CHUNG-DI CHOU for the deqree of Master of Science in Industrial Engineering oresented on May 5. 1986.

TITLE: THE EFFECT OF UNCERTAINTY REPRESENTATION ON INFORMATION INTEGRATION PERFORMANCE IN A SIMULATED OCEAN SURVEILLANCE TASK Abstract apmroved:

Redacted for Privacy

Dr. Kenneth H. Funk II

Human overator performance was evaluated using two types of displays in a simulated ocean surveillance task. The two types of displays studied included a display in which position uncertainty information was given (polygon display) and a disolay in which uncertainty was not explicitly shown (line display). The experimental task was an association task in which subjects associated simulated radar emissions with the platforms (ships) under surveillance.

Thirty-two subjects Darticipated with the study. Each subject nerformed the task using one of the disolays. The results indicated that there was no difference in Derformance in terms of accuracy or speed for these two displavs.
by
Chung-Di Chou

A THESIS
submitted to
Oregon State University
in partial fulfillment of the requirements for the degree of

Master of Science

Completed May 6,1986
Commencement June, 1986

Redacted for Privacy

Assistant Professor of Industrial and General Engineering in Charge of Major

Redacted for Privacy

Redacted for Privacy
Dean of Graduate School

Date thesis is presented May 5 I 1986
Typed by the author

ACKNOWLEDGEMENTS

My most sincere gratitude is extended to Dr. Kenneth Funk for his quidence and encouragement throughout my study at Oregon State University.

I wish to thank many members of the Devartment of Industrial Engineering for their experience and expertise, especially Dr. Edward McDowell and Dr. Eugene Fichter.

I am grateful to Dr. James Riggs for his financial supnort during the period of my study. I also want to thank Dr. Sabah Randhawa for his friendshio.

Special thanks are due my wife. Huei-Yong, for her patience and understanding. I also wish to thank my parents for their moral and financial support.

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION 1
2 BACKGROUND 7
Int roduction to MTII 7
AI and MTII 10
Human performance in the association task 12
Probability polygons 15
Research hypothesis 27
3 METHODOLOGY 29
Independent variables and dependent 29
variables
Design 32
Subjects 34
Equipment and materials 34
Stimuli and response 41
Procedure 43
Sources of variation 47
4 RESULTS 49
Data transformations 50
Percent correct 50
Response time 60
Summary 66
5 DISCUSSION 71
Accuracy 71
Data rate and data density 80
Response time 82
6 CONCLUSIONS 84
BIBLIOGRAPHY 87

APPENDICES

Appendix A. Written materials 91
Instruction to subjects 92
Data sheet 117
Test sheet 119
Trial sheet 121
Questionnaries 123
Appendix B. Program listings 127
SCENARIO 128
ESTIMATE 140
POLYGON 147
LINE 157
READY 162
Appendix C. Program listing for ANOVA 165
Appendix D. Original data set and 172 their transformationsAppendix E. SIPS output175

LIST OF FIGURES

FIGURE PAGE
1-1 Relationship between C^{3}, ocean 5 surveillance, and MTII.
2-1 A simplified MTII model. 8
2-2 Characteristics of the human operator 13
2-3 True movement pattern of the 17platforms under ownship surveillancefrom time 0 to 12 .
2-4 The best surveillance picture for 18 the two platforms when information is received only at time $0,6,10$, and 12.
2-5 Illustration of bearing and range 19information and estimated movingdirection in the representation.
2-6 A radar emission B was detected at 21time $=7$.
2-7 Representation which shows the last 22 update of the platforms.
2-8 Examples of representation using 24 probability polygons.
2-9 Another representation shows the 26confidence region of a platformassociated with the detected radaremission B.
2-10 Baseline display for comparison: 28Line type display.
3-1 (a)One possible configuration of the 30
Line type display when a radar emission of the frequency B band was detected. (b) The configuration of the polygon 31 type display under the same conditions as in Figure 3-la.
3-2 Hardware configuration. 36
3-3 Display of the HP-86. 40

3-4	(a) A state prior to a sensor-report event under the Polygon type display. (b) A state following the sensor-report event under the Polygon type display; the detected emission was of the B frequency band.	42 43
3-5	(a) A state prior to a sensor-report event under the Line type display. (b) A state following the sensor-report event under the Line type display; the detected emission was of the B frequency band.	44 45
3-6	Experimental set up.	46
4-1	Percent correct as a function of Ship density and Data rate.	53
4-2	Percent correct as a function of Display type, case l: Ship density $=4$.	55
4-3	Percent correct as a function of Display type, case 2: ship density $=8$.	56
4-4	Performance as a function of Data rate.	58
4-5	Performance as a function of Ship density.	59
4-6	Response time as a function of Display type.	63
4-7	Response time as a function of Data rate.	64
4-8	Performance as a function of Ship density.	65
5-1	This information reveals that platform 4 possesses radar type B.	74
5-2	The display for the l4th association.	76
5-3	An illustration of the scenario.	79
5-4	An illustration of a scene in which the strategies may cause low accuracy.	81

LIST OF TABLES

TABLE PAGE
2-1 The bearing and range information 16 of the two platforms under surveillance.
3-1 Three factors, abbreviated forms, 33 and levels.
3-2 An exhibit of the 8 treatments. 33
3-3 Programs and their purposes. 35
4-1 ANOVA table for percent correct. 52
4-2 $\quad t$ values for treatment comparisons; 54comparisons between display types.
4-3 \quad values for treatment comparisons; 56 comparisons between data rate.
4-4 \quad values for treatment comparisons; 60comparisons between data density.
4-5 ANOVA table for response time. 61
4-6 Summary table of significance. 67
4-7 Summary table of the t tests. 68(at significance level $=0.05$)
5-1 (a) Strategies used in Polygon type 73 displays.
(b) Strategies used in Line type 73 displays.

CHAPTER 1

INTRODUCTION

Human factors is the discipline that tries to optimize the relationship between technology and the human. Wherever we find technology and people interacting, there is a need for human factors [Kantowitz and Sorkin, 1983]. The initial focus of human factors was mainly on designing military equipment for human use. It has been widely applied in many nonmilitary areas in present days, but applications in military systems are still stimulating much research on the subject. Some of the most important research is in the area of command, control, and communications.
"Modern warfare is electronic warfare. The side which controls the electromagenetic spectrum and denies its use to the enemy will be the winner of the next war. A ship unable to use its electronic sensors is helpless, unable to strike at the enemy or repel his blow." [Warship Commander, l979] As improvements in weapons technology increase the range from which missiles can be fired, it is essential that the effective range of sensor technology increase to compensate. Therefore, sensors must be lumped
with command, control, and communication systems under the term " $C^{3 n}$. This term is valuable because it emphasizes the unity of a system of command and control links by sensors [Friedman, 1977].

Command and control is the process whereby a set of military assets is managed in order to achieve an objective; a C^{3} system is a collection of men and machines which support this process.

The theory of C^{3} began to emerge in the last decade. It has not been possible to carry out a complete set of calculations which show how a C^{3} system will, or should behave [Lawson, 1982], but one extremely important aspect about C^{3} was introduced by Friedman [1977]: the highest level of naval C^{3} is ocean-wide surveillance. The axiom of a fleet commander is to so maneuver his fleet as to destroy his enemy's and thus to gain command of the sea. This statement conceals a major problem: how to know where the enemy fleet is in the first place.

The basic task of tactical ocean surveillance is to maintain a continuous picture of the position, identity, course and speed, and in some cases, the behavior patterns, of all platforms in the vicinity of a ship [Novak and Walker, 1978].

In general, it is difficult to maintain an accurate surveillance picture; only a partially complete, and somewhat delayed picture can be maintained. The task of ocean surveillance is itself very complex, and is characteristically one of maintaining the best possible world picture based on bits and pieces of partial information [Novak and Walker, 1978]. Hence, the task of ocean surveillance can become very difficult to perform, and depends on information from many sources that vary widely in the types of information they provide, and the area covered.

Multisource tactical information integration (MTII) in the context of tactical ocean surveillance is to determine the position, identity, course, and speed of all platforms in the vicinity of a ship [Novak and Walker, 1978]. It is one of the problems involved in the tactical ocean surveillance task being investigated in this thesis. problems of the MTII type contain a great deal of uncertainty and are hard to resolve. The uncertainty includes many things such as identity of a platform, moving speed of a platform, radar emissions of a platform, and to a certain extent, the course of a platform. Novak and Walker [1978] presented the results of their research on the MTII problem in a tactical ocean surveillance environment. The approach used in their research was artificial intelligence. They tried to find a set of rules which would apply to some of the subproblems in the

MTII problem in an information processing sense. They found out that $A I$ is presently not an appropriate field to be applied in the MTII task. Also, they examined and reported that human performance on the MTII problem was very poor.

Figure $1-1$ shows the relationship between C^{3}, ocean surveillance task, and the MTII problem, in which the C^{3} term is a more general term than the others. We can see that "MTII" is a more specific term than "ocean surveillance task".

This thesis is motivated by Novak and Walker's proposal for explicitly showing uncertainty in the display interface between the human operator and the machine. This thesis presents the results of a study of human capabilities in performing the ocean surveillance task of radar emission/platform association. The study was accomplished by comparing human performance under two types of display interfaces. The association tasks were performed while monitoring simulated, digitized, and timecompressed sensor returns displayed on a computer-graphics display.

The contents are outlined as follows. First, Chapter 2 provides descriptions of the background of the MTII problem. Along with this, a simplified model and an

Fiqure $\quad 1-1 \quad \begin{aligned} & \text { Relationship between } C^{3}, \text { ocean } \\ & \text { Surveillance, and MTII. }\end{aligned}$
example are presented to illustrate the central idea. Also, the two displays under comparison and expected results are discussed. Chapter 3 describes the methodology used to achieve the objective of the study. The experiment being employed is described in detail. Next, the results and statistical analysis of the experiment are presented in Chapter 4. There follows a discussion of results in Chapter 5. The conclusions and recommendations for future research are presented in Chapter 6.

CHAPTER 2

BACKGROUND

INTRODUCTION TO MTII

As mentioned before, multisource tactical information integration (MTII) in the context of ocean surveillance is to determine the position, identity, course and speed, of objects in the vicinity of a ship. Let us consider a simplified model of the MTII task. As illustrated in Figure 2-l, the left half of the model represents the state before information is received aboard ship. The right half of the model shows that information from different sources is integrated and displayed to the operator. The general features of this model are described in the following paragraphs.

Pieces of information such as position, identity, radar emissions, and speed of a platform must first be brought together through several communication channels at a central location. This is a serious problem due to the physical separation of the areas where different sensor reports are received aboard ship. In practice, a ship will actively gather additional information if necessary to locate and identify potentially high-interest platforms.

However, even when sensors of the same type are involved it is necessary to translate their reports into a common frame so they can be integrated; therefore, the MTII problem is made more difficult when more information sources are to be integrated. Conversion of information to locally usable form may involve such things as coordinate transformations to convert positions relative to another ship to ownship coordinates.

Existing computer systems using various mathematical techniques have generally been able to deal with only a very few kinds of information, and they are adequate only for a few very narrowly defined parameters.

The association of an input datum with the correct existing object is heavily dependent on the accuracy and timing of the report. If the association and identification information are sufficiently imprecise to allow associations of the new report with more than one existing object, the probability of an erroreous decision is high. [Kullback and Owens,1972]

After the association operation, estimates are made of position, identification, course and speed of objects. Bookkeeping of the previously analyzed data is necessary for later retrieval, for a surveillance task generally extends over a long time period. It is of course necessary to be able to retrieve information and display

```
it for the operator.
```

It can be easily seen that all the operations in an MTII task are more or less correlated to one another, and that each operation plays an important role. Therefore, the MTII problem contains several subproblems itself. As noted by Novak and walker, these problems range from relatively easy problems to impossible (unsolvable) problems. Hence, the MTII problem consists of a class of problems. Since there are presently no sensors that can provide position and identification information at the same time, it is worthwhile to investigate the MTII problem.

AI AND MTII

Artificial Intelligence (AI) is a field of inquiry within computer science that attempts to increase the reasoning and perceptual abilities of computer systems.

Novak and Walker were among the first to explore the applicability of AI technology to the MTII problem. In their work, they examined the MTII problem from information processing views and discussed the possible AI technology which might be applied to it. They selected one of the most frequently used knowledge representation and inferences systems of complex $A I$ systems - the rulebased system - to explore the applicability of AI to MTII.

Novak and Walker originally thought they could come up with a knowledge base of rules which could be applied to the MTII task. After thorough research, they concluded that $A I$ is not appropriate for the MTII task at the present time. They did come up with a few rules, but were not able to improve the current system significantly. The main reasons that $A I$ is not applicable to MTII are: (l) The lack of sufficient information for the MTII problem is the main obstacle. (2) MTII problem is ill-defined; there is not such a thing as a single, well-defined "MTII" problem. (3) The most critical subproblems of MTII are not problems of the type with which AI has dealt. Although they found some subproblems which AI can be applied to, the cost was high and payoff was low, hence it made no operational sense to them to use AI in MTII.

According to Novak and Walker's report, people perform the MTII task rather poorly. This introduces an interesting problem: how well does the human perform an MTII task, and what are the human's limitations in an MTII task? It seems to make more sense to think in terms of a system that has a human in the loop rather than a fully automatic system. Since AI is not applicable to MTII at the present time, the human still must play a vital role in such a task.

HUMAN PERFORMANCE IN THE ASSOCIATION TASK

The single most critical subproblem in MTII is the association task [Novak and Walker, l978]. This is the most critical problem since if reports are incorrectly associated, not only are errors in position and identification likely, but a single platform may be reported as multiple platforms, or multiple platforms may be reported as a single platform.

Smith [1979] presented a computer-aided manual technique for performing tracking and multisensor correlation of ocean surveillance data. In his research, some computer algorithms were used to correlate a large fraction of ship sightings. A human operator was assigned to resolve the ambiguous situations in which the computer could not decide. His results showed that better performance was obtained by having a human operator resolve ambiguous situations.

Novak and walker pointed out that human operator performance in an MTII task is poor. From the above discussion, it is easy to see that human operator can resolve problems in a specific range of difficulty. Some characteristics of human operator are outlined by Funk

Limitod abllity to - detoct - diecriminat. - recoonlze	Ubes factual, procedural knowledge May organlxe knowledoe into complex eiructuree
Depende heavily on pottern recoonltion	How Ilalted menory capocity
Mory foll to recopnlze	Hoe lialted memory duration
	Often experlencee retrleval difficulty

Utilizee eeveral approacheal
copabllitles

- Knowledoe
- Inference Lielted:
- Judgement
- Creotivity
- accuracy

Often experlence difflalty - endurance
In analyzing ituatione
Con recognlze and correct errore

I emeltive to informotion format, etructure
Ie eally overwhelmed by
large omounte of informotion
Performance moy be deoroded by mechanlcal ubtaek

Limited abllity to predict future
[1986] as illustrated in Figure 2-2. Among these characteristics, this thesis addresses memory and problem solving skills.

Since human performance on the MTII task is poor, we are interested in how many objects a human operator can keep track of at a time. Human memory can be augmented by proper coding methods, but it is limited in capacity and duration [Miller, 1956]. Greitzer et al [1982] conducted an experimental task which was similar to the MTII task to examine human memory limitations in multi-object tracking. They showed that an unaided operator can keep track of about seven tracks. When the number of tracks increased, the performance decreased. Thus, in order to elaborate the operator's memory, the elements representing information in an association task need to be meaningful to the operator.

From the results of Greitzer et al and Smith, it can be seen that one of the problems associated with human performance in the association task is the density of targets. Also, there is another serious problem which restricts human performance significantly, i.e., the sampling rate. A low sampling rate can result in an unresolved situation which will make the association task infeasible.

PROBABILITY POLYGONS

Now let us consider an example of an association task. In this example, two platforms (ships) are under ownship surveillance. Assume the bearing and range information of these two platforms are as listed in Table 2-1 but unknown to ownship, and the true movement patterns of these platforms are shown in Figure 2-3 (also unknown to ownship). During the surveillance period, ownship receives pieces of information about these platforms from sensor systems. Suppose the reports received on board contain only the information at time 0, 6, 10, and 12, then the best surveillance picture is as shown in Figure 2-4 where squares represent the platforms. Subsequently it becomes difficult to associate the new information received at time $=10$ with the existing tracks because of the low sampling rate. Hence there is much uncertainty associated with this situation.

This association problem can be solved by either increasing sampling rate or having an improved representation of the information, which are two ways to reduce the uncertainty in the decision process.

The question of interest is what the decision will be if we show not only the range and bearing information but also the estimated direction of movement in the representation. The representation in Figure 2-5 shows

	Whale		Bass	
time	bearinq	range	bearing	ranqe
0	45	21	315	32
2	30	22	330	34
4	15	23	334	34
6	7	29	5	38
8	9	31	10	47
10	27	32	5	47
12	40	34	343	49

Table 2-1
The bearing and range information of the two platforms under surveillance.

Figure 2-3
True movement pattern of the nlatforms under ownshio surveillance from time 0 to 12 .

Eiqure $2-4$	The best surveillance picture for
the two nlatforms when information	
is received only at time $0,5,10$.	
	and 12.

Fiqure 2-5
Illustration of bearing and range information and estimated moving
direction in the representation.
such a situation for this example. This representation makes it easier to associate the updating information with the previous data.

Suppose that in this example the two platforms under surveillance use their radars over some period of time. Our goal is to detect such radar emissions and decide which platform each emission comes from. Such a situation is shown in Figure 2-6. Under this representation, most people will intuitively decide that radar emission B is from track 2. What will happen if the previous position is shown for each platform? Figure 2-7 shows the situation in which the last updates for those two platforms are also shown in the representation; the decision may be changed. [Funk, 1986]

Therefore, the decisions are strongly influenced by the representation of the situation when uncertainty exists in the information. And this raises the idea of explicitly showing uncertainty in the representation of information.

The representations of platforms are all point estimates of the true positions of the platforms, and are obtained by means of sampling. It is also possible to form a confidence region for a platform under surveillance by the method of sampling. The problem arises when such representation is presented to the human operator, i.e..

Fiqure $\quad 2-6$
A radar emission B was detected
at time $=7$.

Fiqure 2-7 Renresentation which shows the last undates of the nlatforms.
can such a representation be a decision aid to the operator? This idea can be realized by providing the human operator with some extra information which is based on the same data collected for the association task.

Novak and Walker [1978] developed the concept of using probability polygons in representing information for the association task. As illustrated in Figure 2-8, the first example shows a polygon representing a 95\% confidence ellipse from a shore-based sensor. If there is a heading/speed hypothesis for the object, the polygon can be updated according to this hypothesis for the object, allowing for uncertainty in the course and speed. The second example shows how bearing-only information from a sensor such as sonar could be represented as a wedgeshaped polygon. The angular width of the wedge represents the sensor's uncertainty of the bearing.

The ellipse shape representation can explicitly show the direction of movement of the platform, which is based on the estimated heading information of the platform. The area that an ellipse covers represent a confidence region of the platform that can move around in a certain amount of time, which is based on the estimated speed information of the platform. Although this information is based on estimates, the representation does explicitly show the uncertainty. Novak and walker reasoned that this might help the human operator in an association task.
1.

95\% confidence -llipse from shore-based sensor.

2.

Bearing-only information
Ce.g. sonary.

Let us reconsider the example in Figure 2-7. In Figure 2-9, the sensor reports provide information that locates targets within ellipses of specified orientation and axis lengths; typically, these ellipses are taken to represent a high confidence area of a bi-variate normal distribution. The question that arises from this discussion is: "Will association performance be improved using polygons?".

The above examples show that the probability polygon concept allows many types of information to be represented and used for an interface between human operators and the association task. As noted by Novak and walker, the concepts of probability polygons offer a good possibility for improvement beyond what existing systems can do, and that these methods, when incorporated in a well-designed man/machine system, could help significantly with the operational problems of MTII. Furthermore, such a system could be used as a testbed to determine the effects of improvements in sensor systems in terms of the end-product of the multisensor integration process. Such a facility could be very valuable, because possible improvements or new sensor systems could be tested before major investments were made in their development. This research is aimed at evaluating human performance under such information representation methods.

Figure 2-9
Another renresentation shows the confidence reqion of a nlatform association with the detected radar emission B.

The approach used was to perform an experiment and compare the performance of human operators under two different types of displays in which the displays were varied in the manner of representing information in an association task.

RESEARCH RYPOTHESIS

The baseline display for comparison with the probability polygon display was a display which did not explicitly show uncertainties (Figure 2-10). In this display, the sensor report contained estimated bearing information only.

The experiment was an attempt to compare the two types of displays: the probability polygon display and the baseline display. The former will be called the "Polygon type display", and the later will be called the "Line type display". The main objective was to see if one type of information representation would produce better operator performance than the other. In order to answer the questions being posed in the previous paragraphs, the following hypothesis can be stated: H_{0} : Display type (Polygon or Line) does not affect operator performance.

[^0]

Fiqure 2-10 Baseline display for comparison: Line tvoe displav.

CHAPTER 3

METHODOLOGY

An experiment was designed to make inferences about human performance using the two types of displays described in the previous chapter: the polygon type display and the Line type display. Each subject in this experiment utilized one of the displays in performing a simulated, ocean surveillance task.

In the task, the subject viewed a screen which represented the display of sensor information in the vicinity of ownship. When a sensor report appeared on the screen, the subject was required to associate radar emissions with the platform which he thought was the most likely one to have generated the emissions. For example, one of the Line type displays might be as shown in figure 3-1(a) when a sensor-report event occured. The subject had to judge if radar emission B came from platform 3, 4, or 5. The same situation for a polygon type display is shown in Figure 3-1(b).

INDEPENDENT VARIABLES AND DEPENDENT VARIABLES

Three independent variables were defined. They were:

Fiqure 3-la One possible confiquration of the Line type display when a radar emission of the frequency B band was detected.

Fiqure 3-lb The confiquration of the Polygon type display under the same conditions as in Fiqure 3-la.

1) Display type (Polygon type and Line type).
2) Data rate (15 emissions and 30 emissions per experimental session.)
3) Ship density (4 ships per screen and 8 ships per screen).

Two dependent variables were selected to measure the performance:

1) Percent correct (accuracy).
2) Response time (time in seconds to respond to a sensor report).

DESIGN

The design was a completely randomized one in which there were 8 treatments. Each treatment contained 2 levels of each factor. The factors were the independent variables described in the previous section (Table 3-1).

Following Yate's notation [1933], capital letters are used to refer to factors; combinations of lower case letters and numerical subscripts, or simply the subscripts, are used to denote treatment combinations. Thus, the 8 treatments were as shown in Table 3-2. Two
levels of display type, two levels of data rate, and two levels of ship density completed a 2^{3} completely randomized factorial (CRF) design.

Factor	Abbreviated form	level 0	level 1
Display type	T	Polygon	Line
Data rate	R	15	30
Ship density	D	4	8

Table 3-1 Three factors, abbreviated forms, and levels.

level treatment factor	1	2	3	4	5	6	7	8
T	0	0	0	0	1	1	1	1
0	0	0	1	1	0	0	1	1
0	0	1	0	1	0	1	0	1

Table 3-2 An exhibit of the 8 treatment.

It was assumed that the experimental units were homogeneous; i.e., the variability among subjects was small.

The CRF design was chosen since, according to Steel and Torrie [1980], it is valuable in explanatory work where little is known concerning the optimum levels of the factors, or even which ones are important. When considerable information is available, the best approach may be to compare a very limited number of combinations of several factors at specific levels.

SUBJECTS

Thirty-two subjects participated voluntarily in this experiment. All subjects were from graduate and undergraduate schools at Oregon State University. Five of these subjects were Americans and twenty-seven were foreign students. Twenty-eight of the thirty-two were males. Two of the thirty-two reported that they had prior experience with radar systems.

EOUIPMENT AND MATERIALS

The equipment and materials used in this experiment included the following:

1) Hardware:

The experimental task was implemented on a Tektronix 4107 color graphics terminal driven by a Tektronix 4170
microcomputer. An HP-86 microcomputer with a real-time clock was interfaced to the Tektronix 4170 to pace the experiment. Figure 3-2 illustrates the configuration of this hardware.
2) Software:

Five programs were designed for this experiment to simulate the association task. Four of them were written in FORTRAN and one in BASIC (Table 3-3). The functions of each program are described in the following paragraphs. Listings of these program are contained in Appendix B.

Program	Computer language	Purpose
SCENARIO FORTRAN	Generate a scenario file which included all information.	
ESTIMATE	FORTRAN	Simulate the ownship sensor behavior.
POLYGON	FORTRAN	Draw Polygon type display.
LINE	FORTRAN	Draw Line type display.
READY	BASIC	Pace the performance of the experiment.

Table 3-3 Programs and their purposes.

Tektronlx 4170

Figure $3-2$ Hardware configuration.
a) SCENARIO: This program was used to generate true information about the platforms in the experiment, which included speed, direction of movement, radars on board, time between radar emissions, identity, and location. Several rules for the movement of platforms were derived by the experimenter from Warship Commander [1979], a commercially available naval war game which provides very realistic information about naval warfare. The program employed a simulation program developed by Law and Kelton [1982] called SIMLIB. SIMLIB is a discrete-eventoriented, FORTRAN-based simulation language, which offers simple file manipulation, statistics collection, and a time-advance routine for the programmer.
b) ESTIMATE: This program simulated ownship sensor behaviors. When there was no radar emission present, the program updated the position of each platform. When a radar emission was detected, the program generated estimated bearing information for the source of that radar emission. The main function of this program was to generate an "estimated position" for each platform through Monte Carlo simulation. It took the output file from SCENARIO, which included all true information required, and generated the "detected position" by the procedures provided by Law and Kelton [Page 258, 1982].

A sensor on board a ship can detect positions of platforms precisely only within its effective range. When the distance between the detected platform and ownship exceeds this range, precision decreases. For simplicity in this experiment, sensor accuracy was simulated by adding noise to the true position of the platform. The estimated location of a platform was computed as its true location (known from SCENARIO) plus a random term. The random term was a function of the distance between ownship and the detected ship. It was assumed that the estimated location of a platform followed a bivariate normal distribution [Law and Kelton, 1982].
c) POLYGON and LINE: These two programs utilized the Interactive Graphic Library (IGL) software support of Tektronix 4170 to facilitate the graphical display of position information on the Tektronix 4l07. Symbols such as squares, lines, ellipses, and characters can be easily generated through this support. POLYGON took the output file from ESTIMATE and drew the relevant symbols for the Polygon type display, which contained ellipses, squares, lines and a circle. The size of the ellipse represented the region that a platform would be in. When a radar emission was detected, POLYGON took the information from ESTIMATE to draw a region for the source of the radar emission. The program LINE did basically what POLYGON did except it did not draw an ellipse and when a radar emission was detected, it drew a line passing through
the mean estimated position of the emission source instead of a region.
d) READY: This program, which ran on the HP-86, was used to pace the experiment and to record the associations made by the subject. The pacing was performed by transferring data between the Tektronix 4170 and the $\mathrm{HP}-$ 86. When there was no sensor-report event, the Tektronix 4170 simply sent an arbitray datum to the HP-86. Then the $4 P-86$ responded with the simulation time. When sensor-report events occured, the Tektronix 4170 sent the request for subject input to the HP-86. Next, the HP-86 asked the subject to enter his choice. After the subject entered his decision, the $H P-86$ returned the answer to the Tektronix 4170. All associations made by the subject were shown as a table on the monitor of HP-86 for the subject's reference (Figure 3-3).
3) Written materials:

Written materials included two sets of instructions to the subject, a data sheet, a test sheet, and a trial sheet. A copy of these materials can be found in Appendix A.

ASSOCIATION INFORMATION

platform/aseoclation

STIMOLI AND RESPONSE

The stimuli used in this experiment were a series of sensor-report events. For example, under the Polygon type of display, the presentation of a sensor-report event was shown as in Figure 3-4. In Figure 3-4(a), the display represents the state prior to a sensor-report event. After a period of time, a radar emission of type B was detected from either platform 3 or l. Hence, a sensorreport event occured. This is represented in Figure 3$4(b)$. For the Line type display given the same scenario as in Figure 3-4, the situation is represented in Figure 3-5.

The subject was required to make one association when a sensor-report event occured. During the other time, the screen displayed the locations of all platforms. The positions of platforms were updated according to the time elapsed between each update.

PROCEDORE

The subjects were tested individually, each of them performing one treatment. Four subjects participated in each treatment.

The subject's task was to associate each radar emission given by a sensor report with one of the

Fiqure $3-4 \mathrm{a}$
A state orior to a sensor-report event under the Polygon type display.

1

Fiqure 3-4b A state following the sensor-report event under the Polyaon type display; the detected emission was of the B frequence band.

Fiqure 3-5a A state orior to a sensor-report event under the Line tvoe display.

Fiqure 3-5b A state following the sensor-report event under the Line type display; the detected emission was of the B frequency band.
platforms. This required the subject to monitor the display and respond when a sensor-report event occurred. When this happened, the subject responded by hitting a key designating the identity of the platform which he thought was the most likely one responsible for generating the emission.

Testing was conducted in a small quiet room. The subject was first seated at a desk 29 inches in height with the center point of the Tektronix 4170 screen at a height of 12 inches above the desk. The HP-86 monitor was on the left hand side of the subject at the same height as the Tektronix 4107. Viewing distance was 22 inches (Figure 3-6).

Figure 3-6 Experimental set up.

Next, the subject sat at the station, and detailed written instructions were provided to familarize him with the task. Two sets of instructions were used in the experiment, but each subject read only one of them according to the display assigned. Then he was given a written test to be qualified for the task. This was done to insure that the subject understood the database of ships and radars in the experiment. When the subject passed the written test and indicated that he understood the task procedures, 10 trials with feedback were provided for him as warmup. A trial sheet was provided to the subject during the 10 trials. It was required for the subject to fill out the trial sheet for these trials.

After the detailed instructions and warm up trials, the test began. Upon completion of the experiment the subject was given a questionnarie to fill out. The purpose of this questionnaire was to gather opinions and strategies used by the subjects. Two questionnaires were designed for the two types of displays; each subject received the one which was related to his treatment. Responses were used to perform subjective evaluation of the display on which he was tested, and to discover the strategies used in this experiment. A copy of the questionnarie can be found in Appendix A. Results of the questionnaires are discussed in Chapter 5.

SOURCES OF VARIATION

A characteristic of all experiments is variation. The sources of variation in this experiment are discussed below.

1) Scenario: The design of a scenario was based on two levels of data rate and two levels of ship density. There were altogether four different scenarios. The main objective of this experiment was to compare display types; therefore, when data rate and ship density were fixed, subjects with different displays still viewed the same scenario. For example, the subjects in treatment 1 (Polygon 15 emissions 4 ships), and treatment 5 (Line 15 emissions 4 ships), viewed the same scenario but under different displays. The same was true for subjects in treatment 2 and 7,3 and 6 , and 4 and 8.
2) Time of day: No early morning or late night sessions were conducted. All experiments were conducted between 9 A.M. and 5 P.M..
3) None of the subjects were color-blind, which might have influenced interpretation of the color coding.

The results of this experiment are presented in the following chapter.

CHAPTER 4

RESULTS

This section presents the statistical analysis and results of the experiment. The experiment was a completely randomized 2^{3} factorial design, in which the factors were T (display type), R (data rate), and D (ship density). Performance measures of the experiment were percent correct and response time.

Two major statistical analyses are performed, analysis of variance (ANOVA) and comparison of means. The assumptions underlying these analyses are that the samples were independent, identical samples from normally distributed random variables. The process of analysis for each explanatory variable started with ANOVA, and then t tests were made to compare the means of interest.

The ANOVA calculations were performed by a computer program developed for the IBM PC based on a statistical model adopted from Miller and Freund [1977]. A copy of this program can be found in Appendix C. Calculations for t-tests were done using the SIPS (Statistical Interactive Porgramming System) developed at Oregon State University. All statistical analyses employed the 0.05 level of significance.

DATA TRANSFORMATION

Cox [1970] described that the most useful way to deal with binary data is to perform a logistic transformation for fullfilling the assumption of normality. percent correct of each subject was obtained by computing the sum of successful associations divided by total number of associations. Therefore, the raw data of percent correct were transformed according to the logistic transformation:

$$
u_{i}=\ln \left(p_{i} / l-p_{i}\right) \quad i=1 \text { to } 32,
$$

where p_{i} is the percent correct for the $i^{\text {th }}$ subject, and u_{i} is the natural log of the success/failure ratio. For example, if $p l=0.9333$, then $u_{1}=\ln (0.9333 / 0.06667)$, which is 2.639, and so on. The original data and their transformations can be found in Appendix D.

PERCENT CORRECT

The analysis concerning percent correct was performed on the transformed data.
(A) ANOVA

The ANOVA table for percent correct is presented in Table 4-1. The effect of display type was not significant, which was not expected. $[F(1,21)=.1516$]. This will be discussed in the "Discussion" section. However, data rate had a very significant effect [$F(1,21)$ $=112.2655]$; as expected, the higher the data rate, the more information that had to be processed by the subject and the higher the probability of making wrong associations. The effect of D was also significant [$F(1,21)=156.0246$]; in general, more ships meant that there were more choices and hence it was more difficult to decide. Figure 4-1 shows the effects of R and D. It can be easily seen that there is a trend to a lower performance as the rate and density increase.

By the ANOVA table, the effect of R interacted with that of $D[F(1,21)=41.3891, p<.01]$, which was expected, too. The display type T neither interacted with R nor with D. The three factor interaction was significant, too.
B) t-test

Inferences about mean performance under each factor were drawn. Before performing the tests, F tests were

Source of variation	Degree of freedom	Sum of squares	Mean squares	F value
Replicates	3	0.0191	0.0064	0.0673
Main effects				
T	1	0.0143	0.0143	0.1516
R	1	10.6127	10.6127	112.2655**
D	1	14.7664	14.7664	156.2046**
Two-factor interactions				
TR	1	0.2102	0.2102	2.2233
TD	1	0.3126	0.3126	3.3067
RD	1	3.9126	3.9126	41.3891**
Three-factor interaction				
TRD	1	2.0746	2.0746	21.9461*
Error	21	1.9852	0.0945	
Total	31	33.9076		

Table 4-1 ANOVA table for performance accuracy.

Figure 4-1
Percent correct as a function of Ship density and Data rate.
done to support the assumption that the two samples under comparision had a common population variance. For factor T, the display type, three treatment comparisons showed significant differences. Figure 4-2 and Figure 4-3 illustrate the descriptive results under this factor.

There was no difference between the display type when $R=15$ and $D=4$. However, the other three comparisons were all significant. For performance under $R=30$ and D $=4$, and $R=15$ and $D=8$, the polygon type of display was better than the Line type display. Performance under $R=$ 30 and $D=8$, the Line type display was better. The t values for each comparison are summarized in Table 4-2. The results were not clear enough to draw the conclusion that which type of display was better, or there was a difference between the displays.

Hypothesis: $H_{0}: \mu_{A}=\mu_{B}$ vs $H_{1}^{+}: \mu_{A}>\mu_{B}$	or $H_{1}^{-}: \mu_{A}<\mu_{B}$	
Comparison between treatment	Calculated t value	Decision
1 and 5	-1.00	Accept H_{0}
2 and 6	2.9422	Accept H_{1}^{+}
3 and 7	3.1692	Accept H_{1}^{+}
4 and 8	-3.1538	Accept H_{1}^{-}

Table 4-2 t values for treatment comparisons; comparisons between display types.

Percent correct

Fiqure 4-2
Percent correct as a function of Display type. Case l: Ship densitv $=4$.

Figure 4-3
Percent correct as a function of Display type. Case 2:
Shin density $=8$.

Because T was not significant in the ANOVA, the results from the two types of displays were collapsed for further analyses. Figure 4-4 shows the performance as function of data rate. As the result of this analysis (Table 4-3), it is clear that the performance was better under the lower data rate condition.

Comparison between treatment	Calculated t value	Decision
$1+5$ and $3+7$	$12.0417^{* *}$	Accept H_{1}^{+}
$2+6$ and $4+8$	1.8658	Accept H_{0}

Figure 4-5 shows the performance as a function of ship density. The t values are listed in Table 4-4. It can be seen that although at significance level $=0.01$ at data rate [D] = 30. $2.6489<2.97$; but it would be significant if the siqnificant level was 0.05. This means that the performance was better under shin density $=4$. The t values for the above comparisons are contained in the SIPS output form and can be found in Appendix E.

Fiqure $\quad 4-4$
Performance as a function of Data rate.

Percent correct

Figure 4-5 $\begin{array}{ll}\text { Performance as a function of } \\ \text { Shin density. }\end{array}$

Comparison between treatment	Calculated t value	Decision
$1+5$ and $2+6$	$14.3911^{* *}$	Accept H_{1}^{+}
$3+7$ and $4+8$	2.6489	Accept H_{0}

Table 4-4 t values for treatment comparisons; comparisons between data density.

RESPONSE TIME

A) ANOVA

Table 4-5 shows the ANOVA table for response time. The results showed that neither the main effects nor the interactions were significant. The reasons for these results could be due to the design of this experiment, which will be discussed in the next chapter.
B) t-test

Before comparing the mean Derformances between each factor, the data were combined. For examole, the Derformances under different data rate and shin density were combined to compare the performance of two disolay types. To compare the performance under the two data rates, data from different disolay types and ship densities were combined, and so on.

Source of variation	Degree of freedom	Sum of squares	Mean squares	F value
Replicates	3	1144.3570	381.4523	2.4677
Main effects				
T	1	19.4376	19.4376	0.1257
R	1	464.4963	464.4963	3.0050
D	1	61.1291	61.1291	0.3955
Two-factor interactions				
TR	1	8.6930	8.6930	0.0562
TD	1	0.3894	0.3894	0.0025
RD	1	197.1007	197.1007	1.2751
Three-factor interaction				
TRD	1	53.2377	53.2377	0.3444
Error	21	3246.0880	154.5756	
Total	31	5194.9290		

Table 4-5 ANOVA table for performance of response time.

Figure 4-6 shows the mean response time for the two display types. It can be seen that there was no statistical difference. The t value was .3357 , which was less than the table value of 2.0423 (degrees of freedom $=$ 30).

The performance under different data rates was not significant, either. Even though Figure 4-7 seems to indicate that response time was longer for data rate $=30$, this difference was not statistically significant (t value $=-1.7163$, table t value $=-2.0423$)

As above, the effect of ship density on response time was not significant. The t value was -1.1549 and the mean response time is shown in Figure 4-8.

The t values for the above three comparisons are contained in the SIPS output form and can be found in Appendix E.

Response time in seconds

Fiqure 4-6 Response time as a function of Disolay type.

Response time in seconds

Figure 4-7 Response time as a function of Data rate.

Response time in seconds

Figure 4-8 Performance as a function of Shio density.

SUMMARY

Table 4-6 presents the statistical significance for the ANOVA for all levels of treatment in all categories considered for this experiment.

The summary for all tests under both performance measurements is presented in Table 4-7. For the comparison of display types. "l vs 5" stands for "treatment 1 vs treatment 5 ", and so on. The table shows comparison criteria, calculated t values for each test, table t values under given test and degrees of freedom, test decision, and the factor which resulted in higher (better) performance.

Source of variation	Percent correct	Response time
Replicates	NS	NS
Display type (T)	NS	NS
Data rate (R)	S	NS
Ship density (D)	S	NS
$T * D$	NS	NS
$T * R * D$	S	NS

TABLE 4-6 Summary of Significance.

Comparison factor: Display type

Performance measurement	Comparison criteria	Calculated t statistic	Table t value	Test decision	Higher performance criteria
Percent correct	1 vs 5	-1.00	$\begin{aligned} & \mathrm{t}=2.4469 \\ & \text { (d.f. }=6 \text {) } \end{aligned}$	not significant	no difference
	2 vs 6	2.9421	$\begin{aligned} & t=2.4469 \\ & \text { (d.f. }=6 \text {) } \end{aligned}$	significant	Polygon type display
	$3 \text { vs } 7$	3.1692	$\begin{aligned} & t=2.4469 \\ & (d . f .=6) \end{aligned}$	significant	Polygon type display
	4 vs 8	-3.1538	$\begin{aligned} & t=2.4469 \\ & (\mathrm{~d} . \mathrm{f} .=6) \end{aligned}$	significant	Line type display
Response time		0.3357	$\begin{aligned} & t=2.0423 \\ & (\mathrm{~d} . \mathrm{f} .=30) \end{aligned}$	not significant	no difference

TABLE 4-7a Summary of the t tests (significant level $=.05$).

```
Comparison factor: Data rate
```

Performance measurement	Comparison criteria	Calculated t statistic	Table t value	Test decision	Higher performance criteria
Percent correct	```case l: test under ship density = 4. case 2: test under ship density = 8.```	$\begin{aligned} & 12.0417 \\ & 1.8658 \end{aligned}$	$\begin{aligned} & t=2.1450 \\ & (d . f .=14) \\ & t=2.1450 \\ & (d . f .=14) \end{aligned}$	significant not significant	Low data rate (15 associations per session) no difference
Response time		-1.7163	$\begin{aligned} & t=2.0423 \\ & (d . f .=30) \end{aligned}$	not significant	no difference

TABLE 4-7b Summary of the t tests (significant level $=.05$).

Comparison factor: Ship density

Performance measurement	Comparison criteria	Calculated t statistic	Table t value	Test decision	Higher performance criteria
Percent correct	```case l: test under data rate = 15```	14.3911	$\begin{aligned} & t=2.1450 \\ & (\mathrm{~d} . \mathrm{f} .=14) \end{aligned}$	significant	Low ship density
	```case 2: test under data rate = 30```	2.6489	$\begin{aligned} & t=2.1450 \\ & (\mathrm{~d} . \mathrm{f} .=14) \end{aligned}$	significant	Low ship density
Response time		-1.1549	$\begin{aligned} & t=0423 \\ & (\mathrm{~d} . \mathrm{f} .=30) \end{aligned}$	not significant	no difference

TABLE 4-7c Summary of the $t$ tests (significant level $=.05$ ).

## CHAPTER 5

## DISCUSSION

The two measurements of human performance used in this experiment were accuracy and response time. They were applied for two different types of displays (i.e., Polygon and Line) under a set of combinations of two levels of independent variables (i.e., data rate and data density). This section presents the discussion of the results from the experiment.

## ACCURACY

There was no significant difference in overall accuracy between the two displays $[F(1,21)=.1516, p-$ value = .l0J. While there were some differences between the display types over different treatments, these differences were inconsistent. For example, the effect of display type was significant when comparing the two sample means under the same data rate and same data density; but neither display was consistently superior to the other. This can be explained by the possibility that some effects were canceled out by other effects in the treatments. Also, this may be related to factors such as the design of the displays, training of subjects, and the scenarios being used.

## 1) Design of the displays:

The design of the displays was the major concern in this research project. We were to test if the polygon type display could be an aid to human operators while performing the MTII task. One way to investigate this qualitative question is to look at the subjective responses from the post-experiment questionnaries.

The strategies employed by the subjects were obtained from the questionnaries as shown in Table 5-1. The strategies employed by the Polygon type subjects are listed in Table 5-1 (a); the strategies of the Line type subjects are listed in Table 5-1 (b).

Under the polygon type display, $31.25 \%$ of the subjects chose the platform which was closest to the middle of the sensor report (Center of the report), another $31.25 \%$ employed the largest intersection coverage of the uncertain region and the sensor report as their strategy (Intersection coverage), and 31.25\% of the subjects relied on the direction of movement of the platform (direction of platform) when there was more than 1 candidate for the target platform. $6.25 \%$ of the subjects (i.e., one subject out of 16 ) used previous associations as a reference. This subject indicated that he made detailed reference to the $\mathrm{HP}-86$ monitor. For example, as illustrated in Figure 5-1, the first 13

Polygon type display   Strategies employed	Percent
Center of the report	$31.25 \%$
Intersection coverage	$31.25 \%$
Direction of platform	$31.25 \%$
Previous associations	$6.25 \%$

Table 5-1 (a) Strategies used in Polygon display.

Line type display
Strategies employed
Percent
Closeness to report 75\%
Distance to ownship 25\%

Table 5-1 (b) Strategies used in Line display.
platform/association

associations show a tendency that platform 4 (track 4) emits radar $B$ all the time. Hence, it makes more sense to select 4 again on the 14 th association given the display on Figure 5-2. Under the Line type display, the strategies were narrowed down to closeness and distance: $75 \%$ of the subjects chose the platform which was nearest to the line (Closeness to report), and $25 \%$ of the subjects chose the platform which was nearest to ownship. On the quantity of strategies, the subjects using Polygon display employed more strategies than those who using Line type display. The mean accuracy under the two displays differ by a very small margin. Most of the subjects in this experiment turned out to be performing an absolute judgement task instead of thinking about the meaning behind the abstract symbols. This leads to the discussion of training.
2) Training

There was only one subject in the experiment who did a detailed trace on his previous associations. This strategy was good only if his associations of a specific platform were accurate, otherwise it could be even worse upon the completion of the experiment.

The other subjects did not pay much attention to the data sheet provided to them as the database of platforms and radar information in this experiment. One important


The display for the 14 th association.
drawback of the design of this data sheet was that two of the platforms (i.e., WHALE and TROUT) had exactly the same type of radars (i.e., they both possessed radar types $B$, H, and I). This made the first question on the postexperiment questionnaire very difficult to answer if indeed WHALE and TROUT were engaged in the scenario. It would be much better to have only a few different type radars in different platforms in the data sheet.

For most of the subjects a lo-minute warm up trial was not enough to let them understand the task. First, the association task was complicated to perform. Next. it required more elaboration to encode abstract symbols into memory under such an experimental situation. The subjects failed to recognize the meaning behind those symbols. Mills [1973] performed an experiment to evaluate operator capabilities in performing a surveillance task of aircraft track initiation and maintainance. The subjects in his experiment received at least 50 hours of training in order to perform the task. Greitzer et al [1982] pointed out that rehearsal serves as a memory maintenance function that refreshes the encoded representations that would otherwise be lost from primary memory. Because of the lack of experience, it would be considered that the subjects in this study didn't even have enough training to encode enough knowledge to permit successful task performance. Therefore, the subjects possibly did not understand the task well enough. This could be resolved
in two different ways. One would be to make the task easier. For example, make the experimental task into a simple stimulus/response task such that little cognitive ability is required. The other one is to prolong the training until each subject receives a specific amount of time. It is quite possible that, since rehearsal is a way to imptove the performance on a task, more training would result in different results for this experiment.
3) Scenario

Important factors affecting performance were the scenarios in this experiment. These scenarios were pseudo war games, which were designed by the experimenter. Figure 5-3 displays a scenario with 4 platforms on the sea. The symbol * represents the time for radar emission of each platform, and the positions of each platform are denoted by showing the current time beside its route. For example, the platform "WHALE" has the highest speed, and it emits its radar at time $=10$, 20 , and 40 units. Consider at time $=20$, it would be easy for the subject to decide where radar $E$ is from (in this example it is from platform "BASS"). But at time=45, while we can see from the scenario that radar $E$ is from platform BASS, it is difficult for the subject to decide while he is viewing the display in real time. Therefore, the degree of

difficulty varies over a large range. When the scenarios were applied using the two displays, the same scenario could be perceived differently by the same subject. For example, one of the scenes in this experimental task occured as shown in Figure 5-4. Radar emission $B$ was truly from platform 2, but under the Line type display, the subjects employing the closeness strategy would choose platform 1 as their answer (which was a wrong association), but $75 \%$ of the subjects used such a strategy.

## DATA RATE AND DATA DENSITY

The results revealed a significant difference in accuracy under different data rates $[\mathrm{F}(1,21)=112.2655$, $p-v a l u e=0$ ] or under different data density $[F(1,21)=$ 156.2046. $p$-value $=0$ ]. The results were in accordance with Greitzer et al [1982]. There is a strong evidence that decision making performance degrades substantially as track load increases beyond human capacity limits.

One drawback of this $2^{3}$ factorial design is that there are only two levels of independent variables: this makes the prediction of performance for other data rates and densities more difficult.


Figure 5-4
An illustration of a scene in which the strategies may cause low accuracy.

## RESPONSE TIME

The results revealed there was no statistical significance for either the main effect or any interactions. In the simulated MTII task, there was no time limit for the subjects to respond. However, the situation is different in the real world such as in a threat condition where the human operator is required to produce a fast response. One consideration about designing this experiment was to select different time limits for subjects to respond in the experiment. For example, an association must be made in 3 , 5 , or 10 seconds by the subject. Under such conditions, the factor of data rate would not be as consistent as it would be among the subjects, for the subjects might have missed some responses under a short response duration. It is also very difficult to simulate the task in the real world situation and produce crises to stress the subjects in the laboratory.

For the display types, the mean response time using the Polygon display was numerically greater than the Line type display. Since the number of visual elements used in the Polygon type display is more than the number in the Line type display, it is natural to expect such a result.

It would be expected that the performance would be inferior to the present results if time limits were set for the subjects to respond given the current experimental environment.

## CHAPTER 6

## CONCLUSIONS

The objective of this study was to examine the effect of uncertainty representation on information integration in a simulated ocean surveillance task. This objective was accomplished using an experimental task as data source for statical analysis. The conclusions are naturally limited to the design of this experiment.

The statistical analysis showed that there was no evidence to reject the null hypothesis in favor of the alternative hypothesis; i.e., we failed to reject the hypothesis that display type (polygon or Line) does not affect operator performance.

This is a negative result with respect to what was expected before the experiment was conducted, because, intuitively, it seemed that explicitly showing uncertainty in the representation could produce better performance. One of the possible reasons that the experiment did not produce its expected results is that most subjects in this experiment failed to understand the true meaning behind the abstract symbols in both polygon and Line displays. This observation was obtained from the post-experiment questionnaries, which indicates that lack of experience was likely an important factor in the experiment.

Also, although the experimental task was much simplified as compared to a real ocean surveillance task, it was still difficult for the subjects to perform. In the design of such an experimental task, it might be worthwhile to investigate some tasks simpler than the present one. For instance, the example illustrated in Chapter 2 contains many interesting representations for the information association task. Future work might be done on comparing some alternate displays instead of the present ones. It is also recommended that in future studies subjects take a longer training course instead of having only a lo-minute trial before performing the task.

The idea behind an association task should be introduced to the subjects clearly. And the training course should emphasize the association information on the HP-86, since most subjects did not pay attention to their previous associations. In order to increase the subjects' motivation, it might be helpful to pay the subjects instead of using volunteers.

Even though the present study did not produce the expected results, it does not mean that the study is without meaning. In the first place, it might actually be the case that there is no difference in human performance between the two types of displays. If this would be the situation, then it makes no sense to further develop polygon-type displays. However, there are clearly points
where improvements could be made. On reflection on the study, we need to think about the population of experimental units where the sampling units come from with respect to the experience and training of subjects, the operations in the experimental task, and the treatments in the experiment in order to obtain positive results.

In summary, even though the study reached a negative conclusion, the work done for this thesis still contributes to the study of the MTII problem. It provides a basic model to approach the MTII problem for those who are interested in performing further research in the area. Furthermore, the work done so far has the flexibility to be modified. The computer programs are easy to understand, and the ideas presented in this thesis are clear enough for further research. We do feel that further studies are necessary for the MTII problem. especially in regard to human/machine interfaces.

## BIBLIOGRAPHY

Anderson, J. R. Cognitiye Psychology and Its Implications, W. H. Freemane \& Company, 1980 .

Cox, D. R. The Analysis of Binary Data, Chapman and Hall, London, 1980.

Funk, K., Personal interview, 1986.
Friedman, N. "C ${ }^{3}$ War At Sea", U.S. Naval Institute Proceedings, Naval Reyiew, 1977, 124-141.

Greitzer, F. L., Kelly, R. T., and Hershman, R. L. "Human Memory Limitations in Multi-Object Tracking", Navy Personnel Research and Development Center, San Diego, Ca,92152, 1982.

Kantowitz, B. H. and Sorkin, R. D. Human Factors: Understanding People-System Relationships, John Wiley \& Sons, 1983.

Kullback, J. H. and Owens, M. E. B. "Multisensor Correlation for Ocean Surveillance: Problems and Limitations", Naval Research Laboratory
(Washington D. C.), 1972.
Law, A. M. and Kelton, W. D. Simulation Modeling and Analysis. McGraw-Hill Book Company, 1982.

Lawson, J. S., "The Art and Science of Military Decision Making", Military Operations Research Society, 49th Symposium, 1982.

Miller, G. A., "The Magic Number Seven, Plus or Minus Two", Psychology Reyiew, 1956, 63, 81-97.

Miller, I. and Freund J. E., Probability and Statistics for Engineering, 2ed, Prentice Hall, 1977.

Mills, R. G., "Performance Prediction in a Single Operator Simulated Surveillance System", Human Factors, August, 1973. 337-348.

Novak Jr, G. S. and Walker, D. E.r "Multisource Tactical Information Integration", Final Technical Report, Naval Ocean Systems Center, 1978.

Simth, P. L.. "Computer-Aided Ship Tracking", IEEE Trans on Systems. Man, and Cybernetic, vol, SMC-9, No. l, January 1979.

Steel. R. G. D. and Torrie, J. H. .Principles And Procedures of Statistics, a biometrical approach, 2ed, McGraw-Hill Book Company, 1980.

Warship Commander, published by Enola Games, P.O. Box 1900, Brooklyn, N.Y. ll201, 1979.

Yates, F., "The Principles of Orthoganality and Confounding in Replicated Experiments", Journal of Agri. Science, 23, 1933, 108-145.

## APPENDIX

(This page is left blank intentionally.)

## APPENDIX A

Written materials

# A Simplified Ocean Surveillance Task 

## Polygon Type Display

## Instruction to Subjects

You will be participating in a simplified simulated ocean surveillance task. Four basic components are in this task, i.e., platforms (ships), ownship, sensor reports, and ellipses. Imagine that you are in the ownship monitoring an information integration screen.

A platform is a ship, and can emit radar emissions according to its commander. Assume a platform can emit one type of radar at a time. The type of radar a platform can emit depends upon the radar systems in it. For example, platform "TROUT" can never emit radar $D$ if it has only radars $B, H$, and $I$ on board. In this a experiment, a platform is represented by a squre and a bar which shows its direction of movement (Figure 1). Each platform has a unique number.



Figure 1 Representations of platforms. Platforms 3 and 2 are moving toward east; platform 1 is moving toward sourthwest.

Your ownship is defined as the shaped in Figure 2. The center of the crosshair is the position of your ship on the sea.


Figure 2 Representation of ownship.

In a military activity, own force always wants to obtain as much information as possible about the current situation. Suppose that your sensors on board can detect the type of radar which is emitted by one of the platforms and report to you. This is called a "sensor report". The sensor report in this task will provide not only estimated bearing and range information about the source of the emission but the type of radar. One important point for you to keep in mind is that the sensor report covers the platform which emitted the detected radar emission most of the time. The coverage of a sensor report varies from time to time; but the angle which represents the range information will be within $0^{\circ}$ to $80^{\circ}$ limit. Therefore, there exists some biased sensor reports in this experiment. See Figure 3 for shape of a sensor report (on the next page).

An ellipse represents the uncertainty area that a platform can be in. The geometry of the ellipse takes the direction of movement and speed of the platform into consideration, as shown in Figure 4, and can be enlarged auromatically by your system. The meaning of enlargement is to increase the degree of uncertainty about the position of that platform between each update of sensor report.


Figure 3 Representation of a sensor report. Note that the angle $\mathbf{Q}$ ranges from $0^{\circ}$ to $80^{\circ}$.

The enlargement rate of an ellipse is proportional to the speed of the platform and time between update of sensor reports.


Figure 4 Representation of uncertainty area about platform 3 in a fixed amount of time.

Your task in this experiment is to associate each sensor report with one of the platforms, when the sensor appears on the screen. In other words, the stimulus is the sensor report. Your response is the identity of the platform which you think is the most likely source of the emission.

When a sensor report appears on the screen, you respond by hitting one of the numerical key which designates the identity of that platform once. For example, if the screen is as shown in Figure 5, then you need only hit the numerical key "l" (which I think is the most likely source of radar emission $B$ ) on the keyboard once.


The associations you've made will be displayed on a seperate monitor. Reference to that information might help you in your decision.
start performing it.

Now begin to study the data sheet and tell the experimenter when you are ready to take the test.

You will start by practicing 10 trials to warm up. These results will not be recorded as your performance. Before you start the task, I want to remind you that your primary objective should be to choose the most likely platform. There is no time limit for you to respond; but the sooner the better.

Feedback of your association will be given to you in the 10 trials. You have enough time to make your decision, so think carefully before you decide. There will be 4 platforms for you to practice in the trials. The number of platforms remains constant throughout your experiment.

You can see your ownship on the screen now. When there is a sensor report, the computer will beep once. When you hit a corresponding key, the computer will beep to tell you that it has received your responce.

Now hit the "GO ON" key and wait for the sensor report. Don't respond; go to next page.

Answer the question:

What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your feedback. Go to next page.

Answer of association 1: platform 4

Now hit the "GO ON" key for the second trial. Answer the following question before you respond.

What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your information of association.

GO TO NEXT PAGE.

Answer of association 2: platform 4

Now hit the "GO ON" key for the next trial. Answer the following question before you respond.

What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your information of association.

GO TO NEXT PAGE

Answer of association 3: platform 1

Now hit the "GO ON" key for the next trial. Answer the following question before you respond.

What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your information of association.

GO TO NEXT PAGE.

Answer nf association 4: platform 1

Now hit the "GO ON" key for the next trial. Answer the following question before you respond.

What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your information of association.

GO TO NEXT PAGE. . . . .

Answer of association 6: platform 4

Now hit the "GO ON" key for the next trial. Answer the following question before you respond.

What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your information of association.

GO TO NEXT PAGE

Answer of association 5: platform 1

Now hit the "GO ON" key for the next trial: Answer the following question before you respond.

What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your information of association.

GO TO NEXT PAGE.

Answer of association 7: platform 1

Now hit the "GO ON" key for the next trial. Answer the following question before you respond.

What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your information of association.

GO TO NEXT PAGE.

Answer of association 8: platfnrm 1

Now hit the "GO ON" key for the next،trial. Answer the following question before you respond.

- What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your information of association.

> GO TO NEXT PAGE. ....

Answer of association 9: platform 3

Now hit the "GO ON" key for the nextatrial. Answer the following question before you respond.

What radar emission is reported by this sensor report?

Please put your answer on the other sheet of paper.

Now enter your decision by hitting a corresponding key and see the other monitor for your information of association.

GO TO NEXT PAGE. . . . .

Answer of association 10: platform 2

GO TO NEXT PAGE. ....

Now the experimenter will set up the task for you to perform. A serial of associations without feedback will be presented to you. You don't need to hit the "GO ON" key anymore; just enter your response.

When you are ready, hit the "GO ON" key once to begin the task.

## A Simplified Ocean Surveillance Task

Line Type Display

Instruction to Subjects

You will be participating in a simplified simulated ocean surveillance task. Three basic components are in this task, i.e., platforms (ships), ownship, and sensor report. Imagine that you are in the ownship monitoring an information integration screen.

A platform is a ship, and can emit radar emissions according to its commander. Assume a platform can emit one type of radar at a time. The type of radar a platform can emit depends upon the radar systems in it. For example, platform "TROUT" can never emit radar $D$ if it has only radars $B, H$, and $I$ on board. In this experiment, a platform is represented by a square and a bar which shows its direction of movement (Figure 1). Each platform has a unique number.


Figure $1 \quad \begin{aligned} & \text { Representations of platforms. Platforms } 3 \\ & \text { and } 2 \text { are moving toward east; platform } 1 \text { is } \\ & \text { moving toward sourthwest. }\end{aligned}$

Your ownship is defined as the shape in Figure 2. The center of the crosshair is the position of your ship on the sea.


Figure 2 Representations of ownship.
much information as possible about the current situation. Suppose that your sensors on board can detect the type of radar which is emitted by one of the platforms and report to you. This is called a "sensor report". The sensor report in this task is a line, which provides bearing information and the type of radar from its source of emission.

The bearing information in this task will contain a bias upto $\pm 40^{\circ}$. For example, if the screen is shown as in figure 3, then radar $B$ is possibly emitted by anyone of platform 1, 2, and 3.


Figure 3 Representation of a sensor report with radar type B emission.

Your task in this experiment is to associate each sensor report with one of the platforms, when the sensor report appears on the screen. In other words, the stimulus is the sensor report. Your response is the identity of the platform which you think is the most likely source of the emission.

When a sensor report appears on the screen, you respond by hitting one of the numerical key which designates the identity of that platform once.

The associations you've made will be displayed on a seperate monitor. Reference to that information might help you in your decision.

The knowledge base about all possible platforms and their radars is shown on the data sheet. Please note once more that a platform can never emit a radar it does not have on board. And a radar emission can never be emitted from a platform which is not on the screen.

Take 3 to 5 minutes to distinguish the characteristics of each platform (e.g., "What type of radars does platform "PIKE" have?", or "Which platform has a type G radar?", etc.).

You need to take a written test in order to start the experiment. Don't hesitate to ask any questions about the experiment before you
start performing it.

Now begin to study the data sheet and tell the experimenter when you are ready to take the test.

Data sheet

	StHKKK	Whalt.	IROUT	Uatid Sheet		CAIFISH like		butcill
				BASS	SALMMN			
						A	H	A
		8	B	B		B		
	c				c	c		c
	D			D		0		
Kadars					E			
	F				r		f	
				$G$		G		C
	H	H	H			H		
		1	I				1	

Note:

1) Total number of possible radar emission is $y$, i.e., from $A$ to 1.
2) Total number of possible plat forms is 8.

## Test Sheet

1. Which platform(s) has the least amount of radars among those 8 platforms ? How many does (do) it (they) have?
Answer:
2. Which platform has the most amount of radars? What are they? Answer:
3. What are the common radar(s) of platform 2 and 8 ? Answer:
4. Can plat form 3 give radar emission of type A? Answer:
5. What is the common radar among platforms $1,4,5$, and 6 ? Answer:
$\qquad$

Trial sheet

Circle one radar emission for each association in the trial:

```
association 1 : A B C D E F G H I
association 2: A B C D E F G H I
association 3: A B C D E F G H I
association 4 : A B C D E F G H I
association 5: A B C D E F G H
association 6: A B C D E F G H I
association 7 : A B C D E F G H
association 8: A B C D E F G H
association 9:A B C D E F G H
association 10: A B C D E F G H
```


## POST EXPERIMENT QUESTIONNAIRE

SUBJECT \#: $\qquad$ AGE: $\qquad$
SEX: $\qquad$ WORK EXPERIENCE ON RADAR SYSTEM: Yes No

Please answer the following questions:

1) Did you use the data sheet as your reference in this experiment? If yes, could you give the names of platform $1,2,3$, and 4 in this experiment?
2) Do you think the representation of a sensor report helped you in your decision? How?
3) Whein platform do you think radar $B$ is from in the following figure? Why?

4) Whein platform do you think radar $B$ is from in the following figure? Why?


## APPENDIX B

Proqram listinqs
: C
C
0
21:
22:
P
23:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47: C
4B: C
49: C
50:
51:
52:
53:
54:

```
```

    SUHFiOUTINE DECIDE
    ```
```

    SUHFiOUTINE DECIDE
    C
C
INTEGER ID, IRAD (8),KSHIP (8),KOUNT (8),NEXT1 (8).
INTEGER ID, IRAD (8),KSHIP (8),KOUNT (8),NEXT1 (8).
1TOTSNR,NEXT2 (8),NOFPTS (8),NOFSHP
1TOTSNR,NEXT2 (8),NOFPTS (8),NOFSHP
LOGICAL TURN(8), DONE (8)
LOGICAL TURN(8), DONE (8)
REAL CTIME (8,10),DIFF,DIST (8),MARVL (8),MTSNR,RADAR (8, 10),RDIST (8),
REAL CTIME (8,10),DIFF,DIST (8),MARVL (8),MTSNR,RADAR (8, 10),RDIST (8),
1RTIME (8), SHIP(B, 10, 2), SPEED (8), TNOW, X1 (8), X2(8), X3(8),Y3(8),
1RTIME (8), SHIP(B, 10, 2), SPEED (8), TNOW, X1 (8), X2(8), X3(8),Y3(8),
2Y1 (8),Y2(8), XTRUE (8),YTRUE (8), ANGLE (8),DIST12(8),DIST23(8)
2Y1 (8),Y2(8), XTRUE (8),YTRUE (8), ANGLE (8),DIST12(8),DIST23(8)
C
C
C
C
C
C

```
C
```

C
C
C
C
C
C
C
C
C

```
C
```




```
C
```

C
C
C
C

```
C
```




```
C
```

C
K1 = 0
K1 = 0
55 K1 = K1 + 1
55 K1 = K1 + 1
IF ( K1 .GT. NOFSHP ) GOTO 65
IF ( K1 .GT. NOFSHP ) GOTO 65
ID = KI
ID = KI
C****
C****
89
89
PRINT 89,ID,RDIST (ID),KSHIP(ID)
PRINT 89,ID,RDIST (ID),KSHIP(ID)
FORMAT ('IN DECIDE - SHIP ',I3,' REAL DIS: *,F8.3," KSHIP: *,I3)
FORMAT ('IN DECIDE - SHIP ',I3,' REAL DIS: *,F8.3," KSHIP: *,I3)
IF ( ( KSHIP(ID) .GE. (NOFPTS(ID)-Z) ) .OR. DONE(ID) ) GOTO 55
IF ( ( KSHIP(ID) .GE. (NOFPTS(ID)-Z) ) .OR. DONE(ID) ) GOTO 55
IF ( RDIST(ID) .EQ. O.) THEN
IF ( RDIST(ID) .EQ. O.) THEN
X1(ID)= SHIP(ID,NEXTI(ID),1)
X1(ID)= SHIP(ID,NEXTI(ID),1)
Y1(ID) = SHIP(ID,NEXTI(ID), 2)
Y1(ID) = SHIP(ID,NEXTI(ID), 2)
NEXTI(ID) = NEXTI(ID) + 1
NEXTI(ID) = NEXTI(ID) + 1
XZ(ID) = SHIP(ID,NEXTI(ID),1)
XZ(ID) = SHIP(ID,NEXTI(ID),1)
YZ(ID) = SHIP(ID,NEXT1(ID),2)
YZ(ID) = SHIP(ID,NEXT1(ID),2)
NEXTZ(ID) = NEXTZ(ID) + 1
NEXTZ(ID) = NEXTZ(ID) + 1
X3(ID) = SHIP(ID,NEXT2(ID),1)
X3(ID) = SHIP(ID,NEXT2(ID),1)
Y3(ID) = SHIP(ID,NEXT2(ID),2)
Y3(ID) = SHIP(ID,NEXT2(ID),2)
C
C
C
C
CALL DATA1
CALL DATA1
RTIME(ID) = TIME
RTIME(ID) = TIME
CALL VALUES
CALL VALUES
KSHIP(ID) = KSHIF(ID) + 1
KSHIP(ID) = KSHIF(ID) + 1
E:SEIF ((RDIST(ID) .LE. DISII2(ID)).ANI). (FDIST(ID) .GT. U.), IH
E:SEIF ((RDIST(ID) .LE. DISII2(ID)).ANI). (FDIST(ID) .GT. U.), IH
RTIME(ID) = RTIME(ID) + DIFF
RTIME(ID) = RTIME(ID) + DIFF
CALL VALUES
CALL VALUES
H:NDIF
H:NDIF
GITO SS
GITO SS
6S: CUNTINUE
6S: CUNTINUE
GE IIIFN

```
 GE IIIFN
```

```
C
C
C
4:C
65:
C
7:C
68: C
70
70:
71:C
72: C
73: C
74:
75: C
76:C
77:C
78:
79:
80:
81:
82:
83:
84:
85:
86:
87: C
88: C
89:
90:
P
92:
9.3:
95:
96:
97: C
98: C*
99: C
100:
101:C
102: C
103: C
104: C
105: C
106:
107:
108:
109:
110:
111: C
112:C
11こ:C
114: C
115:
110: C
117:C
119: C
119: (:
120:
INTEGER ID.IRAD (8),KSHIP (8), KOUNT (8),NEXT1 (8),
1TOTSNR,NEXT2(8),NOFPTS (8),NOFSHF
```

END
C

LOGICAL TURN(8), DONE (8)

REAL CTIME ( 8,10 ), DIFF, DIST ( 8 ), MARVL ( 8 ), MTSNR, FADAR ( 8,10 ), RDIST ( 8 ), 1RTIME (8), SHIP ( $8,10,2$ ), $\operatorname{SPEED}(8)$, TNOW, $\mathrm{X} 1(8), \times 2(8), \times 3(8), Y 3(8)$, $2 Y 1(8), Y 2(8), X T R U E(8), Y T R U E(8)$. $\operatorname{ANGLE}(8), \operatorname{DIST12(8),~DIST23(8)}$

REAL FACTOR, FOTDEG, XTEMP, YTEMP, A1, A2, A3, A4, A5, A6, A7, A8 REAL TSIMLT

COMMON /MODEL/ CTIME,DIFF,DIST, ID, IRAD,KSHIP,KOUNT, MARVL,MTSNR, INEXT1, NEXT2, NOFPTS, NOFSHP, RADAR, RDIST,RTIME, SHIP, SPEED, X1, X2, Y1, Y2

2XTRUE, YTRUE, TOTSNR, ANGLE, DIST12, DIST2S, TURN, DONE, X3, YE, ROTDEG, ITEM

COMMON /SYSTEM/ LRANK (25), LSIZE (25), MAXATR,NEXT,TIME,TRNSFR (10) COMMON /TSTRT/ TSIMLT
C
C
C

C C
20:
distace and the pre-specified distance to determine if there is
a turning action or not.
FACTOR = RTIME(ID) \$SPEED(ID)/DIST12(ID)
XTRLEE(ID) $=X 1(I D)+$ FACTOR\# $(X 2(I D)-X I(I D))$
YTRUE (ID) $=\mathrm{Y} 1(I D)+$ FACTOR\# (YZ(ID)-Y1(ID))

IF ( FDIST(ID) . GE. DISTIZ(ID) ) THEN
There is a turning action here.
The time for this movement will deperid on DIFF.
RTIME(ID) = DIFF
Fiecalculate the facterf frir moving in such a short period of time, and calculate the chort distande of this moving.

CALL DRADAR
Calculate the true location first, then compare the real

FACIOH = RIT(ME(II)*SFEEI)(ID)/RISIIZ(ID)

| 121: |  | $X$ CEMF $=X_{1}(I D)+$ FACTOR* (X2 (ID) $-X_{1}($ (ID) $)$ |
| :---: | :---: | :---: |
| 122: |  | YTEMF $=$ Y1(ID) + FACTOR* (Y2(ID)-Y1(ID)) |
| 123: |  |  |
| 124: | C |  |
| 125: | C | Update those point coordinates accordingly. |
| 126: | C |  |
| 127: |  | $x 1(1 D)=x 2(I D)$ |
| 128: |  | $\times 2(1 D)=x 3(I D)$ |
| 129: |  | NEXTZ(ID) = NEXTZ(ID) + 1 |
| 130: |  | $X$ (ID) $=$ SHIP(ID, NEXT2(ID), 1) |
| 131: |  | $Y 1(I D)=Y 2(I D)$ |
| 132: |  | $Y 2(I D)=Y 3(I D)$ |
| 133: |  | Y3(ID) $=$ SHIP(ID,NEXT2(ID), 2) |
| 134: |  | ExCESS $=$ RDIST(ID) - DISTI2(ID) |
| 135: |  | FACTOR $=(E X C E S S / R M O V E) * R T I M E(I D) * S P E E D(I D) / D I S T 23(I D) ~$ |
| 136: | C |  |
| 137: | C | Test if the turning angle is greater than 90 degrees. |
| 138: | C | Rules: 1) Greater than 90: Reduce the speed by $2 / 3$. |
| 139: | c | 2) No greater than 90: Reduce speed only by 1/3. |
| 140: | C |  |
| 141: |  | IF ( ANGLE(ID) -GT. 90.) THEN |
| 142: |  | FACTOR = FACTOR*2.13. |
| 143: |  | ELSE |
| 144: |  | FACTOF = FACTOR/3. |
| 145: |  | ENDIF |
| 146: | C |  |
| 147: | C | Testing if this is the last point for this ship. |
| 148: | C |  |
| 149: |  | IF ( (X3(ID) .EQ. -1000.00) . AND. (V3(ID) .EQ. -1000.00) ) THEN |
| 150: |  | DONE (ID) = . TRUE. |
| 151: |  | ELSE |
| 152: |  | DONE (ID) = .FALSE. |
| 153: |  | ENDIF |
| 154: | C |  |
| 155: | C | Set an indicator for swithing the starting point for the next |
| 156: | C | segment. |
| 157: | C |  |
| 158: |  | IND $=1$ |
| 159: | C |  |
| 160: | C | Add one to the ship which has being processed. |
| 161: | C |  |
| 162: |  | KSHIP(ID) = KSHIF (ID) + 1 |
| 163: |  | ENDIF |
| 164: | C |  |
| 165: | C | Calculate once more the true location for the situation of |
| 166: | C | turning. |
| 167: | C |  |
| 168: |  | XTRUE (ID) $=$ X1(ID) + FACTOR* (X2 (ID)-X1(ID) ) |
| 169: |  | YTRUE (ID) $=$ Y1(ID) + FACTOR* (Y2(ID)-Y1(ID)) |
| 170: |  |  |
| 171: | C |  |
| 172: | C | The following is the degree of rotation for drawing the ellipse. |
| 173: | C |  |
| 174: |  |  |
| 175: |  | FOTDEG $=($ FCITDEG/S. 14159 ? $)$ (180. |
| 176: | C |  |
| 177: | C | Gwifcting line new starting noint for the rie:t segment. |
| 178: | C |  |
| 179: |  | 14 : IND .EO. 1) THEN |
| 180: |  | $X I(I D)=X T F L I E(I D)$ |




```
482: C
```

482: C

```
482: C
483: C
483: C
483: C
484: C
484: C
484: C
485: COMMON /MODEL/ CTIME,DIFF,DIST, ID,IRAD,KSHIP,KOUNT,MAFVL,MTSNR,
485: COMMON /MODEL/ CTIME,DIFF,DIST, ID,IRAD,KSHIP,KOUNT,MAFVL,MTSNR,
485: COMMON /MODEL/ CTIME,DIFF,DIST, ID,IRAD,KSHIP,KOUNT,MAFVL,MTSNR,
486:
486:
486:
487: 2XTRUE,YTRUE,TOTSNR, ANGLE,DIST12,DIST23,TURN, DONE, X3, Y3.ROTDEG, ITEM
487: 2XTRUE,YTRUE,TOTSNR, ANGLE,DIST12,DIST23,TURN, DONE, X3, Y3.ROTDEG, ITEM
487: 2XTRUE,YTRUE,TOTSNR, ANGLE,DIST12,DIST23,TURN, DONE, X3, Y3.ROTDEG, ITEM
488: C
488: C
488: C
489: C
489: C
489: C
490: C
490: C
490: C
491:. COMMON /SYSTEM/ LRANK(25),LSIZE(25),MAXATR,NEXT,TIME,TRNSFR(1O)
491:. COMMON /SYSTEM/ LRANK(25),LSIZE(25),MAXATR,NEXT,TIME,TRNSFR(1O)
491:. COMMON /SYSTEM/ LRANK(25),LSIZE(25),MAXATR,NEXT,TIME,TRNSFR(1O)
492: C
492: C
492: C
493: C
493: C
493: C
494: C
494: C
494: C
495: COMMON /ABC/ ISEED
495: COMMON /ABC/ ISEED
495: COMMON /ABC/ ISEED
496: COMMON /TSTRT/ TSIMLT
496: COMMON /TSTRT/ TSIMLT
496: COMMON /TSTRT/ TSIMLT
497: C
```

497: C

```
497: C
```





```
499: C
```

499: C

```
499: C
500: OPEN (UNIT=15)
500: OPEN (UNIT=15)
500: OPEN (UNIT=15)
SO1: OPEN (UNIT=16)
SO1: OPEN (UNIT=16)
SO1: OPEN (UNIT=16)
502:
502:
502:
503: C
503: C
503: C
504: C
504: C
504: C
S05: C
S05: C
S05: C
506: C
506: C
506: C
507: NUMSNR =0
507: NUMSNR =0
507: NUMSNR =0
50日: WFITE (16,5)
50日: WFITE (16,5)
50日: WFITE (16,5)
509: 5
509: 5
509: 5
EMITTER*)
EMITTER*)
EMITTER*)
510: C
510: C
510: C
511: C
511: C
511: C
512: CALL INITLK
512: CALL INITLK
512: CALL INITLK
513:
513:
513:
514:
514:
514:
515: C
515: C
515: C
516: C
516: C
516: C
517: C
517: C
517: C
518:
518:
518:
519:
519:
519:
520: C
520: C
520: C
521: C
521: C
521: C
522: C
522: C
522: C
523: C
523: C
523: C
524: C
524: C
524: C
525: C
525: C
525: C
526: C
526: C
526: C
527:
527:
527:
528:
528:
528:
529:
529:
529:
530:
530:
530:
551:
551:
551:
5:2:
5:2:
5:2:
503:
503:
503:
534:
534:
534:
5%:
5%:
5%:
50:
50:
50:
5?%:
5?%:
5?%:
SG日:
SG日:
SG日:
57%:
57%:
57%:
E411:
E411:
E411:
KEAL TSIMLT,RADNT
KEAL TSIMLT,RADNT
KEAL TSIMLT,RADNT
481:
481:
481:
I NEXT 1, NEXT2,NOFPTS, NOFSHP.RADAR, RDIST,RTIME, SHIP, SPEED, X 1, X2, Y1 , Y2
I NEXT 1, NEXT2,NOFPTS, NOFSHP.RADAR, RDIST,RTIME, SHIP, SPEED, X 1, X2, Y1 , Y2
I NEXT 1, NEXT2,NOFPTS, NOFSHP.RADAR, RDIST,RTIME, SHIP, SPEED, X 1, X2, Y1 , Y2
C
C
C
C
C
C
 OPEN (LNNIT=17)
 OPEN (LNNIT=17)
 OPEN (LNNIT=17)
C
C
C
C
C
C
11:C
11:C
11:C
MAXATR = 3
MAXATR = 3
MAXATR = 3
CALL ENTER
CALL ENTER
CALL ENTER
CALL START
CALL START
CALL START
 THERE IS ONE TYFE OF EVENT IN THIS SIMULATION: RADAR EMISSION
 THERE IS ONE TYFE OF EVENT IN THIS SIMULATION: RADAR EMISSION
 THERE IS ONE TYFE OF EVENT IN THIS SIMULATION: RADAR EMISSION
EVENT. THE STATISCAL RESULTS AEOUT SUCH EVENT ARE CALCULATED
EVENT. THE STATISCAL RESULTS AEOUT SUCH EVENT ARE CALCULATED
EVENT. THE STATISCAL RESULTS AEOUT SUCH EVENT ARE CALCULATED
THROUGH THE SAMFST UTILITY IN SIMLIE.
THROUGH THE SAMFST UTILITY IN SIMLIE.
THROUGH THE SAMFST UTILITY IN SIMLIE.
 THE VALUE OF EACH FLATFORM IS ITS ID NUMEEF.
 THE VALUE OF EACH FLATFORM IS ITS ID NUMEEF.
 THE VALUE OF EACH FLATFORM IS ITS ID NUMEEF.
DO 10% ID=1. NOFSHF
DO 10% ID=1. NOFSHF
DO 10% ID=1. NOFSHF
TFNSFF:(1) = EXFON(MAFVL (ID) 1
TFNSFF:(1) = EXFON(MAFVL (ID) 1
TFNSFF:(1) = EXFON(MAFVL (ID) 1
TFNSFF:(2)=1
TFNSFF:(2)=1
TFNSFF:(2)=1
TRNSFR(E) = FLOAT(ID)
TRNSFR(E) = FLOAT(ID)
TRNSFR(E) = FLOAT(ID)
IFNSFF(4) = TFNSFF:1,
IFNSFF(4) = TFNSFF:1,
IFNSFF(4) = TFNSFF:1,
CAII FILE!3,2E,
CAII FILE!3,2E,
CAII FILE!3,2E,
|BM IONIINIJE
|BM IONIINIJE
|BM IONIINIJE
IFNEFF(1) = M1SNF
IFNEFF(1) = M1SNF
IFNEFF(1) = M1SNF
|FNSFF(O)=1
|FNSFF(O)=1
|FNSFF(O)=1
|FNSFFi(Z) = 11.
|FNSFFi(Z) = 11.
|FNSFFi(Z) = 11.
THNSFF(4) = TFINSFFir11
THNSFF(4) = TFINSFFir11
THNSFF(4) = TFINSFFir11
CAl: FIIE(:.2S)
CAl: FIIE(:.2S)
CAl: FIIE(:.2S)
C
```

C

```
C
```



```
 601: C
 602:
 603:
 604:
 605:
 606:
 607:
 608:
 609:
 610:
 611:
 612:
 613:
 614:
 615:
 616: C
 617: C
 618: C
 619:
 620:
 621:
 622:
 623: C
 624: C
 625: C
 626:
 627: C
 628: C
 629: C
 630:
 631:
 632:
 633:
 634: C
 635: C
 636: C
 637:
 638:
 639:
P
 640: C
 641:C
 642: C
 643:
 644: C
 645: C
 646: C
 647:
 648: 50
*")
 649:
 650: 51
*)
 c51 :
 652: 5:
`,
 657: 1:
 6,54: C:
 6,S5: C
 なちゃ:
 657:
 658:
 654: 10%
 AA(1: 1..:
 661:
 662:
```

```
 FUNCTION RAND (IX)
```

    FUNCTION RAND (IX)
    REAL % R RAND
    REAL % R RAND
    INTEGER $4 A,P,IX, A15, B16, XHI, XALO. LEFTLO,FHI,K
    INTEGER $4 A,P,IX, A15, B16, XHI, XALO. LEFTLO,FHI,K
    DATA A/16807/,B15/32768/,B16/65536/,P/2147483647/
    DATA A/16807/,B15/32768/,B16/65536/,P/2147483647/
    XHI=IX/E16
    XHI=IX/E16
    XALO=(IX-XHI#B16)#A
    XALO=(IX-XHI#B16)#A
    LEF TLO=XALO/B16
    LEF TLO=XALO/B16
    FHI=XHI:A+LEFTLO
    FHI=XHI:A+LEFTLO
    K=FHI/B15
    K=FHI/B15
    IX=(((XALO-LEFTLO*B16)-P) +(FHI-K#B15) #B16) +K
    IX=(((XALO-LEFTLO*B16)-P) +(FHI-K#B15) #B16) +K
    IF (IX.LT.O) IX=IX+P
    IF (IX.LT.O) IX=IX+P
    RAND = FLOAT (IX) 4.656612875E-10
    RAND = FLOAT (IX) 4.656612875E-10
    RETURN
    RETURN
    END
    END
    SURROUTINE REPORT
    SURROUTINE REPORT
    INTEGER ID, IRAD (B),KSHIP (B),KOUNT (8), NEXTI (8).
    INTEGER ID, IRAD (B),KSHIP (B),KOUNT (8), NEXTI (8).
    1 TOTSNR, NEXT2 (B), NOFPTS (8),NOFSHP
    1 TOTSNR, NEXT2 (B), NOFPTS (8),NOFSHP
    INTEGER ITEMP,NUMSNR
    INTEGER ITEMP,NUMSNR
    LOGICAL TURN(8).DONE(8)
    LOGICAL TURN(8).DONE(8)
    REAL CTIME (B, 10), DIFF,DIST (8),MARVL (B),MTSNR,RADAR(B, 10), RDIST (B),
    REAL CTIME (B, 10), DIFF,DIST (8),MARVL (B),MTSNR,RADAR(B, 10), RDIST (B),
    1RTIME (8), SHIP(B, 10,2),SPEED (8), TNOW, X1(8), X2(8), X3(8),Y3(8),
    1RTIME (8), SHIP(B, 10,2),SPEED (8), TNOW, X1(8), X2(8), X3(8),Y3(8),
    2Y1 (8),Y2(B), XTRUE (8),YTRUE (8), ANGLE (B), DIST12(B), DISTZ3(8)
    2Y1 (8),Y2(B), XTRUE (8),YTRUE (8), ANGLE (B), DIST12(B), DISTZ3(8)
    REAL TSIMLT
    REAL TSIMLT
    COMMON /MODEL/ CTIME,DIFF,DIST,ID,IRAD,KSHIP,KDUNT,MAFVL,MTSNR,
    COMMON /MODEL/ CTIME,DIFF,DIST,ID,IRAD,KSHIP,KDUNT,MAFVL,MTSNR,
    INEXT1,NEXT2,NOFPTS,NOFSHP,RADAR,RDIST,FTIME,SHIP, SPEED, X1, X2, Y1, Y2
    INEXT1,NEXT2,NOFPTS,NOFSHP,RADAR,RDIST,FTIME,SHIP, SPEED, X1, X2, Y1, Y2
    2XTRUE, YTRUE, TOTSNR,ANGLE,DIST12,DIST23,TURN, DONE,X3, Y3,ROTDEG, ITEM
    2XTRUE, YTRUE, TOTSNR,ANGLE,DIST12,DIST23,TURN, DONE,X3, Y3,ROTDEG, ITEM
    COMMON /SYSTEM/ LRANK(25),LSIZE (25), MAXATR,NEXT,TIME,TRNSFR(1O)
    COMMON /SYSTEM/ LRANK(25),LSIZE (25), MAXATR,NEXT,TIME,TRNSFR(1O)
    HEADING FOR UNIT 17.
    HEADING FOR UNIT 17.
    WRITE (17,50)
    ```
 WRITE (17,50)
```




```
 WFITE (17,51)
```

    WFITE (17,51)
    FOFMAT (:FLATFURM MTKE WF OESEFVATION MINIMUM MAXIMIM
    FOFMAT (:FLATFURM MTKE WF OESEFVATION MINIMUM MAXIMIM
    WFilft (17.5こ)
    WFilft (17.5こ)
    FOfimAl (.
    FOfimAl (.
    LO 1\thereforeI: 11=1. NOF SHF
    LO 1\thereforeI: 11=1. NOF SHF
        CALL SAMFST (O..-It)
    ```
 CALL SAMFST (O..-It)
```






```
 ariortr.u ir
```

    ariortr.u ir
    RETURN
    RETURN
    END
    ```
 END
```

ESTIMATE

```
C
C
C
C
C
34
C
C
C
C
C
C
C
C
C
108
98 FORMAT (FQ.3, 1X,F3.1, 1X,FE. 2, 1X.FE.2,1X,FE.2,1X,FE.2, 1X,F8.2,1X,FB
 43: 499
39: C
 47: 150
51: ?3
39:lC
39: C
39:l C
39: C
39: C
39: C
39: C
```



```
This program is used to simulate the est
PROGRAM ESTIMATE
REAL TBASE (300, 8),ROTDEG,TRNSFR (10)
REAL XTRUE, YTRUE,XT,YT,XEST,YEST, X1,X2,X3,X4,Y1,Y2,XS1,XS2, XS3,
1XS4,YS1,YS2
INTEGER*4 ISEED
CHARACTER*30 FLINE
DATA TBASE /2400*0./,TRNSFR/10*0./
OPEN (UNIT = 13)
OPEN (UNIT = 15)
DPEN (UNIT = 16)
OPEN (UNIT = 22)
OPEN (UNIT = 30)
 Read the input values from a data file from uniti3 named
COMING.DAT, which includes: r.n. seed value, of records to
be read in, sample size of estimation, and t-value for such
df in a 95% confidence interval.
READ (22,34) ISEED,NODATA,NSMPL,ACUFCY,T9S,T90
FORMAT (I10,5X, I5,5X, I5,5X,F6.2,5X,2(F6.3,5X))
FORMAT THE CORRESPONDING OUTPUT FILES:
UNITI3 = CONFIDENCE INTERVALS FOR ESTIMATIONS OF SENSOR LOCATIONS.
UNITZO = CONFIDENCE INTERVALS FOR ESTIMATED FLATFORMS LOCATIONS.
CALL HEAD(NSMPL,ACURCY,T95,T90)
PROCESS THE DATA.
READ (15,10日) FLINE
FORMAT (ASO)
READ (15,98) ((TEASE (I, J), J=1, 日), I=1,NODATA)
```

.
68
7:
B:
9:
10:
11:
12:
13:
14:
15:
16:
17: C
18:
19: C
20:
21:
-2, 1X)
39: C
40: C
41: C
42:
44: C
46: C
48:
49:
50:
$x$,
6i:

```
```

    CALL ESTSNF (XEST, YEST, X1, X2, X3, X4,Y1,Y2, ISEED, NSMPL, ACUFCYY,
    ```
```

    CALL ESTSNF (XEST, YEST, X1, X2, X3, X4,Y1,Y2, ISEED, NSMPL, ACUFCYY,
    *T95,T90,TEASE (I,2))
*T95,T90,TEASE (I,2))
TRNSFR (1) = TBASE (I, 1)
TRNSFR (1) = TBASE (I, 1)
TRNSFR(2)=TBASE (1,2)
TRNSFR(2)=TBASE (1,2)
TRNSFR(3)}=\mp@subsup{X}{1}{
TRNSFR(3)}=\mp@subsup{X}{1}{
TRNSFR(4) = X2
TRNSFR(4) = X2
TRNSFR(4)}=\times
TRNSFR(4)}=\times
TRNSFR(6) = X4
TRNSFR(6) = X4
TRNSFR(7) = Y1
TRNSFR(7) = Y1
TRNSFR(8)=Y2
TRNSFR(8)=Y2
TRNSFR(9) = ROTDEG
TRNSFR(9) = ROTDEG
TRNSFR(10) = TBASE (1,6)
TRNSFR(10) = TBASE (1,6)
PREVS = TRNSFR(1)
PREVS = TRNSFR(1)
ENDIF
ENDIF
TBASE (I,S) = XEST
TBASE (I,S) = XEST
TBASE(I;4) = YEST
TBASE(I;4) = YEST
IF (TBASE (I,1) .NE. -999. ) THEN
IF (TBASE (I,1) .NE. -999. ) THEN
WRITE (16,110) (TBASE(I,L),L=1,8)
WRITE (16,110) (TBASE(I,L),L=1,8)
FORMAT (F9.3,1X,F3.1,1X,6(FG.2,1X))
FORMAT (F9.3,1X,F3.1,1X,6(FG.2,1X))
ENDIF
ENDIF
CONTINUE
CONTINUE
200 CONTINUE
200 CONTINUE
500 CONTINUE
500 CONTINUE
CLOSE (13)
CLOSE (13)
Close(15)
Close(15)
ClOSE (16)
ClOSE (16)
ClOSE (22)
ClOSE (22)
Close (30)
Close (30)
STOP
STOP
END
END
C
C
C
C
C

```
C
```

```
C
```

C
C
C
FUNCTION RAND (IX)
FUNCTION RAND (IX)
REALHE RAND
REALHE RAND
INTEGER \$4 A.P, IX,B15,B16, XHI, XALO,LEFTLO,FHI,K
INTEGER \$4 A.P, IX,B15,B16, XHI, XALO,LEFTLO,FHI,K
DATA A/16807/,B15/32768/,E16/65536/,P/2147483647/
DATA A/16807/,B15/32768/,E16/65536/,P/2147483647/
XHI=IX/B16
XHI=IX/B16
XALO=(IX-XHI*B16)*A
XALO=(IX-XHI*B16)*A
LEFTLO=XALO/B16
LEFTLO=XALO/B16
FHI=XHI\#A+LEFTLO
FHI=XHI\#A+LEFTLO
K=FFHI/B1S
K=FFHI/B1S
IX=(((XALO-LEFTLO*E16)-F) +(FHI-K*B15)*B16)+K
IX=(((XALO-LEFTLO*E16)-F) +(FHI-K*B15)*B16)+K
IF(IX.LT.O)IX=IX+P
IF(IX.LT.O)IX=IX+P
RAND = FLOAT (IX)* 4.656612875E-10
RAND = FLOAT (IX)* 4.656612875E-10
RETURN
RETURN
END
END
SUEROUTINE EST(XA, YA, XMEAN, YMEAN,IVAL,ISMFL, 「TF, SHIFID)
SUEROUTINE EST(XA, YA, XMEAN, YMEAN,IVAL,ISMFL, 「TF, SHIFID)
REAL }X(50),Y(50), XMEAN, YMEAN
REAL }X(50),Y(50), XMEAN, YMEAN
REAI. A, E,C.S,XE,YF, YA, YA, XSUM, YSUM, DENUM, E, XUF, XLOW, YIIF, YLIIW

```
 REAI. A, E,C.S,XE,YF, YA, YA, XSUM, YSUM, DENUM, E, XUF, XLOW, YIIF, YLIIW
```

93: C
94:
95: C
96: C
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110 :
111: C
112: C
113: C
114: C
115: C
116: C
117: C
118:
119:
120:

```
\begin{tabular}{|c|c|c|}
\hline 121: & & INTEGER*4 IVAL DATA \(\times 150 * 0.1, Y / 50 * 0.1\) \\
\hline 123: & & XMEAN \(=0\). \\
\hline 124: & & YMEAN \(=0\). \\
\hline 1252 & & XSUM = 0 . \\
\hline 126: & & YSUM \(=0\). \\
\hline 127: & & DO \(301=1, I S M P L\) \\
\hline 128: & 10 & \(A=\) RAND (IVAL) \\
\hline 129: & & \(A=2 . \% A-1\). \\
\hline 130: & & \(B=\) RAND (IVAL) \\
\hline 131: & & \(B=2 . * B-1\). \\
\hline 132: & C & \\
\hline 133: & C & \\
\hline 134: & C & \\
\hline 135: & & IF ((\(A * A+B \# B)\).GT. 1.) GOTO 10 \\
\hline 136: & & DENUM \(=A * A+B \# B\) \\
\hline 137: & & \(C=\) (\(A * A-B * B) / D E N U M\) \\
\hline 138: & & \(S=(2 . \# A \$ B) / D E N U M\) \\
\hline 139: & & \(E=\operatorname{SCRT}(-\operatorname{ALOG}(\) RAND (IVAL))) \\
\hline 140: & & \(X E=E \# C\) SSQRT (2.) \\
\hline 141: & & \(Y E=E \$ S \# S Q R T(2\). \\
\hline 142: & & \(X(I)=X E+X A\) \\
\hline 143: & & \(Y(I)=Y E+Y A\) \\
\hline 144: & 30 & CONTINUE \\
\hline 145: & C & \\
\hline 146: & C & \\
\hline 147: & C & \\
\hline 148: & & DO \(40 \mathrm{I}=1\), ISMPL \\
\hline 149: & & \(X\) MEAN \(=X(I)+X\) HEAN \\
\hline 150: & & YMEAN \(=Y(I)+\) YMEAN \\
\hline 151: & 40 & CONTINLE \\
\hline 152: & & XMEAN = XMEAN/ISMPL \\
\hline 153: & & YMEAN = YMEAN/ISMPL \\
\hline 154: & & DO SO \(I=1\), ISMPL \\
\hline 155: & & XSUM \(=X\) SUM \(+(X(I)-X M E A N):(X(I)-X M E A N)\) \\
\hline 156: & & YSUM = YSUM \(+(Y(I)-Y M E A N) *(Y(I)-Y M E A N)\) \\
\hline 157: & 50 & CONTINUE \\
\hline 158: & & XSUM = SQRT ((XSUM/FLQAT (ISMPL-1))/ISMFL) \\
\hline 159: & & YSUM \(=\) SQRT ((YSUM/FLOAT (ISMPL-1))/ISMPL) \\
\hline 160: & C & \\
\hline 161: & C & \\
\hline 162: & C & \\
\hline 163: & & XUP \(=\) XMEAN + T95 XSUM \\
\hline 164: & & XLOW \(=\) XMEAN - T95 \# XSUM \\
\hline 165: & & YUP \(=\) YMEAN+ T95 YSUM \\
\hline 166: & & YLOW = YMEAN -195 \% YSUM \\
\hline 167: & C & \\
\hline 168: & C & QUTPUT THE ACCORDING DATA FOR PLATFORM INFROMATION (UNITSO:. \\
\hline 169: & C & \\
\hline 170: & & ISHIFD \(=\) IFIX(SHIPID) \\
\hline 171: & & INS1 \(=0\) \\
\hline 172: & & INS2 \(=0\) \\
\hline 173: & & IF ((XA . GE. XLOW) . AND. (\(X A\). LE. XUF)) INS \(1=1\) \\
\hline 174: & & IF (YA . GE. YLOW). AND. (YA .LE. YUF)) INS \(=1\) \\
\hline 175: & & WFITE (30,91) ISHIFD, XA, YA, XMEAN, YMEAN, XLOW, XUF, INS1, YLOW, YUF, INS2 \\
\hline 176: & 91 & \\
\hline 1 • & & \\
\hline 177: & & \\
\hline 178: & & FEETLIFN \\
\hline 179: & & END \\
\hline 180 & \({ }^{\circ}\) & \\
\hline
\end{tabular}
```

```
181:
182:
183:
184: C
185: C
186: C
187:
188:
189:
170:
191:
192:
193:
194:
195:
196:
197:
198: C
199: C
200:
201:
202:
203: C
204: C
205: C
206:
207:
208:
209:
210:
211:
212:
213:
214:C
215: C
216: C
217:
218: C
219:C
220: C
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
252:
\because-3:
2:4:
235: 30
:56:
237:
\3:
239:
240:
#חロחロ
SUBROUTINE ESTSNR (XT,YT,XS1,XS2,XS3,XS4,YS1,YS2,IXAL, ISMPL,PCISN,
$T95, T90,SHIPID)
 REAL X(SO),Y(SO), XMEAN, YMEAN, XEST1, YEST1,XS1,XS2,XS3,XS4, YS1, YS2
 REAL XSUM, YSUM, A, B,C,S,E,XE,YE,XA,YA
 INTEGER#4 IXAL
 DATA x/50*0.1,Y/50%0.1
 XMEAN = 0.
 YMEAN =0.
 XSUM =0.
 YSUM = 0.
 SET AN INDECATOR FGR GENERATING A DIRECTION OF NOISING.
 IRV = 1
 IF (RAND (IXAL) .GE. 0.5) IRV = - =
 IF (RAND(IXAL) .GE. (1.-PCISN)) IRV = 0
DIS = SQRT ((XT-65.)*&2+(YT-13.)*&2)
FATR = DIS/100.
 IF (DIS .LT. 100.) STD = 21.
 IF (DIS .LT. 90.) STD = 18.
 IF (DIS .LT. 80.) STD = 15.
 IF (DIS .LT. 70.) STD = 12.
 IF (DIS.LT. 60.) STD = 9.
 IF (DIS .LT. 20.) STD = 1.5
 Senser accuracy is accomplished by the following calculations.
 NOFOUT = ISMFL - IFIX(ISMPL#PCISN)
DO 30 I=1, ISMPL-NOFOUT
A = RAND (IXAL)
A=2.*A-1.
B=RAND (IXAL)
B=2.*B-1.
IF ((A#A+E*B) .GT. 1.) GOTO 10
DENUM = A*A + E*B
C = (A)A-B#B)/DENUM
s=2.#A&B/DENUM
E = SQRT (-ALGG(FAND(IXAL)))
XEST1 = E*C*SORT(2.)
YEST1 = E*S$SOFT(2.)
X(I) = XEST1*STD + XT
 Y(I) = YESTI*STD*YT
 CONTITNUE
 DO IE I= (ISMFL -NHIH OUI +1), ISMFL
 A=KAND(IXAI)
 A = 2.*A-1.
 H = FAND (IXAAL.)
 H}=2.|F-1
```

```
\begin{tabular}{|c|c|c|}
\hline 241: & & IF ((A*A+B*B) . GT. 1) GOTO 36 \\
\hline 242: & & DENUM \(=A * A+B * B\) \\
\hline 243: & & \(C=(A * A-B * B) /\) DENUM \\
\hline 244: & & \(S=2 . * A * B / D E N L M\) \\
\hline 245: & & \(E=\operatorname{SCRT}\) (-ALOG (RAND (IXAL))) \\
\hline 246: & & XEST1 = E*C*SQRT (2.) \#STD + XT \\
\hline 247: & & YEST1 = E*S*SQRT (2.) \#STD + XT \\
\hline 248: & C & \\
\hline 249: & C & PUt Some random noise to the position. \\
\hline 250: & c & (1) \\
\hline 251: & & \(\mathrm{x}(1)=\mathrm{XEST} 1+\mathrm{XEST} 1\) *FATR*RAND (IXAL) *IRV \\
\hline 252: & & Y(I) \(=\) YEST 1 + YEST 1 *FATR*RAND (IXAL) \#IRV \\
\hline 253: & 35 & CONTINUE \\
\hline 254: & & DO \(40 \mathrm{I}=1\), ISMPL \\
\hline 255: & & XMEAN \(=X(1)+X M E A N\) \\
\hline 256: & & YMEAN \(=\mathrm{Y}(\mathrm{I})+\mathrm{YMEAN}\) \\
\hline 257: & 40 & CONT INUE \\
\hline 258: & & XMEAN \(=\) XMEAN/ISMPL \\
\hline 259: & & YMEAN \(=\) YMEAN/ISMPL \\
\hline 260: & & DO So \(1=1,15 \mathrm{MPL}\) \\
\hline 261: & & XSUM \(=\) XSUM \(+(X(I)-X\) MEAN \() *(X(I)-X M E A N)\) \\
\hline 262: & & YSUM \(=\) YSUM \(+(Y(I)-\) YMEAN \() *(Y(I)-Y M E A N) ~\) \\
\hline 263: & 50 & CONTINUE \\
\hline 264: & & \\
\hline 265: & C & YSUM \(=\) SORT ((YSUM/FLOAT (ISMPL-1))/ISMPL) \\
\hline 267: & C & \\
\hline 268: & C & \\
\hline 269: & & XS1 \(=\) XMEAN + T95: XSUM \\
\hline 270: & & XS2 \(=\) XMEAN + T90* XSUM \\
\hline 271: & & XS3 \(=\) XMEAN - T95* XSUM \\
\hline 272: & & XS4 = XMEAN - T90* XSUM \\
\hline 273: & & XTEMP \(1=X S_{1}\) \\
\hline 274: & & XTEMP3 \(=\times 53\) \\
\hline 275: & C & \\
\hline 276: & C & \\
\hline 277: & C & \\
\hline 278: & & YS1 \(=\) YMEAN + T95\% YSUM \\
\hline 279: & & YS2 = YMEAN - T95* YSUM \\
\hline 280: & C & \\
\hline 281: & C & \\
\hline 282: & C & \\
\hline 283: & C & \\
\hline 284: & C & WRITE SENSOR INFORMATION TO UNIT 13. \\
\hline 285: & C & \\
\hline 286: & & ISHIPD \(=1 F I X(S H I P I D)\) \\
\hline 287: & & INDRC \(=0\) \\
\hline 288: & & IF (\(X\) SS . GE. \(X T\)) .AND. (\(X S 3\). LE. \(X T\))) INDRC \(=1\) \\
\hline 289: & & WRITE (13,104) ISHIPD, XT,YT, XMEAN, YMEAN, XS3,XS1,YS2,YS1,X54,XS2, IR \\
\hline 290: & 104 & \\
\hline 291: & & \\
\hline 92: & C & \\
\hline 93: & C & \\
\hline 94: & C & \\
\hline 95: & & xS1 \(=10 . *\left(x S_{1-650}\right)+6\). \\
\hline 96: & & XS \(5=10 . *(x 53-65)+65.\). \\
\hline 97: & & \(\mathrm{YS1}=10 . *(\) YMEAN -13\()+13\). \\
\hline 98: & & \(Y 52=Y 51\) \\
\hline 299: & & XS2 \(=\left({ }^{\text {S }} 1+\times 53\right) / 2\). \\
\hline 00: & & RETUFN \\
\hline
\end{tabular}
```

```
 306: C
 307: C
 308: C
 309: C
 310: C
 310:C
 312:
 313:
 314:
*',
 315:
 316:
 317: 56
 318:
 319:
 320:
 321:
 322:
 323:
 324:
 325: 801
VALS'
 326:
 327: 80
 328:
 329:
 330:
 331:
 332:
 333:
 334:
 335:
****"。
 336:
 337:
 338:
 339:
 *'
 340:
 341:
 342: 81
 343:
 344:
 345:
 346:
```

301:
302: C 303: C 304: C 305:

```
 END
 C
C
560
 WRITE (13,560) NSMFL, ACURCY,T95,T90
 FORMAT (25x,'SAMPLE POINT =', I5, 2X,', % ACCUKACY = ,FF.2,2X,
 *'; T-VAL = ',FG.3,3X,F6.3)
 WRITE (13,505)
 FORMAT ("
 $"
 *R1TE (13,堷
 WRITE (13,BO1)
 WRITE (13,802)
 FORMAT ('PLAT- ',6X,'EST.',9X,'EST. -2ND',7X,'95% CONFIDENCE INTER
 $9x,'90% C.1.'.5x,' ',6x,' IRV IN')
 FORMAT ('FORM', LOCATION', BX,'LOCATION',7X,'X-POSITION', GX,
 *'Y-POSITION',6X,'X-POSITION DIREC. DIREC. EST. DIREC.')
 WRITE (13,505)
 C
C
 HEADING FOR UNIT 3O.
 WRITE (30,510)
 FORMAT ('**************************************,
 *'RELEVANT DATA FOR PLATFORM INFORMATION ***************************
 *'******')
 WRITE (30,560) NSMPL,ACURCY,T95,T90
 WRITE (30,995)
 FORMAT (' ---
```

$\qquad$

```
995
 $'
 WRITTE (JO-,\overline{1N}
 FORMAT ('PLATFORM'.5X,"TRUE LOCATION', SX,'ESTIMATED LOCATION',
 $3X,'95% C.I. X-POSITION IN 95% C.I. Y-FOSITION IN')
 WRITE (30,995)
 RETURN
 END
```

```
 %
 C
 C
 :C
 C
 C
 C
 C
 C
 9:
 10:
 11:C
 12:C
 13:
 14:C
 15: C
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
 26:
 27: C
 28:C
be modified.)
 29: C
 30:C
 31:C
 32: C
33:
34:
35:
36: C
37: C
30:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
E2:
53:
54:
55:
56:
57:
58:7
59: C
60: C
This program is connosen of the followilig rout ilioc;:
1. CONTROM (MAIN PROGF:AM).
2. CRETRK:
This subroutine is to draw a track for a shio given the
estimated position and direction.
3. CRELF'S:
This is used for the drawing of a polygon (ellipse),
according to the given position and direction of the
track.
This is the main program which controls:
1. Input/Output routines.
2. Creating and deleting polygons routines.
 In this section, the program also calls routines which
add words to radar types, ID number onto tracks. Deleting
routine is to erase those words and polyoons by puting a
panel in the vicinity of a word and by drawing the same
polygon by using b black line color.
3. Timing routines (with 4051).
Variables:
 TBASE = Data base used for testing this program. (%## needs to
 REPLY = A logical variable used to determine the occurance
 of an event. If true, the event is scheduled.
 SCAL(I) = The original scale factor of polygon for tract I.
OSCAL(I) = After calling a timing routine, the scale factor
 changes to this factor.
 INDSNR = Indicator variable of sensor report, o means there
 is no sensor report so far; after the first sensor
 report has been processed, it is given the value i.
PROGRAM CONTROL
LOGICAL. REPLY
REAL SCAL (11),OSCAL (11)
REAL TBASE (300, 10), TRNSFR(11, 10)
INTEGER INDSNR, ID, IRADAF. IFROM, NOFTRK
DATA IDUM /O/
DATA INDSNR /O/, NOFTRK /O/
DATA SCAL /11%0./
DATA TRNSFR /110%0.0/
C
C
C
Open some logical devices.
OPEN (UNIT = 15)
OPEN (UNIT=20,FILE='AXO: *)
OPEN (UNIT=30,FILE='AXI:')
OPEN (UNIT = 16)
NODATA stands for "Number Of DATA".
READ (15,7) NODATA, ISEED,NSMFL, ACUFCY
FORMAT (15,5X,I10,5X,I5,5X,F6.2)
Heading of the output file.
```

```
 61: C
 62: CALL HEAD (ISEED,NSMFL,ACUFCY)
 63: FEAD (15,10) ((TEASE (I,J),J=1,10).I=1, NOIIATA)
 64: 10
. 2. 1x,
 65:
 66: C
 67: C
 68: C
 69: C
 70: C
 71: C
 72:C
 7J: C
 74: C
 75:
 76: C
 77: C
 78: C
 79:
 80: C
 81: C
 82: C
 33:
 84:
 85:
86:
97:
88:
1111
C
C
C
93:
94: C
95: C
96: C
97: C
98: C
99:
100: C
101: C
102: 100
103:
104:
105:
106:
107:
108:
109:
110:
)
111:
112:
113:
114: C
115: C
116: C
117: C
118:
119:
120:
```

```
 1:1:
 122: 11R
 1こ3:
124:
 125:
 126:
127:
 128:
 129:
 130:
 131:
 132:
 135:
 134:
 135:
 136:
L(ID))
 137: 120
 138:
 139:
 140:
 141:
 142:
 143:
 144: 125
 145:
 146:
 147:
 148:
 149:
 150:
 151: 159
 152:
 153: 169
 154:
 155:
 156:
 157:
 158:
 159:
 160:
)
 161:
 162:
))
 163:
 164:
 165: 130
 166:
 167:
 168: 160
 169:
 170:
 171:
 172:
 173:
 174:
 175:
 176:
 177:C
 178: C
 179: C
 180: C
```

```
 122: 119
 43.
 54.
,
 EN!IIF
 Corst INUE
 CALL DECIDE (TEASE (1.1). IFROM, NUF TFF:. IFADAF)
 CALL CMCL.OS
 CALL CMOFEN
 CALL LINCLR (1)
 CALL CRESNF (TEASE (I, Z), TEASE (I, F), TEASE (I, 7), THASE (I, 日)
 CALL EFADAF:
 CALL PROMFT
 ELSE IF (TRNSFF(ID,2) .EO. O.0) THEN
 GOTO 120
 ELSE
 CALL LINCLF (1)
 CALL CRETRK (TRNSFF(ID, 3),TFNSFFI(ID,4),TFNSFF(ID.5))
 CALL ERASE (TRNSFR(ID,S),TRNSFF(ID,4))
 CALL CRELPS (TRNSFFi(ID, 3),TFNSFF(ID,4),TRNSFFI(ID.5),OSCA
 CALL LINCLF (4)
 CALL CRETRK (TEASE (I, 3),TBASE (I, 4),TEASE (I, 5))
 CALL WORD (TEASE (I, 3),TRASE(I, 4), ID)
 CALL LINCLR (3)
 CALL CRELFS (TEASE (I,3),TEASE (I,4),TBASE(I,5),SCAL (ID))
 DO 125 K=1,8
 TRNSFR(ID,K) = TBASE(I,K)
 CONTINUE
 OSCAL(ID) = SCAL(ID)
 ENDIF
 ElSE
 DO 130 K=1,10
 DO 130 K=1,10
 WFITE (20,159)
 FOFMAT ('ENLRGE')
 READ (30,169) TIME
 FORMAT (F9.3)
 CALL CMOPEN
 IF (TRNSFF(K,2) .EQ. (1.0) THEN
 GOTO 130
 ELSE
 CALL TMXFTR (TRNSFR(K,1),TRNSFR(K,7),OSCAL (K),SCAL (K))
 CALL LINCLR (3)
 CALL CRELPS (TRNSFR(K,3),TRNSFR(K,4),TRNSFF(K,5),SCAL (K)
 CALL LINCLR (1)
 CALL CRELPS (TRNSFR(K,3),TRNSFR(K,4),TFNSFFi(K.5), OSCAL (K
 OSCAL (K) = SCAL (K)
 ENDIF
 CONTINUE
 GOTO 100́
 ENDIF
 CONTINUE
 CALL FINE (NOFTRK:)
 CALL GRSTOF
 CLOSE (9)
 ClOSE (20)
 CLOSE (30)
 CLOSE (40)
 STOF
 END
 THIS SUEFOUTINE IS TO GENEFATE THE TRAC& OF A SHIF UNDER THE
HYFOTHESIS OF KNOWN MOVING DIFECTION.
```

```
 181: C
 182: C
 18?: C
 184:C゙
 185: C
TRACK.
 186: C
TRACK:.
 187: C
 188:
 189:
 190:
 191:C
 192: C
 193:
 194:
 195: C
 196: C
OTATION.
 197: C
 198:
 199:
 200:
 201:
 202:
 203:
 204:
 205: C
 206: C
 207: C
 208:
 209:
 210:
 211:
 212: C
 213: C
 214: C
 215:
 216:
 217:
 218: C
 219: C
 220: C
 221:
 222:
 223:
 224:
 225:
 226:
 227:
 228:
 229: C
 230: C
 231: C
 232:
 23\:
 234: C
 235: C
 236: C
 237:
 238:
 239:
 240: C
```

```
VAKLANLES:
```

VAKLANLES:
XTKA: = X COOFDINATE OF THE TFACI.
XTKA: = X COOFDINATE OF THE TFACI.
YTRF = Y COOFDINATE OF THE TRACL.
YTRF = Y COOFDINATE OF THE TRACL.
DEG = ANGLE OF DIRECTION
DEG = ANGLE OF DIRECTION
x = ARRAY TO STORE THE }x\mathrm{ COORIDINGTES OF THE POSITION OF THE
x = ARRAY TO STORE THE }x\mathrm{ COORIDINGTES OF THE POSITION OF THE
Y = ARRAY TO STORE THE Y COORDINATES OF THE POSIIION OF THE
Y = ARRAY TO STORE THE Y COORDINATES OF THE POSIIION OF THE
SURFOUTINE CRETFK, (XTFK,YTFK,DEG)
SURFOUTINE CRETFK, (XTFK,YTFK,DEG)
REAL }X(4),\quadY(4
REAL }X(4),\quadY(4
A DIMOND SHAFE POLYGON FOF THE TFACK..
A DIMOND SHAFE POLYGON FOF THE TFACK..
DATA X/-4.,0.,4.,0.1
DATA X/-4.,0.,4.,0.1
DATA Y/0.,-4.,0.,4.1
DATA Y/0.,-4.,0.,4.1
FIRST DFAW THE TRACK, THEN FIVOT THE CENTEF POINT OF THIS TRACK FOR R
FIRST DFAW THE TRACK, THEN FIVOT THE CENTEF POINT OF THIS TRACK FOR R
CALL MOVE (XTRK+2..YTRK+2.)
CALL MOVE (XTRK+2..YTRK+2.)
CALL VECREL
CALL VECREL
CALL FOLY(4, X, Y)
CALL FOLY(4, X, Y)
CALL VECABS
CALL VECABS
CALL PIVOT (XTRK,YTRK)
CALL PIVOT (XTRK,YTRK)
CALL ROTATE (DEG,DEG)
CALL ROTATE (DEG,DEG)
CALL MOVE (XTRK+1.,YTFK)
CALL MOVE (XTRK+1.,YTFK)
DRAW THE DIRECTION OF THE TRACK, THEN ROTATE THE COORDINATION BACK.
DRAW THE DIRECTION OF THE TRACK, THEN ROTATE THE COORDINATION BACK.
CALL DRAW (XTRK+4.,YTFK)
CALL DRAW (XTRK+4.,YTFK)
CALL ROTATE(-DEG,-DEG)
CALL ROTATE(-DEG,-DEG)
RETURN
RETURN
END
END
This subroutine is to draw an ellipse.
This subroutine is to draw an ellipse.
SURROUTINE CRELFS (XLPS,YLFS,DEGLFS,COELFS)
SURROUTINE CRELFS (XLPS,YLFS,DEGLFS,COELFS)
REAL X(30),Y(30)
REAL X(30),Y(30)
IF (COELFS .GE. 4.) COELFS = 4.
IF (COELFS .GE. 4.) COELFS = 4.
DO 10 I=1,29
DO 10 I=1,29
ANGL = FLOAT (I-1)/29. * 2. * 3.1415926
ANGL = FLOAT (I-1)/29. * 2. * 3.1415926
X(I) = XLPS + 4.5 + 9. * COS(ANGL) * COELPS
X(I) = XLPS + 4.5 + 9. * COS(ANGL) * COELPS
V(I) = YLPS + 4.*SIN(ANGL) COELPS
V(I) = YLPS + 4.*SIN(ANGL) COELPS
CONTINUE
CONTINUE
X(30) = X(1)
X(30) = X(1)
Y(30)=Y(1)
Y(30)=Y(1)
CALL PIVOT (XLPS,YLFS)
CALL PIVOT (XLPS,YLFS)
CALL ROTATE (DEGLPS,DEGLPS)
CALL ROTATE (DEGLPS,DEGLPS)
CALL SKIF
CALL SKIF
CALL POLY (SO,X,Y)
CALL POLY (SO,X,Y)
C

```
C
```

```
242:
243:
244:
245: C
246: C
247: C
248: C
249:
2E0:
251: C
252: C
253: C
254:
255: C
256: C
257: C
258:
259:
260:
261:
262:
263:
264: C
265: C
266: C
267: C
268: C
269: C
270: C
271:
272: C
273: C
274: C
275: C
276: C
277: C
278: C
279: C
280:
281:
282:
283:
284:
285:
286:
287: C
288: C
289: C
290:
291:
292:
293:
294:
295:
296: C
297: C
298: C
299:
300:
C
CALL ROTAIE (-DEGLFS. -DEGI.FS)
RETUFN
END
SUEROUTINE CRESNF (XR,XL,YL,YF)
REAL XR, XL,YL,YR
CALL Sk.IF
CALL MOVE (65.,13.)
CALL DRAW (XR,YR)
CALL MOVE (65.,13.)
CALL DRAW (XL,YL)
RETUFN
END
This subroutine defines the colors of pens used in this program.
SUEROUTINE COLOR
 ELACK = IGL COLOR MAP, PEN *1.
 ELUE = IGL COLOR MAF, PEN #2.
YELLOW = IGL COLOR MAP, PEN #3.
 RED = IGL COLOR MAP, FEN *4.
 GKEEN = IGL COLOR MAP, PEN *S.
 WHITE = IGL COLOR MAP, PEN *G.
REAL BLACK (3), BLUE (3), YELLOW (3), RED (3), GFEEN (3), WHI TE (3)
DATA BLUE/300.0,50.0.100.0/
DATA YELLOW /180.0,50.0,100.0/
DATA BLACK /3*0.0/
DATA RED /100.0,50.0,100.0/
DATA GREEN /240.,50.,100.1
DATA WHITE /0.,100.,100./
DEFINE THE COLORS USED IN THIS PROGRAM.
CALL CLRMAF (1,3,BLACK)
CALL CLRMAF (2,3,BLUE)
CALL CLRMAP (3,3,YELLOW)
CALL CLRMAF (4,3,RED)
CALL CLRMAF (5,3,GFEEN)
CALL CLRMAF (6,3,WHITE)
FILFAN: pattern 17 is blacl, FALSE means no boundry specified.
CALL FILFAN (17,.FALSE.)
CALL TXTCLR (5)
```



| 361: | ABC $=$ CHAR (J) |  |
| :---: | :---: | :---: |
| 362: |  | CALL TEXT (1,ABC) |
| 363: |  | ENDIF |
| 3648 |  | CALL SKIP |
| 365: |  | RETURN |
| 366: |  | END |
| 367: | c |  |
| 368: | C |  |
| 369: | C |  |
| 370: | C |  |
| 371: |  | SUBROUTINE TMXFTR (HAPTME, SPDFTR, OLDFTR, WENFTR) |
| 372: |  | REAL TIME, ENLRGE, OLDFTR, WENFTR |
| 373: |  | INTEGER IS |
| 374: |  | CALL CMCLOS |
| 375: |  | WRITE (20,100) |
| 376: | 100 | FDRMAT ("TMXFTR') |
| 377: |  | READ (30, 200) TIME |
| 378: | 200 | FORMAT (F9.3) |
| 379: |  | ENLRGE = (TIME - HAPTME) *. 002 |
| 380: |  | IS = IFIX (SPDFTR*S) |
| 381: |  | GOTO (300,400,500,550) IS |
| 382: | 300 | WENFTR = OLDFTR + ENLRGE |
| 383: |  | GOTO 600 |
| 384: | 400 | WENFTR = OLDFTR + ENLRGE * 2. |
| 385: |  | GOTO 600 |
| 386: | 500 | WENFTR = OLDFTR + ENLRGE * 3. |
| 387: |  | GOTD 600 |
| 388: | 550 | WENFTR = OLDFTR + ENLRGE * 4. |
| 389: | 600 | CALL CMOPEN |
| 390: |  | RETURN |
| 3912 |  | END |
| 392: | C |  |
| 393: | C |  |
| 394: | C |  |
| 395: | C |  |
| 396: |  | SUEROUTINE ERADAR |
| 397: |  | REAL $X(4), Y(4)$ |
| 398: |  | DATA X /8.,0.,-8.,0.1 |
| 399: |  | DATA Y /O., В.,0.,-8.1 |
| 400: |  | CALL MOVE (63.,6.) |
| 401: |  | CALL VECREL |
| 402: |  | CALL PANEL ( $4, X, Y$ ) |
| 403: |  | Call vecabs |
| 404: |  | CALL SKIP |
| 405: |  | RETURN |
| 406: |  | END |
| 407: | C |  |
| 408: | C |  |
| 409: | C |  |
| 410: | C |  |
| 411: |  | SUEROUTINE FADAF (ldaf) |
| 412: |  | CHARACTER* 1 AEC |
| 413: |  | INTEGER IDAF.J |
| 414: |  | $\mathrm{J}=$ IDAF +64 |
| 415: |  | AEC = CHAR (J) |
| 416: |  | CAIL MOVE (64.5.7.) |
| 417: |  | CALL TEXT (1,AEC) |
| 419: |  | CALL SkIF |
| 419: |  | getulin |
| 420: |  | E.ND |

```
421:C
422: C
423: C
424: C
424: C
426:
427:
428:
429:
430:
431:
432:
433:
434:
435: 100
436:
437: 105
438:
439:
440:
441:
442:
443:
444: 110
445:
446: 120
447:
448:
449: 160
450:
451:
452:
453:
454: C
455: C
456: C
457:
458:
459:
460:
461:
461:
463:
464:
465:
466:
467:
46B: 10
469: C
470:
471: C
472:
473:
474: C
475:
476:
477: C
478:
477:
480:
SUBROUTINE DECIDE (OCTIME,IOFTRK, NOSUM, ITYPE)
SUBROUTINE DECIDE (OCTIME,IOFTRK,NO
INTEGER IOF
CHARACTER* 1 ABC
CALL CMCLOS
KNSWER = 1
J = ITYPE + 64
ABC = CHAR(J)
WRITE (20,100)
FORMAT ('DECIDE')
READ (30,105) TIME
FORMAT (F9.3)
CALL CMOPEN
CALL CMCLOS
WRITE (20,110) IFROM
CALL CMOFEN
CALL CMCLOS
WRITE (20,110) ITYPE
FORMAT (I3)
READ (30, 120) ANSWER
FORMAT (I2)
IF (ANSWER .NE. ITYPE) KNSWER=O
WRITE (16,160) OCTIME,ABC,IOFTRK,ANSWER,TIME,KNSWER
160 FORMAT (F9.3,5X,A1,10X,I1,9X,I1,5X,F9.J,5X,I1)
CALL CMOPEN
NOSUM=0
RETURN
END
```

```
C
```

C
C This subroutine defines some setting for the terminal 4107.
C This subroutine defines some setting for the terminal 4107.
SUBROUTINE DEFINE
SUBROUTINE DEFINE
CALL BEGOS ('L','L',10, IEUF)
CALL BEGOS ('L','L',10, IEUF)
CALL CHROS ('30', I BUF)
CALL CHROS ('30', I BUF)
CALL ENDOS (IBUF,.TRUE.)
CALL ENDOS (IBUF,.TRUE.)
CALL BEGOS ('L','I', 10,JEUF)
CALL BEGOS ('L','I', 10,JEUF)
CALL INTOS (1,JBUF)
CALL INTOS (1,JBUF)
CALL ENDO5 (JBUF,,TRUE.)
CALL ENDO5 (JBUF,,TRUE.)
CALL BEGOS ('L','V', 10,KBUF)
CALL BEGOS ('L','V', 10,KBUF)
CALL INTOS (O,KBUF)
CALL INTOS (O,KBUF)
CALL ENDOS (KBUF,.TRUE.)
CALL ENDOS (KBUF,.TRUE.)
WFITE (6,10)
WFITE (6,10)
FORMAT (A1)
FORMAT (A1)
C
C
C
C
C
C
RETUFIN
RETUFIN
END
END
C
C
SUEROUTINE PROMFI
SUEROUTINE PROMFI
CALL LINCLF (大)
CALL LINCLF (大)
CALL MOUE (G2..1%.)

```
CALL MOUE (G2..1%.)
```

```
 CALL DRAW (68.,13.)
 CALL MOVE (65.,16.)
 CALL DRAW (65.,10.)
 CALL MOVE (62.,13.)
 CALL ARC3PT (65.,16.,68.,13.)
 CALL ARC3PT (65.,10.,62.,13.)
 RETURN
 END
C
C
C
SURROUTINE FINE(IOFTRK)
CALL BEGOS ('L','I',10,KBUF)
CALL INTOS (1,KBUF)
CALL INTOS (4,KBUF)
CALL INTOS (4,KBUF)
CALL ENDOS (KBUF,.TRUE.)
CALL BEGO5 ('L','V',10.JBUF)
CALL INTOS (1,JBUF)
CALL ENDOS (JBUF,.TRUE.)
CALL CMCLOS
WRITE (16,10)
FORMAT ("
WRITE (16,15) IOFTRK
FORMAT ('#**** DISPLAY TYPE: FDLYGONS *** SHIP DENSITY: '.I3,'*****
CALL CMOPEN
RETURN
END
Heading of the output file.
SURROUTINE HEAD (IXAL,ISMPL.PCISN)
WRITE (16,10)
WRITE (16,15) PCISN,ISMFL.IXAL
FORMAT (******************* FESULTS OF ASSOCIATION *****************
FORMAT (' S. ACCURCY: '.F6.2,', SAMPLE SIZE: ',IS,', SEED: ,,I10)
WRITE (16,20)
FORMAT ('
WRITE (16,25)
FORMAT (3X,'TIME',5X,'RADAF', 4X,'PLATFORM', 2X,'RESPONSE', 2X,'RES.
*3X.'POINT')
 WRITE (16,20)
 RETURN
 END
```

LINE

```
PROGRAM CONTROL
LOGICAL REPLY
REAL TBASE (300, 10), TRNSFR(11, 10)
INTEGER INDSNR, ID, IRADAR, IFROM, NOFTRK
DATA IDUM /O/
DATA INDSNR /O/,NOFTRK /O/
DATA TRNSFR /110%0.0/
Open some logical devices.
OPEN (UNIT = 15)
OPEN (LNNIT=20,FILE='AXD:')
OPEN (UNIT=3O,FILE*'AXI:*)
OPEN (UNIT = 16)
NODATA stands for "Number Of DATA".
READ (15,7) NODATA, ISEED,NSMPL, ACURCY
FORMAT (I5,5X,110,5X,15,5X,F6.2)
READ (15,10) ((TBASE (}1,J),J=1,10),I=1,NODATA
FORMAT (F9.3.1X,F3.1,1X,FB.2,1X,FB.2,1X,FB.2.1X,FB.2,1X,FB.2,1X,FB
1FE.2,1X,F3.1)
CALL MEAD (ISEED,NSMPL, ACURCY)
CALL GRSTRT(4105,1)
First define colors and panel pattern.
CALL COLOR
Now define some functions for the terminal.
CALL DEFINE
CALL NEWPAG
CALL PROMPT
Process the data sequentialiy.
DO 160 1=1, NODATA
Set the third element of the record to be an ID number for
it (a track, or a sensor report; sensor report always has
an 1D of 11).
ID = IFIX (TBASE (I,2))
CALL TIMING (TBASE(I.1).FEFLY)
IF (REPLY) THEN
IF (TEASE (I, 10) .GT. O.) THEN
 IRADAR = IFIX (TBASE (I. 10))
 IFROM = IFIX (TEASE (I,Z))
 CALL FROMFT
 CALL CMCLOS
 CALL CMOFIEN
 CALL LINCLR (2)
 CALL CRESNR (TEASE(1,4),TLASE (I, 7))
 CALL PROMPT
```

```
62:
63:
 64: 115
 65: C
 6 6 :
 67:C
 68: C
 69:
 70:
 71:
 72:
 73:
 74:
 75:
 76:
 77:
 78:
 79:
 80:
 81:
 82:
 83:
 84:
 85: 120
 36:
 87:
 88:
 89:
 90:
 1: 125
 92:
 93:
 94:
 95:
 96:
 97:
 98:
 99:
 100:
 101:
 102:
 103:
 104:
 105: C
 106: C
 107: C
 108:C
 109: C
 110:C
 111:C
 112: C
 113: C
TRACl.
 114: C
TRACK.
 115: C
 116:
 117:
 118: C
 119:C A SOUAFE SHAFE FOLYGONN FOF THE TRACF.
 1:1%: C
C
C
 Count for the number of tracks which are on the screen, and then
 prompt for the operator to input his dicision.
 DO 118 KOUNT=1,10
 IF (TRNSFR(KOUNT,3) .NE. O.0) THEN
 NOFTRK = NOFTRK + 1
 ENDIF
 CONTINUE
 CALL DECIDE (TBASE (I, 1), IFROM, NOFTRK, IRADAR)
 CALL LINCLR (1)
 CALL CRESNR (TBASE(I, 4),TBASE (I, 7))
 CALL ERADAR
 CALL PROMPT
 ELSE IF (TRNSFR(ID, 2) .EQ. 0.0) THEN
 GOTO 120
 ELSE
 CALL LINCLR (1)
 CALL CRETRK (TRNSFR(ID,3),TRNSFR(ID,4),TRNSFR(ID,5))
 CALL ERASE (TRNSFR(ID,3),TRNSFR(ID,4))
 CALL LINCLR (4)
 CALL CRETRK (TBASE (I, 3),TEASE (I,4),TBASE (I, 5))
 CALL WORD (TBASE(I,3),TBASE(I,4),ID)
 CALL LINCLR (3)
 DO 125 K=1,8
 TRNSFR(ID,K)=TBASE(I,K)
 CONTINUE
 ENDIF
 ELSE
 GOTO 100
 ENDIF
 CONTINUE
 CALL FINE (NDFTRK)
 CALL GRSTOP
 ClOSE (9)
 CLOSE (20)
 CLOSE (30)
 CLOSE (40)
 STOF
 END
C
 10:C
 THIS SUEROUTINE IS TO GENERATE THE
VARIABLES:
 XTRK = X COORDINATE OF THE TRACK.
 YTRK = Y COORDINATE OF THE TRACK.
 DEG = ANGLE OF DIFECTION.
 X = AFRAAY TO STOFE THE X COOFDINATES OF THE FOSITION OF THE
 Y = AFifit TO STOFE THE Y COOFDINATES OF THF FOGITION OF THE
 SUBFIOUIINE CFETFE: (XIFF, YTFAK, DEG)
 REAL. }X(4).\quadY(4
```

121: OTATION. 125: C $126:$ 127: 128: 129: 130: 131: 132: 133: C 134: C 135: $136:$
137:
138:
139:
140: C
141: C
142: C
143: C
$144:$
145:
146: C
147: C
148: C
149:
150:
151:
152: C
153: C
154:
155:
156: C
157:
158:
159:
160:
161:
162: C
163:
164:
165:
166:
167:
168:
169:
170:
171: C
172:
175:
174:
175:
176:
177:
178:
179: C
180: C

DATA $x /-4 ., 0 ., 4 ., 0.1$
DATA Y/O., -4., 0., 4.1
FIRST DRAW THE TRACK, THEN PIVOT THE CENTER POINT OF THIS TRACK FGR R

CALL MOVE (XTRK+2., YTRK+2.)
CALL VECREL
CALL POLY(4, $X, \quad Y$ )
CALL VECABS
CALL PIVOT (XTRK, YTRK)
CALL ROTATE (DEG, DEG)
CALL MOVE (XTRK+1., YTRK)
DRAW THE DIRECTION OF THE TRACK. THEN ROTATE THE COORDINATION BACK.
CALL DRAW (XTRK+4., YTRK)
CALL ROTATE (-DEG,-DEG)
RETURN
END

SUEROUTINE CRESNR (XP, YP)
REAL XP, YP

CALL SKIP
CALL MOVE (65.,13.)
CALL DRAW (XP,YP)

RETUFN
END

This subroutine defines the colors of pens used in this program.
SUBROUTINE COLOR
ELACK $=$ IGL COLOR MAP, PEN 1.
ELUE $=$ IGL COLOR MAP, PEN 2.
YELLOW $=$ IGL COLOR MAP, PEN 3.
RED $=$ IGL COLOR MAP, PEN \#4.
GREEN $=$ IGL COLOR MAP, PEN \#5.
WHITE $=$ IGL COLOF MAF, FEN *6.

DATA ELUE/300. 50.0, $100.0 /$
DATA YELLOW / 180.0.50.0.100.0/
DATA ELACK / $3 * 0.01$
DATA FEED / 100.0.50.0. 100.01/
DATA GREEN /240., 50., 100. $/$
DATA WHITE /O. . 100. . 100.1
DEFINE THE COLOFS USED IN THIS FFIOHKAM.


```
241: J = IORD + 48
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254: C
255: C
256: C
257:
258:C
259: C
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274: C
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285: C
285: C
286: C
288: C
289: C
290:
291:
292:
293:
294:
295:
296:
297:
298:
298:
30G: CAL.L CMCLOS
CALL MOVE (XORD-1.,YORD-1.)
IF (IORD .EQ. 10) THEN
EFG = CHAR (J)
 CALL TEXT (2,EFG)
ELSE
 ABC = CHAR (J)
 CALL TEXT (1,ABC)
ENDIF
CALL SKIP
RETURN
END
C
260:
SUBROUTINE ERADAR
REAL X(4),Y(4)
DATA X /8.,0.,-8.,0.1
DATA Y /0.,8.,0.,-8.1
CALL MOVE (63.,6.)
CALL VECREL
CALL PANEL (4, X,Y)
CALL VECABS
 CALL SKIP
 RETURN
 END
C
 CHARACTERE I ABC
 CHARACTEREI ABC
 INTEGER IDAR,J
 J= IDAR + 64
 AEC = CHAR (J)
 CALL TEXT (1,ABC)
 CALL SKIP
 CALL SK
 END
C
C
C
SUEROUTINE DECIDE (OCTIME.IOFTRK,NOSUM, ITYPE)
 INTEGER IOFTRK, ANSWEF, NOSUM, ITYFE
 REAL OCTIME
 CHARACTER*1 ABC
 CALL CMCLOS
 J = ITYPE + 64
 J = ITYPE + 64
1(w, FOFMAT (DECIDE`)
 CALL CMOPEN
```

| 301： |  | WRITE（20，110）IOFTRK |  |
| :---: | :---: | :---: | :---: |
| 302： |  | READ（30，105）TIME |  |
| 303： | 105 | FORMAT（F9．3） |  |
| 304： |  | CALL CMOPEN |  |
| 305： |  | CALL CMCLOS |  |
| 306： |  | WRITE（20，110）ITYPE |  |
| 307： | 110 | FORMAT（13） |  |
| 308： |  | KANSWER＝ 1 |  |
| 309： |  | IF（ANSWER ．NE．IOFTRK）KANSWER＝0 |  |
| 3108 |  | READ（30，120）ANSWER |  |
| 311： | 120 | FORMAT（12） |  |
| 312： |  | WRITE（16，160）OCTIME，ABC，IOFTRK，ANSWER，TIME，KNSWER |  |
| 313： | 160 |  |  |
| 314： |  | CALL CMOPEN |  |
| 315： |  | NOSLMM $=0$ |  |
| 316： |  | RETURN |  |
| 317： |  | END |  |
| 318： | C |  |  |
| 319： | C | This subroutine defines some setting for the terminal 4107. | ， |
| 3208 | C |  |  |
| 321： |  | SUBROUTINE DEFINE |  |
| 322： |  | CALL BEGOS（＂L＇，＇L＇，10，IBLF） |  |
| 323： |  | CALL CHROS（＊30\％，IBUF） |  |
| 3248 |  | CALL ENDOS（IBUF，．TRUE．） |  |
| 325： |  | CALL BEGOS（＂L．，＂I＊，10，JBUF） |  |
| 326： |  | CALL INTOS（1，JBUF） |  |
| 327： |  | CALL ENDOS（JBUF，－TRUE．） |  |
| 328： |  | CALL BEGOS（＂L＊，＂V＂，10，KBUF） |  |
| 329： |  | CALL INTOS（O，KEUF） |  |
| 330： |  | CALL ENDOS（KBUF，．TRUE，） |  |
| 3318 |  | WRITE（6，10） |  |
| 332： | 10 | FORMAT（A1） |  |
| 333： | C |  |  |
| 334： | C |  | ， |
| 355： | C |  |  |
| 336： |  | RETURN |  |
| 337： |  | END |  |
| 338： | C |  |  |
| 339： |  |  |  |
| 340： | C |  |  |
| 341： | C |  |  |
| 342： |  | SUBROUTINE PROMPT |  |
| 343： |  | CALL LINCLR（6） |  |
| 344： |  | CALL MOVE（62．，13．） |  |
| 345： |  | CALL DRAW（68．，13．） |  |
| 346： |  | CALL MOVE（65．，16．） |  |
| 347： |  | CALL DRAW（65．，10．） |  |
| 348： |  | CALL MOVE（62．，13．） |  |
| 349： |  | CALL ARC3PT（65．，16．，68．，13．） |  |
| 350： |  | CALL ARCSPT（65．．10．，62．，13．） |  |
| 351： |  | RETUFN |  |
| 352： |  | END |  |
| 353： | C |  |  |
| 354： | C |  |  |
| 355： | C |  |  |
| こ56： |  | SUEFOUT INE FINE（IOFTFH） |  |
| ご57 |  |  |  |
| 358： |  | CALL INTOS（1，NEUF） |  |
| 359： |  | CALL INTOS（4．kEUF） |  |
| S69： |  | CALIL INTOS（4，kEUF） |  |

```
 361: CALL ENDOS (KBUF,.TRUE.)
 362:
 363:
 364:
 365:
 366:
 367: 10
 *)
 368:
 369: 15
**)
 370:
 371:
 372:
 373:
 374: C
 375: C
 376:
 377:
 378:
 379: 10
***)
 380: 15
 381:
 382: 20
__')
 383:
 384: 2
TIME',
 385:
 386:
 387:
 388:
 CALL BEGOS ('L','V',10,JBUF)
 CALL INTOS (1, JBUF)
 CALL ENDOS (JBUF,.TRUE.)
 CALL CMCLOS
 WRITE (16,10)
 FORMAT (*
```

$\qquad$

```
 WRITE (16,15) IOFTRK
 FORMAT ('***** DISPLAY TYPE: NON-POLG *** SHIP DENSITY: *,I3,*****
 CALL CMOPEN
 RETURN
 END
 HEADING OF OUTFUT FILE.
 SUGROUTINE MEAD (IXAL,ISMPL,PCISN)
 WRITE (16,10)
 WRITE (16,15) PCISN, ISMPL,IXAL
 FORMAT ("***************** RESULTS OF ASSOCIATION ****************
 FORMAT (" S. ACCURCY: ",F6.2,*, SAMPLE SIZE: ',I5,', SEED: ',I10)
 WRITE (16,20)
 FORMAT <"
 WRITE (16,25)
 FORMAT (3X,'TIME', SX,'RADAR', 4X,'PLATFORM', 2X,'RESPONSE', 2X,'RES.
 $3X, 'POINT')
 WRITE (16,20)
 RETURN
 END
```



```
0 FEM #% FiEADY4S
```



```
FEM This program facilitates the communication between the HP-B0
FEM and the Tektroni> 4170. The first part is to draw a figure
FEM in which the operator can see what associations he/she made.
FEM The second part is to do the communicaion.
```



```
0) DIM OFDER& (3O)
100 DATA "1","2","\Xi","4","5","6","7","日","9","10","11","12","13","14","15","16",
"17"
110 DATA "18","19", "20","21","22","23","24","25","26","27","2日","29","\Xi0"
12@ FOF K=1 TO SG E READ ORDEF$(Ki) E NEXT K
130 GRAFHALL
140 GCLEAR
150 CSI2E 4
160 SCALE 0,160,0,120
```




```
1GO CSIZE 4
I`G MOVE O, 1OS E LAEEL "FLATFORM/ASSO. ORDER"
OM MOVE O,100 Q DRAW 160,100
210 FOF I=0 TO 10 STEF }
220 MOVE O,I #10
2こ0 DRAW 160,I#10
240 NEXT I
25O MOVE 10,0 E DFAW 10,100
260 FOF: J=0 TO 33 STEF 32
270 MOVE J%5,0
2日G DFAW J*5,100
290 NEXT J
300 FOR N=1 TO こ0
Z10 k1=7.5+5%k
E2O IF Ki= 10 THEN K1=F1-1.1
\Xi\XiO MOVE K1,95
-40 LABEL ORDER$ (K)
JO NEXT K
ZGO CSIZE 4
370 FOR K=1 TO 8
380 K1=94-K事10
390 MOVE 4,K1
400 LABEL ORDER$ (k:)
410 NEXT K
```



```
43O ON KEY* 1 GOTO 450
440 GOTO 440
450 DFF KEY# 1
460 X1=12.5
470 I=99
480 SETTIME 144,0
490 ENTER 10 USING "#,k " ; A$
500 IF A$ ="DECIDE" THEN 52O ELSE 590
510 END
520 KIND=TIME
530 BEEP 20,180
540 GOSUE 610
550 MOVE X1,94-I*10 ঞ' LAEEL RADAFS
500 X1= X1+5
570 OUTPUT 1G USING "㓩,N": I
5日! GOTO 490
590 OUTPUT 10 USING "DDDDI..DDD": TIME
600 GOTO 490
610 ON KYED F1." "127.4567日" GOTO 6SO
620 GOTO 620
630 I=F1-48
640 P1=0
650 OFF KYBD" "1234567E"
660 KIND=TIME -KIND
670 EEEP 10,180
680 OUTPUT 10 USING "DDDDD.DDD" : KIND
690 ENTER 10 USING "*.K" : KEY
700 ENTER 10 USING "*.k:" N
710 N=N+64
720 RADAR$=CHR$ (N)
730 RETURN
```


## APPENDIX C




```
30 6F:=:
4) CFTHCN SASE (
Si ken First element:= factor a
60) REM Second elenent:= factor :
70 FEM Third elecent:= factor C
80 FEN Fourth element:= replicates
90 DIK THE.DATA(2,2,2,10),REPLICATIONS(10)
100 REK now enter the data
110 IMPUT "Enter the number of replications:";NODATA
120 FOF 1=0 TO 1
130 FOR J=0 TO 1
140 FOR K=0 TO 1
150 FOR L=0 TO NODATA-1
160 REGD THE.DATG\I,J,K,L)
170 THE.DATA(I,J,K,L)=LOG(THE.DATA(I,J,K,L://1-THE.DGTA:I,J,K,L!))
180) NEXT L
100 NEXT K
2CO NEXT J
210 NEXT I
220 DATA .93333,.86666,.93333,.93333
230 DRTA .66666,.66666,.73333,.6
240 DATA .63333,.76668,.7,.76666
250 DATA .5,.46666,.26686,.36666
260 DATA .93333,.93333,.93333,.93333
270 IATA .53333,.53333, .6,.6
280 OATA .6,.6,.63333,.6
290 DATA .56666,.73333,.56666,.6
300 FOR L=0 TO NODATA-1
310 OME=THE.DATA(0,0,0,L) +ONE
320 A=THE. DATA(1,0,0,L)+A
3O% F=THE.DATA (0, 1,0,L)+B
340 [=THE. DATA (0,0,1,L)+C
350 AE=THE.DGTA11,1,0,L)+AB
360 AC=THE.DATA(1,0,1,L)+AC
370 BC=THE.DATA (0,1,1,L)+BC
380 AKC=THE.DATG (1, 1,1,L)+ABC
390 NEXT L
400 REK Now calculate the sum of squares.
410 EFFECT.1 = OHE +A+B+AE+C+AC+BC+ABC
4 2 0 ~ E F F E C T . A ~ = ~ - O N E + G - B + A E - C + A C - B C + A B C ~
430 EFFECT. }=-ONE-A+B+AB-C-AC+BC+AB
4 4 0 ~ E F F E C T . A F ~ = ~ O N E - A - B + A B + C - A C - B C + A B C ~
450 EFFECT.C = -ONE-A-B-AB+C+AC+BC+ARC
460 EFFECT.AC = ONE-G+F-GB-C+AC-EC+AEC
470 EFFECT.EC = ONE+A-F-AE-C-FC+BC+GEC
48O EFFECT.ABC = -ONE A + B-AB+C-AC-BC+ARC
49! REY Now do scre relevant calculations.
SOO FOR I=0 TO 1
51. FGF J=0 T0 1
50 FOF:t=0 TO 1
530 FOF L=0 TO NODATA-1
5&(SUH=SUK+THE.DGTA(I,J,k,l)
550 THEATMENT.SQUARE.SUM=THEATMENT.SQUARE.SUK+THE. LGTAII,N,I,L)^2
```

```
Sen HE:1/
O? MEM1
38, 4E:`:
Sof NE:T ;
bOG FOF EOUNT=O IO RODATA-1
biO FOF i=i TO 1
G20 FOF J=0 TR:
630 FOR R=0 TO 1
640 REPLICATIONS (COUNT)=REPLICATIONS (COUNT1 +THE. DATAII,J,K,COUNT)
650 NEXT K
600 NEXT J
670 MEXT I
680 NEXT COURT
690 CORRECTION.TERM=SUM&SUM/(8tNODATA)
700 SUM. OF. SQUARE. T=TKEATMENT, SPUAKE. SUM-CORRECTION. TERM
```



```
(1G^2)+(ABC^2)1-CORRECTION.TERM
T2C FOR COUNT=0 TO MODATA-1
730 SUM.OF.SQUARE.R=SUH.OF.SQUGRE.R+!REFLICATIONS(COUNT)`2)
7 4 0 \text { NEXT COUNT}
7SO SUM.OF.SRUARE.R=SUM.OF.SQUARE.R/8-CORKECTION.TERM
76O SUM.OF.SQUARE.ERROR=SUM.OF.SQUARE.T-SUH.OF.SQUARE.TREATMENT-SUM.OF.SQUAKE.ER
ROF
770 KEn Now calculate sue of squares for each effect.
780 DENUM=NODATA:8
790 SSA = EFFECT.A^2/LENUM
800 SSE = EFFECT. B^2/DENMM
810 SSAE = EFFECT.AB^2/DENMM
820 SSC = EFFECT.C^2/DEMUM
83C SSRC = EFFECT.BC^2/DENUM
840 SSAC = EFFECT.AC^2/DENUH
850 SSABC = EFFECT.ABC^2/DENUM
860 PRINT "SSA=';SSA
870 FRINT 'SSB=';SS8
880 PRINT "SSC=';SSC
890 PRINT 'SSAB=';SSAR
900 PKINT 'SSEC=';SSEC
910 PFINT 'SSAC=";SSAC
920 PRINT 'SSABC=';SSABC
930 PRINT:PRINT:PRINT:PRINT:PRINT:PRINT
940 FFINT "SUK.OF.SQUARE.R=';SUH.OF.SQUGRE.K
OSO PRINT "SUM.OF.SQUARE.TREATMENT=";SUM.OF.SQUAFE.TREGTMEN:
G60 PRINT "SUM.OF.SQUARE.T=';SU#.OF.SQUGEE.T
970 PriNT "CORRECTION TERM=";CORRECTIOH.TERM
980 PRINT "SUM = ';SUM
990 SUK.OF. SQUARE.ERROF=SUM.DF. SQUARE.T-SUM.DF. SQUARE.TREATMENT-SUM.OF.SQUAFE.F
1000 FRINT 'sue of square of error =';SUM. OF. SQUAFE.ERFOR
1010 DFR=NODGTA-1
1020 DFTOTAL=RODATA:8-1
1C3O DFERROR=DFICTAL-DFFF-7
IO&O REAN.SSE=SUM.OF.SQUARE.ERROR/DFERFOF:
1050 REM This section prints out the fNOIG table.
1000 PFINT - Source of Degree of Sun of Mean F
-
1070 FfINT * variation treedom squares squares"
```

```
ivicimint
```




```
":SM.6F.SU心EE.faff:
```



```
1CO FE!N
il30 fFimp " Majh elfects"
```




```
NT USING "&#A#.01:10'; SSE/MEEN.SSE
1150 PRINT - & ";: PRINT TAF(24; : PRINT DFI; : PRINT TAE(34) : PRINT USIN
```



```
: PRINT USING '9141.4840';SSE/MEAN.SSE
1160 PRINT - D ";: PRINT TAB124) : PRINT DFT; : PRINT TAE(34) : PRINT USIN
```




```
1170 PRINT
1180 PFINT" Two-factor*
1190 FRIN: * interactions"
```




```
RINT USING "04A&.4A10';SSAB/REGM.SSE
```





```
1226 F!!NT - FD ;: PEINT TAE!24) : FFINT [FF; : FRINT TAE(34) : PKINT USI
```



```
6) : PRINT USING '{4A&.6##!';SSEC/REAN.SSE
1230 PFINT
1240 PFINT * Three-factor*
1250 PRIKT - interaction"
1260 PRINT" TRD*;:PGINT TAE(24) : PRIAT DFT; :P&INT TA8(34) :PRINT USINE *
```



```
PRINT USING "AAAS.tIA*':SSAEC/MEAN.SSE
1270 PRINT
```




```
.SSE
12gI PkINT
```



```
NG '*SAS.0*AS'; SUN. OF. SQLAFE.T
:310 LPRIKT CHR$(15)
:320 LPRINT
```



```
1330 LPGINT: Source of Degree of Sun:t Mean
```



```
1360 LPFINi
```




```
4!"S!M.gr.EQUARE.F/DFF;
```



```
1400 L'F:IN+
```

```
:4: LFF:NT
:4Z"LFRINT" PaINEF&ELIS
```




```
:LFRINT USING "{1f4.*B##";SSA/MEG4.GSE
1440 LPRINT * K'::LFKINT TAF:24) :LFFINI DFT; :LPKINT TAE(34) :LFKINT USI
```



```
:LFRINT USING *&At.1A14';SSE/KEAK.SSE
1450 LPRINT* D *;:LPRINT TA&(24) :LFRINT DFT; :LFRINT TAE(34) :LPRINT USI
```



```
:LFKINT USING "&t&#.觓";SSC/MEAN.SSE
4469 LPFINT *
1470 LPFINT
1480 LFFINT ' Two-factor"
1490 LFFINT * interactiore"
```




```
() :LFRIHT USINE "I###.##AE":SSGEIREAN. SSE
```




```
t) :LFFINT USING "###t.####*;SSNCIMENR.SSE
```




```
bi :LPEINT USING "{A&#.&&t&";SSEC/NEAN.SSE
1530 LPRINT '
```



```
1540 LPRINT
1550 LPRINT * ThreE-factor*
15t! LFFINT * interactior:"
1570 LFRINT * TRE'::LFFINT TAE(24; : LPKINT DFT; :LPFINT TAK(34) :LFEIN? US
```



```
AB(66): LPRINT USING "fl&#.*###";SSAECIKEAN.SSE
1580 LPFINT"
1590 LPEINT
1600 LFRINT - Error '::LFFINT TAEI24) : LFRINT DFERROF: :IFFINI TAE(SG; :LFFIG
```



```
**MEAN.SSE
1610 LFRINT
1620 LPRINT
```




```
IELC:FFINT *
1050 EN[
```


## APPENDIX D

Original data and their transformations

## 1. Original data

a. Proportion correct (accuracy)

| treat- <br> ment | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .9333 | .6667 | .6333 | .5000 | .9333 | .5333 | .6000 | .5667 |
| .8667 | .6667 | .7667 | .4667 | .9333 | .5333 | .6000 | .7333 |
| .9333 | .7333 | .7000 | .2667 | .9333 | .6000 | .6333 | .5667 |
| .9333 | .6000 | .7667 | .3667 | .9333 | .6000 | .6000 | .6000 |

b. Response time

| treat- |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ment | 2 | 2 | 3 | 4 | 5 | 6 | 7 |
| 9.2212 | 6.9885 | 8.3034 | 11.5154 | 1.5827 | 8.5861 | 2.5991 | 4.1378 |
| 14.2562 | 12.8275 | 41.8292 | 21.7393 | 36.1521 | 1.3113 | 27.8834 | 9.9906 |
| 9.9605 | 10.2221 | 4.0822 | 39.8057 | 3.5398 | 7.2864 | 3.5463 | 53.3504 |
| 2.6984 | 7.4985 | 7.0311 | 9.6616 | 3.9941 | 8.1041 | 7.3763 | 14.2741 |

2. Transformed data for proportion correct:

| treatment |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 2.6390 | .6931 | .5465 | .0000 | 2.6390 | .1335 | .4055 | .2682 |
| 1.8717 | .6931 | 1.1895 | -.1336 | 2.6390 | .1335 | .4055 | 1.0116 |
| 2.6390 | 1.0116 | .8473 | -1.0116 | 2.6390 | .4055 | .5465 | .2682 |
| 2.6390 | .4055 | 1.1895 | -.5466 | 2.6390 | .4055 | .4055 | .4055 |

## APPENDIX E

SIPS output

```
SREAO DATA1,1-8
```




## SREAD. TIMET.1-2

* THIS COMPARES DISPLAY TYPE - RESPONSE rImE SC OHPARE, 1,2




[^0]:    The experiment is described in the next chapter.

