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I. INTRODUCTION 

Many different sorting algorithms have been developed [l], and no 

one sorting algorithm is best for every case; in other words, each 

algorithm has its own advantages and disadvantages depending upon the 

environment in which it is applied as well as the characteristics of the 

list to be sorted. 

When programmer effort is not a consideration, Martin [2) pointed 

out that the choice of method depends on: 

(a) the length of the list to be sorted; 

(b) the relation between the length of the list and the number 

of cells in the main memory of the machine used for sorting; 

(c) the number and the size of any disk/tape used in sorting; 

(d) the extent to which the elements are already in sorted 

order; and 

(e) the distribution of the values of the elements. 

Usually factor (d) above is neglected as the efficiency of a sorting 

algorithm is usually based on its performance on uniformly distributed 

random lists. However, the sortedness of the original list definitely 

affects the efficienty of some sorting algorithms. 

The purpose of this paper is to explore (d) above in an attempt 

to discover the 11best 11 sorting algorithm for 11nearly 11 sorted lists, which 

are encountered quite often in real practice. 

11Best11 sorting algorithm can be interpreted in different ways depend­

ing upon what is considered to be most important. Chapter II discusses 

several possible interpretations, and gives the definition of 11best 11 used 

in this paper. 
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As for "nearly" sorted lists, there is no commonly accepted measure 

for the orderedness of an input list and a simple, easily defined mea­

sure for "nearly" sorted list is elusive. Furthermore, it should be 

noted that the performance of a sorting algorithm is continuous on the 

ordering of the input list. In other words, sorting algorithms sort the 

unordered lists almost the same way (no. of steps) regardless of the small 

changes on input lists. This may explain the absence of the measures 

for the sortedness and the difficulty in defining the sortedness. 

Much of the effort in this paper has been devoted to defining and 

proposing measures for the sortedness. In Chapter III, two measures 

are carefully developed and precisely defined. 

We also define the "nearly" sorted region by those two measures. 

In Chapter IV, several sorting algorithms are compared on "nearly" 

sorted lists. The sorting algorithms compared in this paper are Straight 

Insertion Sort, Tree Sort, Quicker Sort, Straight Merge Sort, Shell Sort, 

and Heap Sort. Descriptions for each algorithm are given in Appendix A. 

We chose these sorting algorithms because they either take into 

account the sortedness of the input list or are known to be fairly fast 

on random input lists. 

The names of sorting algorithms are not consistent between some 

books or papers. This paper will use the names given in Knuth [l]. For 

example, Straight Insertion Sort in Knuth is called the Bubble Sort in 

some papers [2, 7]. 

Straight Insertion Sort and Quicker Sort performed best on nearly 

sorted lists. The Straight Insertion Sort performed best on very nearly 

sorted or small lists and the Quicker Sort performed best on the remain­

ing cases of nearly sorted lists. 
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In addition, a New Sorting Algorithm which is a combination of 

Quicker Sort and Merge Sort, is developed especially for nearly sorted 

list and ·is shown to perform as well as the Straight Insertion Sort and 

Quicker Sort. As a consequence, New Sorting Algorithm is the best sort­

ing algorithm on the nearly sorted list. 

Chapter V summarizes the paper and suggests several possible exten­

sions of the work. 
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II. BEST SORTING ALGORITHM 

The commonly used measures for the "best" sorting algorithm are 

Storage Requirements and Average Number of Comparisons [8). Computer 

execution time is also used in some papers (3). 

In this paper, we will not consider the storage requirement, so 

the 11best 11 sorting algorithm is the "fastest" algorithm. 

Computer execution time seems to be the simplest and most reasonable 

measure for comparing the sorting algorithms. However, computer execution 

time depends upon the programming technique, programming languages used 

and the computer system environment. 

Furthermore, it is practically difficult to obtain very accurate 

computer execution times, and execution times cannot be compared unless 

the size of input is very large. 

For example, CYBER system gives CPU time accurate to two decimal 

digits and most sorting algorithm can sort the list with 50 elements in 

0.01 seconds. 

The number of comparisons needed to sort an unordered list is called 

the II sort effort" ( 8) and generally provides a good measure. However, 

when a list is sorted, exchanges between elements in the list take longer 

than the comparisons on typical computer systems, and some sorting algorithms 

can sort the unordered list with extensive exchanges but with a small num­

ber of comparisons and vice versa. 

Therefore, the number of exchanges should be considered along with 

the number of comparisons, when computing the sorting effort. In this 

paper, each sorting algorithm is compared by the number of comparisons, 

moves and exchanges between the elements in the list when it is sorted. 
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Any effort spent in bookkeeping, such as keeping track of the pointers 

or doing simple arithmetics involved in the sorting process will not be 

considered here. 

Although this measure is not perfect, it seems to be the best compro­

mise between simplicity and accuracy. 

Furthermore, there exists no one absolutely best measure in comparing 

the sorting algorithms, but the results can be useful despite what appears 

to be overly simplified computational models [4]. 

We also need to assign a weight to exchange, move and comparison. 

Due to potential complexity, it is not possible to obtain an exact ratio, 

and there can be many possible ratios depending upon the computer system.· 

Assuming a typical computer system, we adpoted the ratio of (2:2:l). 

In other words, two comparisons, two moves and one exchange are equivalent 

to one another. Then we can get a weighted value as follows: 

Weighted Value 

= (no. of comparisons) x 2 + (no. of moves) x 2 + (no. of exchanges) 

Thus, a "best" sorting algorithm is the one whose weighted value is 

smallest. 



6 

III. NEARLY SORTED LIST 

A. Intuitive Definition and Examples. 

Intuitively, the number of elements which are not in order and how 

far the unsorted elements are out of order are good measures for the 

unsortedness of a list. 

A list which has a small number of unsorted elements and whose 

unsorted elements are not too far from their proper positions would be 

called 11nearly 11 sorted. 

In this section, we will explore the meaning of the terms used in 

our intuitive definition of nearly sorted list. 

First, the number of sorted (or unsorted) elements should be counted 

by the relative order in the list rather than by their absolute positions. 

In the list (2, 3, 4, 5, 6, l, 7), for instance, only one element (7) 

is in its proper sorted position, however, we will consider only one 

element (l) is out of relative order and the other six elements (2, 3, 4, 

5, 6, 7) a re in order. From now on, 11 order 11 denotes· the II relative order" 

unless otherwise specified. 

Which elements are not in order is ambiguous in general, since there 

can be several relatively ordered, overlapping sublists as can be seen in 

the list (6, 2, l, 3, 5, 4, 7). Some of their sublists are (6, 7), (2, 3, 

5, 7), and (2, 3, 4, 7). 

Furthermore, counting the number of unsorted elements is not unique 

either. 

For example, in the list (4, 5, l, 2, 3, 6, 7), the number of unsorted 

elements is two (4, 5) or three (1, 2, 3) depending upon which elements 

are considered as not being in order. 
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Therefore, we assume that the number of unsorted elements for a given 

list means the minimum number of elements which should be removed from 

the list to make the remainder of it be completely sorted. Then the number 

of unsorted elements in the list (4, 5, 1, 2, 3, 6, 7) is two and the 

unsorted elements are 4 and 5. 

Then the number of unsorted elements in the list is always unique, 

although the selection of the unsorted elements may not be unique. For 

example, possible selections of unsorted elements for the list (6, 2, l, 

3, 5, 4, 7) above could be (6, 2, 5), (6, 2, 4), (6, l, 5) and (6, l, 4), 

however, the (minimum) number of unsorted elements is always 3. 

We have clarified the meaning of the number of unsorted elements, 

however, the distribution of the unsorted elements cannot be defined 

without employing the mathematical tools: permutation, inversion, and 

inversion table, which are introduced in the next few sections. 

Furthermore, counting the number of unsorted elements by hand is im­

practical and no algorithm can be easily implemented on computer to count 

that number. So an algorithm for counting the number of unsorted elements 

is also developed later in this chapter. 

B. Permutations and Inversion. 

A sequence of n numbers is called a permutation if it consists of 

only integers l through n, i.e., a permutation p = {l, 2, 3, ... n}. 

If the elements in the permutation are in ascending order, i.e., 

p = (1, 2, 3, ... n), then it is called an identity permutation. 

It is easy to see that any list can be related to a permutation by 

associating the smallest number with 1, second smallest with 2, etc., if 

considering ascending order and the reverse if descending order. 
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For example, the list (4.1, 2.7, 6, 9.85, 0, -2.2) corresponds to 

the permutation (4, 3, 5, 6, 2, 1). 

Here we assume that no elements in the list are repeated and all 

lists are to be sorted in ascending order. 

For a given permutation, P; 

P = {ai I ai = l, 2, 3, ... n} 

If i<j and ai>aj, then the pair (ai' aj) is called an inversion. 

For example, P = (4, 3, 1, 2, 7, 6, 5) has eight inversions: 

(4, 3), (4, 1), (4, 2), (3, 1), (3, 2), (7, 6), (7, 5), (6, 5). 

If there is no inversion in P, then Pis the identity permutation. 

So sorting can be thought of as a process of removing the inversions from 

the corresponding permutation derived from a given list. 

C. Inversion Table. 

The Inversion Table b1, b2, ... bn of the permutation a1, a2, ... an 

is obtained by letting bj be the number of elements to the left of j that 

are greater than j(l); bj is the number of ai's where 

(ai' 12.i<j) f\ (j<ai) for all l2.j2.n. 

For example, if 

P = (4, 3, l, 2, 7, 6, 5) 

then IV= (2, 2, 1, 0, 2, 1,0). 

For l in ·,P, there are two elements, 4, 3 in P which are bigger than l and 

to the left of 1, so the first element in IV is 2 (b1 = 2), for 2 in P, 

there are two elements (b2 = 2), 4, 3, which are bigger than 2 and to the 

left of 2, and for 3 in P, only one elent (b3 = l), 4, and for 4 in P, 

there is no element (b4 = 0) in P which is bigger than 4 and to the left 

of 4, and so on. 



Note that the last element of Inversion Table (bn) is always 0, 

since no element in p can be bigger. than the number of elements (n). 

There are some very important and interesting properties in 

Inversion Table. 
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First of all, there is a one-to-one correspondence between per­

mutations and Inversion Tables. This fact, discovered by Hall (5) and 

Knuth (.lJ gives an algorithm for constructing a permutation from an 

inversion table, and we will give an example to illustrate the algorithm. 

For 

IV= (2, 2, l, 0, 2, l, 0), 

starting from the rightmost and going backwards, place the corresponding 

element into its proper position to satisfy that the number of bigger 

elements to the left is identical to the value in Inversion Table (Fig. 

Figure l 

Corresponding 
elements in IV 
permutation (backwards) Permutation Comment 

7 0 7 7 is biggest 

6 l 7 6 7>6 ... l 

5 2 7 6 5 7>6 6>5 ... 

4 0 4 7 6 5 ............ 
3 l 4 3 7 6 5 4>3 ... l 

2 2 4 3 2 7 6 5 4>2 3>2 

l 2 4 3 l 2 7 6 5 4>1 3>1 

We can easily see that the final permutation obtained from IV is 

identical to the original P. 

Another interesting property of the Inversion Table is that each 

l). 

2. 

0 

2 

2 

0 
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element indicates the number of interchanges between two adjacent elements 

needed to place the corresponding element in the original permutation in 

its proper position. 

Using the Inversion Table (2, 2, l, 0, 2, l, 0), the first element 2 

in IV says that l in P can be in its proper position (i.e. leftmost) 

after two interchanges, and Fig. 2 shows the relationship between the 

number of interchanges and the values of elements in Inversion Table as 

interchanges (indicated by arrows) are done. 

Figure 2 

p = ~l, 2, 7, 6, 5) IV = @2 , l , 0 , 2 , 1 , 0) 
~ 7, S) Iv1 ( 0 ,@1 , 0, 2, l , 0) P1 = (l, 4, 3, 2, 6, = 

( l ' 
~ 7, 6, 5) IV2 (o, o,G)o, 2, 1, o) P2 = 2, 4, 3, = 

P3 = ( 1 ' 2, 3, ~ 4,7,6,5) IV3 = (0, o, 0, o,@1, o) 

( 1 ' 2, 3, 4, ~ IV = (0, 0, 0, 0, o,G)o) P4 = 5, 7, 6) 4 

P5 = ( l ' 2, 3, 4, 5, 6, 7) IV = 5 (0, 0 0, 0, 0, 0, 0) 

Also, the sum of each element in Inversion Table is equal to the 

total number of inversions in the given permutation, and also is equal 

to the total number of interchanges of adjacent elements to form the 

identity permutation. 

For example, the sum is 8 (2 + 2 + 1 + 0 + 2 + l + 0 = 8) for the 

inversion table of the list (4, 3, 1, 2, 7, 6, 5), and that is the number 

of inversions as shown in the beginning of this section and it becomes 

identity permutation. 

D. "HOW-MANY''. 

From the previous section on Inversion Tables, it follows that a 

non-zero element in IV indicates that its corresponding element in Pis 
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not in order, and if all elements in P, whose corresponding elements in 

IV are non-zero, are removed from P, then obviously it will yield a 

completely sorted subset of the permutation. 

e.g. P = (2, 3, 4, 5, l, 6, 7) 

IV = (4, 0, 0, 0, 0, 0, 0) 

There is only one non-zero element in IV, and if we eliminate the corres­

ponding l in P, then Pis in order. 

This method seems quite easy and natural, however, this does not 

guarantee the minimum number as shown by the following example: 

e.g. P = (7, l, 2, 3, 4, 5, 6) 

IV= (l, l, l, l, l, l, 0) 

There are six non-zero elements in IV, but the minimum number of elements 

to be removed from Pis only one, 7, instead of six elements. 

Recall that there are two cases when an element is out of order, 

i.e., one is when a small number is placed to the right from its proper 

position as shown in the first example of this section, and the other 

is when a big number is placed to the left from its proper position as in 

the second example. 

Considering the two cases, we come up with an algorithm which uses 

the Inversion Table to count the minimum number of unsorted elements 

in the list, i.e., the minimum number to be removed from the permutation 

to make it completely sorted. 

Algorithm l: Count the number of unsorted elements. 

(l) First step: 

Divide Inverison Table into subgroups of consecutive entries, 

whose first element is non-zero, but each subgroup should 

end with at least one zero. The number of zeros that should 



follow at the last portion of the subgroup is given 

by: 

no. of non-zero 
Min {elements in subgroup, 

value of last non-zero} 
element in subgroup 

and zeros not included in subgroups can be completely neglected since 

the corresponding elements in Bare in order and not affected by the 

unsorted elements in subgroups. 
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Recall again that the former part of the formula represent the case 

as shown in the first example in this section, i.e., small numbers should 

be removed from the list, while the latter represents the second case. 

e.g. IV = ( l l l 3 0 0 0 3 2 l O 2 2 2 2 0 0 5 0 0 l O 0) 

would be divided into 5 subgroups: (l l l 3 0 0 0), (3 2 l 0), (2 2 2 2 0 0), 

(5 0) 0, (l 0) 0, and 20th and 23rd elements (zeros) are omitted as indi-

cated in the algorithm. The number of trailing zeros in each subgroup was 

calculated by applying the formula, i . e: 

(2) 

For the 1st subgroup min {4, 3} = 3 

2nd subgroup min {3, l} = 

3rd subgroup min {4, 2} = 2 

4th subgroup min {l' 5} = l 

5th subgroup min {l' l} = 

Second Step: 

For each subgroup, if the number of non-zero elements is· 

less than the largest element in the ;th subgroup, 

then: the minimum number of elements to be removed from ; th 

subgroup is equal to the number of non-zero elements and we 

d . th . th are one w, 1 group. 

otherwise; subtract l from each non-zero element in ; th 

subgroup and go back to First Step unless every element in 



. th b . . h. h d . th . th 1 su group 1s zero, 1n w 1c case we are one w, 1 

subgroup. Whenever this process is executed, it also in­

creases the number of elements to be removed by one 

(n. = n. + 1). 
l l 
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This algorithm ends in either process of Second Step and the total 
k 

number of the unsorted elements in the list is n = ~ n., where k is the 
n=l 1 

total number of subgroups. 

e.g., 

Applying the above algorithm on IV: 

IV= (1 l 1 3 0 0 0 3 2 1 0 2 2 2 2 0 0 5 0 0 1 0 0), 

we will show how to find the minimum number of elements to be eliminated. 

As mentioned earlier, we come up with five subgroups. And for each 

subgroup: 

For (1 1 1 3 0 0 0): 

a) no. of non-zero element (4)>largest element (3). 

b) n1 = 0 + = 1. 

c) subtract from each non-zero element, then we get 

(0, 0, 0, 2, 0, 0, 0). 

d) it forms only one subgroup (2, 0). 

e) no. of non-zero element (l)<largest element (2). 

.-.nl = 1 + l = 2 . 

For (3, 2, 1, 0): 

a) no. of non-zero element (3) = largest element (3). 

b) n2 = 0 + 1 = l. 

c) subtract 1 from each non-zero element, then we get 

(2, 1, 0, 0). 

d) neglect last zero, and we get (2, 1, 0). 



e) no. of non-zero element (2) = largest element (2). 

f) n2 = l + l = 2. 

g) subtract from each non-zero element, then we get 

(l, 0, 0). 

h) neglect last zero, and we get (l, 0). 

i) no. of non-zero element (l) = largest element (1). 

j) n2 ~.2 + = 3. 

k) subtract from the non-zero element, then all elements 

are zero, and we are done 

n = 3. :. 2 

For (2, 2, 2, 2, 0, 0,): 

a) no. of non-zero element (4)>largest element (2). 

b) n3 = 0 + l = l. 

c) subtract from each non-zero element, then we get 

(l, l, l, l, 0, 0). 

d) it forms only one subgroup (l, l, l, l, 0). 

e) no. of non-zero element (4)>largest element (1). 

f) n
3 

= l + l = 2. 
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g) subtract from each non-zero element, then we get (0, 0, 0, 0, 0). 

therefore done. 

:.n3 = 2. 

For (5,0): 

a) no. of non-zero element (l)<largest element (5) 

:. n4 = l . 

For (l,0): 

a) no. of non-zero element (l) = largest element (l) 

:.n5 = l . 
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= 2 + 3 + 2 + l + l = 9 

We can check this value directly from the corresponding permutation, i.e., 

p = @1, 2, 3, 6, 7,011, ~ 12, 13, 14, 15, 19, 

20, 22,@ 23,@, 

and elements with circles should be removed to make P completely ordered. 

Suppose Algorithm l gives the number of unsorted elements, k. Since 

we wi 11 represent the II HOW-MANY" by the ratio of the unsorted elements 

to the total number of elements in permutation: 

II HOW-MANY" k - -
n 

where n is the total number of elements. 

If a permutation is an identity, 11HOW-MANY11 becomes 0, and for a com­

pletely out-of-ordered permutation, 11 HOW-MANY" wi 11 approach to l, and 

if half of the elements are unsorted, its value will be around 0.5. Thus 

this ratio seems to coincide with our intuition. 
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E. "HOW FAR". 

"HOW-FAR" is the ratio of total number of inversions to the average 

number of inversions for a given number of unsorted elements, and will 

be derived as follows: 

Suppose there are n elements in a permutation, and only one element 

is out of order. Then the element can be placed in the ; th position 

with the probability¼, and the probability that j th position is in its 

proper place is also*· 

The expected number of transfers that an unsorted element should 

move to be in its proper place is 

n 
E 

i=l 
i(n-i) = ( n+ 1) ( n-1) 

3n 

If there are k unsorted elements in the list, the expected number 

of transfers becomes 

~ (n-i (n-i+2) 
. l 3 n-i+l ,= 

k 
and we can approximate the value, since E (n-i+l) is much bigger than 

i=l 
k l 
E (n-i+l) ' i=l 

i.e. , 

~ (n-i)(n-i+2) 
3(n-i+l) i=l 

l k l ~ l k 
= - ( E (n-i+l) - E .) = - E (n-i+l) 

3 i=l i=l(n-1+1) 3 i=l 

= l ( nk + k - k ( k+ l)) 
3 2 
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· SUM IV 
Therefore, 11HOW-FAR11 would be defined as 1 

3 ( nk + k - k ( ~+ l)) ' 

however, we divide it by 3 to make its range between O and 1, i.e., 

11Hm~-FAR11 

where SUM1v is the sum of corresponding inversion table elements. 

When k = 0, i.e., identity permutation, 11HOW-FAR11 becomes g and 

undefined, but we will assume it to be Oto make 11HOW-FAR11 be continuous 

for all possible k values. 

We will derive the upper limit of 11HOW-FAR11 as follows: 

For given k number of unsorted elements, maximum value of SUMIV is 

( ) ( ) ( (2n-k-l)k n-1 + n-2 +---+ n-.k)= 2 • 

Thus, upper bound of 11HOW-FAR11 

k ( 2n - k - 1) 
2 = --------:----.-.------.--..- = 

nk + k - k (k + 1) 
2 

~ l (assumed¼= 0). 

k l (2 - - - -) n n 
k l 2--+-n n 

Notice that both 11HOW-MANY11 and 11HOvJ-FAR11 are defined between O and 1. 

Then we define the 11nearly 11 sorted region on the graph in terms of 

11HOW-MANY11 and 11HOL~-FAR11 as in Fig. 3. 

If both 11HOW-FAR11 and 11HOW-MANY11 are very sma 11, undoubtedly the 1 i st 

is nearly sorted. 

We s hou 1 d a 1 so add that if the II HOW-MANY II is very sma 11 , then the 

list is also nearly sorted regardless of the value of 11HOW-FAR11 , i.e., 

if 11HOL~-MANY11 of a list is around 0.05, it will be called nearly sorted 

regardless of the 11HOW-FAR.11 



18 

For other extreme cases, a list is also called nearly sorted with 
11HOW-MANY11 around 0.15, if 11HOW-FAR11 is less than or equal to 0.33. 

Figure 3 

Nearly Sorted Region 

11HOW-MANY11 

l 
Y = 20x 

0 0.2 0.33 0.4 0.6 
11HOW-FAR11 

0.8 1.0 



IV. TEST RESULT 

A. Tested Sorting Algorithms. 

Testing was performed on CYBER system. The sorting algorithms 

tested were: 

(1) Straight Insertion Sort 

(2) Quicker Sort 

(3) Shell Sort 

. (4) Straight Merge Sort 

(5) Tree Sort 

(6) Heap Sort 
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Two well-known sorting algorithms, Bubble Sort and Quick Sort, were 

not included for comparison. Because Bubble Sort as defined in Knuth [l] 

requires too many unnecessary comparisons between elements. Some modi­

fied Bubble Sorts have been developed, however, none of these require­

ments leads to an algorithm better than Straight Insertion Sort [l]. 

Quick Sort is replaced by Quicker Sort, since the middle element is 

usually an excellent choice, especially if the input list is nearly 

sorted and it can split the list into two halves of equal size [3]. 

Furthermore, it has been empirically determined that Quicker Sort is 

the fastest sorting technique on most machines [8]. 

B. Test Set-up and Results. 

"HOH-FAR" as defined in Chapter III affects the performance of some 

soritng algorithms, however, the effect of 11H01i!-FAR11 was not tested in 

this paper due to the substantial execution time required. 

As commented in Introduction, the length of the input list also 

affects the efficiency of sorting algorithms. Hence, nearly sorted list 

with various "HOW-MANY" values and of various lengths were tested. 
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Input test data was created as follows: an identity permutation 

of desired size (50, 200, 500, 1000 and 2000) was rearranged by random 

number generator to obtain the desired 11HOW-MANY11 values, which were 

0.0 (in order), 0.02 (2% out of order), 0.05, 0.10 and 0.15. As men­

tioned, 11HOW-FAR11 was not considered, and actual "HOW-FAR" values for 

tested lists were around 0.3. 

Computer programs were written in FORTRAN for each sorting algorithm. 

Any programming language will give the same results, since we only count 

the number of comparisons, moves and exchanges. 

After running the program for input generated, we obtained weighted 

values from the number of comparisons, moves and exthanges as defined 

in Chapter II. Entries for Table l are the weighted values divided by 

the length of lists. With these values, it is easier to compare the lists 

of different sizes. 

Performance of Straight Insertion Sort, Shell Sort and Quicker Sort 

are summarized in Fig. 4, Fig. 5 and Fig. 6, respectively. Some more 

variations of "HOW-MANY" (0.01, 0.03, 0.08, 0.12) and the length (100) 

were added to draw those graphs. 

Performances of all sorting algorithms are depicted in Fig. 7. 

As the results of a sequence of tests indicate, the Straight Merge 

Sort, Tree Sort and Heap Sort do not take into account the sortedness 

of the input list. In other words, they spent almost the same effort 

in sorting the unsorted lists, regardless of the unorderedness of the 

input lists. 

Straight Merge Sort is better than Tree Sort and Heap Sort, however, 

it is far from being selected as the best sorting algorithm on nearly 

sorted list. 
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Table l 

No. of 

Sorting 
Elements 

Algorithm HOW-MANY 50 200 500 1000 2000 
0.0 2.94 2.99 2.99 3.0 3.0 

Straight 0.02 3.56 5. 12 9 .13 16.47 26. 77 
Insertion 0.05 5.34 12. 72 18.36 32. 71 91.65 

0.10 6.78 13. 90 31.24 70.06 124.77 
0. 15 5.34 19.53 49.37 130.30 173.60 

0.0 6.32 7.57 10.43 11.20 12.34 
0.02 6.72 8.42 10.25 12.05 14.08 

Quicker 0.05 6.41 8.87 11.11 12.58 13. 77 
0.10 6.70 9.32 11. 21 13.84 14. 01 
0. 15 7.26 l 0. 01 12. 51 13. 51 14.0 

0.0 5.06 6.01 7. 01 8.0 9.0 
0.02 5.30 9.50 14.20 15 .46 18.57 

Shell 0.05 6.52 12.78 15. 31 18.65 22.72 
0.10 8.38 13.69 16.82 21.97 24.38 
0. 15 8. 72 15.62 16.63 22.72 25.92 

0.0 10.50 14.0 16. 95 17.70 
Straight 0.02 10.50 14.05 17.20 18.06 20.92 
Merge 0.05 10.52 14.44 17. 28 18 .14 21 .02 

0. 10 10.64 14.47 17. 31 18.24 21. 22 
0. 15 10.58 14.56 17.43 18.32 21. 37 

0.0 15.38 19.43 21.95 24.95 25.95 
0.02 15.38 19.43 21.95 24.95 25.95 

Tree 0.05 15.38 19.43 21.95 24.95 25.95 
0.10 15. 38 19.43 21.95 24.95 25.95 
0. 15 15.38 19.43 21.95 24.95 25.95 

0.0 17.04 23.32 26.22 29.25 32.23 
0.02 16.64 23.27 27. 17 30.22 33.20 

Heap 0.05 17.02 23. 14 24. 77 30.16 33.26 
0.10 16.76 22.23 26.90 30.57 33.24 
0.15 16.82 22.34 26.54 29.94 32.66 
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Meanwhile, Straight Insertion Sort and Shell Sort are greatly affected 

by the sortedness of input and are very good for very nearly sorted and 

small size lists. But the efficiency of both of these sorting algorithms 

decrease rapidly as the size of input increases. Thus, both sorting 

algorithms are not only recommended for small sized nearly sorted lists 

whose number of elements are less than or equal to 200, or very nearly 

sorted lists (2% or less out of order). Recall that Straight Insertion 

Sort does not require any overhead and is simple to program. So it would 

be better to use Straight Insertion Sort. 

Overall performance of Quicker Sort is very good. The efficiency 

of Quicker Sort is a little affected by the sortedness of the input 

list, however, it is best when the size of input list is big. 

Best sorting algorithm regions on nearly sorted lists is shown in 

Fig. 8 in terms of the size of input lists and 11HOW-MANY.11 

In addition to the six sorting algorithms listed in the previous 

section, extra tests were performed on modified versions of sorting 

algorithms: combination of Quicker Sort and Straight Insertion Sort, 

and the Revised Heap Sort, without any noticeable improvement. 

It is empirically proven by Singleton [7] that Straight Insertion 

is the best sorting algorithm when the number of elements in the list 

to be sorted is less than or equal to 11. 

And as mentioned, Quicker Sort is very fast. But it can be improved 

by combining it with Straight Insertion Sort. In other words, apply 

Quicker Sort to sort the list, and whenever the number of elements in 

the subgroup is less than or equal to 11, apply Straight Insertion to 

sort that subgroup elements. 

This method was tried on nearly sorted lists, but it only improved 

Quicker Sort slightly. 
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As for Revised Heap Sort, we reversed the definition of Heap. In 

other words, a sequence of keys K1 , K2, . . . Kn forms a II reversed 

heap" if K .Lj/?_12-Kj for l 2- Lj/~(j_~_n. Then the smallest key appears 

on the top of the reversed heap. When the input list is nearly sorted, 

this method requires much fewer exchanges than the original Heap Sort 

does. However, the Reversed Heap Sort has almost the same number of 

comparisons as Heap Sort, and hard to be considered as best sorting 

algorithm on nearly sorted lists. 

So even the Reversed Heap Sort cannot compete against Straight 

Insertion Sort or Quicker Sort on nearly sorted list. 

C. New Sorting Algorithm. 

A new sorting algorithm was developed especially for nearly sorted 

list. 

It is a combination of Quicker Sort and Merge Sort. Basically 

it scans the source list and selects the already sorted elements, and 

stores them in an array. The remaining unsorted elements and the elements 

which are not known whether they are in order or not at scanning time are 

stored in another array. 

We sort only this array by applying Quicker Sort, then we have 

two arrays whose elements are all in order in each array. 

Hence we can merge them together to have a completely sorted list. 

Complete New Sorting Algorithm is given in Appendix B, written in 

hypothetical structured programming language. And test results are 

shown in Table 2. Performance of New Sorting Algorithm for selected 

11HOW-MANY11 (0.02, 0.10) was depicted in Fig. 7 for comparison purposes. 

As we can see in Fig. 7, New Sorting Algorithm is very fast and stable 

as the size of input lists grows, while most of the other sorting 
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algorithms are seriously affected by the size of input lists and perfor­

mances are drastically dropped. 

New Sorting Algorithm is, at worst, almost as fast as Quicker Sort 

and fully takes advantage of the sortedness of the input list. From 

Fig. 7, it looks substantially better than Quicker Sort for 200 or more 

elements, and New Sorting Algorithm is recommended on nearly sorted lists, 

especially if the size of input is large (more than 1000). 
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Table 2. New Sorting Algorithm. 

No. of 
New Elements 

Sorting 
Algorithm HOW-MANY 50 100 200 500 1000 2000 

0.0 3.0 3.0 3.0 3.0 3.0 3.0 
0.01 3.78 3.73 3.96 4.02 4.13 
0.02 3.78 3.83 3.97 4.21 4. 31 4.34 
0.03 3.94 3.97 4. 21 4.38 4.47 
0.05 3.90 4.52 4.56 4.73 4.92 5.02 
0.08 3.92 4.82 5.08 5.45 5.51 
0.10 3.90 4.95 5.31 5.72 6.26 6.22 
0. 12 3.98 5.48 5.61 6.40 6.37 
0. 15 3.90 5.85 6.07 6.97 7.06 7.48 
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V. SUMMARY 

In this paper, two measures, "HOW-MANY" and 11HOW-FAR,11 were defined 

to represent the orderedness of a list and nearly sorted region suggested 

by those two measures. 

This paper compared the performance of several sorting algorithms 

on nearly sorted lists. Straight Insertion Sort performed best on very 

nearly sorted lists or small lists and Quicker Sort performed best on 

the remaining cases of nearly sorted lists, when New Sorting Algorithm 

was not considered. 

New Sorting Algorithm which is developed in this paper for nearly 

sorted list performed as well as or better than any other sorting 

algorithm. In terms of computer execution time, New Sorting Algorithm 

took only one-half to one-third as much time as Quicker Sort on nearly 

sorted lists with 1000 or more elements. 

Some topics were left for further investigation. 11HOl~-FAR,11 which 

has a great effect on the efficiency of Straight Insertion Sort, and 

possible affects the efficiency of other sorting algorithms, was not 

considered in the test results in this paper. 

Repeated elements in the list were not allowed, and some modifica­

tions on permutation may be necessary to take care of such cases. 

Finally, a better sorting algorithm than the one developed in this 

paper may be possible on nearly sorted list and other measures of nearly 

sorted list may be defined and investigated. 
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APPENDIX A 

1. Straight Insertion Sort [Knuth, "Sorting and Searching" (1975), pp. 81]. 

Algorithm S (Slra.ight insertion sort). Records Ri, . .. , RN are rearranged in 
place; after sorting is complete, their keys will be in order, K 1 ~ · • • ~ Kx. 

SI. [Loop on j.J Perform steps S2 through S5 for j = 2, 3, ... , N; then ter-
mina,t.e the algorithm. 

S2. [Set up i, K, R.J Set i - j - 1, I{ - K;, R <- R;. (In the following steps 
we will attempt to insert R into the correct position, by comparing 1( with 
l(; for decreasing values of i.) 

S3. [Compare K, K;.] If]( ~ IC·, go to step S5. (We have found the desired 
position for record R.) 

S.f.. [:l\fove R;, decrear,;e i.] Set R.-+1 - R,·, then i - i - 1. If i > 0, go back 
to stl"p S3. (If i = 0, 1( is the smallest key found so far, so record R be­
longs in position 1.) 

S5. [R int.a R.-+1-J Set R.-+1 - R. I 
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2. Quicker Sort (Collected algorithms from CACM, 271-Pl-01. 

ALGOHITH:\[ 271 
QUICEER8ORT [.\11) 
R. S. Scmrnx* (Recd. 2:2 .\for. HJG5 aud 30 June 1965) 
X at ionnl Physical Laboratory, Teddington, England 

1< Thr work tlt·scribed below· was slarir<l while the author was 
at English EIPct.ric Co. Ltd, complPtt->d as part of the research 
programme of the Xation:d Physicnl Lahonit<iry and is published 
by permission of tl1c Director of the Laboratory. 

procedure qm'ckcrsorl(a, j); 
value j; integer J; array a; 

begin integer 1·, k, q, m, p; real l, x; integer array ut, 
lt[l :ln(ab.s(j)+2)/ln(2)+0.011; 

comment The procedure sorts the elements of the array afl :j] 
jnto P.scending order. It ur-es a method similar to that of QUICK­
SORT by C. A. R. Hoare [l], i.e., by continually splitting the 
array into parts such that all elements of one part are less than 
all elements of the other, with a third part in the middle con­
sisting of a single element. I arn grateful to the referee for point­
ing out that QlilCKEHSORT also bears a marked resemblance 
to sorting algorithms proposed by T. N. Hibbard [2, 3). In par­
ticular, the elimination of explicit recursion by choosing the 
shortest sub-sequence for the secondary sort was introduced by 
Ji ibbard in [2]. 

An element with value tis chosen arbitrarily (in QUICKER­
SORT the middle element is chosen, in QUICKSOHT a random 
element is chosen). i and j give the lower and upper limits of 
the st>~ment bei11g split. After the i-plit lias taken place a value 
q will J,uve her,n fo11nd r,;;uch t.Jint, a[q] = land a[T] S t S a[J] 
for all I, J such that i S I < q < J S j. The program then 
performs operations on the .two segments a[1'.:q-l] and a[q+l:j] 
as follows. The smaller segment is split and the position of the 
larger segment is stored in the lt and ut arrays (lt and ut are 
mnemonics for lower tempor.'.lry and upper temporary). If the 
segment to be split has two or fewer elements it is sorted and 
anothn segment obtained from the lt and 1d arrays. When no 
more segments remain, the array is completely sorted. 

HEFERE!\CES: 

1. tr'oARE, C. A. R. Algorithms H3 and 64-. Comm. ACM 4 (July 
1961), 321. 

2. HIBBARD, TttmIAS N. Some combinatorial properties of 
certain trees with applications to searching and sorting. 
J. A CJ! 9 (Jan. 1962), 13. 

3. --. An empiriclll study of minimal Etorage sorting. Comm. 
ACJf O (1fay 19G3), 20:3-213; 

i := m := l; 
\': if j-i > l then 

hcgin <'Omment This Sf'gment has more than two elements, 
so split it; 
p := (J+i) + 2; 
comment p is the position of an arbitrary element in the 

segnwnt a[i :j]. The best poi:;sible value of p would be one 
which splits the segment into two hah·es of equal size, thus 
if tlir• array fi-;q~rn<·nt) is roughly sortl'd, the middle ele­
me11t is :111 exr•l'llent choi<'c. Jf the array is completely 
random t lie middle ell'ment is as goud a:3 any other. 

If hu\\'t•v<·r the array a[l :j] is such that the parts a[l :j+ 2] 
a11d alj+ 2+1 :j] arc both sort,,d t.hc middle element, could 
lie very bud. Accordingly in some rin·u111stances 
p :== (i+j) + 2 should lie rt'placl'd by p := (i-P>()) + 4 
or p ':= RA .. \'DO:lf(i, j) as in QUICKSORT; 

t := a[p]; 
O[]J] := a[i]; 
q := j; 
fork := i + 1 step 1 until q do 
begin conunent Search for an element a[k] > t start i 1 

from the beginning of the ~egment; 
if a[k] > l then 
hegin comment· Such un a[k] hs.s been found; 

for q := q step -1 until k do 
begin comment Now search for afq] < t starting frn 

the end of the segment; 
if a[q] < t then 
hegin comment a[ q] has been found, so exchan 

a[q] anda[k]; 
x := a[k]; 
a.[k] := a[qJ; 
a[q] := x; 
q := q-1; 
comment Search for another pair to exchange; 
go to L 

end 
end for q; 
q := k - 1; 
comment q was undefined according to Para. 4..6.,i 

the Revised ALGOL GO Report [Comut. ACM (J (J· 

19G3), 1-17); 
go to M 

end; 
L: end fork; 

comment We reach the label M when the search going: ' 
wards meets the search coming down; 

M: a[i] := a[q]; 
a[q] := t; 
comment The segment has been split into the three p:!-, 

(the middle part hRs only one element), now store 1 

position of the largest segment in the lt and ut arrays ~1 

reset i and j to give the position of the next largP.st segme 1 

if 2 X q > i + j then 
hegin 

lt[m) := i; 
ut[m] := q-1; 
i := q+l 

end 
else 
begin 

lt[rn] := q+l; 
ut[m] := j; 
j := q-1 

end; 
comment Update m and split this new smaller eegml': 
m := m+l; 
go to N 

end 

else if i ~ j then 
hcgin comme11t Tltis se~ment has less than two elemenL, 

go to P 
end 
cl~c 

begin comment This is the cas~ when the i;egmcnt has j1 
two '3lernents, so sort, a[i] and a[j] where j = i + 1; 

if <di] > a[j] then 



begin 
X := a[i]; 
a:il := alj]; 
a[J] := X 

end; 
f'Otnmen t If the lt and 11[ arrays contain more segments 
· to be sorted tl1en repeat the process by i-;plitting the smallest 

c,f these. If no more segnwnts rernctin the array has been 
completely sorted; 

P: m := m-1; 
if -,11 > 0 tl1<'n 

begin 
i := lt[m]; 
j := ul[m]; 
gn to N 

cn<l; 
cud 

en <l quickcrrnrl 

3. Shell Sort [Collected algorithms from CACM, 201-Pl-OJ. 

ALGORITIL\1 201 
RHELLSOHT 
J. J300THROYD 

English Elel't ric-Leo Computers, Kidsgrove, Staffs, 
England 

procedure Shcllsori (a., n); yafue n; real array a; integer n; 
commcn l a[l] through a[n] of a[l: n] are rearranged in ascending 

(J!'<ler. The method is that of D. A. Shell, (A high-speed sorting 
prncedure, Comm. ACJt 2 (H/59), 30-32) wit.h subsequences 
chnsen as suggested by T. >I. Hibberd (An empirical study of 
minimal storage sorting, SDC Report SP-\:JS2). Subsequences 
depPnd on m1 the first operative value of m. Here m1 = 2k - 1 
for 2k ~ n < 2H 1 , To impJ,,ment Shell's original choice of m 1 = 
[11/2] change the first statement, tom := .n; 

hegin integer i, j, k, m; reul w; 
for i := l el<"p i until 11 <lo m := 2 Xi - 1; 
form := m + 2 while m ~ 0 do 

hcgi n k : = n - m; 
for j := l i,;lep 1 until k do 

he g i n for i : = j s tt• p - ?II u n l i I l do 
hegi11 ifali+111J?: o!iJ tlu·n /!Oto i; 

w := ali]; ali] := 11!1+111]; uli--1111.] := w; 
end ·i; 

l : en<l j 
<"nd m 

en,I 8hcllsorl; 
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4. Straight Merge Sort [Knuth, "Sorting and Searching" (1975), pp. 164). 

Algorithm S (Strai'ght two-way merge sort). Ilecords R 1, • •• , Rv are Rorted 
using two mt'mory arens ail in Algorithm X. 

Sl. [Initialize.] Sets - 0, p - 1. (For the significance of variable;.i s, i·, j, k, 
l, d, see Algorithm K. Here p represents the size of ascending runs to be 
merged on the current pass; q and r keep track of the number of unmerged 
items in a. run.) 

S2. [Prepare for pass.] If s = 0, set i - 1, j - N, k +- N, l +- 2N + 1; if 
s = 1, set i +- N + 1, j - 2N, k +- 0, l - N + 1. Then set d - 1, 
q-p, r-p. 

S3. [Compare Ki:K;.] If K; > Ki, go to step SS. 

S-i. [Transmit R;.] Set k - k + cl, Rk - R; .. 

S5. [End of run?] Seti - i + 1, q - q - 1. If q > 0, go back to step S:3. 

S6. [Transmit Ri.] Set k +- k + d. Then if k = l, go to step S13; otherwise 
set Rk +- Rj, 

S7. [End of run?] Set j - j - 1, r-. r - 1. If r > 0, go back to step S6; 
otherwise go to S12. 

S8. [Transmit Rj,] Set k - k + cl, Rk - Ri. 

S9. [End of run?] Set j +--j-:- 1, r - r - 1. If r > 0, go back to step S3. 

S10. [Transmit Rd Set k f- k + d. Then if k = l, go to step 813; otherwise 
set Rk - Ri. 

SIL [End of run?] Seti+-- i + 1, q - q - 1. If q >. 0, go back to step S10. 

S12. [Switch sides.] Set q +- p, r +- p, d +- -d, and interchange k +--+ l. 
If j - i < p, return to step S10; otherwise return to S3. 

S13. [Switch areas.] Set p - p + p. If p < N; sets +- 1 - sand return to S2. 
Otherwise sorting is complete; if s = O, set 

I 

(The latter copying operation will be done if and only if flg Nl is odd, . 
· regardless of the distribution of the input. Therefore it is possible to ' 
predict the location of the sorted output in adv::rnce, and copying ,viii 
uRually be unnecessary.) I 



5. Tree Sort [Collected algorithms from CACM, pp. 144-Pl-O). 

ALGOHITH:.1144 
TTIEESORT 2 
AHTHUH F. IL\UPE, JR. 

Westinghouse Electric Corp., Pittsburgh, Penn. 

procedure TREESORT 2 (U.\"SORTIW, n, SON TED, k, ordered); 
,·aluc II, k; 

integer 711 k; array UNSORTED, SORTED; Boolean proce• 
dure nrdere.d; 

comment TREESORT 2 is a generalized version of TREESORT 
1. The Boolean procedure ordered is to have two real argu­
ments. The array SORTED will have the property that ordered 
(SORTED[1'.], SOR'l'ED[j]) is true when i > i if ordeted is a 
linear order relation; 

begin intcge1· i, i; array ml [1:2Xn-1); integer array m2 
[I:2Xn-l); 

procedure minimum; if ordered (m1[2Xi), m1[2Xi+l]) then 
begin ml[i]: = m1[2Xi'.]; m2[i]: = m2[2Xi] end else 
begin ml[i] : = m1[2Xi+l]; iri2[i] : = m2[2Xi+IJ end mini­

mum; 
for i: = n step 1 until 2 X n - 1 do begin ml[i]: = UNSORTED 

[i-n+l]; 1n2[i] : = i end 
for i : = n - 1 step -1 until 1 do mini'.mum; 
for j : = 1 step 1 until k do 

begin SORTED[;]:= ml[l]; i := m2[1]; ml[i] := infinity; 
for i : = i + 2 while?'. > 0 do minimum end 

end 'l'REESORT 2 
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6. Heap Sort [Knuth, "Sorting and Searching" (1975), pp. 146-147]. 

Algorithm H (Heapsorl). Records R 1, ••• , Rx nre rearrnnp;ed in plttce; nfter 
·sorting is complete, their keys will be in order, K 1 ~ • • • ;;; K,,·. First we 
rearrange the file so that it forms a he[tp, then we repeatedly remove the top 
of the heu.p and transfer it to its proper final position. Assume that N ~ 2. 

HI. [Initialize.] Set l - LN /2J + 1, r - N. 

H2. [Decrea8e l or r.] If l > 1, set l - l - 1, R - Rt, K - K 1• (If l > 1, we 
are in the process of transforming the input file into a hea.p; on the other 
hand if l = 1, the keys K 1K 2 ••• Kr presently constitute a heap.) 
Otherwise set R - Rr, K - Kr, Rr t-- R1, and r - r - 1; if this makei! 
r = 1, set R 1 - Rand termina.te the algorithm. 

H3. [Prepare for "sift-up."] Set j - l. (At this point we have 

for l < Lk/2J < k _s; r; (O) 

and record R1; is in its final position for r < k ~ N. Steps H3-H.'-, are 
called the ''sift-up" algorithm; their effect is equivalent to settirig R1 - R 
nnd then renrrnnging Rt, ... , R, so thnt condition (G) holds also for 
Lk/2J = l.) 

JU. [Advance downward.] Set i - .i and j - 2j. (In the followiJJg steps we 
l1ave i = U/2J.) If j < r, p;o right 011 to step H5; if j = r, p;o to st<'p HG; 
and if .i > r, go to HS. 

H5. [Find "lurg-er" son.] If K; < Ki+ 1, thrn set}-,;+ I. 

. H6. [Larger than K?] If K 2:'.: Ki, then go to step HS. 

H7. [::\Iove it up.] Set R; - R;, and go back to step.H4. 

H8. [Store R.J Set R; - R. (This terminates the "sift-up" algorithm initiated· 
in step Jr:3.) Return to step H2. I 
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New Sorting Algorithm 

PROCEDURE NEW (A, N); VALUE N; 

AR RAY A CN + l J , B (NJ , C ( N / 3 J ; 

APPENDIX B 
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COMMENT - AlN) contains source input when this procedure is called, 

and returns sorted list through this array. 

B(N) contains sorted elements from source input, 

C(N/3) contains unsorted adjacent element pairs; 

INTEGER INDl, IND2, JNDl, JND2, I; N; 

COMMENT -

INDl is index for B-array at first stage, 

IND2 is index for C-array at first stage, 

JNDl is index for B-array when merged, 

JND2 is index for C-array when merged; 

INDl+IND2+O; 

A (N+ l) +infinity; 

For I= l STEP l UNTIL N 

If A(IJ ~ A (J + 1) 

THEN INDl+INDl+l; 

B ( I ND 1 J +A [ I J ; 
ELSE IND2+IND2+2; 

C UND2-l )+A [I+ l); 

C [I ND2}+A (I] ; 

I= I+l; 

WHILE AND (I NDl>O, B( INDl] >AU+ 1 J, I ~N) DO 



IND2+IND2+2; 

C (IND 2 J +B ( IND l J ; 
C [IND 2-1) +A [I+ l) ; 

INDl+INDl-1; 

I+I+l; 

ENDWHILE; 

END IF; 

END FOR; 
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COMMENT: At this point, all elements in B-array are in order and those in the 

C-array is not. So only sort C-array by Quicker Sort and then merge B- and 
C-array into A-array. 
CALL QUICKER (C, IND2); 
JND1~ND2+1; 

FOR I= 1 STEP 1 UNTIL N 

IF B[JNDlj2:_C(JND2J 

THEN 

A II J+C [JND2J; 

JND2+JND2+ 1; 

IF JND2>IND2 

ELSE 

THEN 

FOR I = I +l STEP 1 UNTIL N 

JNDl+JNDi+l; 

A[I) +B(JNDlJ; 

ENDFOR; 

ENDIF; 

AU)+B(JNDl); 

JNDl t-JNDl + 1 ; 



IF JNDl>INDl 

THEN 

FOR I= I+l STEP l UNTIL N 

JND2+JND2+ l ; 

A[ IJ +C [JND2J ; 

ENDFOR; 

END IF; 

END IF; 

END FOR; 

END PROCEDURE; 
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