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[1] Oregon’s forested coastal watersheds support important cold-water fisheries of salmon
and steelhead (Oncorhynchus spp.) as well as forestry-dependent local economies. Riparian
timber harvest restrictions in Oregon and elsewhere are designed to protect stream habitat
characteristics while enabling upland timber harvest. We present an assessment of riparian
leave tree rule effectiveness at protecting streams from temperature increases in the Oregon
Coast Range. We evaluated temperature responses to timber harvest at 33 privately owned
and state forest sites with Oregon’s water quality temperature antidegradation standard, the
Protecting Cold Water (PCW) criterion. At each site we evaluated stream temperature
patterns before and after harvest upstream, within, and downstream of harvest units. We
developed a method for detecting stream temperature change between years that adhered as
closely as possible to Oregon’s water quality rule language. The procedure provided an
exceedance history across sites that allowed us to quantify background and treatment
(timber harvest) PCW exceedance rates. For streams adjacent to harvested areas on
privately owned lands, preharvest to postharvest year comparisons exhibited a 40%
probability of exceedance. Sites managed according to the more stringent state forest
riparian standards did not exhibit exceedance rates that differed from preharvest, control, or
downstream rates (5%). These results will inform policy discussion regarding the
sufficiency of Oregon’s forest practices regulation at protecting stream temperature. The
analysis process itself may assist other states and countries in developing and evaluating
their forest management and water quality antidegradation regulations.
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1. Introduction
[2] Stream temperature is an important characteristic of

water quality, as it affects aquatic system productivity,
community composition, and species’ developmental rates
and fecundity [Allan and Castillo, 2007]. For states in the
Pacific Northwest, stream temperature is frequently a water
quality concern because of the effects of temperature
change on salmonid development and survival [Richter and
Kolmes, 2005]. Anthropogenic factors believed to affect
stream temperature regimes in the Pacific Northwest
include removal of streamside vegetation associated with
timber harvest, agricultural land clearing, livestock grazing,
and urban development [U.S. Environmental Protection
Agency, 2003]. Several previous studies link timber harvest
with increases in stream temperature [Beschta and Taylor,
1988; Moore et al., 2005, and references therein], and fed-
eral endangered species listings of trout and salmon species
(Oncorhynchus spp.) in the Pacific Northwest cite stream

temperature increases due to logging as a limiting factor
for population recovery [Bryant and Lynch, 1996; Myers
and Bryant, 1998; Myers et al., 1998].

[3] Stream temperature is a function of multiple energy
transfer processes, including direct solar radiation, longwave
radiation, conduction, convection, and evaporation. Of these
factors, direct solar radiation is the primary contributor to
daily maximum summer stream temperature and has the
most direct response to forest harvest [Brown and Krygier,
1970; Sinokrot and Stefan, 1993; Johnson, 2004]. There-
fore, maintaining shade may serve as an effective tool for
minimizing stream temperature heat flux during the summer
months when maximum stream temperatures are observed
[Johnson, 2004]. Oregon, among other states, enacted timber
harvest regulations (Oregon Forest Practices Act, or FPA) to
maintain stream shade following timber harvest [Oregon
Department of Forestry (ODF), 2007a]. Since removal of
shade is strongly associated with stream temperature
increases, timber harvest operations are considered in com-
pliance with Oregon Department of Environmental Quality
(DEQ) water quality standards if harvest operations comply
with the FPA [DEQ, 2004]. However, ODF must periodi-
cally conduct studies to validate the efficacy of the FPA at
meeting state water quality standards [ODF, 2007b].

[4] The DEQ developed water quality rules to comply
with the U.S. Clean Water Act (U.S. Water Pollution Con-
trol Act Amendments of 1972, sections 101(a) and 303(c))
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regulations. The DEQ water quality rules include several
stream temperature criteria. Among them is the Protecting
Cold Water (PCW) criterion that represents a federally
required antidegradation water quality rule component
(Code of Federal Regulations, Title 40, section 131.12). The
PCW applies to ‘‘cold’’ streams with temperatures below
specific temperature thresholds [DEQ, 2004]. Anthropo-
genic activities are not permitted to increase stream temper-
ature by more than 0.3�C above its ambient temperature. In
addition, the cumulative amount of anthropogenic tempera-
ture increase allowed in streams with temperature total
maximum daily loads (TMDLs) is 0.3�C for all sources
combined [DEQ, 2004; Sturdevant, 2008].

[5] Oregon’s temperature change criterion bears similar-
ities to water quality rules and guidance in other states and
countries. Oregon developed its water quality rules in close
agreement with federal water quality guidance for the Pa-
cific Northwest states of Alaska, Washington, Oregon, and
Idaho [U.S. Environmental Protection Agency, 2003].
Alaska does not permit activities to increase weekly average
temperatures by more than 1�C, nor does it allow changes
to the amplitude or frequency of normal daily temperature
cycles [Alaska Department of Environmental Conservation,
2006]. Idaho’s water quality standards [Idaho Department
of Environmental Quality, 2006] contain a variety of per-
missible temperature change thresholds, including no de-
tectable change, 0.3�C, and 0.5�C. Washington’s standards
[Washington Department of Ecology, 2003] include a 0.3�C
change threshold. States outside of the Pacific Northwest
include temperature change criteria in their standards (e.g.,
Oklahoma’s is 2.8�C [Oklahoma Water Resources Board,
2003]; Michigan’s are 1.1�C, 1.7�C, or 2.8�C, depending
on water body type [Michigan Department of Environmen-
tal Quality, 1986]). Guidance for Canada’s Alberta province
recommends against temperature increases of >3�C
[Alberta Environment, 1999], while the Australia and New
Zealand Conservation Council (ANZECC) guidance recom-
mends a procedure for detecting a shift in temperature val-
ues relative to a percentile of temperatures recorded at a
reference site [ANZECC, 2000].

[6] Detecting changes in stream temperature and attribut-
ing them to timber harvest can be difficult because of natu-
ral temporal and spatial variability inherent in these
systems. Streams generally warm in a downstream direc-
tion. The rates of change and relationships between basin
size and stream temperature patterns have been noted for
larger streams [Lewis et al., 1999; Caissie, 2006]. However,
some studies note considerable variability in longitudinal
stream temperature patterns in larger rivers [Torgerson
et al., 1999], smaller streams [Dent et al., 2008; Johnson,
2004], or side channels [Ebersole et al., 2003]. For smaller
streams, longitudinal patterns may be highly variable in
response to a variety of in-stream, microclimatic, and geo-
logic processes [Brosofske et al., 1997; Hawkins et al.,
1997; Kasahara and Wondzell, 2003]. Stream volumes
change seasonally, potentially adjusting the contributing
effects of hyporheic and surface flows. Groundwater inflows
and outflows also influence stream temperatures [Mellina
et al., 2002; Story et al., 2003]. Annual conditions and local
hydrological changes can introduce, increase, or diminish
surface and subsurface tributary inputs to specific streams,
potentially decreasing shade [Levno and Rothacher, 1967;

Brown and Krygier, 1970; Murray et al., 2000] and increas-
ing low streamflows, which would, in turn, influence several
of the factors mentioned above [Poole and Berman, 2001;
Quinn and Wright-Stow, 2008].

[7] In 2002 the Oregon Department of Forestry embarked
on a manipulative study specifically designed to control for
many of the above factors [Dent et al., 2008]. The objectives
of the study were to provide information on the effectiveness
of riparian rules and strategies at meeting DEQ water quality
standards and maintaining shade and large wood recruitment
to streams and riparian areas. The study was also developed
to quantify riparian area vegetation regeneration and allow
an examination of linkages between regeneration and the
resulting changes to shade and stream temperature. In this
analysis we focus on addressing the effectiveness of riparian
rules and strategies at meeting water quality standards, spe-
cifically the PCW. The study began with 36 sites (later
reduced to 33 because of changes in landowner harvest
plans) in Oregon’s middle and northern Coast Range. Multi-
ple preharvest and postharvest years of data collection
allowed for the determination of within-site variability of
stream temperatures across years. Control reaches permitted
further evaluation of interannual temperature variability over
the entire length of the study. We anticipated that the study’s
sample size would assist in overcoming a degree of intersite
variability in temperature behavior. In this analysis, we com-
pare stream temperatures before and after harvest to evaluate
Oregon’s antidegradation regulation for lands subject to tim-
ber harvest. The expected [Boyd and Sturdevant, 1997]
mechanism for changing stream temperature following tim-
ber harvest was increased direct solar radiation. If riparian
buffers adjacent to timber harvest provided insufficient
shade, the streams would receive increased amounts of solar
radiation, which would increase stream temperatures in
excess of the PCW. We expected evidence of insolation to
appear as a preharvest to postharvest increase in the temper-
ature difference between the treatment reaches’ upstream
and downstream probes.

[8] Our primary study objective was to evaluate the
effectiveness of private and state forest riparian rules and
management strategies at meeting the state water quality
stream temperature antidegradation standard in the Oregon
Coast Range. A requisite secondary objective was to deter-
mine a means for assessing the regulatory criterion with
empirical stream temperature data in an analysis that con-
formed as closely as possible to regulatory language. We
constrained the analysis to consider only those site charac-
teristics recognized by water quality and forestry rules and
strategies (e.g., main channel water temperature, stream
size, and land ownership). The principal results of this
study are applicable to the policy issue at hand; the results
may directly inform timber management decisions in Ore-
gon and may apply to other timber-harvesting regions with
antidegradation or cold-water standards. Our methods and
results may assist the assessment and development of anti-
degradation standards in other states and countries.

2. Methods
2.1. Field Methods

[9] Stream temperature and riparian conditions were
measured at 33 streams in the Oregon Coast Range from
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2002 to 2008. Surrounding forests were approximately 50–
70 years old and primarily managed for timber production
[Spies et al., 2002]. Treatment reaches of 16 out of 33
streams were oriented east– west (downstream azimuth
between 45� and 135� or 225� – 315� ; J. D. Groom, unpub-
lished data, 2010). An initial candidate pool of 130 streams
was reduced to those that met study criteria. Study criteria
included small or medium fish-bearing streams without
beaver ponds or debris flows. Although 10 of the 33 sites
used in the study were located along non-fish-bearing
streams or streams for which fish usage was unknown, tim-
ber harvest operators treated all streams as fish-bearing and
attempted to leave either minimum private [ODF, 2007a]
or state (Northwest Oregon State Forest Management Plan
(FMP) [ODF, 2001]) riparian buffers. Small streams are
classified as having average annual flows �57 L/s, while
medium streams have average annual flows >57 and �283
L/s [ODF, 2007b]. Even though temperature probes for
these analyses were submerged, on a subset of streams they
may have been downstream of reaches that some years
exhibited spatially intermittent surface flow, a condition
that is consistent with type F classification. We required a
‘‘control’’ reach immediately upstream of each harvest unit
that would remain unharvested for the life of the study. We
also required sites to provide at least 2 years of preharvest
data collection. Preharvest and control reach water tempera-
ture data were incorporated into the study design to provide
the temporal and spatial control necessary to separate treat-
ment effects from site and year effects [Dent et al., 2008].
Assuming selected sites were geographically representative
(all available sites that met selection criteria were included
in the study), inferential scope included private and state
forest lands in Oregon’s north and middle Coast Range.

[10] Two study reaches were established on all streams
(Figure 1). The unharvested ‘‘control’’ reach was immedi-
ately upstream of the ‘‘treatment’’ reach. Treatment reaches
were clear-cut or thinned no sooner than 2 years after the
study began. Eighteen of the 33 streams also had a ‘‘down-
stream’’ reach that was immediately downstream of the
treatment reach and was not harvested during the study
(Figure 1). Control and downstream reaches were continu-
ously forested to a perpendicular slope distance of at least
60 m from the stream’s high water level. Reach lengths
varied from 137 to 1829 m with means of 276, 684, and
288 m for the control, treatment, and downstream reaches,
respectively. Information on reach bankfull and wetted

width, gradient, composition, depth, and riparian basal area
is given by Dent et al. [2008]. Factors affecting reach
lengths included harvest unit boundaries in the treatment
reach, large changes in valley or channel characteristics, or
tributary inputs and junctions.

[11] Eighteen of the 33 sites were on privately owned
lands, and the other 15 were on state-managed forest land.
Riparian leave-tree buffer dimensions depend in part on
fish presence and stream size. Both the FPA (private) and
FMP (state) establish no-cut buffers immediately near
streams with adjacent limited entry buffers (Table 1).
While timber harvest in both state and private forests must
comply with the FPA, implementation of the FMP on state
sites results in additional leave trees and wider buffers
along streams than on private sites managed according to
the FPA. Treatment reaches were harvested according to
the FPA or FMP and included 26 clear-cuts and 7 partial
cuts. All private sites were clear-cut. Seventeen sites were
harvested along one stream bank, of which 13 were state
forest sites. The remaining 16 sites were harvested along
both banks.

[12] Stream temperature data were collected hourly
between 1 July and 15 September each year. Continuously
recording temperature loggers (Optic Stowaway Temp and
HOBO Water Temp Pro (both 60.2�C accuracy), Onset
Computer Corporation, Bourne, Massachusetts) were placed
at three to four stations per stream that bracketed the
upstream and downstream ends of each reach (Figure 1).
The first and second stations (stations 1 and 2) were located
at the upstream ends of the control and treatment reach,
respectively. Station 3 was located at the downstream end of
the treatment reach. Station 4, if present, was downstream
of station 3 and represented the end of the downstream
reach. We tested probe accuracy and placed probes accord-
ing to the Oregon Watershed Enhancement Board [1999]
protocol. Stream temperature probes were placed in shaded
locations where streamflow was relatively constant, with
reliable summer depth and a well-mixed water column. All
temperature data were visually reviewed prior to study
inclusion. If data ceased to reflect water temperature pat-
terns from well-mixed water columns (e.g., because of chan-
nels going dry), the data were removed. Probe accuracy was
checked prior to installation and in the field with National
Institute for Standards and Technology thermometers.

[13] We designed the analysis of the temperature data to
conform as closely as possible to the regulatory language

Figure 1. Study site configuration. The 33 sites have
three temperature probe stations (St. 1 through St. 3), and
18 sites have a forth (St. 4). We define a reach as the por-
tion of a stream between pairs of probes. Timber harvest
occurred in the treatment reach; the upstream and down-
stream reaches remained unharvested for the duration of
the study.

Table 1. Timber Harvest Riparian Buffer Widths Under FPA
(Private Forests) Regulations and FMP (State Forest)
Management Strategiesa

Strategy Stream Size No Entry Limited Entry n

FPA Small 0 – 6 m 7– 15 m 4
FPA Medium 0 – 6 m 7– 21 m 14
FMP Small 0 – 8 m 9– 52 m 6
FMP Medium 0 – 8 m 9– 52 m 9

aSlope distances are measured perpendicular from the stream’s high
water mark. Stream size categories are described in text; no harvest is
allowed within no entry distances; specified amounts of timber harvest are
permissible within limited entry distance; n is the number of study streams
per given category. FPA, Oregon Forest Practices Act; FMP, Northwest
Oregon State Forest Management Plan.
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of the PCW while meeting statistical requirements and
accounting for intersite and intrasite variability. We devel-
oped the methodology in collaboration with DEQ staff
members as we are aware of no formal guidance for PCW
criterion evaluation or evaluation procedure for similar
antidegradation regulations elsewhere. Our methodology
involved two analyses. The first analysis determined
whether or not specific years within reaches exceeded the
PCW. The second analysis assessed the exceedances to
determine whether they reflected a management-related
pattern.

2.2. Analysis 1: PCW Exceedance Determination

[14] Analysis 1 identified exceedances using statistically de-
fensible procedures chosen to adhere to PCW regulation. Spe-
cifically, we used generalized least squares regression to
model ‘‘ambient’’ conditions while accounting for temporal
autocorrelation. We examined prediction intervals rather than
confidence intervals because rule language indicated that we
needed to assess rule exceedance on a daily basis instead of a
seasonal basis. We added 0.3�C to the upper predictive interval
(PI) limit to incorporate the rule’s temperature change thresh-
old. A PCW exceedance occurred if any observed temperature
fell above this upper limit.

[15] The structure and data of analysis 1 were influenced by
the regulatory language of the PCW. The DEQ PCW requires
evaluation of ‘‘seven-day-average maximum temperatures’’
[DEQ, 2004, p. 26]. We obtained these values by calculating a
7 day moving mean of daily maximum temperatures and refer
to them as 7DAYMAX. The PCW’s Air Temperature Exclu-
sion (ATE) [DEQ, 2004] provision states that PCW compli-
ance will not be evaluated for days when air temperature at or
near a site is unusually warm. We interpreted the ATE to indi-
cate that PCW compliance assessment should occur for every
7DAYMAX temperature. Although we assessed the PCW at
every 7DAYMAX temperature, the ATE provision changed
our results minimally (changed 2 out of 65 exceedances to
nonexceedances).

[16] The PCW regulation [DEQ, 2004] considers assess-
ment at the level of individual locations for point and non-
point source pollution. We therefore structured our PCW
assessment to examine reaches separately. Guidance [Stur-
devant, 2008] recommends controlling for site spatial and
temporal variability by assessing temperatures above and
below as well as before and after impact. We therefore
developed an analysis that modeled the downstream tem-
perature relative to the upstream temperature for each of 2
years and examined changes in that relationship between
years. The earlier year (year 1) represented required consid-
eration of ambient conditions [DEQ, 2004], and the later
year (year 2) represented the test year.

[17] We modeled pairs of years instead of all years
within a reach for several related reasons. We obtained
between 1 and 4 years of complete preharvest data per
reach, which provided us with differing amounts of ambi-
ent information per site. The PCW language [DEQ, 2004,
p. 2] defines ambient stream temperature as ‘‘the stream
temperature measured at a specific time and place.’’ Sturde-
vant [2008] provided a nonpoint source hypothetical exam-
ple of testing the PCW that describes either using one
preharvest and one postharvest year of data or gathering
data postharvest onsite and at a nearby unharvested stream.

On the basis of these sources we interpreted the use of only
1 year of preharvest information as mimicking a minimally
acceptable timeframe to describe ambient conditions.
Therefore, we were able to standardize our assessments by
using 1 year of data to represent ambient conditions.
Finally, our examination of two preharvest or postharvest
years provided us with information on the utility of this
analysis approach in situations where no disturbance, such
as timber harvest, has taken place between the years in
question. As a consequence of using only 2 years of reach
data per comparison we expected the variability among am-
bient years to affect our ability to detect exceedances
regardless of harvest effect.

[18] Exceedance rates for the different reaches and year-
pair timings provide a variety of information. We obtain
PCW exceedance information for control conditions by col-
lectively examining results of preharvest year 1 to preharv-
est year 2 comparisons in all three reach types as well as all
comparisons within the control reach. We anticipated that
downstream reach comparisons would perform similarly to
control conditions. Although water temperature may have
become elevated at station 3 following harvest, we, like the
DEQ [Boyd and Sturdevant, 1997; DEQ, 1995], expected
the temperature change relationship between station 3 and
4 to remain stable. Preharvest year 1 to postharvest year 2
comparisons along the treatment reach provided informa-
tion on the probability of PCW exceedance following tim-
ber harvest. Treatment reach postharvest year 1 to
postharvest year 2 comparisons offered PCW exceedance
information for sites already subject to harvesting.

[19] We used a regression approach to assess whether
the relationship between a reach’s upstream and down-
stream temperatures (Figure 1) changed between years. We
treated a given reach’s downstream and upstream probe
7DAYMAX temperatures, respectively, as dependent and
independent variables (Figure 2). During year 1, the
7DAYMAX values at each probe describe stream

Figure 2. Hypothetical relationship between an upstream
probe X and downstream probe Y. Year 1 temperatures are
represented by a solid black line, and year 2 temperatures
are represented by a gray line. A null model (dashed line)
for comparing against year 2 data shares the same intercept
as the year 1 relationship but assumes the slope of the year
2 relationship.
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temperature under ambient conditions. During year 2, dif-
ferences in the relationship between the two probes reflect
a combination of background conditions and treatment
effects on stream temperature. We modeled each year-pair
(years 1 and 2) relationship using a generalized least
squares regression (GLS; function gls in R (R Develop-
ment Core Team, http://www.R-project.org) package nlme
[Pinheiro and Bates, 2000]) as it can account for the sub-
stantial residual autocorrelation present in 7DAYMAX.

[20] Temperature relationships between probes were of-
ten nonlinear over the course of a season, potentially
because of factors such as seasonal changes in solar radia-
tion or streamflows [Bren, 1997; Danehy et al., 2005]. For
each year-pair comparison we considered 12 GLS models to
capture seasonal patterns and autocorrelation behavior in the
data. Seasonal patterns were captured in four main effects
models, listed here in order of increasing complexity.

[21] Temperature relationship is constant over time (e.g.,
Figure 2):

y � �0 þ �1xþ �2I þ �3xI þ "t;

[22] Temperature relationship changes at a constant rate
over the course of the season:

y � �0 þ �1xþ �2I þ �3xI þ �4day þ �5dayI þ "t:

[23] Temperature relationship is parabolic as a function
of time:

y � �0 þ �1xþ �2I þ �3xI þ �4day þ �5dayI þ �6day2

þ �7day2I þ "t:

[24] Temperature relationship varies in a more complex
pattern over time:

y � �0 þ �1xþ �2I þ �3xI þ �4day þ �5dayI þ �6day2

þ �7day2I þ �8day3 þ �9day3I þ "t:

[25] Here y and x represent the downstream and
upstream probe 7DAYMAX temperatures, respectively,
and I represents an indicator value (0 or 1) to differentiate
year 1 from year 2, respectively. As portrayed in Figure 2,
the indicator variable and its interactions allow us to obtain
a regression line for each of the two years. The term day
refers to the Julian date. The coefficients �0 through �9 are
estimated by the regression procedure. The error term "t

was modeled as one of three autoregressive moving aver-
age processes (ARMA):

ARð1Þ "t ¼ �1"t�1 þ at;

ARMAð1; 1Þ "t ¼ �1"t�1 þ �1 at�1 þ at;

ARMAð2; 1Þ "t ¼ �1"t�1 þ �2"t�2 þ �1 at�1 þ at;

where �1 and �2 are the autoregressive parameters at lags
of 1 and 2, �1 is the moving average parameter at lag 1, and
at is the homoscedastic (white) noise term centered at 0
[Pinheiro and Bates, 2000]. Our limited number of data
points per year encouraged us to consider simple autocorre-

lation models. We selected among the resulting 12 models
by visually comparing their residual autocorrelation, nor-
mal quantile-quantile, and standardized residual plots. We
first selected a preferred ARMA parameterization for each
main effects model by selecting the parameterization that
reduced autocorrelation with the fewest parameters. We
then similarly selected among the four ARMA-corrected
main effects models. In no case did all 12 models fail to
converge; however, in some cases selected models fit
poorly (the 85th percentile of model residual standard
errors was 0.331; the 95th percentile was 0.798).

[26] Once we selected a model that described the year-
pair comparison, we constructed a null model against
which to compare the individual year 2 7DAYMAX values.
An increase in stream temperature between probes would
result in an elevation of the intercept for the relationship
between probes X and Y (Figure 2). Preliminary analyzes
revealed that slope beta values from our control compari-
sons could change significantly (p < 0.05) between years
under background (nonharvest) conditions. Since changes
in slope values were not necessarily indicative of timber
harvest effects, we decided to construct the null model
from the intercept of year 1 and the slope values from year
2 (Figure 2) and assume that the harvest effect resided
entirely in the intercept �0. This approach allowed the null
model slope to align with year 2, with the purpose of mini-
mizing detected exceedances resulting from a change in
slope. This assumption minimized our risk of registering
false exceedances but increased our risk of failing to iden-
tify true exceedances.

[27] To assess 7DAYMAX temperatures on a daily basis
and incorporate the PCW temperature increase threshold
we generated prediction intervals (PI) around the null
model and increased the upper PI endpoints by 0.3�C. Sim-
ilar to DEQ guidance for evaluating different temperature
criteria (biologically based numeric criteria [DEQ, 2004;
Sturdevant, 2008]), we interpreted one or more year 2
7DAYMAX values above the upper PI þ 0.3�C as indicat-
ing that year 2 exceeded the PCW. Figure 3 provides two
examples of year-pair comparisons. We examined all possi-
ble year-pair comparisons for each reach in the 33 sites.
We tallied year-pair exceedances and nonexceedances for
use in analysis 2.

2.3. Analysis 2

[28] The second analysis involved examining the binary
year-pair comparison results of analysis 1 (comparisons
either exceeded or did not exceed the PCW) for potential
explanatory patterns. We developed a priori explanatory
hypotheses and expressed them as the set of 23 models
described below. Independent variables included the reach
(control, treatment, and downstream) and timing (preharv-
est to preharvest, preharvest to postharvest, and postharvest
to postharvest) of each year-pair comparison. Combinations
of these variables provided nine year-pair categories (cate-
gories). Other variables of interest were stream size (small
and medium) and ownership (state and private).

[29] Our 23 specific models are derived from 6 general
models (Table 2). The first general model considered the
probability of year-pair exceedances as equal across all
nine categories (null ; no differences). The second general
model (reach; control = treatment = downstream)
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allowed exceedance rates to differ among reaches. High-
elevation, low-order streams predictably change down-
stream in flow, gradient, width, width/depth ratios, and
their substrate [Allan and Castillo, 2007]. These character-
istics among others potentially altered reach stream temper-
ature. The third general model allowed differences among
year-pair timing combinations (timing; preharvest to pre-
harvest = preharvest to postharvest = postharvest to post-
harvest). Since data recording at all sites began during the
preharvest years of 2002 and 2003, any detected exceedan-
ces could be attributed to climatic differences among years
and would therefore be expected to appear regardless of
reach type. In the fourth general model we considered the
possibility that timing and reach effects led to differences
among all categories (general model: all categories ; all
nine categories are unequal). The fifth general model (pre-
post treatment) considered the effects of timber harvest by
allowing the preharvest to postharvest treatment reach cate-
gory to differ from all other categories while treating those
other categories as equal.

[30] For the second through fifth general models we con-
sidered four refinements (models labeled with b through e
in Table 2). State and private forests have different riparian
buffer width requirements that may have produced two lev-
els of treatment effect. Model b included the parameteriza-
tion of its base general model (2a, 3a, 4a, or 5a) but
allowed the PCW exceedance rate for state site compari-

sons to differ from private site comparisons. Model c
reflected an expected difference in PCW exceedance rates
between small and medium streams. Private medium
streams require more leave trees than small streams, poten-
tially resulting in greater stream shading. Additionally, me-
dium stream and channel morphology likely differed from
small streams, and their larger flow volumes may have
masked temperature gains because of differences in ther-
mal mass relative to small streams [Poole and Berman,
2001]. Model d allowed all four combinations of stream
size and ownership to be additive and different. Model e
included an interaction effect between ownership and
stream size, which allowed the size effect to differ for the
two ownership categories.

[31] Given the difference in width between state riparian
buffers and private buffers, we thought it possible that the
wider state buffers would prevent stream warming while
private buffers would not. If this were so, we would expect
to observe elevated PCW exceedance rates for private treat-
ment reach preharvest to postharvest comparisons, relative
to all other comparisons. We named this indicator variable
PPPT (private � preharvest versus postharvest � treatment
reach). We assumed all other categories to be equal (gen-
eral model: PPPT; Table 2). As the base general model
(model 6a) already considers ownership, the only refine-
ment available is to allow differences by stream size
(model 6b).

Figure 3. Two examples of year-pair PCW evaluations. Each example is a preharvest to postharvest
comparison of a single site’s treatment reach using 7DAYMAX stream temperature data from stations 2
(upstream) and 3 (downstream). Black lines represent null model predicted values for the postharvest
data. The generalized least squares regression equation used to model both years’ data is
y � �0 þ �1xþ �2I þ �3xI þ "t; with error term adjustments of ARMA (1,1) for site 5556 and ARMA
(2,1) for site 5103 (see text for model and parameter explanations). The bottom and top gray lines repre-
sent the predicted null model’s lower 95% prediction interval (PI) and an upper 95% PI þ0.3�C, respec-
tively. Solid diamonds represent year 2 values that fell below the upper 95% PI þ0.3�C limit, and the
larger open diamonds represent values above the limit (comparison for site 5103 represents a PCW
exceedance).
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[32] We examined the patterns of year-pair exceedance
rates for these 23 models with logistic mixed effects regres-
sion (function lmer in R package lme4). For each model we
fit a random intercept by site to account for dependence
among year-pair comparison results observed at the same
site. We evaluated random effects variables for normality
with the D’Agostino normality test [Thode, 2002] and com-
pared relative model performance by examining model
Akaike information criterion (AIC) values. We interpreted
models with the lowest AIC values as best explaining
model variance and two or more models with �AIC values
(model AIC minus the lowest AIC value) <2 as having
essentially equal explanatory power [Burnham and Ander-
son, 2002]. Empirical results from our a priori AIC analysis
raised questions regarding impacts of timber harvest on
state forestlands. We therefore conducted a post hoc analy-
sis of state site year-pair comparison results with the same
mixed effects logistic regression model formulations as
described above, with the exception that all models includ-
ing ownership (state and private) were omitted.

[33] Interpretation of AIC values and model weights (! ;
the probability that a model is best given the data and set of
models considered [Burnham and Anderson, 2002]) for lin-
ear mixed effect models is problematic when comparing
models with different random effects structures [Vaida and
Blanchard, 2005; Greven and Kneib, 2009]. Because we
included random effects for site to account for dependence
among observations at the same site, our empirical analysis

maintained a constant random effects structure among mod-
els. However, the behavior of AIC for generalized linear
(e.g., logistic) models has not been well explored [Greven
and Kneib, 2009]. We therefore analyzed simulated data to
ensure that our mixed effects logistic regression model
selection inference was not biased. The main issues were to
determine (1) if empirical model weights adequately
reflected the frequency with which models were ranked as
best and (2) the frequency by which our empirically
selected top model (lowest AIC value) would be selected as
best when data were generated from another model.

[34] To conduct the simulations, we generated data sets
of PCW year-pair comparison exceedances similar in struc-
ture to the empirical data set used in the mixed effects
logistic regression of analysis 2. Each simulated data set
had the same number and type (timing and reach) of site
year-pair comparisons. We used the � estimates from six of
our empirical models (null, 2a, 3a, 4a, 5a, and 6a) along
with randomly generated site random effects values to cre-
ate groups of simulated data sets (null, 2A, 3A, 4A, 5A,
and 6A). Each group contained 1000 simulated data sets.
The random effects values for each data set’s sites were
generated using the original empirical model’s random
effects estimated parameter standard deviation value. We
fit all 23 logistic mixed effects regression models to each
simulated data set to determine AIC values and model
weights ð!Þ. We addressed simulation issues 1 and 2 by
examining the distribution of simulation analysis AIC val-
ues and model weights.

3. Results
[35] Probe malfunctions and premature harvest schedules

reduced the number of preharvest years from 2 to 1 at 12 of
84 reaches (7 of 33 sites). Riparian buffer widths averaged
40.4 m (95% confidence interval (CI) ¼ 35.1 and 45.8 m, n
¼ 33). Buffer widths were greater for state sites than pri-
vate sites (private mean ¼ 31.0 m (26.7, 35.3) ; state mean
¼ 51.8 (45.6, 58.0)). A summary of stream temperature
probe data is provided in Table 3.

[36] To evaluate performance against the PCW criterion,
we performed 614 year-pair comparisons for the three
reaches during the three timing categories of interest. We
present the raw proportions of comparison exceedances (not
taking into account site differences) by category in Figure 4.
Each site had between 7 and 45 year-pair comparisons.
Twenty-four of our sites exhibited at least one PCW year-
pair exceedance. We observed PCW exceedances in all
three reach types when comparing only preharvest years.
Of the 614 comparisons, 65 (11%) exceeded the PCW.

[37] Table 2 presents results of mixed effects logistic
regression model comparisons. The model with the lowest
AIC value of our set was model 6a: private treatment
reaches during preharvest/postharvest comparisons differ
from all other comparisons (�AIC ¼ 0; ! ¼ 0:48; observa-
tions ¼ 614, groups (sites) ¼ 33; random effects standard
deviation (SD) ¼ 1.176; fixed effects: �intercept ¼ �2:967
(standard error (SE) ¼ 0.293, p < 0.001), �PPPT ¼ 2:564
(SE ¼ 0.370, p < 0.001)). Model 6b, which is identical
to 6a except small stream estimates are allowed to differ
from medium stream estimates, received the second
lowest yet similar AIC score (�AIC ¼ 0:080; ! ¼ 0:465;

Table 2. AIC Rankings of Logistic Mixed Effects Models
Summarizing PCW Year-Pair Comparison Resultsa

Model
General
Model

Additional
Parameters k AIC �AIC !

1 Null N/A 2 410.48 45.49 0.000
2a Subreach N/A 4 392.3 27.31 0.000
2b Subreach Owner (S,P) 5 391.99 27 0.000
2c Subreach Size (M,S) 5 393.53 28.54 0.000
2d Subreach Owner and size 6 392.45 27.46 0.000
2e Subreach Owner � size 7 394.45 29.46 0.000
3a Timing N/A 4 404.77 39.78 0.000
3b Timing Owner (S,P) 5 404.9 39.91 0.000
3c Timing Size (M,S) 5 405.5 40.51 0.000
3d Timing Owner and size 6 404.72 39.73 0.000
3e Timing Owner � size 7 406.72 41.73 0.000
4a All categories N/A 6 386.33 21.34 0.000
4b All categories Owner (S, P) 7 386.21 21.22 0.000
4c All categories Size (M, S) 7 387.48 22.49 0.000
4d All categories Owner and size 8 386.58 21.59 0.000
4e All categories Owner � size 9 388.57 23.58 0.000
5a pre-post treatment N/A 3 372.21 7.22 0.013
5b pre-post treatment Owner (S, P) 4 372.06 7.07 0.014
5c pre-post treatment Size (M, S) 4 373.36 8.37 0.007
5d pre-post treatment Owner and size 5 372.42 7.43 0.012
5e pre-post treatment Owner � size 6 374.42 9.43 0.004
6a PPPT N/A 3 364.99 0 0.484
6b PPPT Size (M, S) 4 365.07 0.08 0.465

aSee text for definitions of models and general models. Model parame-
terization includes general model parameters and any accompanying addi-
tional parameters; additional parameters included combinations of
parameters to indicate land ownership (state (S) or private (P)) and stream
size (medium (M) or small (S)); k is the number of estimable model pa-
rameters; �AIC is the difference between a model Akaike information cri-
terion (AIC) value and the lowest overall AIC value; model weight, !, is
the relative probability that a given model is the best of the set. PPPT, pri-
vate � preharvest versus postharvest � treatment reach; N/A, not
applicable.
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observations ¼ 614, groups (sites) ¼ 33; random effects SD
¼ 1.131; fixed effects: �intercept ¼ �2:425 (SE ¼ 0.461, p
< 0.001), �PPPT ¼ 2:589 (SE ¼ 0.373, p < 0.001),
�Size ¼ �0:780 (SE ¼ 0.554, p ¼ 0.159)). The stream size
parameter in 6b improved the model fit over 6a by an
amount (1.92) almost equivalent to the AIC parameter pen-
alty (i.e., 2), suggesting that the additional parameter did
not substantially improve model 6b over model 6a. The
D’Agostino normality test failed to reject the hypothesis of
normality of the estimated random effects for model 6a
(�2 ¼ 3:73; p ¼ 0.155) and model 6b (�2 ¼ 2:30; p ¼
0.316). Figure 5 presents point estimates of exceedance
rates for models 6a and 6b with delta method [Casella and
Berger, 2001] derived confidence intervals. Models 5a–5e
received modest support (combined ! ¼ 0:051). The null
model and models 2a–4e received virtually no support
(combined ! ¼ 0:001).

[38] When considering the 15 state sites alone, we found
that the post hoc model with the most support was model 2a:
stream reaches differ from one another (�AIC ¼ 0;
! ¼ 0:256; observations ¼ 308, groups (sites) ¼ 15; random
effects SD ¼ 1.718; fixed effects: �intercept ¼ �2:460 (SE ¼
0.731, p < 0.001), �UpstreamReach ¼ �1:427 (SE ¼ 0.723, p ¼

0.048), �TreatmentReach ¼ �0:211 (SE ¼ 0.6291, p ¼ 0.738);
Table 4). Three other models shared similar AIC values
ð�AIC < 2Þ, including post hoc model 5a: State treatment
reaches during preharvest/postharvest comparisons differ from
all other comparisons (�AIC ¼ 1:129; ! ¼ 0:146; observa-
tions ¼ 308, groups (sites) ¼ 33; random effects SD ¼ 1.537;
fixed effects: �intercept ¼ �3:252 (SE ¼ 0.528, p < 0.001),
�PrePostTreatment ¼ 0:8848 (SE ¼ 0.465, p ¼ 0.057)). Post hoc
model 5a structurally resembled a priori model 6a. Model 5a’s
PCW exceedance estimate for preharvest to postharvest treat-
ment reach comparisons was 8.57% (95% CI ¼ 2.96%,
22.37%), while the probably of exceedance under all other sce-
narios was 3.72% (1.35%, 9.82%).

[39] Simulation study results support empirical AIC
weights (Table 5). When we examined data groups 6A and
6B (generated from models 6a and 6b, respectively), the
null model and models 2a –4e were identified as having the
lowest AIC value in less than 1% of simulation runs. Mod-
els 5a –5e cumulatively received the lowest AIC scores in
2.3% and 2.1% of the analyses involving groups 6A and
6B, respectively. Analyses for group 6A resulted in cor-
rectly selecting model 6a as best for 81.2% of group 6A
data sets, while model 6b was selected as best in 15.9% of

Table 3. Summary of Stream Temperature Probe Dataa

Temperature Metric

Station 1 Station 2 Station 3 Station 4

X SD n X SD n X SD n X SD n

7DAYMAX 11.98 1.74 13911 12.21 1.76 12881 12.64 1.74 13888 12.81 1.94 7932
Daily maximum 11.92 1.83 14787 12.14 1.85 13715 12.57 1.84 14752 12.74 2.03 8442
Daily average 11.39 1.69 14787 11.55 1.71 13715 11.85 1.62 14752 11.93 1.75 8442
Daily minimum 10.93 1.65 14787 11.04 1.66 13715 11.25 1.57 14752 11.26 1.64 8442
Daily flux 0.98 0.72 14787 1.10 0.68 13715 1.31 0.9 14752 1.48 0.98 8442

aMean ðX Þ, standard deviation (SD), and sample size (n) of 7DAYMAX, daily maximum, daily average, daily minimum, and daily flux (difference
between daily maximum and daily minimum) temperatures at stations 1 – 4. Temperature data are expressed in Celsius and represent data pooled across
33 sites and all study years (2002– 2008). Note that 7DAYMAX values are autocorrelated; standard deviation values should be viewed as summary statis-
tics only and not as estimates of true standard deviation.

Figure 4. Raw proportion of year-pair comparison exceedances. Binomial data (n ¼ 614) were used to
estimate the raw proportion of year-pair comparisons that resulted in PCW exceedance by each analysis
category. The nine categories are grouped by year-pair comparison timing (preharvest to preharvest, pre-
harvest to postharvest, and postharvest to postharvest year-pair comparisons), and within each group are
reach types (control, treatment, and downstream). Numbers above each category indicate the number of
year-pair comparisons available for calculating individual proportions.
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6A data sets. Model 6b was selected as best for 49.3% of
group 6B data sets, while model 6a was incorrectly
assessed as best in 48.3% of the 6B data sets.

[40] Models 6a and 6b were seldom selected as best
when using data generated from the first five general mod-
els. Although the null model was correctly selected as the
best model in 46.0% of null group data sets, other models
were incorrectly selected with some frequency. In 57 of the
80 null group simulation runs where model 6a was selected
as best, the null model performed similarly ð�AIC < 2Þ In
15 of those 80 instances the AIC value for 6a was >2 from
the null model and models 2a– 5e, representing a 1.5%
probability that model 6a would be selected as best from
the null group and have a �AIC > 2 from these other
models. The probability for model 6b was 1.1%.

4. Discussion
[41] Our primary objective was to evaluate the effective-

ness of riparian leave-tree requirements at meeting Ore-

gon’s antidegradation Protecting Cold Water criterion,
which shares similarities to standards in other states. Our
analysis included preharvest and postharvest data from pri-
vate and state forests in the Oregon Coast Range. Both state
and private sites were required to meet the FPA riparian
leave-tree standards around streams. State sites had addi-
tional harvest restrictions as required in the Northwest Ore-
gon State FMP, which often resulted in wider buffers with
more trees. While riparian leave-tree requirements differ,
both private and state forests must comply with the Oregon
Department of Environmental Quality’s PCW criterion.

[42] Our analysis indicated that timber harvested accord-
ing to minimum FPA standards along medium or small
fish-bearing streams resulted in a 40.1% probability that a
preharvest to postharvest comparison of 2 years of data will
detect a temperature increase of >0.3�C. The probability of
other varieties of comparisons producing a temperature
increase was 4.6%. Harvest to state FMP standards resulted
in an exceedance probability for treatment reaches preharv-
est to postharvest (8.6%) that did not statistically differ
from all other comparisons (3.7%). The a priori and sec-
ondary post hoc multimodel comparisons did not indicate
that timber harvest increased the probability of PCW
exceedance at state sites.

[43] While these results indicate a probable harvest
effect on private sites as measured with the PCW, Oregon’s
current forest practice regulations have likely reduced the
impact of timber harvest on stream temperature increases
as compared to historic practices. The 0.3�C change thresh-
old lies 1 or 2 orders of magnitude lower than findings
from studies conducted prior to enactment of riparian pro-
tection standards [Levno and Rothacher 1967; Brown and
Krygier, 1970]. The testing of forest practices may cur-
rently involve controlled, replicated, long-term monitoring
programs to detect a relatively small change among back-
ground variability. Historically, this level of investment
may not have been necessary when riparian areas were
entirely cleared, occasionally burned, and subject to
increased probabilities of channel scour.

[44] We felt it inappropriate to report the magnitude of
7DAYMAX temperature exceedances because of the con-
strained and conservative nature of our analysis. Our analy-
sis avoided committing type II errors in analysis 1 by using
the slope value from year 2 (the test year) in constructing

Figure 5. Point estimates for the two best supported
mixed effects logistic regression models (695% CI). Point
estimates represent the probability of each comparison type
exceeding the PCW. Model 6a allowed preharvest to post-
harvest year-pair comparisons for private treatment reaches
(PPPT) to differ from all other comparison types combined
(all other groups). Model 6b is similar in formulation to
model 6a except that it additionally allowed small streams
to differ from medium streams.

Table 4. Post Hoc AIC Rankings of Mixed Effects Logistic
Regression Models Summarizing PCW Year-Pair Comparisons
for State Forest Sitesa

Model General Model
Additional
Parameters k AIC �AIC !

1 Null N/A 2 169.98 2.575 0.071
2a Reaches differ N/A 4 167.41 0 0.256
2c Reaches differ Size (M,S) 5 168.67 1.264 0.136
3a Timing differs N/A 4 171.06 3.653 0.041
3c Timing differs Size (M,S) 5 172.18 4.77 0.024
4a Everything differs N/A 6 168.34 0.932 0.161
4c Everything differs Size (M,S) 7 169.54 2.134 0.088
5a pre-post treatment N/A 3 168.54 1.129 0.146
5c pre-post treatment Size (M,S) 4 169.77 2.362 0.079

aAIC model comparison performed for state forest sites alone (n ¼ 15).
See text for definitions of models and general models; see Table 2 for defi-
nitions of the columns.
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the null (ambient) model. The decision to use the slope
from year 2 instead of year 1 reflects risk aversion toward
committing spurious regulatory ‘‘exceedance’’ assessments,
a decision that might be reversed (null constructed from
year 1’s slope and intercept) by practitioners more con-
cerned about failing to detect system change when present.
If timber harvest generally increases the slope of the rela-
tionship between the upstream and downstream probe, our
method would likely have underpredicted the true fre-
quency of PCW exceedance and therefore produced under-
estimates of temperature change. Our additional use of
upper prediction intervals inflated by 0.3�C to define our
change threshold would reduce apparent change magnitude
relative to a standard confidence interval. Finally, in certain
instances our prediction intervals were further increased by
the inclusion of truncated seasonal data sets (truncation due
to probe exposure to air temperatures). As a consequence,
those regression models exhibited large estimated varian-
ces. Model variability would likely improve in such situa-
tions if the analysis included more than 2 years of data.

[45] The strength of our analysis technique lies not with
improving change detection methodologies but rather with
informing practitioners who are similarly devising, examin-
ing, or revising regulatory change thresholds. Other states
and countries have structured similar change thresholds;
however, only ANZECC [2000] appears to provide guid-
ance for testing and interpreting findings for these thresh-
olds. Of Pacific Northwest states, only Idaho includes rule
language similar to the ATE (Idaho Administrative Rules
58.01.02, 2007). We found that inclusion of the ATE
altered our results slightly but substantially affected our
method for testing the PCW. Washington, Alaska, and
other municipalities could employ a version of our tech-
nique but test for seasonal exceedance on the basis of confi-

dence intervals instead of daily exceedance via prediction
intervals. The use of 7DAYMAX, or a 7 day moving aver-
age of average daily temperatures, is common Pacific
Northwest regulatory data transformation. Although there
is a biological rationale for this variety of transformation
[U.S. Environmental Protection Agency, 2003], these auto-
correlated data require statistical manipulation to properly
adjust estimated variances. The GLS procedure itself is
data hungry as it appropriately models the reduction in
effective sample size due to autocorrelation. The 7DAY-
MAX values may be more appropriate for determining
compliance with absolute temperature threshold regulations
(e.g., DEQ [2004] biologically based numeric criteria) than
with change thresholds; one mean for reducing the degree
of autocorrelation among measurements could be to use
nonaveraged daily temperatures coupled with a greater
change threshold. Our regulatory analysis likely benefitted
from the regulatory structure [DEQ, 2004; ODF, 2007b]
that allowed us to examine a population of sites rather than
relying on individual site assessments of rule compliance.
Data collection across 33 sites and over several years of
prehaverst and postharvest conditions allowed us to esti-
mate treatment effects as well as a small (� 5%) but pres-
ent rate of exceedance under nonharvest conditions.
Individual site assessments with limited preharvest and
control information would likely produce a certain number
of false-positive findings. In addition, the assurance of reg-
ulatory compliance offered to timber harvest operators who
follow the FPA [DEQ, 2004] likely enhanced our ability to
obtain access to sites and landowner cooperation.

[46] Our model selection approach in analysis 2 enabled
us to evaluate the relative performance of several models
that presented alternate scenarios related and unrelated to
timber harvest. However, our approach required its own

Table 5. AIC Model Selection Behavior for Simulated Model Setsa

Tested Models Empirical Results Simulated Data Results (%)

Model k AAIC CO (%) Null 2A 3A 4A 5A 6A 6B

Null 2 45.49 0.00 46.0 0.1 3.3 0.0 0.0 0.0 0.0
2a 4 27.31 0.00 4.5 52.0 0.2 2.3 0.0 0.1 0.0
2b 5 27 0.00 3.1 9.3 0.1 1.0 0.1 0.1 0.0
2c 5 28.54 0.00 1.2 10.5 0.0 0.6 0.0 0.0 0.0
2d 6 27.46 0.00 0.5 2.3 0.0 0.0 0.0 0.0 0.0
2e 7 29.46 0.00 1.6 6.2 0.0 0.4 0.0 0.0 0.1
3a 4 39.78 0.00 5.9 0.0 50.0 0.0 0.0 0.0 0.0
3b 5 39.91 0.00 1.8 0.0 11.3 0.0 0.0 0.0 0.0
3c 5 40.51 0.00 2.1 0.0 10.8 0.0 0.0 0.0 0.0
3d 6 39.73 0.00 0.7 0.0 2.9 0.0 0.0 0.0 0.0
3e 7 41.73 0.00 1.8 0.0 4.9 0.0 0.0 0.0 0.0
4a 6 21.34 0.00 0.6 9.2 6.3 46.6 0.9 0.1 0.0
4b 7 21.22 0.00 0.3 1.8 1.6 8.8 0.4 0.3 0.0
4c 7 22.49 0.00 0.1 1.8 1.1 10.0 0.3 0.0 0.0
4d 8 21.59 0.00 0.1 0.3 0.5 2.0 0.2 0.0 0.1
4e 9 23.58 0.00 0.1 0.8 0.9 4.7 0.2 0.0 0.1
5a 3 7.22 1.31 5.8 3.5 2.2 15.4 62.9 0.2 0.3
5b 4 7.07 1.41 5.5 0.3 0.3 2.6 12.9 1.4 0.5
5c 4 8.37 0.74 2.4 0.7 0.6 3.3 11.2 0.1 0.0
5d 5 7.43 1.18 1.1 0.2 0.0 0.6 3.5 0.2 0.7
5e 6 9.43 0.43 3.2 0.7 0.5 1.2 6.6 0.4 0.6
6a 3 0 48.41 8.0 0.2 1.9 0.4 0.6 81.2 48.3
6b 4 0.08 46.51 3.6 0.1 0.6 0.1 0.2 15.9 49.3

aTested models and empirical results are presented and explained in Table 2. Simulated data results indicate the percent of simulated data sets that
resulted in tested models receiving the most support (lowest AIC). 1000 sets were generated for each forced ‘‘true’’ model; NULL data sets were gener-
ated from the Null model, 2A data sets from model 2a, etc. See text for an explanation of model structure and simulation methodology.
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level of validation. Greven and Kneib [2009] demonstrate
that use of AIC is appropriate for selecting among linear
mixed effects models that differ in their fixed effects
parameterization when they share the same random effects
parameterization. The authors suspected that a similar pat-
tern of results would hold true for generalized linear mixed
effects models, such as the logistic mixed effects procedure
we used. Our simulation analysis results for analysis 2 sup-
port their suspicion, as our simulation results selected the
lowest-AIC models at similar frequencies as predicted by
the AIC model weights. Furthermore, the simulation indi-
cated that the observed low AIC scores for models 6a and
6b with wide ð�AIC > 2Þ separation from the null model
were unlikely to have arisen from a ‘‘true’’ null model.

[47] This analysis completes an assessment of stream
temperature PCW rule compliance for Oregon’s state and
private forests in the Oregon coast range. The study design
was specifically developed to inform the Oregon Board of
Forestry about the ability of FPA riparian management
regulations and the state forest FMP to meet regulatory
temperature requirements. This study’s results will likely
play a role in informing ODF rule assessment regarding
the adequacy of current management practices at protect-
ing stream temperatures. The board is ultimately responsi-
ble for policy decisions that alter the Oregon Forest
Practices Act. We interpret the results to indicate that anti-
degradation compliance may be problematic for private
lands in Oregon’s Coast Range. Our analysis strictly eval-
uated a regulatory question; as a consequence, it provides
limited insight into the severity of temperature increases
or their cause. We additionally do not know the biological
significance of the rises in temperature to aquatic life in
these systems, the expected duration of expected warming,
or the persistence of this warming downstream. We there-
fore recommend that resulting policy discussions about
the riparian standards occur after additional information is
gathered from a data analysis not constrained by specific
regulatory language.

[48] We suspect that our observed changes in stream
temperature are linked to decreases in shade that result
from narrower, less dense riparian stands than were present
prior to harvest. We expect the magnitude of the tempera-
ture response to harvest will additionally be affected by
factors such as channel gradient [Subehi et al., 2009], as-
pect [Gomi et al., 2006], treatment length, channel width,
elevation [Arscott et al., 2001], channel substrate, wood
storage [Kasahara and Wondzell, 2003], and subsurface hy-
drology [Story et al., 2003]. Our next analytical effort will
incorporate these parameters, step away from regulatory
constraints, and collectively examine temperature responses
from multiple sites and years (possibly relying on a mixed
effects procedure as promoted by Tate et al. [2005]) and
summarized either seasonally or at a daily or shorter time pe-
riod [e.g., Gomi et al., 2006]. Ultimately, we hope to
describe stream temperature and large wood recruitment pat-
terns for a full 5 years postharvest, a period when riparian
vegetation has an opportunity to exploit increases in sunlight
availability [Quinn and Wright-Stow, 2008], buffers are sub-
ject to windthrow [Grizzel and Wolff, 1998], and sediment
may move into or out of the channels [Bruijnzeel, 2004].
The results from these analyses and others will inform Ore-
gon Board of Forestry policy discussions on current regula-

tions and potentially inform riparian timber harvest policy
regulations elsewhere.
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