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I. INTRODUCTION

Many different sorting algorithms have been developed [1], and no
one sorting algorithm is best for every case; in other words, each
algorithm has its own advantages and disadvantages depending upon the
environment in which it is applied as well as the characteristics of the
Tist to be sorted.

When programmer effort is not a consideration, Martin [2] pointed
out that the choice of method depends on:

(a) the length of the 1ist to be sorted;

(b) the relation between the length of the 1list and the number

of cells in the main memory of the machine used for sorting;

(c) the number and the size of any disk/tape used in sorting;

(d) the extent to which the elements are already in sorted

order; and

(e) the distribution of the values of the elements.

Usually factor (d) above is neglected as the efficiency of a sorting
algorithm is usually based on its performance on uniformly distributed
random lists. However, the sortedness of the original list definitely
affects the efficienty of some sorting algorithms.

‘The purpose of this paper is to explore (d) above in an attempt
to discover the "best" sorting algorithm for "nearly" sorted Tists, which
are encountered quite often in real practice.

"Best" sorting algorithm can be interpreted in different ways depend-
ing upon what is considered to be most important. Chapter II discusses
several possible interpretations, and gives the definition of "best" used

in this paper.



As for "nearly" sorted Tists, there is no commonly accepted measure
for the orderedness of an input Tist and a simple, easily defined mea-
sure for "nearly" sorted Tist is elusive. Furthermore, it should be
noted that the performance of a sorting algorithm is continuous on the
ordering of the input 1list. In other words, sorting algorithms sort the
unordered 1ists almost the sameway (no. of steps) regardless of the small
changes on input lists. This may explain the absence of the measures
for the sortedness and the difficulty in defining the sortedness.

Much of the effort in this paper has been devoted to defining and
proposing measures for the sortedness. In Chapter III, two measures
are carefully developed and precisely defined.

We also define the "nearly" sorted region by those two measures.

In Chapter IV, several sorting algorithms are compared on "nearly"
sorted lists. The sorting algorithms compared in this paper are Straight
Insertion Sort, Tree Sort, Quicker Sort, Straight Merge Sort, Shell Sort,
and Heap Sort. Descriptions for each algorithm are given in Appendix A.

We chose these sorting algorithms because they either take into
account the sortedness of the input 1ist or are known to be fairly fast
on random input 1ists.

The names of sorting algorithms are not consistent between some
books or papers. This paper will use the names given in Knuth [1]. For
example, Straight Insertion Sort in Knuth is called the Bubble Sort in
some papers [2, 7].

Straight Insertion Sort and Quicker Sort performed best on nearly
sorted 1ists. The Straight Insertion Sort performed best on very nearly
sorted or small Tists and the Quicker Sort performed best on the remain-

ing cases of nearly sorted lists.



In addition, a New Sorting Algorithm which is a combination of
Quicker Sort and Merge Sort, is developed especially for nearly sorted
1ist and is shown to perform as well as the Straight Insertion Sort and
Quicker Sort. As a consequence, New Sorting Algorithm is the best sort-
ing algorithm on the nearly sorted list.

Chapter V summarizes the paper and suggests several possible exten-

sions of the work.



IT. BEST SORTING ALGORITHM

The commonly used measures for the "best" sorting algorithm are
Storage Requirements and Average Number of Comparisons [8]. Computer
execution time is also used in some papers [3].

In this paper, we will not consider the storage requfrement, SO
the "best" sorting algorithm is the "fastest" algorithm.

Computer execution time seems to be the simplest and most reaéonab]e
measure for comparing the sorting algorithms. However, computer execution
time depends upon the programming technique, programming languages used
and the computer system environment.

Furthermore, it is practically difficult to obtain very accurate
computer execution times, and executioh times cannot be compared unless
the size of input is very large.

For example, CYBER system gives CPU time accurate to two decimal
digits and most sorting algorithm can sort the Tist with 50 elements in
0.01 seconds.

The number of comparisons needed to sort an unordered list is called
the "sort effort" (8) and generally provides a good measure. However,
when a Tist is sorted, exchanges between elements in the Tist take longer
than the comparisons on typical computer systems, and some sorting algorithms
can sort the unordered list with extensive exchanges but with a small num-
ber of comparisons and vice versa.

Therefore, the number of exchanges should be considered along with
the number of comparisons, when computing the sorting effort. In this
paper, each sorting algorithm is compared by the number of comparisons,

moves and exchanges between the elements in the Tist when it is sorted.



Any effort spent in bookkeeping, such as keeping track of the pointers
or doing simple arithmetics involved in the sorting process will not be
considered here.

Although this measure is not perfect, it seems to be the best compro-
mise between simplicity and accuracy.

Furthermore, there exists no one absolutely best measure in comparing
the sorting algorithms, but the results can be useful despite what appears
to be overly simplified computational models [4].

We also need to assign a weight to exchange, move and comparison.

Due to potential complexity, it is not possible to obtain an exact ratio,
and there can be many possible ratios depending upon the computer system.’

Assuming a typical computer system, we adpoted the ratio of (2:2:1).
In other words, two comparisons, two moves and one exchange are equivalent
to one another. Then we can get a weighted value as follows:

Weighted Value

= (no. of comparisons) x 2 + (no. of moves) x 2 + (no. of exchanges)
Thus, a "best" sorting algorithm is the one whose weighted value is

smallest.



[TI. NEARLY SORTED LIST

A. Intuitive Definition and Examples.

Intuitively, the number of elements which are not in order and how
far the unsorted elements are out of order are good measures for the
unsortedness of a Tist.

A Tist which has a small number of unsorted elements and whose
unsorted elements are not too far from their proper positions would be
called "nearly" sorted.

In this section, we will explore the meahing of the terms used in
our intuitive definition of neér]y sorted Tist.

First, the number of sorted (or unsorted) elements should be counted
by the relative order in the list rather than by their absolute positions.

In the 1ist (2, 3, 4, 5, 6, 1, 7), for instance, only one element (7)
is in its proper sorted position, however, we will consider only one
element (1) is out of relative order and the other six elements (2, 3, 4,
5, 6, 7) are in order. From now on, "order" denotes the "relative order"
unless otherwise specified.

Which elements are not in order is ambiguous in general, since there -
can be several relatively ordered, overlapping sublists as can be seen in
the 1ist (6, 2, 1, 3, 5, 4, 7). Some of their sublists are (6, 7), (2, 3,
5, 7), and (2, 3, 4, 7).

Furthermore, counting the number of unsorted elements is not unique
either.

For example, in the list (4, 5, 1, 2, 3, 6, 7), the number of unsorted
elements is two (4, 5) or three (1, 2, 3) depending upon whichve1ements

are considered as not being in order.



Therefore, we assume that the number of unsorted elements for a given
1ist means the minimum number of elements which should be removed from
the 1ist to make the remainder of it be completely sorted. Then the number
of unsorted elements in the list (4, 5, 1, 2, 3, 6, 7) is two and the
unsorted elements are 4 and 5.

Then the number of unsorted elements in the list is always unique,
although the selection of the unsorted elements may not be unique. For
example, possible selections of unsorted elements for the list (6, 2; 1,
3, 5, 4, 7) above could be (6, 2, 5), (6, 2, 4), (6, 1, 5) and (6, 1, 4),
however, the (minimum) number of unsorted elements is always 3.

We have clarified the meaning of the number of unsorted e]ements,
however, the distribution of the unsorted elements cannot be defined
without employing the mathematical tools: permutation, inversion, and
inversion table, which are introduced in the next few sections.

Furthermore, counting the number of unsorted elements by hand is im-
practical and no algorithm can be easily implemented on computer to count
that number. So an algorithm for counting the number of unsorted elements
is also developed later in this chapter.

B. Permutations and Inversion.

Absequence of n numbers is called a permutation if it consists of
only integers 1 through n, j.e., a permutation p = {1, 2, 3, ... n}.
If the elements in the permutation are in ascending order, i.e.,

p=1(1,2,3, ...n), then it is called an identity permutation.

It is easy to see that any list can be related to a permutation by
associating the smallest number with 1, second smallest with 2, etc., if

considering ascending order and the reverse if descending order.



For example, the list (4.1, 2.7, 6, 9.85, 0, -2.2) corresponds to
the permutation (4, 3, 5, 6, 2, 1).

Here we assume that no elements in the list are repeated and all
1ists are to be sorted in ascending order.

For a given permutation, P:

p=fa, |a,=1,2,3,...n}

If i<j and a2y, then the pair (ai, aj) is called an inversion.

For example, P= (4, 3, 1, 2, 7, 6, 5) has eight inversions:
(4, 3), (4, 1), (4, 2), (3, 1), (3, 2), (7, 6), (7, 5), (6, 5).

If there is no inversion in P, then P is the identity permutation.
So sorting can be thought of as a process of removing the inversions from

the corresponding permutation derived from a given Tist.

C. Inversion Table.

The Inversion Table b], b2, e bn of the permutation A Ay aee A,
is obtained by letting bj be the number of elements to the left of j that
are greater than j(17}; bj is the number of ai's where

(ai, 1<i<j) r\(j<a1) for all 1<j<n.
For example, if

P =(4,3,1,2,7, 6, 5)

then IV = (2, 2, 1, 0, 2, 1, 0).

For 1 in P, there are two elements, 4, 3 in P which are bigger than 1 and
to the left of 1, so the first element in IV is 2 (b1 = 2), for 2 in P,
there are two elements (b2 = 2), 4, 3, which are bigger than 2 and to the
left of 2, and for 3 in P, only one elent (b3 =1), 4, and for 4 in P,
there is no element (b4 = 0) in P which is bigger than 4 and to the left

of 4, and so on.



Note that the last element of Inversion Table (bn) is always O,
since no element in P can be bigger than the number of elements (n).

There are some very important and interesting properties in
Inversion Table.

First of all, there is a one-to-one correspondence between per-
mutations and Inversion Tables. This fact, discovered by Hall {56] and
Knuth (17 gives an algorithm for constructing a permutation from an
inversion table, and we will give an example to illustrate the algorithm.

For

Iv=1(2,2,1,0, 2, 1, 0),
Starting from the rightmost and going backwards, place the corresponding

element into its proper position to satisfy that the number of bigger

elements to the left is identical to the value in Inversion Table (Fig. 1).

Figure 1
Corresponding
elements in IV
permutation (backwards) Permutation Comment
7 0 7 7 is biggest ... 0
6 1 76 756 ... 1 "
5 2 765 7>6 6>5 ... 2
4 0 4765 L.l 0
3 1 43765 453 ... 1
2 2 432765 452 352 ... ?
1 2 4312765 4>1 3>1 ... 2

We can easily see that the final permutation obtained from IV is
identical to the original P.

Another interesting property of the Inversion Table is that each
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element indicates the number of interchanges between two adjacent elements |
needed to place the corresponding element in the original permutation in
its proper position.

Using the Inversion Table (2, 2, 1, 0, 2, 1, 0), the first element 2
in IV says that 1 in P can be in its proper position (i.e. leftmost)
after two interchanges, and Fig. 2 shows the relationship between the
number of 1nferchanges and the values of elements in Inversion Table as

interchanges (indicated by arrows) are done.

Figure 2
o = 0,33, 2,7, 6, 5 1v=@2,1,o,2,1,o)
P = (164,372, 7, 6, 5) v, = (0,(2)1, 0, 2, 1, 0)
py = (1, 258,73, 7, 6, 5) v, = (0, 0,(1,)0, 2, 1, 0)
py = (1, 2, 3, 4,57,76, %) v, = (0, 0, 0, 0,(2,)1, 0)
py = (1, 2,3, 4, 5%7,%) v, = (0, 0, 0, 0, 0,(1,)0)
ps = (1,2, 3, 4, 5, 6, 7) v, = (0, 0 0,0, 0, 0, 0)

Also, the sum of each element in Inversion Table is equal to the
total number of inversions in the given permutation, and also is equal
to the total number of interchanges of adjacent elements to form the
identity permutation.

For example, the sum is 8 (2 + 2+ 1+ 0+ 2+ 1+ 0 = 8) for the
inversion table of the list (4, 3, 1, 2, 7, 6, 5), and that is the number
of inversions as shown in the beginning of this section and it becomes
identity permgtation.

D. "HOW-MANY".

From the previous section on Inversion Tables, it follows that a

non-zero element in IV indicates that its corresponding element in P is
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not in order, and if all elements in P, whose corresponding elements in
IV are non-zero, are removed from P, then obviously it will yield a
completely sorted subset of the permutation.

e.g. P=1(2,3,4,5,1,6,7)

Iv = (4, 0, 0, 0, 0, 0, 0)

There is only one non-zero element in IV, and if we eliminate the corres-
ponding 1 in P, then P is in order.

This method seems quite easy and natural, however, this does not
guarantee the minimum number as shown by the following example:

e.g. P=(7,1,2, 3, 4, 5, 6)

There are six non-zero elements in IV, but the minimum number of elements
to be removed from P is only one, 7, instead of six elements.

Recall that there are two cases when an element is out of order,
i.e., one is when a small number is placed to the right from its proper
position as shown in the first example of this section, and the other
is when a big number is placed to the left from its proper position as in
the second example. |

Considering the two cases, we come up with an algorithm which uses
the Inversion Table to count the minimum number of unsorted elements
in the Tist, i.e., the minimum number to be removed from the permutation
to make it completely sorted.

Algorithm 1: Count the number of unsorted elements.

(1) First step:

Divide Inverison Table into subgroups of consecutive entries,
whose first element is non-zero, but each subgroup should

end with at least one zevro. The number of zeros that should
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follow at the last portion of the subgroup is given
by:

no. of non-zero value of last non-zero}
elements in subgroup, element in subgroup

Min {

and zeros not included in subgroups can be completely neglected since
the corresponding elements in P are in order and not affected by the
unsorted elements in subgroups.

Recall again that the former part of the formula represent the case
as shown in the first example in this section, i.e., small numbers should
be removed from the Tist, while the Tatter represents the second case.

e.g. IV=(11130003210222200500100)
would be divided into 5 subgroups: (1 113000), (3210), (222200),
(50) @, (10) @, and 20th and 23rd elements (zeros) are omitted as indi-

cated in the algorithm. The number of trailing zeros in each subgroup was

calculated by applying the formula, i.e:

1
w

For the 1st subgroup min {4, 3} =

I
—

2nd subgroup min {3, 1} =
3rd subgroup min {4, 2} = 2

1]
—

4th subgroup wmin {1, 5}

n
—

5th subgroup min {1, 1}

(2) Second Step:

For each subgroup, if the number of non-zero elements is

less than the largest element in the ith subgroup,
then: the minimum number of elements to be removed from 1th
subgroup is equal to the number of non-zero elements and we
are done with i#h group.
otherwise; subtract 1 from each non-zero element in jth

subgroup and go back to First Step unless every element in
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th th

i~ subgroup is zero, in which case we are done with i
subgroup. Whenever this process is executed, it also in-
creases the number of elements to be removed by one

(ni =, + 1).

This algorithm ends in either process of Second Step and the total
k

number of the unsorted elements in the list is n = % ni, where k is the
n=1
total number of subgroups.

e.g.,
Applying the above algorithm on IV:
Iv=(11130003210222200500100),
we will show how to find the minimum number of elements to be eliminated.
As mentioned earlier, we come up with five subgroups. And for each
subgroup:
For (1 113000):
a) no. of non-zero element (4)>largest element (3).

b) ny =0+ 1 =1.

1

c) subtract 1 from each non-zero element, then we get
(0, 0, 0, 2, 0, 0, 0).

d) it forms only one subgroup (2, 0).

e) no. of non-zero element (1)<largest element (2).

a) no. of non-zero element (3) = largest element (3).

b) ny = 0+1-=1.

c) subtract 1 from each non-zero element, then we get
(2, 1, 0, 0).

d) neglect last zero, and we get (2, 1, 0).
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e) no. of non-zero element (2) = largest element (2).

g) subtract 1 from each non-zero element, then we get
(1, 0, 0).
neglect last zero, and we get (1, 0).

no. of non-zero element (1) = largest element (1).

e

)
)
i) n, =2+ 1= 3.
) subtract 1 from the non-zero element, then all elements
are zero, and we are done
~n 2
For (2, 2, 2, 2, 0, 0,):
a) no. of non-zero element (4)>largest element (2).
b) ny = 0+1=1.

c) subtract 1 from each non-zero element, then we get

(1a ]a 15 ]a O: O).

d) it forms only one subgroup (1, 1, 1, 1, 0).
e) no. of non-zero element (4)>Targest element (1).
f) ng=1+1=2.
g) subtract 1 from each non-zero element, then we get (0, 0, 0, 0, 0),
therefore done.
Mg = 2.
For (5,0):

a) no. of non-zero element (1)<largest element (5)

. n4 = 1.

For (1,0):

a) no. of non-zero element (1) = largest element (1)

Mg = 1.
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Total no. n n1 + n, + nq + n4 + Ng

1]

2+3+2+1+1=9

We can check this value directly from the corresponding permutation, i.e.,
p = @1, 2, 3, 6, 7,11,@ 12, 13, 14, 15, 19,

20, 22,(::) 23, ,

and elements with circles should be removed to make P completely ordered.
Suppose Algorithm 1 gives the number of unsorted elements, k. Since

we will represent the "HOW-MANY" by the ratio of the unsorted elements

to the total number of elements in permutation:

THOW-MANY" = %

where n is the total number of elements.
If a permutation is an identity, "HOW-MANY" becomes 0, and for a com-
pletely out-of-ordered permutation, "HOW-MANY" will approach to 1, and
if half of the elements are unsorted, its value will be around 0.5. Thus

this ratio seems to coincide with our intuition.
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E. "HOW FAR".

"HOW-FAR" is the ratio of total number of inversions to the average
number of inversions for a given number of unsorted elements, and will
be derived as follows:

Suppose there are n elements in a permutation, and only one element
is out of order. Then the element can be placed in the 1th position
with the probability —, and the probability that jth position is in its

proper place is also

S|~

The expected number of transfers that an unsorted element should

move to be in its proper place is

n n .
It |i-dlm
i=1 j=1
2 N +1) (n-1
= 'Zl i(n-1) = (n %n(n )
']:

If there are k unsorted elements in the Tist, the expected number

of transfers becomes

(n-i)(n-i+2)
3{(n-1+1)

[ag o

i=1

and we can approximate the value, since

.

k
z (n-i+1) 1is much bigger than
']:

1
k

1 .
151 m s 1.€6.,

£ (n-1)(n-i+2)

; 3(n-1i+1)

Hi
—_
—_
=3
=~
+
~
1
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’ SUMy
Therefore, "HOW-FAR" would be defined as .
(nk + k - < LkiTD,

3 2

—

however, we divide it by 3 to make its range between 0 and 1, i.e.,

SUMIV

k (k+1))
2

"HOW-FAR" =

(nk + k -

where SUMIV is the sum of corresponding inversion table elements.

When k = 0, i.e., identity permutation, "HOW-FAR" becomes %—and
undefined, but we will assume it to be 0 to make "HOW-FAR" be continuous
for all possible k values.

We will derive the upper limit of "HOW-FAR" as follows:

For given k number of unsorted elements, maximum value of SUMIV is

(n-1) + (n-2) +o-nt (n g = 1202k,

Thus, upper bound of "HOW-FAR"

2 -

k(2n—k—1) (
2

nk + k - E—ikﬁi-ll

~—

S| s~
+
S|—=|—

2 -

= 1 (assumed %—5 0).
Notice that both "HOW-MANY" and "HOW-FAR" are defined between 0 and 1.

Then we define the "nearly" sorted region on the graph in terms of
"HOW-MANY" and "HOW-FAR" as in Fig. 3.

If both "HOW-FAR" and "HOW-MANY" are very small, undoubtedly the 1ist
is nearly sorted.

We should also add that if the "HOW-MANY" is very small, then the
1ist is also nearly sorted regardless of the value of "HOW-FAR", i.e.,
if "HOW-MANY" of a 1ist is around 0.05, it will be called nearly sorted
regardless of the "HOW-FAR."
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For other extreme cases, a Tist is also called nearly sorted with

"HOW-MANY" around 0.15, if "HOW-FAR" is less than or equal to 0.33.

Figure 3

Nearly Sorted Region

"HOW-MANY"
1.0
0.8 |
0.6 -
0.4 F
0.2 I~
O.]S /////////////////'/////’/",’/‘} 7
é ’ AS77 / - .._]_._
7 i I caccrdR A T T
’2/’///'/////‘/,// \2 /S l,' A RN A Rl N Al SR N | "HON-FAR“
0 0.2 0.33 0.4 0.6 0.8 1.0
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IV. TEST RESULT

A. Tested Sorting Algorithms.

Testing was performed on CYBER system. The sorting algorithms
tested were: |

(1) Straight Insertion Sort

(2) Quicker Sort
3) Shell Sort

5

)
(3)
(4) Straight Merge Sort
(5) Tree Sort

(6)

6) Heap Sort

Two well-known sorting algorithms, Bubble Sort and Quick Sort, were
not included for comparison. Because Bubble Sort as defined in Knuth [1]
requires too many unnecessary comparisons between elements. Some modi-
fied Bubble Sorts have been developed, however, none of these require-
ments leads to an algorithm better than Stra%ght Insertion Sort [117.

Quick Sort is replaced by Quicker Sort, since the middle element is
usually an excellent choice, especially if the input 1list is nearly
sorted and it can split the 1ist into two halves of equal size [3].

Furthermore, it has been empirically determined that Quicker Sort is
the fastest sorting technique on most machines [8].

B. Test Set-up and Results.

"HOW-FAR" as defined in Chapter III affects the performance of some |
soritng algorithms, however, the effect of "HOW-FAR" was not tested in
this paper due to the substantial execution time required.

As commented in Introduction, the length of the input list also
affects the efficiency of sorting algorithms. Hence, nearly sorted list

with various "HOW-MANY" values and of various lengths were tested.
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Input test data was created as follows: an identity permutation
of desired sfze (50, 200, 500, 1000 and 2000) was rearranged by random
number generator to obtain the desired "HOW-MANY" values, which were
0.0 (in order), 0.02 (2% out of order), 0.05, 0.10 and 0.15. As men-
tioned, "HOW-FAR" was not considered, and actual "HOW-FAR" values for
tested 1ists were around 0.3.

Computer programs were written in FORTRAN for each sorting algorithm.
Any programming language will give the same results, since we only count
the number of comparisons, moves and exchanges.

After running the program for input generated, we obtained weighted
values from the number of comparisons, moves and exchanges as defined
in Chapter II. Entries for Table 1 are the weighted values divided by
the length of lists. With these values, it is easier to compare the 1ists
of different sizes. '

Performance of Straight Insertion Sort, Shell Sort and Quicker Sort
are summarized in Fig. 4, Fig. 5 and Fig. 6, respectively. Some more
variations of "HOW-MANY" (0.01, 0.03, 0.08, 0.12) and the length (100)
were added to draw those graphs.

Performances of all sdrting algorithms are depicted in Fig. 7.

As the results of a sequence of tests indicate, the Straight Merge
Sort, Tree Sort and Heap Sort do not take into account tHe sortedness
of the input Tist. In other words, they spent almost the same effort
in sorting the unsorted lists, regardless of the unorderedness of the
input 1ists.

Straight Merge Sort is better than Tree Sort and Heap Sort, however,

it is far from being selected as the best sorting algorithm on nearly

sorted Tist.



Table 1
No. of
Sorting Elements

Algorithm HOW-MANY 50 200 500 1000 2000
0.0 2.94 2.99 2.99 3.0 3.0

Straight 0.02 3.56 5.12 9.13 16.47 26.77

Insertion 0.05 5.34 12.72 18.36 32.71 91.65
0.10 6.78 13.90 31.24 70.06 124,77
0.15 5.34 19.53 49,37 130.30 173.60
0.0 6.32 7.57 10.43 11.20 12.34
0.02 6.72 8.42 10.25 12.05 14.08

Quicker 0.05 6.41 8.87 11.11 12.58 13.77
0.10 6.70 9,32 11.21 13.84 14.01
0.15 7.26 10.01 12.51 13.51 14.0
0.0 5.06 6.01 7.01 8.0 9.0
0.02 5.30 9.50 14.20 15.46 18.57

Shell 0.05 6.52 12.78 15.31 18.65 22.72
0.10 8.38 13.69 16.82 21.97 24,38
0.15 8.72 15.62 16.63 22.72 25.92
0.0 10.50 14.0 16.95 17.70

Straight 0.02 10.50 14.05 17.20 18.06 20.92

Merge 0.05 10.52 14.44 17.28 18.14 21.02
0.10 10.64 14.47 17.31 18.24 21.22
0.15 10.58 14.56 17.43 18.32 21.37
0.0 15.38 19.43 21.95 24,95 25.95
0.02 15.38 19.43 21.95 24.95 25.95

Tree 0.05 15.38 19.43 21.95 24,95 25.95
0.10 15.38 19.43 21.95 24.95 25.95
0.15 15.38 19.43 21.95 24.95 25.95
0.0 17.04 23.32 26.22 29.25 32.23
0.02 16.64 23.27 27.17 30.22 33.20

Heap 0.05 17.02 23.14 24,77 30.16 33.26
0.10 16.76 22.23 26.90 30.57 33.24
0.15 16.82 22.34 26.54 29.94 32.66

21
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Figure 4
Straight Insertion Sort
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Figure 5
Shell Sort
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Figure 6

Quicker Sort

Weighted value/
no. of elements

20 [
16 -
12 |-
8 |-
4
1 i } 1 i 1 no. of
elements

50 100 200 500 1000 2000



25

Weighted value/ Figure 7
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Meanwhile, Straight Insertion Sort and Shell Sort are greatly affected
by the sortedness of input and are very good for very nearly sorted and
small size lists. But the efficiency of both of these sorting algorithms
decrease rapfd]y as the size of input increases. Thus, both sorting
algorithms are not only recommended for small sized nearly sorted lists
whose number of elements are less than or equal to 200, or very nearly
sorted Tists (2% or less out of order). Recall that Straight Insertion
Sort does not require any overhead and is simple to program. So it would
be better to use Straight Insertion Sort.

Overall performance of Quicker Sort is very good. The efficiency
of Quicker Sort is a 1ittle affected by the sortedness of the input
1ist, hoWever, it is best when the size of input list is big.

Best sorting algorithm regions on nearly sorted 1ists is shown in
Fig. 8 in terms of the size of input 1ists and "HOW-MANY."

In addition to the six sorting algorithms listed in the previous
section, extra tests were performed on modified versions of sorting
algorithms: combination of Quicker Sort and Straight Insertion Sort,
and the Revised Heap Sort, without any noticeable improvement.

It is empirically proven by Singleton [7] that Straight Insertion
is the best sorting algorithm when tﬁe number of elements in the Tist
to be sorted is less than or equal to 11.

And as mentioned, Quicker Sort is very fast. But it can be improved
by combining it with Straight Insertion Sort. In other words, apply
Quicker Sort to sort the 1ist, and whenever the number of elements in
the subgroup is less than or equal to 11, apply Straight Insertion to
sort that subgroup elements.

This method was tried on nearly sorted lists, but it only improved

Quicker Sort slightly.
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Figure 8
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As for Revised Heap Sort, we reversed the definition of Heap. 1In
other words, a sequence of keys Kis Koy o K, forms a "reversed
heap" if K.Lj/gyi Kj for 1 < L;/gj(jgn. Then the smallest key appears
on the top of the reversed heap. When the input Tist is nearly sorted,
this method requires much fewer exchanges than the original Heap Sort
does. However, the Reversed Heap Sort has almost the same number of
comparisons as Heap Sort, and hard to be considered as best sorting
algorithm on nearly sorted lists.

So even the Reversed Heap Sort cannot compete against Straight

Insertion Sort or Quicker Sort on nearly sorted list.

C. New Sorting Algorithm.

A new sorting algorithm was developed especially for nearly sorted

list.
. It is a combination of Quicker Sort and Merge Sort. Basically

it scans the source list and selects the already sorted elements, and
stores them in an array. The remaining unsorted elements and the elements
which are not known whether they are in order or not at scanning time are
stored in another array.

We sort only this array by applying Quicker Sort, then we have
two arrays whose elements are all in order in each array.

Hence we can merge them together to have a completely sorted list.

Complete New Sorting Algorithm is given in Appendix B, written in
hypothetical structured programming language. And test results are
shown in Table 2. Performance of New Sorting Algorithm for selected
"HOW-MANY" (0.02, 0.10) was depicted in Fig. 7 for comparison purposes.

As we can see in Fig. 7, New Sorting Algorithm is very fast and stable

as the size of input Tists grows, while most of the other sorting



29

algorithms are seriously affected by the size of input 1lists and perfor-
mances are drastically dropped.

New Sorting Algorithm is, at worst, almost as fast as Quicker Sort
and fully takes advantage of the sortedness of the input Tist. From
Fig. 7, it looks substantially better than Quicker Sort for 200 or more
elements, and New Sorting Algorithm is recommended on nearly sorted Tlists,

especially if the size of input is large (more than 1000).
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New Sorting Algorithm.
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V. SUMMARY

In this paper, two measures, "HOW-MANY" and "HOW-FAR," were defined
to represent the orderedness of a 1ist and nearly sorted region suggested
by those two measures.

This paper compared the performance of several sorting algorithms
on nearly sorted lists. Straight Insertion Sort performed best on very
nearly sorted lists or small lists and Quicker Sort performed best on
the remaining cases of nearly sorted 1lists, when New Sorting A1gorithm
was not considered.

New Sorting Algorithm which is developed in this paper for nearly
sorted Tist performed as well as or better than any other sorting
algorithm. In terms of computer execution time, New Sorting Algorithm
took only one-half to one-third as much time as Quicker Sort on nearly
sorted Tists with 1000 or more elements.

Some topics were left for further investigation. "HOW-FAR," which
has a great effect on the efficiency of Straight Insertion Sort, and
possible affects the efficiency of other sorting algorithms, was not
considered in the test results in this paper.

Repeated elements in the 1ist were not allowed, and some modifica-
tions on permutation may be necessary to take care of such cases.

Finally, a better sorting algorithm than the one developed in this
paper may be possible on nearly sorted Tist and other measures of nearly

sorted list may be defined and investigated.
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APPENDIX A

1. Straight Insertion Sort [Knuth, "Sorting and Searching" (1975), pp. 81].

Algorithm S (Straight insertion sort). Records Ry, ..., Ry are rearranged in

place; after sorting is complete, their keys will be in order, K; < -+ - < K.
S1. [Loop on j.] Perform steps S2 through 85 for j = 2,3,..., N; then ter-

minate the algorithm.

S2. [Setup«, K, R] Seti e j— 1, K+ K;, R — R;. (Inthe following steps
we wiil attempt to insert K into the correct position, by comparing X with
K ; for decreasing values of z.)

S3. [Compare K, K;.] If K > K,, go to step S5. (We have {found the desired
position for record R.)

S4. [Move I, decreuse 7.] Set R4, < R, theni 17 — 1. If £ > 0, go back
to step S3. (If ¢« = 0, K is the smullest key found so far, so record 72 be-
longs in position 1.)

CER [R into R{+1.] Set R,‘+1 — R. |
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2. Quicker Sort [Collected algorithms from CACM, 271-P1-0).

ALGORITHAI 271
QUICKERSORT [AM1]
R. S. Scowex* (Reed. 22 Mar. 1965 and 30 June 19635)
National Physical Laboratory, Teddinglon, England

* The work described below was started while the author was
at English Electric Co. Ltd, completed as part of the research
programme of the National Physical Laboratory and is published

by permission of the Director of the Laboratory.

procedure guickersort(a, j);
value j; integer j; array q;

begin integer 7, k, g, m, p; real i, z; integer array ul,
1t[1:n(adbs(§)4+2)/In(2)+0.017;

comment The procedure sorts the elements of the array afl:j)
into ascending order, It uses a method similar to that of QUICK-
SORT by C. A. R. Hoare [1], i.e., by continually splitling the
array into parts such that all elements of one part are less than
all elements of the other, with a third part in the middle con-
sisting of a single element. T am grateful to the referee for point-
ing out that QCICKERSORT also bears a marked resemblance
to sorting algorithms proposed by T. N. Hibbard [2, 3). In par-
ticular, the elimination of explicit recursion by choosing the
shortest sub-sequence for the secondary sort was introduced hy
Hibbard in [2]. :

An element with value ¢ is chosen arbitrarily (in QUICKER-
SORT the middle element is chosen, in QUICKSORT a random
element is chosen). 7 and 7 give the lower and upper limits of
the segment being split. After the split has taken place a value
q will have been found such that alg] = ¢ and «[7] < ¢ < alJ]
for all 1, J such that 1 £ I < ¢ < J < j. The program then
perforins operations on the {wo segments afi:¢g—1] and a[g+1:7]
as follows. The smaller segment is split and the position of the
larger segment is stored in the If and wt arrays (it and ut are
mnemonics for lower temporary and upper temporary). If the
segment to be split has two or fewer elements it is sorted and
another segment obtained from the It and 1 arrays. When no
more segments remain, the array is completely sorted.
_REFERENCES:

1. Hoarg, C. A. R. Algorithms 63 and 64. Gomm. ACM 4 (July
1961), 321.
2. Hissarp, ThHomas N. Some combinatorial properties of

cerlain trees with applications {o searching and sorting.

J. ACM 9 (Jan, 1962), 13.
3. ——. An empirical study of minimal storage sorting. Comm,
ACH 6 (May 1963), 205-213;
{i=m =1, '
N:if j—i > 1 then
begin comment This segment has more than two elements,
so gplit it;
p = (+i) + 2
comment p is the position of an arbitrary element in the
segment al7:j). The best possible value of p would be one
which splits the segment into two halves of equal size, thus
if the arruy (segment) is roughly sorted, the middle ele-
ment is un exeellent choice, If the array is completely
random the middle element is as good as any other.

If however the array all:j] is such that the parts a[l:j-+2]
and alj+24-1:j] are both sorted the middle element could
be very bad. Accordingly in  some circumstances
p 1= (i+j) + 2 should he replaced by p := (43Xj) + 4
or pTi= RANDOM(, j) as in QUICKRORT;

t = afpl;
alp] 1= ald};
g :=7j,

fork := 17 4 1 step 1 until ¢ do
begin comment Search for an element alk] > ¢ starti
from the beginning of the segment;
if alk] > ¢ then
begin comment Such an alk] has been found;
for ¢ := ¢ step —1 until k do
begin comment Now search for a[g] < ¢ starting fro
the end of the segment;
if alg] < ¢t then
begin comment afg] has been found, so exchan
alg) and afk); '
z = alk];
alk) := alq];
alq] = z;
g = g-1;
comment Search for another pair to exchanye;
go to L
end
end for ¢;
g:=k—1;
comment ¢ was undefined according to Para. 4.6.5
the Revised Arcor G0 Report {Comin. ACM 6 (J:
1963), 1-17};
go to M
end;

L: end for k;

comment We reach the label M when the search going :
wards meets the search coming down;

AM: alz) := alq);

alg) :=¢;
comment The segment has been split into the three p::
(the middle part has only one element), now store f
position of the largest segment in the If and ut arrays
reset 7 and j to give the position of the next largest segme:
if2X g > 14 jthen
begin
ltlm] := 1;
ul[m] 1= g—1;
1:= g+1
end
else
begin
i) 1= ¢41;
ut[m] = j;
Jji=g¢g—1
end;
comment Update m and split this new smaller seginc:
m = m+41;
go to N
end
else if £ > j then
begin comment  This segment has less than two elemenia
goto P
end
else
begin commment This is the case when the segment has ji.
two elements, so sort a7} and a[j] where j = 7 + 1;
if ali] > a[j) then



bhegin
z = ali];
afi] = aljl;
alj) ==z
end;

comment If the It and ul arrays contain more segments
1o be sorted then repeat the process by splitting the smallest
of these. If no more segments remain the array has been
completely sorted;
P: m = m—1,
if m > 0 then
begin
1 = l[m];
7 = ul[ml;
go to N
end;
end
end quickersort

3. Shell Sort (Collected algorithms from CACM, 201-P1-0].

ALGORITHM 201

SHELLSORT

J. Booraroyp

English  Electric-Leo  Computers, Kidsgrove, Staffs,
England

procedure Shellsort (@, n); value n; real array a; integer n;
comment all] through a[n] of a[1:n] are rearranged in ascending

order. The method is that of D. A. Shell, (A high-speed sorting

procedure, Comm. ACM 2 (1959), 30-32) with subsequences

chosen as suggested by T. N. Hibberd (An empirical study of

minimal storage sorting, SDC Report SP-Y82). Subsequences

depend on iy the first operative value of m. Here my = 2% — 1

for 28 < n < 2841, To implement Shell’s original choice of m; =

[n/2) change the first statement to m := n;
begin integer 7, j, k, m; real w;

for¢ = Istepruntilndom :=2X 17— 1;

form :=m + 2 whilem # 0 do

begink :=n — m;
for j := 1 step 1 until k do
hegin for ¢ = jstep —m until 1 do
bepgin ifali4+m] 2 ali] then go to i;
w = alt]; «li) = ali4m]; alidm] = w;
end 1;
liendy
end m

end Shellsort;
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4.

Straight Merge Sort [Knuth, "Sorting and Searching" (1975), pp.

Algorithm S (Straight two-way merge sorl). Records Ry, ..., Ry are sorted
using two memory areas as in Algorithm N,

S1.

S2.

S3.
S4.
. [End of run?] Seti«—i+41,¢g—qg — 1. If ¢ > 0, go back to step S3.
S6.

S7.

S8.
89.
S10.

S11.
S12.

S13.

[Initinlize.] Set s <0, p « 1. (For the significance of variables s, 7, 7, k, .
[, d, see Algorithm N. Here p represents the size of ascending runs to be
merged on the current pass; ¢ and r keep track of the number of unmerged
items in a run.)

[Prepare for pass.] If s =0,set ¢« 1, j— N, kN, 12N+ 1; if
s=1set te—N-+1, 72N, k0, l—N-+1. Then set d 1,
q—p, T D

[Compare K;:K;] If K; > K;, go to step S8.

[Transmit R;.] Set k «— k+ d, Ry — R;.

[Transmit B;] Set k «— k+ d. Then if k = I, go to step S13; otherwise
set By «— R;.

[End of run?] Setj«—j —1,r«—7r — 1. If r > 0, go back to step S6;
otherwise go to S12.

[Transmit R;.] Set b —k+d, By — R;.

[End of run?] Setj«—j — 1,r <7 — 1. If r > 0, go back to step S3.

[Transmit E;.] Set k <k + d. Then if &k = [, go to step S13; otherwise
set Iy «— K.

[(End of run?] Set? i+ 1, ¢ ¢ — 1. If ¢ > 0, go back to step S10.

[Switch sides.] Set ¢« p, r«—p, d«— —d, and interchange &k «> [
If j — 7 < p, return to step S10; otherwise return to S3.

[Switch areas.] Setp «—p +p. Ifp < N; set s «— 1 — s and return to S2.
Otherwise sorting is complete; if s = 0, set :

(By, ..., By) — (Byvygr, .-, Ban).

(The latter copying operation +will be done if and only if [lg N1 is odd, '

‘regardless of the distribution of the input. Therefore it is possible to

predict the location of the sorted output in advance, and copying will
usually be unnecessary.) 1
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5. Tree Sort [Collected algorithms from CACM,

ALGORITHM 144

TRELESORT 2

Arrnur I Kavres, Jr.

Westinghouse Electric Corp., Pittsburgh, Penn.
procedure TREESORT 2 (UNSORTED,n,SORTED, k, ordered);

value n, k;
integer n, k; array UNSORTED, SORTED; Boolean proce-
dure ordered;
comment TREESORT 2 is a generalized vereion of TREESORT
1. The Boolean procedure ordered is to have two real argu-
ments. The array SORTED will have the property that ordered
(SORTEDI{], SORTEDI;]) is true when j > 17 if ordered is a
linear order relation;
begin integer 7, j; array ml [1:2Xn~—1]; integer array m2
[1:2Xn—1};
procedure mintmum; if ordered (m1{2X1], m1[2X141]) then
begin ml{i] 1= m1[2X1]; m2[] : = m2[2X7] end else
begin ml{i] := ml[2Xi+1]}; m2[] 1= m2[2Xi+1] end mini-
mum;
for7i:=nstepluntil2 X n — 1 do begin mlfz) := UNSORTED
[f—n+1); m2[] i= 1 end
for i :=n — 1 step —1 until 1 do minimum;
for j := 1 step 1 until k do
begin SORTEDI[;] := ml(l]; 1 := m2[1]; mlli] := infinity;
for 7 := 1 + 2 while 7 > 0 do mintmum end

end TREESORT 2

pp. 144-pP1-0].
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6. Heap Sort [Knuth, "Sorting and Searching" (1975), pp. 146-147].

Algorithm Y (Heapsort). Records 2y, ..., Ry ave rearranged in place; after
sorting is complete, their keys will be in order, Ky < .-+ < Ky. First we
rearrange the file so that it forms a heap, then we repeatedly remove the top
of the heap and transfer it to its proper final position. Assume that N > 2.

H1. [Initialize.] Set !« |[N/2]+ 1,r « N.

H2. [Decrease lorr] If1 > 1,setle—1]— 1, R— R, K—K,;. (If]l> 1, we
are in the process of transforming the input file into a heap; on the other
hand if { = 1, the keys KK, ... K, presently constitute a heap.)
Otherwise set R — E,, K — K,, R, « Ry, and r « 7 — 1; if this makes
r = 1, sct B; « R and terminate the algorithm.

H3. [Prepare for “sift-up.”] Setj « . (At this point we have
K ke = Ky for < |k/2]< k<7 (6)

and record R, is in its final position for r < B < N. Steps H3-HS are
called the “sift-up” algorithm; their effect is equivalent to setting B, « R
and then rearranging R, ..., R, so that condition (6) holds also for

(k/2] = L)

H4. [Advance downward.] Set ¢ =7 and 7« 2. (In the following steps we
have s = | j/21) Tf j < r, go right on to step H5; if j = , go to step HE;
and if 7 > r, go to HS.

H5. [Find “larger” son.] If K; < K4, then set j « j -+ 1. ‘
He. [Larger than K?] If K > K, then go to step HS.
H7. [Move it up.] Set R; « R}, and go back to step H4.

H8. [Store ] Set Ry «— R. (This terminates the “sift-up” algorithm initiated-
in step 113.) Return to step H2, |
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APPENDIX B

New Sorting Algorithm
PROCEDURE NEW (A, N); VALUE N;
ARRAY A(N+1], B(NJ, CIN/3J;
COMMENT - A[N] contains source input when this procedure is called,
and returns sorted Tist through this array.
B(N) contains sorted elements from source input,
C(N/3) contains unsorted adjacent element pairs;
INTEGER IND1, IND2, JIND1, JND2, I, N;
COMMENT -
INDT is index for B-array at first stage,
IND2 is index for C-array at first stage,
JNDT 1is index for B-array when merged,
JND2 is index for C-array when merged;
IND1<IND2<0;
AN+ «infinity;
For I = 1 STEP 1 UNTIL N
If ACT) < AT + 1)
THEN IND1<IND1+1;
BUINDLJ<ALI];
ELSE IND2«IND2+2;
CLIND2-T]«A[I+1];
CUIND2]<A[I];
I = I+1;
WHILE AND (IND1>0, B[IND1]>ALI+1], I<N) DO
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IND2«IND2+2;

CUIND2)«BTIND1];
CUIND2-1)«A[1+1];
IND1+INDI-1;

TeI+1;

ENDWHILE;
ENDIF;
ENDFOR;
COMMENT: At this point, all elements in B-array are in order and those in the

C-array is not. So only sort G-array by Quicker Sort and then merge B- and
C-array into A-array.
CALL QUICKER (C, IND2);

JIND1<JIND2+1;
FOR I = 1 STEP 1 UNTIL N
IF BLJIND1]>C[JIND2]
THEN
ATIJ<C[IND2] 5
IND2<JIND2+1;
IF JND2>IND2
THEN
FOR I = I+1 STEP J UNTIL N
JIND1<JIND1+1;
ALI]<BLINDL] s
ENDFOR;
ENDIF;
ELSE
ALIJ«BLJINDL);
JINDL«INDL+1 5



IF JNDI>IND1

THEN
FOR I

= 1+1 STEP 1 UNTIL N
IND2+IND2+1 ;
ALTT<CLIND2] ;

ENDFOR;

ENDIF;

ENDIF;

ENDFOR;
END PROCEDURE}
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