
Best Sorting Algorithm for

Nearly Sorted Lists

Computer Science Department

Do Jin Kim

26 July 1978

I. INTRODUCTION

Many different sorting algorithms have been developed [l], and no

one sorting algorithm is best for every case; in other words, each

algorithm has its own advantages and disadvantages depending upon the

environment in which it is applied as well as the characteristics of the

list to be sorted.

When programmer effort is not a consideration, Martin [2) pointed

out that the choice of method depends on:

(a) the length of the list to be sorted;

(b) the relation between the length of the list and the number

of cells in the main memory of the machine used for sorting;

(c) the number and the size of any disk/tape used in sorting;

(d) the extent to which the elements are already in sorted

order; and

(e) the distribution of the values of the elements.

Usually factor (d) above is neglected as the efficiency of a sorting

algorithm is usually based on its performance on uniformly distributed

random lists. However, the sortedness of the original list definitely

affects the efficienty of some sorting algorithms.

The purpose of this paper is to explore (d) above in an attempt

to discover the 11best 11 sorting algorithm for 11nearly 11 sorted lists, which

are encountered quite often in real practice.

11Best11 sorting algorithm can be interpreted in different ways depend

ing upon what is considered to be most important. Chapter II discusses

several possible interpretations, and gives the definition of 11best 11 used

in this paper.

2

As for "nearly" sorted lists, there is no commonly accepted measure

for the orderedness of an input list and a simple, easily defined mea

sure for "nearly" sorted list is elusive. Furthermore, it should be

noted that the performance of a sorting algorithm is continuous on the

ordering of the input list. In other words, sorting algorithms sort the

unordered lists almost the same way (no. of steps) regardless of the small

changes on input lists. This may explain the absence of the measures

for the sortedness and the difficulty in defining the sortedness.

Much of the effort in this paper has been devoted to defining and

proposing measures for the sortedness. In Chapter III, two measures

are carefully developed and precisely defined.

We also define the "nearly" sorted region by those two measures.

In Chapter IV, several sorting algorithms are compared on "nearly"

sorted lists. The sorting algorithms compared in this paper are Straight

Insertion Sort, Tree Sort, Quicker Sort, Straight Merge Sort, Shell Sort,

and Heap Sort. Descriptions for each algorithm are given in Appendix A.

We chose these sorting algorithms because they either take into

account the sortedness of the input list or are known to be fairly fast

on random input lists.

The names of sorting algorithms are not consistent between some

books or papers. This paper will use the names given in Knuth [l]. For

example, Straight Insertion Sort in Knuth is called the Bubble Sort in

some papers [2, 7].

Straight Insertion Sort and Quicker Sort performed best on nearly

sorted lists. The Straight Insertion Sort performed best on very nearly

sorted or small lists and the Quicker Sort performed best on the remain

ing cases of nearly sorted lists.

3

In addition, a New Sorting Algorithm which is a combination of

Quicker Sort and Merge Sort, is developed especially for nearly sorted

list and ·is shown to perform as well as the Straight Insertion Sort and

Quicker Sort. As a consequence, New Sorting Algorithm is the best sort

ing algorithm on the nearly sorted list.

Chapter V summarizes the paper and suggests several possible exten

sions of the work.

4

II. BEST SORTING ALGORITHM

The commonly used measures for the "best" sorting algorithm are

Storage Requirements and Average Number of Comparisons [8). Computer

execution time is also used in some papers (3).

In this paper, we will not consider the storage requirement, so

the 11best 11 sorting algorithm is the "fastest" algorithm.

Computer execution time seems to be the simplest and most reasonable

measure for comparing the sorting algorithms. However, computer execution

time depends upon the programming technique, programming languages used

and the computer system environment.

Furthermore, it is practically difficult to obtain very accurate

computer execution times, and execution times cannot be compared unless

the size of input is very large.

For example, CYBER system gives CPU time accurate to two decimal

digits and most sorting algorithm can sort the list with 50 elements in

0.01 seconds.

The number of comparisons needed to sort an unordered list is called

the II sort effort" (8) and generally provides a good measure. However,

when a list is sorted, exchanges between elements in the list take longer

than the comparisons on typical computer systems, and some sorting algorithms

can sort the unordered list with extensive exchanges but with a small num

ber of comparisons and vice versa.

Therefore, the number of exchanges should be considered along with

the number of comparisons, when computing the sorting effort. In this

paper, each sorting algorithm is compared by the number of comparisons,

moves and exchanges between the elements in the list when it is sorted.

5

Any effort spent in bookkeeping, such as keeping track of the pointers

or doing simple arithmetics involved in the sorting process will not be

considered here.

Although this measure is not perfect, it seems to be the best compro

mise between simplicity and accuracy.

Furthermore, there exists no one absolutely best measure in comparing

the sorting algorithms, but the results can be useful despite what appears

to be overly simplified computational models [4].

We also need to assign a weight to exchange, move and comparison.

Due to potential complexity, it is not possible to obtain an exact ratio,

and there can be many possible ratios depending upon the computer system.·

Assuming a typical computer system, we adpoted the ratio of (2:2:l).

In other words, two comparisons, two moves and one exchange are equivalent

to one another. Then we can get a weighted value as follows:

Weighted Value

= (no. of comparisons) x 2 + (no. of moves) x 2 + (no. of exchanges)

Thus, a "best" sorting algorithm is the one whose weighted value is

smallest.

6

III. NEARLY SORTED LIST

A. Intuitive Definition and Examples.

Intuitively, the number of elements which are not in order and how

far the unsorted elements are out of order are good measures for the

unsortedness of a list.

A list which has a small number of unsorted elements and whose

unsorted elements are not too far from their proper positions would be

called 11nearly 11 sorted.

In this section, we will explore the meaning of the terms used in

our intuitive definition of nearly sorted list.

First, the number of sorted (or unsorted) elements should be counted

by the relative order in the list rather than by their absolute positions.

In the list (2, 3, 4, 5, 6, l, 7), for instance, only one element (7)

is in its proper sorted position, however, we will consider only one

element (l) is out of relative order and the other six elements (2, 3, 4,

5, 6, 7) a re in order. From now on, 11 order 11 denotes· the II relative order"

unless otherwise specified.

Which elements are not in order is ambiguous in general, since there

can be several relatively ordered, overlapping sublists as can be seen in

the list (6, 2, l, 3, 5, 4, 7). Some of their sublists are (6, 7), (2, 3,

5, 7), and (2, 3, 4, 7).

Furthermore, counting the number of unsorted elements is not unique

either.

For example, in the list (4, 5, l, 2, 3, 6, 7), the number of unsorted

elements is two (4, 5) or three (1, 2, 3) depending upon which elements

are considered as not being in order.

7

Therefore, we assume that the number of unsorted elements for a given

list means the minimum number of elements which should be removed from

the list to make the remainder of it be completely sorted. Then the number

of unsorted elements in the list (4, 5, 1, 2, 3, 6, 7) is two and the

unsorted elements are 4 and 5.

Then the number of unsorted elements in the list is always unique,

although the selection of the unsorted elements may not be unique. For

example, possible selections of unsorted elements for the list (6, 2, l,

3, 5, 4, 7) above could be (6, 2, 5), (6, 2, 4), (6, l, 5) and (6, l, 4),

however, the (minimum) number of unsorted elements is always 3.

We have clarified the meaning of the number of unsorted elements,

however, the distribution of the unsorted elements cannot be defined

without employing the mathematical tools: permutation, inversion, and

inversion table, which are introduced in the next few sections.

Furthermore, counting the number of unsorted elements by hand is im

practical and no algorithm can be easily implemented on computer to count

that number. So an algorithm for counting the number of unsorted elements

is also developed later in this chapter.

B. Permutations and Inversion.

A sequence of n numbers is called a permutation if it consists of

only integers l through n, i.e., a permutation p = {l, 2, 3, ... n}.

If the elements in the permutation are in ascending order, i.e.,

p = (1, 2, 3, ... n), then it is called an identity permutation.

It is easy to see that any list can be related to a permutation by

associating the smallest number with 1, second smallest with 2, etc., if

considering ascending order and the reverse if descending order.

8

For example, the list (4.1, 2.7, 6, 9.85, 0, -2.2) corresponds to

the permutation (4, 3, 5, 6, 2, 1).

Here we assume that no elements in the list are repeated and all

lists are to be sorted in ascending order.

For a given permutation, P;

P = {ai I ai = l, 2, 3, ... n}

If i<j and ai>aj, then the pair (ai' aj) is called an inversion.

For example, P = (4, 3, 1, 2, 7, 6, 5) has eight inversions:

(4, 3), (4, 1), (4, 2), (3, 1), (3, 2), (7, 6), (7, 5), (6, 5).

If there is no inversion in P, then Pis the identity permutation.

So sorting can be thought of as a process of removing the inversions from

the corresponding permutation derived from a given list.

C. Inversion Table.

The Inversion Table b1, b2, ... bn of the permutation a1, a2, ... an

is obtained by letting bj be the number of elements to the left of j that

are greater than j(l); bj is the number of ai's where

(ai' 12.i<j) f\ (j<ai) for all l2.j2.n.

For example, if

P = (4, 3, l, 2, 7, 6, 5)

then IV= (2, 2, 1, 0, 2, 1,0).

For l in ·,P, there are two elements, 4, 3 in P which are bigger than l and

to the left of 1, so the first element in IV is 2 (b1 = 2), for 2 in P,

there are two elements (b2 = 2), 4, 3, which are bigger than 2 and to the

left of 2, and for 3 in P, only one elent (b3 = l), 4, and for 4 in P,

there is no element (b4 = 0) in P which is bigger than 4 and to the left

of 4, and so on.

Note that the last element of Inversion Table (bn) is always 0,

since no element in p can be bigger. than the number of elements (n).

There are some very important and interesting properties in

Inversion Table.

9

First of all, there is a one-to-one correspondence between per

mutations and Inversion Tables. This fact, discovered by Hall (5) and

Knuth (.lJ gives an algorithm for constructing a permutation from an

inversion table, and we will give an example to illustrate the algorithm.

For

IV= (2, 2, l, 0, 2, l, 0),

starting from the rightmost and going backwards, place the corresponding

element into its proper position to satisfy that the number of bigger

elements to the left is identical to the value in Inversion Table (Fig.

Figure l

Corresponding
elements in IV
permutation (backwards) Permutation Comment

7 0 7 7 is biggest

6 l 7 6 7>6 ... l

5 2 7 6 5 7>6 6>5 ...

4 0 4 7 6 5
3 l 4 3 7 6 5 4>3 ... l

2 2 4 3 2 7 6 5 4>2 3>2

l 2 4 3 l 2 7 6 5 4>1 3>1

We can easily see that the final permutation obtained from IV is

identical to the original P.

Another interesting property of the Inversion Table is that each

l).

2.

0

2

2

0

10

element indicates the number of interchanges between two adjacent elements

needed to place the corresponding element in the original permutation in

its proper position.

Using the Inversion Table (2, 2, l, 0, 2, l, 0), the first element 2

in IV says that l in P can be in its proper position (i.e. leftmost)

after two interchanges, and Fig. 2 shows the relationship between the

number of interchanges and the values of elements in Inversion Table as

interchanges (indicated by arrows) are done.

Figure 2

p = ~l, 2, 7, 6, 5) IV = @2 , l , 0 , 2 , 1 , 0)
~ 7, S) Iv1 (0 ,@1 , 0, 2, l , 0) P1 = (l, 4, 3, 2, 6, =

(l '
~ 7, 6, 5) IV2 (o, o,G)o, 2, 1, o) P2 = 2, 4, 3, =

P3 = (1 ' 2, 3, ~ 4,7,6,5) IV3 = (0, o, 0, o,@1, o)

(1 ' 2, 3, 4, ~ IV = (0, 0, 0, 0, o,G)o) P4 = 5, 7, 6) 4

P5 = (l ' 2, 3, 4, 5, 6, 7) IV = 5 (0, 0 0, 0, 0, 0, 0)

Also, the sum of each element in Inversion Table is equal to the

total number of inversions in the given permutation, and also is equal

to the total number of interchanges of adjacent elements to form the

identity permutation.

For example, the sum is 8 (2 + 2 + 1 + 0 + 2 + l + 0 = 8) for the

inversion table of the list (4, 3, 1, 2, 7, 6, 5), and that is the number

of inversions as shown in the beginning of this section and it becomes

identity permutation.

D. "HOW-MANY''.

From the previous section on Inversion Tables, it follows that a

non-zero element in IV indicates that its corresponding element in Pis

11

not in order, and if all elements in P, whose corresponding elements in

IV are non-zero, are removed from P, then obviously it will yield a

completely sorted subset of the permutation.

e.g. P = (2, 3, 4, 5, l, 6, 7)

IV = (4, 0, 0, 0, 0, 0, 0)

There is only one non-zero element in IV, and if we eliminate the corres

ponding l in P, then Pis in order.

This method seems quite easy and natural, however, this does not

guarantee the minimum number as shown by the following example:

e.g. P = (7, l, 2, 3, 4, 5, 6)

IV= (l, l, l, l, l, l, 0)

There are six non-zero elements in IV, but the minimum number of elements

to be removed from Pis only one, 7, instead of six elements.

Recall that there are two cases when an element is out of order,

i.e., one is when a small number is placed to the right from its proper

position as shown in the first example of this section, and the other

is when a big number is placed to the left from its proper position as in

the second example.

Considering the two cases, we come up with an algorithm which uses

the Inversion Table to count the minimum number of unsorted elements

in the list, i.e., the minimum number to be removed from the permutation

to make it completely sorted.

Algorithm l: Count the number of unsorted elements.

(l) First step:

Divide Inverison Table into subgroups of consecutive entries,

whose first element is non-zero, but each subgroup should

end with at least one zero. The number of zeros that should

follow at the last portion of the subgroup is given

by:

no. of non-zero
Min {elements in subgroup,

value of last non-zero}
element in subgroup

and zeros not included in subgroups can be completely neglected since

the corresponding elements in Bare in order and not affected by the

unsorted elements in subgroups.

12

Recall again that the former part of the formula represent the case

as shown in the first example in this section, i.e., small numbers should

be removed from the list, while the latter represents the second case.

e.g. IV = (l l l 3 0 0 0 3 2 l O 2 2 2 2 0 0 5 0 0 l O 0)

would be divided into 5 subgroups: (l l l 3 0 0 0), (3 2 l 0), (2 2 2 2 0 0),

(5 0) 0, (l 0) 0, and 20th and 23rd elements (zeros) are omitted as indi-

cated in the algorithm. The number of trailing zeros in each subgroup was

calculated by applying the formula, i . e:

(2)

For the 1st subgroup min {4, 3} = 3

2nd subgroup min {3, l} =

3rd subgroup min {4, 2} = 2

4th subgroup min {l' 5} = l

5th subgroup min {l' l} =

Second Step:

For each subgroup, if the number of non-zero elements is·

less than the largest element in the ;th subgroup,

then: the minimum number of elements to be removed from ; th

subgroup is equal to the number of non-zero elements and we

d . th . th are one w, 1 group.

otherwise; subtract l from each non-zero element in ; th

subgroup and go back to First Step unless every element in

. th b . . h. h d . th . th 1 su group 1s zero, 1n w 1c case we are one w, 1

subgroup. Whenever this process is executed, it also in

creases the number of elements to be removed by one

(n. = n. + 1).
l l

13

This algorithm ends in either process of Second Step and the total
k

number of the unsorted elements in the list is n = ~ n., where k is the
n=l 1

total number of subgroups.

e.g.,

Applying the above algorithm on IV:

IV= (1 l 1 3 0 0 0 3 2 1 0 2 2 2 2 0 0 5 0 0 1 0 0),

we will show how to find the minimum number of elements to be eliminated.

As mentioned earlier, we come up with five subgroups. And for each

subgroup:

For (1 1 1 3 0 0 0):

a) no. of non-zero element (4)>largest element (3).

b) n1 = 0 + = 1.

c) subtract from each non-zero element, then we get

(0, 0, 0, 2, 0, 0, 0).

d) it forms only one subgroup (2, 0).

e) no. of non-zero element (l)<largest element (2).

.-.nl = 1 + l = 2 .

For (3, 2, 1, 0):

a) no. of non-zero element (3) = largest element (3).

b) n2 = 0 + 1 = l.

c) subtract 1 from each non-zero element, then we get

(2, 1, 0, 0).

d) neglect last zero, and we get (2, 1, 0).

e) no. of non-zero element (2) = largest element (2).

f) n2 = l + l = 2.

g) subtract from each non-zero element, then we get

(l, 0, 0).

h) neglect last zero, and we get (l, 0).

i) no. of non-zero element (l) = largest element (1).

j) n2 ~.2 + = 3.

k) subtract from the non-zero element, then all elements

are zero, and we are done

n = 3. :. 2

For (2, 2, 2, 2, 0, 0,):

a) no. of non-zero element (4)>largest element (2).

b) n3 = 0 + l = l.

c) subtract from each non-zero element, then we get

(l, l, l, l, 0, 0).

d) it forms only one subgroup (l, l, l, l, 0).

e) no. of non-zero element (4)>largest element (1).

f) n
3

= l + l = 2.

14 ·

g) subtract from each non-zero element, then we get (0, 0, 0, 0, 0).

therefore done.

:.n3 = 2.

For (5,0):

a) no. of non-zero element (l)<largest element (5)

:. n4 = l .

For (l,0):

a) no. of non-zero element (l) = largest element (l)

:.n5 = l .

15

= 2 + 3 + 2 + l + l = 9

We can check this value directly from the corresponding permutation, i.e.,

p = @1, 2, 3, 6, 7,011, ~ 12, 13, 14, 15, 19,

20, 22,@ 23,@,

and elements with circles should be removed to make P completely ordered.

Suppose Algorithm l gives the number of unsorted elements, k. Since

we wi 11 represent the II HOW-MANY" by the ratio of the unsorted elements

to the total number of elements in permutation:

II HOW-MANY" k - -
n

where n is the total number of elements.

If a permutation is an identity, 11HOW-MANY11 becomes 0, and for a com

pletely out-of-ordered permutation, 11 HOW-MANY" wi 11 approach to l, and

if half of the elements are unsorted, its value will be around 0.5. Thus

this ratio seems to coincide with our intuition.

16

E. "HOW FAR".

"HOW-FAR" is the ratio of total number of inversions to the average

number of inversions for a given number of unsorted elements, and will

be derived as follows:

Suppose there are n elements in a permutation, and only one element

is out of order. Then the element can be placed in the ; th position

with the probability¼, and the probability that j th position is in its

proper place is also*·

The expected number of transfers that an unsorted element should

move to be in its proper place is

n
E

i=l
i(n-i) = (n+ 1) (n-1)

3n

If there are k unsorted elements in the list, the expected number

of transfers becomes

~ (n-i (n-i+2)
. l 3 n-i+l ,=

k
and we can approximate the value, since E (n-i+l) is much bigger than

i=l
k l
E (n-i+l) ' i=l

i.e. ,

~ (n-i)(n-i+2)
3(n-i+l) i=l

l k l ~ l k
= - (E (n-i+l) - E .) = - E (n-i+l)

3 i=l i=l(n-1+1) 3 i=l

= l (nk + k - k (k+ l))
3 2

17

· SUM IV
Therefore, 11HOW-FAR11 would be defined as 1

3 (nk + k - k (~+ l)) '

however, we divide it by 3 to make its range between O and 1, i.e.,

11Hm~-FAR11

where SUM1v is the sum of corresponding inversion table elements.

When k = 0, i.e., identity permutation, 11HOW-FAR11 becomes g and

undefined, but we will assume it to be Oto make 11HOW-FAR11 be continuous

for all possible k values.

We will derive the upper limit of 11HOW-FAR11 as follows:

For given k number of unsorted elements, maximum value of SUMIV is

() () ((2n-k-l)k n-1 + n-2 +---+ n-.k)= 2 •

Thus, upper bound of 11HOW-FAR11

k (2n - k - 1)
2 = --------:----.-.------.--..- =

nk + k - k (k + 1)
2

~ l (assumed¼= 0).

k l (2 - - - -) n n
k l 2--+-n n

Notice that both 11HOW-MANY11 and 11HOvJ-FAR11 are defined between O and 1.

Then we define the 11nearly 11 sorted region on the graph in terms of

11HOW-MANY11 and 11HOL~-FAR11 as in Fig. 3.

If both 11HOW-FAR11 and 11HOW-MANY11 are very sma 11, undoubtedly the 1 i st

is nearly sorted.

We s hou 1 d a 1 so add that if the II HOW-MANY II is very sma 11 , then the

list is also nearly sorted regardless of the value of 11HOW-FAR11 , i.e.,

if 11HOL~-MANY11 of a list is around 0.05, it will be called nearly sorted

regardless of the 11HOW-FAR.11

18

For other extreme cases, a list is also called nearly sorted with
11HOW-MANY11 around 0.15, if 11HOW-FAR11 is less than or equal to 0.33.

Figure 3

Nearly Sorted Region

11HOW-MANY11

l
Y = 20x

0 0.2 0.33 0.4 0.6
11HOW-FAR11

0.8 1.0

IV. TEST RESULT

A. Tested Sorting Algorithms.

Testing was performed on CYBER system. The sorting algorithms

tested were:

(1) Straight Insertion Sort

(2) Quicker Sort

(3) Shell Sort

. (4) Straight Merge Sort

(5) Tree Sort

(6) Heap Sort

19

Two well-known sorting algorithms, Bubble Sort and Quick Sort, were

not included for comparison. Because Bubble Sort as defined in Knuth [l]

requires too many unnecessary comparisons between elements. Some modi

fied Bubble Sorts have been developed, however, none of these require

ments leads to an algorithm better than Straight Insertion Sort [l].

Quick Sort is replaced by Quicker Sort, since the middle element is

usually an excellent choice, especially if the input list is nearly

sorted and it can split the list into two halves of equal size [3].

Furthermore, it has been empirically determined that Quicker Sort is

the fastest sorting technique on most machines [8].

B. Test Set-up and Results.

"HOH-FAR" as defined in Chapter III affects the performance of some

soritng algorithms, however, the effect of 11H01i!-FAR11 was not tested in

this paper due to the substantial execution time required.

As commented in Introduction, the length of the input list also

affects the efficiency of sorting algorithms. Hence, nearly sorted list

with various "HOW-MANY" values and of various lengths were tested.

20

Input test data was created as follows: an identity permutation

of desired size (50, 200, 500, 1000 and 2000) was rearranged by random

number generator to obtain the desired 11HOW-MANY11 values, which were

0.0 (in order), 0.02 (2% out of order), 0.05, 0.10 and 0.15. As men

tioned, 11HOW-FAR11 was not considered, and actual "HOW-FAR" values for

tested lists were around 0.3.

Computer programs were written in FORTRAN for each sorting algorithm.

Any programming language will give the same results, since we only count

the number of comparisons, moves and exchanges.

After running the program for input generated, we obtained weighted

values from the number of comparisons, moves and exthanges as defined

in Chapter II. Entries for Table l are the weighted values divided by

the length of lists. With these values, it is easier to compare the lists

of different sizes.

Performance of Straight Insertion Sort, Shell Sort and Quicker Sort

are summarized in Fig. 4, Fig. 5 and Fig. 6, respectively. Some more

variations of "HOW-MANY" (0.01, 0.03, 0.08, 0.12) and the length (100)

were added to draw those graphs.

Performances of all sorting algorithms are depicted in Fig. 7.

As the results of a sequence of tests indicate, the Straight Merge

Sort, Tree Sort and Heap Sort do not take into account the sortedness

of the input list. In other words, they spent almost the same effort

in sorting the unsorted lists, regardless of the unorderedness of the

input lists.

Straight Merge Sort is better than Tree Sort and Heap Sort, however,

it is far from being selected as the best sorting algorithm on nearly

sorted list.

21

Table l

No. of

Sorting
Elements

Algorithm HOW-MANY 50 200 500 1000 2000
0.0 2.94 2.99 2.99 3.0 3.0

Straight 0.02 3.56 5. 12 9 .13 16.47 26. 77
Insertion 0.05 5.34 12. 72 18.36 32. 71 91.65

0.10 6.78 13. 90 31.24 70.06 124.77
0. 15 5.34 19.53 49.37 130.30 173.60

0.0 6.32 7.57 10.43 11.20 12.34
0.02 6.72 8.42 10.25 12.05 14.08

Quicker 0.05 6.41 8.87 11.11 12.58 13. 77
0.10 6.70 9.32 11. 21 13.84 14. 01
0. 15 7.26 l 0. 01 12. 51 13. 51 14.0

0.0 5.06 6.01 7. 01 8.0 9.0
0.02 5.30 9.50 14.20 15 .46 18.57

Shell 0.05 6.52 12.78 15. 31 18.65 22.72
0.10 8.38 13.69 16.82 21.97 24.38
0. 15 8. 72 15.62 16.63 22.72 25.92

0.0 10.50 14.0 16. 95 17.70
Straight 0.02 10.50 14.05 17.20 18.06 20.92
Merge 0.05 10.52 14.44 17. 28 18 .14 21 .02

0. 10 10.64 14.47 17. 31 18.24 21. 22
0. 15 10.58 14.56 17.43 18.32 21. 37

0.0 15.38 19.43 21.95 24.95 25.95
0.02 15.38 19.43 21.95 24.95 25.95

Tree 0.05 15.38 19.43 21.95 24.95 25.95
0.10 15. 38 19.43 21.95 24.95 25.95
0. 15 15.38 19.43 21.95 24.95 25.95

0.0 17.04 23.32 26.22 29.25 32.23
0.02 16.64 23.27 27. 17 30.22 33.20

Heap 0.05 17.02 23. 14 24. 77 30.16 33.26
0.10 16.76 22.23 26.90 30.57 33.24
0.15 16.82 22.34 26.54 29.94 32.66

Weighted value/
no. of elements

24

20

16

12

8

4

Figure 4

Straight Insertion Sort

15%

3%

1%

--------·---------------0%

50 100 200 500 1000 2000

22

no. of
elements

Weighted value/ ·
no. of elements

28

24

20

16

12

8

4 -

50

Figure 5

Shell Sort

200 500 1000 2000

23

no. of
elements

Weighted value/
no. of elements

20

16

12

8

4

Figure 6

Quicker Sort

2%
1%

0%

24

"------'-------'------'------J.__-----L------1.-- no. of
50 100 200 500 1000 2000

elements

Wefghted Value/
no. of elements

32

28

24

20

16

12

8

4

· 50

Figure 7

Comparison of Sorting Algorithms
Straight Insertion
(l 0%)

25

Straight Insertion
(2%)
Tree
Shell (l 01~)

Straight Merge

Shell (2%)

Quicker

------New Sorting Algorithm
----- (l 0%)

200 500 2000

no. of
elements

26

Meanwhile, Straight Insertion Sort and Shell Sort are greatly affected

by the sortedness of input and are very good for very nearly sorted and

small size lists. But the efficiency of both of these sorting algorithms

decrease rapidly as the size of input increases. Thus, both sorting

algorithms are not only recommended for small sized nearly sorted lists

whose number of elements are less than or equal to 200, or very nearly

sorted lists (2% or less out of order). Recall that Straight Insertion

Sort does not require any overhead and is simple to program. So it would

be better to use Straight Insertion Sort.

Overall performance of Quicker Sort is very good. The efficiency

of Quicker Sort is a little affected by the sortedness of the input

list, however, it is best when the size of input list is big.

Best sorting algorithm regions on nearly sorted lists is shown in

Fig. 8 in terms of the size of input lists and 11HOW-MANY.11

In addition to the six sorting algorithms listed in the previous

section, extra tests were performed on modified versions of sorting

algorithms: combination of Quicker Sort and Straight Insertion Sort,

and the Revised Heap Sort, without any noticeable improvement.

It is empirically proven by Singleton [7] that Straight Insertion

is the best sorting algorithm when the number of elements in the list

to be sorted is less than or equal to 11.

And as mentioned, Quicker Sort is very fast. But it can be improved

by combining it with Straight Insertion Sort. In other words, apply

Quicker Sort to sort the list, and whenever the number of elements in

the subgroup is less than or equal to 11, apply Straight Insertion to

sort that subgroup elements.

This method was tried on nearly sorted lists, but it only improved

Quicker Sort slightly.

"HOW-MANY"

0.20

0. 16

0.12

0.08

0.04

Figure 8

Best Sorting Algorithm
(Straight Insertion Sort vs. Quicker Sort)

Straight Insertion
Sort

Quicker Sort

27

no. of _L ____ _L.......,; ___ -1.. ____ --.1. ____ __,lL.- ____ .__ ____ ..,_ __ elements

50 l 00 200 500 l 000 2000

28

As for Revised Heap Sort, we reversed the definition of Heap. In

other words, a sequence of keys K1 , K2, . . . Kn forms a II reversed

heap" if K .Lj/?_12-Kj for l 2- Lj/~(j_~_n. Then the smallest key appears

on the top of the reversed heap. When the input list is nearly sorted,

this method requires much fewer exchanges than the original Heap Sort

does. However, the Reversed Heap Sort has almost the same number of

comparisons as Heap Sort, and hard to be considered as best sorting

algorithm on nearly sorted lists.

So even the Reversed Heap Sort cannot compete against Straight

Insertion Sort or Quicker Sort on nearly sorted list.

C. New Sorting Algorithm.

A new sorting algorithm was developed especially for nearly sorted

list.

It is a combination of Quicker Sort and Merge Sort. Basically

it scans the source list and selects the already sorted elements, and

stores them in an array. The remaining unsorted elements and the elements

which are not known whether they are in order or not at scanning time are

stored in another array.

We sort only this array by applying Quicker Sort, then we have

two arrays whose elements are all in order in each array.

Hence we can merge them together to have a completely sorted list.

Complete New Sorting Algorithm is given in Appendix B, written in

hypothetical structured programming language. And test results are

shown in Table 2. Performance of New Sorting Algorithm for selected

11HOW-MANY11 (0.02, 0.10) was depicted in Fig. 7 for comparison purposes.

As we can see in Fig. 7, New Sorting Algorithm is very fast and stable

as the size of input lists grows, while most of the other sorting

29

algorithms are seriously affected by the size of input lists and perfor

mances are drastically dropped.

New Sorting Algorithm is, at worst, almost as fast as Quicker Sort

and fully takes advantage of the sortedness of the input list. From

Fig. 7, it looks substantially better than Quicker Sort for 200 or more

elements, and New Sorting Algorithm is recommended on nearly sorted lists,

especially if the size of input is large (more than 1000).

30

Table 2. New Sorting Algorithm.

No. of
New Elements

Sorting
Algorithm HOW-MANY 50 100 200 500 1000 2000

0.0 3.0 3.0 3.0 3.0 3.0 3.0
0.01 3.78 3.73 3.96 4.02 4.13
0.02 3.78 3.83 3.97 4.21 4. 31 4.34
0.03 3.94 3.97 4. 21 4.38 4.47
0.05 3.90 4.52 4.56 4.73 4.92 5.02
0.08 3.92 4.82 5.08 5.45 5.51
0.10 3.90 4.95 5.31 5.72 6.26 6.22
0. 12 3.98 5.48 5.61 6.40 6.37
0. 15 3.90 5.85 6.07 6.97 7.06 7.48

31

V. SUMMARY

In this paper, two measures, "HOW-MANY" and 11HOW-FAR,11 were defined

to represent the orderedness of a list and nearly sorted region suggested

by those two measures.

This paper compared the performance of several sorting algorithms

on nearly sorted lists. Straight Insertion Sort performed best on very

nearly sorted lists or small lists and Quicker Sort performed best on

the remaining cases of nearly sorted lists, when New Sorting Algorithm

was not considered.

New Sorting Algorithm which is developed in this paper for nearly

sorted list performed as well as or better than any other sorting

algorithm. In terms of computer execution time, New Sorting Algorithm

took only one-half to one-third as much time as Quicker Sort on nearly

sorted lists with 1000 or more elements.

Some topics were left for further investigation. 11HOl~-FAR,11 which

has a great effect on the efficiency of Straight Insertion Sort, and

possible affects the efficiency of other sorting algorithms, was not

considered in the test results in this paper.

Repeated elements in the list were not allowed, and some modifica

tions on permutation may be necessary to take care of such cases.

Finally, a better sorting algorithm than the one developed in this

paper may be possible on nearly sorted list and other measures of nearly

sorted list may be defined and investigated.

32

REFERENCES I

(l) KNUTH, D. E. 11 Sorting and Searching. 11 The Art of Computer Programing,
Vol. 3, Addison-Wesley, 1975.

(2) MARTIN, W.A. "Sorting." Computing Survey, Vol. 3, No. 4, Dec. 1971.

(3) SCOWEN, R.S. "Algorithm 271: Quicker Sort." CACM 8, 11 (Nov. 1965).

(4) WEIDE, B. "A Survey of Analysis Techniques for Discrete Algorithms."
Computing Survey, Vol. 9, Dec. 1977.

(5) HALL, M. Proc. Symp. Applied Math. 6, American Math. Society, 1956.

(6) NIVAT, P. "Sorting of Permutation." PERMUTATIONS, Actes du Colloque,
Paris, Juillet. 1972.

(7) SINGLETON, R.C. "Algorithm 347: An Efficient Algorithm for Sorting
with Minimal Storage." CACM 12, 3 (March 1969).

(8) LEWIS, T.G. "Applying Data Structure." Houghton-Mifflin, 1976.

(9) BOOTHROYD, J. 11 Algorithm 201 : She 11 Sort. 11 CACM 8, 6. Aug. 1963.

(10) KAUPE, A.F. "Algorithm 144: Tree Sort 2. 11 CACM 5, 12. Dec. 1962.

33

APPENDIX A

1. Straight Insertion Sort [Knuth, "Sorting and Searching" (1975), pp. 81].

Algorithm S (Slra.ight insertion sort). Records Ri, . .. , RN are rearranged in
place; after sorting is complete, their keys will be in order, K 1 ~ · • • ~ Kx.

SI. [Loop on j.J Perform steps S2 through S5 for j = 2, 3, ... , N; then ter-
mina,t.e the algorithm.

S2. [Set up i, K, R.J Set i - j - 1, I{ - K;, R <- R;. (In the following steps
we will attempt to insert R into the correct position, by comparing 1(with
l(; for decreasing values of i.)

S3. [Compare K, K;.] If](~ IC·, go to step S5. (We have found the desired
position for record R.)

S.f.. [:l\fove R;, decrear,;e i.] Set R.-+1 - R,·, then i - i - 1. If i > 0, go back
to stl"p S3. (If i = 0, 1(is the smallest key found so far, so record R be
longs in position 1.)

S5. [R int.a R.-+1-J Set R.-+1 - R. I

34

2. Quicker Sort (Collected algorithms from CACM, 271-Pl-01.

ALGOHITH:\[271
QUICEER8ORT [.\11)
R. S. Scmrnx* (Recd. 2:2 .\for. HJG5 aud 30 June 1965)
X at ionnl Physical Laboratory, Teddington, England

1< Thr work tlt·scribed below· was slarir<l while the author was
at English EIPct.ric Co. Ltd, complPtt->d as part of the research
programme of the Xation:d Physicnl Lahonit<iry and is published
by permission of tl1c Director of the Laboratory.

procedure qm'ckcrsorl(a, j);
value j; integer J; array a;

begin integer 1·, k, q, m, p; real l, x; integer array ut,
lt[l :ln(ab.s(j)+2)/ln(2)+0.011;

comment The procedure sorts the elements of the array afl :j]
jnto P.scending order. It ur-es a method similar to that of QUICK
SORT by C. A. R. Hoare [l], i.e., by continually splitting the
array into parts such that all elements of one part are less than
all elements of the other, with a third part in the middle con
sisting of a single element. I arn grateful to the referee for point
ing out that QlilCKEHSORT also bears a marked resemblance
to sorting algorithms proposed by T. N. Hibbard [2, 3). In par
ticular, the elimination of explicit recursion by choosing the
shortest sub-sequence for the secondary sort was introduced by
Ji ibbard in [2].

An element with value tis chosen arbitrarily (in QUICKER
SORT the middle element is chosen, in QUICKSOHT a random
element is chosen). i and j give the lower and upper limits of
the st>~ment bei11g split. After the i-plit lias taken place a value
q will J,uve her,n fo11nd r,;;uch t.Jint, a[q] = land a[T] S t S a[J]
for all I, J such that i S I < q < J S j. The program then
performs operations on the .two segments a[1'.:q-l] and a[q+l:j]
as follows. The smaller segment is split and the position of the
larger segment is stored in the lt and ut arrays (lt and ut are
mnemonics for lower tempor.'.lry and upper temporary). If the
segment to be split has two or fewer elements it is sorted and
anothn segment obtained from the lt and 1d arrays. When no
more segments remain, the array is completely sorted.

HEFERE!\CES:

1. tr'oARE, C. A. R. Algorithms H3 and 64-. Comm. ACM 4 (July
1961), 321.

2. HIBBARD, TttmIAS N. Some combinatorial properties of
certain trees with applications to searching and sorting.
J. A CJ! 9 (Jan. 1962), 13.

3. --. An empiriclll study of minimal Etorage sorting. Comm.
ACJf O (1fay 19G3), 20:3-213;

i := m := l;
\': if j-i > l then

hcgin <'Omment This Sf'gment has more than two elements,
so split it;
p := (J+i) + 2;
comment p is the position of an arbitrary element in the

segnwnt a[i :j]. The best poi:;sible value of p would be one
which splits the segment into two hah·es of equal size, thus
if tlir• array fi-;q~rn<·nt) is roughly sortl'd, the middle ele
me11t is :111 exr•l'llent choi<'c. Jf the array is completely
random t lie middle ell'ment is as goud a:3 any other.

If hu\\'t•v<·r the array a[l :j] is such that the parts a[l :j+ 2]
a11d alj+ 2+1 :j] arc both sort,,d t.hc middle element, could
lie very bud. Accordingly in some rin·u111stances
p :== (i+j) + 2 should lie rt'placl'd by p := (i-P>()) + 4
or p ':= RA .. \'DO:lf(i, j) as in QUICKSORT;

t := a[p];
O[]J] := a[i];
q := j;
fork := i + 1 step 1 until q do
begin conunent Search for an element a[k] > t start i 1

from the beginning of the ~egment;
if a[k] > l then
hegin comment· Such un a[k] hs.s been found;

for q := q step -1 until k do
begin comment Now search for afq] < t starting frn

the end of the segment;
if a[q] < t then
hegin comment a[q] has been found, so exchan

a[q] anda[k];
x := a[k];
a.[k] := a[qJ;
a[q] := x;
q := q-1;
comment Search for another pair to exchange;
go to L

end
end for q;
q := k - 1;
comment q was undefined according to Para. 4..6.,i

the Revised ALGOL GO Report [Comut. ACM (J (J·

19G3), 1-17);
go to M

end;
L: end fork;

comment We reach the label M when the search going: '
wards meets the search coming down;

M: a[i] := a[q];
a[q] := t;
comment The segment has been split into the three p:!-,

(the middle part hRs only one element), now store 1

position of the largest segment in the lt and ut arrays ~1

reset i and j to give the position of the next largP.st segme 1

if 2 X q > i + j then
hegin

lt[m) := i;
ut[m] := q-1;
i := q+l

end
else
begin

lt[rn] := q+l;
ut[m] := j;
j := q-1

end;
comment Update m and split this new smaller eegml':
m := m+l;
go to N

end

else if i ~ j then
hcgin comme11t Tltis se~ment has less than two elemenL,

go to P
end
cl~c

begin comment This is the cas~ when the i;egmcnt has j1
two '3lernents, so sort, a[i] and a[j] where j = i + 1;

if <di] > a[j] then

begin
X := a[i];
a:il := alj];
a[J] := X

end;
f'Otnmen t If the lt and 11[arrays contain more segments
· to be sorted tl1en repeat the process by i-;plitting the smallest

c,f these. If no more segnwnts rernctin the array has been
completely sorted;

P: m := m-1;
if -,11 > 0 tl1<'n

begin
i := lt[m];
j := ul[m];
gn to N

cn<l;
cud

en <l quickcrrnrl

3. Shell Sort [Collected algorithms from CACM, 201-Pl-OJ.

ALGORITIL\1 201
RHELLSOHT
J. J300THROYD

English Elel't ric-Leo Computers, Kidsgrove, Staffs,
England

procedure Shcllsori (a., n); yafue n; real array a; integer n;
commcn l a[l] through a[n] of a[l: n] are rearranged in ascending

(J!'<ler. The method is that of D. A. Shell, (A high-speed sorting
prncedure, Comm. ACJt 2 (H/59), 30-32) wit.h subsequences
chnsen as suggested by T. >I. Hibberd (An empirical study of
minimal storage sorting, SDC Report SP-\:JS2). Subsequences
depPnd on m1 the first operative value of m. Here m1 = 2k - 1
for 2k ~ n < 2H 1 , To impJ,,ment Shell's original choice of m 1 =
[11/2] change the first statement, tom := .n;

hegin integer i, j, k, m; reul w;
for i := l el<"p i until 11 <lo m := 2 Xi - 1;
form := m + 2 while m ~ 0 do

hcgi n k : = n - m;
for j := l i,;lep 1 until k do

he g i n for i : = j s tt• p - ?II u n l i I l do
hegi11 ifali+111J?: o!iJ tlu·n /!Oto i;

w := ali]; ali] := 11!1+111]; uli--1111.] := w;
end ·i;

l : en<l j
<"nd m

en,I 8hcllsorl;

35

36

4. Straight Merge Sort [Knuth, "Sorting and Searching" (1975), pp. 164).

Algorithm S (Strai'ght two-way merge sort). Ilecords R 1, • •• , Rv are Rorted
using two mt'mory arens ail in Algorithm X.

Sl. [Initialize.] Sets - 0, p - 1. (For the significance of variable;.i s, i·, j, k,
l, d, see Algorithm K. Here p represents the size of ascending runs to be
merged on the current pass; q and r keep track of the number of unmerged
items in a. run.)

S2. [Prepare for pass.] If s = 0, set i - 1, j - N, k +- N, l +- 2N + 1; if
s = 1, set i +- N + 1, j - 2N, k +- 0, l - N + 1. Then set d - 1,
q-p, r-p.

S3. [Compare Ki:K;.] If K; > Ki, go to step SS.

S-i. [Transmit R;.] Set k - k + cl, Rk - R; ..

S5. [End of run?] Seti - i + 1, q - q - 1. If q > 0, go back to step S:3.

S6. [Transmit Ri.] Set k +- k + d. Then if k = l, go to step S13; otherwise
set Rk +- Rj,

S7. [End of run?] Set j - j - 1, r-. r - 1. If r > 0, go back to step S6;
otherwise go to S12.

S8. [Transmit Rj,] Set k - k + cl, Rk - Ri.

S9. [End of run?] Set j +--j-:- 1, r - r - 1. If r > 0, go back to step S3.

S10. [Transmit Rd Set k f- k + d. Then if k = l, go to step 813; otherwise
set Rk - Ri.

SIL [End of run?] Seti+-- i + 1, q - q - 1. If q >. 0, go back to step S10.

S12. [Switch sides.] Set q +- p, r +- p, d +- -d, and interchange k +--+ l.
If j - i < p, return to step S10; otherwise return to S3.

S13. [Switch areas.] Set p - p + p. If p < N; sets +- 1 - sand return to S2.
Otherwise sorting is complete; if s = O, set

I

(The latter copying operation will be done if and only if flg Nl is odd, .
· regardless of the distribution of the input. Therefore it is possible to '
predict the location of the sorted output in adv::rnce, and copying ,viii
uRually be unnecessary.) I

5. Tree Sort [Collected algorithms from CACM, pp. 144-Pl-O).

ALGOHITH:.1144
TTIEESORT 2
AHTHUH F. IL\UPE, JR.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure TREESORT 2 (U.\"SORTIW, n, SON TED, k, ordered);
,·aluc II, k;

integer 711 k; array UNSORTED, SORTED; Boolean proce•
dure nrdere.d;

comment TREESORT 2 is a generalized version of TREESORT
1. The Boolean procedure ordered is to have two real argu
ments. The array SORTED will have the property that ordered
(SORTED[1'.], SOR'l'ED[j]) is true when i > i if ordeted is a
linear order relation;

begin intcge1· i, i; array ml [1:2Xn-1); integer array m2
[I:2Xn-l);

procedure minimum; if ordered (m1[2Xi), m1[2Xi+l]) then
begin ml[i]: = m1[2Xi'.]; m2[i]: = m2[2Xi] end else
begin ml[i] : = m1[2Xi+l]; iri2[i] : = m2[2Xi+IJ end mini

mum;
for i: = n step 1 until 2 X n - 1 do begin ml[i]: = UNSORTED

[i-n+l]; 1n2[i] : = i end
for i : = n - 1 step -1 until 1 do mini'.mum;
for j : = 1 step 1 until k do

begin SORTED[;]:= ml[l]; i := m2[1]; ml[i] := infinity;
for i : = i + 2 while?'. > 0 do minimum end

end 'l'REESORT 2

37

6. Heap Sort [Knuth, "Sorting and Searching" (1975), pp. 146-147].

Algorithm H (Heapsorl). Records R 1, ••• , Rx nre rearrnnp;ed in plttce; nfter
·sorting is complete, their keys will be in order, K 1 ~ • • • ;;; K,,·. First we
rearrange the file so that it forms a he[tp, then we repeatedly remove the top
of the heu.p and transfer it to its proper final position. Assume that N ~ 2.

HI. [Initialize.] Set l - LN /2J + 1, r - N.

H2. [Decrea8e l or r.] If l > 1, set l - l - 1, R - Rt, K - K 1• (If l > 1, we
are in the process of transforming the input file into a hea.p; on the other
hand if l = 1, the keys K 1K 2 ••• Kr presently constitute a heap.)
Otherwise set R - Rr, K - Kr, Rr t-- R1, and r - r - 1; if this makei!
r = 1, set R 1 - Rand termina.te the algorithm.

H3. [Prepare for "sift-up."] Set j - l. (At this point we have

for l < Lk/2J < k _s; r; (O)

and record R1; is in its final position for r < k ~ N. Steps H3-H.'-, are
called the ''sift-up" algorithm; their effect is equivalent to settirig R1 - R
nnd then renrrnnging Rt, ... , R, so thnt condition (G) holds also for
Lk/2J = l.)

JU. [Advance downward.] Set i - .i and j - 2j. (In the followiJJg steps we
l1ave i = U/2J.) If j < r, p;o right 011 to step H5; if j = r, p;o to st<'p HG;
and if .i > r, go to HS.

H5. [Find "lurg-er" son.] If K; < Ki+ 1, thrn set}-,;+ I.

. H6. [Larger than K?] If K 2:'.: Ki, then go to step HS.

H7. [::\Iove it up.] Set R; - R;, and go back to step.H4.

H8. [Store R.J Set R; - R. (This terminates the "sift-up" algorithm initiated·
in step Jr:3.) Return to step H2. I

38

New Sorting Algorithm

PROCEDURE NEW (A, N); VALUE N;

AR RAY A CN + l J , B (NJ , C (N / 3 J ;

APPENDIX B

39

COMMENT - AlN) contains source input when this procedure is called,

and returns sorted list through this array.

B(N) contains sorted elements from source input,

C(N/3) contains unsorted adjacent element pairs;

INTEGER INDl, IND2, JNDl, JND2, I; N;

COMMENT -

INDl is index for B-array at first stage,

IND2 is index for C-array at first stage,

JNDl is index for B-array when merged,

JND2 is index for C-array when merged;

INDl+IND2+O;

A (N+ l) +infinity;

For I= l STEP l UNTIL N

If A(IJ ~ A (J + 1)

THEN INDl+INDl+l;

B (I ND 1 J +A [I J ;
ELSE IND2+IND2+2;

C UND2-l)+A [I+ l);

C [I ND2}+A (I] ;

I= I+l;

WHILE AND (I NDl>O, B(INDl] >AU+ 1 J, I ~N) DO

IND2+IND2+2;

C (IND 2 J +B (IND l J ;
C [IND 2-1) +A [I+ l) ;

INDl+INDl-1;

I+I+l;

ENDWHILE;

END IF;

END FOR;

40

COMMENT: At this point, all elements in B-array are in order and those in the

C-array is not. So only sort C-array by Quicker Sort and then merge B- and
C-array into A-array.
CALL QUICKER (C, IND2);
JND1~ND2+1;

FOR I= 1 STEP 1 UNTIL N

IF B[JNDlj2:_C(JND2J

THEN

A II J+C [JND2J;

JND2+JND2+ 1;

IF JND2>IND2

ELSE

THEN

FOR I = I +l STEP 1 UNTIL N

JNDl+JNDi+l;

A[I) +B(JNDlJ;

ENDFOR;

ENDIF;

AU)+B(JNDl);

JNDl t-JNDl + 1 ;

IF JNDl>INDl

THEN

FOR I= I+l STEP l UNTIL N

JND2+JND2+ l ;

A[IJ +C [JND2J ;

ENDFOR;

END IF;

END IF;

END FOR;

END PROCEDURE;

41

