehension and

justify future actions. It was hypothesized (H13) that operators using the M2 model with

the Collective visualization were able to accurately justify actions.
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Table 4.34: Interaction of system design elements promotion of human operator com-
prehension objective (obj) and subjective (subj) variables (vars), relationship to the hy-
potheses (H), as well as the associated direct and indirect transparency factors, are pre-
sented in Figure 2.2.
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Transparency Factors
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4.2.2.1 Metrics and Results

The results of SA probe accuracy, which is the percentage of correctly answered SA

probes questions used to assess the operator’s SA during a trial, identified that IA and

Collective operators using the M2 model had higher SA3 compared to the M3 model,

while the IA operators had higher SA2 and the Collective operators had higher SAO.

Operators using the Collective visualization had higher SA probe accuracy, regardless

of the SA level, compared to the IA visualization. Further details regarding the statisti-
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cal tests were provided in the Metrics and Results Chapter 4.2.1.1.

Collective left-clicks identified all targets within range of a collective and was the first

click required to issue a command. The number of collective left-clicks mean (SD) 15

seconds before asking, while being asked, and during response to a SA probe question

are shown in Table 4.35 [177]. The M2 model in general had fewer collective left-clicks

compared to the M3 model. Collective operators using the M3 model while being asked

Table 4.35: Collective left-clicks mean (SD) 15 seconds before asking, while being asked,
and during response to SA probe question by SA level.

Timing SA Level IA Collective

M2

Before

SAO 1.64 (1.84) 1.95 (1.57)
SA1 1.53 (1.75) 1.88 (1.47)
SA2 1.78 (1.9) 2.13 (1.68)
SA3 1.65 (1.92) 1.83 (1.61)

Asking

SAO 0.49 (0.76) 0.69 (0.88)
SA1 0.3 (0.6) 0.51 (0.79)
SA2 0.42 (0.77) 0.91 (0.89)
SA3 0.33 (0.61) 0.73 (0.96)

Responding

SAO 1.68 (1.79) 1.52 (1.21)
SA1 1.14 (1.46) 1.32 (1.02)
SA2 1.46 (1.8) 1.57 (1.21)
SA3 1.53 (1.98) 1.89 (1.48)

M3

Before

SAO 2.48 (2.28) 2.58 (1.76)
SA1 2.42 (2.15) 2.27 (1.73)
SA2 2.45 (2.33) 2.71 (1.7)
SA3 2.61 (2.43) 2.79 (1.85)

Asking

SAO 0.63 (0.82) 0.85 (0.83)
SA1 0.46 (0.65) 0.88 (0.87)
SA2 0.91 (0.89) 0.83 (0.8)
SA3 0.52 (0.88) 0.85 (0.86)

Responding

SAO 2.02 (1.81) 1.97 (1.39)
SA1 1.78 (1.7) 1.83 (1.25)
SA2 2.21 (1.78) 2.04 (1.43)
SA3 2.16 (1.98) 2.05 (1.5)
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a SA probe question had fewer collective left-clicks for SA2. The number of collective

left-clicks median, min, max, and the Mann-Whitney-Wilcoxon significant effects be-

tween models are presented in Figure 4.15. IA operators had significantly different col-

lective left-clicks between models for SAO, SA1, and SA2 at all timings, as well as SA3

15 seconds before asking and during response to a SA probe question. Significantly dif-

ferent collective left-clicks between models were found 15 seconds before asking a SA

probe question for SAO, SA2, and SA3, while being asked a SA probe question for SAO

and SA1, and during response to a SA probe question for SAO, SA1, and SA2.

Additional between visualizations Mann-Whitney-Wilcoxon tests found highly sig-

nificant effects when using the M2 model 15 seconds before asking a SA probe question

for SAO (n = 664, U = 64213, ρ < 0.001), a moderate significant effect for SA1 (n = 290, U

= 12534, ρ < 0.01), and a significant effect for SA2 (n = 223, U = 7210.5, ρ = 0.04). Highly

significant effects between visualizations using the M2 model while being asked a SA

probe question were found for SAO (U = 67670, ρ < 0.001), and SA2 (U = 8317 ρ <

0.001), as were moderately significant effects for SA1 (U = 12043, ρ < 0.01), and SA3 (n

= 151, U = 3472, ρ < 0.01). A highly significant effect between visualizations using the

M2 model during response to a SA probe question was found for SAO (U = 64710, ρ <

0.001), a moderate significant effect for SA1 (U = 12414, ρ < 0.01), and a significant effect

for SA3 (U = 3489, ρ = 0.01). A significant effect between visualizations when using the

M3 model 15 seconds before asking a SA probe question was found for SAO (n = 665, U

= 60696, ρ = 0.03). Highly significant effects between visualizations using the M3 model

while being asked a SA probe question were found for SAO (U = 64376, ρ < 0.001), SA1

(n = 251, U = 9959.5, ρ < 0.001), as well as a moderate significant effect for SA3 (n =

162, U = 4114, ρ < 0.01). Correlations between the collective left-clicks and SA probe

accuracy were only revealed using the M3 model. The Spearman correlation analysis
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revealed weak correlations with the IA visualization for SA3 15 seconds before asking (r

= -0.26, ρ = 0.02) and while being asked a SA probe question (r = -0.33, ρ < 0.01). Weak

correlations were also revealed with the Collective visualization while being asked a SA

probe question for SAO (r = 0.13, ρ = 0.02) and SA1 (r = 0.22, ρ = 0.02). The IA visualiza-

tion had fewer collective left-clicks in general compared to the Collective visualization.

Collective operators who used the M2 model during response to a SA probe question

had fewer left-clicks for SAO, and with the M3 model for all SA levels.

(a) 15 seconds before asking a SA probe ques-
tion. (b) While being asked a SA probe question.

(c) During response to a SA probe question.

Figure 4.15: Collective left-clicks median (min/max) and Mann-Whitney-Wilcoxin test
by SA level between models a) 15 seconds before asking, b) while being asked, and c)
during response to a SA probe question.
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Target right-clicks allowed the operator to access target information pop-up windows

that provided each collective’s percentage of support for a respective target. The num-

ber of target right-clicks mean (SD) 15 seconds before asking, while being asked, and

during response to a SA probe question are presented in Table 4.36 [177]. The M2 model

in general had fewer target right-clicks for both visualizations. Collective operators

who used the M3 model while being asked a SA probe question had fewer target right-

Table 4.36: Target right-clicks mean (SD) 15 seconds before asking, while being asked,
and during response to SA probe question by SA level.

Timing SA Level IA Collective

M2

Before

SAO 1.68 (2.38) 1.52 (2.41)
SA1 1.92 (2.62) 1.79 (2.71)
SA2 1.28 (1.91) 1.17 (1.94)
SA3 1.8 (2.5) 1.49 (2.35)

Asking

SAO 0.37 (0.79) 0.5 (1)
SA1 0.44 (0.74) 0.49 (0.86)
SA2 0.31 (0.67) 0.55 (1.31)
SA3 0.37 (0.75) 0.44 (0.69)

Responding

SAO 1.07 (1.77) 0.99 (1.7)
SA1 1.11 (1.69) 1.01 (1.74)
SA2 1.1 (1.75) 0.84 (1.44)
SA3 1.68 (2.24) 1.21 (1.98)

M3

Before

SAO 1.04 (1.68) 1.17 (2)
SA1 1.34 (1.54) 1.44 (2.44)
SA2 0.79 (1.53) 0.96 (1.63)
SA3 0.88 (2.03) 1.15 (1.88)

Asking

SAO 0.36 (0.86) 0.42 (0.95)
SA1 0.42 (0.82) 0.38 (0.96)
SA2 0.29 (0.79) 0.44 (0.98)
SA3 0.35 (1) 0.45 (0.9)

Responding

SAO 0.89 (1.64) 0.72 (1.3)
SA1 0.91 (1.69) 0.67 (1.49)
SA2 0.8 (1.68) 0.72 (1.17)
SA3 0.98 (1.52) 0.8 (1.24)
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clicks for SA3. The number of target right-clicks median, min, max, and the Mann-

Whitney-Wilcoxon significant effects between models are presented in Figure 4.16. IA

operators had significantly different collective left-clicks between models 15 seconds

before asking a SA probe question for SAO, SA2, and SA3, as well as during response

to a SA probe question for SAO and SA3. Significantly different collective left-clicks

between models were found 15 seconds before asking a SA probe question for SAO and

during response to a SA probe question for SAO and SA1.

(a) 15 seconds before asking a SA probe ques-
tion.

(b) While being asked a SA probe question.

(c) During response to a SA probe question.

Figure 4.16: Target right-clicks median (min/max) and Mann-Whitney-Wilcoxin test
by SA level between models a) 15 seconds before asking, b) while being asked, and c)
during response to a SA probe question.
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No significant effects between visualizations were found. Collective operators using

the M2 model had fewer target right-clicks for all SA levels, 15 seconds before asking

and during response to a SA probe question compared to the IA operators. Fewer target

right-clicks, 15 seconds before asking and while being asked a SA probe question, oc-

curred when IA operators used the M3 model compared to the Collective visualization.

The Spearman correlation analysis revealed weak correlations between the number of

target right-clicks and SA probe accuracy using the M2 model with the IA visualization

15 seconds before asking a SA probe question for SAO (r = 0.17, ρ < 0.01) and SA2 (r =

0.37, ρ < 0.001). Weak correlations were found using the M3 model with the IA visual-

ization 15 seconds before asking a SA probe question for SAO (r = 0.11, ρ = 0.04), SA1 (r

= 0.2, ρ = 0.02), and with the Collective visualization for SA1 15 seconds before asking

(r = -0.24, ρ = 0.01) and while being asked a SA probe question (r = -0.21, ρ = 0.03).

Collective observations were collective left-clicks that only identified targets within

range of a collective (i.e., white borders indicated that the individual collective entities

were investigating the target, while yellow indicated no investigation) and whether the

targets had been abandoned (i.e., red borders). The percentage of collective left-clicks

associated with collective observations mean (SD) by decision difficulty are shown in

Table 4.37 [57]. IA operators using the M3 model had fewer collective observations

compared to the M2 model, while Collective operators had fewer collective observa-

tions when using the M2 model. The collective observations median, min, max, and the

Mann-Whitney-Wilcoxon significant effects between models are presented in Figure

4.17. IA operators had significantly different collective observations between models

for all decision difficulties, while Collective operators had significantly different col-

lective observations between models for easy decisions. Additional between visualiza-

tions Mann-Whitney-Wilcoxon tests identified a moderate significant effect when using



152

the M2 model for overall (n = 672, U = 61152, ρ < 0.01) and a significant effect for easy

decisions (n = 374, U = 19008, ρ = 0.05). Highly significant effects between visualiza-

tions when using the M3 model were found for overall (U = 73920, ρ < 0.001), easy (n =

396, U = 25587, ρ < 0.001), and hard decisions (n = 276, U = 12520, ρ < 0.001). The IA vi-

sualization had fewer collective observations compared to the Collective visualization.

Table 4.37: Collective observations (%)
mean (SD) by decision difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 77.68 (41.7) 86.01 (34.74)
Easy 71.13 (45.43) 80 (40.11)
Hard 86.62 (34.16) 92.95 (25.68)

M3

Overall 59.23 (49.21) 90.18 (29.8)
Easy 57.79 (49.51) 88.32 (32.19)
Hard 61.31 (48.88) 92.81 (25.93)

Figure 4.17: Collective observa-
tions median (min/max) and Mann-
Whitney-Wilcoxin test by decision
difficulty between models.

Target observations represent the subset of target left-clicks not associated with issu-

ing a command. The percentage mean (SD) for target left-clicks that were target ob-

servations by decision difficulty are shown in Table 4.38 [57]. The M2 model with the

Collective visualization had fewer target observations, regardless of decision difficulty.

The target observations median, min, max, and the Mann-Whitney-Wilcoxon signifi-

cant effects between models are presented in Figure 4.18. IA operators had significantly

different target observations between models for overall decisions, while Collective op-

erators had significantly different target observations between models for all decision

difficulties. Additional between visualizations Mann-Whitney-Wilcoxon tests identi-

fied highly significant effects when using the M2 model for overall (n = 672, U = 35280,

ρ < 0.001), easy (n = 374, U = 10886, ρ < 0.001), and hard decisions (n = 298, U = 6910,
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ρ < 0.001). Highly significant effects between visualizations when using the M3 model

were also found for overall (U = 41664, ρ < 0.001), easy (n = 396, U = 15053, ρ < 0.001),

and hard decisions (n = 276, U = 6615, ρ < 0.001).

Table 4.38: Target observations (%) mean
(SD) by decision difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 60.12 (49.04) 22.62 (41.9)
Easy 58.76 (49.35) 21.11 (40.92)
Hard 61.97 (48.72) 24.36 (43.06)

M3

Overall 67.26 (47) 41.07 (49.27)
Easy 64.32 (48.03) 41.12 (49.33)
Hard 71.53 (45.29) 41.01 (49.36)

Figure 4.18: Target observations me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.

Collective right-clicks allowed the operator to open or close collective information

pop-up windows, which provided the number of individual collective entities in each

decision-making state. Operators may have used the information to justify issuing com-

mands. The number of collective right-clicks per decision was only assessed for the IA

evaluation, because the Collective evaluation did not record which particular collective

pop-up window was opened or closed. The number of collective right-clicks mean (SD)

per decision difficulty are presented in Table 4.39. The M3 model had fewer collective

right-clicks compared to the M2 model, regardless of decision difficulty. The collective

right-clicks median, min, max, and the Mann-Whitney-Wilcoxon significant effects be-

tween models are presented in Figure 4.19. Significantly different collective right-clicks

between models were found for overall and hard decisions.
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Table 4.39: Collective right-clicks per deci-
sion mean (SD) by decision difficulty (Dec
Diff).

Dec Diff IA

M2

Overall 1.55 (2.25)
Easy 1.16 (1.87)
Hard 2.09 (2.6)

M3

Overall 0.88 (2.2)
Easy 0.87 (2.54)
Hard 0.89 (1.57)

Figure 4.19: Collective right-clicks me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.

Target right-clicks allowed the operator to open or close target information pop-up

windows, which provided the percentage of support each collective had for a respec-

tive target. The target support information may have also been used to justify issuing

commands, such as increasing or decreasing support from particular collectives. The

mean (SD) for the number of target right-clicks by decision difficulty are presented in

Table 4.40. IA operators using the M2 model had fewer target right-clicks, while Collec-

tive operators had fewer target right-clicks using the M3 model. The target right-clicks

Table 4.40: Target right-clicks per decision
mean (SD) by decision difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 3.54 (4.18) 3.09 (3.56)
Easy 2.64 (3.14) 2.61 (2.87)
Hard 4.77 (5.03) 3.64 (4.17)

M3

Overall 3.75 (5.38) 3.04 (3.49)
Easy 3.8 (5.82) 2.95 (3.46)
Hard 3.67 (4.69) 3.15 (3.54)

Figure 4.20: Target right-clicks me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.
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median, min, max, and the Mann-Whitney-Wilcoxon significant effects between models

are presented in Figure 4.20. IA operators had significantly different target right-clicks

between models for easy decisions, while no differences were found for the Collective

operators. The Collective visualization had fewer target right-clicks compared to the IA

visualization; however, no significant effects between visualizations were found.

Interventions occurred when the operator abandoned a target with greater than 10%

collective support. Abandoning low-value targets was a desired intervention. Interven-

tions were assessed per participant, due to the inability to associate an intervention to a

decision, and the descriptive statistics are shown in Table 4.41 [57]. The M2 model with

the IA visualization had fewer interventions. The Mann-Whitney-Wilcoxon tests found

a significant effect between models for the IA visualization (n = 56, U = 270.5, ρ = 0.04).

No significant effects between visualizations were found.

Table 4.41: Interventions (abandoned targets with 10% support) per participant descrip-
tive statistics.

Model Mean (SD) Median (Min/Max)

IA
M2 1.5 (2.03) 0.5 (0/7)
M3 3.75 (4.27 3 (0/17)

Collective
M2 2.21 (1.99) 1.5 (0/7)
M3 5 (5.11) 3.5 (0/18)

The abandon command discontinued a collective’s investigation of a particular tar-

get. Ideally lower valued targets were abandoned, since the objective was to aid each

collective in selecting and moving to the highest valued target. The percentage of times

the highest value target was abandoned per participant mean (SD) are presented in Ta-

ble 4.42 [177]. Operators using the M3 model abandoned the highest value target less

frequently compared to the M2 model. The highest value target abandoned median,

min, max, and the Mann-Whitney-Wilcoxon significant effects between models are pre-
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sented in Figure 4.21. IA operators had significantly different highest value target aban-

doned percentages between models for easy decisions, while Collective operators had

significant differences highest value target abandoned percentages between models for

overall decisions. Operators using the IA visualization abandoned the highest value

target less frequently compared to those using the Collective visualization; however,

no significant effects were found between the visualizations.

Table 4.42: Highest value target abandoned
(%) mean (SD) per participant by decision
difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 32.36 (29.53) 43.6 (31.94)
Easy 31.2 (27.17) 33.25 (35.96)
Hard 42.1 (40.53) 48.72 (36.85)

M3

Overall 18.56 (18.38) 21.04 (21.19)
Easy 11.35 (20.82) 11.64 (14.26)
Hard 22.47 (11.89) 28.09 (22.39)

Figure 4.21: Highest value target aban-
doned median (min/max) and Mann-
Whitney-Wilcoxin test by decision dif-
ficulty between models.

The percentage of times an abandoned target information pop-up window was open per

participant was evaluated and the mean (SD) are presented in Table 4.43 [177]. Oper-

ators using the M3 model had fewer abandoned target information pop-up windows

open compared to the M2 model. The abandoned target information pop-up window

open median, min, max, and the Mann-Whitney-Wilcoxon significant effects between

models are presented in Figure 4.22, but no significant effects between models were

found. Additional between visualizations Mann-Whitney-Wilcoxon tests identified sig-

nificant effects using the M3 model for overall (n = 49, U = 414.5, ρ = 0.02) and easy deci-

sions (n = 45, U = 352, ρ = 0.02). Fewer abandoned target information pop-up windows

were open when using the IA visualization compared to the Collective visualization.
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Table 4.43: Abandoned target information
pop-up window open (%) mean (SD) per
participant by decision difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 23.86 (31.43) 33.8 (34.9)
Easy 22.2 (30.95) 30.7 (37.85)
Hard 28.7 (37.89) 36.08 (40.87)

M3

Overall 8.48 (15.6) 26.96 (35.48)
Easy 9.17 (16.13) 28.18 (34.02)
Hard 8.65 (18.5) 25.18 (38.69)

Figure 4.22: Abandoned target in-
formation pop-up window open me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.

The post-trial questionnaire assessed the participants’ understanding of collective be-

havior, never (1) to always (7), and their ability to choose the best target per decision,

never (1) to always (7). The post-trial questionnaire mean (SD) are shown in Table

4.44 [29, 177]. The performance and understanding rankings were higher for Collec-

tive operators using the M3 model. The post-trial performance and understanding me-

dian, min, max, and the Mann-Whitney-Wilcoxon significant effects between models

Table 4.44: Post-trial performance and un-
derstanding model ranking mean (SD) (1-
low, 7-high).

Metric IA Collective

M2
Performance 5.25 (1.69) 5.54 (1.29)
Understand. 4.89 (1.75) 5.82 (1.16)

M3
Performance 5.57 (1.43) 5.75 (1.43)
Understand. 5.93 (1.02) 5.93 (1.46)

Figure 4.23: Post-trial performance
and understanding model ranking me-
dian (min/max) and Mann-Whitney-
Wilcoxin test between models.
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are shown in Figure 4.23. IA operators ranked understanding significantly different be-

tween models. Additional between visualizations Mann-Whitney-Wilcoxon tests found

a significant effect for understanding using the M2 model (n = 56, U = 513, ρ = 0.04).

The post-experiment questionnaire assessed the collective’s responsiveness to requests,

the participants’ ability to choose the highest valued target, and their understanding of

the collective behavior. IA operators who used the M2 model had the best collective

responsiveness, operator ability, and understanding versus the M3 model. Collective

operators ranked the collective’s responsiveness highest using the M3 model, while op-

erator ability and understanding were highest using the M2 model. Details regarding

the statistical tests were provided in the Metrics and Results Chapter 4.2.1.1.

A summary of R6’s results that show the hypotheses with associated significant re-

sults is shown in Table 4.45. This summary table is intended to facilitate the discussion.

Table 4.45: A synopsis of R6’s hypotheses associated with significant results. The SA
probe timings are all timings (AT), 15 seconds Before asking (B), While being asked
(W), and During response (D) to a SA probe question.

Variable

Within Between
Correlation

Sub- Model Visualization
Variable

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3

SA Probe
SAO H12 H12

—————–
Accuracy

SA1 H12 H12 H12
SA2 H12 H12
SA3 H12 H12
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Variable
Sub-

Within Between
Correlation

variable
Model Visualization

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3

Collective

SAO
H13 H13 H13 H13 H13
-AT −AT -AT -B,W -W

Left-Clicks

SA1
H13 H13 H13 H13 H13
-AT -W,D -AT -W -W

SA2
H13 H13 H13,
-AT -B,D -B,W

SA3
H13 H13 H13 H13 H13
-B,D -B -W,D -W -B,W

Target
SAO

H13 H13 H13 H13 H13

Right-

-B,D -B,D -B -B -B

Clicks
SA1

H13 H13 H13

by SA

-D -B -B,W

Level
SA2

H13 H13
-B -B

SA3
H13
-B,D

Collective
Overall H13 H13 H13

—————–

Observations
Easy H13 H13 H13 H13
Hard H13 H13

Target
Overall H12 H12 H12 H12

Observations
Easy H12 H12 H12
Hard H12 H12 H12

Collective Overall H13
Right-Clicks Hard H13
Target Right-

Easy H13Clicks per
Decision
Interventions H12
Highest

Overall
H12,

Value H13
Target

Easy
H12,

Abandoned H13
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Variable
Sub-

Within Between
Correlation

variable
Model Visualization

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3
Abandoned

Overall H13

—————–

Target Info.
Window Open Easy H13
Post-Trial Under. H12 H12
Post-

Under. H12 H12Experiment

4.2.2.2 Discussion

The analysis of how the model and visualization promoted operator comprehension

(i.e., the operator’s capability of understanding) suggests that the M3 model promoted

transparency more effectively than the M2 model, while both visualizations had their

respective advantages and disadvantages. Operators using the M2 model had fewer

undesired interactions, such as target observations (i.e., extra clicks that did not con-

tribute to the task) and interventions. Fewer undesired interactions may have occurred,

because the M2 model was designed to fulfill the best-of-n decision-making task with

or without operator influence, which effectively balanced control between the collectives

and operator, whereas the M3 model relied on operator influence (directability) in order

to make a decision. More undesirable interactions, such as target observations, resulted

in better task performance for operators using the M3 model, which suggests that some

interactions deemed undesirable for one model may be advantageous for another. Tar-

get observations may have occurred due to poor interface and visualization usability.

Operators who issued commands first selected the desired command, then selected the

desired collective and target, and clicked on the commit button to complete a request.

Reissuing the same command required re-selecting the target and clicking on the com-
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mit button. More target observations may have occurred if operators forgot to re-select

the target when reissuing the same commands. Design improvements, such as leaving

the target selected, may help decrease target observations.

H12, which hypothesized that operators will have a better understanding of the M2

model, was not supported, because operators using the M2 model abandoned the high-

est value target more frequently. The operators may have become overloaded super-

vising the four collectives simultaneously, especially if they were distracted by the sec-

ondary task and were momentarily out-of-the-loop. The interface’s 10 Hz update rate

(i.e., timing) may have negatively impacted the operator’s capability to understand what

the collectives were doing and planned (e.g., predictability) to do. Introducing timing

delays to the display may afford operators more time to understanding the current situ-

ation; however, task completion will be prolonged, which is undesired in missions that

require fast system responses. Providing predictive collective behaviors instead of timing

delays may help mitigate the time required for an operator to reenter back into-the-loop.

The highest value target was abandoned more frequently when using the Collective

visualization. The target value may not have been observable enough (i.e., salient) to

distinguish it from other potential targets, which did not support H12. Further investi-

gations are required to determine if the target value must use the entire collective hub

icon area, similar to the IA visualization, in order to be more recognizable, and to estab-

lish what levels of obscurity are needed in order to ensure that target values are reliably

distinguishable from one another. Making distinctions clearer, such as using integers

compared to letters, to identify collectives versus targets, may improve visualization

explainability and mitigate mistakes when operators confused the roman numeral iden-

tifiers with the integer identifiers. IA operators experienced this mistake frequently,

which may have contributed to lowering their understanding. Ensuring that identifiers
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are unique and distinct will improve the effectiveness of the SA probe questions.

The use of target borders (collective observations), information pop-up windows (tar-

get right-clicks), and target value, were assessed to determine if operators used this in-

formation to justify actions reliably (i.e., accurately). Collective operators using the M2

model made better decisions with fewer collective observations and more target-right

clicks. Understanding which collectives supported targets, by seeing numerical percent-

ages, was more valuable compared to outlines indicating which targets were within a

collective’s range. H13, which hypothesized that operators using the M2 model and the

Collective visualization were able to justify actions accurately, was not supported. Col-

lective operators who issued more collective left-clicks while being asked a SA probe

question had better perception when using the M3 model. IA operators who issued

more target right-clicks 15 seconds before asking a SA probe question had better com-

prehension when using the M2 model. The interactions of both operators were accurate

and justified; however, the model and visualization combination did not support the

hypothesis. Collective left-clicks can improve perception of targets in range of a par-

ticular collective and are attributed with issued commands, which require perception,

comprehension, and projection. Target right-clicks provide more information about col-

lective support for a particular target, which may improve understanding.

Lower SA performance may have occurred if operators were in the middle of an in-

teraction when the SA probe question was posed, while higher SA performance may

have occurred because the operators anticipated when a SA probe question was going

to be asked and took preventative actions, such as opening or closing information win-

dows. Operators using target information pop-up windows to verify that a target was

abandoned by a collective may have been confused if the reported target support was

greater than zero. There were instances during the trial when a few individual entities
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became lost, as the collective hub transitioned to a new location, and they did not move

with the hub. The lost entities may have continued to explore a now abandoned target,

because they never received the abandon target message, which occurred inside of the

hub. The operators, as a result, may have reissued additional abandon commands in an

attempt to reduce the collective support to zero, although only one abandon command

was needed. Strategies improving explainability, such as reporting zero percent support

when an abandon command is issued and identifying how many individual entities

have been lost, may help mitigate erroneous repeated abandon command behavior and

improve understanding. IA operators may have also experienced confusion if they saw

individual collective entities still travelling to an abandoned target. Not displaying lost

entities after a specific period of time once a collective hub has moved to a new location

may also reduce the number of reissued abandon commands. Further analysis using

eye-tracking technology may provide more reliable metrics to determine operator com-

prehension by identifying exactly where an operator is focusing their attention.

The transparency embedded in the M2 model and Collective visualization combi-

nation did not support the operator’s capability to understand (i.e., comprehension) the

collectives’ behaviors the best. The M3 model provided better operator comprehension,

because operators were more involved in the decision-making process. More inter-

actions, even if some were undesirable, contributed to better understanding and task

performance. Strategies to increase operator involvement, without taking complete con-

trol over the decision-making process, when using the M2 model must be considered

to improve it’s effectiveness. Design improvements, such as increasing explainability by

identifying how many individual entities became lost during a hub transition to a new

location, can help mitigate abandoning the highest value target, which occurred most

frequently for Collective operators using the M2 model. Understanding why particu-
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lar interactions occurred for specific model and visualization combinations, and what

aspects contributed to those interactions, can help aid designers to improving the trans-

parency embedded in the M2 model and Collective visualization.

4.2.3 R7: System Design Element Usability

Understanding which model and visualization promoted better usability, R7, can determine

which system design elements promote transparency in human-collective systems.

Figure 4.24: R7 concept map of the assessed direct and indirect transparency factors.

The objective dependent variables were (1) visualization clutter, (2) Euclidean dis-

tance, (3) whether an operator was in the middle of an action and completed that action

when asked a SA probe question, (4) issued commands, (5) collective and target right-

clicks, (6) metrics associated with abandoned targets, (7) the time between the commit

state and issued decide command, and (8) metrics associated with information pop-up

windows. The specific direct and indirect transparency factors related to R7 are identi-
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fied in Figure 4.24. The relationship between the variables and the hypotheses, as well

as the direct and indirect transparency factors are shown in Table 4.46.

The goal of usability is to design systems that are effective, efficient, easy to learn,

and are memorable [163]. It was hypothesized (H14) that the M2 model with the Collec-

tive visualization will promote better usability by being more predictable and explain-

able. Providing information that is explainable may aid comprehension, while pre-

dictable information may expedite operator actions. An ideal system will not require

constant interaction to perform well; therefore, it was hypothesized (H15) that operators

using the M2 model with the Collective visualization will require fewer interactions.

Table 4.46: Interaction of system design elements usability objective (obj) and subjective
(subj) variables (vars), relationship to the hypotheses (H), as well as the associated direct
and indirect transparency factors, are presented in Figure 2.2.
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Transparency Factors
Direct Indirect
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4.2.3.1 Metrics and Results

System features were available to the operators in order to aid task completion. The IA

visualization had lower global clutter percentages, which was the percentage of visual-

ization area obstructed by all displayed objects. IA operators using the M2 model had

lower global clutter percentages compared to the M3 model. Collective operators in

general had lower global clutter percentages using the M2 model. The IA visualization
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had lower global clutter percentages in general compared to the Collective visualiza-

tion. The statistical test details were provided in Chapter 4.2.1.1.

The Euclidean distance between the SA probe interest and where the operator was inter-

acting with the visualization indicated where operators focused their attention. The

Euclidean distance was calculated using the method previously mentioned in Chapter

4.1.3.1. The Euclidean distance between SA probe interest and clicks mean (SD) 15 sec-

Table 4.47: Euclidean distance between SA probe interest and clicks mean (SD) 15 sec-
onds before asking, while being asked, and during response to SA probe by SA level.

Timing SA Level IA Collective

M2

Before

SAO 767.1 (262.5) 820.7 (255.67)
SA1 759.5 (251.64) 825.6 (264.1)
SA2 768.9 (282.07) 812.9 (234.94)
SA3 783.4 (262.89) 821.6 (271.03)

Asking

SAO 758.44 (291.48) 851.4 (293.91)
SA1 754.4 (284.65) 845.5 (282.53)
SA2 768.4 (316.09) 879.5 (299.93)
SA3 753.7 (275.04) 823.5 (314.47)

Responding

SAO 764.24 (298.84) 827.7 (273.83)
SA1 760.9 (297.14) 827.9 (279.21)
SA2 774.6 (319.08) 845.2 (275.55)
SA3 757.71 (278.14) 799.7 (261.1)

M3

Before

SAO 868.3 (239.4) 845.1 (258.07)
SA1 814.4 (225.39) 789.9 (261.93)
SA2 925.2 (243.31) 896.9 (241.67)
SA3 907.8 (238.96) 805.9 (277.15)

Asking

SAO 862.3 (254.68) 860.22 (266.91)
SA1 808.4 (250.01) 846.4 (272.23)
SA2 931.6 (249.36) 933.5 (252.66)
SA3 865.7 (241.6) 759 (248.65)

Responding

SAO 865 (262.27) 837 (263.75)
SA1 816.7 (254.45) 802.7 (270.79)
SA2 928.3 (264.62) 901.6 (238.64)
SA3 860.4 (248.47) 755.2 (274.87)
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onds before asking, while being asked, and during response to a SA probe question are

shown in Table 4.47 [177]. Operators from both visualizations using the M2 model in

general had shorter Euclidean distances compared to the M3 model. Collective oper-

ators using the M3 model; however, had shorter Euclidean distances at all timings for

SA3 and 15 seconds before asking and during response to a SA probe question for SA1.

The Euclidean distance between SA probe interest and operator clicks median, min,

max, and the Mann-Whitney-Wilcoxon significant effects between models are presented

in Figure 4.25. IA operators had significantly different Euclidean distances between the

SA probe interest and their current interaction between models 15 seconds before ask-

ing, while being asked, and during response to a SA probe question for SAO and SA2.

A significant difference for this metric between models occurred for Collective opera-

tors 15 seconds before asking a SA2 probe question. Additional between visualizations

Mann-Whitney-Wilcoxon tests identified significant effects when using the M2 model

15 seconds before asking a SA probe question for SAO (n = 557, U = 43303, ρ = 0.02) and

SA1 (n = 273, U = 10577, ρ = 0.05). A moderate significant effect between visualizations

when using the M2 model while being asked a SA probe question was found for SAO (n

= 464, U = 31052, ρ < 0.01) as was a significant effect for SA1 (n = 229, U = 7645, ρ = 0.01).

A significant effect between visualizations using the M2 model during response to a SA

probe question was also found for SAO (n = 499, U = 35029, ρ = 0.02). Shorter Euclidean

distances occurred when IA operators used the M2 model compared to the Collective

visualization, while Collective operators had shorter Euclidean distances when using

the M3 model. The Spearman correlation analysis revealed a weak correlation between

the Euclidean distance of the SA probe’s interest and the operators’ current click and SA

probe accuracy when using the M2 model with the IA visualization 15 seconds before

asking a SA probe question for SA1 (r = -0.18, ρ = 0.04). Weak correlations were revealed
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when using the M3 model with the Collective visualization for SAO while being asked

(r = 0.14, ρ = 0.04) and during response to a SA probe question (r = 0.16, ρ = 0.01).

(a) 15 seconds before asking a SA probe ques-
tion. (b) While being asked a SA probe question.

(c) During response to a SA probe question.

Figure 4.25: Euclidean distance between SA probe interest and clicks median
(min/max) and Mann-Whitney-Wilcoxin test by SA level between models a) 15 seconds
before asking, b) while being asked, and c) during response to a SA probe question.

The percentage of times an operator was in the middle of an action during a SA probe

question identified how often operators were interrupted by the secondary task. Dis-

tracted operators may have needed more time to focus their attention on the SA probe

question, or may have prioritized their current interaction over answering the SA probe

question immediately, or at all. Understanding how distractions may have negatively

influenced operator behavior is needed to design the system to promote effective human-
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collective interactions. The percentage of times an operator was in the middle of an

action during a SA probe question mean (SD) are shown in Table 4.48.

Table 4.48: Middle of an action during SA
probe (%) mean (SD) by SA level.

Level IA Collective

M2

SAO 13.47 (34.19) 47.02 (49.99)
SA1 10.71 (31.04) 46.1 (50.01)
SA2 13.39 (34.21) 46.43 (50.1)
SA3 18.29 (38.9) 50 (50.36)

M3

SAO 27.68 (44.81) 66.67 (47.21)
SA1 28.37 (45.24) 66.96 (47.25)
SA2 26.79 (44.48) 69.29 (46.3)
SA3 27.71 (45.03) 61.9 (48.85)

Figure 4.26: The percentage of times a
participant was in the middle of an ac-
tion during a SA probe question me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by SA level between mod-
els.

Operators using the M2 model were interrupted less by the SA probe question com-

pared to those using the M3 model irrespective of the visualization. The percentage

of times operators were in the middle of an action during a SA probe question me-

dian, min, max, and the Mann-Whitney-Wilcoxon significant effects between models

are identified in Figure 4.26. The percentage of times operators from both evaluations

were in the middle of an action during a SA probe question was significantly different

between models for SAO, SA1, and SA2. Additional between visualizations Mann-

Whitney-Wilcoxon tests identified highly significant effects when using the M2 model

for SAO (n = 670, U = 74938, ρ < 0.001), SA1 (n = 294, U = 14595, ρ < 0.001), SA2 (n = 224,

U = 8344, ρ < 0.001), and SA3 (n = 152, U = 3780, ρ < 0.001). Highly significant effects

between visualizations using the M3 model were found for SAO (n = 672, U = 78456,

ρ < 0.001), SA1 (n = 253, U = 10944, ρ < 0.001), SA2 (n = 252, U = 11172, ρ < 0.001),
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and SA3 (n = 167, U = 4678, ρ < 0.001). IA operators were interrupted less frequently

by SA probe questions. The Spearman correlation analysis revealed weak correlations

between the middle of an action during a SA probe question and SA probe accuracy for

the IA visualization using the M2 model for SA1 (r = -0.22, ρ < 0.01), as well as the M3

model for SA2 (r = 0.19, ρ = 0.05) and SA3 (r = -0.33, ρ < 0.01). A weak correlation was

revealed for the Collective visualization using the M2 model for SA3 (r = 0.24, ρ = 0.05).

Table 4.49: Completed interrupted SA
probe action (%) mean (SD) by SA level.

Level IA Collective

M2

SAO 98.8 (10.89) 98.81 (10.86)
SA1 100 (0) 98.7 (11.36)
SA2 99.11 (9.45) 98.21 (13.3)
SA3 96.34 (18.89) 100 (0)

M3

SAO 100 (0) 98.51 (12.13)
SA1 100 (0) 98.21 (13.3)
SA2 100 (0) 98.57 (11.91)
SA3 100 (0) 98.81 (10.91)

Figure 4.27: Completed interrupted
SA probe action median (min/max)
and Mann-Whitney-Wilcoxin test by
SA level between models.

The percentage of times a participant completed an interrupted SA probe action identi-

fied how often operators were able to return back to their previous task. A system that

is easy to remember is desirable in order to attain optimal operator behavior [90]. The

percentage of completed interrupted SA probe actions mean (SD) are presented in Table

4.49. IA operators using the M3 model were able to complete 100% of their interrupted

actions compared to those using the M2 model, while Collective operators using the

M2 model completed approximately 99% of their interrupted actions. The percentage

of completed interrupted SA probe actions median, min, max, and the Mann-Whitney-

Wilcoxon significant effects between models are presented in Figure 4.27. Significant



174

differences existed between models for the IA operators for SAO, while no differences

existed for the Collective operators. Additional between visualizations Mann-Whitney-

Wilcoxon tests identified a significant effect when using the M3 model for SA1 (n = 253,

U = 55608, ρ = 0.03). Operators using the IA visualization completed more interrupted

actions compared those using the Collective visualization. No correlations were found

between the completed interrupted SA probe actions and SA probe accuracy.

Table 4.50: Investigate commands per deci-
sion mean (SD) by decision difficulty (Dec
Diff).

Dec Diff IA Collective

M2

Overall 2.1 (3.23) 1.78 (1.62)
Easy 2.06 (2.75) 1.53 (1.49)
Hard 2.15 (3.79) 2.06 (1.72)

M3

Overall 8.72 (3.82) 4.74 (2.2)
Easy 8.09 (3.95) 4.23 (2.11)
Hard 9.64 (3.44) 5.47 (2.12)

Figure 4.28: The number of investigate
commands issued per decision me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.

The investigate command permitted increasing a collective’s support for an operator

specified target. Additional support for the same target was achieved by reissuing the

investigate command repeatedly. The number of investigate commands issued per de-

cision mean (SD) are presented in Table 4.50 [171]. Generally, operators using the M2

model and Collective visualization issued fewer investigate commands. The number of

investigate commands issued per decision median, min, max, and the Mann-Whitney-

Wilcoxon significant effects between models are shown in Figure 4.28. Significant dif-

ferences were found between models for the number of investigate commands issued

for both visualizations at all decision difficulties. Additional between visualizations
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Mann-Whitney-Wilcoxon tests identified a moderate significant effect when using the

M2 model for overall decisions (n = 672, U = 63866, ρ < 0.01) and a highly significant

effect for hard decisions (n = 298, U = 14066, ρ < 0.001). Highly significant effects be-

tween visualizations using the M3 model were found for overall (U = 17990, ρ < 0.001),

easy (n = 396, U = 6279.5, ρ < 0.001), and hard decisions (n = 276, U = 2331.5, ρ < 0.001).

Table 4.51: Abandon commands per deci-
sion mean (SD) by decision difficulty (Dec
Diff).

Dec Diff IA Collective

M2

Overall 0.1 (0.54) 0.09 (0.29)
Easy 0.05 (0.22) 0.06 (0.24)
Hard 0.16 (0.79) 0.12 (0.34)

M3

Overall 0.15 (0.43) 0.17 (0.42)
Easy 0.15 (0.45) 0.16 (0.4)
Hard 0.15 (0.4) 0.19 (0.45)

Figure 4.29: The number of abandon
commands issued per decision me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.

The abandon command permitted decreasing a collective’s support for a target and

only needed to be issued once in order for the collective to ignore a specified target

for the duration of a decision. The number of abandon commands issued per decision

mean (SD) are shown in Table 4.51 [171]. Operators using the M2 model in general

issued fewer abandon commands compared to the M3 model; however, IA operators

using the M3 model issued fewer abandon commands for hard decisions. The number

of abandon commands issued per decision median, min, max, and the Mann-Whitney-

Wilcoxon significant effects between models are shown in Figure 4.29. Significant dif-

ferences were found between models for the number of abandon commands issued per

decision with both visualizations for overall and easy decisions. No significant effects
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between visualizations were found. IA operators issued fewer abandon commands in

general compared to those using the Collective visualization. Collective operators us-

ing the M2 model issued fewer abandon commands for overall and hard decisions only.

Table 4.52: Decide commands per decision
mean (SD) by decision difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 0.38 (0.49) 0.52 (0.51)
Easy 0.38 (0.49) 0.58 (0.51)
Hard 0.39 (0.49) 0.44 (0.51)

M3

Overall 0.99 (0.08) 1.03 (0.26)
Easy 1 (0.07) 1.03 (0.24)
Hard 0.99 (0.09) 1.04 (0.29)

Figure 4.30: The number of decide
commands issued per decision me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.

A collective’s entities stopped exploring alternative targets and moved to the oper-

ator selected target when the decide command was issued. A decide request required

at least 30% of the collective support for the operator specified target. Collectives that

reached 50% support for a target transitioned into the executing state and the operator

was no longer able to influence the collective behavior. The number of decide com-

mands issued per decision mean (SD) are presented in Table 4.52 [171]. Operators us-

ing the M2 model with the IA visualization issued fewer decide commands compared

to those using the M3 model or the Collective visualization. The number of decide

commands issued per decision median, min, max, and the Mann-Whitney-Wilcoxon

significant effects between models are presented in Figure 4.30. Significant differences

were found between models for the number of decide commands issued per decision

for both visualizations at all decision difficulties. Additional between visualizations
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Mann-Whitney-Wilcoxon tests identified highly significant effects using the M2 model

for overall (n = 672, U = 63968, ρ < 0.01) and easy decisions (n = 374, U = 21014, ρ

< 0.001). A moderately significant effect between visualizations when using the M3

model was found for overall decisions (U = 57952, ρ < 0.01) and a significant effect

existed for easy decisions (n = 377, U = 19997, ρ = 0.05).

Collective right-clicks and target right-clicks allowed the operator to access the respec-

tive information pop-up windows, which provided the number of individual entities in

each particular state and the percentage of support each collective had for a respective

target. The M3 model in general had fewer collective and target right-clicks compared

to the M2 model, while the Collective visualization had fewer target right-clicks com-

pared to the IA visualization. The statistical analyses were provided in Chapter 4.2.2.1.

Metrics showing how operators used the abandon command were assessed. Oper-

ators using the M3 model and IA visualization abandoned the highest value target less

frequently and had fewer abandoned target information pop-up windows open. The statis-

tical analyses of both metrics were provided in Chapter 4.2.2.1. Instances may have

occurred when the operator accidentally issued an undesired abandon command or re-

peatedly issued the abandon command, although targets were abandoned after a single

command was issued. The percent of times abandon commands exceeded abandoned targets

was examined and the mean (SD) are presented in Table 4.53 [177]. Operators using the

M2 model issued fewer repeated abandon commands compared to the M3 model. The

percent of times abandon commands exceeded abandoned targets median, min, max,

and the Mann-Whitney-Wilcoxon significant effects between models are presented in

Figure 4.31. Significant differences were found between models for the percent of times

abandon commands exceeded abandoned targets with both visualizations for overall

and hard decisions. No significant effects between visualizations were found. IA oper-
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ators had fewer repeated abandon commands in general compared to those using the

Collective visualization. Collective operators using the M3 model had fewer repeated

abandon commands for overall and hard decisions.

Table 4.53: The percentage of times aban-
don commands exceeded abandoned tar-
gets per participant mean (SD) by decision
difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 1.18 (3.02) 2.68 (6.27)
Easy 0.4 (1.55) 2.05 (5.06)
Hard 1.35 (4) 3.08 (7.74)

M3

Overall 6.88 (6.62) 6.54 (6.32)
Easy 1.48 (4.39) 2.82 (5.73)
Hard 13.26 (9.85) 10.91 (9.38)

Figure 4.31: The percent of times aban-
don commands exceeded abandoned
targets median (min/max) and Mann-
Whitney-Wilcoxin test by decision dif-
ficulty between models.

The time difference (minutes) between the commit state and issued decide command as-

sessed the operator’s ability to predict the collective’s future state transition from the

committed state (30% support for a target) to executing (50% support for a target).

The time difference mean (SD) are shown in Table 4.54 [177]. Operators using the M3

model issued decide commands faster than the M2 model. The time difference between

commit state and issued decide command median, min, max, and the Mann-Whitney-

Wilcoxon significant effects between models are shown in Figure 4.32. Significant dif-

ferences existed between models for the time difference between the commit state and

decide command for both visualizations at all decision difficulties. Collective operators

in general had smaller time differences between the committed state and issued decide

commands compared to those using the IA visualization; however, no significant ef-

fects between visualizations were found. IA operators using the M2 model had smaller
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time differences between the commit state and decide command for hard decisions.

Table 4.54: The time difference (minutes)
between commit state and issued decide
command per participant mean (SD) by de-
cision difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 0.68 (0.27) 0.65 (0.15)
Easy 0.7 (0.47) 0.56 (0.14)
Hard 0.72 (0.21) 0.78 (0.3)

M3

Overall 0.6 (0.3) 0.57 (0.2)
Easy 0.57 (0.53) 0.52 (0.32)
Hard 0.62 (0.22) 0.62 (0.18)

Figure 4.32: The time difference be-
tween commit state and issued de-
cide command median (min/max) and
Mann-Whitney-Wilcoxin test by deci-
sion difficulty between models.

Further analysis of how operators used the collective and target information pop-up

windows was conducted. The average number of times target information pop-up win-

dows were opened per target per decision identified the average frequency at which the

information pop-up windows were accessed. The average frequency of an accessed target

information pop-up window per target per decision mean (SD) are shown in Table 4.55.

Operators using the M3 model in general accessed target information pop-up windows

less frequently compared to the M2 model. Target information pop-up windows were

accessed less frequently for operators from both evaluations using the M2 model for

easy decisions. The average frequency of an accessed target information pop-up win-

dow median, min, max, and the Mann-Whitney-Wilcoxon significant effects between

models are presented in Figure 4.33. IA operators had significantly different average

frequencies of accessed target information pop-up windows between models for hard

decisions, while the Collective operators had no significant differences between mod-

els. Additional between visualizations Mann-Whitney-Wilcoxon tests identified a sig-
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nificant effect when using the M2 model for overall decisions (n = 619, U = 42857, ρ

= 0.02) and a moderate significant effect for hard decisions (n = 282, U = 7908.5, ρ <

0.01). Operators using the Collective visualization accessed target information pop-up

windows less frequently compared to the IA visualization.

Table 4.55: Average frequency of accessed
target information pop-up window per tar-
get per decision mean (SD) by decision dif-
ficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 1.93 (1.17) 1.67 (0.94)
Easy 1.7 (0.98) 1.57 (0.82)
Hard 2.23 (1.33) 1.79 (1.05)

M3

Overall 1.8 (1.33) 1.67 (0.91)
Easy 1.83 (1.48) 1.62 (0.88)
Hard 1.77 (1.1) 1.73 (0.95)

Figure 4.33: Average frequency of ac-
cessed target information pop-up win-
dow per target median (min/max) and
Mann-Whitney-Wilcoxin test by deci-
sion difficulty between models.

Operators using the target information pop-up windows may have accessed them

frequently for short time periods, or left them open for longer time periods. The average

percentage of time a target information pop-up window was open per target relative to the de-

cision time mean (SD) are presented in Table 4.56. IA operators using the M2 model left

target information pop-up windows open for shorter time periods. The average time

target information windows were opened median, min, max, and the Mann-Whitney-

Wilcoxon significant effects between models are presented in Figure 4.34. Significant

differences were found between models for the average time target information pop-

up windows were open for both visualizations at all decision difficulties; however, no

significant effects between visualizations were found.
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Table 4.56: Average time target informa-
tion windows opened per target per deci-
sion (%) mean (SD) by decision difficulty
(Dec Diff).

Dec Diff IA Collective

M2

Overall 24.18 (26.65) 28.38 (28.61)
Easy 27.53 (28.76) 30.48 (29.12)
Hard 19.87 (23.05) 26.05 (27.95)

M3

Overall 34.93 (25.29) 36.58 (29.41)
Easy 37.56 (27.01) 37.63 (30.98)
Hard 31.12 (22.12) 35.09 (27.07)

Figure 4.34: Average time target in-
formation windows opened per tar-
get median (min/max) and Mann-
Whitney-Wilcoxin test by decision dif-
ficulty between models.

Operators may have accessed particular target information pop-up windows, such

as the decision target, more frequently for longer time periods. The average percentage

of time the decision target information pop-up window was open relative to the decision time

mean (SD) are shown in Table 4.57. Operators using the M2 model left the decision tar-

get information pop-up window open for shorter periods of time compared to the M3

model. The time the decision target information window is open median, min, max,

and the Mann-Whitney-Wilcoxon significant effects between models are shown in Fig-

ure 4.35. Significant differences were found between models for the time the decision

target information window was open for both visualizations at all decision difficulties.

Additional between visualizations Mann-Whitney-Wilcoxon tests identified a highly

significant effect using the M2 model for overall decisions (n = 672, U = 65102, ρ <

0.001), as well as significant effects for easy (n = 374, U = 20114, ρ = 0.01), and hard

decisions (n = 298, U = 12832, ρ = 0.02). A moderately significant effect between visual-

izations using the M3 model was found for overall decisions (U = 48749, ρ < 0.01), with

significant effects for easy (n = 396, U = 17095, ρ = 0.03), and hard decisions (n = 276,
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U = 8157, ρ = 0.04). IA operators using the M2 model left the decision target informa-

tion pop-up window open for shorter periods of time compared to those using the M3

model, while the Collective operators had shorter time periods using the M3 model.

Table 4.57: The time decision target in-
formation window open per decision (%)
mean (SD) by decision difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 21.64 (28.25) 30.55 (32.6)
Easy 23.69 (30.7) 32.51 (34.43)
Hard 18.84 (24.33) 28.27 (30.31)

M3

Overall 50.56 (29.1) 43.94 (31.69)
Easy 50.71 (29.31) 44.12 (33.33)
Hard 50.34 (28.91) 43.67 (29.31)

Figure 4.35: The time decision tar-
get information window open me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.

The average percentage of time the decision collective information pop-up window was

open relative to the decision time mean (SD) are shown in Table 4.58. The time the deci-

sion collective information window was open was only assessed for the IA evaluation,

because the Collective evaluation did not record which particular collective pop-up

window was opened or closed. IA operators using the M3 model left the decision col-

lective information pop-up window open for shorter periods of time compared to the

M2 model. The time the decision collective information window is open median, min,

max, and the Mann-Whitney-Wilcoxon significant effects between models are shown in

Figure 4.36. IA operators had significantly different times for hard decisions.

The post-trial questionnaire assessed the perceived effectiveness of each request type (in-

vestigate, abandon, and decide), not effective (1) to very effective (7). The post-trial

effectiveness subjective ranking mean (SD) are presented in Table 4.59 [29]. The in-
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Table 4.58: The time decision collective in-
formation window open per decision (%)
mean (SD) by decision difficulty (Dec Diff).

Dec Diff IA

M2

Overall 21.37 (35.24)
Easy 20.16 (34.79)
Hard 23.03 (35.91))

M3

Overall 19.84 (35.28)
Easy 19.74 (34.79)
Hard 20 (36.12)

Figure 4.36: The time decision col-
lective information window open me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.

vestigate, abandon, and decide rankings were generally ranked higher for operators

using the M3 model when compared to those using the M2 model. Collective operators

using the M2 model ranked abandon effectiveness higher. The post-trial effectiveness

median, min, max, and the Mann-Whitney-Wilcoxon significant effects between mod-

els are shown in Figure 4.37. Significant differences between models were found in

IA operator rankings for the decide command and for Collective operator rankings for

both the abandon and decide commands. Additional between visualizations Mann-

Whitney-Wilcoxon tests identified a moderate significant effect for the abandon effec-

tiveness when using the M2 model (n = 56, U = 554.5, ρ < 0.01). IA operators using

the M3 model ranked investigate, abandon, and decide effectiveness higher compared

to those using the Collective visualization, while Collective operators ranked abandon

effectiveness higher when using the M2 model.

The post-experiment questionnaire assessed the collective’s responsiveness to requests,

the participants’ ability to choose the highest valued target, and their understanding of

the collective behavior. IA operators who used the M2 model had the best collective
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Table 4.59: Post-trial command effective-
ness ranking mean (SD) (1-low, 7-high).

Metric IA Collective

M2

Investigate 4.68 (1.56) 4.75 (1.53)
Abandon 4.82 (1.96) 6.18 (1.42)

Decide 5.29 (1.7) 5.57 (1.99)

M3

Investigate 5.46 (1.4) 5.18 (1.68)
Abandon 5.29 (1.84) 5.29 (1.76)

Decide 6.79 (0.5) 6.54 (0.92)

Figure 4.37: Post-trial command ef-
fectiveness ranking median (min/max)
and Mann-Whitney-Wilcoxin test be-
tween models.

responsiveness, operator ability, and understanding versus the M3 model. Collective

operators ranked the collective’s responsiveness highest using the M3 model, while op-

erator ability and understanding were highest using the M2 model. Details regarding

the statistical tests were provided in the Metrics and Results Chapter 4.2.1.1.

Table 4.60: A synopsis of R7’s hypotheses associated with significant results. The SA
probe timings are all timings (AT), 15 seconds Before asking (B), While being asked
(W), and During response (D) to a SA probe question.

Variable

Within Between
Correlation

Sub- Model Visualization
Variable

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3

Global

SAO
H14 H14 H14
-AT -AT -B

Clutter
SA1

H14 H14 H14
-AT -AT -B

Percentage SA2
H14 H14 H14
-AT −D -B,W

SA3
H14
-B
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Variable

Within Between
Correlation

Sub- Model Visualization
Variable

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3
Euclidean SAO

H15 H15 H15
Distance -AT −AT -W,D
Between SA1

H15 H15
SA Probe -B,W −B
Interests SA2

H15 H15
and Clicks -AT -B
Middle of SAO H15 H15 H15 H15
Action SA1 H15 H15 H15 H15 H15
During SA2 H15 H15 H15 H15 H15
SA Probe SA3 H15 H15 H15 H15
Completed SAO

H14,
Interrupted H15
SA Probe SA1

H14,
Action H15

Investigate
Overall H15 H15 H15 H15

—————–

Commands
Easy H15 H15 H15
Hard H15 H15 H15 H15

Abandon Overall H15 H15
Commands Easy H15 H15

Decide

Overall
H14, H14, H14, H14,
H15 H15 H15 H15

Commands
Easy

H14, H14, H14, H14,
H15 H15 H15 H15

Hard
H14, H14,
H15 H15

Collective Overall H15
Right-Clicks Hard H15
Target Right-

Easy H15Clicks per
Decision
Highest Value Overall H14
Target

Easy H14Abandoned



186

Variable
Sub-

Within Between
Correlation

variable
Model Visualization

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3
Abandoned Overall H14

—————–

Target Info.
Easy H14Window Open

Abandon
Overall H14 H14Requests

Exceeded
Hard H14 H14Abandon Targets

Time Between Overall H14 H14
Commit State Easy H14 H14
Issued Decide

Hard H14 H14Command

Frequency of Overall
H14,

Accessed Target
H15

Info. Windows Hard
H14, H14,
H15 H15

Time Target Info.
Overall H14 H14

Windows Open
Easy H14 H14
Hard H14 H14

Time Decision
Hard H14Collective Info.

Window Open
Time Decision Overall H14 H14 H14 H14
Target Info. Easy H14 H14 H14 H14
Window Open Hard H14 H14 H14 H14

Post-Trial
Abandon H14 H14

Decide H14 H14
Post-Experiment Respon. H14 H14

A summary of R7’s results by the hypotheses, with significant results identified, is

provided in Table 4.60. This summary table is intended to facilitate the discussion.
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4.2.3.2 Discussion

The analysis of which model and visualization promoted better usability suggests that

the IA visualization promoted transparency more effectively than the Collective visual-

ization, while both models had their respective advantages and disadvantages. Oper-

ators using the M2 model had less global clutter, due to target information pop-up win-

dows being open for less time, smaller Euclidean distances between the interest of a SA

probe question and their current interaction, were able to complete interrupted actions

after answering a SA probe question, and issued fewer abandon and decide commands.

H14, which hypothesized that the M2 model and Collective visualization will promote

better usability by being more predictable and explainable, was not supported by the M2

model results. Operators from both evaluations using the M2 model abandoned the

highest value target more frequently, which may have occurred due to misunderstanding

or poor SA. IA operators using the M2 model were not as timely (i.e., faster) at predicting

when a collective was committed to a target and had the decision collective information

pop-up window open for a longer duration of time (i.e., lower explainability) compared

to when using the M3 model. The Collective evaluation did not record which collectives

were right-clicked on, which impeded the ability to associate right-clicks to a collective

per decision; however, a similar reliance of having the decision collective information

pop-up window visible, like the IA operators, may have occurred considering how the

Collective operators used the target information pop-up windows. Further evaluations

are needed to validate Collective operator usability behavior.

The Collective visualization enabled operators to complete actions prior to a SA

probe question and aided operators to issue decide commands shortly after a collective

was committed to a target. H14 was not supported by the Collective visualization find-



188

ings, since more of the highest value targets were abandoned. The continuous display of

collective and target information pop-up windows promoted higher SA performance for

the Collective operators when using both models. The reliance of the supplementary

information provided in the pop-up windows suggests that the information was more

explainable and reliable than the information provided on the collective icons. Incorpo-

rating the numerical percentage of support from the respective Collectives on a target

icon or identifying the most favored target on a collective hub may help reduce the

reliance of the information pop-up windows and simultaneously improve SA by miti-

gating potential observability issues if the operator must interact with more collectives.

IA operators using the M3 model and Collective operators using the M2 model were

able to complete actions that were interrupted by a SA probe question 99% of the time.

The memorability of both models and visualizations enabled operators to return to a

previous task after answering the SA probe question, because of the required opera-

tor engagement (M3 model) and established expectations of collective behaviors (M2

model). The predictability of the M3 model and Collective visualization justified issu-

ing decide commands shortly after collectives were in a committed state; however, this

finding may be biased for the M3 model, because of the required operator influence to

achieve the decision-making task. The same bias can attribute to the command effective-

ness rankings, which were higher for the M3 model. The IA operators’ ability to identify

objects on the visualization may have been impeded by displaying all of the individ-

ual collective entities, collective and target icons, and collective and target information

pop-up windows when the SA probe question inquired about an object further away

from the center of the operator’s current attentional focus. Asking SA probe questions

about objects at various distances from the operator’s current focal point is necessary

in order to understand how clutter, or moving individual collective entities, may affect
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the operator’s ability to identify the object of interest and impact SA performance.

H15, which hypothesized that operators using the M2 model and Collective visu-

alization will require fewer interactions, was not supported. The M2 model enabled

fewer commands compared to the M3 model, as expected. The IA visualization en-

abled fewer abandon and decide commands. Collective operators using the M2 model

had better decision-making performance when more investigate commands were issued.

Issuing more investigate commands for high-value targets located further away from

the collective hub may suggest that the interaction delay embedded in the M2 model,

which was designed to reduce the impacts of environmental bias and improve the suc-

cess of choosing the ground truth best targets, may have not accommodated operators’

expectations if lower valued targets were being favored solely because they were closer

to the hub. Collective operators who issued more commands may have wanted con-

trol and directability over the decision-making, which may have occurred due to lower

trust, or misunderstanding collective behavior. Further investigations are needed to de-

termine if and how trust may influence operators. Operators implemented different

strategies to fulfill the decision-making task; however, the most successful strategy pro-

moted more consensus decision-making (i.e., investigate commands), as opposed to

prohibiting exploration of targets (i.e., abandon commands). Understanding how opera-

tors used commands is necessary to promote effective interactions and produce desired

human-collective performance.

The transparency embedded in the M2 model and Collective visualization combi-

nation did not support the best overall system usability. The IA visualization promoted

less clutter, by alleviating the dependence of the collective and target information pop-

up windows, and promoted fewer interactions. Modifications to both the M2 model

and Collective visualization must be made in order to mitigate the highest value target
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being abandoned more frequently, as well as reduce the reliance on the information win-

dows. The assumption that fewer interactions are optimal may not be accurate for all

decision difficulties, such as hard decisions. Understanding strategies and justifications

for more interactions is necessary in order to promote transparency that aids operators

during particular situations and results in higher human-collective performance.

4.2.4 R8: System Design Element Influence on Team Performance

Assessing which model and visualization promoted better human-collective performance, R8,

is necessary to determine whether the human-collective system transparency aided the

task. The objective dependent variables were (1) decision time, (2) selection success

rate, and (3) SA probe accuracy.

Figure 4.38: R8 concept map of the assessed direct and indirect transparency factors.

Objective metrics were included to support the correlation analyses. The specific

direct and indirect transparency factors related to R8 are identified in Figure 4.38. The
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relationship between the variables and the corresponding hypotheses, as well as the

direct and indirect transparency factors, are identified in Table 4.61.

Performance of the human-collective team can be used to assess the effects of the

model and visualization transparency on the team’s ability to fulfill tasks. It was hy-

pothesized (H16) that the human-collective performance, effectiveness, efficiency, and

timing will be better using the M2 model with the Collective visualization.

Table 4.61: Interaction of system design elements influence on human-collective perfor-
mance objective (obj) and subjective (subj) variables (vars), relationship to hypothesis
H16, as well as the associated direct and indirect transparency factors, are presented in
Figure 2.2.
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Transparency Factors
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Time Dec
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Subj
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Weekly Hours
X Xon a Desktop

or Laptop
Post-Trial

X X X XPerformance
Understanding

4.2.4.1 Metrics and Results

The length of time the human-collective team reached a decision, decision time (minutes),

was examined. The decision time mean (SD) are shown in Table 4.62 [57, 171, 177].
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Collective operators using the M2 model had the fastest decision times. The decision

time median, min, max, and the Mann-Whitney-Wilcoxon significant effects between

models are shown in Figure 4.39. Significant differences were found between models

for both visualizations at all decision difficulties. Additional between visualizations

Mann-Whitney-Wilcoxon tests identified significant effects when using the M2 model

for overall (n = 672, U = 50921, ρ = 0.03), easy (n = 375, U = 15452, ρ = 0.04), and hard

decisions (n = 297, U = 9521, ρ = 0.04). A significant effect between visualizations using

the M3 model was also found for easy decisions (n = 396, U = 17376, ρ = 0.05).

Table 4.62: Decision time (minutes) mean
(SD) per decision difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 4.32 (1.83) 3.97 (1.37)
Easy 3.77 (1.63) 3.37 (1.23)
Hard 5.09 (1.82) 4.67 (1.2)

M3

Overall 5.67 (2.86) 5.32 (2.22)
Easy 5.22 (3.06) 4.67 (1.96)
Hard 6.32 (2.42) 6.24 (2.24)

Figure 4.39: Decision time median
(min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty
between models.

The selection success rate was the number of correct decisions (the collective moved

to the highest valued target) relative to the total number of decisions. Selection success

rate mean (SD) per decision are shown in Table 4.63 [57, 171, 177]. Operators using

the M3 model with the Collective visualization in general had higher selection success

rates, while IA operators using the M2 model had higher selection success rates for

hard decisions. The selection success rate median, min, max, and the Mann-Whitney-

Wilcoxon significant effects between models are shown in Figure 4.40. Collective op-

erators had significant differences in selection success rate between models for overall
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decisions, while no significant differences between models were found for IA operators.

Additional between visualizations Mann-Whitney-Wilcoxon tests identified highly sig-

nificant effects when using the M2 model for overall (n = 672, U = 64008, ρ < 0.001) and

easy decisions (n = 375, U = 19845, ρ < 0.001), as well as a moderate significant effect

for hard decisions (n = 297, U = 12761, ρ < 0.01). Highly significant effects between

visualizations using the M3 model for overall (U = 66360, ρ < 0.001, easy (n = 396, U =

21662, ρ < 0.001), and hard decisions (n = 276, U = 12178, ρ < 0.01) existed. The Spear-

man correlation analysis revealed a moderate correlation between decision time and

selection success rate using the M2 model with the IA visualization for easy decisions

(r = -0.42, ρ < 0.001) and a weak correlation for overall decisions (r = -0.27, ρ < 0.001).

Weak correlations existed when using the M2 model with the Collective visualization

for overall (r = -0.11, ρ = 0.05), easy (r = -0.18, ρ = 0.02), and hard decisions (r = 0.18, ρ

= 0.03). A weak correlation was found for hard problems using the M3 model with the

IA (r = 0.32, ρ < 0.001) and Collective visualizations (r = 0.25, ρ < 0.01).

Table 4.63: Selection success rate (%) mean
(SD) per decision difficulty (Dec Diff).

Dec Diff IA Collective

M2

Overall 75 (43.37) 88.39 (32.08)
Easy 81.44 (38.98) 94.44 (22.97)
Hard 66.2 (47.47) 81.41 (39.03)

M3

Overall 75.3 (43.19) 92.86 (25.79)
Easy 85.43 (35.37) 95.94 (19.79)
Hard 60.58 (49.05) 88.49 (32.03)

Figure 4.40: Selection success rate me-
dian (min/max) and Mann-Whitney-
Wilcoxin test by decision difficulty be-
tween models.

The IA and Collective operators’ SA probe accuracy when using the M2 model was

higher for SA3, while the IA operators had higher SA2 and the Collective operators had
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higher SAO. Collective operators using either model had higher SA probe accuracy.

The detailed statistical analyses were provided in Chapter 4.2.1.1.

Additional Spearman correlation analyses analyzed if any correlations existed be-

tween selection success rate and some objective metrics, including collective and target

observations and right-clicks, investigate, abandon, and decide commands, as well as

the time a decision collective and target information pop-up window was open. A weak

correlation existed for collective observations using the Collective visualization with

the M2 model for overall decisions (r = -0.12, ρ = 0.03). Weak correlations were found

for target observations when using the Collective visualization with the M3 model for

overall (r = 0.14, ρ = 0.01) and hard decisions (r = 0.16, ρ = 0.05). Weak correlation were

found for the number of target right-clicks using the IA visualization with the M2 model

for overall decisions (r = -0.13, ρ = 0.02), and with the M3 model for overall (r = 0.1, ρ

= 0.05) and hard decisions (r = 0.18, ρ = 0.03), as well as when using the Collective vi-

sualization with the M2 model for hard decisions (r = 0.17, ρ = 0.04). Weak correlations

were found for the number of investigate commands when using the Collective visual-

ization with the M2 model for hard decisions (r = 0.2, ρ = 0.01), as well as when using

the IA visualization with M3 model for easy (r = -0.16, ρ = 0.02) and hard decisions (r

= 0.24, ρ < 0.01). Weak correlations were found for the number of abandon commands

when using the IA visualization with the M2 model for easy decisions (r = -0.19, ρ <

0.01), and with the M3 model for hard decisions (r = 0.2, ρ = 0.02). A weak correlation

existed for the number of decide commands using the Collective visualization with the

M3 model for overall decisions (r = 0.11, ρ = 0.05). Weak correlations were found for the

time a decision target information pop-up window was open when using the Collective

visualization with the M2 model for overall (r = 0.11, ρ = 0.04) and hard decisions (r =

0.16, ρ = 0.04). No significant effects were found for collective right-clicks and the time
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a decision collective information pop-up window was open.

Spearman correlation analyses were also conducted to identify correlations between

selection success rate and some subjective metrics, including the weekly hours on a

desktop or laptop, the mental rotations assessment, and working memory capacity.

Weak correlations were found for the weekly hours participants’ used a desktop or

laptop for easy decisions when using the IA visualization with the M2 model (r = 0.16,

ρ = 0.02) and with the M3 model (r = -0.15, ρ = 0.04), as well as when using the Col-

lective visualization with the M3 model for hard decisions (r = 0.17, ρ = 0.05). A weak

correlation was found for the mental rotations assessment using the IA visualization

with the M3 model for hard decisions (r = 0.18, ρ = 0.04). Weak correlations were found

for working memory capacity and easy decisions when using the IA visualization with

the M2 model (r = -0.17, ρ = 0.02), and with the M3 model (r = -0.15, ρ = 0.04).

The post-trial performance and understanding questionnaire assessed the operators’ un-

derstanding of the collectives’ behavior and their ability to choose the best target. The

Collective operators ranked performance and understanding higher when using the M3

model. The statistical analysis details were provided in Chapter 4.2.2.1.

Table 4.64: A synopsis of R8’s hypotheses associated with significant results. The SA
probe timings are all timings (AT), 15 seconds Before asking (B), While being asked
(W), and During response (D) to a SA probe question.

Variable
Sub-

Within Between
Correlation

variable
Model Visualization

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3

Decision Time
Overall H16 H16 H16 H16 H16

Easy H16 H16 H16 H16 H16 H16
Hard H16 H16 H16 H16 H16 H16
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Variable
Sub-

Within Between
Correlation

variable
Model Visualization

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3

Selection Success
Overall H16 H16 H16

—————–

Rate
Easy H16 H16
Hard H16 H16
SAO H16 H16

SA Probe SA1 H16 H16 H16
Accuracy SA2 H16 H16

SA3 H16 H16

Collective
Overall H16 H16 H16 H16

Observations
Easy H16 H16 H16 H16
Hard H16 H16

Target
Overall H16 H16 H16 H16 H16

Observations
Easy H16 H16 H16
Hard H16 H16 H16 H16

Collective Right- Overall H16 —————– ——–
Clicks Hard H16
Target Right- Overall H16 H16
Clicks per Easy H16
Decision Hard H16 H16

Investigate
Overall H16 H16 H16 H16

Commands
Easy H16 H16 H16 H16
Hard H16 H16 H16 H16 H16 H16

Abandon
Overall H16 H16

Commands
Easy H16 H16 H16
Hard H16

Decide
Overall H16 H16 H16 H16 H16

Commands
Easy H16 H16 H16 H16
Hard H16 H16

Time Decision
Hard H16 —————– ——–Collective Info.

Window Open
Time Decision Overall H16 H16 H16 H16 H16
Target Info. Easy H16 H16 H16 H16
Window Open Hard H16 H16 H16 H16 H16
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Variable
Sub-

Within Between
Correlation

variable
Model Visualization

IA Coll. M2 M3
IA Coll.

M2 M3 M2 M3
SAO

—————–

H16 H16
Mental Rotations SA1 H16 H16
Assessment SA2 H16

Hard H16
SAO H16 H16

Working Memory SA1 H16
Capacity SA3 H16

Easy H16 H16
SAO H16

Weekly Hours on SA1 H16
a Desktop or SA2 H16
Laptop Easy H16 H16

Hard H16

A summary of R8’s results that show the hypotheses with associated significant re-

sults is shown in Table 4.64. This summary table is intended to facilitate the discussion.

4.2.4.2 Discussion

The analysis suggests that the Collective visualization promoted better human-collective

performance; however, the models had their respective advantages and disadvantages.

The M2 model promoted faster decision times, while the Collective visualization pro-

moted faster decision times, higher selection success rates, and higher subjective perfor-

mance. SA performance varied across the models and visualizations. H16, which hypoth-

esized that the human-collective performance, effectiveness, efficiency, and timing will be

better using the M2 model with the Collective visualization, was partially supported.

Collective operators using the M2 model had faster decision times; however, the M3



199

model enabled higher selection success rates. Embedding transparency into the M2

model requires (1) balancing control between the operator and the collectives so that the

operators can positively contribute and direct decision-making, (2) promoting positive

human-collective interactions so that the operator’s and the collective’s strengths are

maximized, and (3) alleviating the operator’s workload.

Understanding usability and what interactions were used by operators to justify ac-

tions that contributed to performance are necessary in order to identify the most effective

and efficient strategies. Operators using the M2 model issued fewer commands to the

collectives, which was desired in order to maximize the usage of the collectives’ consen-

sus decision-making process; however, more particular interactions, such as investigate

commands, resulted in higher selection success rate performance. Requiring operators

to influence the task ensured better performance, because the operators were in-the-loop,

versus operators who were supervising the collective behaviors and potentially correct-

ing actions towards task success. Further analysis is required to determine how to im-

prove target selection when using the M2 model. Improvements during training may

help emphasize the necessity of selecting the highest-value targets.

Realistic human-collective scenarios will require high performance with short deci-

sion times, especially in uncertain and dynamic environments. The design of an effective

human-collective system must enable the human-collective team to fulfill primary ob-

jectives, without hindering other metrics, such as decision time and accuracy. Devoting

more time to ensure high task performance is a common trade-off [179]. Expedited de-

cisions may have occurred if higher valued targets were more observable further away

from other objects (less clutter), making them more salient, or if impatient operators

predicted future collective behaviors and influenced collectives more to make faster de-

cisions. Using target outlines, collective and target information pop-up windows, and
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issuing investigate commands were necessary to fulfill the primary task and can be used

to ensure an explainable and usable system. The M2 model with the Collective visualiza-

tion enabled operators with different spatial capabilities to perform relatively the same,

unlike IA operators, specifically those with lower Working Memory Capacity and more

weekly desktop or laptop exposure, who had higher selection success rates.

The transparency embedded in the Collective visualization with the M2 model pro-

moted the fastest decision times; however, modifications are needed in order to im-

prove the other human-collective performance metrics. Understanding what interactions

contributed to higher performance is necessary to determine what operator strategies are

most effective and efficient. The M2 model subjective performance rankings may have had

a consistent negative bias due to learning effects, since this model was always presented

before using the M3 model. Improving the transparency embedded in the Collective vi-

sualization to promote better SA performance must be considered. Understanding what

IA visualization aspects, such as streamlines between collectives and targets, promoted

better SA performance can be emulated in the more abstract Collective visualization.

4.2.5 Model with Visualization Analysis Discussion

The first research objective was to expand on the existing transparency literature by

assessing how different models and visualizations influenced human-collective behav-

ior. The analysis assessed understanding how the transparency embedded in the models

and visualizations influenced operators with individual differences (i.e., capabilities),

operator comprehension (i.e, capability of understanding), system design element usabil-

ity (i.e., model and visualization usability), and human-collective performance. The sec-

ond research objective was to determine whether using the best model with the best
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visualization, derived from two previous analyses [57, 177], provided the best trans-

parency. Previous results indicated that the M2 model enabled faster decisions and

relied less on operator influence [57], while the Collective visualization provided better

transparency [177], because operators with different individual capabilities performed

similarly for both tasks, and the human-collective team performed better. The M2 model,

independently, did not enable operators with individual differences to perform simi-

larly; however, it did promote fewer interactions and less clutter, which enabled oper-

ators to complete interrupted actions, promoted faster decision times, and higher SA

performance. The Collective visualization independently enabled operators with differ-

ent individual differences to perform similarly, promoted higher understanding and SA,

enabled operators to complete interrupted actions and issue decide commands shortly

after a collective was committed to a target, promoted faster decision times, higher se-

lection success rates, and higher subjective performance. Together the M2 model with

the Collective visualization promoted lower overall workload, required less physical

demand, had fewer investigate commands and target observations (i.e., extra clicks),

while enabling the fastest decision time. The different outcomes between the findings

in this evaluation versus those from Cody et al. [57] and Roundtree et al. [177] suggest

that transparency cannot be quantified by using the best system design elements, but

instead must be quantified by considering how the transparency of the different sys-

tem design elements interact with one another along with the implications of how that

system transparency influences human-collective interactions and performance.

Fewer operator interactions was a desired behavior in order to minimize negative

influence on collective behaviors and reduce the reliance on supplementary information;

however, operator influence was anticipated to aid the decision-making process and

time to complete decisions. This analysis identified positive and negative interactions
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associated with both models and visualizations. Collective operators relied on visible

target information windows more than 25% of the decision time, resulting in more global

clutter. Clutter, from a system design perspective, can hinder effective task performance.

Collective operators with more clutter were able to answer more SA probe questions

correctly and had higher selection success rates. The dependence on visible collective

and target information pop-up windows may have been influenced by the type of SA

probe questions asked and the visualization not being observable without the supple-

mentary information. Sixteen of twenty-four SA probe questions depended on numer-

ical values of collective state and target support information provided in the collective

and target information pop-up windows. Collective state information was provided via

the different color individual collective entities on the IA visualization and the opacity

of the Collective visualization’s hub quadrants, while color and opacity were used to

indicate the highest supporting collective on the target icon. The use of opacity may

have been ineffective and less salient; however, using different colors to indicate state

information may be a possible design modification to the Collective visualization. Ex-

perimental design modifications can also be implemented in order to ensure a more

even distribution of SA probe questions that rely on other information, such as the icons,

system messages, or collective assignments versus information pop-up windows.

The use of target information pop-up windows aided Collective operators to aban-

don targets more than 25% of the time. Operators who used the target information pop-

up windows to justify that a target was abandoned by a collective, may have been con-

fused if the reported target support was not equal to zero. Additional abandon com-

mands may have been issued in an attempt to reduce the collective support to zero. IA

operators may have experienced a similar confusion if they observed individual collec-

tive entities still travelling to an abandoned target. Implementing design changes, such
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as showing zero support when an abandon request has been committed, or not display-

ing lost entities after a specific period of time, once a collective hub has moved to a new

location, may reduce the number of reissued abandon commands. Collective operators

using the M2 model abandoned the highest value target more frequently than IA oper-

ators. Further analysis is required to determine if the entire target icon must represent

the target value, as was the case with the IA visualization, to be more salient. Opacity

levels must also be validated to ensure an unique distinction between low-, medium-,

and high-valued targets. Reiterating the task objective, to choose and move each collec-

tive to the highest value target for each decision, numerous times during training may

also help mitigate operator misunderstanding.

Target observations, which were additional target left-clicks that did not influence

collective behavior or aid in accessing supplemental information, and interventions were

additional undesired interactions. IA operators may have confused the target integer

identifiers with the collective roman numeral identifiers causing additional target ob-

servations. Using distinct identifiers, such as integers versus letters, can potentially

reduce the number of observations. IA operators’ capability to identify objects far from

their current attentional focal point may have been impeded by displaying all of the

individual collective entities, collective and target icons, as well as the collective and

target information pop-up windows. Asking SA probe questions about objects at various

distances from the operator’s current focal point is necessary to understand how clutter,

or moving individual collective entities, may affect the operator’s ability to identify the

SA probe object of interest and answer the question correctly. The use of eye-tracking

technology can provide improved insight regarding operator understanding and usabil-

ity by recording where the operator was looking. Understanding what types of infor-

mation the operator was potentially perceiving and comprehending, the difficulty of
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identifying the desired information due to clutter, and the duration of time looking for

information will illuminate why operators interacted with the system in a particular way.

The M2 model enabled fewer commands, which was expected. Requiring operators

to influence the decision-making process ensured better performance, because the opera-

tor was required to direct the decision-making process, versus operators who aided the

decision-making process. Different strategies were used to fulfill the decision-making

task; however, the most successful promoted more consensus decision-making (i.e., in-

vestigate commands) versus prohibiting exploration of particular targets (i.e., abandon

commands). The memorability of both the models and visualizations enabled operators

to refocus their attention on a previous action after answering the SA probe question,

because of the required involvement of the operator (M3 model) and established expec-

tations of collective behaviors (M2 model). The predictability of the M3 model with the

Collective visualization enabled operators to issue decide commands shortly after col-

lectives were in a committed state. Collective operators using the M3 model reported

the best control mechanism responsiveness, which was anticipated due to the amount

of operator influence and gained experience using the control mechanisms in the prior

trial that used the M2 model.

Transparency for human-collective systems can be achieved via different design

strategies for specific system design elements and must be assessed holistically by un-

derstanding how the different factors impact transparency and are influenced by trans-

parency. The four research questions assessed four categories of transparency factors

that contribute to an effective system: (1) operator individual capabilities, (2) operator

comprehension, (3) system usability, and (4) human-collective team performance. Ideal

collective systems will enable operators with different individual capabilities to per-

form relatively the same, promote operator comprehension, be usable, and promote
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high human-collective performance. As collective systems grow in complexity (e.g., size,

heterogeneity), visualizations that show the individual collective entities will cause per-

ceptual and comprehension challenges, as well as influence operator actions negatively.

The same advantageous observation (i.e., dynamically seeing collective behaviors and

support) from this analysis may not occur with large collectives (> 10000).

4.3 Visualization and Model with Visualization Conclusions

The Visualization Analysis in Chapter 4.1 evaluated transparency with respect to how

the visualization impacted the human operators, operator comprehension, visualiza-

tion usability, and human-collective performance. The Collective visualization was

considered more transparent, because operators with different individual capabilities

performed similarly in both the primary and secondary tasks, and the human-collective

performance was higher compared to the IA visualization. The Model with Visualiza-

tion Analysis in Chapter 4.2 considered how transparency embedded in both the mod-

els with the visualizations influenced the human operators, operator comprehension,

system usability, and human-collective performance. The M2 model with the Collec-

tive visualization combination did not support any of the research questions together,

but did partially support specific research questions independently. Quantifying sys-

tem transparency requires evaluating the transparency embedded in the various system

design elements in order to determine how they interact with one another and influence

human-collective interactions and performance. Designers of human-collective sys-

tems must build collective systems that are effective regardless of how heterogeneous

or large the collective size may become, how simple or complex the collective behaviors

are, and how challenging real-world use scenarios may be, such as bandwidth limita-
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tions. Models (e.g., intelligent algorithms) that can aid operators to fulfill the sequential

decision-making task that require operator influence and collective visualizations that

are observable may be more resilient to real-world scenarios, and provide transparency

to enable effective human-collective teams. The results of these two analyses will help

inform design guidance for effective human-collective systems.
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Chapter 5: Design Guidance for Human-Collective Systems

Design guideline recommendations were created in order to inform how transparency

can be achieved for human-collective systems. The initial set of guidelines were in-

spired by the Visualization analysis [177] presented in Chapter 4.1, as well as the Model

with Visualization analysis presented in Chapter 4.2 of the results collected from the sin-

gle human-collective evaluations [29, 177]. The design guidance suggest recommenda-

tions with respect to visualizations, models (e.g., algorithms), and control mechanisms.

Additional guidance are provided based on a review of the biological literature related

to spatial swarms and colonies. The biologically-inspired design guidelines are catego-

rized by seven biologically-inspired behaviors that cannot be investigated based on the

results of the single human-collective evaluations, have not been investigated in depth

by the existing literature, and can be explored in future human-collective evaluations.

The relationships between the design guidelines and the transparency factors in

Figure 2.2 are discussed and emphasized using italics. Direct factors had immediate

connections related to transparency, such as transparency impacts performance, whereas

indirect factors typically influenced other factors, for example, expectations impact con-

trol. The relationships that are verbs between factors are also emphasized using italics.

Some relationships have a positive influence, such as promotes, fosters, and enhances, on

a particular factor, for example effectiveness promotes usability. Impacts may positively or

negatively influence a factor, such as workload impacts performance. The final relationship

described how explainability communicates information.
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A discussion related to the limitations associated with limited or no communica-

tion, domain specific challenges (e.g., aerial or underwater), environmental challenges,

and the type of collective systems used, is provided. The reliability of the guidelines

inspired from the results and analysis of the single operator-collective evaluations and

biological literature may be challenged by the identified limitations and must be fur-

ther validated by future evaluations. Understanding how the limitations may impact

the guidelines is needed in order to improve the robustness of the design guidance.

5.1 Design Guidance based on the Single Human-Collective Eval-

uations

The design guidelines inspired by the single human-collective evaluations’ Visualiza-

tion analysis (Chapter 4.1) as well as the Model with Visualization analysis (Chapter

4.2) are summarized in Tables 5.1 - 5.3. The recommendations are applicable irrespec-

tive of a visualization or model type. The presentation organization of these guidelines

is in association with the visualizations, models, or control mechanisms.

5.1.1 Human-Collective Visualization Design Guidance

The research questions (R1 - R4) in Chapter 4.1 and their respective results and dis-

cussions are associated with design guidance related to visualization, which is sum-

marized in Table 5.1. Design guidance that share a common idea, such as providing

information, are discussed collectively, with the specific differences identified using the

design guideline number. Several of the recommendations suggested providing par-

ticular types of information, such as collective behaviors (DG1) and state (DG2) infor-
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mation, operator actions (e.g., issued commands) (DG1), and system messages (DG1),

in order to facilitate operator understanding. The primary information, presented con-

stantly throughout system usage, must be easily observable and comprehensible in or-

der to maintain SA. The use of color can be used to distinguish objects from one another

(DG3), or to convey particular types of information, such as non-numeric values (DG4)

and command status (DG5). Color coding can be useful for aiding observability, as long

as the operator’s cognitive capacity (DG6) and workload are not exceeded. Other design

Table 5.1: Human-collective visualization design guidance.

DG1. Provide information about the system and operator actions, such as the use of
system messages and collective assignments windows.
DG2. Provide observable collective state information, such as the use of color to
denote different states.
DG3. The use of colored borders is an effective method of distinguishing objects in
the environment.
DG4. The use of color and different opacity is an effective method of conveying a
non-numeric value.
DG5. Indicate the status of operator commands, such as a red indicator to denote
completion of a command and green to denote an ongoing state.
DG6. Limit the number of colors used to seven plus or minus two, which is
consistent with human cognitive capacity (i.e., capability) [180].
DG7. Provide detailed supplemental information to the operator, such as the use of
information pop-up windows.
DG8. Use distinct and unique identifiers for objects in the environment, such as
integers versus letters.
DG9. Provide a legend detailing information in order to alleviate memory demands
of the operator.
DG10. Provide information about collective behavior that coincides with operator
mental models of operation, such as abandoning a target will result in zero
individual collective entity support.
DG11. Provide indicators that identify which particular objects are currently
selected, such as the Collective and Target fields in the Collective Request area.
DG12. Provide the predicted state of a collective, such as a dynamic moving border.
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strategies, such as the use of patterns, may need to be considered if operators are color

blind. Supplemental information that can be accessed when an operator deems neces-

sary, such as information pop-up windows, can provide more detailed information (DG7);

however, the operator must not rely on this information in order to fulfill tasks.

Quick and easy observability of objects and items of interest in the visualization are

necessary for task completion. Object identifiers, such as letters to represent collectives

and integers for targets, will ensure distinction (DG8) and help mitigate misunderstanding.

Operator workload can be reduced by providing aids, such as legends (DG9), that detail

particular identifier information, such as the meaning of different colored individual

collective entities. Operator comprehension can be facilitated by ensuring that informa-

tion about collective behavior coincides with an operator’s mental models of operation

(DG10), such as when a collective is selected, the corresponding field shows the collec-

tive identifier (DG11). Mismatched expectations between what the operator thinks the

collective will do and what the collective actually does can lead to undesirable opera-

tor usability behaviors intended to compensate for the mismatch, which may influence

negatively task performance. Projecting future collective state information (DG12) can po-

tentially mitigate mismatched expectations by aiding operators in understanding how cur-

rent collective actions are leading to future collective behavior. Further investigations

are needed in order to determine the effectiveness of the design recommendations, as

well as the information available from underlying models that can impact what is visu-

alized. Understanding how real-world scenarios, which may introduce bandwidth lim-

itations or other challenging situations, that impact information latency and contribute

to inaccurate collective state information is essential to ensure positive human-collective

behaviors and to design a resilient transparent visualization.
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5.1.2 Human-Collective Model Design Guidance

The research questions (R5 - R8) in Chapter 4.2 and their respective results were associ-

ated with design guidance related to models and visualizations. The design guidelines

in relation to the models are summarized in Table 5.2. The underlying models influence

what information is presented on the visualizations and how the operator interacts with

the collectives. Determining what characteristics are ideal in the models is necessary to

promote effective and efficient human-collective teams.

Table 5.2: Human-collective model design guidance.

DG13. Use underlying intelligent models (e.g., sequential best-of-n decision-making)
capable of fulfilling the task without operator influence.
DG14. Ensure that the underlying intelligent models compensate for environmental
biases and other influential factors on the collective processes.

The recommendations suggest to use intelligent models that are capable of fulfilling

tasks without the need for operator influence (DG13). Potential real-world collective

use scenarios will require operators to conduct multiple tasks simultaneously, which

may increase workload and distract (i.e., reduction of SA) operators from fulfilling

tasks. Models that can aid operators by contributing towards task completion may

help reduce workload and allow the operator time to attend to various tasks. Although

the model may have the potential to fulfill tasks independently, operator influence is

still beneficial, since the individual collective entities have limited knowledge about

the overall collective’s state and behaviors that are observable to the operator. Ensuring

that the models compensate for influential factors, such as environmental bias (DG14),

are necessary to coincide with operator expectations of the system operation. Operators

may have limited knowledge about how system and environmental factors contribute

to particular collective responses. Training operators about these factors prior to system
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usage and providing explanations during the task can calibrate operator expectations;

however, the models can alleviate workload and reduce potential misunderstanding by

proactively compensating for these factors throughout system usage.

5.1.3 Human-Collective Control Mechanisms Design Guidance

The design guidelines in relation to the control mechanisms associated with research

questions (R5 - R8) in Chapter 4.2 and their respective results are summarized in Table

5.3. The control mechanisms enable the operator to influence the collective decision-

making process. Ideal interactions will positively influence collectives and improve

human-collective performance. Determining what control mechanism characteristics are

necessary will enable effective human-collective interactions.

Table 5.3: Human-collective control mechanisms design guidance.

DG15. Provide control mechanisms that influence the collective consensus decision-
making process positively, such as the investigate command.
DG16. Provide control mechanisms that can undo negative influence, such as cancel
assignment.
DG17. Limit the use of decision-making control mechanism only after a particular
certainty value, such as 30% support for a specific target.
DG18. Limit the amount of times operators can issue particular commands, such as
one time for the abandon or decide command.

The recommendations suggest to use control mechanisms that influence the col-

lective consensus decision-making process positively, such as investigate commands

(DG15). The investigate commands helped build support for particular targets with

little influence. Ten uncommitted entities (5% of the collective population) transitioned

to the favoring state after receiving and acknowledging the investigate command. Op-

erators who wanted to build support rapidly needed to commit multiple investigate
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commands in a short period of time. Only influencing a small portion of the collective

population enabled better decision-making. The collective was able to investigate other

potentially higher value targets in case the operator was currently favoring a lower

value target. The collective’s capability to investigate and build support for other targets

simultaneously ensured better human-collective task performance. Control mechanisms

that are more definitive (e.g., persist immediately after issuing the command) and have

negative influence, such as the abandon commands, must be designed with great cau-

tion in order to ensure effectiveness and avoid undesirable operator behaviors. There

were instances when the IA and the Collective operators issued abandon commands

repeatedly for the same target, although it is only required to be issued once, and when

the highest value target was mistakenly abandoned. Further investigations are required

to determine how to improve the efficacy of control mechanisms, such as abandon, that

can negatively influence task completion. Providing control mechanisms that can undo

negative influence (DG16) are necessary in order to avoid persistent undesired behavior

and to ensure high task performance. Limiting the number of times operators can issue

particular commands (DG18), such as abandoning a target once, or deciding to commit

to a target once, can help mitigate misuse issues. Implementing other limitations, such

as the ability to issue a decide command only after 30% of the collective supports a

target (DG17), can also improve usability and mitigate undesired operator behaviors.

Transparency for human-collective systems can be achieved via different design

strategies for specific system design elements, such as the visualizations, models, and

control mechanisms. Understanding how embedding transparency into various system

design elements can be combined in order to promote transparency holistically is nec-

essary to guarantee desired human-collective behaviors, and promote optimal human-

collective team performance. A collective system using similar models (e.g., best-of-n)
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and hub-based colonies designed using the provided guidelines can help promote bet-

ter transparency and enable effective human-collective teams.

5.2 Biologically Inspired Design Guidelines

While the design guidance in Chapter 5.1 was based on the single-human collective

evaluations, there is a significant opportunity to further develop design guidance re-

lated to transparency for human-collective teaming. The biologically-inspired design

guidelines derived from a literature review of biological spatial swarms (Chapter 2.0.1.1)

and colonies (Chapter 2.0.2.1) behaviors are provided in Tables 5.4 - 5.10. Each guide-

line is designed to promote transparency need and is related to a biological behavior

or characteristic identified from the literature that is applicable to robotic systems and

human-collective teams. The particular biological behaviors that inspired each gener-

alizable behavior are provided in Chapters 5.2.1 - 5.2.7. The guidelines that contribute

to each particular generalizable behavior are discussed within their respective chapter.

The guideline discussions address how the guideline was formulated, how it relates to

the generalizable behavior, into which system design elements it can be embedded, and

what transparency factors will be impacted, or influence that recommendation.

5.2.1 Undesirable Emergent Behaviors

The first behavior was inspired by honeybee colonies that use consensus decision-

making, which can result in undesirable emergent behaviors (e.g., behaviors that can

impede task completion), such as split decisions for a best-of-n decision problem (e.g.,

new nest selection). When biological processes, such as best-of-n, are codified into mod-
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els, mitigations of such undesirable behaviors may be necessary. Some undesirable

behaviors may require terminating the current task in order to initiate a new process

version of the model. Honeybee colonies that make a split decision resettle and debate

further in order to arrive at a consensus [5]. Completing a decision, for both the bio-

logical and robotic systems, is necessary in order to mitigate safety issues. Undesirable

behaviors are wasteful and can be dangerous. Honeybee colonies, for example, must

make a single decision quickly, because they are vulnerable and exposed in the environ-

ment (i.e., outside of the nest) throughout the duration of the decision-making process.

Systems that mimic biological behaviors must consider how to mitigate undesirable

behaviors and the negative influence on human-collective task completion.

Table 5.4: Design guidance for undesirable behaviors.

DG19. Provide a likelihood prediction of a known undesirable emergent behavior,
such as a split decision, along with a prediction error to the operator.
DG20. Provide engagement prompts to indicate to the operator when an unknown
undesirable behavior appears to be emerging.
DG21. Provide suggestions to the operator, such as issuing particular commands, in
order to prevent or minimize undesirable behavior and maintain safety.
DG22. Provide feedback to the operator about the environmental and system
characteristics contributing to an undesirable emergent behavior.
DG23. Embed a procedure into the model to mitigate the development of the
undesirable behavior.

The design guidance is to inform operators when an undesirable behavior is emerg-

ing, identify what may be contributing to the undesirable behavior development, and

provide suggestions regarding how the operator can mitigate the behavior from de-

veloping further. Strategies, such as training operators on how to use the system, are

recommended in order to mitigate undesirable emergent behavior prior to usage.
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5.2.1.1 Known Undesirable Behavior Prediction and Error

Providing an operator a likelihood prediction of a known (i.e., previously seen and rec-

ognizable) undesirable emergent behavior along with a prediction error is the first design

guideline (DG19) in Table 5.4. This guideline was formulated considering how inefficient

(e.g., waste of time and resources) and unsatisfying (e.g., detrimental to safety) it was

when the honeybee colony’s best-of-n decision-making process resulted in a split deci-

sion during the process of moving to a new nest site [5]. Providing relevant predictive

information that can inform the operator about the emergence of a known undesirable

behavior emerging can help improve efficiency, timing, mitigate the loss of resources de-

voted to an undesirable behavior, and improve the overall human-collective’s task per-

formance. However, the operator needs information related to how accurate the prediction

is and what is the system’s confidence in the provided prediction, such as a confidence

interval. This prediction error will inform the operator about the system’s confidence

(i.e., reliability) in the prediction, as well as calibrate their expectations and reliance on the

system appropriately, which promotes better system usability.

The design guideline can be embedded into the model, visualization, or both. The

model can aggregate the information from the collective and compute a probability (e.g.,

likelihood) that a known undesired emergent behavior is developing. A threshold value

derived from the relevant biological literature, or defined and refined based on robotic

system data collections and evaluations, can be used to trigger sending a message to the

visualization software that determines how to present the information to the operator.

The information presented via the visualization must be observable, explainable, and

understandable by the operator. Providing a clear, succinct, and legible explanation indi-

cating what type of undesirable behavior appears to be emerging in a particular collec-
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tive, and the error likelihood percentage associated with the prediction can be embedded

into the visualization. The presentation of the information can be conveyed using differ-

ent colors to indicate that the likelihood percentage is large and must be addressed in a

timely fashion. Patterns can be used in place of or in conjunction with the colors in order

to accommodate operators who are color blind. Text messages can indicate what partic-

ular known undesirable behavior is emerging, such as “split”; however, the text must

be easily observable (e.g., large easily visible letters) and understandable in order to be an

effective implementation. Representative symbols or icons may be an effective alternative

that minimize the use of text and can be easier to perceive quickly to represent specific

known undesirable behaviors. Understanding what is the known undesirable behavior,

which collective it is affecting, and how reliable the prediction is, will properly calibrate

the operator’s expectations of the collective’s future behaviors, and can improve SA, re-

liance of the information, and provide insight about system capabilities. The frequency

at which the messages are presented must be considered in order to mitigate workload

issues that may arise if the information becomes a nuisance.

Providing the likelihood prediction of a known undesirable emergent behavior along

with a prediction error will ideally prompt operators to proactively interact with the sys-

tem in order to mitigate further development of the behavior. Control mechanisms must

be provided in order to enable the operator’s attempt to mitigate successfully a known

undesirable behavior, such as a command that promotes cohesion in order to avoid a

physical split that may compromise the safety of the group. Training prior to system

usage can help operators develop strategies to mitigate particular known undesirable

behaviors. Additional suggestions about what commands can be issued can be pro-

vided by the system (DG21), are discussed in Chapter 5.2.1.3.
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Providing the prediction and associated error of a known undesirable behavior emerg-

ing promotes transparency by improving the system’s usability. The transparency pro-

moted in this design guideline needs to provide useful and explainable information that

allows the operator to understand the collective’s future state. This level of transparency

can promote better SA, which prompts the operator to take appropriate preventative

actions that result in improved human-collective performance.

5.2.1.2 Engagement Prompt for Unknown Undesirable Emergent

Behavior

Unlike known undesirable emergent behaviors that can be anticipated prior to system

usage and have recognizable characteristics, unknown emergent behaviors are known

to occur with collective systems and cannot be anticipated or recognized. The use of col-

lective systems in challenging environments has been proposed due to their adaptability;

however, anticipating behaviors that may arise in those environments is challenging

and often unattainable. Providing engagement prompts, such as indicators or warnings,

to the operators when an unknown undesirable behavior is potentially emerging, DG20

in Table 5.4, is imperative in order to maintain SA and attract the operator’s attention

to information indicating that a potential unknown emergent behavior is occurring that

may impede task completion. This guideline was formulated considering what alterna-

tives were needed when an unknown undesirable emergent behavior occurred, unlike

situations in which a known undesirable emergent behavior exists, DG19.

The design guideline can be embedded into the model, visualization, or both. The

model can estimate the collectives’ state and its deviation from the expected or desired
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state. The percent deviation from task completion is an example of tracking the influ-

ence of undesirable behaviors in general. A threshold value derived using DG19 princi-

ples from Chapter 5.2.1.1, can be used to trigger an analysis process in the visualization

software that determines how to present the information to the operator.

Information presented on the visualization can promote understanding, as long as it

is observable. Providing a clear and legible engagement prompt of the collective’s de-

viation between the current state and the expected or planned state can be embedded

into the visualization. Showing the percent deviation from task completion in a par-

ticular collective can be conveyed as a numerical percentage value outlined using bold

lines in order to attract the operator’s attention to the relevant information pertaining

to an unknown undesirable emergent behavior that is negatively influencing a partic-

ular collective’s task performance. The engagement prompt can remain visible until the

percent deviation drops below the threshold. Attracting the operator’s attention by us-

ing multimodal strategies (i.e., visual, auditory, and tactile), to the percent deviation

value can calibrate the operator’s expectations of the collective’s future behaviors, and

provide insight that helps build mental models of the system’s capabilities. Informing

operators that the system has fewer capabilities may negatively impact its credibility and

perceived reliability, if the operator’s mental model indicated that the system was ca-

pable of mitigating or informing the operator about the undesirable behavior. Training

prior to system usage can help properly calibrate the operator’s expectations about sys-

tem capabilities and how much they can rely on the system. Operational environment

characteristics will influence which multimodal strategies will best attract operators’ at-

tention to the relevant information. Attracting attention to the collective’s deviation from

the current state to the expected or planned state has positive and negative implications

for SA. The operator’s SA can improve by knowing that something is impeding the
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human-collective team’s capability to fulfill a task; however, if the engagement prompt is

highly salient the operator may become distracted and not attend to high priority tasks

associated with the system’s collective(s), which may contribute to further deviation

from task completion due to undesirable behavior development. Understanding how to

maintain attention across multiple collectives simultaneously is necessary in order to

promote a usable human-collective system.

Providing an indicator that an unknown undesirable emergent behavior is imped-

ing task completion will ideally prompt operators to proactively interact with the sys-

tem in order to halt or mitigate further development of the undesirable behavior, or

contribute to achieving a prior desirable state. Different types of control mechanisms

must be provided in order to help mitigate the undesirable behavior. Recording which

control mechanisms have been used is necessary in order for the operator to understand

whether using specific control mechanisms mitigated the behavior or contributed to the

undesirable behavior’s further development. Training prior to system usage can help

operators develop strategies to recognize the influence of control mechanisms on collec-

tives and develop mental models that can help calibrate neglect benevolence, which is

the time required to allow a system to stabilize before issuing new commands [136].

Providing engagement prompts when an unknown undesirable behavior is poten-

tially emerging promotes transparency by improving the system’s usability. The trans-

parency promoted in this design guideline, similar to DG19 from Chapter 5.2.1.1, needs

to provide explainable information that allows the operator to understand the collective’s

future state with respect to the task goal. This level of transparency can promote better

SA, which prompts the operator to inquire about what characteristics are contributing

to collective behavior changes, such as using feedback from Chapter 5.2.1.1, and taking

appropriate preventative actions that result in improved human-collective performance.
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5.2.1.3 Suggestions to Mitigate Undesirable Behavior

Providing suggestions to the operator about what actions (e.g., control mechanisms)

can be used to mitigate the further development of a known or unknown undesirable

emergent behavior is DG21 in Table 5.4. Providing suggestions can alleviate the work-

load associated with determining how to prevent or minimize further development of

the undesirable emergent behavior. This guideline was formulated considering how

the system can proactively aid the operator in the effort to prevent or mitigate further

development of the undesirable emergent behavior. Providing relevant suggestions can

help improve efficiency, timing, mitigate loss of resources devoted to an undesirable be-

havior, and improve the overall human-collective’s task performance. However, human-

collective system designers must consider how abiding by the system suggestions ef-

fects operator expectations. Some operators may expect an immediate decrease in the

further development of the undesirable behavior, although time is needed for the col-

lective behavior to stabilize (i.e., neglect benevolence), and if that expectation is not sat-

isfied, it may cause undesirable operator behaviors. The credibility, perceived reliability,

and reliance of the system may decrease as a consequence of the misaligned expectations,

which may cause the operator to take control of all proceeding collective behaviors, neg-

atively impacting system usability. Providing the collectives’ state and deviation from

the expected or desired state information, similar to the example from Chapter 5.2.1.2, as

well as develop accurate mental models about system response times during training

prior to system usage may mitigate operator expectation misalignment issues.

The design guideline can be embedded into the model, visualization, or both. The

model can initially estimate the collectives’ current state and its deviation from the ex-

pected or desired state by implementing DG20 from Chapter 5.2.1.2. A threshold value
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derived using DG19 principles from Chapter 5.2.1.1, can be used to trigger a decision

support tool or predictive simulation tool, which can calculate what actions, such as

control mechanism, will contribute to a lower deviation from the expect or desired state.

Once the model has determined the best suggestion can be communicated to the visu-

alization software that determines how to present the information to the operator.

The information presented on the visualization must be observable and explainable in

order to foster understanding of the longer term implications of the potential mitigation

alternatives. Providing a clear, succinct, and legible suggestion indicating what action

the system recommends and why for a particular collective can be embedded into the

visualization. The presentation of the information can be conveyed on a pop-up win-

dow near the control mechanisms. Options can be provided to the operator to “accept”

or “cancel” the system’s recommendation. A text message can indicate what particular

control mechanism, for example, “abandon” search for a target, is suggested; however,

the text must be easily observable (e.g., large easily visible letters) and understandable in

order to be an effective implementation. Alternatively, the suggested control mechanism

interactive icon can be outlined using bold lines in order to attract the operator’s at-

tention to the particular control mechanism, potentially improving SA. The window can

remain visible to the operator until either the suggestion is accepted, canceled, or the

time to issue that particular suggestion expires.

Providing suggestions about what operator actions can mitigate the further devel-

opment of a known or unknown undesirable emergent behavior will ideally prompt op-

erators to interact with the system. Control mechanisms must be provided that enable

the operator’s attempt to mitigate an undesirable behavior, and the capability to adjust

software parameters used to determine mitigations, as adjustments to the parameters

can result in different mitigation suggestions on the collective’s goal achievement out-
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comes. Recording which control mechanisms have been used is necessary in order for

the operator to understand whether using the control mechanism mitigated the behavior.

Training prior to system usage can help develop operator mental models regarding the

system usability and how to interact with the recommended suggestion.

Providing suggestions to the operator about what actions can mitigate the further

development of a known or unknown undesirable emergent behavior promotes trans-

parency by improving the system’s usability and human-collective performance. The

transparency promoted in this design guideline needs to provide explainable information

that allows the operator to understand what actions can mitigate further development

of undesirable emergent behavior and provide control mechanisms to execute such ac-

tions. This level of transparency can alleviate workload by promoting better SA.

5.2.1.4 Feedback about Environment or System Characteristics

Relevant feedback can be provided to the operator in order to provide context regard-

ing what environmental and system characteristics are contributing to a known or un-

known undesirable emergent behavior and justify why the behavior is occurring, guide-

line DG22 in Table 5.4. Providing feedback promotes explainability by being learnable,

which can improve operator satisfaction and SA, as well as calibrate operator expectations

regarding the system’s capability limitations. This guideline was formulated consider-

ing how operators often do not understand why collectives are behaving in a particular

manner. Providing feedback is a useful method for promoting transparency; however,

too much feedback may distract operators and can cause higher workload.

The design guideline can be embedded into the model, visualization, or both. The

model can add environment (e.g., obstructions in the environment) and system charac-
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teristic (e.g., multiple solution options being weighted equally) identifiers to the infor-

mation provided from the collective prior to aggregating it and computing a probability

that a known undesired emergent behavior is developing, similar to Chapter 5.2.1.1

example. Errors (i.e., failure to classify information) in the model logic may trigger the

initiation of other procedures when the model tries to compute the probability for an

unknown undesired emergent behavior. Recording the associated errors and what in-

formation was missing in order to classify the behavior as a known undesirable emergent

behavior must be provided to the operator. A threshold value derived using DG19 prin-

ciples from Chapter 5.2.1.1, can be used to trigger sending a message to the visualization

software that determines how to present the feedback to the operator.

The feedback information presented on the visualization must be explainable in order

to foster understanding regarding what type of known or unknown undesirable behavior

appears to be emerging in a particular collective, including what type of characteristics,

misalignment of the current state to goal state, or missing information is contributing to

the development of that behavior. The feedback information can be presented in various

ways, including color coding, text messages, representative symbols, or icons that were

discussed in Chapter 5.2.1.1. The identification of what environmental or system char-

acteristic is contributing to the development of the known undesirable emergent behav-

ior can be presented as a representative icon in order to mitigate the amount of text pro-

vided to the operator. Understanding highly detailed feedback associated with unknown

undesired emergent behaviors will be more challenging and may require supplemental

text in order to ensure the operator understands what information is missing. Designers

must balance how information is presented via color coding, text, and representative

symbols or icons. Using too many colors and symbols or icons may exceed operators’

cognitive capabilities. Understanding what the known undesirable emergent behavior is,
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what information is missing from the model logic in order to classify a behavior as a

known undesired emergent behavior, which collective it is affecting, and what environ-

mental or system characteristic is contributing to the behavior development will help

properly calibrate the operator’s expectations of the collective’s future behaviors, and

can improve SA, the reliance of the information, and provide insight about system capa-

bilities. The feedback can be accessed as supplementary information in order to mitigate

workload issues that may arise with too much supplied information.

Providing feedback to the operator will not necessarily prompt operators to proac-

tively interact with the system; thus, control mechanisms that enable an operator to

access the feedback information must be provided.

Providing feedback about what information, or missing information, appear to be con-

tributing to the development of a known or unknown undesirable emergent behavior

promotes transparency by improving the system’s explainability, which fosters the op-

erator’s understanding. The transparency promoted in this design guideline needs to

provide explainable information that allows the operator to understand why the develop-

ment of a known or unknown emergent behavior is occurring and what characteristics,

or missing information, are contributing to the development. This level of transparency

can improve SA and provide accurate justifications for operator actions.

5.2.1.5 Undesirable Behavior Mitigation Procedure

Embedding procedures into the model capable of mitigating the development of known

undesirable emergent behaviors is design guideline DG23 in Table 5.4. Providing the

system capability to mitigate known undesirable emergent behaviors can be more effec-

tive and efficient, which promote better usability. This guideline was formulated consider-
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ing how system control (e.g., autonomy) can help alleviate operator workload associated

with completing tasks. Designers of human-collective systems must consider how to

maximize the strengths of both the model and operator in order to promote optimal

performance. Using a model designed to achieve a task without operator influence (e.g.,

a best-of-n model for highest value target identification task) will aid operators and can

improve human-collective performance.

This design guideline is intended to be embedded into the model only. The model

can use similar information aggregation, probability computation, threshold triggers,

and decision support or predictive simulation tools discussed in Chapters 5.2.1.1 and

5.2.1.3 in order to formulate a process of mitigating known undesirable emergent be-

haviors. The decision support and predictive simulation tools as those can help deter-

mine the best set of actions the model can take and execute those actions accordingly.

The known undesired emergent behavior mitigation process may experience an error

or fail to proceed forward if the behavior is unknown. A separate process must be im-

plemented in order to accommodate for unknown undesired emergent behaviors. The

system may return to a previous state before the unknown undesired behavior began to

emerge in order to implement another strategy to mitigate the undesired behavior, or

may try other sub-optimal actions to determine if those actions contribute to attaining a

proper mitigation. Both processes will be iterative, as the system will constantly use the

collective information to monitor for known undesirable emergent behaviors and follow

the respective process to mitigate further development of the behavior, depending on

whether it is known or unknown.

Providing information on the visualization about the system’s capability to mitigate

known undesirable behaviors is unnecessary; however, training prior to system usage

is needed in order to promote accurate mental models of system reliability and under-
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standing regarding system strategies when an unknown undesired behavior emerges.

Depending on the reliability or strategy, an operator may be prompted to influence the

system by providing additional information to influence the system decision-making

outcome or overrule the system’s decision depending on the current situation.

Embedding procedures into the model capable of mitigating the development of

known undesirable emergent behaviors and strategies to cope with unknown unde-

sired emergent behaviors promotes transparency by improving the system’s usabil-

ity. This level of transparency can alleviate operator workload, while promoting better

human-collective performance. The model will have control over determining how to

mitigate or cope with undesired emergent behaviors; however, operators will be capable

of supplementing information to improve decision-making or override the model.

5.2.2 Cohesion

Cohesion is the degree of connectedness in a group and is the second biologically in-

spired behavior. The most common benefit of cohesion in both biological and robotic

collectives is increased safety of the individual collective entities by being a part of

a collective group. Honeybees, fish, and birds maintain cohesion in order to reduce

the number of isolated individuals or small groups of members from attacks made by

predators [6, 14] or environmental factors [5]. Robotic individual collective entities will

experience similar challenges associated with the environment, and may encounter ad-

verse individuals depending on the situation. Cohesive groups can achieve complex

geometries that are beneficial to maneuver around objects in an environment, evade

adverse individuals, and provide the capability for individuals to access resources, as

is observed in tuna that use parabolic formations for cooperative hunting [16]. Systems
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that mimic cohesive biological behaviors must consider how to promote cohesion.

The design guidance is to inform operators of the current collectives’ cohesion sta-

tus, predictive cohesion information about the collectives, and feedback about why the

collectives’ cohesion is or is not changing. Operators who have a better understanding

of current and predicted cohesion states, as well as an understanding of why the state

is or is not changing will be able to promote better cohesion due to improved SA.

Table 5.5: Design guidance for cohesion.

DG24. Provide current status and predictive information to the operator about the
collective’s cohesion with respect to the given task, system state, and environment
state, such as percentage of aggregation.
DG25. Provide feedback to the operator regarding why the collectives’ cohesion is or
is not changing.

5.2.2.1 Current Status and Prediction of Cohesion

Providing the operator a collectives’ current status and predictive information about the

collective’s future cohesion with respect to the given task, as well as the system and

environment state is design guideline DG24 in Table 5.5. This guideline was formulated

considering how challenging it may be for operators to observe and understand whether

the cohesion of a collective is within a desired range. Varying geometry will cause

density changes that will challenge the operator’s capability to determine whether the

behavior is positive or negative. Providing the current status of the collective will at-

tract the operator’s attention to relevant information, improving their SA, and reducing

the workload associated with determining what is happening with cohesion. Relevant

predictive information about the collective cohesion will provide insight and promote

learnability about future collective cohesion.
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The design guideline can be embedded into the model, visualization, or both. The

model can aggregate the available information from the collective and compute a current

cohesion status, such as percent cohesion value, with respect to the given task, as well

as the system and environment state. Based on the influence of the task, system, and

environment states a prediction can be computed to determine the collective’s future

state. A threshold value can be used to trigger sending a message to the visualization

software that determines how to present the information to the operator. The number

of seconds a future state is projected and the trigger value can be derived using DG19

principles from Chapter 5.2.1.1.

The information presented to the operator must be observable and explainable in order

to foster understanding. Providing a clear, succinct, and legible current and predicted co-

hesion state message can be embedded into the visualization. The presentation of the

information can be conveyed as a numerical percentage value with a header to indicate

which percentage value it is, for example, “current” versus “predicted”. Using a nu-

merical percentage value suggests that the operator has prior knowledge, potentially

from training, about what cohesion percentage values are ideal. Designers can use dif-

ferent colors, patterns, or representative symbols to indicate whether the current and

predicted cohesion states are good or bad. A check mark, for example, can be used to

indicate good, and a “x” cross can indicate bad. Representative symbols or icons may

be an effective alternative for operators who have a color vision deficiency, minimizes

the use of text, which can impose more workload on an operator, and can be easier to ob-

serve quickly. The presentation of the current and future cohesion state information can

be accessed in supplemental windows in order to reduce clutter on the visualization;

however, if the information is necessary to successfully complete a task, the information

must be presented on the visualization near the respective collectives.
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Providing the current and predicted cohesion state information will ideally prompt

operators to proactively interact with the system in order to ensure cohesion is in a de-

sirable range. Control mechanisms must be provided in order to enable the operator’s

attempt to increase cohesion, such as a command that promotes cohesion in order to

avoid a physical split that may compromise the safety of the group. Recording which

control mechanisms have been used is necessary in order for the operator to understand

whether using the control mechanism promoted better cohesion. Training prior to sys-

tem usage can help operators develop accurate mental models of how particular control

mechanisms influence collective cohesion.

Providing the current status and predictive information about the collective’s future

cohesion with respect to the given task, as well as the system and environment state pro-

motes transparency by improving the system’s usability. The transparency promoted in

this design guideline needs to provide observable and explainable information to under-

stand the collectives’ current and future cohesion state. This level of transparency can

promote better SA, which prompts the operator to take appropriate preventative actions

that result in improved human-collective performance.

5.2.2.2 Feedback about Cohesion State

Providing relevant feedback to the operator regarding why the collectives’ cohesion is or

is not changing can supply context and justification for the collective’s behavior, guide-

line DG25 in Table 5.5. Providing feedback promotes explainability, which fosters under-

standing, by being learnable. Operator satisfaction and SA can be improved, resulting

in more accurate calibrations of operator expectations regarding the system’s capability

limitations. This guideline was formulated considering how operators often do not
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understand why collectives are or are not behaving in a particular manner. Providing

feedback is a useful method for promoting transparency; however, providing too much

feedback may distract operators and can cause higher workload.

The design guideline can be embedded into the model, visualization, or both. The

model can add task (e.g., changing task priority), system (e.g., multiple solution op-

tions being weighed equally), or environment (e.g., obstructions in the environment)

characteristic identifiers to the information provided from the collective prior to aggre-

gation and compute the current cohesion status, similar to DG24 in Table 5.5. The rate

of cohesion change can be computed using the current cohesion state and the prior

recorded state information in order to determine whether the collective’s cohesion is or is

not changing. The identifiers from the current and previous cohesion states can be com-

pared, and those that are different can indicate what characteristics may be contributing

to the cohesion behavior change. A threshold value derived using DG19 principles from

Chapter 5.2.1.1, can be used to trigger sending a message to the visualization software

that determines how to present the feedback to the operator.

The feedback information presented on the visualization must be explainable in order

to foster understanding regarding why the collective cohesion is or is not changing and

what characteristics may be influencing the behavior change. The feedback information

can be presented in various ways, including color coding, text messages, representative

symbols, or icons that were discussed in Chapter 5.2.7.2. Representative icons can be

used to identify whether the collective cohesion is changing and in what direction, such

as an upward facing arrow to indicate positive cohesion change. No change in collec-

tive cohesion status can be represented using a symbol, such as an “x” indicator. The

identification of what characteristic is contributing or impeding cohesion state change

can also be presented as a representative icon; however, other strategies may become
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more useful if too many symbols are being used and the operator’s cognitive capabil-

ity is exceeded. Understanding how collective cohesion is or is not changing and what

characteristics may contribute to that change will help calibrate the operator’s expec-

tations of the collective’s future behaviors by providing justifications for change, which

will improve SA. The feedback can be accessed as supplementary information in order to

mitigate workload issues that may arise when too much information is supplied.

Providing feedback to the operator will not necessarily prompt operators to proac-

tively interact with the system; thus, control mechanisms that enable an operator to

access the feedback information must be provided.

Providing relevant feedback regarding why the collectives’ cohesion is or is not chang-

ing and what characteristics may be contributing to that cohesion state change promotes

transparency by improving the system’s explainability, which fosters the operator’s un-

derstanding. This level of transparency can improve SA and provide accurate justifica-

tions for collective cohesion state changes.

5.2.3 Timing to Maintain Cohesion

The timing of individual collective entity behaviors is critical to maintain cohesion of

a collective and must be considered. This behavior was inspired after identifying that

the rate at which members of cohesive biological groups exchange positions is crucial

in order to maintain long-range cohesive order [17]. Reshuffling too quickly can have

detrimental effects on the collective and increase safety risks. Robotic collective sys-

tems that mimic cohesive biological behaviors must consider timing. Details about the

design guideline associated with this behavior are provided in Chapter 5.2.3.1.
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Table 5.6: Design guidance for timing to maintain cohesion.

DG26. Provide suggestions to the operator, such as issuing particular commands, at
a specific time (e.g., to accommodate for neglect benevolence) in order to improve
a collective’s cohesion.

5.2.3.1 Suggestions to Improve Cohesion

Providing suggestions to the operator regarding what potential actions that can be

taken at a specific time to improve a collectives’ cohesion is DG26 in Table 5.6. Providing

the operator with suggestions can alleviate the workload associated with determining

what actions will improve cohesion. Providing the specific time when an action must be

taken can improve the efficacy of the human-collective team and the effectiveness of the

action. This guideline was formulated considering how the system can proactively aid

the operator in promoting better collective cohesion. Providing relevant suggestions and

when those suggestions must be implemented can help improve efficiency, timing, and

improve the overall human-collective’s task performance. Repeated interactions with

the system and what suggestions are recommended at specific times during training

and system usage can promote learnability. The operators can learn what actions are

necessary for particular known emergent behaviors, strategies that can be useful dur-

ing unknown emergent behaviors, and anticipate when those respective actions must

be taken. Human-collective system designers will need to consider how operator expec-

tations may be influenced by following the system recommendations. Some operators

may expect an immediate improvement of collective cohesion, although time is needed

for the collective behavior to stabilize (i.e., neglect benevolence). Expectations that are

not satisfied may reduce system credibility, perceived reliability, and reliance. The opera-

tor may take control of all proceeding collective behaviors, negatively impacting system
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usability. Accurate mental models about system response times during training prior to

system usage may mitigate operator expectation misalignment issues.

The design guideline can be embedded into the model, visualization, or both. The

model can use the principles from DG24 in Table 5.5 to compute a current cohesion

status. A decision support tool or predictive simulation tool, similar to that from DG21

in Table 5.4, can calculate what actions, such as control mechanisms, will contribute

to a higher future collective cohesive state. The time to execute the suggested action

must be sufficient in order to convey the message to the operator and allow time for the

operator to comprehend the message. A threshold value derived using DG19 principles

from Chapter 5.2.1.1 can be used to trigger sending the message to the visualization

software that determines how to present the information to the operator.

The information presented on the visualization must be observable and explainable in

order to foster understanding. Providing a clear, succinct, and legible suggestion indi-

cating what actions are recommended to improve cohesion for a particular collective

and when those actions must be taken can be embedded into the visualization. The

presentation of the information can be conveyed on a pop-up window near the control

mechanisms. Options, similar to those mentioned in DG21 in Table 5.4, can be provided

to the operator to “accept” or “cancel” the system’s recommendation. A text message

can indicate what particular control mechanism, for example, “abandon” search for a

target, is suggested. A timer countdown representative icon must be provided near the

recommended action in order to indicate when the operator must make the suggested

action. The pop-up window can become visible to the operator when a suggested ac-

tion is recommended and remain visible to the operator until either the suggestion is

accepted, canceled, or the time to issue that particular suggestion expires.
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Providing suggestions about what operator actions can improve a collective’s co-

hesion and when a particular action must be taken will ideally prompt operators to

interact with the system. Control mechanisms must be provided that enable the oper-

ator’s attempt to improve cohesion, and the capability to adjust software parameters

used to determine which actions are ideal, as adjustments to the parameters can result

in different action suggestions. Recording which control mechanisms have been used is

necessary in order for the operator to understand whether using the control mechanism

promoted better collective cohesion.

Providing suggestions to the operator about what actions can improve collective

cohesion and the timing to issue the recommended actions promotes transparency by

improving the system’s usability, via efficiency and effectiveness, which ultimately im-

prove human-collective performance. The transparency promoted in this design guide-

line needs to provide explainable information that allows the operator to understand what

actions can improve collective cohesion and when those actions must be issued. Control

mechanisms to execute such actions must be provided to the operator. This level of

transparency can alleviate workload and promote better SA.

5.2.4 Individual Collective Entities Roles

Biological individual collective entities have roles that can persist or change depending

on various characteristics. Physiological characteristics, such as body length [18], nutri-

tional state [19], and age [5, 48] can influence particular roles and behaviors. Fish body

length [18] and nutritional state [19] can determine placement within a group, while

honeybee and ant [5, 48] age can impact particular roles. A general pattern of honeybee

and ant role change starts where younger workers remain inside the nest to serve as
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nurse or honeycomb builder bees and as they age, transition to foraging and scout bee

roles outside the nest [5]. Robotic collective systems can assign particular individual

entities specific roles based on similar “physiological” characteristics, such as software

or hardware features. Environmental characteristics can also influence roles and be-

haviors, such as the inside of a honeybee colony’s hive (congestion of the adult bees,

numerous immature bees, and expanding food reserves) and outside the hive (plenti-

ful forage in the spring time) have been correlated with starting the process of queen

rearing [5]. Robotic individual collective entities who possess information inside and

outside of a hub, similar to those exemplified by the scout honeybees, can initiate pro-

cesses. Mimicking biological roles and characteristics to select individuals for specific

roles can be used in robotic human-collective systems.

Table 5.7: Design guidance for individual collective entities roles.

DG27. Provide engagement prompts to the operator if the number of individuals in
particular roles decreases below a critical threshold.
DG28. Provide suggestions about how to transition individual entities into new
roles in order to avoid falling below a critical threshold.
DG29. Provide feedback to the operator about why capabilities or roles are
changing.
DG30. Implement model strategies to re-assign individuals to new roles if other
members fall below critical capabilities, such as low battery power.

The design guidance for the roles behavior is to provide prompts to operators if

characteristics fall below critical thresholds, suggestions or strategies on how to tran-

sition individuals into new roles, and feedback regarding why individual collective

entity capabilities or roles are changing. Using heterogeneous collectives can maximize

the strengths of the operator and the different individual collective entities in order to

promote high human-collective performance.
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5.2.4.1 Role Engagement Prompts

Collective roles can be distributed among individual collective entities in order to en-

sure task completion. Circumstances may arise when the number of individual col-

lective entities performing a particular role falls below a critical threshold and inhibits

task progression. Various types of behaviors, including known or unknown emergent

behaviors, as well as hardware or software changes in the individual collective entities

may cause issues with task progression. Providing engagement prompts, such as indica-

tors or warnings, to the operators when the critical threshold has been reached is DG27

in Table 5.7. Engagement prompts can be used to draw attention to changes that will im-

pact role fulfillment and can calibrate operator expectations accurately, maintain SA, and

prompt the operators to take actions to maintain task progression. This guideline was

formulated considering what alternatives are needed when circumstances arise that

cause individual collective entities to no longer fulfill a particular role that is needed to

fulfill the mission objectives.

The design guideline can be embedded into the model, visualization, or both. A set

of roles, and the optimal number of individual collective entities with particular capa-

bilities to perform a respective role can be defined and associated with tasks. Identifiers

can distinguish the capabilities of the individual collective entities, as well as what role

the entity is performing. The information from the collective can be aggregated together

in order to compute a role status relative to task completion. The status information can

be used to determine whether the collective is progressing toward task completion.

Missing information due to loss of individual collective entities, which may occur due to

environmental impacts, loss in individual entity capabilities, a critical sensor or actuator,

or imperfect communication, are examples of characteristics that may influence no task
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progression. A threshold value derived using DG19 principles from Chapter 5.2.1.1 can

be used to trigger an analysis process in the visualization software that determines how

to present the information to the operator.

Engagement prompts presented on the visualization can promote understanding, as

long as they are observable and explainable. Providing a salient, clear, and legible engage-

ment prompt can be embedded into the visualization indicating that the number of indi-

vidual collective entities performing a particular role has dropped below an acceptable

threshold. The number of individual collective entities performing a particular role out

of the total number of entities needed to complete a task can be presented on an infor-

mation pop-up window as a numerical ratio message, such as “Foraging: 18 out of 20”.

The engagement prompt can remain visible until the number of individual collective

entities is no longer below the critical threshold. Attracting the operator’s attention by

using non-visual multimodal strategies (e.g., auditory or tactile) can expedite detection

of the engagement prompt and alleviate workload, as long as the operational environ-

ment enables proper detection of the cues. The operator’s SA can improve by knowing

the role status, as long as the engagement prompt is not too salient. Highly salient en-

gagement prompts may distract operators away from attending to other high priority

tasks associated with the system’s collective(s), which may contribute to further reduc-

tion of individual collective entities needed for particular roles. Understanding how to

maintain attention across multiple collectives simultaneously is necessary in order to

promote a usable human-collective system.

Providing a prompt that indicates the number of individual collective entities in a

particular role has fallen below a critical threshold will ideally cause operators to in-

teract proactively with the system in order to increase the number of entities in that

role. Different types of control mechanisms must be provided in order to help increase
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the number of individual collective entities performing a role or to mitigate the lose

of entities due to specific circumstances. Recording which control mechanisms have

been used is necessary in order for the operator to understand whether using particu-

lar control mechanisms maintained, decreased, or increased the number of individual

collective entities fulfilling a role. Training prior to system usage can help operators

develop strategies to recognize the influence of control mechanisms on individual col-

lective entities and develop mental models that can help calibrate neglect benevolence,

since the collective role behavior may need time to stabilize.

Engagement prompts indicating the status of the number of individual collective enti-

ties performing specific roles below an acceptable and critical threshold promotes trans-

parency by improving the system’s usability. The transparency promoted in this design

guideline, similar to DG19 from Chapter 5.2.1.1, needs to provide explainable information

that allows the operator to understand the collective’s role status with respect to the task

progression. This level of transparency can promote better SA and calibrate operator

actions in order to improve human-collective performance.

5.2.4.2 Suggestions to Transition Individual Collective Entities into

New Roles

Providing suggestions to the operator about how to transition individual collective en-

tities into new roles in order to avoid falling below a critical threshold of entities per-

forming a role is DG28 in Table 5.7. This guideline was formulated considering how the

system can proactively aid the operator with determining how to transition individ-

ual collective entities into new roles, which can alleviate workload, as well as improve
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SA and system usability. Providing relevant suggestions can help improve efficiency, ef-

fectiveness, timing, mitigate loss of resources devoted to determining how to transition

individual collective entities into new roles, and improve the overall human-collective’s

task performance. Operator expectations may be negatively impacted by providing sug-

gestions if the operator becomes overly reliant on the system information in order to

fulfill a task or it distracts the operator for other higher priority tasks. Some operators

may expect an immediate response of individual collective entities transitioning into

new roles, although time is needed for the collective behavior to stabilize (e.g., neglect

benevolence). Misalignment in operator expectations of system usability may also cause

dissatisfaction, reducing system credibility and perceived reliability. The operator may

take control of all proceeding individual collective entity role transitions, negatively im-

pacting system usability and potentially reducing human-collective performance. Accu-

rate mental models about system response times during training prior to system usage

may mitigate operator expectation misalignment issues.

The design guideline can be embedded into the model, visualization, or both. The

principles about establishing a set of roles, number of individual collective entities

needed for particular roles, distinguishing individual collective entities’ capabilities, and

what roles the entities are currently performing from DG27 in Table 5.7 can be encoded

into the model. A probability, similar to DG19 from Chapter 5.2.1.1, can be computed to

determine whether current actions are influencing task progress negatively and if the

critical threshold will be reached relatively soon. A minimum time remaining estimate

to take preventative actions on role transitions, using the DG19 principles from Chap-

ter 5.2.1.1, can trigger a process of determining what actions are needed to transition

individual collective entities into new roles, which have the necessary capabilities. A de-

cision support tool or predictive simulation tool, as cited for DG21 in Chapter 5.2.1.3 can
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identify the actions needed to make efficient and effective individual collective entity role

transitions. Once the model has determined the best suggestion it can be communicated

to the visualization software that determines how to present the information.

The information presented must be observable and explainable in order to foster under-

standing of the longer term implications of the potential suggestions. Providing a clear,

succinct, and legible suggestion indicating which individual collective entities can be

transitioned into a new role, how to make that transition, and when the transition must

be taken can be embedded into the visualization. A message presented on a pop-up

window near a respective collective can identify the suggestion. The subgroup of indi-

vidual collective entities that can transition to a new role can be presented using text,

such as “Worker”. The role that the individual collective entities can transition into can

be represented by an arrow pointing towards the new role written in text, such as “

=⇒ Forager”. Below the current role transition into a new role information, a second

line of information can indicate the recommended action to transition roles and a nu-

merical time counting down when the action can be taken. Using a combination of text

and representative symbols will alleviate the workload associated with reading the sys-

tem provided message. The window can remain visible to the operator until either the

suggestion is accepted, canceled, or the time to issue that particular suggestion expires.

Providing suggestions about what actions can help transition individual collective

entities into new roles will ideally prompt operators to interact with the system. Control

mechanisms must be provided that enable the operator’s attempt to transition indi-

vidual collective entities into new roles, and the capability to adjust software parameters

used to determine the suggestions, as adjustments to the parameters can result in differ-

ent suggestions based on the collective’s goal achievement outcomes. Recording which

control mechanisms have been used is necessary in order for the operator to understand
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whether using the control mechanism aided the individual collective entities’ role tran-

sitions. Training prior to system usage can help develop operator mental models re-

garding the system usability and how to interact with the recommended suggestion.

Providing suggestions to the operator about what actions can help transition indi-

vidual collective entities into new roles promotes transparency by improving the sys-

tem’s usability. The transparency promoted in this design guideline needs to provide

explainable information that allows the operator to understand what individual collective

entities can transition into new roles and how the transition can be taken. Control mech-

anisms enabling the recommended suggestion must be provided in order to execute

such actions. This level of transparency can alleviate workload by promoting better SA.

5.2.4.3 Feedback about Changing Capabilities or Roles

Relevant feedback can be provided to the operator in order to justify why individual col-

lective entity capabilities or roles are changing, guideline DG29 in Table 5.7. Providing

feedback promotes explainability by being learnable, which can improve operator satis-

faction and SA, as well as calibrate operator expectations regarding how characteristics,

such as environmental or system, influence changes in individual collective entity capa-

bilities or roles. This guideline was formulated considering how operators often do not

understand why collectives are behaving in a particular manner. Providing feedback is

a useful method for promoting transparency; however, too much feedback may distract

operators and can cause higher workload.

The design guideline can be embedded into the model, visualization, or both. The

model can add identifiers to the state information provided from the collective, similar

to DG22 in Chapter 5.2.7.2, that distinguish specific characteristics, such as perceptual
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accuracy. A process that compares the identifiers across multiple time steps, in order to

reduce noise associated with reported data, can determine whether a change is occur-

ring in individual collective entity capabilities or roles. Information not provided over the

allocated time steps due to limited communication, will likely defer to the last known

capability or role state information, where providing an associated error or explanation of

this occurrence may be needed. A threshold value derived using DG19 principles from

Chapter 5.2.1.1, can be used to trigger sending a message to the visualization software

that determines how to present the feedback to the operator.

The feedback information presented on the visualization must be explainable in order

to foster understanding regarding why individual collective entity capabilities or roles are

changing. The feedback information can be presented in various ways, including color

coding, representative symbols, or icons that were discussed in Chapter 5.2.1.1. The

characteristics contributing to changes in individual collective entity capabilities or roles

can be presented as representative icons, such as a representation that a critical sen-

sor is malfunctioning, in order to mitigate the amount of text provided to the operator.

Understanding what is contributing to changes in capabilities or roles will help properly

calibrate the operator’s expectations of the collective’s future behaviors and can improve

SA. The feedback can be accessed as supplementary information in order to mitigate work-

load issues that may arise with too much supplied information.

Providing feedback to the operator will not necessarily prompt operators to proac-

tively interact with the system; thus, control mechanisms that enable an operator to

access the feedback information must be provided.

Providing feedback about what characteristics that contribute to capability or role

changes promotes transparency by improving the system’s explainability, which fosters

the operator’s understanding. This level of transparency can improve SA and provide
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accurate justifications for collective behaviors.

5.2.4.4 Re-assigning Roles Strategies

Embedding strategies into the model capable of re-assigning individual collective enti-

ties into new roles if other members capabilities fall below a critical threshold is design

guideline DG30 in Table 5.7. Providing the system capability to re-assign roles can be

more effective and efficient, which promotes better system usability. This guideline was

formulated considering how system control can help alleviate operator workload asso-

ciated with determining information from Chapter 5.2.4.2, such as which individual

collective entities can be transitioned into a new roles, how to make that transition, and

when the transition must occur. Human-collective system designers must consider how

to maximize the strengths of the model and operator in order to promote optimal per-

formance. Using a model designed to achieve a task without operator influence will aid

operators and can improve human-collective performance.

This design guideline is intended to be embedded into the model only. The princi-

ples outlined in Chapter 5.2.4.2 can be used to establish roles, distinguish individual

collective entities’ capabilities, and identify what roles the entities are currently per-

forming. The model can monitor whether capabilities of individual collective entities

have decreased below an acceptable threshold using the DG19 principles from Chapter

5.2.1.1. Capabilities that have surpassed the acceptable threshold can trigger a process

to re-assign the lower capability individual collective entities’ respective roles to other

members who have better capabilities. Once the model has determined the best role

re-assignment and method of executing the change it can be communicated to the visu-

alization software that determines how to present the information.
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Providing information on the visualization about the system’s capability to re-assign

roles is not necessary, rather operators can have access to the inputs, information, and

decision-making conclusions the model outputs. Training prior to system usage is

needed in order to promote accurate mental models of system reliability and understand-

ing regarding system processes. Depending on the reliability or process, an operator may

be prompted to influence the system by providing additional information to influence

the system role re-assignment decision-making outcome or overrule the system’s deci-

sion depending on the current situation. Control mechanisms to enable the operator to

provide additional information or overrule the system’s decision must be provided.

Embedding processes that enable models to re-assign individual collective roles

promotes transparency by improving the system’s usability. This level of transparency

can alleviate operator workload, while promoting better human-collective performance.

The model will initially have control over what individual collective entities are being

re-assigned to different roles and how the re-assignment will be executed; however,

operators will be capable of supplementing additional information to improve the re-

assignment decision-making or override the model.

5.2.5 Limited Communication Among Individual Collective Enti-

ties

The biologically inspired behavior of focus is that the communication amongst individ-

ual collective entities is typically limited. A topological method of communication [181]

describes the behavior of biological collectives that communicate with a particular num-

ber of neighbors, which varies based on species, such as six to seven for starlings [6] and
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three to fix for shoaling fish [21]. Differences in the number of neighbors individuals are

capable of communicating with vary depending on particular characteristics. Robotic

collectives will experience visual communication [181] challenges similar to those seen

in fish, such as some individuals may visually occlude others’ capability to observe neigh-

bors [22] due to their size or the density of the aggregation. Interacting with few neigh-

bors can reduce noisy information; however, the information is short ranged [6]. Reshuf-

fling individuals in the group changes exposure of neighbors and provides different

information, which is a biological fish strategy [6] that can be embedded into robotic

systems. Much of the existing literature, including the single human-collective evalu-

ations from Chapter 3, have assumed perfect communication between the individual

collective entities and between the operator and the collectives. Designers of collective

systems must consider how limited communication amongst the individual collective

entities and between the operator and a collective can influences human-collective in-

teractions and performance in order to operate in real-world use scenarios.

Table 5.8: Design guidance for limited communication amongst individual collective
entities.

DG31. Indicate collective communication status to the operator, such as high-
bandwidth level.
DG32. Provide feedback to the operator about communication status implications,
such as limited-bandwidth level means limited communication with the respective
collective and delays in behavior response are expected.
DG33. Provide predictive information about delay in updates related to collective
behavior due to the communication status and the error associated with the
prediction to the operator.

The design guidance is to train operators about limited communication capabilities

associated with the system prior to usage, provide communication state information, and

to provide feedback about the communication status implications on collective behavior
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response. Predictive information about the delay in information updates and information

about communication latency are also recommended. Operators who have a better

understanding of communication limitations will have more accurate expectations of the

system capabilities and performance, which will improve operator satisfaction.

5.2.5.1 Communication Status

Communication bandwidth or locations at which communication is unavailable are

impacted by the operational environment and can negatively influence the ability of

the operator and collectives to effectively communicate and interact with one another,

which may cause poor human-collective performance. Indicating what the collectives’

current communication status is to the operator is design guideline DG31 in Table 5.8.

This guideline was formulated considering how challenging it may be for operators to

understand what is influencing collective behaviors, such as system or environmental

characteristics. Providing the current communication status of the collective majority,

since variability will exist among individual entities, will improve the operator’s SA,

calibrate the operator’s expectations accurately, and reduce the workload associated with

determining whether the information provided to and from the collective was received.

System usability will improve by indicating the collective’s current communication sta-

tus, because operators will have a better understanding of the communication reliability.

The design guideline can be embedded into the model, visualization, or both. The

model can aggregate at minimum a particular percentage of available information pro-

vided from the collective, since variability or lack of communication may impact the

ability for individual collective entities to communicate. A current communication sta-

tus can be computed, such as bandwidth availability, latency, or signal strength. After
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calculating the communication status, the model can send a message to the visualization

software that determines how to present the information to the operator.

The information presented on the visualization must be observable in order to foster

understanding. Providing a clear and legible communication status message can be em-

bedded into the visualization using various techniques. A succinct text message, such

as “Low”, lower opacity color, or a vertical bar indicator at a low level can represent low

bandwidth, while “High”, an opaque color, or a high level on a vertical bar indicator

can represent high bandwidth. Using a clear and succinct text message can be advan-

tageous, as long as the operator’s workload is not negatively impacted by adding more

text to the visualization. Color usage can expedite detection; however, particular colors

must be avoided in order to accommodate operators who may be color blind or to de-

conflict the chosen color with the use of color on the visualization for other purposes.

The levels on a vertical bar indicator must be observable and distinct, if not operators

may interpret the same level differently, which may negatively impact SA and misalign

operator expectations of the system usability. The presentation of the communication sta-

tus can be accessed in supplemental windows associated with the collectives in order

to reduce visualization clutter.

Providing the communication status of the collectives may impact the operator’s in-

teractions with the system, as long as training prior to system usage developed accurate

operator mental models of the implications of the communication status, such as band-

width level, latency, or signal strength. The communication status will either affirm the

operator’s understanding of the ideal system capabilities and not influence their interac-

tions with the system, or will prompt the operator to re-calibrate their expectations based

on the communication reliability. A lower communication status may cause operators to

limit their interactions with the system until the communication status increases to an
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optimal or desirable communication level or strength. Control mechanisms that allow

operators to access supplemental communication status information must be provided.

Providing the collectives’ communication status promotes transparency by improv-

ing the system’s usability and explainability. The transparency promoted in this design

guideline needs to provide observable information in order for the operator to understand

the collectives’ communication status. This level of transparency can promote better SA

and accurately calibration operators’ expectations of system response. Understanding the

reliability of the communication can improve human-collective interactions.

5.2.5.2 Feedback about Communication Status Implications

Relevant feedback can provide context and insight regarding the implications of commu-

nication status on human-collective interactions and behaviors, design guideline DG32

in Table 5.8. Providing feedback to the operator promotes explainability by being learn-

able, which can improve operator satisfaction and SA, as well as calibrate operator ex-

pectations regarding the system’s reliability. This guideline was formulated considering

how operators often do not understand the implications of changes in the system, such as

communication availability, and how that influences the operators’ ability to interaction

with the collectives. Providing feedback is a useful method for promoting transparency;

however, too much feedback may distract operators and can cause higher workload.

The design guideline can be embedded into the model, visualization, or both. The

model can aggregate at minimum a particular percentage of available information pro-

vided from the collective, due to variability or lack of communication. The model can

compute a communication status, such as the example provided in DG31 in Chapter

5.2.5.1. The variables used to compute the communication status can indicate whether
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particular information is missing, due to signal detection issues for example, or if the

available information is causing substandard communication. Situations where no in-

formation is provided, because there is no communication, the system can report the

last known communication status and indicate to the operator that the information is

not current, rather from a prior time. A set of predetermined general implications on

human-collective interactions can be encoded into the model that is dependent on the

communication level computed. The model can send a message to the visualization

software, after determining the communication implications on the human-collective

team, that determines how to present the feedback to the operator.

The feedback information presented on the visualization must be explainable in order

to foster understanding regarding what the communication status is, what factors (i.e.,

variables) are influencing the level of communication, which is only needed when the

communication is below an optimal level, and what are the implications on human-

collective interactions and behaviors. The communication status can use the text, color,

or icon strategies discussed in DG31 in Chapter 5.2.5.1. Explanations about what fac-

tors are influencing communication and what the implications are on human-collective

interactions and behaviors can be provided via text; however, representative symbols

can also be used. Presenting information using particular techniques will be dependent

on the level of detail needed to provide sufficient context, whether legends are avail-

able to remind operators what symbols represent, and if prior training can aid operator

understanding of the information provided on the visualization. Designers must balance

how information is presented in order to mitigate workload associated with identifying

and understanding the feedback as well as not exceeding operator cognitive capabilities by

requiring recollection of the meaning of colors, symbols, or icons. Providing information

regarding the communication implications on human-collective interactions and be-
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haviors will help calibrate properly the operator’s expectations of the collective’s future

behaviors, can improve SA, and provide insight about system capabilities. The feedback

can be accessed in a supplementary information window in order to mitigate workload

issues associated with providing too much information.

Providing the communication implications on human-collective interactions and

behaviors will ideally prompt users to either continue (high bandwidth) or lessen (lower

than high bandwidth) the number of interactions with the system. Fewer interactions

with the human-collective system may persist until the communication level has re-

turned to a more optimal level, which may positively or negatively influence human-

collective interactions and behaviors. Control mechanisms must be provided to the op-

erator in order to access the communication implications feedback and influence the col-

lectives accordingly. Designers must consider how influential control mechanisms must

be in order to accommodate situations at various communication levels.

Providing feedback regarding the implications of communication on human-collective

interactions and behaviors promotes transparency by improving the system’s explain-

ability and usability. The transparency promoted in this design guideline needs to pro-

vide explainable information that fosters operator understanding regarding why factors are

influencing communication status and how communication status will impact the effec-

tiveness of human-collective interactions and behaviors. This level of transparency can

improve SA, lower workload, and provide accurate justifications for operator actions.

5.2.5.3 Delay in Updates Prediction and Error

Providing an operator predictive information related to communication status implica-

tions, such as delays, on human-collective interactions and behaviors, as well as the
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associated prediction error is design guideline DG33 in Table 5.8. This guideline was

formulated in order to provide operators an accurate understanding of when they can

interact with the system due to communication delays rather than the time needed for

collective behavior to stabilize (e.g., neglect benevolence). Providing relevant predic-

tive information can improve efficiency, effectiveness, and timing associated with waiting

for the communication to return to a level that permits desired human-collective in-

teractions and behaviors. The operator; however, will need information related to how

accurate the prediction is and what is the system’s confidence in the provided prediction,

similar to the example provided in the DG19 example in Chapter 5.2.1.1. The prediction

error will inform the operator about the system’s confidence (i.e., reliability) in the pre-

diction, as well as calibrate the operators’ expectation and reliance on the system, which

promotes better system usability.

The design guideline can be embedded into the model, visualization, or both. The

model can aggregate the information from the collective and compute a communication

status (DG31 in Chapter 5.2.5.1). Providing predictive delay information is needed when

the communication status is below an optimal level causing delays. Situations with sub-

optimal communication status’ can use a decision support tool or predictive simulation

tool from DG21 in Chapter 5.2.1.3, in order to calculate the probability of a collectives’

communication state changing and predict how much time it will take to reach an op-

timal status where the operator has the capability to influence the collective and the re-

sulting behavior emerges. The system can send a message to the visualization software

that determines how to present the communication delay information to the operator.

The information presented on the visualization must be observable, explainable, and

understandable by the operator. Providing a clear and legible message indicating the pre-

dictive information related to communication status implications can be embedded into
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the visualization using a representative icon. A stopwatch symbol, for example, can be

used to draw the operator’s attention to the icon that shows the time delay, for example,

using numerical values and the associated units. A stopwatch symbol may not always

indicate the predictive information, since the characteristics used to calculate communica-

tion status and make predictions may change. Choosing a consistent symbol, regardless

of the predictive information and communication status characteristic, is recommended in

order to maintain consistent mental models. The predictive error can also be provided

on the icon using numerical values and a percentage sign in order to ensure distinc-

tion between the two numerical values. Representative symbols or icons are an effective

alternative that minimizes the use of text and can be perceived quickly. The predictive

delay and error information can be provided on a supplemental pop-up window near

the collective in order to mitigate the workload associated with the amount of informa-

tion provided on the visualization. The supplemental window can remain visible for

operators only when the communication status is suboptimal.

Providing predictive information related to communication status implications and

the associated prediction error may prompt users to continue interacting with the system

only when the communication status has returned to a more optimal level. Designers

must consider how providing the predictive information may discourage operators to

interact with the system, which may cause poor human-collective performance. Model

strategies, such as predicting what happens when the operator takes particular actions,

can help mitigate disuse when the communication status does not return to an optimal

level. Operators must understand the implications of communication status, DG32 in

Chapter 5.2.5.1, and what interactions can still be taken during delays. Training prior to

system usage can ensure more accurate mental models of system usage during limited

communication situations. Control mechanisms must be provided to the operator in
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order to access the predictive delay information and associated error, as well as enable the

operator to influence the collectives accordingly.

Providing predictive delay information and the associated error promotes transparency

by improving the system’s usability. The transparency promoted in this design guide-

line needs to provide useful and explainable information that allows the operator to un-

derstand the collective’s future state and what interactions the human-collective team

can take during situations with limited communication. This level of transparency can

promote better SA and mitigate workload.

5.2.6 Collective and Subgroup Information

Information provided from the collective can be presented at various aggregated levels,

including the collective (high aggregation) and subgroup levels (low aggregation). Pro-

viding information at the individual collective entity level (no aggregation) is not recom-

mended due to the quantity of information provided by very large sized collectives, the

noise of the provided information, and the limited computational capabilities of the sys-

tem to process the information. Local sampling, performed in parallel by large numbers

of individuals, allows biological colonies to accurately average individual members’ re-

sponses to changes, such as environmental changes [14]. The group level reporting of

information mitigates the noisy individual level reporting of information [5]. Situations

may arise when operators want to access collective and subgroup level information. Pro-

viding the operator access to different information levels can improve their understanding

of how subgroup behaviors influence collective behaviors and visa versa, as long as the

information is presented clearly and distinctly. Designers must determine how many

subgroups can be presented to the operator before exceeding the operator’s cognitive
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capabilities, if many subgroups exist within the collective.

Table 5.9: Design guidance for presenting information about the collective and sub-
groups.

DG34. Provide feedback, with an associated error, to the operator about why a
collective or subgroup is doing what it is currently doing, such as fulfilling a
particular task or reacting to an environmental perturbation.
DG35. Provide predictive information, as well as the error associated with the
prediction, to the operator about how the behavior of the collective or subgroup
may influence the overall collective’s state and actions.
DG36. Provide suggestions to the operator about how to mitigate or support
collective or subgroup behavior.
DG37. Only provide information to the operator about subgroups if collective state
will change significantly (e.g., critical threshold reached).

The design guidance is to provide feedback to the operators about what particular

behavior or action a collective or subgroup is exhibiting or performing and why that be-

havior or action is occurring. Providing predictive collective or subgroup information

and suggestions about how the operator can mitigate or help support particular behav-

iors is also recommended. Information about subgroups is recommended only when a

significant collective state change will occur. Operators who have a better understand-

ing of the current and predicted behaviors of the collective and subgroups will be able

to interact with the collective and subgroups more effectively, which will ultimately

improve task performance.

5.2.6.1 Feedback about Collective and Subgroup Actions

Relevant feedback and the error (e.g., confidence level) associated with the feedback can

be provided to the operator regarding why a collective or subgroup is doing what it

is currently doing and what may be contributing to that particular behavior, guideline
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DG34 in Table 5.9. Providing feedback promotes explainability, which can improve oper-

ator satisfaction and SA, while providing the associated error calibrates operator expec-

tations and provides insight about the system reliability. This guideline was formulated

considering how operators often do not understand why collectives are behaving in a

particular manner and what is contributing to those behaviors. Providing feedback is a

useful method for promoting transparency; however, too much feedback may distract

operators and can cause higher workload. There will be a trade off between the quantity

and quality of feedback provided to operators. Systems composed of many collectives

and their respective subgroups must have a limited number of messages provided to

the operators, as well as fewer details provided in the feedback, in order to mitigate work-

load, contributing to confusion, and potentially hindering human-collective performance.

The design guideline can be embedded into the model, visualization, or both. Prior

to processing the data provided from the collective, a set of general characteristic classi-

fiers can be embedded into the model that estimate how many individual collective en-

tities are in particular subgroups based on their capabilities, roles, and other useful char-

acteristics associated with the human-collective task. The collective and subgroup be-

havior states can be determined in order to understand what the collective or subgroups

are doing. Characteristics, such as environmental perturbations, must be determined in

order to provide the operator with an explanation of what is contributing to the collec-

tive or subgroup behavior state. All of the available information can be aggregated into

the collective level reporting, and categorized by a general characteristic classifier for

the subgroup level. Different criteria can be used to determine what subgroups can be

visually presented to the operator. Aspects, such as the quantity of individual collec-

tive entities sharing the same general characteristic classifier, the quantity of influence

particular subgroups possess, or operator selected subgroups, can be used to identify
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which subgroups will be presented to the operators. A decision support tool or predic-

tive simulation tool from DG21 in Chapter 5.2.1.3 can be used to calculate the quantity

of influence subgroups have on collective task performance, as well as the associated

error, such as a confidence interval. The quantity of subgroup information presented

to the operator must be limited, such as seven plus or minus two, which is consistent

with limited human short term memory capacity [180]. The confidence interval can be

used to trigger sending a message to the visualization software that determines how to

present the feedback to the operator.

The feedback information presented on the visualization must be explainable in order to

foster understanding regarding what the collective and its subgroups are doing and why,

as well as the associated feedback error. The feedback information can be presented in var-

ious ways, including color coding, text messages, representative symbols, or icons that

were discussed in Chapter 5.2.1.1. A designated interactive feedback area can be used

to present the information and can remain visible throughout the duration of system

usage. The interactive area can be subdivided into four sections. The operator can 1)

select a respective collective in order to 2) identify what subgroups are performing spe-

cific tasks. The operator can select either the collective or a respective subgroup, which

will be highlighted upon selection, in order to see what 3) the collective or respective

subgroup is doing. The last section can 4) identify what may be contributing to those

collective or subgroup actions and the associated error. Using a static designated area

on a visualization can be advantageous if a potentially large quantity of information can

be provided from the system. The designated area can show the hierarchy of collective

information (collective as top level and subgroup as a lower level) so that operators un-

derstand what behavior they are perceiving. A consistent location and presentation strat-

egy will aid operator mental models of system usability and explainability. Designated
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interactive areas may not be feasible for all visualizations if the visualization does not

have sufficient space for an additional designated area and if adding the area does not

contribute to clutter. Designers must consider how to balance information presentation

by using various color, pattern, text, static persistent information presentation, or sup-

plemental information presentation strategies in order to mitigate workload associated

with perceiving and comprehending the information. Understanding what the collective

or subgroup is doing and what may be contributing to those actions will help calibrate

the operator’s expectations of the collective’s future behaviors properly, improve SA, and

provide insight about system capabilities.

Providing feedback to the operator will not necessarily prompt operators to proac-

tively interact with the system; however, information presentation techniques, such as

the designated interactive area, may motivate operators to inquire feedback about cur-

rent collective or subgroup actions. A well designed designated interactive area must

have control mechanisms that enable an operator to access desired feedback information.

An overly complex feedback presentation may demotivate operators to use the informa-

tion. Designers must balance between the quantity and quality of information provided

to the operator, as well as what control mechanisms enable operators to effectively inter-

act with the system. Training prior to system usage can also aid operators to develop

accurate mental models of system usability and explainability.

Providing feedback about what a collective or its subgroups are doing, what may be

contributing to those actions, and the associated error of the feedback promotes trans-

parency by improving the system’s explainability, which fosters the operator’s under-

standing. This level of transparency can improve SA and provide accurate justifications

of collective or subgroup actions. Designers must be cognizant about how to provide

the feedback in order to mitigate negative influence on workload with perceiving and
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comprehending the information.

5.2.6.2 Prediction and Error of Collective or Subgroup Influence

Providing an operator a likelihood prediction of how a collective or subgroup’s current

actions may influence the collective’s future state and actions is design guideline DG35

in Table 5.9. This guideline was formulated considering how operators often do not

understand what the implications of current collective or subgroup actions are on the

future collective state. Providing relevant predictive information that can inform the op-

erator about future collective states can mitigate workload, as well as help improve SA

and human-collective task performance. The operator will need information related to

how accurate the prediction is and what is the system’s confidence (i.e., reliability) in the

provided prediction, such as a confidence interval, in order to have accurate expectations

and reliance on the system, which will promote better system usability.

The design guideline can be embedded into the model, visualization, or both. Strate-

gies that can process the available collective information, classify the information by col-

lective or subgroups, and determine what the collective and respective subgroups are

doing were discussed in design guideline DG34 in Chapter 5.2.6.1. Based on the in-

fluence of the current collective’s and subgroups’ actions, a prediction and an associated

prediction error can be computed using a predictive simulation tool from DG21 in Chapter

5.2.1.3 in order to estimate the collective’s future state. A message to the visualization

software can be sent that determines how to present the predictive information an associ-

ated prediction error to the operator.

The information presented via the visualization must be observable, explainable, and

understandable by the operator. Providing a clear, succinct, and legible explanation in-
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dicating what will be the collective’s future predicted state, what collective or subgroup

actions are contributing to that prediction, and the prediction error can be embedded into

the visualization. The collective’s predicted future state and prediction error can be pre-

sented on the collective icon using a letter to represent the most supported state next

to the associated error, such as F (Error 12%), where F represents favoring a particular

target. The collective predictive state, prediction error, and details regarding what collec-

tive or subgroup actions are contributing to the predicted state can become visible on

the visualization when the operator requests to view the information. Specific details

regarding what collective or subgroup actions are contributing to the prediction can be

provided via a supplementary window. A legend providing information about what

the collective future state acronyms represent can alleviate workload associated with re-

membering the representative information and ultimately improve SA. Understanding

the collective predictive state and error due to current collective or subgroup actions will

indicate how reliable the system is and will properly calibrate the operator’s expectations

of the collective’s future behaviors.

Providing the collectives’ predicted future state along with a prediction error will ide-

ally prompt operators to proactively interact with the system. The operator will likely

want to redirect the collective’s or subgroups’ current actions in order to produce a de-

sired future collective state. Control mechanisms must be provided in order to enable

the operator’s attempt to redirect collective or subgroup behaviors, as well as access the

supplemental windows detailing what actions are contributing to the prediction. Train-

ing prior to system usage can help operators develop accurate mental models of system

usability in order to expedite information processing during system usage.

Providing a prediction and an associated error of a collectives’ future state, as well as

an explanation of what current collective or subgroup actions are contributing to that
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prediction promotes transparency by improving the system’s usability and explainability.

This level of transparency can promote better SA, which prompts the operator to take

appropriate preventative actions that result in improved human-collective performance.

5.2.6.3 Suggestions to Support or Mitigate Collective or Subgroup

Providing suggestions to the operator about what actions can be used to mitigate or

support collective or subgroup behavior is design guideline DG36 in Table 5.9. Provid-

ing the operator with suggestions can alleviate the workload associated with determin-

ing how to prevent, minimize, support, or increase further development of collective or

subgroup behaviors. This guideline was formulated considering how the system can

proactively aid the operator in the development of particular collective or subgroup

behaviors. Providing relevant suggestions can help improve efficiency, timing, effective-

ness, and the overall human-collective’s task performance. Human-collective system de-

signers must consider how providing system suggestions influences operator behaviors

and expectations. Some operators may become overly reliant on the system and expect

immediate behavior development, although time is needed for the collective behav-

ior to stabilize (i.e., neglect benevolence). Deviations from these operator expectations

can cause dissatisfaction, reduce system credibility, and perceived reliability. The oper-

ators may overcompensate for a lack of collective or subgroup behavior development

by taking control of all proceeding actions and ignoring what the system is reporting,

which can negatively impact system usability. Providing additional information, such as

feedback about the time remaining for the collective or subgroup to change behaviors,

and training prior to system usage can help mitigate operator expectation misalignment

issues and improve operator interactions with the system.
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The design guideline can be embedded into the model, visualization, or both. The

model can initially estimate the collectives’ or subgroups’ current state from the infor-

mation provided by the collective, after classifying what information is associated with

particular collectives and respective subgroups using principles from DG34 in Chapter

5.2.6.1. A deviation from the expected or desired state, similar to that discussed in DG20

from Chapter 5.2.1.2, can be calculated. A threshold value derived using the DG19 prin-

ciples from Chapter 5.2.1.1, can be used to trigger a decision support tool or predictive

simulation tool, which can calculate what actions will contribute to a lower deviation

from the expect or desired state. Once the model has determined the best suggestion,

the information can be communicated to the visualization software that determines how

to present the information to the operator.

The information presented on the visualization must be observable and explainable in

order to foster understanding of the longer term implications of the potential suggestions.

Providing a clear, succinct, and legible suggestion indicating what action the system

recommends and why for a particular collective or subgroup can be embedded into the

visualization. The presentation of the information can be conveyed on a pop-up window

near the collective. A text message can indicate what particular control mechanism, for

example “investigate” target, is suggested and identify whether the suggestion is for the

collective or a particular subgroup. The text must be easily observable (e.g., large easily

visible letters) and understandable in order to be an effective implementation. The pop-

up window can remain visible to the operator until either the suggestion is accepted,

canceled, or the time to issue that particular suggestion expires.

Providing suggestions about what operator actions can mitigate or support further

development of collective or subgroup behavior will ideally prompt operators to interact

with the system. Control mechanisms must be provided that enable the operator’s at-
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tempt to mitigate or support behavior for a collective or a subgroup. The operator must

also have the capability to adjust software parameters used to determine suggestions, as

adjustments to the parameters can result in different suggestions to mitigate or support

collective or subgroup behavior. Recording which control mechanisms have been used

can help promote operator understanding of whether or not using the particular control

mechanism mitigated or supported the collective or subgroup behavior. Training prior

to system usage can develop accurate operator mental models regarding the system’s

usability and how the operator can interact with the system in order to fulfill, ignore, or

modify the recommended suggestion.

Providing suggestions to the operator about what actions can mitigate or support

collective or subgroup behavior development promotes transparency by improving the

system’s usability, explainability, and human-collective performance. The transparency

promoted in this design guideline needs to provide information that allows the operator

to understand what actions can mitigate or support further development of collective or

subgroup behavior. Control mechanisms must enable operators to execute such actions

to the particular collective or subgroup. This level of transparency can alleviate workload

by promoting better SA.

5.2.6.4 Presentation of Subgroup Information

Providing information to an operator requires determining what types of information are

necessary, how best to present the information, and how often the information must be

made available to the operator. Only providing subgroup level information to the oper-

ator, if the collective state will change significantly as a result of the subgroup behavior,

is DG37 in Table 5.9. Providing information when an operator needs it, which was the
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inspiration to formulating this design guideline, will promote better usability, because

the system will be more effective, efficient and timely. Operators may experience less

workload, since only relevant information is provided when it is needed. Operators will

be reliant on the system to provide the information when they need it; therefore, their

expectation is that the system is capable of fulfilling that objective. Any complications,

such as limited communication, that may hinder the system’s capability of supplying

subgroup information when the operator thinks the information must be presented will

negatively influence credibility and perceived reliability of the system.

This design guideline is intended to be embedded into the model only. The model

can implement the strategies proposed in design guideline DG34 in Chapter 5.2.6.1 that

process the available collective information and classify the information by collective or

subgroups. A threshold value derived using DG19 principles from Chapter 5.2.1.1, can

be used to trigger sending a message to the visualization software that determines how

to present the information to the operator.

Providing subgroup level information, such as feedback, current and predictive state

information, and suggestions, on the visualization were discussed in Chapters 5.2.6.1,

5.2.6.2, and 5.2.6.3 as well as the respective control mechanism implications. The op-

erator must have the capability to adjust software parameters used to determine which

subgroup behavior is presented to the operator, as adjustments to the parameters can

result in different outcomes.

5.2.7 Leadership

Many homogeneous robotic collective systems have been used to assess bio-inspired

behaviors; however, biological collectives are typically heterogeneous due to various
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characteristics. One type of characteristic that can make systems heterogeneous is lead-

ership, which can be crucial for biological collectives survival. The survival of a honey-

bee colony, for example, is dependent on the survival of its queen, who carries the new

colony’s genes [5], and which makes her a leader in this particular context. Individual

collective entities can become leaders based on a particular context, how much informa-

tion they possess, environmental effects, their experience, and possessing certain physi-

ological (e.g., software or hardware) characteristics. Scout honeybees can be considered

leaders, since their knowledge informs when to initiate the departure of the daughter

colony from the mother colony, how to chose and make a decision on a suitable nest,

trigger the colony’s takeoff to the new nest site, and steer the colony during its flight

[5]. Environmental aspects, such as the distance between locations and predictable re-

sources, can cause leadership to become transient, as observed in dolphins [26]. Un-

derstanding what characteristics can determine leadership and how that leadership can

change are necessary in order to design effective heterogeneous human-collective sys-

tems. Providing the operator information regarding the leaders’ state, influence level,

and the reliability of the influence, will aid the development of accurate mental models

of leadership usability and promote SA.

Table 5.10: Design guidance for leadership.

DG38. Provide information about the leaders’ state in relation to a goal and influence
on the collective, such as the rate of change in behavior.
DG39. Provide feedback to the operator about a leader’s or a group of leaders’
influence level, such as time to complete tasks, and the reliability (i.e., can the
leaders influence the entities how the operator intends).

The design guidance is to provide the leaders’ status with respect to the mission

goal and feedback about the leaders’ influence on the collective. Operators who have
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a better understanding of how to use the leaders’ to influence collective behaviors will

have more effective interactions and improve the human-collective team’s performance.

5.2.7.1 Leader State and Influence on Collective

Providing information regarding leaders’ states in relation to a goal and the influence

those leaders have on a collective is design guideline DG38 in Table 5.10. This guideline

was formulated considering how challenging it may be for operators to observe and un-

derstand leaders’ states, especially when using abstract visualizations that do not show

individual leaders to the operator, and what the leaders’ level of influence is on the

collective and its overall mission goal. Providing the leaders’ current state will attract

the operator’s attention to relevant information, which can improve their SA and reduce

the workload associated with determining what is happening with the leaders. Relevant

information about the leaders’ persistent and transient capabilities (e.g., influence on the

collective) will promote learnability, as operators will be able to use leadership more

effectively to influence collective behaviors to aid in achieving a desired mission goal.

The design guideline can be embedded into the model, visualization, or both. Prior

to processing the data the model can use principles from DG34 in Chapter 5.2.6.1 to clas-

sify individual collective entities versus leaders based on general characteristics, such

as their capabilities, roles, or operator selection. The model can aggregate the available

information from the collective, some of which may be missing due to imperfect commu-

nication, and compute a current collective and leaders’ state, with respect to the given

task and environment state. A process will need to be embedded into the model in order

to determine the leaders’ influence on the collective with respect to the mission goal, for

example, calculating the rate of change in collective behavior after being influenced by
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particular leaders. Criteria discussed in design guideline DG34 in Chapter 5.2.6.1 can be

used to determine what leaders’ state information and influence on the collective can be

visually presented to the operator. The quantity of leader information presented to the

operator must be limited, such as seven plus or minus two, in order to avoid overload-

ing limited human short term memory capacity [180]). A threshold value derived using

DG19 principles from Chapter 5.2.1.1, can trigger sending a message to the visualization

software that determines how to present the information to the operator.

The information presented on the visualization to the operator must be observable

and explainable in order to foster understanding. Providing a clear and legible state mes-

sage regarding the leaders’ state and influence on the collective can be embedded into

the visualization. The presentation of the information can be conveyed using an ag-

gregated representative icon, such as a glyph [40], in order to reduce the quantity of

associated text that may cause misunderstanding and confusion. A glyph is a simple

visual icon that depicts multiple attributes [182]. A collective hub icon, for example,

can be treated similar to a glyph with added information about the leaders’ state and

influence on the respective collective. Designers can use different colors or patterns to

indicate the leaders’ state, while a dedicated area consumed by a particular leader can

indicate its influence on the collective. Representative symbols can lower workload by

being easier to observe quickly and to understand. Designers must balance the amount of

text versus symbols or icons in order to alleviate workload. The usability of glyphs may

become disadvantageous as the number of collectives represented on a visualization

increases, as well as the complexity or quantity of the data represented on the glyphs.

Providing the leaders’ state information and their influence on the collective will ide-

ally prompt operators to interact with the system in order to ensure mission comple-

tion. Control mechanisms must be provided to enable the operator’s attempt to help
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direct leaders’ in order to positively influence the collective towards mission comple-

tion. Recording which control mechanisms have been used is necessary for the operator

to understand whether using the control mechanism promoted positive task completion.

Training prior to system usage can help operators develop accurate mental models of

how particular control mechanisms direct leaders’ to influence collectives positively.

Providing the current leaders’ state and the influence the leaders’ have on the collec-

tive with respect to the mission goal promotes transparency by improving the system’s

usability and explainability. The transparency promoted in this design guideline needs

to provide observable and explainable information to understand the leaders’ current state

and influence on the collective. This level of transparency can promote lower workload,

by reducing the amount of processing required to determine the influence leaders have

on a collective, and can improve SA, which prompts the operator to take appropriate

preventative actions that result in improved human-collective performance.

5.2.7.2 Leadership Influence and Reliability Feedback

Relevant feedback can provide the operator information regarding the influence level of a

leader or group of leaders’ and how reliable that associated influence may be, guideline

DG39 in Table 5.10. Providing feedback promotes explainability of system limitation capa-

bilities, which will impact how the operator interacts with the system. Operator satisfac-

tion and SA can increase by knowing relevant leadership information that can improve

the effectiveness of operator directability. This guideline was formulated considering how

operators may not understand the reliability and level of influence leaders have over the

collective. Providing feedback is a useful method for promoting transparency; however,

too much feedback may distract operators and can cause higher workload.
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The design guideline can be embedded into the model, visualization, or both. The

model can embed principles discussed from DG38 in Chapter 5.2.7.1 regarding classifi-

cation of individual collective entities versus leaders based on characteristics, such as

their capabilities. The model can use a decision support tool or predictive simulation

tool, similar to that from DG21 in Table 5.4, that can predict how the leader classification

influences the collective behavior relative to mission completion. An associated error

with the influence prediction can be calculated. Criteria discussed in design guideline

DG34 in Chapter 5.2.6.1 can be used to determine what leaders’ influence information can

be presented visually to the operator. The quantity of leader information presented to

the operator must be limited in order to avoid overloading human short term memory

capacity [180]). A threshold value derived using DG19 principles from Chapter 5.2.1.1,

can trigger sending a message to the visualization software that determines how to

present the information to the operator.

The feedback information presented on the visualization must be explainable in order

to foster understanding of a leader’s or groups of leaders’ influence on the collective and

associated error. The feedback information can be presented in various ways, including

color coding, text messages, representative symbols, or icons that were discussed in

Chapter 5.2.1.1. The presentation of the information can be conveyed using the glyph

design mentioned from DG38 in Chapter 5.2.7.1. The influence prediction error can be

represented using different colors or patterns, while a dedicated area consumed by a

particular leader or group of leaders can indicate the influence level on the collective.

Similar advantages and disadvantages associated with glyphs from DG38 in Chapter

5.2.7.1 are applicable for this design guideline.

Providing feedback to the operator regarding the influence leaders or groups of lead-

ers have on a collective and the reliability of that influence will likely prompt operators
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to interact with the system if influence and reliability are high, if not operators may de-

cide to use other influence strategies. Control mechanisms must be provided in order to

enable the operator’s attempt to help direct leaders’ to positively influence the collec-

tive towards mission completion. Recording which control mechanisms have been used

is necessary in order for the operator to understand whether using the control mechanism

promoted positive task completion. Training prior to system usage can help operators

develop accurate mental models of how particular control mechanisms direct leaders’

to influence collectives positively.

Providing feedback to the operator about the leader’s or group of leaders’ influence

and reliability of that influence on collective behaviors promotes transparency by im-

proving the system’s explainability, which fosters the operator’s understanding, as well as

system usability. This level of transparency can promote lower workload, by reducing

the amount of processing required to determine the influence leaders have on a collec-

tive, can improve SA, and provides justification to take particular actions that result in

improved human-collective performance.

5.3 Design Guidance Reliability for Real World Use Scenarios

Limitations associated with real world use scenarios were briefly identified in some of

provided design guidelines. Further discussions will expand on each limitation cate-

gory: 1) limited or no communication, 2) challenges with the domain (e.g., aerial or

underwater) or environment, and 3) the type of collective systems. This discussion is

intended to aid designers’ understanding of the limitations and how they may impact

the reliability of the design guidelines for their respective human-collective systems

performing specific tasks in particular environments. Understanding the limitations of
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the associated design guidelines will aid future human-collective system evaluations,

which will provide data to further validate the guidelines’ reliability.

Limited or no communication situations may arise due to perceptual issues expe-

rienced in biological species, which was discussed in Chapter 5.2.5, as well as envi-

ronmental, hardware, or software issues. Guidelines suggesting to provide particular

types of information to the operator will be ineffective if the operator and collective

system have limited to no communicate with one another, as will be guidelines with

respect to individual collective entities communicating with collective hubs or with one

another. Different types of queuing strategies may need to be considered in order to pri-

oritize what information is most important or necessary in order to progress towards

goal completion when communication is limited, and to determine how operator is-

sued commands and system processes will be managed in order to avoid undesired

behaviors, such as latency issues or detrimental collective behaviors.

Environmental characteristics, such as humidity, atmospheric pressure, tempera-

ture, and physical barriers (e.g., objects in the environment or building structures), may

cause signal interference and can hinder the reliability of the hardware or software. De-

termining an acceptable range of operational conditions prior to system use are neces-

sary in order to program appropriate mitigation strategies into the models and to deter-

mine bounding conditions for particular types of individual collective entities, such as

operational altitude range. Many of the environmental characteristics will be challeng-

ing to determine a priori due to their variability and the inability to identify all possible

environmental characteristics, such as changing turbidity of ocean environments. The

working environment will also affect bandwidth due to the distance between the indi-

vidual collective entities, collective hubs, and operators, as well as the communication

system coverage patterns, which will ultimately affect the communication status of the
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human-collective system.

Determining what types of hardware and software are needed for the overall en-

compassing system architecture, collective hubs, and individual collective entities, is

necessary in order to ensure operation across mission domains and deployment envi-

ronments. The use of different types of vehicles, such as multirotor versus fixed wing

aerial vehicles, or surface versus underwater marine vehicles, with differing capabili-

ties and functionalities, as well as differing domain characteristics will impact the re-

liability and generalizability of the transparency design guidelines. Complexity of a

system will increase as collectives change from homogeneous to heterogeneous sys-

tems and will require guidelines compensating for varying individual collective entity

variability, such as the guidance related to leadership. As collective systems become

more sophisticated, such as improvements in perception, autonomy, and intelligence,

so will the hardware and software required to implement those capabilities. Provid-

ing more design guidelines and system capabilities will contribute to increased system

complexity and must be considered prior to implementation. The size of the collective

may restrict hardware and software advances if the desired capability changes are too

costly. Improved individual collective entity capabilities can assist with the implemen-

tation of the transparency design guidelines; however, the cost of more sophisticated

individual collective entities will impact the overall cost of acquiring and maintaining

the collective. The acquisition costs alone of a large collective (e.g., 1000 entities), where

each entity has somewhat sophisticated capabilities (e.g., $1,500 per entity) will funda-

mentally cost more (e.g., $1,500,000), when compared to less capable entities (e.g., $150

per entity) being acquired for a collective (e.g., $150,000). Designers will need to weigh

which guidelines are most critical, or how they need to be modified, in order to balance

the human-collective system complexity and operation.
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The design guidance inspired from the single operator-collective evaluation anal-

yses provided recommendations that can be implemented into human-collective sys-

tems that have been assessed in great depth with respect to visualizations, models, and

control mechanisms. The biologically inspired design guidance expands on the single

operator-collective inspired guidance by identifying other characteristics that can be

applied in order to address additional research questions for transparency in human-

collective systems. Both sets of guidelines must be investigated further in order to un-

derstand how real world use scenario limitations influence the reliability of the recom-

mendations. The design guidelines suggest how to mitigate challenging issues within

robotic collective systems and offers the opportunity to explore these behaviors further

in future work. Providing design guidance for human-collective systems will begin to

create standards within the field.
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Chapter 6: Conclusion

Collective robotic systems are biologically-inspired and composed of many simple indi-

vidual entities that exhibit behaviors found in spatial swarms (e,g,, fish), colonies (e.g.,

ants), or a combination of both (e.g., bees). Collective robotic systems are advantageous

due to their apparent global intelligence and emergent behaviors. Many applications

can benefit from the incorporation of collectives, including environmental monitoring,

disaster response missions, and infrastructure support. Designers of human-collective

systems continue to debate what system design elements (e.g., models, visualizations,

and control mechanisms) are needed in order to provide transparency of collective

behaviors and enable operators to positively influence collectives. Integrating trans-

parency into the system can mitigate poor operator behaviors, help attain meaningful

and insightful information exchanges between the operator and collective, enable pos-

itive operator influence on collectives, and improve the human-collective’s overall ef-

fectiveness and performance. Few human-collective evaluations have been conducted,

many of which have only assessed how one system design element may impact human-

collective behaviors, such as the human-collective performance.

This dissertation developed a transparency definition for collective systems [2] that

was leveraged to assess how to achieve transparency in a single human-collective sys-

tem. Two models, one consensus decision-making model and another that required op-

erator influence in order to achieve the task, and two visualizations, a traditional and

abstract collective representation, were evaluated for a sequential best-of-n decision-

making task with four collectives, each consisting of 200 individual collective entities.
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Transparency was evaluated with respect to how the model and visualization impacted

1) human operators who possess different capabilities, 2) operator comprehension, 3)

system usability, and 4) human-collective performance. The specific transparency fac-

tors associated with each of these four categories were identified and evaluated in order

to provide insight about the transparency implications. Transparency design guidance

was created in order to aid the design of future human-collective systems. One set of

guidelines were inspired from the results and discussions of the single human-collective

analyses and another set was based on a review of the biological literature.

The models and visualizations provided transparency differently independently.

There were advantages and disadvantages associated with both model and visualiza-

tion types. The first visualization analysis determined that the abstract visualization

provided the best transparency, since operators with different individual capabilities

were able to perform relatively the same and the human-collective team performed

better. The second analysis considered the affects of both the models with the visualiza-

tions and determined that no single model and visualization combination provided the

best transparency, rather advantages and disadvantages associated with both models,

visualizations, and particular model with visualization combinations were identified.

The different outcomes between the two analyses suggest that transparency cannot be

quantified by using the best system design elements, but instead must be quantified

by considering how the transparency of the different system design elements, includ-

ing the models (i.e., algorithms), interact with one another and how that system trans-

parency influences human-collective interactions and performance.

This dissertation has made novel contributions to the collective robotics domain by

defining transparency for human-collective systems, providing insight about how to

achieve transparency in these systems, evaluating transparency embedded in multiple
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system design elements of a single human-collective system, as well as providing de-

sign guidance for future systems. Specific contributions are described in Chapter 6.1,

and the opportunities for future work are discussed in Chapter 6.2.

6.1 Contributions

There were four primary contributions generated by this dissertation.

1. Transparency definition for human-collective systems. This dissertation created the

first transparency definition for human-collective systems that leveraged a com-

monly used robotics transparency definition and factors from traditional human-

machine and human-robot domains [2]. The transparency definition identifies

pertinent information to provide to the operator and collectives, and identifies

methods to embed or promote transparency into the system. Two secondary

contributions transpired from creating the human-collective system transparency

definition. A human-machine system transparency factor concept map, directly

applicable to human-collective systems, was created in order to aid designers in

clarifying and identifying what factors are associated with transparency, what

the relationships are between factors, and how those transparency factors are

either influenced by transparency or affect transparency. Understanding which

factors are associated with transparency are useful in determining which metrics

are needed to assess transparency. Methods to embed and promote transparency

in human-collective systems were identified in order to aid human-collective de-

signers: 1) embed transparency via system features, which is the primary method

explored in existing human-collective literature, 2) promote transparency by de-

signing human-collective systems using specific guidelines, only the Gestalt prin-
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ciples have been used in one evaluation [37], and 3) train the human operators

and system, which was recently investigated in one evaluation [183].

2. Metrics to assess transparency from a single human-collective evaluation. Only two

transparency human-collective system evaluations [29, 56] using colony based

systems exist in the literature. This dissertation evaluated another colony based

system and did a comparative analysis with that of Cody et al.’s [57], by assess-

ing how different models (i.e., algorithms) and visualizations influenced human-

collective interactions and behavior. A total of 37 metrics (excluding those in the

Appendices) were evaluated, of which 27 were newly defined as a contribution of

this dissertation. These metrics were used to determine which metrics effectively

assessed transparency for human-collective systems. The existing transparency

human-collective system literature in Chapters 2.0.1.3, 2.0.1.4, 2.0.2.3, 2.0.2.4, and

2.0.3.2, had only introduced approximately 15 metrics, most of which are per-

formance related. Nine of the metrics defined in this dissertation were simi-

lar to those used in the existing human-collective literature, while five metrics

were inspired from other human-machine domains and used to evaluate human-

collective interactions and performance. Eleven new metrics were created and

twelve were modified substantially from metrics in the human-machine interac-

tion domains. Human-collective system evaluations that are performed in a sim-

ulation environment can use 23 of the metrics provided by this dissertation when

performing an array of tasks. The number of useful metrics for in-situ evaluations

is 14, although alterations of particular metrics can be used in real world scenar-

ios, such as using eye-tracking data to assess the impacts of clutter and to permit

assessing perception. This dissertation evaluated metrics that leveraged exist-
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ing literature and human-machine domains in order to assess how transparency

influenced operators with different individual capabilities (11 metrics), operator

comprehension (13 metrics), system usability (24 metrics), and human-collective

performance (16 metrics). Expanding the metrics to assess how transparency in-

fluenced behaviors other than human-collective performance will aid designers

when assessing the impact of transparency related design decisions on human-

collective systems.

3. Quantification of human-collective system transparency. Many of the existing trans-

parency evaluations have only attempted to promote transparency and assess

how human-collective behaviors were influenced by one system design element

(e.g., visualization, model, or control mechanisms). This dissertation was the first

evaluation to assess multiple system design elements in order to promote trans-

parency, as well as determine how to quantify transparency for human-collective

systems. Implementing the best system design elements together in one collec-

tive system design may not always promote the best transparency and yield op-

timal results. The human-collective system may become less transparent due to

unanticipated and undesired operator behavior that results from the combined

system design elements. Providing insight about how to quantify transparency in

human-collective systems will provide a standard for determining the influence

of design choices. Results from future human-collective systems will be more ro-

bust by assessing how multiple system design elements influence one another, as

well as the human-collective interactions and behaviors.

4. Transparency design guidance for human-collective systems. Design guideline recom-

mendations were created in order to inform designers how transparency can be
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achieved for human-collective systems. Relationships between the design guide-

lines and the transparency factors were identified in order for designers to un-

derstand the implications of the guidance. No explicit design guidelines exist in

the literature to aid designers of human-collective systems, although some work

has identified concepts needed to design human-collective systems [184]. Pro-

viding guidance that can be used to inform design choices for models, visual-

izations, or control mechanisms in other systems will begin to create standards

within the field. Many of the design guidelines leverage strategies used in other

human-machine interaction domains, which may not always apply or scale to col-

lectives that exhibit emergent behaviors in limited communication environments.

Providing guidance to promote consistency among design principles will enable

researchers to compare their findings with others, since current systems are very

specific and cannot be generalized. The seven biologically-inspired behaviors that

inspired creating 22 design guidelines can be applied in order to address a number

of open research questions for transparency in human-collective systems. These

biological behaviors have not been investigated extensively in this dissertation’s

evaluation or the existing literature. The biologically-inspired design guidelines

suggest how to mitigate challenging issues within robotic collective systems and

offers and opportunity to make these systems more robust.

6.2 Future Work

Interest in collective robotic systems will continue to increase due to the potential ben-

efits that can be offered to operators, such as increased safety and support. Several

potential research directions that investigate collective robotic systems and extend the
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outcomes of this dissertation are provided.

Improve transparency factor concept map. This dissertation has shown the impor-

tance of the transparency factors for human-collective systems and how they either in-

fluence transparency or are affected by transparency. Further analysis can be conducted

in order to improve the transparency factor concept map. More detailed definitions of

the transparency factors and their corresponding relationships (i.e., links that connect

the transparency factors together) are needed in order to reduce the ambiguity of what

the factors mean and ensure that the relationships are accurate. Many of the relation-

ship terminology is not insightful regarding the specific relationship between factors,

such as “aspect of”. There are opportunities to further investigate the relationships be-

tween factors. Some factors, such as observability, have multiple meanings in different

domains, for example shared frame of reference for the automation and operator [39]

versus easily perceived information that supports operators [185]. Some definitions will

not be applicable to human-collective systems; therefore, as human-collective system

research, grows the transparency concept map must be improved to reflect the findings

from those evaluations and transition from a human-machine to a human-collective

transparency concept map.

Transparency metrics reliability and repeatability. The metrics provided in this dis-

sertation were used to successfully evaluate characteristics of human-collective system

transparency; however, further analyses are needed in order to determine the reliabil-

ity and repeatability of these metrics. Conducting a meta-analysis for metrics that were

consistent across both the single human-collective evaluations can begin to provide in-

sight about their reliability and reliability. More evaluations using these metrics will
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help to inform their repeatability. Conducting these analyses will promote consistent

metrics that can be used to assess transparency for future human-collective systems.

Improve and Expand the Bio-Inspired Design Guidelines. The following list of de-

sign guidance was inspired from the same biological behaviors discussed in Chapter

5.2. Further work remains to improve these particular design guidelines in order to

provide meaningful information about how to embed these guidelines into human-

collective systems, or incorporate them prior to system usage in order to promote trans-

parency (e.g., training). These design guidelines, as well as those mentioned in Chapter

5.2, can be improved by investigating the recommended design strategies (e.g., repre-

senting state information, feedback, or suggestions) in more depth. Existing method-

ologies, such as using machine learning, or particular training protocols, can be lever-

aged to embedded the design guidance into the human-collective system. Comparisons

can be made between the existing human-collective literature, not solely focused on

transparency, and what is recommended from the design guidance in order to deter-

mine the validity of these recommendations.

1. Undesirable Emergent Behaviors.

(a) Train operators how to use a respective system to mitigate undesirable emer-

gent behaviors prior to system usage.

2. Individual Collective Entities Roles.

(a) Train operators about the persistent capabilities and any individual collective

entity roles before system usage.

3. Limited Communication Among Individual Collective Entities.
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(a) Inform operators during training about limited communication between in-

dividual entities and how that limited communication may influence the de-

velopment of collective behavior.

(b) Provide feedback about the communication latency to the operator.

4. Collective and Subgroup Information.

(a) Provide information to the operator about the collective or sub-group state.

5. Leadership.

(a) Provide control mechanisms to the operator that permit influencing the lead-

ers.

(b) Implement model strategies to re-assign individuals to leadership roles if

other leaders’ capabilities fall below a critical threshold, such as low battery

power, or other individual entities will provide more benefit to the collective

serving as a leader, such as faster communication transmission.

6. Collective Influence of Individual Collective Entity Actions.

(a) Provide feedback to the operator about collective needs and if that need has

impacted individual entities’ actions.

(b) Provide suggestions about how to fulfill collective needs.

7. Feedback Loops.

(a) Provide control mechanisms to the operator that can be used multiple times,

as long as previous actions are not negated, in order to increase support for

particular behaviors.
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(b) Implement a time limit that the control mechanism can influence individual

collective entities in order to mitigate undesired behaviors.

(c) Implement control mechanisms that can attract or deter individual collective

entities towards or away from desired locations.

Human-collective evaluations with imperfect communication. The single human-

collective evaluation conducted as part of this dissertation assumed perfect commu-

nications between the human operator and the collective hub, as well as within the

hub between the individual collective entities, like the majority of the evaluations from

the existing literature. Real-world domain applications for collectives will not have

perfect communication due to various factors, such as the communication modalities

(e.g., WIFI or cellular coverage) limited bandwidth, or hardware and software limi-

tations. Evaluations are needed to understand how human-collective systems trans-

parency definition and factors, as well as the associated design guidance provided in

this dissertation impact the human-collective teams’ performance when systems have

imperfect communication. Additional modifications may be needed, such as predictive

collective state information, in order to achieve transparency.

Multiple human-collective evaluation. Collectives can be used as a shared resource

to support multiple distributed human operators. The application of the transparency

definition and factors, as well as the design guidance as applied to multiple human op-

erators sharing collectives is important. Human organizational structures will influence

human-collective teaming differently, since the organization is responsible for directing

what, how, when, and why the human-collective team must perform particular tasks.

Conflicts between the human organization, a single or multiple human operator(s), and
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collective system may occur if expectations from the entities are not met. Identifying

where deviations occur, whether it be by the organization, operator, or collective sys-

tem, is necessary in order to design effective human-collective systems.
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Appendix A: Demographic Questionnaire

The demographic questions used in both evaluations are identified in Table A.1. The

participants were asked to circle one answer for each question.

Table A.1: Demographic questionnaire.

Age: 18-30 31-40 41-50 51-60 60+
Gender: Male Female
Education: High Some College Some Masters Doctorate

School College Degree Graduate
School

How many 0 hrs < 3hrs 3-8 hrs >8 hrs
hours per
week do you
use a desktop,
or laptop
computer with
either a
computer
mouse or
laptop
trackpad?
Please indicate 1 2 3 4 5 6 7
your
proficiency
with video
games from 1
to 7, where 1
is little to no
proficiency
and 7 is highly
proficient.
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Appendix B: SA Probe Questions

The SA probe questions used in the IA evaluation are identified in Table B.1. The ques-

tions were tailored to the current situation based on the stochasticity of the evaluation.

Table B.1: SA probe questions.

Trial Time Question Lvl

1a

0:50 What collectives are investigating Target ? 1 1 2 3 4
1:50 What target is collective likely to choose? 3

2:50
Which collective has achieved a majority of for

2 1 2 3 4
Target ?

3:50 Is Target in being investigated by any collectives? 1 Yes No

4:50
What is the highest valued target available to

1
collective ?

5:50
Which behavior are most of the agents in collective

2 U F C X
doing?

1b

0:50
Which collective has the highest support for Target

1 1 2 3 4
?

1:50 Which is the highest valued target for collective ? 1
2:50 Which collective is primarily exploring? 2 1 2 3 4
3:50 Is Target in range of collective ? 2 Yes No
4:50 Which collective will make the next decision? 3 1 2 3 4
5:50 Will support for Target decrease? 3 Yes No

2a

0:50 Is Target likely to be selected by collective ? 3 Yes No
1:50 Which target has the highest value for collective ? 1

2:50
In collective , which of the four behaviors are

2 U F C X
most of the agents performing?

3:50
Is target in range of both collective and

2 Yes No
collective ?

4:50
Which collective is closest to achieving a majority

3 1 2 3 4
for a target?

5:50
Which Collective or collectives are investigating

1 1 2 3 4
Target ?
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Trial Time Question Lvl

2b

0:50
Is target being investigated by multiple

1 Yes No
collectives?

1:50 Which target should not be chosen by collective ? 2
2:50 Is collective investigating Target ? 1 Yes No

3:50
Which collective has the highest support for Target

1
?

4:50
Is an agent in collective more likely to be

2 Yes No
exploring than an agent in collective ?

5:50
Which collective is closest to picking an optimal

3 1 2 3 4
site?



306

Appendix C: Post-Trial Questionnaire

The post-trial questions used in both evaluations are identified in Table C.1. The par-

ticipants were asked to respond to the following prompts regarding their experience

during the experiment.

Table C.1: Post-trial questionnaire.

Please indicate the effectiveness of each Investigate 1 2 3 4 5 6 7
command for controlling the collective
decision in support of the highest value Abandon 1 2 3 4 5 6 7
target from 1 to 7, where 1 is not effective
and 7 is very effective. Decide 1 2 3 4 5 6 7
I was able to understand the collective’s behavior during 1 2 3 4 5 6 7
each decision this trial from 1 to 7, where 1 is never and 7
is always.
The collective chose the target I felt was the best in each 1 2 3 4 5 6 7
decision during this trial from 1 to 7, where 1 is never and
7 is always.
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Appendix D: Post Experiment Questionnaire

The post-experiment questions used in the IA evaluation are identified in Table D.1.

The participants were asked to rank the collective behavior algorithms, best or worst,

in each of the questions below.

Table D.1: Post-experiment questionnaire.

Best Worst
Please rank collective responsiveness to your requests Trial 1
according to each collective trial. Trial 2
Please rank your ability to choose the highest quality Trial 1
target with each collective trial. Trial 2
Please rank your understanding of the collective’s Trial 1
behavior in each trial. Trial 2
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Appendix E: Additional Operator Comprehension Data

The sum of collective and target left- and right-clicks an operator made was the total

number of interactions. The number of interactions 15 seconds before asking, while

Table E.1: Interactions descriptive statistics 15 seconds before asking, while asking, and
during response to SA probe question by SA level using the M2 model.

Timing SA Level Mean (SD) Median (Min/Max)

IA

Before

SAO 5.52 (3.91) 5 (0/22)
SA1 5.69 (3.91) 5 (0/22)
SA2 5.12 (3.81) 4 (0/18)
SA3 5.77 (4.05) 5 (0/16)

Asking

SAO 1.18 (1.22) 1 (0/5)
SA1 1.14 (1.15) 1 (0/4)
SA2 1.21 (1.25) 1 (0/5)
SA3 1.22 (1.3) 1 (0/5)

Responding

SAO 4.37 (3.24) 4 (0/15)
SA1 3.92 (2.93) 3.5 (0/13)
SA2 4.38 (3.21) 4 (0/14)
SA3 5.15 (3.67) 4.5 (0/15)

Collective

Before

SAO 5.75 (3.5) 5.5 (0/18)
SA1 5.77 (3.6) 5 (0/18)
SA2 5.71 (3.51) 6 (0/17)
SA3 5.77 (3.31) 6 (0/14)

Asking

SAO 1.97 (1.62) 2 (0/9)
SA1 1.68 (1.45) 1 (0/7)
SA2 2.28 (1.72) 2 (0/9)
SA3 2.11 (1.72) 2 (0/6)

Responding

SAO 4.32 (2.64) 4 (0/13)
SA1 3.96 (2.63) 4 (0/11)
SA2 4.29 (2.57) 4 (0/11)
SA3 5.14 (2.62) 6 (0/13)
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asking, and during response to a SA probe question descriptive statistics using the M2

and M3 models are presented in Tables E.1 and E.2, respectively. The Mann-Whitney-

Wilcoxin within model and between visualization statistical comparisons are presented

in Tables E.3 and E.4, respectively. The Spearman correlation between the interactions

and SA probe accuracy are provided in Table E.5.

Table E.2: Interactions descriptive statistics 15 seconds before asking, while asking, and
during response to SA probe question by SA level using the M3 model.

Timing SA Level Mean (SD) Median (Min/Max)

IA

Before

SAO 8.08 (4.7) 8 (0/26)
SA1 8.35 (4.12) 9 (0/20)
SA2 6.94 (4.76) 7 (0/19)
SA3 9.17 (5.25) 9 (0/26)

Asking

SAO 2.19 (1.72) 2 (0/9)
SA1 1.85 (1.29) 2 (0/5)
SA2 2.77 (2.08) 3 (0/9)
SA3 1.98 (1.66) 2 (0/7)

Responding

SAO 7.24 (3.71) 7 (0/18)
SA1 6.88 (3.47) 7 (0/18)
SA2 7.31 (3.49) 7 (0/15)
SA3 7.74 (4.33) 8 (0/18)

Collective

Before

SAO 7.9 (4.69) 7.5 (0/28)
SA1 7.3 (4.84) 7 (0/17)
SA2 8.08 (4.43) 7 (0/28)
SA3 8.41 (4.88) 9 (0/18)

Asking

SAO 2.9 (2.03) 3 (0/10)
SA1 2.79 (1.98) 3 (0/8)
SA2 3.17 (2.19) 3 (0/10)
SA3 2.6 (1.77) 3 (0/8)

Responding

SAO 5.88 (3.29) 6 (0/18)
SA1 5.54 (3.18) 5 (0/14)
SA2 6.14 (3.09) 6 (0/15)
SA3 5.89 (3.71) 6 (0/18)
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Table E.3: Within model comparison statistics (DOF = 1) of interactions 15 seconds be-
fore asking, while asking, and during response to SA probe question by SA level.

Timing SA Level Sample Size Mann-Whitney-Wilcoxin

IA

Before

SAO 670 U = 37396, ρ < 0.001
SA1 281 U = 6067.5, ρ < 0.001
SA2 224 U = 4781, ρ < 0.01
SA3 165 U = 2072, ρ < 0.001

Asking

SAO 670 U = 36766, ρ < 0.001
SA1 281 U = 6714.5, ρ < 0.001
SA2 224 U = 3491, ρ < 0.001
SA3 165 U = 2510, ρ < 0.01

Responding

SAO 670 U = 30856, ρ < 0.001
SA1 281 U = 4931.5, ρ < 0.001
SA2 224 U = 3300.5, ρ < 0.001
SA3 165 U = 2200.5, ρ < 0.001

Collective

Before

SAO 672 U = 40976, ρ < 0.001
SA1 266 U = 7093.5, ρ = 0.01
SA2 252 U = 5339, ρ < 0.001
SA3 154 U = 1985, ρ < 0.001

Asking

SAO 672 U = 41234, ρ < 0.001
SA1 266 U = 5816.5, ρ < 0.001
SA2 252 U = 5921, ρ < 0.001
SA3 154 U = 2453, ρ = 0.07

Responding

SAO 672 U = 40164, ρ < 0.001
SA1 266 U = 6066, ρ < 0.001
SA2 252 U = 4995, ρ < 0.001
SA3 154 U = 2551, ρ = 0.16
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Table E.4: Between visualization comparison statistics (DOF = 1) of interactions 15 sec-
onds before asking, while asking, and during response to SA probe question by SA
level.

Timing SA Level Sample Size Mann-Whitney-Wilcoxin

M2

Before

SAO 670 U = 59648, ρ = 0.16
SA1 294 U = 11128, ρ = 0.63
SA2 224 U = 7090, ρ = 0.09
SA3 152 U = 2940, ρ = 0.8

Asking

SAO 670 U = 72110, ρ < 0.001
SA1 294 U = 13061, ρ < 0.01
SA2 224 U = 8634.5, ρ < 0.001
SA3 152 U = 3744.5, ρ < 0.001

Responding

SAO 670 U = 57961, ρ = 0.46
SA1 294 U = 11178, ρ = 0.58
SA2 224 U = 6390.5, ρ = 0.81
SA3 152 U = 3066.5, ρ = 0.47

M3

Before

SAO 672 U = 55082, ρ = 0.59
SA1 253 U = 6840, ρ = 0.07
SA2 252 U = 9088, ρ = 0.03
SA3 167 U = 3235, ρ = 0.42

Asking

SAO 672 U = 67980, ρ < 0.001
SA1 253 U = 10068, ρ < 0.001
SA2 252 U = 8665, ρ = 0.15
SA3 167 U = 4195.5, ρ = 0.02

Responding

SAO 672 U = 44771, ρ < 0.001
SA1 253 U = 6211, ρ < 0.01
SA2 252 U = 6261, ρ < 0.01
SA3 167 U = 2637, ρ < 0.01
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Table E.5: Spearman correlation analysis between interactions and SA probe accuracy
15 seconds before asking, while asking, and during response to SA probe question by
SA level.

Timing SA Level IA Correlation Collective Correlation

M2

Before

SAO r = 0.08, ρ = 0.14 r = 0.07, ρ = 0.23
SA1 r = -0.002, ρ = 0.98 r = 0.02, ρ = 0.83
SA2 r = 0.21, ρ = 0.03 r = 0.03, ρ = 0.79
SA3 r = 0.1, ρ = 0.36 r = 0.24, ρ = 0.04

Asking

SAO r = 0.04, ρ = 0.46 r = 0.09, ρ = 0.09
SA1 r = -0.09, ρ = 0.27 r = 0.11, ρ = 0.16
SA2 r = 0.14, ρ = 0.14 r = 0.1, ρ = 0.3
SA3 r = 0.14, ρ = 0.22 r = 0.09, ρ = 0.48

Responding

SAO r = 0.17, ρ < 0.01 r = 0.05, ρ = 0.36
SA1 r = 0.14, ρ = 0.11 r = 0.008, ρ = 0.92
SA2 r = 0.2, ρ = 0.04 r = 0.01, ρ = 0.9
SA3 r = 0.17, ρ = 0.13 r = 0.2, ρ = 0.08

M3

Before

SAO r = 0.08, ρ = 0.16 r = -0.01, ρ = 0.85
SA1 r = 0.14, ρ = 0.1 r = -0.11, ρ = 0.25
SA2 r = 0.13, ρ = 0.18 r = 0.04, ρ = 0.67
SA3 r = -0.03, ρ = 0.79 r = 0.09, ρ = 0.44

Asking

SAO r = 0.05, ρ = 0.35 r = 0.1, ρ = 0.07
SA1 r = 0.14, ρ = 0.1 r = -0.03, ρ = 0.73
SA2 r = 0.18, ρ = 0.06 r = 0.06, ρ = 0.47
SA3 r = -0.19, ρ = 0.09 r = 0.2, ρ = 0.07

Responding

SAO r = 0.08, ρ = 0.12 r = -0.02, ρ = 0.75
SA1 r = 0.17, ρ = 0.04 r = -0.06, ρ = 0.55
SA2 r = 0.11, ρ = 0.24 r = -0.02, ρ = 0.82
SA3 r = 0.01, ρ = 0.9 r = 0.01, ρ = 0.92
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Collective left-clicks identified targets within range of collectives, whether targets

were abandoned, and was required to issue commands. The number of collective left-

clicks descriptive statistics per decision difficulty are shown in Table E.6. The Mann-

Whitney-Wilcoxin within model and between visualization statistical comparisons are

shown in Tables E.7 and E.8, respectively. The Spearman correlation between the col-

lective left-clicks per decision and selection success rate are provided in Table E.9.

Table E.6: Collective left-clicks per decision descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 6.53 (5.49) 5 (0/44)
Easy 5.6 (4.53) 4 (0/26)
Hard 7.79 (6.37) 7 (0/44)

M3

Overall 12.94 (7.7) 11 (2/53)
Easy 11.77 (6.87) 10 (2/51)
Hard 14.64 (8.51) 14 (2/53)

Collective

M2

Overall 7.35 (5.29) 6 (0/42)
Easy 5.96 (4.6) 5 (0/42)
Hard 8.96 (5.59) 8 (0/27)

M3

Overall 12.89 (6.33) 12 (2/40)
Easy 11.38 (5.44) 10 (2/38)
Hard 15.04 (6.88) 14 (2/40)

Table E.7: Within model comparison statistics (DOF = 1) of collective left-clicks per
decision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 24017, ρ < 0.001

Easy 393 U = 7378.5, ρ < 0.001
Hard 279 U = 4454.5, ρ < 0.001

Collective
Overall 672 U = 25171, ρ < 0.001

Easy 377 U = 6737.5, ρ < 0.001
Hard 295 U = 4952, ρ < 0.001
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Table E.8: Between visualization comparison statistics (DOF = 1) of collective left-clicks
per decision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 672 U = 63495, ρ < 0.01
Easy 374 U = 18812, ρ = 0.19
Hard 298 U = 12872, ρ = 0.02

M3

Overall 672 U = 58636, ρ = 0.38
Easy 396 U = 19799, ρ = 0.86
Hard 276 U = 10088, ρ = 0.39

Table E.9: Spearman correlation analysis between collective left-clicks per decision and
selection success rate by decision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = -0.11, ρ = 0.04 r = 0.009, ρ = 0.87
Easy r = -0.18, ρ = 0.01 r = -0.15, ρ = 0.04
Hard r = 0.04, ρ = 0.67 r = 0.23, ρ < 0.01

M3

Overall r = 0.09, ρ = 0.11 r = 0.04, ρ = 0.5
Easy r = 0.03, ρ = 0.72 r = -0.03, ρ = 0.67
Hard r = 0.26, ρ < 0.01 r = 0.18, ρ = 0.03

Intervention frequency was the total number of interventions, which occurred when

the operator abandoned a target with greater than 10% support from a collective, di-

vided by 12 decisions. Intervention frequency was assessed per participant, due to

the inability to associate an intervention to a decision, and the descriptive statistics are

shown in Table E.10. The Mann-Whitney-Wilcoxin within model statistical comparison

Table E.10: Intervention frequency (Number of Interventions/ Total Decisions) per par-
ticipant descriptive statistics.

Model Mean (SD) Median (Min/Max)

IA
M2 0.13 (0.17) 0.04 (0/0.58)
M3 0.31 (0.36) 0.25 (0/1.42)

Collective
M2 0.18 (0.17) 0.13 (0/0.58)
M3 0.42 (0.43) 0.29 (0/1.5)
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is shown in Table E.11. No significant effects between visualizations were found.

Table E.11: Within model comparison statistics (DOF = 1) of intervention frequency
(Number of Interventions/ Total Decisions) per participant.

Sample Size Mann-Whitney-Wilcoxin
IA 56 U = 270.5, ρ = 0.04

Collective 56 U = 285, ρ = 0.08

The highlight agents selection box identified which individual entities belonged to a

particular collective. The number of times the highlight agents was used per partici-

pant, due to the inability to associate the selection of the highlight agents to a decision,

and the descriptive statistics are shown in Table E.12. The highlight agents was only

available on the IA interface. No significant effects between models were found.

Table E.12: Highlight agents per participant descriptive statistics.

Model Mean (SD) Median (Min/Max)

IA
M2 0.79 (1.64) 0 (0/6)
M3 0.25 (0.59) 0 (0/2)
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Appendix F: Additional System Design Element Usability

The sum of investigate, abandon, and decide commands was the number of opera-

tor issued commands. The number of commands per decision descriptive statistics are

shown in Table F.1. The Mann-Whitney-Wilcoxin within model and between visualiza-

tion statistical comparisons are shown in Tables F.2 and F.3, respectively. The Spearman

correlation between the commands and selection success rate are provided in Table F.4.

Table F.1: Commands per decision descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 2.65 (3.49) 1 (0/31)
Easy 2.53 (2.87) 1 (0/14)
Hard 2.81 (4.2) 1 (0/31)

M3

Overall 9.93 (3.83) 10 (1/35)
Easy 9.29 (3.99) 9 (1/35)
Hard 10.86 (3.38) 11 (1/19)

Collective

M2

Overall 2.43 (1.73) 2 (0/9)
Easy 2.19 (1.64) 2 (0/9)
Hard 2.7 (1.81) 2 (0/9)

M3

Overall 5.95 (2.3) 6 (1/15)
Easy 5.42 (2.17) 5 (1/15)
Hard 6.71 (2.26) 7 (1/13)
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Table F.2: Within model comparison statistics (DOF = 1) of commands per decision by
decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 8599.5, ρ < 0.001

Easy 393 U = 2915, ρ < 0.001
Hard 279 U = 1636.5, ρ < 0.001

Collective
Overall 672 U = 11903, ρ < 0.001

Easy 377 U = 3755.5, ρ < 0.001
Hard 295 U = 1951.5, ρ < 0.001

Table F.3: Between visualization comparison statistics (DOF = 1) of commands per de-
cision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 672 U = 64982, ρ < 0.001
Easy 374 U = 18842, ρ = 0.18
Hard 298 U = 13696, ρ < 0.001

M3

Overall 672 U = 18338, ρ < 0.001
Easy 396 U = 6274.5, ρ < 0.001
Hard 276 U = 2453.5, ρ < 0.001
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Table F.4: Spearman correlation analysis between commands per decision and selection
success rate by decision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = 0.03, ρ = 0.59 r = 0.05, ρ = 0.35
Easy r = -0.009, ρ = 0.9 r = -0.02, ρ = 0.82
Hard r = 0.06, ρ = 0.46 r = 0.16, ρ = 0.05

M3

Overall r = -0.03, ρ = 0.52 r = -0.07, ρ = 0.17
Easy r = -0.15, ρ = 0.03 r = -0.06, ρ = 0.39
Hard r = 0.27, ρ < 0.01 r = 0.001, ρ = 0.99

Command frequency was the summation of investigate, abandon, and decide com-

mands per decision divided by decision time. The command frequency was assessed

per decision and the descriptive statistics are shown in Table F.5 [57]. The Mann-

Whitney-Wilcoxin within model and between visualization statistical comparisons are

shown in Tables F.6 and F.7, respectively. The Spearman correlation between command

frequency and selection success rate are provided in Table F.8.

Table F.5: Command frequency (Number of commands/Decision time) per decision
descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 0.71 (0.99) 0.37 (0/7)
Easy 0.79 (1.03) 0.42 (0/5.53)
Hard 0.61 (0.92) 0.31 (0/7)

M3

Overall 2.18 (1.45) 1.95 (0.07/13.66)
Easy 2.24 (1.51) 1.96 (0.07/13.66)
Hard 2.09 (1.35) 1.87 (0.1/8.36)

Collective

M2

Overall 0.66 (0.49) 0.55 (0/2.6)
Easy 0.7 (0.56) 0.6 (0/2.6)
Hard 0.6 (0.4) 0.51 (0/2.03)

M3

Overall 1.33 (0.79) 1.18 (0.11/4.75)
Easy 1.4 (0.87) 1.21 (0.11/4.75)
Hard 1.22 (0.65) 1.08 (0.3/3.66)
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Table F.6: Within model comparison statistics (DOF = 1) of command frequency (Num-
ber of commands/Decision time) per decision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 15640, ρ < 0.001

Easy 393 U = 5847.5, ρ < 0.001
Hard 279 U = 2346, ρ < 0.001

Collective
Overall 672 U = 23932, ρ < 0.001

Easy 377 U = 8153.5, ρ < 0.001
Hard 295 U = 4120.5, ρ < 0.001

Table F.7: Between visualization comparison statistics (DOF = 1) of command frequency
(Number of commands/Decision time) per decision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 672 U = 66382, ρ < 0.001
Easy 374 U = 19716, ρ = 0.03
Hard 298 U = 13900, ρ < 0.001

M3

Overall 672 U = 31320, ρ < 0.001
Easy 396 U = 11534, ρ < 0.001
Hard 276 U = 4772.5, ρ < 0.001
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Table F.8: Spearman correlation analysis between command frequency (Number of
commands/Decision time) per decision and selection success rate by decision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = 0.08, ρ = 0.13 r = 0.1, ρ = 0.07
Easy r = 0.07, ρ = 0.3 r = 0.08, ρ = 0.29
Hard r = 0.04, ρ = 0.64 r = 0.1, ρ = 0.21

M3

Overall r = -0.07, ρ = 0.23 r = -0.07, ρ = 0.17
Easy r = -0.07, ρ = 0.35 r = -0.004, ρ = 0.96
Hard r = -0.12, ρ = 0.15 r = -0.19, ρ = 0.03

Investigate command frequency was the number of investigate commands issued per

decision divided by decision time. The investigate command frequency was assessed

per decision and the descriptive statistics are shown in Table F.9 [57]. The Mann-

Whitney-Wilcoxin within model and between visualization statistical comparisons are

shown in Tables F.10 and F.11, respectively. The Spearman correlation between investi-

gate command frequency and selection success rate are provided in Table F.12.

Table F.9: Investigate command frequency (Number of investigate commands/Decision
time) per decision descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 0.58 (0.94) 0.26 (0/6.46)
Easy 0.65 (0.98) 0.32 (0/5.03)
Hard 0.88 (0.48) 0.19 (0/6.46)

M3

Overall 1.94 (1.38) 1.7 (0/12.75)
Easy 1.98 (1.44) 1.71 (0/12.75)
Hard 1.88 (1.29) 1.69 (0/7.87)

Collective

M2

Overall 0.47 (0.44) 0.35 (0/2.27)
Easy 0.49 (0.5) 0.34 (0/2.27)
Hard 0.46 (0.37) 0.37 (0/1.63)

M3

Overall 1.07 (0.71) 0.95 (0/4.3)
Easy 1.12 (0.79) 0.97 (0/4.3)
Hard 1 (0.58) 0.92 (0/2.81)
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Table F.10: Within model comparison statistics (DOF = 1) of investigate command fre-
quency (Number of investigate commands/Decision time) per decision by decision dif-
ficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 16064, ρ < 0.001

Easy 393 U = 6029.5, ρ < 0.001
Hard 279 U = 2424, ρ < 0.001

Collective
Overall 672 U = 24483, ρ < 0.001

Easy 377 U = 7957, ρ < 0.001
Hard 295 U = 4379.5, ρ < 0.001

Table F.11: Between visualization comparison statistics (DOF = 1) of investigate com-
mand frequency (Number of investigate commands/Decision time) per decision by de-
cision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 672 U = 64412, ρ < 0.01
Easy 374 U = 18255, ρ = 0.44
Hard 298 U = 14210, ρ < 0.001

M3

Overall 672 U = 29396, ρ < 0.001
Easy 396 U = 10923, ρ < 0.001
Hard 276 U = 4441, ρ < 0.001
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Table F.12: Spearman correlation analysis between investigate command frequency
(Number of investigate commands/Decision time) per decision and selection success
rate by decision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = 0.05, ρ = 0.34 r = 0.11, ρ = 0.04
Easy r = 0.08, ρ = 0.29 r = 0.08, ρ = 0.31
Hard r = -0.04, ρ = 0.6 r = 0.15, ρ = 0.06

M3

Overall r = -0.07, ρ = 0.18 r = -0.08, ρ = 0.14
Easy r = -0.08, ρ = 0.28 r = -0.004, ρ = 0.96
Hard r = -0.12, ρ = 0.18 r = -0.19, ρ = 0.02

Abandon command frequency was the number of abandon commands issued per de-

cision divided by decision time. The abandon command frequency was assessed per

decision and the descriptive statistics are shown in Table F.13 [57]. The Mann-Whitney-

Wilcoxin within model statistical comparison is shown in Table F.14. No significant ef-

fects between visualizations were found. The Spearman correlation between abandon

command frequency and selection success rate are provided in Table F.15.

Table F.13: Abandon command frequency (Number of abandon commands/Decision
time) per decision descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 0.02 (0.07) 0 (0/0.5)
Easy 0.01 (0.05) 0 (0/0.33)
Hard 0.02 (0.09) 0 (0/0.5)

M3

Overall 0.02 (0.07) 0 (0/0.61)
Easy 0.03 (0.08) 0 (0/0.61)
Hard 0.02 (0.06) 0 (0/0.27)

Collective

M2

Overall 0.02 (0.07) 0 (0/0.38)
Easy 0.02 (0.07) 0 (0/0.38)
Hard 0.02 (0.07) 0 (0/0.3)

M3

Overall 0.03 (0.07) 0 (0/0.36)
Easy 0.03 (0.07) 0 (0/0.36)
Hard 0.03 (0.07) 0 (0/0.35)
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Table F.14: Within model comparison statistics (DOF = 1) of abandon command fre-
quency (Number of abandon commands/Decision time) per decision by decision diffi-
culty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 52894, ρ < 0.01

Easy 393 U = 17965, ρ = 0.01
Hard 279 U = 9201, ρ = 0.15

Collective
Overall 672 U = 52831, ρ = 0.01

Easy 377 U = 16410, ρ = 0.02
Hard 295 U = 10266, ρ = 0.19

Table F.15: Spearman correlation analysis between abandon command frequency
(Number of abandon commands/Decision time) per decision and selection success rate
by decision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = -0.05, ρ = 0.37 r = -0.02, ρ = 0.68
Easy r = -0.19, ρ < 0.01 r = -0.03, ρ = 0.65
Hard r = 0.09, ρ = 0.28 r = 0.006, ρ = 0.94

M3

Overall r = 0.09, ρ = 0.09 r = 0.02, ρ = 0.76
Easy r = 0.02, ρ = 0.75 r = 0.007, ρ = 0.93
Hard r = 0.18, ρ = 0.03 r = 0.03, ρ = 0.68
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Decide command frequency was the number of decide commands issued per decision

divided by decision time. The decide command frequency was assessed per decision

and the descriptive statistics are shown in Table F.16 [57]. The Mann-Whitney-Wilcoxin

within model and between visualization statistical comparisons are shown in Tables

F.17 and F.18, respectively. The Spearman correlation between decide command fre-

quency and selection success rate are provided in Table F.19.

Table F.16: Decide command frequency (Number of decide commands/Decision time)
per decision descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 0.11 (0.15) 0 (0/0.54)
Easy 0.12 (0.16) 0 (0/0.51)
Hard 0.09 (0.13) 0 (0/0.54)

M3

Overall 0.21 (0.09) 0.2 (0/0.91)
Easy 0.23 (0.1) 0.22 (0/0.91)
Hard 0.18 (0.08) 0.16 (0/0.5)

Collective

M2

Overall 0.15 (0.16) 0.14 (0/0.55)
Easy 0.19 (0.18) 0.22 (0/0.55)
Hard 0.1 (0.13) 0 (0/0.41)

M3

Overall 0.23 (0.12) 0.21 (0/1.15)
Easy 0.26 (0.12) 0.24 (0.08/1.15)
Hard 0.2 (0.12) 0.17 (0/0.9)
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Table F.17: Within model comparison statistics (DOF = 1) of decide command frequency
(Number of decide commands/Decision time) per decision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 31612, ρ < 0.001

Easy 393 U = 11172, ρ < 0.001
Hard 279 U = 5633.5, ρ < 0.001

Collective
Overall 672 U = 41268, ρ < 0.001

Easy 377 U = 15076, ρ = 0.01
Hard 295 U = 7013.5, ρ < 0.001

Table F.18: Between visualization comparison statistics (DOF = 1) of decide command
frequency (Number of decide commands/Decision time) per decision by decision dif-
ficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 672 U = 64685, ρ < 0.001
Easy 374 U = 21377, ρ < 0.001
Hard 298 U = 11598, ρ = 0.43

M3

Overall 672 U = 60532, ρ = 0.1
Easy 396 U = 22092, ρ = 0.03
Hard 276 U = 9668.5, ρ = 0.83
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Table F.19: Spearman correlation analysis between decide command frequency (Num-
ber of decide commands/Decision time) per decision and selection success rate by de-
cision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = 0.006, ρ = 0.91 r = 0.05, ρ = 0.41
Easy r = 0.03, ρ = 0.65 r = 0.02, ρ = 0.74
Hard r = -0.05, ρ = 0.52 r = -0.04, ρ = 0.65

M3

Overall r = -0.03, ρ = 0.56 r = -0.03, ρ = 0.53
Easy r = 0.07, ρ = 0.32 r = 0.03, ρ = 0.72
Hard r = -0.32, ρ < 0.001 r = -0.21, ρ = 0.01

Collective left-click frequency was the number of collective left-clicks per decision di-

vided by decision time. The collective left-click frequency was assessed per decision

and the descriptive statistics are shown in Table F.20. The Mann-Whitney-Wilcoxin

within model and between visualization statistical comparisons are shown in Tables

F.21 and F.22, respectively. The Spearman correlation between collective left-click fre-

quency and selection success rate are provided in Table F.23.

Table F.20: Collective left-click frequency (Number of collective left-clicks/Decision
time) per decision descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 1.54 (1.07) 1.41 (0/5.58)
Easy 1.54 (1.11) 1.37 (0/5.58)
Hard 1.54 (1.02) 1.5 (0/5.34)

M3

Overall 2.38 (1.12) 2.29 (0.46/7.8)
Easy 2.4 (1.11) 2.34 (0.46/7.8)
Hard 2.36 (1.15) 2.21 (0.63/6.66)

Collective

M2

Overall 1.83 (1.02) 1.71 (0/4.85)
Easy 1.79 (1.07) 1.65 (0/4.85)
Hard 1.88 (0.96) 1.76 (0/4.26)

M3

Overall 2.57 (1.1) 2.45 (0.46/7.01)
Easy 2.61 (1.13) 2.55 (0.46/7.01)
Hard 2.5 (1.05) 2.29 (0.76/6.57)
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Table F.21: Within model comparison statistics (DOF = 1) of collective left-click fre-
quency (Number of collective left-clicks/Decision time) per decision by decision diffi-
culty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 31058, ρ < 0.001

Easy 393 U = 10269, ρ < 0.001
Hard 279 U = 5664.5, ρ < 0.001

Collective
Overall 672 U = 35246, ρ < 0.001

Easy 377 U = 10528, ρ < 0.001
Hard 295 U = 7220, ρ < 0.001

Table F.22: Between visualization comparison statistics (DOF = 1) of collective left-click
frequency (Number of collective left-clicks/Decision time) per decision by decision dif-
ficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 672 U = 66662, ρ < 0.001
Easy 374 U = 20122, ρ = 0.01
Hard 298 U = 13394, ρ < 0.01

M3

Overall 672 U = 62655, ρ = 0.01
Easy 396 U = 22072, ρ = 0.03
Hard 276 U = 10450, ρ = 0.16
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Table F.23: Spearman correlation analysis between collective left-click frequency (Num-
ber of collective left-clicks/Decision time) per decision and selection success rate by
decision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = -0.02, ρ = 0.75 r = 0.07, ρ = 0.22
Easy r = -0.02, ρ = 0.74 r = -0.04, ρ = 0.6
Hard r = -0.004, ρ = 0.96 r = 0.18, ρ = 0.03

M3

Overall r = 0.09, ρ = 0.1 r = -0.01, ρ = 0.79
Easy r = 0.11, ρ = 0.13 r = -0.03, ρ = 0.71
Hard r = 0.07, ρ = 0.43 r = -0.01, ρ = 0.9

Target left-click frequency was the number of target left-clicks per decision divided

by decision time. The target left-click frequency was assessed per decision and the

descriptive statistics are presented in Table F.24. The Mann-Whitney-Wilcoxin within

model and between visualization statistical comparisons are presented in Tables F.25

and F.26, respectively. The Spearman correlation between target left-click frequency

and selection success rate are provided in Table F.27.

Table F.24: Target left-click frequency (Number of target left-clicks/Decision time) per
decision descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 1.09 (1.16) 0.74 (0/8.08)
Easy 1.18 (1.19) 0.8 (0/5.91)
Hard 0.97 (1.1) 0.62 (0/8.08)

M3

Overall 2.5 (1.57) 2.28 (0.11/13.66)
Easy 2.55 (1.59) 2.32 (0.13/13.66)
Hard 2.43 (1.53) 2.13 (0.11/8.36)

Collective

M2

Overall 0.75 (0.55) 0.62 (0/3.11)
Easy 0.79 (0.61) 0.68 (0/3.11)
Hard 0.69 (0.48) 0.58 (0/2.43)

M3

Overall 1.55 (1) 1.3 (0.11/5.96)
Easy 1.63 (1.04) 1.42 (0.11/5.23)
Hard 1.43 (0.93) 1.2 (0.32/5.96)
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Table F.25: Within model comparison statistics (DOF = 1) of target left-click frequency
(Number of target left-clicks/Decision time) per decision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 20929, ρ < 0.001

Easy 393 U = 7847, ρ < 0.001
Hard 279 U = 3094.5, ρ < 0.001

Collective
Overall 672 U = 24312, ρ < 0.001

Easy 377 U = 8035.5, ρ < 0.001
Hard 295 U = 4368, ρ < 0.001

Table F.26: Between visualization comparison statistics (DOF = 1) of target left-click fre-
quency (Number of target left-clicks/Decision time) per decision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 672 U = 51204, ρ = 0.04
Easy 374 U = 15318, ρ = 0.04
Hard 298 U = 10592, ρ = 0.52

M3

Overall 672 U = 30752, ρ < 0.001
Easy 396 U = 11360, ρ < 0.001
Hard 276 U = 4641, ρ < 0.001
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Table F.27: Spearman correlation analysis between target left-click frequency (Number
of target left-clicks/Decision time) per decision and selection success rate by decision
difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = 0.11, ρ = 0.04 r = 0.09, ρ = 0.11
Easy r = 0.13, ρ = 0.06 r = 0.1, ρ = 0.18
Hard r = 0.06, ρ = 0.45 r = 0.07, ρ = 0.39

M3

Overall r = -0.09, ρ = 0.09 r = -0.05, ρ = 0.4
Easy r = -0.08, ρ = 0.26 r = -0.007, ρ = 0.92
Hard r = -0.15, ρ = 0.08 r = -0.13, ρ = 0.14

Collective right-click frequency was the number of collective right-clicks per decision

divided by decision time. The collective right-click frequency was assessed per deci-

sion and the descriptive statistics are shown in Table F.28. The collective right-click fre-

quency was only assessed for the IA evaluation. The Mann-Whitney-Wilcoxin within

model statistical comparison is shown in Table F.29. No correlations were found be-

tween collective right-click frequency and selection success rate.

Table F.28: Collective right-click frequency (Number of collective right-clicks/Decision
time) per decision descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 0.36 (0.51) 0 (0/2.16)
Easy 0.3 (0.48) 0 (0/1.92)
Hard 0.44 (0.54) 0.21 (0/2.16)

M3

Overall 0.15 (0.27) 0 (0/1.37)
Easy 0.15 (0.28) 0 (0/1.37)
Hard 0.15 (0.26) 0 (0/1.25)
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Table F.29: Within model comparison statistics (DOF = 1) of collective right-click fre-
quency (Number of collective right-clicks/Decision time) per decision by decision dif-
ficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 66662, ρ < 0.001

Easy 393 U = 21432, ρ = 0.03
Hard 279 U = 12473, ρ < 0.001

Target right-click frequency was the number of target right-clicks per decision divided

by decision time. The target right-click frequency was assessed per decision and the

descriptive statistics are presented in Table F.30. The Mann-Whitney-Wilcoxin within

model statistical comparison is presented in Table F.31. No significant effects between

visualizations were found. The Spearman correlation between target right-click fre-

quency and selection success rate are provided in Table F.32.

Table F.30: Target right-click frequency (Number of target right-clicks/Decision time)
per decision descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 0.83 (0.94) 0.51 (0/5.22)
Easy 0.71 (0.83) 0.45 (0/4.72)
Hard 1 (1.06) 0.64 (0/5.22)

M3

Overall 0.66 (0.7) 0.41 (0/4.76)
Easy 0.72 (0.77) 0.45 (0/4.76)
Hard 0.58 (0.58) 0.33 (0/3.3)

Collective

M2

Overall 0.77 (0.85) 0.54 (0/5.55)
Easy 0.77 (0.84) 0.54 (0/4.69)
Hard 0.76 (0.88) 0.55 (0/5.55)

M3

Overall 0.59 (0.62) 0.36 (0/3.27)
Easy 0.65 (0.66) 0.41 (0/3.11)
Hard 0.51 (0.55) 0.3 (0/3.27)
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Table F.31: Within model comparison statistics (DOF = 1) of target right-click frequency
(Number of target right-clicks/Decision time) per decision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 58750, ρ = 0.36

Easy 393 U = 18048, ρ = 0.26
Hard 279 U = 11632, ρ < 0.01

Collective
Overall 672 U = 63119, ρ < 0.01

Easy 377 U = 19244, ρ = 0.15
Hard 295 U = 12798, ρ < 0.01

Table F.32: Spearman correlation analysis between target right-click frequency (Number
of target right-clicks/Decision time) per decision and selection success rate by decision
difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = -0.05, ρ = 0.33 r = 0.12, ρ = 0.03
Easy r = -0.003, ρ = 0.96 r = 0.09, ρ = 0.25
Hard r = -0.07, ρ = 0.44 r = 0.14, ρ = 0.09

M3

Overall r = 0.09, ρ = 0.09 r = 0.03, ρ = 0.56
Easy r = 0.04, ρ = 0.56 r = 0.07, ρ = 0.3
Hard r = 0.05, ρ = 0.6 r = -0.04, ρ = 0.62

Collective and target left- and right-clicks were examined per participant. Target

left-clicks were the second click required in the process of issuing commands, but did

not provide supplementary information. The number of collective and target left- and

right-clicks descriptive statistics are presented in Table F.33 [177]. No significant effects

between visualizations were found.
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Table F.33: Collective and target left- and right-clicks per participant descriptive statis-
tics.

Clicks Mean (SD) Median (Min/Max)

IA

Collective Left 107.6 (49.89) 104 (5/235)
Collective Right 30.64 (20.98) 27.5 (0/85)

Target Left 97.64 (58.78) 83 (5/251)
Target Right 97.18 (82.79) 68.5 (4/352)

Collective

Collective Left 121.96 (47.4) 130.5 (35/212)
Collective Right 30.57 (31.95) 19.5 (7/164)

Target Left 185.6 (64.32) 202 (62/290)
Target Right 82.39 (60.22) 75 (23/278)

The cancel abandon command enabled an operator to cancel a previously issued aban-

don command for a particular collective and target. Cancel abandon commands were

assessed per participant, due to the inability to associate a cancel abandon command to

a decision, and the descriptive statistics are shown in Table F.34. No significant effects

between models or visualizations were found.

Table F.34: Cancel abandon commands per participant descriptive statistics.

Model Mean (SD) Median (Min/Max)

IA
M2 0.68 (1.83) 0 (0/9)
M3 0.46 (1.71) 0 (0/9)

Collective
M2 0.36 (0.99) 0 (0/4)
M3 0.71 (1.38) 0 (0/5)

The total number of abandon commands issued per participant was assessed and the

descriptive statistics are presented in Table F.35. The Mann-Whitney-Wilcoxin within

model statistical comparison is presented in Table F.14. No significant effects between

visualizations were found.
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Table F.35: Total number of abandon commands per participant descriptive statistics by
decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 9.75 (13.4) 5 (0/59)
Easy 3.79 (5.09) 1.5 (0/16)
Hard 5.96 (9.66) 2.5 (0/43)

M3

Overall 36.79 (24.12) 42 (0/76)
Easy 17.07 (12.45) 19 (0/34)
Hard 19.71 (12.48) 21 (0/44)

Collective

M2

Overall 12.04 (14) 7 (0/52)
Easy 5.07 (7.17) 2 (0/28)
Hard 6.96 (7.47) 4.5 (0/26)

M3

Overall 30.39 (24.37) 30.5 (0/68)
Easy 15.86 (12.58) 19 (0/35)
Hard 14.54 (12.71) 15 (0/33)

Table F.36: Within model comparison statistics (DOF = 1) of the total number of abandon
commands per participant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 56 U = 162.5, ρ < 0.001

Easy 56 U = 161.5, ρ < 0.001
Hard 56 U = 171, ρ < 0.001

Collective
Overall 56 U = 246.5, ρ = 0.02

Easy 56 U = 220.5, ρ < 0.01
Hard 56 U = 291.5, ρ = 0.1

The average number of abandon commands issued per participant was also assessed

and the descriptive statistics are presented in Table F.37. The Mann-Whitney-Wilcoxin

within model statistical comparison is presented in Table F.38. No significant effects

between visualizations were found.
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Table F.37: Average number of abandon commands per participant descriptive statis-
tics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 1.86 (0.98) 1.54 (1/5.03)
Easy 1.73 (0.57) 1.6 (1/2.69)
Hard 1.95 (1.23) 1.55 (1/5.91)

M3

Overall 3.45 (1.34) 3.66 (1/6.36)
Easy 3.29 (1.25) 3.47 (1/5.56)
Hard 3.75 (1.33) 3.72 (1.67/7.52)

Collective

M2

Overall 1.76 (0.91) 1.36 (1/4.13)
Easy 1.68 (0.97) 1.13 (1/4.25)
Hard 1.8 (0.95) 1.43 (1/4)

M3

Overall 3.13 (1.29) 3.55 (1/4.91)
Easy 3.3 (1.3) 3.74 (1/5.06)
Hard 3.01 (1.3) 3.53 (1/4.76)

Table F.38: Within model comparison statistics (DOF = 1) of the average number of
abandon commands per participant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 47 U = 89, ρ < 0.001

Easy 38 U = 48, ρ < 0.001
Hard 43 U = 56.5, ρ < 0.001

Collective
Overall 49 U = 126.5, ρ < 0.001

Easy 42 U = 72, ρ < 0.001
Hard 47 U = 137, ρ < 0.01

The average number of targets in range when an abandon command was issued per par-

ticipant was assessed and the descriptive statistics are presented in Table F.39. The

Mann-Whitney-Wilcoxin within model statistical comparison is presented in Table F.40.

No significant effects between visualizations were found.
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Table F.39: Targets in range when abandon command issued per participant descriptive
statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 5.79 (0.85) 5.85 (4/8)
Easy 5.35 (0.95) 5.33 (3/6.71)
Hard 5.97 (0.99) 6 (4/8)

M3

Overall 5.49 (0.84) 5.64 (3/6.4)
Easy 5.65 (1.03) 5.85 (3/6.75)
Hard 5.52 (0.48) 5.47 (4.8/6.31)

Collective

M2

Overall 5.57 (0.66) 5.72 (4.45/6.67)
Easy 5.51 (1.11) 5.56 (3.75/7.67)
Hard 5.67 (0.77) 5.67 (4/7)

M3

Overall 5.79 (0.58) 5.9 (4/7)
Easy 5.91 (0.59) 6.02 (4/6.71)
Hard 5.68 (0.64) 5.65 (4.64/7)

Table F.40: Within model comparison statistics (DOF = 1) of the targets in range when
abandon command issued per participant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 47 U = 313.5, ρ = 0.42

Easy 38 U = 126.5, ρ = 0.17
Hard 43 U = 330, ρ = 0.02

Collective
Overall 49 U = 233, ρ = 0.18

Easy 42 U = 162.5, ρ = 0.15
Hard 47 U = 278, ρ = 0.96

The average number of targets that were abandoned when an abandon command was

issued per participant was assessed and the descriptive statistics are presented in Table

F.41. The Mann-Whitney-Wilcoxin within model statistical comparison is presented in

Table F.42. No significant effects between visualizations were found.



337

Table F.41: Abandoned targets when abandon command issued per participant descrip-
tive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 1.69 (0.69) 1.5 (1/3.2)
Easy 1.63 (0.51) 1.57 (1/2.69)
Hard 1.76 (0.81) 1.5 (1/3.47)

M3

Overall 2.75 (0.81) 2.93 (1/4)
Easy 2.62 (0.81) 2.96 (1/3.94)
Hard 3.03 (0.74) 3.14 (1.67/4.07)

Collective

M2

Overall 1.61 (0.71) 1.33 (1/3.29)
Easy 1.53 (0.75) 1.13 (1/3.46)
Hard 1.64 (0.73) 1.33 (1/3.3)

M3

Overall 2.66 (0.97) 2.98 (1/4.04)
Easy 2.71 (0.94) 2.94 (1/4.21)
Hard 2.66 (1.04) 3.05 (1/3.91)

Table F.42: Within model comparison statistics (DOF = 1) of abandoned targets when
abandon command issued per participant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 47 U = 95, ρ < 0.001

Easy 38 U = 50.5, ρ < 0.001
Hard 43 U = 61.5, ρ < 0.001

Collective
Overall 49 U = 117, ρ < 0.001

Easy 42 U = 74, ρ < 0.001
Hard 47 U = 122, ρ < 0.001

The average number of individual collective entities that were favoring a target when an

abandon command was issued per participant was assessed and the descriptive statistics

are shown in Table F.43. The Mann-Whitney-Wilcoxin within model and between visu-

alization statistical comparisons are presented in Tables F.44 and F.45, respectively.
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Table F.43: Number of favoring individual collective entities when an abandon com-
mand issued per participant descriptive statistics by decision difficulty.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 20.15 (10.8) 19.62 (1.67/46.86)
Easy 20.5 (16.35) 14.5 (1.67/58.33)
Hard 23.04 (13.29) 20 (6.5/49)

M3

Overall 12.3 (3.85) 11.97 (6.09/22.76)
Easy 11.17 (3.95) 11.16 (5.35/22.83)
Hard 12.73 (4.2) 12.95 (6.81/22.71)

Collective

M2

Overall 28.04 (18.56) 23 (7.43/84.5)
Easy 25.66 (25.3) 15.7 (6.13/82)
Hard 31.35 (22.25) 27 (5/87)

M3

Overall 16.56 (7.61) 14.63 (7.86/44.5)
Easy 13.13 (4.25) 13.06 (6.77/20.78)
Hard 18.55 (7.63) 17.04 (9.79/44.5)

Table F.44: Within model comparison statistics (DOF = 1) of the number of favoring
individual collective entities when an abandon command issued per participant by de-
cision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 47 U = 413, ρ < 0.01

Easy 38 U = 218, ρ = 0.18
Hard 43 U = 349, ρ < 0.01

Collective
Overall 49 U = 402, ρ = 0.04

Easy 42 U = 248, ρ = 0.49
Hard 47 U = 363, ρ = 0.06
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Table F.45: Between visualization comparison statistics (DOF = 1) of the number of fa-
voring individual collective entities when an abandon command issued per participant
by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 47 U = 327.5, ρ = 0.27
Easy 35 U = 153, ρ = 0.93
Hard 45 U = 300, ρ = 0.26

M3

Overall 49 U = 426, ρ = 0.01
Easy 45 U = 315, ρ = 0.16
Hard 45 U = 393, ρ < 0.01

The average number of decide commands issued per participant was also assessed and

the descriptive statistics are presented in Table F.46. The Mann-Whitney-Wilcoxin within

model and between visualization statistical comparison are presented in Tables F.47 and

F.48, respectively.

Table F.46: Average number of decide commands per participant descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 4.96 (3.51) 5.5 (0/11)
Easy 2.36 (1.93) 2 (0/6)
Hard 2.54 (2.1) 2 (0/7)

M3

Overall 13.36 (1.16) 13 (12/15)
Easy 6.54 (0.74) 6 (6/8)
Hard 6.82 (0.77) 7 (6/8)

Collective

M2

Overall 6.36 (4) 6 (0/13)
Easy 3.68 (2.45) 3.5 (0/7)
Hard 2.68 (1.83) 3 (0/6)

M3

Overall 12.82 (1.56) 13 (7/16)
Easy 6.64 (0.87) 6 (6/8)
Hard 6.18 (1.22) 6 (1/8)
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Table F.47: Within model comparison statistics (DOF = 1) of the average number of
decide commands per participant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 56 U = 0, ρ < 0.001

Easy 56 U = 17, ρ < 0.001
Hard 56 U = 22, ρ < 0.001

Collective
Overall 56 U = 38.5, ρ < 0.001

Easy 56 U = 110, ρ < 0.001
Hard 56 U = 31.5, ρ < 0.001

Table F.48: Between visualization comparison statistics (DOF = 1) of the average num-
ber of decide commands per participant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 56 U = 472, ρ = 0.19
Easy 56 U = 521, ρ = 0.03
Hard 56 U = 414, ρ = 0.72

M3

Overall 56 U = 316, ρ = 0.2
Easy 56 U = 408.5, ρ = 0.76
Hard 56 U = 251, ρ = 0.01

The average number of individual collective entities that were favoring a target when

the collective was in the commit state per participant was assessed and the descriptive

statistics are shown in Table F.49. The Mann-Whitney-Wilcoxin within model statistical

comparisons are presented in Table F.50. No significant effects between visualizations

were found.
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Table F.49: Average number of favoring individual collective entities in committed state
per participant descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 60.48 (0.41) 60.33 (60/61.55)
Easy 60.46 (0.38) 60.5 (60/61.17)
Hard 60.49 (0.57) 60.37 (60/62)

M3

Overall 60.65 (0.4) 60.58 (60.07/61.75)
Easy 60.5 (0.35) 60.41 (60/61.43)
Hard 60.78 (0.61) 60.71 (60/62.33)

Collective

M2

Overall 60.71 (0.43) 60.69 (60/61.38)
Easy 60.69 (0.53) 60.6 (60/62)
Hard 60.77 (0.69) 60.6 (60/62.5)

M3

Overall 60.82 (0.88) 60.63 (60/64.62)
Easy 60.58 (0.47) 60.5 (60/61.83)
Hard 61.11 (1.65) 60.7 (60/68.67)

Table F.50: Within model comparison statistics (DOF = 1) of the average number of
favoring individual collective entities in committed state per participant by decision
difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 51 U = 241.5, ρ = 0.13

Easy 48 U = 264.5, ρ = 0.75
Hard 50 U = 199.5, ρ = 0.03

Collective
Overall 52 U = 359, ρ = 0.68

Easy 51 U = 362.5, ρ = 0.45
Hard 51 U = 301, ρ = 0.7

The average number of individual collective entities that were favoring a target when a

decide command was issued per participant was assessed and the descriptive statistics are

shown in Table F.51. The Mann-Whitney-Wilcoxin within model and between visual-

ization statistical comparisons are presented in Tables F.52 and F.53, respectively.
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Table F.51: Average number of favoring individual collective entities when a decide
command issued per participant descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 95.75 (7.81) 95 (82/112.5)
Easy 91.62 (7.47) 90.75 (77.5/107.75)
Hard 99.79 (11.06) 98.04 (81/127)

M3

Overall 69.2 (5.52) 67.71 (64.14/85.58)
Easy 67.37 (4.99) 66.17 (62.33/86.5)
Hard 70.98 (7.68) 68.77 (63.5/98.5)

Collective

M2

Overall 96.3 (7.27) 96.5 (85/119.67)
Easy 90.88 (11.37) 92.67 (68.8/126)
Hard 103.38 (9.49) 105.6 (75/116.5)

M3

Overall 72.43 (5.34) 70.54 (65.29/85.93)
Easy 69.63 (5.01) 68.33 (63.17/84)
Hard 75.32 (7.69) 73.25 (64.83/93.67)

Table F.52: Within model comparison statistics (DOF = 1) of the average number of
favoring individual collective entities when a decide command issued per participant
by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 51 U = 639.5, ρ < 0.001

Easy 48 U = 554, ρ < 0.001
Hard 50 U = 600, ρ < 0.001

Collective
Overall 52 U = 671, ρ < 0.001

Easy 51 U = 620, ρ < 0.001
Hard 51 U = 626, ρ < 0.001
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Table F.53: Between visualization comparison statistics (DOF = 1) of the average num-
ber of favoring individual collective entities when a decide command issued per par-
ticipant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 47 U = 288.5, ρ = 0.8
Easy 43 U = 227, ρ = 0.95
Hard 45 U = 331.5, ρ = 0.08

M3

Overall 56 U = 576, ρ < 0.01
Easy 56 U = 518.5, ρ = 0.04
Hard 56 U = 568, ρ < 0.01

The average number of individual collective entities that were committed to a target when

the collective begins executing per participant was assessed and the descriptive statistics

are shown in Table F.54. The Mann-Whitney-Wilcoxin within model and between visu-

alization statistical comparisons are presented in Tables F.55 and F.56, respectively.

Table F.54: Average number of committed individual collective entities when collective
begins executing per participant descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 75.51 (16.66) 79 (32/107)
Easy 87.18 (21.28) 88.13 (49/121.33)
Hard 63.97 (16.31) 65.04 (32/89)

M3

Overall 38.62 (5.21) 37.95 (22.6/49.5)
Easy 41.56 (7.91) 41.42 (19.13/54.67)
Hard 35.74 (7.57) 35.48 (19.29/57.33)

Collective

M2

Overall 82.66 (8.21) 83.03 (60.88/94.88)
Easy 97.74 (13.74) 97 (80/137)
Hard 65.36 (9.37) 64.8 (45.2/80)

M3

Overall 41.4 (5.07) 40.58 (30.79/51.17)
Easy 45.02 (7.43) 47.04 (24.17/56)
Hard 37.55 (8.37) 33.65 (24.67/52.17)
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Table F.55: Within model comparison statistics (DOF = 1) of the average number of com-
mitted individual collective entities when collective begins executing per participant by
decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 51 U = 616, ρ < 0.001

Easy 48 U = 552, ρ < 0.001
Hard 50 U = 574, ρ < 0.001

Collective
Overall 52 U = 672, ρ < 0.001

Easy 51 U = 644, ρ < 0.001
Hard 51 U = 636, ρ < 0.001

Table F.56: Between visualization comparison statistics (DOF = 1) of the average num-
ber of committed individual collective entities when collective begins executing per
participant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 47 U = 356, ρ = 0.09
Easy 43 U = 286, ρ = 0.18
Hard 45 U = 261, ρ = 0.86

M3

Overall 56 U = 511, ρ = 0.05
Easy 56 U = 499, ρ = 0.08
Hard 56 U = 426, ρ = 0.58

The average number of individual collective entities that were executing when the col-

lective begins executing per participant was assessed and the descriptive statistics are

shown in Table F.57. The Mann-Whitney-Wilcoxin within model and between visual-

ization statistical comparisons are presented in Tables F.58 and F.59, respectively.
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Table F.57: Average number of executing individual collective entities when collective
begins executing per participant descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 15.18 (10.65) 14.33 (1/52)
Easy 11.38 (9.03) 8 (2.33/35.5)
Hard 19.54 (11.78) 18.72 (1/52)

M3

Overall 22.65 (4.54) 22.16 (15.25/33.2)
Easy 25.34 (8.43) 25.67 (12.17/44.75)
Hard 20.19 (7.02) 20 (5/35)

Collective

M2

Overall 9.74 (4.14) 9.78 (1.5/21.5)
Easy 8.3 (3.85) 8.17 (2/14.71)
Hard 10.86 (7.29) 11 (1/27.2)

M3

Overall 19.11 (4.98) 19.23 (10.21/29.08)
Easy 20.54 (9.55) 19.08 (7.75/49.5)
Hard 17.74 (8.18) 18.47 (3.5/35)

Table F.58: Within model comparison statistics (DOF = 1) of the average number of
executing individual collective entities when collective begins executing per participant
by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 51 U = 97, ρ < 0.001

Easy 48 U = 67, ρ < 0.001
Hard 50 U = 277.5, ρ = 0.56

Collective
Overall 52 U = 51, ρ < 0.001

Easy 51 U = 41, ρ < 0.001
Hard 51 U = 168, ρ < 0.01
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Table F.59: Between visualization comparison statistics (DOF = 1) of the average num-
ber of executing individual collective entities when collective begins executing per par-
ticipant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 47 U = 162.5, ρ = 0.02
Easy 43 U = 207, ρ = 0.58
Hard 45 U = 133, ρ < 0.01

M3

Overall 56 U = 237.5, ρ = 0.01
Easy 56 U = 246.5, ρ = 0.02
Hard 56 U = 315.5, ρ = 0.21

The time difference (minutes) between an issued decide command and executing collective

per participant was assessed and the descriptive statistics are shown in Table F.60. The

Mann-Whitney-Wilcoxin within model and between visualization statistical compar-

isons are presented in Tables F.61 and F.62, respectively.

Table F.60: Time (minutes) between issued decide command and executing collective
per participant descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 0.1 (0.01) 0.1 (0.08/0.12)
Easy 0.11 (0.01) 0.11 (0.08/0.14)
Hard 0.09 (0.01) 0.09 (0.07/0.13)

M3

Overall 0.09 (0.01) 0.09 (0.07/0.11)
Easy 0.09 (0.01) 0.09 (0.07/0.11)
Hard 0.1 (0.01) 0.1 (0.07/0.12)

Collective

M2

Overall 0.1 (0.01) 0.1 (0.07/0.11)
Easy 0.11 (0.01) 0.11 (0.08/0.13)
Hard 0.08 (0.01) 0.08 (0.03/0.1)

M3

Overall 0.09 (0.01) 0.09 (0.07/0.1)
Easy 0.08 (0.01) 0.09 (0.07/0.1)
Hard 0.09 (0.01) 0.09 (0.07/0.11)
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Table F.61: Within model comparison statistics (DOF = 1) of the time (minutes) between
issued decide command and executing collective per participant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 51 U = 458.5, ρ < 0.01

Easy 48 U = 520, ρ < 0.001
Hard 50 U = 221, ρ = 0.08

Collective
Overall 52 U = 461, ρ = 0.02

Easy 51 U = 615, ρ < 0.001
Hard 51 U = 145, ρ < 0.001

Table F.62: Between visualization comparison statistics (DOF = 1) of the time (minutes)
between issued decide command and executing collective per participant by decision
difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 47 U = 203.5, ρ = 0.11
Easy 43 U = 219.5, ρ = 0.8
Hard 45 U = 127.5, ρ < 0.01

M3

Overall 56 U = 304, ρ = 0.13
Easy 56 U = 356.5, ρ = 0.55
Hard 56 U = 286.5, ρ = 0.08

Further analysis of how operators used the collective and target information pop-up

windows was conducted. The number of targets in range per decision was assessed and the

descriptive statistics are shown in Table F.63. No significant effects within models and

between visualizations were found. The Spearman correlation between the number of

targets in range per decision and selection success rate are provided in Table F.64.
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Table F.63: Number of targets in range per decision descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 5.88 (1.27) 6 (2/9)
Easy 5.81 (1.32) 6 (2/9)
Hard 5.97 (1.18) 6 (3/9)

M3

Overall 5.74 (1.2) 6 (2/9)
Easy 5.62 (1.33) 6 (2/9)
Hard 5.9 (0.98) 6 (3/8)

Collective

M2

Overall 5.82 (1.23) 6 (2/9)
Easy 5.74 (1.26) 6 (2/9)
Hard 5.92 (1.2) 6 (2/9)

M3

Overall 5.76 (1.19) 6 (3/9)
Easy 5.73 (1.24) 6 (3/9)
Hard 5.81 (1.13) 6 (3/9)

Table F.64: Spearman correlation analysis between the number of targets in range per
decision and selection success rate by decision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = 0.06, ρ = 0.26 r = 0.09, ρ = 0.09
Easy r = 0.1, ρ = 0.17 r = 0.29, ρ < 0.001
Hard r = 0.04, ρ = 0.66 r = -0.007, ρ = 0.93

M3

Overall r = 0.09, ρ = 0.08 r = -0.007, ρ = 0.9
Easy r = 0.14, ρ = 0.04 r = 0.04, ρ = 0.59
Hard r = 0.11, ρ = 0.18 r = -0.04, ρ = 0.62

The number of targets in range with open information pop-up windows per decision was

assessed and the descriptive statistics are shown in Table F.65. The Mann-Whitney-

Wilcoxin within model and between visualization statistical comparisons are presented

in Tables F.66 and F.67, respectively. The Spearman correlation between the number

of targets in range with open information pop-up windows per decision and selection

success rate are provided in Table F.68.



349

Table F.65: Number of targets in range with open information pop-up windows per
decision descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 2.41 (1.62) 2 (0/7)
Easy 2.81 (1.67) 3 (0/7)
Hard 2.46 (1.39) 2 (0/6)

M3

Overall 2.12 (1.52) 2 (0/7)
Easy 2.57 (1.36) 2 (0/6)
Hard 2.74 (1.31) 3 (1/6)

Collective

M2

Overall 2.67 (1.67) 2 (0/8)
Easy 2.92 (1.7) 3 (0/8)
Hard 2.75 (1.71) 2 (0/8)

M3

Overall 2.46 (1.61) 2 (0/6)
Easy 2.74 (1.68) 2 (0/8)
Hard 2.74 (1.64) 3 (0/7)

Table F.66: Within model comparison statistics (DOF = 1) of the number of targets in
range with open information pop-up windows per decision by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 672 U = 52269, ρ = 0.09

Easy 393 U = 16606, ρ = 0.01
Hard 297 U = 9905.5, ρ = 0.79

Collective
Overall 672 U = 55354, ρ = 0.66

Easy 377 U = 16118, ρ = 0.12
Hard 295 U = 11520, ρ = 0.35
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Table F.67: Between visualization comparison statistics (DOF = 1) of the number of
targets in range with open information pop-up windows per decision by decision diffi-
culty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 672 U = 61188, ρ = 0.06
Easy 374 U = 19470, ρ = 0.05
Hard 298 U = 11354, ρ = 0.7

M3

Overall 672 U = 58390, ρ = 0.43
Easy 396 U = 21166, ρ = 0.16
Hard 276 U = 9245.5, ρ = 0.67

Table F.68: Spearman correlation analysis between the number of targets in range with
open information pop-up windows per decision and selection success rate by decision
difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = -0.22, ρ < 0.001 r = -0.03, ρ = 0.6
Easy r = -0.23, ρ < 0.01 r = -0.15, ρ = 0.05
Hard r = -0.16, ρ = 0.05 r = 0.11, ρ = 0.19

M3

Overall r = -0.25, ρ < 0.001 r = -0.1, ρ = 0.07
Easy r = -0.25, ρ < 0.001 r = -0.07, ρ = 0.32
Hard r = -0.22, ρ < 0.01 r = -0.13, ρ = 0.13

The maximum number of times target information pop-up windows were opened

per target per decision was assessed and the descriptive statistics are shown in Table

F.69. The Mann-Whitney-Wilcoxin within model and between visualization statistical

comparisons are presented in Tables F.70 and F.71, respectively. The Spearman correla-

tion between the maximum number of times target information pop-up windows were

opened per target per decision and selection success rate are provided in Table F.72.
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Table F.69: Maximum number of times target information pop-up windows opened per
target per decision descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 2.87 (2.46) 2 (1/14)
Easy 3.57 (2.85) 3 (1/14)
Hard 2.55 (2.88) 2 (1/30)

M3

Overall 2.33 (1.95) 2 (1/14)
Easy 2.56 (2.62) 2 (1/30)
Hard 2.58 (2.21) 2 (1/13)

Collective

M2

Overall 2.37 (2) 2 (1/17)
Easy 2.68 (2.46) 2 (1/17)
Hard 2.26 (1.72) 2 (1/10)

M3

Overall 2.1 (1.43) 2 (1/8)
Easy 2.31 (1.78) 2 (1/10)
Hard 2.39 (1.85) 2 (1/10)

Table F.70: Within model comparison statistics (DOF = 1) of the maximum number of
times target information pop-up windows opened per target per decision by decision
difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 637 U = 54596, ρ = 0.07

Easy 368 U = 16492, ρ = 0.72
Hard 269 U = 11010, ρ < 0.01

Collective
Overall 643 U = 52284, ρ = 0.78

Easy 358 U = 15353, ρ = 0.52
Hard 285 U = 10751, ρ = 0.35
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Table F.71: Between visualization comparison statistics (DOF = 1) of the maximum
number of times target information pop-up windows opened per target per decision
by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

M2

Overall 619 U = 43318, ρ = 0.03
Easy 337 U = 13864, ρ = 0.69
Hard 282 U = 7901.5, ρ < 0.01

M3

Overall 661 U = 53181, ρ = 0.54
Easy 389 U = 18786, ρ = 0.91
Hard 272 U = 8761, ρ = 0.43

Table F.72: Spearman correlation analysis between the maximum number of times tar-
get information pop-up windows opened per target per decision and selection success
rate by decision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = -0.25, ρ < 0.001 r = -0.03, ρ = 0.6
Easy r = -0.21, ρ < 0.01 r = -0.12, ρ = 0.11
Hard r = -0.19, ρ = 0.03 r = 0.06, ρ = 0.43

M3

Overall r = -0.05, ρ = 0.35 r = 0.07, ρ = 0.21
Easy r = -0.1, ρ = 0.15 r = 0.11, ρ = 0.12
Hard r = 0.04, ρ = 0.63 r = 0.04, ρ = 0.61

The maximum percentage of time a target information pop-up window was open per target

relative to the decision time mean was assessed and the descriptive statistics are shown

in Table F.73. The Mann-Whitney-Wilcoxin within model statistical comparisons are

presented in Table F.74. No significant effects between visualizations were found. The

Spearman correlation between the maximum percentage of time a target information

pop-up window was open per target relative to the decision time and selection success

rate are provided in Table F.75.
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Table F.73: Maximum time target information pop-up windows opened per target per
decision (%) descriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 36.2 (34.56) 20.68 (0.17/100)
Easy 31.73 (31.41) 15.72 (0.17/100)
Hard 53.13 (29.18) 59.78 (0.52/100)

M3

Overall 39.67 (36.53) 22.89 (0.49/100)
Easy 52.75 (29.26) 57.8 (0.52/100)
Hard 52.2 (29.46) 55.38 (1.05/100)

Collective

M2

Overall 40.02 (34.89) 34.26 (0.22/100)
Easy 37.38 (33.89) 28.88 (0.34/100)
Hard 50.03 (33.28) 52.3 (0.18/100)

M3

Overall 42.38 (35.7) 38.13 (0.22/100)
Easy 49.48 (31.98) 52.54 (0.18/100)
Hard 48.7 (30.17) 52.64 (0.44/100)

Table F.74: Within model comparison statistics (DOF = 1) of the maximum time target
information pop-up windows opened per target per decision (%) by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 637 U = 36398, ρ < 0.001

Easy 368 U = 13208, ρ < 0.001
Hard 269 U = 5774, ρ < 0.001

Collective
Overall 643 U = 43800, ρ < 0.001

Easy 358 U = 14052, ρ = 0.05
Hard 285 U = 8154, ρ < 0.01

Table F.75: Spearman correlation analysis between the maximum time target informa-
tion pop-up windows opened per target per decision (%) and selection success rate by
decision difficulty.

Decision Difficulty IA Correlation Collective Correlation

M2

Overall r = 0.04, ρ = 0.49 r = -0.008, ρ = 0.89
Easy r = -0.04, ρ = 0.63 r = -0.07, ρ = 0.39
Hard r = 0.1, ρ = 0.27 r = 0.007, ρ = 0.93

M3

Overall r = -0.11, ρ = 0.04 r = -0.06, ρ = 0.3
Easy r = -0.07, ρ = 0.34 r = -0.08, ρ = 0.29
Hard r = -0.17, ρ = 0.05 r = -0.05, ρ = 0.56
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Appendix G: Additional System Design Element Influence on Team

Performance

The first twelve decisions were assessed for each trial and the descriptive statistics are

shown in Table G.1. The Mann-Whitney-Wilcoxin within model statistical comparisons

are presented in Table G.2. No significant effects between visualizations were found.

Table G.1: Number of decisions per participant by decision difficulty descriptive statis-
tics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA

M2

Overall 12 (0) 12 (12/12)
Easy 6.93 (0.77) 7 (6/8)
Hard 5.07 (0.77) 5 (4/6)

M3

Overall 12 (0) 12 (12/12)
Easy 7.11 (1.03) 7 (5/9)
Hard 4.89 (1.03) 5 (3/7)

Collective

M2

Overall 12 (0) 12 (12/12)
Easy 6.43 (0.96) 7 (5/8)
Hard 5.57 (0.96) 5 (4/7)

M3

Overall 12 (0) 12 (12/12)
Easy 7.04 (0.96) 7 (6/9)
Hard 4.96 (0.96) 5 (3/6)
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Table G.2: Within model comparison statistics (DOF = 1) of the number of decisions per
participant by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA
Overall 56 U = 507.5, ρ = 0.05

Easy 56 U = 330, ρ = 0.3
Hard 56 U = 581, ρ < 0.01

Collective
Overall 56 U = 445.5, ρ = 0.35

Easy 56 U = 412.5, ρ = 0.74
Hard 56 U = 459.5, ρ = 0.26

The decision time improvement of the human-collective team using the M2 model

over the M2SIM model was assessed and the descriptive statistics are presented in Table

G.3. No significant effects between visualizations were found.

Table G.3: Decision time improvement (%) of human-collective team over model de-
scriptive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA M2

Overall -9.91 (15.41) -11.47 (-34.26/31.91)
Easy -8.92 (24.52) -11.88 (-46.25/77.86)
Hard -10.76 (16.34) -15.8 (-33.53/35.63)

Collective M2

Overall -16.71 (10.9) -17.64 (-37.36/5.06)
Easy -19.19 (14.34) -21.67 (-43.04/22.82)
Hard -18.96 (10.35) -18.27 (-39.12/-0.8)

The selection success rate improvement of the human-collective team using the M2

model over the M2SIM model was assessed and the descriptive statistics are presented in

Table G.4. The Mann-Whitney-Wilcoxin between visualization statistical comparisons

are presented in Table G.5.



356

Table G.4: Success rate improvement (%) of human-collective team over model descrip-
tive statistics.

Model Decision Difficulty Mean (SD) Median (Min/Max)

IA M2

Overall 2.33 (24.99) 0.59 (-53.49/46.67)
Easy 5.15 (30.91) 11.62 (-77.83/55.42)
Hard 11.79 (52.2) 10.59 (-100/151.94)

Collective M2

Overall 18.86 (12.8) 19.57 (-6.25/39.53)
Easy 24.38 (14.8) 24.14 (-11.55/59.81)
Hard 29.1 (35.37) 26.22 (-40.55/120.86)

Table G.5: Between visualization comparison statistics (DOF = 1) of the success rate
improvement (%) of human-collective team over model by decision difficulty.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin
Overall 56 U = 544.5, ρ = 0.01

Easy 56 U = 560, ρ < 0.01
Hard 56 U = 492, ρ = 0.1

The SA probe improvement of Trial 1 over Trial 2 using both models and visualiza-

tions were assessed and the descriptive statistics are presented in Table G.6.

Table G.6: SA probe improvement (%) of Trial 1 over Trial 2 descriptive statistics.

Model Mean (SD) Median (Min/Max)

IA
M2 12.32 (42.37) 0 (-66.67/150)
M3 2.47 (53.33) -16.67 (-66.67/200)

Collective
M2 -3.1 (23.31) 0 (-66.67/66.67)
M3 25.18 (37.99) 20 (-25/100)

The time (minutes) to respond to a SA probe question was assessed only for the IA eval-

uation, because the Collective evaluation did not record response times, and the de-

scriptive statistics are shown in Table G.7. The Mann-Whitney-Wilcoxin within model

statistical comparisons are presented in Table G.8. The Spearman correlation between

the SA probe response time and selection success rate are provided in Table G.9.
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Table G.7: SA probe response time (minutes) descriptive statistics by SA level.

Model SA Level Mean (SD) Median (Min/Max)

IA

M2

SAO 0.2 (0.15) 0.17 (0.03/0.97)
SA1 0.18 (0.15) 0.15 (0.03/0.95)
SA2 0.22 (0.15) 0.18 (0.07/0.97)
SA3 0.21 (0.16) 0.17 (0.07/0.97)

M3

SAO 0.17 (0.13) 0.13 (0.03/0.97)
SA1 0.15 (0.09) 0.13 (0.03/0.78)
SA2 0.17 (0.11) 0.13 (0.03/0.58)
SA3 0.21 (0.19) 0.15 (0.05/0.97)

Table G.8: Within model comparison statistics (DOF = 1) of SA probe response time
(minutes) by SA level.

Decision Difficulty Sample Size Mann-Whitney-Wilcoxin

IA

SAO 670 U = 64732, ρ < 0.001
SA1 281 U = 10750, ρ = 0.2
SA2 224 U = 7888.5, ρ < 0.001
SA3 165 U = 3721.5, ρ = 0.3

Table G.9: Spearman correlation analysis between SA probe response time (minutes)
and SA probe accuracy by SA level.

Decision Difficulty IA Correlation

M2

SAO r = -0.16, ρ < 0.01
SA1 r = -0.18, ρ = 0.03
SA2 r = -0.34, ρ < 0.001
SA3 r = 0.03, ρ = 0.78

M3

SAO r = -0.21, ρ < 0.001
SA1 r = -0.24, ρ < 0.01
SA2 r = -0.2, ρ = 0.03
SA3 r = -0.12, ρ = 0.28




