Predicting Vulnerabilities in the Free
Open Source Software Ecosystem

by
Elsie Phillips

A THESIS

submitted to
Oregon State University

Honors College

in partial fulfillment of
the requirements for the
the degree of

Honors Baccalaureate of Science in Economics
(Honors Scholar)

Presented May 13, 2016
Commencement June 2016

AN ABSTRACT OF THE THESIS OF

Elsie Phillips for the degree of Honors Baccalaureate of Science in Economics presented on May
13th, 2016. Title: Predicting Vulnerabilities in the Free Open Source Software Ecosystem

Abstract Approved:

Carlos Jensen

Due to the interdependent nature of Free Open Source Software projects, a vulnerability in just
one highly used project can have significant and sweeping consequences across many projects,
and can inflict hundreds of millions of dollars in damage. This paper proposes a model for
predicting software vulnerabilities in highly used FOSS projects using measures of effort and
complexity. We used several measures of complexity and effort to look at the top 150 projects
listed on the Debian Popularity Contest. We determined that total development effort was the
best measure of effort and lines of code was the best measure of complexity for predicting
software vulnerabilities in these projects.

Key Words: Open Source, FOSS, Vulnerabilities
Corresponding email: elsiemaephillips@gmail.com

mailto:elsiemaephillips@gmail.com

Predicting Vulnerabilities in the Free
Open Source Software Ecosystem

by
Elsie Phillips

A THESIS

submitted to
Oregon State University

Honors College

in partial fulfillment of
the requirements for the
the degree of

Honors Baccalaureate of Science in Economics
(Honors Scholar)

Presented May 13, 2016
Commencement June 2016

APPROVED:

Carlos Jensen, Mentor, representing Computer Science

Liz Schroeder, Committee Member, Representing Economics

Lance Albertson, Committee Member, Representing the Open Source Community

Toni Doolen, Dean, University Honors College

I understand that my project will become part of the permanent collection of Oregon State University, University
Honors College. My signature below authorizes release of my project to any reader upon request.

Elsie Phillips, Author

Introduction

The Free Open Source Software (FOSS) ecosystem is a delicate one. With dependencies
spanning the full breadth of the community, vulnerabilities in just a few projects can have serious
ramifications for the entire ecosystem. For example, in 2014, a vulnerability in OpenSSL, the
most widely used open source cryptographic library', caused 17%? of the web’s secure servers to
become susceptible to attack. According to the Heartbleed Bug site, the bug, ... Allows anyone
on the Internet to read the memory of the systems protected by the vulnerable versions of the
OpenSSL software. This compromises the secret keys used to identify the service providers and
to encrypt the traffic, the names and passwords of the users and the actual content. This allows
attackers to eavesdrop on communications, steal data directly from the services and users and to
impersonate services and users.” In practice this means that user names, passwords, instant
messages, emails, and other documents and communications became accessible through this
vulnerability.?

Cleaning up after Heartbleed has been extremely expensive. According to some
estimates, fixing this vulnerability has cost at least $500 million.* At the time the Heartbleed
vulnerability was discovered, OpenSSL was significantly underfunded for the scope of the
influence of their project. It provided authentication checking for hundreds of thousands of
secure servers and software produced by multi-billion dollar companies, and yet, its average

annual operating budget was just $2,000, and only two full-time developers was dedicated to

' "The Heartbleed Bug,” Heartbleed Bug, Codenomicon, Apr, 2014, Web, 04 May 2016,
<http://heartbleed.com/>.

2 Paul Mutton, "Half a Million Widely Trusted Websites Vulnerable to Heartbleed Bug,” Netcraft, N.p., 08 Apr,
2014, Web, 04 May 2016.

3 "The Heartbleed Bug,” Heartbleed Bug, Codenomicon, Apr, 2014, Web, 04 May 2016,
<http://heartbleed.com/>.

4 Steve Pate, "Measuring the Aftershocks of Heartbleed,” Security Magazine, BNP Media, 13 May 2014,
Web, 04 May 2016.

maintaining the code base.” Due to this lack of resources, it was unable to stave-off
unmanageable technical debt, which led to far reaching consequences. To prevent future
high-impact vulnerabilities, endangered critical projects, like OpenSSL, need to be identified and
have the appropriate resources channeled to them to maintain the health of the entire FOSS

ecosystem.

Related Work

Open source software is a dramatic paradigm shift from traditional proprietary software
development. The source code is made available to the user to review and modify. The user may
then submit those modifications back to the original developers to be incorporated into the
canonical project. FOSS is a subgroup of open source software. In practice there is little
difference between open source software and FOSS other than the philosophy of the developers.
FOSS developers espouse a user’s essential freedoms: to run, study, change and redistribute
copies of the software with or without changes. Open source is a development methodology.
FOSS is an ethical stance.®

In the last two decades open source software has experienced rapid growth, even
becoming the defacto software in certain areas. For example, the Apache web server is used by
52.7% of all websites according to W3Techs.” Its closest competitor is NGINX is also open

source. Despite their ability to submit changes to the codebase, very few users choose to do so.

Shttp://arstechnica.com/information-technology/2014/04/tech-giants-chastened-by-heartbleed-finally-agree-to
-fund-openssl/

% Richard Stallman, "Why Open Source Misses the Point of Free Software - GNU Project - Free Software
Foundation," Gnu.org, N.p., n.d, Web, 06 May 2016.

7 "Usage Statistics and Market Share of Apache for Websites,” W3Techs, N.p., 01 May 2016, Web, 04 May
2016, <http://w3techs.com/technologies/details/ws-apache/all/all>.

Of those that do submit code, only a small percentage contribute the majority of code. It was
found that across 3149 open source software projects and 25 million lines of open source code,
72% of the code was contributed by the top 10% of contributors (Ghosh and Prakash, 2000). It
has also been shown that the ratio of users who contribute code to users who submit bug reports
is 1 to 5 (Valloppillil, 1998).

It is difficult to paint a comprehensive picture of the health of an open source project.
One measure of health for any software project is its level of technical debt. There is very little
consensus on what constitutes technical debt in the literature. The term was first used by
Cunningham in 1992 as a metaphor to explain that in the short-run, code quality might be

borrowed against to buy something else, but in the long run that quality must be paid back.

Shipping first time code is like going into debt. A little debt speeds development so
long as it is paid back promptly with a rewrite...The danger occurs when the debt is
not repaid. Every minute spent on not-quite-right code counts as interest on that debt.
Entire engineering organizations can be brought to a stand-still under the debt load of

an unconsolidated implementation, object-oriented or otherwise. *

This metaphor has been extended to describe many states in software development, for
example documentation debt, which is the difference between a project’s current
documentation, and what would be considered “complete” documentation of the project. In

many of the varying definitions for technical debt there is the idea of it being a measure

8 W. Cunningham, 1992, The WyCash Portfolio Management System, OOPSLA’ 92 Experience Report.

between the current state and the ideal state of the software. McConnel and Fowler proposed
that technical debt could be categorized as reckless or prudent and deliberate or inadvertent.

A project’s ability to pay down its technical debt is dependent on the resources
available to it. These resources can be measured in number of contributors or time necessary
for the software development. There have been several methods developed to estimate the level
of effort required for a software development project. The most widely adopted is the
Constructive Cost Model (COCOMO).

Developed in 1981 and updated in 2000 by Boehm, COCOMO is a way to project the
necessary cost and developer time necessary for a software project. COCOMO is subdivided
into three categories: basic, intermediate, and detailed. Basic COCOMO is good for quick and
high level projections as it estimates effort as a function of lines of code but lacks a way to
account for differentiating project attributes. The intermediate and detailed levels both take
project attributes into account, with the detailed level also factoring in the stage of

development of the project.

Methodology

The first step that we took in developing our endangeredness model was to generate a
pool of highly used open source projects. To do this, we needed a benchmark for “highly used”.
For our purposes, “highly used” refers to a project that is included in top 150 projects on the
Debian Popularity Contest and has a public git repository. This left us with 85 projects to

examine. There were several projects in the top 150 projects that were not included because they

did not have public git repositories, or they were included in other projects, like glibc which
shares a git repository with GCC.

Next we cloned the git repositories of each project and ran a data collecting bash script to
analyze the source code and the git commits for each project. The script collected information

on:

Lines of code (loc)
Initial commit date (initialcommit)
Recent commit date (recentcommit)

Active contributors (determined by the number of contributors in the last calendar

year
o Jan 1, 2015-Dec 31st 2015) (activedevs)
The total number of contributors a project has had over its lifetime (totaldevs)

Using this data we performed several other calculations. First, we computed the number
of years of active development a project has had. We did this by subtracting the initial commit
date from the most recent commit date (yearcount). Second, we calculated the age of the project
by subtracting the initial commit date from the most recent date and rounding down (age). We
also calculated several measures of development effort. The first was COCOMO, which is
divided into a three tier hierarchy of complexity: Basic, Intermediate, and Detailed. We selected
the basic categorization for our calculations. Within the basic model projects are categorized as
organic, semidetached, or embedded. An organic project has a small experienced contributor
base and has flexible project requirements. A semi-detached project has a midsized contributor
base with mixed levels of experience and with relatively flexible project requirements. An
embedded project has rigid requirements. We decided to uniformly categorize all projects as

organic. The formula to calculate effort for an organic project is a,(KLOC)", where a, = 2.4 and

b =1.05 (COCOMO). We calculated the maximum developer effort that could have been
expended on the project by multiplying the total number of developers by the year count
(totaleffort). Finally, we calculated the current developer effort by multiplying the current
number of developers by the year count (currenteffort).

Next we collected information about the number of open tickets in each project. We did
this by going to each project’s public issue tracker, whether it be bugzilla, github issues,
sourceforge, or something else, and without filtering, recorded the number of open tickets. For
the projects that used the Debian project bug tracking system we recorded the number of bugs on
the unstable release of the project because we had not done any filtering in the other projects’
bug tracking systems. However, we did choose not to include the bugs that had been marked as
“won’t fix”” since they were effectively not open. All other categories of bugs were included from
the Debian project bug tracker.

Finally we recorded the number of security vulnerabilities filed with the Common
Vulnerabilities and Exploits database. This database represents the central repository of
information about information security vulnerabilities. The search function for the database is
very weak, and operates purely off of keywords. Each vulnerability that had the particular project
name in it had to be read and categorized as a vulnerability in the project or in another piece of

software manually.

Results

We theorized that vulnerabilities could be predicted using a measure of complexity and
effort. After running several correlations we discovered a strong positive relationship between
COCOMO and vulnerabilities and loc and vulnerabilities, both having a .632 correlation. This
makes sense because COCOMO is a function of loc. As loc increases, there are more

opportunities to introduce vulnerable code.

Lines of Code vs Vulnerabilities

100 -

Vulnerahilities in the Last Year

0 50 100
Lines of Code (hundered thousands)

150

Lines of Code vs Vulnerabilities Without Outliers
30~

L]

20-

10-

Vulnerahilities in the Last Year
[]

=
i

0 2 4 6
Lines of Code (hundred thousand)

A positive relationship, 0.344309, also arose between total developers and
vulnerabilities. This was unexpected, but could be attributed to scale code review as the number
of contributors increases. There was not a correlation between bug count and vulnerabilities.
This is perhaps due to a project’s maintainer or maintainers ability to perform triage and are

maybe more likely to fix vulnerable code than buggy code.

Total Developers vs Vulnerabilities

150~

$
% 100 -
£
£
o
E
=
= 5=
2
=
=

U.-

0 5000 10000 15000
Total Developers
Total Developers vs Vulnerabilities Without Outliers
80 L] L

3
% 20-
i
£
£
8
= qp-
L
&
2
=
5>

0 500 1000 1500
Total Developers

Mean Median Max Min Standard
Deviation

age 14.04 15 28 1 279
activedevs 150.1 12 4292 0 639.7855
bugcount 2751.0 108.0 75530 0 NA
COCOMO 4139.00 375.1 57940 0.07 11185.18
loc 1079000 118200 14360000 35 2796273
totaldevs 747.2 84 18130 1 2740.66
vulnerabilities | 7.165 0 166 0 26.84428

The following model emerged after looking at the correlations of variables:

Vulnerabilities = B0 + B1 hundred thousand loc + B2 total effort +u

Loc is the measure of complexity in the equation and is measured in thousands of loc because of
the high mean for loc. There needs to be a significant change in loc for there to be an effect on
vulnerabilities. Total effort was selected because it combined the effects of both the years of

development and total number of developers.

Vulnerahilities in the Last Year

150 =

100-

50 -

Total Development Effort vs Vulnerabilities

»

100000 200000 300000
Total Developer Effort

Total Development Effort vs Vulnerabilities Without Outliers
30-

. .
|
o
i
—
= 20~
]
|
L
=
=]
[
= ~
.z
E "ID -
=
] ¢ .
@
=
= e L
- -
] -
L]
- e [T] [s []
L‘l -
i i i L] i L]
0 5000 10000 15000 20000 25000

Total Developer Effort

/[;1 hundred thousand lines of code = 1.67

For every hundred kloc added to the codebase while holding the number of developers constant,
the number of predicted vulnerabilities increases by 1.67. This result was significant at less than

1%.

B2 total effort = -0.00035

This means that for every one developer year added to a project holding loc constant, the

predicted number of vulnerabilities decreases by 0.00035. For an increase of 100 developers to a

project, the predicted vulnerabilities decreases by 0.035. This was also significant at less than
1%. The multiple r-squared for this model is 0.5512.

The robustness of this model was checked in two ways. 65% of the projects we examined
did not have vulnerabilities logged with the CVE in the last year. To investigate the effects of
adjusted loc and total effort on the extensive vs. intensive margin of vulnerabilities we divided
the analysis into two parts. First we estimated a linear probability model, regressing an indicator
for having 1 or more vulnerabilities onto loc and total effort. Then we used the Huber-White
Sandwich estimators to correct for heteroskedasticity and ran a regression on the group that had
at least one vulnerability. Both adjusted loc and total effort were significant predictors of having
a vulnerability, as well as increasing the number of vulnerabilities, conditional on having had at
least one. The coefficients after the projects with no vulnerabilities were removed and the

heteroskedasticity was accounted for with the Sandwich estimators were as follows:

El hundred thousand lines of code = 1.127207

B2 total effort = -0.0002267

We also checked the model’s sensitivity to outliers. There were several projects that were
much larger than the others and we wanted to check and see if they were driving any of the
results or if the group of smaller projects was qualitatively different. We first ran the regression

looking only at projects that had a loc of less than 755,555 because there was over 100,000 loc

division between projects. This resulted in the exclusion of 19 projects. The coefficients after

excluding those projects were as follows:

Bl hundred thousand lines of code = 0.8866046

B2 total effort = -0.0000567

Then we ran the regression excluding projects with less than 70 vulnerabilities. We did
this because there was also a clear break in the data there. This led to the exclusion of 4 projects.

The coefficients were as follows:

/ﬁl hundred thousand lines of code = 0.061438

B2 total effort = -0.0000276

In all of these robustness checks, the coefficients for the variables decreased, but there
were no qualitative change to the coefficients. Due to the high significance levels of the
variables, and the lack of qualitative changes to the coefficients after removing the outliers and
removing the projects that did not have vulnerabilities, we believe this model to be a robust

predictor of vulnerabilities.

Without Projects with > 0 Without Projects with

With All Projects Vulnerabilities >755,555 LOC
Coefficient Coefficient Coefficient
LOC 1.67 LOC 1.127207 LOC 0.8866046
Total Effort -0.00035 Total Effort -.0002267 Total Effort -0.0000567
P-value for P-value for P-value for
Model 0 Model 0 Model 0.0125
Limitations

Rather than using a pre-existing script for data collection, we chose to write our own.
This script could have been flawed in such a way that could have affected the validity of the
data. Of the data set collected with the scripts, the age of the project and the initial commit date
are both not guaranteed to be accurate. Age is calculated by subtracting the current date from the
initial commit date, and then rounding down to the nearest whole year. However, if a project was
ported over to git, that initial commit would not reflect the beginning of effort on the project.
This would lead to an underestimation of a project’s age. However, age did not prominently
factor into our model.

Several components of the dataset had to be manually collected. Vulnerabilities had to be
individually screened due to the lack of sophisticated filtering for the CVE database. A

vulnerability could have been incorrectly categorized as applying or not applying to a project. It

was also not possible to collect the number of bugs per project using a script, so this data also
needed to be individually collected. Additionally, several projects lacked publically viewable
bug tracking systems. Of these projects, a few had Debian bug trackers. How closely these bug

trackers mirror the true state of the project is unknown.

Conclusion

Open source software over the last two decades has seen a rapid proliferation of adoption.
These technologies have become the backbones of both small hobby software projects, and
multi-million dollar enterprise software. They have developed into a delicate ecosystem of
interdependent projects. When the health of one project becomes endangered due to
vulnerabilities, it has the potential to have wide sweeping effects across both proprietary and
open source software. Several of the projects we examined are supported by large corporations
or non-profits. Many however are left at the mercy of the volunteer open source community for
their continued maintenance. We have shown that as the number of developers contributing to a
project increases, the number of predicted vulnerabilities decreases, but only on a significant
scale. It takes 100 additional developer years to reduce vulnerabilities by 3.5%. High impact
open source projects need the support of entities that are able to donate developer time or the
funds to pay for full-time development. Relying on the community to be able to adequately
maintain these critical projects in their spare time and with donations from individuals is a risky

gamble that the ecosystem cannot afford.

Citations

Brown, Nanette, Ipek Ozkaya, Raghvinder Sangwan, Carolyn Seaman, Kevin Sullivan, Nico
Zazworka, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe Kruchten,
Erin Lim, Alan Maccormack, and Robert Nord. "Managing Technical Debt in
Software-reliant Systems." Proceedings of the FSE/SDP Workshop on Future of Software

Engineering Research - FoSER '10 (2010): n. pag. Web.

Fowler, M. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional.

Ghosh, Rishab Aiyer, and Vipul Ved Prakash. "The Orbiten Free Software Survey." First

Monday 5.7 (2000): n. pag. May 2000. Web. 03 May 2016.

"The Heartbleed Bug." Heartbleed Bug. Codenomicon, Apr. 2014. Web. 04 May 2016.

<http://heartbleed.com/>.

Mutton, Paul. "Half a Million Widely Trusted Websites Vulnerable to Heartbleed Bug." Netcraft.

N.p., 08 Apr. 2014. Web. 04 May 2016.

Nugroho, Ariadi, Joost Visser, and Tobias Kuipers. "An Empirical Model of Technical Debt and
Interest." Proceeding of the 2nd Working on Managing Technical Debt - MTD 'l 1

(2011):

http://heartbleed.com/

n. pag. Web.

Pate, Steve. "Measuring the Aftershocks of Heartbleed." Security Magazine RSS. BNP Media, 13

May 2014. Web. 04 May 2016.

Stallman, Richard. "Why Open Source Misses the Point of Free Software - GNU Project - Free

Software Foundation." Gnu.org. N.p., n.d. Web. 06 May 2016.

"Usage Statistics and Market Share of Apache for Websites." W3Techs. N.p., 01 May 2016.
Web.

04 May 2016. <http://w3techs.com/technologies/details/ws-apache/all/all>.

Valloppillil, V., 1998, "Open Source Software: A (New?) Development Methodology',
Unpublished working paper, Microsoft Corporation,

http://www.gnu.org/software/fsfe/projects/ms-vs-eu/halloween1.html (accessed April 04,

2016).

http://w3techs.com/technologies/details/ws-apache/all/all
http://www.gnu.org/software/fsfe/projects/ms-vs-eu/halloween1.html

