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Soil surveys provide essential information for making land use and management 

decisions on publicly-owned lands in the semi-arid Great Basin.  Soil maps produced with 

conventional mapping techniques are time-consuming, costly, and do not explicitly 

document the soil scientist’s mental soil-landscape model.  Predictive soils mapping using 

decision tree analysis (DTA) can increase mapping efficiency and accuracy by extracting 

relationships between soil types and environmental variables, applying these relationships 

to predict soil types for unmapped areas, and explicitly documenting the process.  While 

DTA has been used for soils mapping in the past, no research exists concerning the use of 

DTA for predictive soils mapping on an active Natural Resources Conservation Service 

(NRCS) soil survey.  This research documents the procedure for producing and validating 

preliminary soils maps using DTA on the Malheur County, Southern Part Soil Survey 

(MCSPSS), documents interactions with survey staff, and proposes a system for predictive 

mapping implementation on the MCSPSS and other soil surveys.   

In the early stages of the project, four sets of predictive maps were produced.  The 

June 16, 2007 predictive map used Owyhee County, Idaho soil survey information as 

training data to predict soil types for three adjacent quads in Malheur County.  Predictive 



 

 

accuracy was low (67% at the order level, 61% at the suborder level, and 35% at the great 

group level) and this approach was abandoned.  Subsequent predictive runs used soils 

mapping within the MCSPSS area, completed during the 2006 and 2007 field seasons, to 

predict soil map units (SMUs) for adjacent quads.  The July 23, 2007 predictive map used 

training data from four east-west trending quads to SMUs for a surrounding annulus of 

quads.  Accuracy improved significantly (87% at the order level, 73% at the suborder level, 

67% at the great group level, and 53% at the subgroup level).  The August 3, 2007 

predictive map used all completed mapping from the 2006 and 2007 field seasons to 

predict SMUs for adjacent quads.  Introduction of additional training data, representing 

greater area and more environmental variable combinations, did not improve accuracy 

(80% at the order level, 67% at the suborder level, 55% at the great group level, and 32% at 

the subgroup level).  The September 14, 2007 predictive run used the same input variables 

and soils training data, but the soils information was recoded from SMUs to the subgroup 

level of soil classification.  Accuracy was expected to increase because contiguous mapped 

areas would be larger and encompass more potential variation at a higher level of 

classification.  However, accuracy was not significantly different from the August 3, 2007 

predictive run.  These results led to the prediction of SMUs for one quad, Threemile Hill, 

based on training data from four adjacent quads (October 12, 2007 predictive run).  

Accuracy improved substantially (91% at the order level, 83% at the suborder level, 83% at 

the great group level, 34% at the subgroup level).  Confusion matrix analysis (for SMUs) 

was performed for the training area and the predicted area, and yielded overall accuracies 

and Kappa coefficients of 98.5% and 0.98 and 74.0% and 0.67 for the training and 

predicted areas, respectively.  The April 10, 2008 predictive run used the same input 



 

 

variables and training data as the October 12, 2007 run, but introduced surficial geology 

variables (surficial age and surficial lithology).  The overall accuracy and Kappa 

coefficient were not significantly different from the October 12, 2007 run, but line 

placement was more precise at delineation boundaries and the locations of prediction 

errors were different.   

DTA is effective for producing preliminary soils maps, but personnel, computer 

hardware, and software constraints currently prevent implementation on the MCSPSS.  

Skepticism and resistance among field scientists is also a major barrier.  The proposed 

system for implementation requires certain personnel: an experienced field scientist with 

area-specific knowledge who would carry out the DTA and produce pre-maps, a GIS 

analyst who would provide data acquisition, data preparation and digitization support, and 

a soil survey project leader who would oversee the predictive mapping process.  All would 

attend a week-long predictive mapping training session.  An agency employee would 

conduct training sessions and serve as the support and issue resolution contact.  Full 

documentation of procedures would be provided as an NRCS technical note.  Adequate 

support in early stages of adoption is essential for long-term success.  
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Use of Decision Tree Analysis for Predictive Soils Mapping and 

Implementation on the Malheur County, Oregon Initial Soil Survey 
 

1. Introduction  
 

Soil mapping activities in the United States are carried out by the National 

Cooperative Soil Survey (NCSS), a nationwide partnership of federal, state and local 

agencies that work together to inventory, document, and encourage use of information 

about soils.  The Natural Resources Conservation Service (NRCS), a division of the United 

States Department of Agriculture, leads and coordinates NCSS activities and employs 

numerous field scientists who develop comprehensive soil surveys for counties or regions 

of interest (U.S. Department of Agriculture, 2007).    

Developing an inventory of an area’s soil resources is critical for enabling land 

owners to make good management decisions.  The complexity and variation in soils across 

the landscape greatly impact the potential land use—whether land is suitable for 

agricultural or forestry production, can be used as a foundation for roads, homes, and 

commercial buildings, or will support sanitary facilities and septic systems.  These are 

some of the classic reasons for interest in a comprehensive soil survey.  As a result, surveys 

have tended to exist only for counties with significant agricultural production and high 

population densities.  However, many government agencies and private organizations now 

recognize the value of soil surveys for making decisions related to ecological health, 

habitat assessments, hydrologic projects, recreational use, wild land management, and 

grazing issues (just to name a few).  This interest has sparked an increase in mapping 

activities for the traditionally unmapped, dominantly publicly-owned areas of the west. 



 

 

2
The process of soil survey is often a tedious, time-consuming, and costly endeavor.  

Well-trained field scientists must cover tremendous expanses of land, dig and describe soil 

profiles, take detailed notes on physical site characteristics, make decisions on taxonomic 

classification, and carry out mental interpolation with the collected data to accurately draw 

soil unit boundaries.  When drawing the unit boundaries, the soil scientist uses his or her 

knowledge of the soil forming factors—spatial and temporal environmental variables 

whose unique combinations produce unique soils—and how variations in these factors 

across the landscape dictate where a certain soil type will end and another begin.  

Traditional soil survey has drawn marked criticism because the process relies on the 

mapper’s qualitative (and often undocumented) mental assessments of soil properties in 

relation to formative variables. The soil scientist’s working model for soil development 

and distribution is the state factor theory.  It was first proposed (though not in name) in the 

late nineteenth century by Dokuchaev (1883) and was later popularized by Hans Jenny 

(1941) in his famous book.  Over the decades, it has stood the test of time and remains the 

accepted paradigm.  The state factor theory is given as: 

s = f (cl, o, r, p, t…) 

where soil is a function of independent variables such as climate, organisms and relief  

acting on parent material through time.  The ellipses represent other factors not accounted 

for that may prove to be important.  The state factor theory implies that soil properties can 

be inferred if values or conditions for the soil-forming factors are known.  In addition to 

establishing the framework for traditional soils mapping, Jenny’s model also allows a 

knowledgeable GIS analyst to use digital data sets that represent soil-forming factors (or 

other environmental variables co-varying with soils) and digital soils maps to extract 
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landscape relationships that can be used to predict soil types for unmapped areas.  This 

predictive mapping process provides a thorough analysis of soil-landscape relationships, 

documents the “knowledge” used in creating the map, gives an estimation of the map errors, 

and can significantly reduce time and resources spent on mapping.       

This research builds upon the work of Elnaggar and Noller (2008a; 2008b), who 

found that decision tree analysis (DTA) could be used to retrieve expert knowledge 

imbedded within soil survey data and then apply that knowledge to create predictive soils 

maps for adjacent areas.  This research examines the feasibility of adapting those digital 

soils mapping (DSM) and pedometric techniques to develop predictive soils maps within 

an active soil survey area.  Despite the abundance of literature exploring the use of DTA 

for natural resources mapping, no research exists that examines actual implementation on 

an active NRCS soils mapping project.  The goals of this thesis are: 1) show that soils of the 

semi-arid Great Basin can be predicted using DTA to extract soil-landscape relationships 

from digital representations of environmental variables and available soil survey data, 2) 

identify critically important independent variables for use in the DTA, 3) document a 

protocol to quickly utilize soils information as it is generated to produce preliminary soils 

maps for subsequent mapping, often within the same field season, 4) analyze the accuracy 

of those maps, and 5) document interactions with NRCS and Bureau of Land Management 

(BLM) survey personnel over the course of this research.  The second chapter will review 

literature pertaining to study area geology, climatic and vegetation history of eastern 

Oregon, study area soils, use of DTA in predictive soils mapping, and relevant technology 

acceptance issues.  The third chapter will cover the methods, results and discussion of the 

predictive soils mapping research in Malheur County.  This chapter is meant to be 
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subsequently published in Soil Science Society of America Journal and so it will read 

somewhat like a stand-alone document.  The fourth chapter will document interactions 

with NRCS and BLM survey crews, and summarize recommendations for implementing 

predictive soils mapping on the Malheur County survey.  The fifth chapter will provide a 

summary conclusion.      
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2. Literature Review 

2.1. Geologic Setting 

2.1.1. Regional Geology 
 
 Eastern Oregon’s volcanic stratigraphy can be generally summarized with the 

following five stratigraphic divisions, listed oldest to youngest: (1) a foundation of 

pre-Tertiary oceanic sedimentary terranes that adjoin the North American pre-Cambrian 

craton to the east, (2) Oligocene to early Miocene calc-alkalic lavas and pyroclastic rocks, 

(3) mid-Miocene flood basalts--Steens basalts, Malheur Gorge-region basalts, and the 

Columbia River Basalt Group (CRBG), (4) localized but widespread calc-alkalic basalts 

and pyroclastic rocks associated with mid-Miocene to Holocene lithospheric extension in 

the Basin and Range province, and (5) late-Miocene to Holocene eruptions of 

high-alumina olivine tholeiitic basalts (Camp, 1995). 

 Much of the geologic research in eastern Oregon has focused on the chronology 

and chemical properties of the major flood basalt sequences.  Steens basalt volcanism 

began about 16.6 Ma, coeval or just prior to the Imnaha and Grande Ronde basalt eruptions 

(CRBG).  Scientists argue whether Steens basalt volcanism represents the earliest 

manifestation of the CRBG (Brandon & Goles, 1988; Camp, 1995; Geist & Richards, 1993; 

Hooper, 1997; Takahashi et al., 1998) or constitutes a distinct flood basalt sequence 

encompassing a greater time span and more eruptive centers than originally believed 

(Brueseke et al., 2007).  Though often questioned in the past, it is now generally accepted 

that Steens basalt and CRBG volcanism occurred as a result of the impingement of the 

Yellowstone mantle hotspot, and that later-occurring small-scale calc-alkalic eruptions 
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resulted from lithospheric extension (Camp et al., 2003; Hooper et al., 2002).  Much of 

the study area is characterized by large lava plateaus formed in Steens and Oregon Plateau 

basalts.  The Owyhee Plateau and river canyon may serve as the best record of 

mid-Miocene to Holocene basaltic volcanism in the Northwestern U.S. (Shoemaker & Hart, 

2002).   

2.1.2. Local Area Geology 

 The Geologic Map of Oregon (Walker & MacLeod, 1991) serves as a useful tool to 

guide discussion of bedrock geology in the study area vicinity.  This map shows Holocene 

basalt and basaltic andesite in the vicinity of Cow Lakes and in the Jordan Craters area.  

These flows originated from several small spatter cones and one major tephra cone, known 

as Coffeepot Crater, and cover an area of approximately 72 km2 (Otto & Hutchison, 1977).  

An olivine basalt flow issuing from Coffeepot Crater dammed Cow Creek to create Upper 

and Lower Cow Lakes (Kittleman, 1973; Otto & Hutchison, 1977; Hart & Mertzman, 

1983).  Thorough descriptions of the flow genesis and volcanic features at Jordan Craters 

Volcanic Field (JCVF) are provided by Otto and Hutchison (1977) and Chitwood (1994).  

The Walker and MacLeod (1991) geologic map legend states that relations to Mazama 

pumice deposits indicate that the Jordan Craters basalt flows are less than 6,800 years old.  

Otto and Hutchison (1977) give an estimated age of 4,000 to 9,000 years based on lichen 

growth rates and degree of basalt weathering.  Ferns (1997) cites an age of 2,000 to 4,000 

years B.P. (source or dating method not provided).  A report by Mehringer (1987) provides 

a radiocarbon age of 3,200 years.  In her popular layperson’s book, In Search of Ancient 

Oregon: A Geological and Natural History, E. M. Bishop  (2003) states that the youngest 
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of the Jordan Craters basalts is 150,000 years old—an improbable overestimation.  The 

reference Bishop uses (Hart & Mertzman, 1983) gives 150,000 years as the estimated 

maximum age of one piece of basalt from the main crater wall, and does not describe how 

this estimate was derived.  Lack of soil cover, preservation of surface flow features, lichen 

growth rates, and degree of weathering all indicate that the basalt is Holocene in age.  

Bondre (2006) identifies 14 monogenetic volcanoes that contributed late Miocene to 

Holocene basalt flows in the Jordan Valley Volcanic Field (JVVF), which includes the 

JCVF.  This study describes the vent alignments, geochronology, compositional 

heterogeneity, and petrology of the JVVF in great detail.    

 The young Jordan Craters basalt flows are flanked by hundreds-of-meters-thick 

accumulations of thin individual flows of dyktytaxitic and porphyritic olivine basalt 

(Miocene through Pleistocene in age) that stretch north- and westward to the Owyhee 

River, eastward to the easternmost edge of Upper Cow Lake, and southward to Antelope 

Reservoir.  Pliocene and Miocene rhyolite and dacite begin on the southern flanks of 

Mahogany Mountain, and trend southward along the perimeter of the Miocene and 

Pleistocene basalt flows, before terminating at the edge of young basalt flows (found to the 

south and west) and Miocene tuffaceous sedimentary rocks (found to the east all the way to 

the Idaho border).  These tuffaceous sedimentary rocks (from lacustrine and fluvial 

deposits) trend southward to the vicinity of the Jordan Valley community and contain 

inclusions of mafic vent rocks and olivine basalt flows.  The town of Jordan Valley is 

situated on the northeast edge of the east-west trending Antelope Valley graben (Pliocene 

to Holocene in age), which clips the southern end of the Oregon-Idaho graben (Ferns, 
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1997).  The Oregon-Idaho graben was formed during the late stages of Columbia River 

basalt volcanism (Cummings et al., 2000).   

 Hart and Mertzman (1983) provide a detailed explanation of the stratigraphy, 

chemical composition, and geochronology of the volcanic rocks and lacustrine sediments 

in the area between the Owyhee River and Jordan Valley.  To the south of Jordan Valley, 

older tuffaceous sedimentary rocks, tuffs and ash flows flank the Miocene basalt and 

andesite of Juniper Ridge.  Thick deposits of Quaternary sediments are found along Jordan 

Creek in the farming communities of Arock, Danner, and Jordan Valley and along Cow 

Creek, Indian Fort Creek, Dry Creek, and Soldier Creek.  Outcrops of these deposits are 

also present along the Owyhee River near the Rome community.  

2.2 Vegetation and Climatic History 
 

Evidence for very different paleoclimatic conditions in eastern Oregon can be 

readily seen in soil profiles, ancient geomorphic surfaces, and relict landscape features.  

Palynology, limnology, and macro- and microfossil studies provide more specific 

documentation on plant communities and vegetation succession through time.  Although 

few, if any, historic and pre-historic climatic studies have been carried out in the immediate 

study area, studies in other parts of eastern Oregon shed light on major climatic shifts and 

associated vegetation changes.  Because changes in climate and vegetation are so 

intimately intertwined, they will be discussed simultaneously here.  To constrain the scope 

of this discussion, only studies focused on eastern Oregon and the Northwestern Great 

Basin will be reviewed.  Pre-Pleistocene vegetation and climatic history are summarized in 

Appendix I. 
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2.2.1. Pleistocene 
 

Encroaching northern ice sheets did not invade Oregon territory during the 

Pleistocene.  Ice caps and small glaciers developed at higher elevations in the Cascade 

Range, Klamath Mountains, Strawberry Range, Wallowa Mountains, Elkhorn Mountains, 

and Steens Mountain, and cyclically descended to lower elevations and then ascended 

according to fluctuating global glacial-interglacial temperature and moisture regimes.  

During the more humid times of the late Pliocene and Pleistocene, fault-block basins with 

no external drainage partially filled with water to form extensive lakes in eastern Oregon.  

The Alvord Desert and Coyote Lake playas are remnants of pluvial lakes found in Harney 

and Malheur Counties.  Relict features from these closed-drainage pluvial lake systems are 

critical tools for teasing out the details of Pleistocene climate (Fritz, 1996; Negrini et al., 

2000).  Reheis (1999) and Reheis et al. (2002) suggest that a long-term drying trend from 

early to late Pleistocene, not seen in global marine oxygen isotope records, is evidenced by 

temporally decreasing shoreline elevations for western Great Basin pluvial lakes.  Reheis 

(1999) estimates that effective moisture likely fell by a factor of 1.2 to 3 to produce the lake 

level decreases observed.  During the Pleistocene as a whole, temperatures were generally 

lower and effective moisture was generally higher than present-day.  In the Great Basin, 

full glacial periods had an effective moisture of about 7 to 9 cm yr-1 greater (Chadwick et 

al., 1995) and summer temperatures approximately 10° C cooler (Thompson, 1990) than 

present day; interglacial periods had moisture conditions and temperatures similar to today. 

Pluvial lake basins filled with water during glacial periods but later dried out and deflated 

during interglacials, resulting in increased aeolian activity.  Studies by Negrini et al. (2000) 

and Cohen et al. (2000) look at sediment cores from Summer Lake, a remnant of 
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Pleistocene pluvial Lake Chewaucan in south-central Oregon, to derive a detailed 

history of temperature and moisture fluctuations for the last 250,000 years in the northern 

Great Basin.  Fossil diatoms and pollen from Upper Klamath Lake provide higher 

resolution for the last 45 ka and show that the last glacial maximum in this area occurred ca. 

21 ka, with an abrupt decrease in glacial extent ca. 16 ka (Bradbury et al., 2004; Colman et 

al., 2004).  As temperatures warmed at the ends of glacial periods during the Pleistocene, 

outburst floods from pluvial lakes often occurred as ice and debris dams melted or 

collapsed and meltwater caused lake levels to rise.  The floods often scoured channels, 

altered connectivity of drainage networks, stripped soil and vegetative cover, and 

eventually left thick deposits of rock, sediment and debris.  The closest documented glacial 

outburst flood to the study area occurred at Lake Alvord in the late Pleistocene, and its 

present day landscape signature and estimated discharge are described by Carter et al. 

(2006).  Freshwater diatom fossils suggest deep open-basin conditions existed at ca. 13 to 

14 ka, and the authors believe the most recent flood dates to that time, at the waning of the 

last glacial period.  Lake Alvord breached its eastern rim and spilled into Coyote Basin, 

releasing approximately 11.3 km3 of water.  The water then escaped Coyote Basin through 

two outlets, flowed into Crooked Creek, and eventually reached the Owyhee River just 

north of Rome.  The floodwaters eroded canyons and bedrock surfaces, and deposited 

imbricated clasts as large as 4.1 m in diameter up to 30 m above the present-day Crooked 

Creek channel!  These outburst floods, powerful agents of geomorphic change, likely 

occurred in many other locations across the Great Basin during the Pleistocene.                                

Detailed vegetation history covering the past 30 ka (since prior to the last full 

glacial) has been elucidated by examining pollen and macrofossils in lake sediments and 
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woodrat (Neotoma spp.) middens in eastern Oregon and the northern Great Basin.  Work 

by Nowak et al. (1994a; 1994b) suggests that although specific modern assemblages of 

xeric plant species in the northwestern Great Basin is a late Holocene occurrence, the 

individual taxa in the woodlands and shrub steppe have been present in their current ranges 

for at least 30 ka; Thompson (1990) believes that sagebrush steppe limits expanded 

downslope in the late Pleistocene.  Mehringer (1987) states that sagebrush steppe has been 

the dominant vegetation on the Snake River Plain for the last 70 ka and that sagebrush and 

grass pollen dominate the record of the past 33 ka at Carp Lake in southeastern Washington 

(Mehringer, 1985).  Cronquist (1978) envisioned cyclical migrations of plant communities 

during the glacial-interglacial reversals, where mesic species (conifer forests) would 

replace xeric species (shrub steppe) during cool, wet times and vice versa.  Wells (1983) 

describes continuous conifer stands in many parts of the Great Basin during the late 

Pleistocene that retreated to their modern distributions at higher elevations as temperatures 

warmed heading into the Holocene.  At Fish Lake on Steens Mountain, pollen records 

show that sagebrush followed retreating glaciers to an elevation of 2,300 m, its current 

upper elevation limit, by 12 ka (Mehringer, 1985).  It becomes evident from extensive 

reading that although specific community composition and exact distributions may have 

fluctuated since the middle Pleistocene, many of the familiar sagebrush steppe, woodland 

and grassland taxa have been present for tens or hundreds of thousands of years.  The 

complex topography and microclimates of the Great Basin allowed many different species 

to coexist during the Pleistocene, while high phenotypic plasticity and genetic diversity 

allowed those species to persist in changing environments.      
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2.2.2. Holocene 
 

Climate began to warm and dry appreciably at the Pleistocene-Holocene transition.  

In the interior west, early Holocene warming was not manifested in higher mean annual 

temperatures, but rather came in the form of significantly hotter summers (Nowak et al., 

1994a).  Thompson (1990) suggests that while early Holocene temperatures were much 

warmer than that of Pleistocene glacial periods, they were still several degrees cooler than 

present-day; MAP was lower than that of glacial times as well.  Mehringer (1987; 1985) 

reports that, based on sagebrush-to-grass pollen ratios, 8700 to 5400 b.p. was a time of 

deficient effective moisture at Fish Lake, Steens Mountain.  The pollen record at Diamond 

Pond, in the Diamond Craters area south-southeast of Burns, shows alternating dominance 

of greasewood-shadscale desert, sagebrush steppe, and juniper grassland for the past 6,000 

years, primarily as a function of MAP (Wigand, 1987; Mehringer, 1985; Mehringer & 

Wigand, 1990; Mehringer, 1987).  Woolard (1937) resolved climatic fluctuations back to 

1268 B.P. in eastern Oregon based on growth ring analysis of ponderosa pine (Pinus 

ponderosa) near Klamath Falls.  Historically documented floods and droughts were 

accurately identified in the tree ring record.  While there have been drastic fluctuations 

between drought and ample moisture during the past 700+ years, Woolard (1937) assessed 

that no overall trend toward wetter or drier conditions existed during the time period 

analyzed.  This agrees with work performed by Meyer (1934) in the Blue Mountains of 

northeastern Oregon, so the general observations are most likely applicable to the whole of 

eastern Oregon.      

Although humans have influenced landscape processes and vegetative 

communities for the last 12,000 years, the effect has been the most profound since the 
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arrival of pioneering settlers in the mid nineteenth century.  Since Great Basin plant 

communities evolved with little pressure from grazers, the inception of widespread, 

uncontrolled grazing was devastating to many of the native plants and delicate 

cryptogamic soil crusts.  Clearing of land, human-induced fire regimes, and water 

diversion also impacted plant communities.  However, introduction of certain invasive 

annual forbs and grasses, namely cheatgrass (Bromus tectorum L.), has likely been man's 

most calamitous mark on the Great Basin landscape.  Knapp (1996) provides a thorough 

literature review of the ecological history of cheatgrass in the Great Basin, examines its 

physiological characteristics that facilitate the filling of ecological niches, and explores 

how human interactions with the landscape exacerbate the problem of invasive species.  

Norton et al. (2002; 2004) examine how cheatgrass invasion impacts soil organic matter 

dynamics and alters other soil physical and biological properties in the sagebrush-steppe 

ecosystem.  Other invasive species of concern in eastern Oregon are medusahead rye 

(Taeniatherum caputmedusae), various knapweeds (Centaurea spp.), musk thistle 

(Carduus nutans), Scotch thistle (Onopordum acanthium), Russian thistle (Salsola 

iberica), and toadflaxes (Linaria spp.), among others (Wilson & Young, 2008). 

2.3. Study Area Soils 

2.3.1. Surface Features 
 
 Some surface features of semi-arid soils in eastern Oregon, such as cryptogamic 

crusts and desert pavements, have an indisputable effect on soil function and development.  

Cryptogamic crusts (also known as biological, cryptobiotic, microphytic, microfloral, 

organogenic, or microbiotic crusts) (West, 1990) directly influence primary production, 
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soil fertility and nutrient cycling, structure development, water infiltration and retention, 

erosion severity, and soil thermal properties.  The specific mechanisms of desert pavement 

genesis have been debated in the literature for several decades, but their impact on 

pedogenesis and hydrologic processes in desert soils is widely acknowledged.  They are 

known to armor the soil surface against erosion, minimize infiltration and increase runoff, 

trap aeolian sediment, and adversely affect or exclude plant growth (Cooke et al., 1993).  

The literature examining the roles of cryptogamic crusts and desert pavements in arid and 

semi-arid ecosystems is vast, and will not be discussed in great detail beyond sufficiently 

documenting their importance in the study area.          

 Cryptogamic crusts are actually complex assemblages of tiny non-vascular plants, 

such as mosses, lichens, liverworts and algae, and other organisms such as fungi and 

cyanobacteria.   Review papers by Belnap (2003) and West (1990) provide thorough 

overviews of the structure, composition, function, and disturbance responses of 

cryptogamic soil crusts, and also address their use as environmental indicators.  Work by 

Ponzetti and McCune (2001) focuses specifically on crusts in eastern Oregon's 

shrub-steppe communities, and how composition varies with livestock impact, soil pH, 

dissolved salts, and other environmental variables and terrain attributes.  Johansen (1993) 

summarizes research specific to North America and highlights the dispute over the 

importance of cryptogamic crusts in range management scenarios.  Although ecologists 

and soil scientists generally believe that cryptogamic crusts are beneficial, many ranchers 

and land managers disagree.  The work of Savory (1988) suggests that soil crusts inhibit 

the germination and establishment of vascular plant seedlings, and that short, intense 

periods of livestock grazing should be implemented to break up the crusts and allow 
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desired grasses and forbs to establish.  Does the immediate reward of a potential increase 

in plant establishment outweigh the long-term ecosystem services rendered by the soil 

crusts?  This is an important question in making land management decisions, because once 

crusts are destroyed by vehicle, foot or animal traffic, recovery times are measured on 

scales of decades to centuries (Belnap, 2003).  Currently, cryptogamic soil crusts are not 

catalogued in the Bureau of Land Management (BLM) Ecological Unit Inventory 

procedure in Malheur County.  They are plentiful throughout the study area in the 

otherwise-bare spaces between shrubs and bunchgrasses.  Although the crusts have little, if 

any, direct effect on above-ground biomass estimates, their indirect effects on potential 

production (through soil carbon contribution, nitrogen fixation, nutrient-rich dust capture, 

and erosion mitigation, among others) may be quite significant. 

 Desert pavements are characterized by a surface layer of closely packed clasts that 

overlies a soil matrix with relatively fewer (or no) clasts, and are particularly common on 

poorly sorted alluvial deposits (Cooke et al., 1993).  The traditional model for pavement 

formation involves the depletion of fines by wind and sheetflow, upward migration of 

stones via freeze-thaw activity, shrink-swell clay expansion, or salt heaving, and 

subsequent rearranging of those stones by sheetflow at the surface.  While many authors 

contend that this specific combination of mechanisms may be responsible for pavement 

formation on certain alluvial deposits where climatic conditions are favorable (Cooke, 

1970; Cooke et al., 1993; Williams & Zimbelman, 1994), much research in the past 30 

years suggests that this model doesn't account for the presence of many desert pavements.  

Early works by Jessup (1960) and Cooke (1970) suggested that deflation might be 

relatively unimportant, and put greater emphasis on the role of sheetflow.  Williams and 
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Zimbelman (1994) point out that although the role of deflation is no longer implicated in 

initial pavement formation, it is still considered important for the restoration of disturbed 

pavements.  Their research in the Mojave Desert emphasizes the importance of sheetflow 

in the formation of pavements atop relatively young basalt surfaces where soil has never 

been present, and therefore played no role in pavement formation.  This work supports the 

findings of Wells et al. (1985; 1987) and McFadden et al. (1987) who suggest that 

pavements initiate at the surface with the weathering of fresh bedrock or basalt flows.  

Bedrock is broken down via chemical and mechanical processes, and aeolian silt in-fills 

the fractures to form the finer-textured soil beneath.  Colluvial processes may also carry 

detached clasts into aeolian silt-filled depressions.  In this model, clasts are never deeply 

buried in the soil matrix.  Wetting and drying of aeolian material and salt crystal formation 

displaces surface clasts enough to open fractures and allow additional in-filling of aeolian 

fines.  McFadden et al. (1987) go on to say that stone pavements on alluvial fans on desert 

piedmonts throughout the western U.S. also likely form via this mechanism, and cite 

similarities in the chemical composition of varnishes on clasts from surfaces of varying 

ages.  Once pavement formation begins, clasts act as a natural sieve for windblown 

material.  Physical breakdown of clasts, through insolation-induced stresses, diurnal 

temperature changes and salt shattering, produces a tighter pavement that favors silt 

accumulation and subsequent formation of Av (vesicular) horizons (McFadden et al., 2005; 

Valentine & Harrington, 2006).   

 Relict periglacial features (frost-sorted patterned ground and stone stripes) have 

been documented in the Snake River Plain of Idaho (Malde, 1961; Malde, 1964) and are 

present in the study area.  These features are readily visible in aerial photographs.  Cox and 
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Hunt (1990) suggest that similar stone stripes on Oregon's Columbia Plateau are the 

product of collapsed pocket gopher tunnels, whereas Malde's (1961; 1964) position that 

stone stripes are simply solifluction-induced extensions of frost-sorted polygonal ground 

conforms more with aerial observations of features in eastern Malheur County.  Many of 

the stripes occur on very low slopes, and Goldthwait (1976) confirms that stone stripes can 

form via solifluction on slopes as shallow as 3°.   

2.3.2. A Horizons and Epipedons 
 
 Vesicular A horizons (Av horizons) are quite common in the study area.  Vesicular 

horizons are fine-textured and characterized by disconnected ovoid pores that presumably 

form due to the heat expansion of trapped air and reduced soil shear strength after rain 

events (Yaalon, 1974; McFadden et al., 1998).  Vesicular horizons almost always occur 

beneath a stone pavement.  A rough surface is required to capture fine-textured dust, and 

the pavement then serves to protect the horizon from deflation and erosion (McFadden et 

al., 1998).  Vesicular horizons most often have strong columnar parting to platy or platy 

soil structure.  Increased horizon thickness from aeolian deposition and the subsequent 

flattening of vesicles likely causes the platy structure (1998).  These horizons tend to 

decrease infiltration and increase runoff, having an obvious effect on plant communities, 

subsequent pedogenesis, and landscape development (Anderson et al., 2002).  These 

horizons often occur over deep, well-developed soil profiles with argillic horizons that 

seem incongruent with what we know about the behavior of vesicular horizons.  Some 

researchers provide evidence that Av horizons were formed exclusively during the 

Holocene (McFadden et al., 1986; Wells et al., 1985; Chadwick & Davis, 1990), and 
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resulted from increased dust flux at the Pleistocene-Holocene climate transition.  If this 

is the case, desert soil profiles with argillic horizons would have formed during wetter 

Pleistocene periods, prior to vesicular horizon formation.  Others, however, point to 

correlations between Av horizon and stone pavement properties on older surfaces to 

suggest that many Av horizons may be much older than Holocene (McDonald, 1994; 

Reheis et al., 1995).  McFadden et al. (1998) suggest that because presently subhumid 

areas in or adjacent to North American deserts do not exhibit vesicular horizons or 

pavements, wetter Pleistocene climates would not have facilitated their development either.  

This evidence, along with thermoluminescence age estimates on flows of different ages in 

the Cima Volcanic Field, suggests that most vesicular horizons are Holocene in age.  

Micromorphology of vesicular horizons is covered by Sullivan and Koppi (1991) and 

Anderson et al. (2002).   Ap (plowed) horizons may be present where animal traffic has 

been sufficiently intense.   

 Epipedons in the study area may be mollic, umbric or ochric.  This characteristic is 

an important one for predictive mapping, because slight differences in depth or color 

between two identical soils may result in one being classified as a Mollisols and the other 

as an Aridisols although no real differences in management or function exist.  Malheur 

County soil survey staff recently developed an area-specific rubric for making the 

Mollisols-Aridisols decision and assigning expected subgroups (Vitrandic, Vitrixerandic, 

or Vitritorrandic) based on elevation, vegetation, precipitation zone and temperature 

regime (Alina Rice, personal communication, May 8, 2008).  However, this approach was 

not documented or consistently used until the later stages of this study.  This information is 

presented in Appendix II.   
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2.3.3. Subsurface Horizons and Features 
 
 Subsurface accumulations of illuvial clay, carbonates, or silica opal are the most 

common pedogenic features in soils of semi-arid and arid environments (Peterson, 1980).  

Argillic horizons in the semi-arid Great Basin are generally assumed to be relicts of 

Pleistocene pluvial periods that had more effective leaching regimes than present-day (Gile 

et al., 1966; Nettleton et al., 1975; Peterson, 1980; Southard & Southard, 1985), although 

work by Alexander and Nettleton (1977) and Peterson (1980) shows that argillic horizons 

can form much more quickly in the presence of high salinity.  Holocene-age Natrargids 

may be found near lake margins and in playa basins where the dispersive action of 

exchangeable sodium accelerates rates of clay illuviation.   

 As salts, carbonates and clays are released through parent material weathering, salts 

move to the greatest depths within the soil profile and concentrate near the maximum depth 

of the wetting front.  Carbonates are less soluble, and do not move as deep.  Clays move in 

suspension or in solution with soil water and are deposited as the energy state of water 

decreases, and will be concentrated at even shallower depths (Nettleton et al., 1975).  Many 

soils within the study area do not readily conform to this construct.  It is common to find 

salts and carbonates (as free carbonates or in association with silica in a duripan) within or 

between argillic horizons.  These polygenetic soils were likely free of salts and carbonates 

during the wetter Pleistocene.  In the Great Basin, Holocene-age saline playas have 

provided a tremendous amount of aeolian dust, rich in readily weatherable minerals as well 

as carbonates and salts.  These materials are deposited on the soil surface, enter the profile, 

and remain near the maximum wetting depth since modern-day effective moisture is 

insufficient to flush them through.              
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 Pedogenic silica in eastern Oregon is derived mainly from aeolian dust deposits 

that are rich in volcanic ash and tephra, comprised largely of highly-soluble amorphous 

silica. The depth at which silica accumulates is commonly close to the top of the Bt horizon 

(Chadwick et al., 1989; Harden et al., 1991).   The tendency of silica to precipitate at 

contrasting textural boundaries is evidenced by the formation of cicada burrow-shaped 

durinodes in the study area.  Abandoned cicada burrows are infilled with coarser-textured 

surface soil, and as silica-rich water infiltrates and is temporarily perched at the textural 

discontinuity, SiO2 precipitates to form a "cast" of the insect burrow.  A duripan is present 

if silica accumulation results in relatively continuous induration and root restriction, and if 

the layer does not break down in the presence of hydrochloric acid (Soil Survey Staff, 

2006a).   

 Opaline silica and calcium carbonate tend to occur together in duripans, although 

their precipitation chemistries and depths of maximum concentration differ somewhat.  

Chadwick et al. (1987a; 1987b) describe a concise depositional model for calcium 

carbonate and opaline silica in semi-arid soils.  Calcium carbonate is more soluble, moves 

deeper in the profile during wetter years, and preferentially precipitates on previously 

formed calcite crystals, eventually plugging soil voids near the maximum wetting depth.  

Pedogenic silica does not dissolve as easily, but once in solution diffuses into smaller pores 

and requires high activation energy for the Si-O bond breakage necessary for precipitation.  

Although silica stays in solution longer than calcium carbonate, it tends to precipitate 

higher in the profile of fine-textured soils because Si(OH)4 is readily adsorbed by hydroxyl 

groups on clay mineral surfaces.  As the soil dries, these molecules precipitate to form 

SiO2-OH.   
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 Duripan studies on Idaho's Snake River Plain and Owyhee Plateau (Blank & 

Fosberg, 1991; Blank et al., 1998) suggest that many duripans in the study area are 

polygenetic.  Repeated subaerial exposure and reburial by aeolian dust during Pleistocene 

climate shifts provided the silica-rich material needed for the observed thickness and 

degree of development (Blank et al., 1998).  In addition, encapsulated dust particles 

(incorporated through fracture fill or encasement in precipitating calcite) likely provided 

an in-situ source of soluble silica (Blank & Fosberg, 1991), in contrast with the accepted 

model of duripan formation where soluble silica is derived exclusively from overlying 

horizons and deposited by percolating soil water.      

2.3.4. Regional Soil Surveys 
 

The Malheur County, Southern Part (OR644) survey area is bounded by three 

counties that have published soil surveys available online: Harney County Area, Oregon 

(OR628); Humboldt County, Nevada, East Part (NV777); and Owyhee County Area, 

Idaho (ID675).  Of these four, only the Owyhee County Area, Idaho survey is close enough 

to the study area to provide a potentially relevant source of training data.  The Malheur 

County, Northern Part (OR645) soil survey is also currently in progress.  

According to the memorandum of understanding (MOU) for the Malheur County, 

Oregon, Southern Part soil survey (U.S. Department of Agriculture, 2005), a soil survey of 

the Fort McDermitt Indian Reservation (located on the border between Malheur County 

and Humboldt County, Nevada) was completed in 1974, but was never correlated and data 

was never entered into the National Soil Information System (NASIS).  A private 

contractor mapped approximately 17,000 acres of privately owned farmland in the Jordan 
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Valley, Arock, and Rome areas in 1989 (2005).  This data will require careful evaluation 

and validation prior to being incorporated into the current survey.          

2.4. Decision-Tree Analysis in Predictive Soils Mapping 
 
 Predictive soils mapping techniques (PSM) seek to develop numerical or statistical 

models that quantify the relationships among soil type and values of various environmental 

variables that affect soil formation.  The information in the model can then be applied to a 

new geographic area to produce a predictive soil map.  McBratney et al. (2000; 2003) 

provide two excellent reviews of digital soils mapping and pedometric techniques, 

including linear models, generalized additive models, classification and regression trees, 

neural networks, fuzzy logic and geostatistical techniques (e.g. Kriging and co-Kriging).  

Scull et al. (2003) provide a separate review of literature pertaining to predictive soils 

mapping techniques and also examine the different data components required for effective 

characterization of environmental variables.  This section will focus on decision and 

classification tree analysis (DTA and CTA) for predictive soils mapping.            

 DTA has been used extensively for natural resources mapping, especially for 

vegetation studies (Lees & Ritman, 1991; Franklin, 1995; Franklin, 1998; Vayssieres et al., 

2000; Miller & Franklin, 2002; Simard et al., 2002; Brown de Colstoun et al., 2003; 

Thuiller et al., 2004) and habitat assessments (Guisan & Zimmerman, 2000).  Australian 

soil scientists have performed a tremendous amount of research on predictive soils 

mapping using DTA.  Bui et al. (1999) successfully derived predictive rules from a 

1:100,000 scale soil survey in the Toowoomba region of Queensland, Australia, using only 

geology, a digital elevation model (DEM), and DEM-derived terrain attributes as 
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predicting variables.  Moran and Bui (2002) improved the quality of the predictive rules 

for the same area by incorporating LandSat MSS data and additional terrain attributes and 

using boosting to reduce misclassification error.  In 2003, Bui and Moran (2003) used DTA 

to produce a new 1:250,000 scale soil map for the Murray-Darling Basin, Australia's most 

important agricultural region.  Henderson et al. (2005) adopted a DTA approach to use 

information from an Australian national soils point database along with environmental 

variables to build piece-wise linear models for the distribution of soil properties such as pH, 

organic carbon, total phosphorus, total nitrogen, thickness, texture, and clay percentage.  

This work suggests that widely-distributed point data can be analyzed with DTA to make 

predictions for soil characteristics over large land areas.  McKenzie and Ryan (1999) also 

used DTA and linear models to map soil properties for 50,000 ha of forested land in New 

South Wales, Australia, but found that optimal selection of environmental variables was 

more critical than the modeling technique employed.     

 Luoto and Hjort (2005) explored several predictive mapping techniques 

(generalized linear models, generalized additive models, classification tree analysis, neural 

networks and multiple adaptive regression splines) for geomorphological mapping of 

patterned ground in northern Finland.  Their work found that CTA performed the best 

when evaluated on training data, but had limited predictive power when extrapolated to 

new areas.  The tree was likely grown too large in this instance and overfitted the rule sets 

to the training data.  Scull et al. (2005) used CTA to develop a preliminary soil map for part 

of California's Mojave Desert, and modeled basins and mountains separately to increase 

map accuracy.  The research also found that individual variables could be removed from 

the model without significantly reducing accuracy.  In contrast with the findings of 
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McKenzie and Ryan (1999), variable selection had little impact on the overall model 

fitness, but greatly affected the types of rules that were generated.                  

 Mapping, digitizing, and GIS analyses all introduce additional error into both soil 

maps and predictive variables.  Lagacherie and Holmes (1997) explore error propagation in 

classification tree analysis, and propose an approach to take errors into account by 

manipulating the size of the final tree.  Controlling the tree size via a "stopping rule" based 

on a risk threshold parameter prevents overfitting to the training data.  Other authors 

discuss the use of "pruning" (Moran & Bui, 2002; Bui & Moran, 2003; Luoto & Hjort, 

2005; Scull et al., 2005), a cross-validation method that reduces tree size by removing 

splits that are predicted to have a high error rate.  Qi and Zhu (2003) and Qi (2004) focus on 

accounting for line misplacement error in source maps and  reducing noise in predicted 

maps by only sampling modal pixels (pixels representing the central concept for a soil class) 

from environmental variable data sets.  

2.5. Technology Acceptance 
 
 One of the main goals of this research is to examine how predictive soils mapping 

using DTA can be incorporated into an active soil survey.  How likely are field scientists 

within the NRCS and BLM to accept and use a new computer-based tool?  What factors 

contribute to technology acceptance in the workplace?  What barriers exist for successful 

implementation?  Understanding what factors provide for or prevent successful adoption 

will assist in tailoring the product to the needs of the agency and its individuals.   

 Most technology acceptance research has used the technology acceptance model 

(TAM) (Davis, 1989; Davis et al., 1989) or some variation as its basis.  The TAM says that 
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individuals choose to use a new technology based on perceived usefulness (degree to 

which use will increase performance) and perceived ease of use (how effortless using the 

technology will be) (Venkatesh & Morris, 2000).  Mathieson (1991) suggests that simple 

barriers to use (affecting perceived ease of use), such as hardware or time constraints, often 

prevent adoption regardless of recognized benefits of the technology (perceived 

usefulness).  Rogers (1995) describes how individuals can be classified according to when 

they first begin using a new idea or technology, or their degree of "innovativeness", and 

what influences affect adoption in each category.  The plot of frequency of adoption over 

time typically follows a bell-shaped curve, and the cumulative number of adopters follows 

an S-shaped curve.  Of course, this generalization only applies to technologies that are 

successfully disseminated to most of the potential users.  In Rogers' system, the very first 

users of a technology (more than two standard deviations below the mean, or ~2.5%) are 

called innovators. Innovators are, ideally, wealthy (or control money), can understand 

complex technical information, and are comfortable with risk.  Early adopters (between 

one and two standard deviations below the mean, or ~13.5%) are normally leaders in the 

community or workplace.  Other potential adopters may look to them for advice.  They 

have likely garnered respect due to prudent and thoughtful adoption of previous 

innovations.  The early majority (between one standard deviation from the mean and the 

mean itself, or ~34%) adopt new ideas just prior to the average individual in the 

community.  They do not typically hold leadership positions, but are important in the 

dissemination process because they interact with other individuals in the later adopter 

categories.  Individuals in the late majority (between the mean and one standard deviation 

above the mean, another 34%) usually adopt due to peer pressure or economic necessity, 
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and are typically skeptical of the proposed change.  Laggards are the last individuals to 

adopt (the last 16%, or more than one standard deviation above the mean).  They are 

typically isolated, suspicious, and traditional, look to the past for reference, and may have 

very limited resources.  Rogers suggests that earlier adopters are not necessarily younger, 

as many assume, and doesn't mention gender.  Earlier adopters are, however, typically 

more educated and literate, less dogmatic, and belong to larger, more developed social and 

employment networks.   

 Brown and Venkatesh (2003) applied Rogers' adopter categories to personal 

computer ownership and usage, focusing on each group's expected outcomes from 

technology acceptance.  They found that earlier adopters were influenced primarily by 

hedonic and social status outcomes, while later adopters were driven by utilitarian 

outcomes and the social influences of their peers.  Cost, knowledge requirements and fear 

of obsolescence may be major barriers for laggards.  Venkatesh and Morris (2000) 

examine how social influence and gender affect individual technology acceptance. They 

summarize literature that suggests women are more concerned with ease of use (women 

often feel more computer use anxiety), while men focus on the perceived usefulness (men 

tend to be motivated by achievement, recognition and advancement).  Women generally 

respond to social influence more so than men.   Women are typically more people-oriented, 

responsive to social cues, aware of the feelings of others, and focused on group dynamics 

while men are typically more rebellious, independent and competitive.  Bergeron et al. 

(1990) and Venkatesh and Morris (2000) suggest that providing technology support staff is 

critical in early stages of learning and practice to help overcome barriers (real and 

perceived) and provide a social support system.  When seeking to introduce a new 



 

 

27
technology, such as predictive soils mapping, into agency practices, it becomes 

necessary to evaluate needs, resources and implementation barriers at the agency level as 

well as at the working group and individual level.   
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3. Use of Decision Tree Classifier Software for Predictive Soils Mapping on the  
    Initial Soil Survey of Malheur County, Oregon 

3.1 Study area setting 
 
 Malheur County is located in the extreme southeastern corner of the state of Oregon.  

The southern Malheur County Survey Area covers approximately the bottom half of the 

county, as shown in Figure 3.1-1.  Figure 3.1-2 shows the specific 7.5’ quadrangles 

included in the study area and also shows the soils mapping that has been completed to date.  

In the study area vicinity, Cow Creek delineates the northern border of the survey area.  

According to the survey MOU (U.S. Department of Agriculture, 2005), the survey area 

totals 3,080,108 acres and land ownership is as summarized in Table 3.1-1.  Most of the 

area is BLM rangeland and is dominantly used for livestock grazing, wildlife habitat, and 

recreation.  Irrigated cropland is concentrated in stream valleys and terraces near the 

communities of Jordan Valley, Danner, Arock and Rome.   

 Mean elevation of the study area ranges from 970 m in the Owyhee River Canyon 

to 1850 m on Parsnip Peak (see Figure 3.1-3).  Mean annual precipitation (MAP) is 32 cm 

(~12.5 in.), and ranges from about 22 cm (~8.5 in) along the Owyhee River near the 

community of Rome to about 54 cm (~21 in) on Parsnip Peak, near the Idaho border (see 

Figure 3.1-4).  This range of MAP translates to soil moisture regimes that are aridic to xeric, 

respectively.  Mean annual soil temperature (MAST) regimes are mesic at lower elevations 

and frigid at higher elevations, covariant with MAP.  The survey crew has installed soil 

data loggers in several locations throughout the survey area to determine at what elevation 

the mesic-frigid break occurs and how the elevation break shifts with latitude.   
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 Vegetation in the study area is composed primarily of sagebrush, other native 

shrubs, bunchgrasses and introduced grasses that occur in complicated mosaics.  

According to the Oregon Gap Analysis Project final report (Kagan et al., 1999), sagebrush 

steppe and big sagebrush shrubland are the two dominant vegetation cover classes in the 

area.  These two cover classes are differentiated by the relative amounts of grasses and 

shrubs present.  Sagebrush steppe vegetation has historically been dominated by 

bunchgrasses, but grazing pressure has resulted in increased dominance of sagebrush and a 

blurring of the distinction between the two types.  Because of overgrazing and altered fire 

regimes, cheatgrass (Bromus tectorum), an invasive annual, is now the dominant 

understory species in both classes.  Common shrub species include basin big sagebrush 

(Artemisia tridentata var. tridentata), Wyoming big sagebrush (A. tridentata var. 

wyomingensis), mountain big sagebrush (A. tridentata var. vaseyana), rigid sagebrush (A. 

rigida), low sage (A. arbuscula), silver sage (A. cana), threetip sagebrush (A. tripartata), 

rabbitbrush (Chrysothamnus viscidiflorus and C. nauseosus) and bitterbrush (Purshia 

tridentata).  Common native bunchgrasses include bluebunch wheatgrass (Agropyron 

spicatum), Idaho fescue (Festuca idahoensis), basin wildrye (Leymus cinereus), Sandbergs 

bluegrass (Poa secunda), junegrass (Koeleria macrantha), Thurber needlegrass (Stipa 

thurberiana) and Indian ricegrass (Oryzopsis hymenoides).  Crested wheatgrass 

(Agropyron cristatum), an introduced perennial grass that may compete with native grasses, 

is also common.  It is worthy of notice, that if properly managed, A. cristatum can serve as 

a “stepping stone” for directed succession to reestablish native perennials and rebuild 

depleted or lost A and B horizons in terms of organic matter content and beneficial 

mycorrhizal components (Raven, 2004).  
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The study area extends across two Major Land Resource Areas (MLRA), 

Owyhee High Plateau (MLRA 25) and Malheur High Plateau (MLRA 23).  MLRA 25 is 

characterized by lava plateaus and valleys bordered by long, gently sloping alluvial fans, 

broad alluvium-filled basins, and north-south trending fault block mountain ranges 

separating those basins.  MLRA 25 is drained by the Owyhee River, which is part of the 

Columbia River drainage system.  MLRA 23 has the same landform types, but is 

characterized by closed basins with no external drainage (Soil Survey Staff, 2006b).  Small 

areas of MLRA 24 (Humboldt Area) occur in the southern and western parts of the 

Southern Malheur survey area, but it does not occur in the study area described here.    

3.2. Soil Survey Framework 

The following information is summarized from the Malheur County, Southern Part 

Soil Survey MOU (U.S. Department of Agriculture, 2005).  The Malheur County, 

Southern Part Soil Survey (MCSPSS) commenced in summer 2005, and initial field 

mapping began in summer 2006.  Expected completion date is October 2014.  The survey 

is a cooperative effort between the Natural Resources Conservation Service (NRCS) and 

the Bureau of Land Management (BLM) and includes both a traditional soil survey and an 

ecological site inventory (ESI).  ESI is a survey method developed by the BLM to 

document vegetation cover and structure, species composition, potential natural vegetation, 

annual biomass production, major soil features, hydrologic properties, physiographic 

features, climatic data and rangeland health (U.S. Department of the Interior, 2001).  

Individual ecological sites have distinct soils, hydrology and vegetation that result in 

unique management considerations, and serve as minimum delineations for range 
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management decisions.  An ESI must be completed either after or in coordination with a 

soil survey.  Although this study focuses on the use of predictive mapping for soil survey, it 

is important to document the dual survey goals since final mapping units encompass both 

soils and ESI information.   

Mapping intensity varies according to land use, environmental sensitivity, and 

potential production capability.  Irrigated and non-irrigated cropland, wetlands and riparian 

areas are mapped at Order 2 intensity.  Minimum map unit size for Order 2 is 20 acres, but 

map units as small as 5 acres may be delineated for areas of high resource value.  All 

rangeland is mapped at Order 3 intensity.  The minimum map unit size for Order 3 is 40 

acres, but map units as small as 15 acres may be delineated for areas of high resource value.  

Order 2 intensity mapping requires that 75 percent of the delineations of each map unit be 

verified by direct observation, while Order 3 intensity mapping requires that 50 percent of 

delineations be verified.  Other agency standards regarding sampling density and pedon 

description detail must be taken into account when using predictive soils maps.  All field 

mapping is recorded on 1:24,000 scale Mylar aerial photographs acquired by the National 

Agriculture Imagery Program. 

3.3. Methods - The Predictive Mapping Process 
 

This project is designed to produce predictive soils maps and introduce this 

methodology to soil survey crews to facilitate, expedite and improve initial soil survey 

mapping in this region.  Predictive soils maps in this study were produced according to the 

methodology of Elnaggar (2007) and explicitly documented by Hash (2006). The main 

mode of delineating map units for the MCSPSS is to be the distribution of the state factors 



 

 

32
of vegetation according to MAP, elevation (proxy for MAST), geology and slope, based 

on discussions with the survey project leader and NRCS MO-1 region staff.  A general 

summary of the procedures used in Malheur County for data preparation, decision-tree 

analysis, verification and map production follows. 

3.3.1 Data Collection and Pre-Processing 

Once an area of interest is delineated, raster datasets representing independent 

variables (variables that influence or reflect the dependent variable, i.e. soil type) are 

collected or derived from existing data sets.  Selecting data sets which quantify or describe 

the different processes and conditions that affect soil formation for a given location is a 

critical step.  Because this survey is based on soil-forming factors, each must be 

represented by digital data sets.  Subclasses of the factors are described by one or more 

databases (layers).  For example, when trying to account for the effect of topography and 

elevation, the analyst will download a digital elevation model (DEM) to represent the 

specific elevation at each location.  They may also derive slope and aspect grids from the 

DEM.  Solar Analyst (Fu & Rich, 1999), an ArcView 3.x extension, is one of several 

programs that may be used to determine the type and amount of solar insolation at each 

point across the area.  Topographic position, plan and profile curvature, and drainage 

networks can also be derived from the DEM.  Vegetation characterization may include 

representations of present and historical vegetative cover, along with measured reflectance 

and band ratios from satellite imagery.  Some independent variables are selected because, 

as opposed to being causative in soil formation, they are believed to co-vary with soil 

properties and thus serve as useful predictors.  Satellite imagery and resulting band 
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calculations are examples of this data type.  A layer representing the dependent variable 

(the variable we are seeking to predict), soils, is also needed.  All datasets in the vector 

format must be converted to raster format.  Then, they are projected to a common 

coordinate system (NAD 83 datum, UTM zone 11N), clipped to the study area extent 

(covering both the reference and unmapped areas), and resampled to a common cell size 

(30 meters).   

Descriptive statistics are generated for each data set and box plots are created to 

detect outliers in continuous data sets.  Rasters must first be converted to point shapefiles in 

ArcMap. ArcMap’s Geostatistical Analyst provides the most comprehensive exploratory 

data analysis tools, but only works with feature layers. Using the Geostatistical Analyst 

extension to create histograms provides a comprehensive list of descriptive statistics: count, 

min, max, mean, median, standard deviation, 1st quartile, 3rd quartile, skewness (a measure 

of symmetry) and kurtosis (a measure of outlier likelihood).  Histograms serve as useful 

tools for visualizing data distribution and are helpful if one is interested in the actual 

number of occurrences in a particular class or range.  These summary statistics are only 

applicable to continuous data sets.  For categorical data sets, the only analysis needed is a 

review of the bar chart or attribute table to ensure that values are valid and the distribution 

reasonable.  Once rasters are converted to point shapefiles, ArcMap’s Create Graph 

Wizard can be used to create box plots.  Using the Create Graph Wizard with the original 

raster results in analysis based on the range of values of the data—that is to say, the tool 

looks at the attribute table and each potential value is considered as one data point, 

regardless of how many cells actually have that value.  Values with a low number of 

occurrences have more influence on the overall statistics than they should, while values 
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with high occurrences are under-represented.  Box plots created by ArcMap follow the 

construct of Tukey (1977).  The horizontal line in the middle of the box marks the median 

of the data, while the lower and upper edges of the box (called the “hinges”) represent the 

first and third quartiles, respectively.  Therefore, the box contains the middle 50% of the 

data points and represents the interquartile range, or IQR (sometimes called the “box 

length”).  The ends of the whiskers (lines that extend out from the upper and lower hinges) 

mark the minimum and maximum values, unless there are outliers.  If there are outliers, the 

whiskers will extend to no more than 1.5 times the IQR away from the lower and upper 

hinges.  Outliers are values that occur outside of this range.  Mild outliers occur no more 

than 3 times the box length away from a hinge, while extreme outliers occur more than 3 

times the box length away from a hinge.  After identifying the approximate values of 

outliers, they are selected and highlighted.  Outliers are then overlaid on the original raster 

and a hillshade of the terrain.  Visualization of outlier location helps the analyst decide 

whether individual data points are errors or meaningful pieces of data.  All erroneous 

outliers must either be converted to new values or to no data.   Histograms, descriptive 

statistics and box plots were generated for all data sets in all runs.  Histograms, descriptive 

statistics, box plots and outlier maps for all continuous data sets used for the October 12, 

2007 predictive map (described in Section 3.6.1), along with a brief discussion, are 

presented in Appendix III.    

3.3.2 Decision-Tree Analysis   

Decision-tree analysis is conducted using three software packages--CART (Earth 

Satellite Corporation, 2003), which runs as an extension in ERDAS IMAGINE (Leica 
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Geosystems, 2008), and See5 (Quinlan, 2007).  The CART sampling tool in IMAGINE 

is used to carry out file conversions, establish sampling grids, and set parameters needed 

for the See5 decision-tree analysis software.  The CART sampling tool allows the user to 

set the filepaths to locate dependent and independent variables, specify the amount of data 

to be used for training and validation, define the sampling method for selecting that data, 

and establish and populate files needed for the See5 analysis.  A file (the .names file) is 

created and must be edited (using any text editing software) to specify whether each layer 

is composed of continuous or discreet data.  Discreet data layers must be accompanied by a 

list of the possible values.  The .names file directs See5 to sample a pre-defined percentage 

of the area for generating rule sets to classify soil types, and another percentage to test the 

validity of the rule sets.   

See5 uses the training sample pixels specified by the CART sampling tool to 

generate the rule sets.  It examines each pixel, looks at the values for each of the 

independent variables associated with that pixel, and generates a decision tree which can 

be converted to an “If-Then” set of rules for quantifying relationships for the independent 

variables (environmental predictors) and the dependent variable (soil type).  Once the rules 

have been generated, See5 uses the validation sample pixels specified by the sampling tool 

to check the accuracy of the rule sets.  It applies the rules to each of the validation pixels, 

generates a prediction, and then compares its prediction to the actual value for the pixel 

specified by the dependent variable band.  The program will then create a detailed set of 

statistics (for each rule and for the overall rule set) describing its accuracy in predicting the 

dependent variable.  Two parameters in the See5 program, boosting and pruning, increase 

the accuracy of predictive maps by revisiting misclassified pixels to build new trees and 
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controlling the classification tree size to prevent overfitting of the model.  Boosting 

allows See5 to create multiple classification trees, instead of just one, to reduce 

misclassification error.  After the program builds one decision tree and classifies pixels, it 

checks the accuracy of the rules by making predictions for the validation data.  Inevitably, 

there will be errors in the prediction.  The program then builds a second tree, concentrating 

on the misclassified cases from the previous analysis.  While the overall error for this tree 

may be higher, more of the misclassified cases are correctly classified.  Each classifier, up 

to 10 total, votes for its predicted class for each pixel.  The result is a lower overall error 

after all classifiers have weighed in with their prediction.  Ten boosting trials were used for 

all predictions described here.  Pruning controls the size of the final decision tree to prevent 

overfitting.  Decision trees are built so that they fully classify all of the training data based 

on the independent variables provided.  However, all of the quantified relationships may 

not prove to be meaningful and may result in high misclassification error when applied to a 

new area.  Removal of rule sets, called pruning, removes parts of the tree that are observed 

to have a high error rate.  All of the classification trees described here were pruned by 25% 

(i.e. the upper quartile of the worst prediction rules), and every branch in the tree was 

required to describe at least two cases.  The See5 output includes a list of all the rules that 

were generated for every boosting trial, detailed statistics about the number of cases 

classified by each rule, and the overall accuracy of the predictive rule sets.  The built rules 

are tested once on the training data (used to build them) and once on the separate subset of 

validation data.  Resulting accuracy assessments are provided individually.  See5 provides 

a ranking of independent variable importance (given as a percentage, which represents the 

theoretical decrease in prediction accuracy if that variable were removed), and specifies if 
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any variables were winnowed (shown not be statistically significant) in building the 

decision tree.  Table 3.3-1 shows all independent variables with their sources and original 

scale/resolution.         

After performing the decision-tree analysis, the rule sets can be applied to the area 

of interest using the See5 Run tool, found in the CART extension of ERDAS IMAGINE 

8.7.  This tool examines the independent variable values in area of interest, pixel by pixel, 

and assigns a dependent variable value based on the applicable rule with the highest 

confidence.  The result is a raster representation of predicted soil types. 

3.4. Approaches to Prediction     
 

Training data selection can vary depending on the amount, type and location of 

available soil survey information as well as variations in environmental conditions across 

the study area.  Five different approaches to predictive map generation are graphically 

summarized in Figure 3.4-1.  In approach A, a one-to-one prediction is made for the study 

area based on soils information already available for that area.  This approach is useful for 

model development and accuracy assessment (Elnaggar & Noller, 2008a).  See5 uses this 

approach to test the rule sets it creates.  The rule sets are then used to generate a prediction 

according to one of the other four approaches shown here.  In approach B1, soils training 

data for a mapped area is used to predict an adjacent unknown area (Elnaggar and Noller, 

2008b; Pace, 2007).  This approach would be used to take soil survey data from one county 

and predict an area in a bordering county.  Approach B2 uses a small mapped area to 

predict outward for the surrounding area on all sides, while approach B3 uses available 

training data to fill in holes in the map coverage.  Approaches B1, B2 and B3 will be 
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discussed in the following section.  Approach C uses available training data to predict 

for a distant, non-adjacent area.  This approach would be useful within a given MLRA 

where soil-forming conditions are assumed to be analogous (Malone, in preparation). 

3.5. Results and Discussion – Early Predictive Mapping Runs 
 

This study was initiated during the second field season of the MCSPSS and thus 

dates of predictive soils maps are an important documentation of the progression in 

development and application of results by field crews (see Tables 3.5-1 and 3.6-1).  All 

predictive maps were validated using soil pedon descriptions collected at referenced GPS 

points during the 2006 and 2007 field seasons. The first predictive map was generated for 

the study area on June 16, 2007.  This map was based on training data from the Owyhee 

County, Idaho soil survey.  The Stonehouse Creek, Flint, Swisher Mountain and De Lamar 

quads in Idaho were used to predict the Jordan Valley, Antelope Reservoir, Hooker Creek 

and Downey Canyon quads in Oregon (prediction approach B1).  A small selection of 

independent variables was used (elevation, slope, aspect, mean annual precipitation, 

minimum January temperature and maximum July temperature).  Predictive accuracy was 

generally low (67% at the order level, 61% at the suborder level, and 35% at the great 

group level).  This approach was abandoned for several reasons related to NRCS concerns 

over inapplicability of the Owyhee County soil taxonomy and soil-landscape model.     

Subsequent predictive mapping runs used data collected during the 2006 and 2007 

MCSPSS field seasons as training data, and introduced additional independent variables.  

The predictive mapping run completed on July 23, 2007 used mapping from an east-west 

trending set of quads (Juniper Ridge, Little Grassy Mountain, Dry Creek Rim and Scott 
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Reservoir) to predict a surrounding annulus of quads (prediction approach B2).  Overall 

accuracy improved substantially (87% at the order level, 73% at the suborder level, 67% at 

the great group level, and 53% at the subgroup level) but there was tremendous variability 

in prediction accuracy from quad to quad.  Map units were predicted with very low overall 

accuracy (14%).  Accuracy also decreased with increasing distance from training data 

boundaries.  The ten most important predictor variables (all with an estimated importance 

of >10% as ranked by See5) were elevation, mean annual precipitation, minimum January 

temperature, average minimum temperature, maximum July temperature, bedrock geology, 

average maximum temperature, slope, GAP analysis vegetation cover, and LandSat TM 

band 6 reflectance.  The next predictive run, completed on August 3, 2007, incorporated 

additional training data digitized from recently-produced preliminary field maps for three 

quads (Danner, Threemile Hill and Jordan Valley) and also utilized all previously available 

training data from the 2006 field season (10 quads total) (prediction approach B2).  It was 

expected that incorporating more training data (more area with more environmental 

variable combinations) would increase accuracy.  However, accuracy decreased relative to 

the July 23 run (80% at the order level, 67% at the suborder level, 55% at the great group 

level, and 32% at the subgroup level).  The nine most important predictor variables (all 

with an estimated importance of >10% as ranked by See5) were elevation, mean annual 

precipitation, bedrock geology, minimum January temperature, average maximum 

temperature, July maximum temperature, average maximum temperature, GAP analysis 

vegetation cover, and historic vegetation.  For the September 14, 2007 predictive run, the 

soils training data from the August 3 run was used again, but all of the data were recoded to 

the subgroup level of classification (prediction approach B2).  It was expected that this 
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would increase accuracy because contiguous mapped areas would be larger, encompass 

more potential variation, and require coarser separations than at the map unit level.  Again, 

the results did not support this hypothesis.  The accuracy was not significantly different 

(79% at the order level, 65% at the suborder level, 50% at the great group level, and 30% at 

the subgroup level).  The eleven most important predictor variables (all with an estimated 

importance of >10% as ranked by See5) were elevation, mean annual precipitation, 

bedrock geology, minimum January temperature, average minimum temperature, July 

maximum temperature, diffuse radiation received (W-h/m2), average maximum 

temperature, GAP analysis vegetation cover, historic vegetation, and LandSat TM band 6 

reflectance.  Predicted soils maps, sampling points, accuracy summaries (overall and 

quad-by-quad) and soil map unit descriptions for all early runs are shown in Appendix IV.   

Table 3.5-1 summarizes the prediction approach used and the resulting accuracy for each 

of the early runs, and Table 3.6-1 summarizes information for the two Threemile Hill 

predictive runs that are described in the following section.   

3.6. Results and Discussion - Threemile Hill Predictive Maps  

3.6.1. October 12, 2007 Predictive Map 

 In light of results from early predictive runs (accuracy is highest near borders with 

training data, incorporating more training data from a larger geographical extent doesn’t 

necessarily improve accuracy), a predictive map of one quad, Threemile Hill was produced 

on October 12, 2007.  A raster representation of the soils map for four surrounding quads 

(Jordan Craters South, Arock, Danner and Dry Creek Rim) was used as training data 

(prediction approach B3).  Figure 3.6-1 shows the soil map units for the training area.  
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Refer to Appendix V for map unit descriptions.  Accuracy assessment for the predicted 

map was initially assessed based on GPS-referenced soil pedon descriptions collected 

during the 2007 field season.  Figure 3.6-2 shows the predicted soil map units for the whole 

area, and Figure 3.6-3 shows a comparison of the predicted and actual soil map units for the 

Threemile Hill quad.  Accuracy increased to 91% at the order level, 83% at the suborder 

level, and 83% at the great group level.  However, accuracy was still only 34% at the 

subgroup level.  The eleven most important predictor variables (all with an estimated 

importance of >10% as ranked by See5) were bedrock geology, mean annual precipitation, 

average minimum temperature, January minimum temperature, elevation, average 

minimum temperature, LandSat TM band 6 reflectance, diffuse radiation received 

(W-h/m2), slope, July maximum temperature, and LandSat TM 4/3 band ratio.  In light of 

accuracy improvements relative to other runs, confusion-matrix analysis was performed to 

generate descriptive statistics regarding accuracy among individual map units and to get a 

better view of overall map accuracy.   

3.6.2. Confusion Matrix Analysis for October 12, 2007 Predictive Map 

A confusion matrix is a table that catalogs the agreement between all pixels in the 

predicted and actual soil maps.  It summarizes the number of pixels assigned to each soil 

class (potential pixel value) that were correctly classified, and then summarizes the number 

of incorrectly classified pixels and the classes to which they were assigned.  This provides 

a more comprehensive summary of the predictive map’s accuracy than what could be 

assessed based on data from field-check points. An error map can also be generated that 

shows the actual location of all incorrectly classified pixels. Identifying the conditions 
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under which the misclassification occurs facilitates model improvement by allowing the 

analyst to select additional (or different) input variables or perhaps modify the structure or 

unit nomenclature of the training map.  Certain summary statistics (overall accuracy, user’s 

and producer’s accuracy for each class, and Kappa index) are also calculated when the 

error matrix is produced.   

The overall accuracy is simply the total number of correctly classified cases 

divided by the total number of cases.  User’s and producer’s accuracy are calculated for 

each individual class.  The user’s accuracy for a given class (say class x) measures the 

accuracy of the prediction by looking across the rows of the error matrix.  It is a measure of 

commission error—when a pixel that is actually from another class is committed to class x.  

The producer’s accuracy measures the prediction accuracy by looking down the columns 

of the error matrix and is a measure of omission error—when a pixel that is actually in class 

x is omitted and assigned to a different class.  These measures tell the analyst if pixels from 

a certain class are being classified incorrectly (low producer’s accuracy) or if that class is 

“catching” pixels that should be in other classes (low user’s accuracy).  Consider the 

situation where nearly all of the pixels that should be in class x are correctly assigned to 

class x (high producer’s accuracy) but many pixels that actually belong to class y and z are 

also assigned as class x (low user’s accuracy).  This would tell the analyst that while class x 

is very accurately predicted and easily distinguishable from other classes, classes y and z 

must have some characteristics similar to x.  Examining their distributions and thinking 

about their differences in terms of formative factors or predicting variables might lead to 

selection of another variable that helps to discriminate between the classes.  The Kappa 

index (Cohen, 1960) is a discreet multivariate statistic used to measure the agreement 
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between actual and predicted soils maps.  Kappa is a more robust measure than the 

overall accuracy, because it takes into account the amount of agreement that would occur 

by chance.  Kappa, as adopted for use in image analysis (Mather, 2004), is calculated as: 
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where N is the total number of pixels, r is the number of rows in the matrix, xii are the 

diagonal entries of the error matrix, xi+ and x+i are the sums of row i and column i, 

respectively, and K is the Kappa value.  Kappa values may range from 0 (no agreement 

above that expected by chance) to 1 (perfect agreement). 

A new approach was developed for creating confusion matrices.  ENVI 4.3 (ITT 

Industries, 2006), a geospatial imagery analysis software package, has the capability to 

produce a confusion matrix to compare two classified images.  However, the tool will only 

work with an image that has been classified in ENVI.  The images used with this tool are 

generally multi-spectral satellite images that have undergone supervised classification 

whereby unique regions of interest (ROI’s) are delineated that represent activities or 

conditions on the ground (i.e. land use, drought severity).  These ROI’s are then used as a 

sort of “training data” to classify all the pixels in the image.  The selection of ROI’s can be 

a time-intensive process when classifying an image because of the continuous nature of 

reflectance data in multiple bands—the analyst needs to delineate representative ROI’s that 

fully capture the variation in reflectance within each class.  Although ENVI’s supervised 

classification tools are not intended for classifying rasters that already represent categorical 
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data, simply defining one ROI for each soil class (only a few pixels are needed) allows 

the classifier to identically reproduce the soil map units as a classified image.  Since there 

is only one possible pixel value for each soil class, there is no error in the classification.  

Completing this process for both the predicted and the ground truth soil map results in two 

classified images that can be compared and the results summarized in the confusion matrix.  

The specific procedure is detailed in Appendix VI.  Two confusion matrices were 

generated for the October 12, 2007 predictive map—one for the training area (Jordan 

Craters South, Danner, Dry Creek Rim, and Arock quads) and another for the predicted 

area (Threemile Hill quad).  The confusion matrices and summary statistics are also shown 

in Appendix VI.    

Examining the confusion matrix for the training area gives an idea about the overall 

appropriateness of the model and independent variable selection and can also provide clues 

about where misclassification is likely to occur in the unmapped area.  Because the 

confusion matrix compares a predicted map to the actual map from which the training data 

was derived, accuracy should be very high.  In this case, the overall accuracy is 98.5%, 

whereas the Kappa coefficient is 0.98.  Where is error occurring in the training area?  

Evaluating the error in every map unit would be time consuming and impractical since less 

than half of the map units (16 of 37) comprise 95% of the total area (see Tables 3.6-2 and 

3.6-3).  This section will address these major map units. Of those 16 units, 13 units (140C, 

108C, 184C, 199B, 998, 102C, 189B, 196C, 127C, 122C, 175C, 120D, 266B) had a 

prediction accuracy of 96% or greater, and the error map (Figure 3.6-4) shows that nearly 

all misclassified pixels occur at unit boundaries.  Unit 186C, Vitrixerandic Haplocambids, 

has 86% of its pixels classified correctly.  Five percent of the pixels were classed as 108C 
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(Vitrixerandic Argidurids). Another eight percent were incorrectly placed into units that 

do include Haplocambids (196C and 187C).  Unit 200D, another Haplocambids unit, had 

84% of its pixels classified correctly.  Of the incorrectly classified pixels, 13% are 

identified as 998 (lava flows), in part because the largest 200D delineation borders the 998 

delineation in the northern part of the Jordan Craters South quad.  Haplocambids units have 

been poorly predicted in past experiments, but it is likely that a surficial geology map 

would reconcile this problem.  Haplocambids likely occur on younger aeolian-influenced 

surfaces, while the more ubiquitous Argidurids likely occur on older surfaces subjected to 

Pleistocene weathering and moisture regimes.   Unit 191C (Vitrixerandic 

Argidurids-Vitrixerandic Haplargids complex) had a 92% prediction accuracy.  Of the 

misclassified pixels, 5% were classified as 102C, which is the same series as the main 

component of 191C (Muni series).  Another 2% were classified as 120D (rock 

outcrop-rubbleland complex), with which this delineation shares an extensive border.  In 

reality, soil types do not have discreet boundaries—they vary continuously across the 

landscape and blend into one another.  It appears that most of the error in predicting the 

training area is a result of the uncertainty inherent in placing discreet map unit boundaries.   

 A confusion matrix should be created for the area of interest once the analyst has 

the ground-truthed field map.  Because the map is created by extrapolating rule sets outside 

the area of creation, accuracy is expected to be lower.  Constructing the confusion matrix 

requires that every class from the predicted map have an equivalent class on the 

ground-truth map.  Because of this constraint, it is common to omit units from this analysis.  

Units 129A, 222 and 224 were actually mapped in the Threemile Hill quad but were not 

part of the predictive map, so they were not included in the confusion-matrix analysis.  
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Unit 129A was not present anywhere in the training data, so its prediction in the area of 

interest is impossible.  Together, these three units comprise a statistically insignificant 

areal percentage (<2%).  For the Threemile Hill area, the overall accuracy is 74% and the 

Kappa coefficient is 0.67 (at the map unit level) (see Table 3.6-1).  Unit 140C covers the 

most area in the Threemile Hill quad (41%).  This unit was also predicted with the highest 

accuracy (94%).  Unit 140C is comprised of shallow Abruptic Xeric Argidurids and seems 

to have a strong correlation to broad, low-sloping Tertiary tuffaceous sedimentary rock 

plateaus.  Unit 184C, which covers 22% of the area, is comprised of 65% rock outcrop 25% 

Vitrixerandic Argidurids (Clarksbutte series).  It was predicted with 89% accuracy.  About 

six percent of the pixels were incorrectly classified as 189B, which is comprised of 40% 

Vitrixerandic Argidurids (also Clarksbutte series), 30% rock outcrop, and 15% Typic 

Haplargids.  184C occurs on younger Quaternary basalt flows, while 189B occurs on 

slightly older (still Quaternary), more weathered flows.  Another four percent of the pixels 

were misclassified as 140C and occur near the unit boundary.  Unit 189B, described above, 

covers 13% of the total area and was predicted with 85% accuracy.  Most of the 

misclassified pixels (~10%) were classified as 196C (60% Durinodic Haplocambids and 

25% Typic Argidurids). Likewise, unit 196C (9% of the area) was predicted with 89% 

accuracy and had most of its misclassified pixels classified as 189B.  These two units 

border one another, and parent material and landform seem to be major factors 

distinguishing the two.  When looking at the geology map, hillshade and digital orthophoto 

quad, it appears that the Quaternary basalt that 189B occupies may have been mapped a 

little too extensively.  In this instance, it appears that the predictive map may have 

delineated these two units with higher accuracy (using reflectance data and other factors in 
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the rule sets) than the actual field map, but since there are no sampling points in this 

overlapping region it is not possible to say so with much certainty.  Unit 108C (shallow 

Vitrixerandic Argidurids) covers approximately four percent of the total area, but was 

mapped with only 25% accuracy.  Most of the misclassified pixels were classified as 140C 

(shallow Abruptic Xeric Argidurids).  These two soil types are very similar in their 

morphologies—the clay content and increase with depth in the Bt horizon is the only thing 

that necessarily separates them.  Another 14% were mapped as 196C (60% Durinodic 

Haplocambids, 25% Typic Argidurids), which is a bordering unit.  Unit 108C was 

predicted with very high accuracy in the training area (97%), but it appears that it has been 

inconsistently mapped with respect to landform and geology in the Threemile Hill area 

resulting in very low prediction accuracy.  Unit 186C (Vitrixerandic Haplocambids) is an 

aspect unit occurring on slopes greater than 15% and covers 3% of the total area.  It was 

predicted with 43% accuracy.  45% of the pixels were misclassified as 140C.  Where unit 

186C does appear in the predicted map, it appears in the correct places.  However, it is not 

carried all the way around scarp faces or down drainages to its actual full extent.  Although 

unit 140C is officially mapped on 2 to 15% slopes, some areas mapped as 140C have much 

greater slopes and this likely carried over into the rule sets.  Since 186C is mapped on the 

steeper sections at the boundaries of 140C, this misclassification is easily understood.  The 

remaining units cover a small percentage of the total area, and will not be discussed.  Many 

of the errors in the Threemile Hill predicted map can be easily explained and accounted for 

in subsequent predictions by adjusting map unit boundaries, running slope analyses to 

delineate certain aspect units, or aggregating similar units after predicting for a higher level 

of taxonomy (i.e. subgroup) as opposed to map units.   
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3.6.3. April 10, 2008 Predictive Map 

A second predictive map was produced for the Threemile Hill quad on April 10, 

2008.  Some of the deficiencies in the October 12, 2007 predictive run were believed to be 

related to the lack of surficial geology information.  During winter 2008, surficial geology 

maps of several quads in the MCSPSS were created based on bedrock geology map 

analysis and aerial photo interpretation (Noller, 2008), and this information was 

incorporated into April 10, 2008 the model.  Individual layers were created to represent 

surficial age (e.g. Holocene, Pleistocene), surficial lithology (e.g. basalt, landslide 

deposits), and a combination of the two (e.g. Holocene basalt).  All other independent 

variables were kept the same.  The ranking of variable importance changed significantly 

relative to the October 12, 2007 predictive run.  The fifteen most important predictor 

variables (all with an estimated importance of >10% as ranked by See5) were: iron oxide 

minerals (LandSat TM Band3/Band1 ratio), surficial age, average minimum temperature, 

elevation, mean annual precipitation, vegetation index (LandSat TM Band4/Band3 ratio), 

surficial lithology, January minimum temperature, July maximum temperature, diffuse 

radiation received (W-h/m2), average maximum temperature, LandSat TM Band 4, 

bedrock geology, LandSat TM Band 6, and slope.  Four soil map units from the predicted 

map that do not occur on the actual map (136B, 182C, 199B and 213) and one soil map unit 

from the actual map that does not occur on the predicted map (273) were excluded from the 

error-matrix analysis.  All five of these units combined account for approximately one 

percent of the total mapped area within the Threemile Hill quad.  Overall accuracy was not 

significantly different compared to the October 12, 2007 run.  Figure 3.6-5 shows a 

comparison of the predicted and actual soil map units for the Threemile Hill quad.  The 
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overall accuracy and Kappa coefficient for map units in the training area were 98.6% 

and 0.98, respectively.  The overall accuracy and Kappa coefficient for map units in the 

area of interest, the Threemile Hill quad, were 74.5% and 0.68, respectively.  Overall 

accuracies and Kappa coefficients were also calculated for the order, suborder, great group, 

and subgroup levels of map unit taxonomy (summarized in Table 3.6-1).  These results 

initially seem to support the findings of Scull et al. (2005), who found that removing 

individual variables did not greatly impact map accuracy.  Here, as opposed to removing 

variables from the analysis, additional variables were introduced that were thought to be of 

great importance for predicting soils in the area.  Although these variables were ranked 

with high importance by the decision-tree classifier, accuracy did not improve relative to a 

previous predictive run that excluded these variables from consideration.  However, 

comparing the October 12, 2007 and April 10, 2008 error images for the Threemile Hill 

area (see Figure 3.6-6) shows that the distribution of prediction errors varies.  The surficial 

geology information results in more precise map unit boundary placement and less error 

near those boundaries.                
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Figure 3.1-1: Malheur County, Southern Part Soil Survey Area Location 
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Figure 3.1-2: Study Area Quads 
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Figure 3.1-3: Study Area Mean Elevation 

 



 

 

 

Figure 3.1-4: Study Area Mean Annual Precipitation (MAP) 

 

 
 

 

 

53



 

 

54

 

 
Figure 3.4-1: Approaches to Prediction 
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Figure 3.6-1: Soil Map Units for Training Area - October 12, 2007 Predictive Map 
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Figure 3.6-2: Predicted Soil Map Units for Whole Area – October 12, 2007  

Predictive Map 
 



 

 

57
 

 
Figure 3.6-3: Comparison of Predicted and Actual Map Units for Threemile Hill – October 

12, 2007 Predictive Map 
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Figure 3.6-4: Prediction Errors for Training Data - October 12, 2007 Predictive Map 

 



 

 
Figure 3.6-5: Comparison of Predicted and Actual Map Units for Threemile Hill – April 10, 2008 Predictive Map 
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Figure 3.6-6: Comparison of Prediction Errors – April 10, 2008 vs. October 12, 2007 Maps 
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Table 3.1-1: Survey Area Land Ownership 
 

Land Category Acres 

Non-Federal (Private and State) 450,459 

Bureau of Land Management 2,603,820 

Fort McDermitt Indian Reservation 18,829 

Water 7,000 

Total 3,080,108 
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Table 3.3-1: Summary of Independent Variables 

 
Variable Source Resolution/

Scale Data Type 

Elevation  
ifSAR Digital Terrain Model (DTM), 
Intermap Technologies, confidential 
data provided by NRCS 

5m continuous 

Slope 
Aspect 

Derived from ifSAR DTM using ArcGIS 
9.2 Surface Analysis tools 5m continuous 

Diffuse Solar 
Radiation (W-h/m2) 

Derived from ifSAR DTM using ArcGIS 
9.2 Solar Radiation tool 5m continuous 

Mean Annual 
Precipitation  
(1971-2000) 

continuous 

Minimum January 
Temperature  
(1971-2000) 

continuous 

Maximum July 
Temperature  
(1971-2000) 

continuous 

Average Minimum 
Temperature  
(1971-2000) 

continuous 

Average Maximum 
Temperature 
(1971-2000) 

PRISM Group,  
Oregon State University (2007) 800 m 

continuous 

Bedrock Geology 
Oregon Geologic Data Compilation 
(OGDC) v. 3 (Oregon Dept. of Geology 
and Mineral Industries, 2006) 

varies categorical 

Gap Analysis 
Vegetation Cover Kagan et al. (1999) 1:100,000 categorical 

Historic (Pre-1938) 
Vegetation Cover 

Oregon Natural Heritage  
Program (2002) 1:100,000 categorical 

LandSat TM  
Bands 1-7 

Landsat.org, Global Observatory for 
Ecoystem Services, Michigan State 
University 

28.5 - 30 m continuous 

Vegetation Index Derived from LandSat TM image, 
Band4/Band3 30 continuous 

Iron Oxide Minerals Derived from LandSat TM image,  
Band 3/Band1 30 continuous 

Surficial Age and 
Surficial Lithology 

Derived from surficial geology maps of 
Jordan Craters South, Arock, Threemile 
Hill, Danner and Dry Creek Rim quads 
(Noller, 2008) 

1:24,000 categorical 

**Several other independent variables were included in the DTA but were winnowed or ranked 
with importance < 10%.  These include plan and profile surface curvature and total and direct 
solar radiation (derived from the ifSAR DTM); topographic position index (derived from the 
ifSAR DTM (Jenness, 2005); NDVI, TNDVI, and ferrous minerals (calculated from LandSat TM 
data); and brightness, greenness and wetness (derived from Tasseled Cap Transformation of 
LandSat TM data) (Kauth and Thomas, 1976).  
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Table 3.5-1: Prediction Approaches and Accuracy Summaries for Early Runs 
 

Overall % Accuracy (from point data) 
Date Approach Map Products Order Suborder Great 

Group Subgroup 

June 16, 2007 B1 Downey Canyon, Antelope Reservoir, Jordan Valley 67 61 35 --  

July 23, 2007 B2 Arock, Threemile Hill, Danner, Antelope Reservoir, Jordan 
Valley, Parsnip Peak, Whitehorse Butte 

87 73 67 53 

August 3, 2007 B2 Arock, Bogus Bench, Cow Lakes, Downey Canyon, 
Antelope Reservoir, Jordan Valley, Parsnip Peak 

80 67 55 32 

September 14, 
2007 B2 Arock, Bogus Bench, Cow Lakes, Downey Canyon, 

Antelope Reservoir, Jordan Valley, Parsnip Peak 
79 66 50 30 

October 12, 2007 B3 Threemile Hill 91 83 83 35 
 
 
 

Table 3.6-1: Accuracy Summaries for October 12, 2007 and April 10, 2007 Predictive Maps 
 

Confusion Matrix Analysis (Map Unit Level) 
Training Area Predicted Area Date Approach 

Overall % Accuracy Kappa Overall % Accuracy Kappa 
October 12, 2007 B3 98.5 0.98 74.0 0.67 

April 10, 2008 98.6 0.98 74.5 0.68 
order − − 99.3 0.92 

suborder − − 81.6 0.66 
great group − − 80.6 0.74 

subgroup 

B3 

− − 79.3 0.72 
 



Table 3.6-2: Areal Summaries for Mapped Soils in Threemile Hill Area 
 

 

64

 
Map Unit Acres % Area Mean Delineation 

Area (Std. Dev.*) 
Cumulative 

% Area 
140C 36,317 22.8 5,188 (7,449) 22.8 
108C 27,406 17.2 4,568 (3,934) 39.9 
184C 19,611 12.3 6,537 (7,689) 52.2 
199B 15,096 9.5 15,096 ( - ) 61.7 
998 9,278 5.8 9,278 ( - ) 67.5 

102C 8,890 5.6 2,963 (2,249) 73.0 
189B 8,053 5.0 4,026 (887) 78.1 
196C 5,380 3.4 897 (984) 81.5 
127C 4,760 3.0 1,190 (1,936) 84.4 
122C 4,156 2.6 4,156 ( - ) 87.0 
175C 3,051 1.9 3,051 ( - ) 89.0 
120D 2,288 1.4 1,144 (400) 90.4 
186C 2,288 1.4 572 (538) 91.8 
266B 1,995 1.2 1,995 ( - ) 93.1 
200D 1,505 0.9 752 (198) 94.0 
191C 1,501 0.9 500 (561) 95.0 
126C 1,182 0.7 394 (20) 95.7 
182C 779 0.5 260 (114) 96.2 
261C 634 0.4 317 (215) 96.6 
136B 613 0.4 153 (152) 97.0 
179D 594 0.4 297 (74) 97.3 
125C 560 0.4 280 (67) 97.7 
187C 495 0.3 495 ( - ) 98.0 
123D 484 0.3 242 (109) 98.3 
201B 480 0.3 480 ( - ) 98.6 
129A 407 0.3 407 ( - ) 98.9 
273 356 0.2 356 ( - ) 99.1 

124D 249 0.2 249 ( - ) 99.2 
190C 246 0.2 246 ( - ) 99.4 
999 204 0.1 34 (64) 99.5 

121B 187 0.1 187 ( - ) 99.6 
137A 151 0.1 50 (70) 99.7 
167A 106 0.1 106 ( - ) 99.8 
105B 90 0.1 90 ( - ) 99.9 
222 84 0.1 84 ( - ) 99.9 
224 82 0.1 41 (41) 100.0 
204 68 0.0 68 ( - ) 100.0 

Totals 159,625 100.0   

* Standard Deviation calculated as 
n

xx∑ − 2)(
 

 
 



 

Table 3.6-3: Map Unit Descriptions for Threemile Hill Area 

Actual Soil Map Units for Threemile Hill Area  
(Jordan Craters South, Arock, Danner, Dry Creek Rim, and Threemile Hill) 

(16 of 37 Classes, 95% of Total Area) 

Map Unit Name Component % Classification % Total Area

140C 
Midraw very stony ashy loam Midraw 85 Clayey, smectitic, mesic, shallow  

Abruptic Xeric Argidurids 22.8 

108C 
Sandhollow ashy sandy loam Sandhollow 85 Loamy, mixed, superactive, mesic shallow 

Vitrixerandic Argidurids 17.2 
Rock outcrop 65 rock outcrop 

184C Rock outcrop-Clarksbutte 
complex Clarksbutte 25 Fine-loamy, mixed, superactive, mesic 

Vitrixerandic Argidurids 
12.3 

Clarksbutte 80 Fine-loamy, mixed, superactive, mesic 
Vitrixerandic Argidurids 199B Clarksbutte-Rock outcrop 

complex 
Rock outcrop 15 rock outcrop 

9.5 

998 Lava Flows Lava 98 lava flows 5.8 

102C Muni gravelly ashy loam Muni 90 Loamy, mixed, superactive, mesic shallow 
Haploxeralfic Argidurids 5.6 

Clarksbutte 40 Fine-loamy, mixed, superactive, mesic 
Vitrixerandic Argidurids 

Rock outcrop 30 rock outcrop 189B Clarksbutte-Rock 
outcrop-Rimview complex 

Rimview 15 Fine-loamy, mixed, superactive, mesic  
Typic Haplargids 

5.0 

Sagehill 60 Coarse-loamy, mixed, superactive, mesic 
Durinodic Haplocambids 196C Sagehill-Muni dry complex 

Muni 25 Fine-loamy, mixed, superactive, mesic  
Typic Argidurids 

3.4 

 
127C Toney ashy silt loam Toney 85 Fine, smectitic, mesic Xeric Paleargids 3.0 
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Table 3.6-3 Continued: Map Unit Descriptions for Threemile Hill Area 
  

Actual Soil Map Units for Threemile Hill Area (Jordan Craters South, Arock, Danner, Dry Creek Rim, and Threemile 
Hill) 

(16 of 37 Classes, 95% of Total Area)  
Continued 

Map Unit Name Component % Classification % Total Area
Foleylake 60 Fine, smectitic, frigid Abruptic Xeric Argidurids 122C Foleylake-Martinson complex 
Martinson 25 Fine, smectitic, frigid Vitritorrandic Argixerolls 

2.6 

Cocklebur 
40 

Loamy, mixed, superactive, mesic, shallow 
Vitrixerandic Haplargids 

Wisher 
30 

Fine-silty, mixed superactive, mesic 
Vitritorrandic Argixerolls 

175C Cocklebur-Wisher-Rock outcrop 
complex 

Rock outcrop 20 rock outcrop 

1.9 

Rock outcrop 80 rock outcrop 120D Rock outcrop-Rubbleland 
complex Rubbleland 15 rubbleland 

1.4 

186C 
Felcher loam Felcher 

85 
Fine-loamy, mixed, superactive, mesic 

Vitrixerandic Haplocambids 1.4 

Skinnerpit 
45 

Coarse-loamy, mixed, superactive, mesic 
Xeric Haplocambids 

Lava 25 lava flows 266B Skinnerpit-Lava 
flows-Cheatroad complex 

Cheatroad 
15 

Coarse-loamy, mixed, superactive, mesic 
Xeric Haplodurids 

1.3 

Zymans-like 50 Fine, smectitic, frigid Vitritorrandic Argixerolls 
200D Zymans-like-Barbermill complex

Barbermill 
35 

Clayey, smectitic, mesic, shallow  
Aridic Argixerolls 

0.9 

Muni, dry 
70 

Loamy, mixed, superactive, mesic shallow 
Vitrixerandic Argidurids 191C Muni dry-Drewsey Dry complex 

Drewsey, dry 
20 

Fine-loamy, mixed, superactive, mesic 
Vitrixerandic Haplargids 

0.9 
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4. Predictive Mapping Implementation on the Malheur County, Oregon Initial Soil  
    Survey 

4.1. Interactions with NRCS and BLM Personnel 
 

Although predictive mapping work was previously completed in southwestern 

Malheur County (Elnaggar, 2007), the areas examined in that study did not intersect with 

areas actively being mapped by NRCS during the 2006-2008 field seasons.  Initial crew 

contact and field investigations for this study took place during the summer of 2006.  

Ride-alongs with NRCS soil scientists and the BLM ESI team leader during regular 

mapping activities were conducted to become familiar with the soils, topography and 

vegetation communities in the survey area.  At that time, crew members were introduced to 

the proposed methodology and theory behind using decision-tree classifier software for 

predictive soils mapping for soil survey.  Initial crew reactions varied, but skepticism and 

suspicion were evident in many of the team members’ reactions.  There were, however, 

survey team members who were quite enthusiastic about the use of predictive mapping.  

Despite some negative perceptions, all of the survey team members were accommodating 

and generous with their knowledge.  Field excursions with the ESI team leader and soil 

scientists yielded valuable information regarding the soil-landscape models and 

relationships that were driving map unit differentiation.  These observations aided in the 

selection of independent variables for the decision-tree analysis.    

Causative factors behind negative perceptions varied between the NRCS and BLM 

team members.  Many of the BLM ESI surveyors felt alienated by the process for the 

following two reasons: 1) since the focus of this project is on soils mapping, they believe 

that the ESI goals of this BLM-driven survey are being ignored, and 2) if ESI information 
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were incorporated into the prediction, they do not believe that a model could accurately 

predict soils-ESI map units containing so much complex information.  Most of the NRCS 

soil scientists were less direct in stating their concerns, but the following two issues seemed 

of greatest importance: 1) fear of replacement of expert knowledge by a computer program 

that attempts to simulate the surveyor’s thought process, and 2) fear that a technology 

barrier exists (in user knowledge, software usability, equipment availability, or 

compatibility with field procedures).  ESI surveyors and soil scientists were equally 

concerned about how validation data would be obtained and map accuracy analyzed.  

Mapping accuracy and usability of soils maps is highly dependent upon consistent 

landscape interpretation and taxonomy application among the different scientists working 

on a team.  The decision to use the survey team’s pedon descriptions and map unit lines for 

validation data resulted in the team members having greater confidence in the accuracy 

statements.  

The earliest predictive runs that yielded low accuracy (using Owyhee County 

survey data as training data to predict adjacent quads) fostered negative views of the 

predictive mapping process.  However, two meetings (one in the summer and one in the 

fall of 2007) were instrumental in influencing perception and building confidence in 

potential usefulness.  The Summer 2007 meeting, attended by Bob Graham, State Soil 

Conservationist, GIS analysts from the Vale, Oregon BLM office, and the members of the 

Malheur County survey crew, allowed for a brief formal introduction to the predictive 

mapping project (variable selection, decision tree analysis, and map generation) and an 

overview of work planned for the 2007 field season.  Field work for the 2007 season was 

performed in concert with Alina Rice, Soil Survey Project Leader, who provided pedon 
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descriptions for accuracy analysis and numerous suggestions for model improvement.  

The Fall 2007 meeting was held during the initial field review, and was attended by Tom 

McKay, MO3 Soil Data Quality Specialist, NRCS; Paul Blackburn, MLRA Leader, NRCS; 

Greg Kuehl, Snake River Area Basin Team Leader, NRCS; Bob Gillaspy, State Range 

Conservationist, NRCS; Ed Peterson, District Conservationist, NRCS; and the regular 

Malheur County survey crew.  A summary of completed predictive maps along with 

accuracy analyses was presented in the field area.  Sources of potential error and 

methodology evolution were explained.  The final predictive map for the Threemile Hill 

area, which had substantially improved accuracy over previous runs, was presented along 

with a proposed checkerboard mapping structure (prediction mode B3) to facilitate field 

work planning.  Reactions were generally positive, and serious discussion of using the 

process for generating pre-maps was initiated.  At this time, it was decided that a soil 

scientist from the Malheur County survey would attend predictive-mapping training at 

Oregon State University.  A description of that training, its goals, and the results is 

provided below. 

4.2 Predictive-Mapping Training Session 
 

In April 2008, Shanna Bernal-Fields, Student Soil Conservation Technician 

assigned to the Malheur County, Southern Part soil survey, attended a three-day predictive 

mapping training session at Oregon State University.  The goal of the training session was 

to introduce her to the mapping process and simultaneously produce pre-maps for four 

quads to be mapped in the 2008 field season.  The session was split into three parts: 1) 

acquiring and preparing digital data sets, 2) analyzing training data with decision tree 
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analysis software, and 3) generating and editing predictive maps.  Conveying the 

information and generating the maps was a success, but discussion with Ms. Bernal-Fields 

over the course of the session revealed some major barriers to successful implementation at 

the NRCS office.  The computing resources currently available are not sufficient to carry 

out the computationally-intensive decision-tree analyses.  Time constraints are also 

limiting.  Data preparation is a time-intensive process.  A detail or permanent employee 

with duties specific to predictive mapping would be needed, and GIS support personnel for 

data acquisition and accuracy analysis might also be necessary.  Finally, the learning curve 

may be large for some employees.  A solid background in GIS and geospatial analysis is 

necessary to troubleshoot problems and ensure data integrity through multiple 

manipulations of data.  Knowledge of field-mapping procedures and of the specific 

soil-forming environments in the survey area are also required.   

After having some time to reflect on the predictive mapping training session, Ms. 

Bernal-Fields provided the following feedback on the experience (personal e-mail 

communication, May 2, 2008):   

"After the three-day course in predictive modeling I feel I have a fairly 
strong understanding of the basic principles behind this tool and a healthy 
view of its limitations.  If our agency purchased all the required software 
and a computer that could produce the predictive maps in a timely manner I 
could learn to operate them with a bit more training. I speak specifically of 
operating the model because of the large amount of time that goes into the 
data acquisition and preparation.  I would not have time to do it with my 
current workload nor would I feel comfortable performing the data 
transformations with my current GIS ability levels.  If GIS support was 
provided and I was given a packet of the needed data layers I think I could 
manage running it in the office very soon.  You provided some excellent 
documents last week, but I am more comfortable with the format of our 
agency's technical notes. Not all field scientists are GIS savvy, but this tool 
could be very handy if it arrived ready to go with technical guides. 
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I think this tool could be used for pre-mapping, as well as training new soil 
scientists in a given area.  The predictive maps would give them a higher 
starting point for mapping--they could ground truth and modify as needed 
and gain confidence and familiarity with the local soils.  Perhaps soil survey 
updates could even use it to take larger orders down as needed. If the 
accuracy of the model were sufficient, it could be used as a check of older 
mapping to gauge quality.  Perhaps some GIS specialists could analyze the 
rule sets generated by the model and translate them into general rules of 
thumb concerning important environmental variables and meaningful 
breaks within those variables for the particular survey area." 
 
Examining Ms. Bernal-Fields' comments in context of the TAM suggests that 

perceived usefulness is not a major barrier, and that future efforts should focus on the 

perceived ease of use.  Specific consideration should be paid to the modes of discussion 

and presentation.  Presenting the procedures and supporting documentation in a familiar 

format (as an agency technical note) will foster confidence and make the process seem 

more approachable and understandable for the field scientists.          

4.3 Proposed System for Predictive Mapping Implementation 
 

Technology acceptance research has shown that adequate support services are 

critical in early stages of adoption of new tools for performing work.  An administrative 

support position within the agency would conduct training sessions and serve as the point 

of contact for issue resolution.  For successful predictive mapping implementation on an 

individual survey, certain personnel would be needed: 1) a soil scientist with field mapping 

experience in the survey area and designated predictive/digital mapping job 

responsibilities, and 2) a GIS analyst who would provide data acquisition, data preparation 

and map digitization support. Background in GIS theory and basic proficiency in a 

commercial GIS software package (including geospatial analysis and digitizing tools) 

would be assumed.  In the proposed system, the soil scientist, GIS analyst and soil survey 
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project leader would attend a week-long winter training session on predictive mapping.  

Topics to be covered would include digital data sources, selection of appropriate 

environmental variables, data accuracy and integrity analysis (including outlier detection 

and descriptive statistics), issues of scale and raster cell size selection, preprocessing of 

digital data sets, creating sampling grids for rule set construction, use of decision tree 

analysis software (including theoretical background and selection of appropriate pruning 

and boosting options), CART analysis for predictive map generation, and predictive map 

preparation (including selection of minimum map unit size and level of classification to be 

used for pre-maps). Full documentation of procedures, software and hardware 

requirements, and agency map and data accuracy standards should be compiled in one 

publication (an NRCS technical note) for distribution at the training session.  During the 

training session, the team would use field mapping from previous seasons (along with 

other spatial data sets representing independent variables) to produce pre-maps for the 

following field season.    

Subsequent fieldwork planning according to the quad checkerboard approach 

described earlier would provide the most efficient strategy for predictive mapping.  Once 

three to four adjacent quads have been mapped, that mapping can be used to produce a 

predictive map for the quad of interest.  With this approach, pre-maps can be produced 

from field mapping within the same field season by digitizing the tentative quad maps as 

they are produced.  The soil survey project leader decides what digital data sets are needed 

and requests those data (along with tentative digitized map lines) from the GIS analyst.  

The designated soil scientist then produces the predictive maps under the supervision of the 

soil survey project leader.  As mapping progresses, the survey project leader and other field 
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scientists will find that their mental soil-landscape models evolve and that different 

variables serve as the best predictors of soil types in different areas.  As a result, the 

predictive mapping process will also evolve with time.  Selection of independent variable 

data sets and manipulation of those data sets will change.  Expert knowledge of field 

conditions and what environmental variables reflect those conditions is essential to 

successful model construction.  The analyst has a tremendous amount of control over the 

map characteristics and quality through optimal data selection and preparation.     

It is recommended that predictive maps be prepared at the soil map unit level and 

then recoded to represent soil subgroups or great groups.  The subgroup level of 

classification preserves the most information and retains accuracy suitable for pre-maps 

(~80% in this study).  The soil survey project leader and ESI team leader could then use the 

existing map unit legend to develop and document decision trees for individual soil 

subgroups.  Once the predicted subgroup is verified, the decision tree would be used to 

help select the specific map units to be considered.  Figure 4.3-1 shows an example of a 

decision tree that could be used to differentiate Argidurids, a great group, into soil map 

units documented for the survey area.    
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Figure 4.3-1: Decision Tree for Differentiating Argidurids into Soil Map Units 
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5. Conclusions 

 Soil-landscape relationships in the study area can be successfully extracted 

and quantified using decision-tree analysis.  These relationships can then be applied to an 

area of interest to produce predictive soils maps.  The soil scientists’ landscape model for 

this area within the MCSPSS, principally involving vegetation, elevation, climatic zones, 

and landform/geology, is faithfully reproduced by the DTA.  The suite of environmental 

variables that most accurately characterize those attributes often varies from area to area.  

The soil survey construct and mapping approach on the MCSPSS (combining ESI and soils 

information in unit delineations) results in climatic variables always being ranked with 

high importance.  ESI units are based largely on precipitation amounts and seasonal 

temperature variations, so some rules that use climatic variables are predicting for the ESI 

component of a delineation as opposed to the soils component.  Contrary to the soil 

scientist’s common landscape model, some environmental variables, such as slope and 

aspect, are not shown by the DTA to be directly important in predicting for soil type.  

These variables may be indirectly accounted for in other datasets (precipitation data sets 

likely account for the influence of aspect) or may not be important in predicting soil type 

(slope is not an important predictor of soil type in this area).  Because soils and 

soil-landscape relationships vary over short distances within the study area, rule sets built 

in one area may not be applicable in a geographically distant area.  Carefully constraining 

the study area and selecting the most appropriate training data are critical for successful 

prediction.  Error-matrix analysis for mapped areas shows where misclassification occurs, 

identifies to which classes misclassified cases are being assigned, and allows the analyst to 
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identify data sets needed to enhance characterization.  Predictive soils mapping using 

DTA has a tremendous potential to improve efficiency and accuracy of a soil survey by 

taking advantage of the wealth of digital data that characterizes the environment.  This 

approach also corrects problems inherent in conventional soils mapping that are related to 

1) subjectivity, by forcing objective delineation, and 2) lack of soil-landscape model 

documentation, by producing expressive logs and charts.  

Digital mapping techniques described here should be used to produce pre-maps for 

an active soil survey.  Strategic planning of the mapping schedule (e.g. checkerboard 

mapping) and digitizing preliminary soils maps, as they become available, allows rapid 

turnaround on pre-maps during the same field season and increases efficiency by exactly 

targeting the number and locations of delineations that must be visited.  Field scientists can 

concentrate more heavily on delineations of map units that are predicted with low 

confidence and make quicker verification stops at delineations of map units predicted with 

high confidence.  Working closely with field scientists to fully document all landscape 

models and rubrics used to make field delineations will facilitate model improvement and 

may highlight existing digital data deficiencies. 

Personnel, computer hardware, and software constraints currently prevent 

successful implementation of the procedure discussed in this thesis for the MCSPSS.  

Adding a field scientist with dedicated predictive soils mapping responsibilities, providing 

GIS support (perhaps from a central location supporting several survey crews), 

implementing the training procedure proposed herein, and investing a small sum in 

computer equipment would provide the capability.  Fully documenting the process as an 

NRCS technical note and actively involving support personnel in early stages of adoption 
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will ensure that needs are met on the crew and individual levels.  Many soil and range 

scientists within the NRCS and BLM are wary of (or even fear) adopting a computer 

modeling tool for field mapping.  The agencies must ensure that the required tools are 

accessible and that the process is understandable to everyone involved.  The effort 

associated with adoption must not be too great.  Ultimately, control over the product (the 

map) must rest with the field crew.  It is important to emphasize that while the DTA model 

attempts to replicate the soil scientist’s soil landscape model, it is not a replacement for 

expert knowledge.  Quite to the contrary, the field scientist’s expert knowledge is needed at 

every step to evaluate and manipulate data, assess output, and make changes for model 

development.  This codification of the field scientist’s experienced and complex working 

model of the soil landscape ensures that it is available in full detail for generations to come.  

The well-trained and experienced field scientist will never be obsolete. 
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Appendix I: Pre-Pleistocene Vegetation and Climatic History 
 
Paleocene, Eocene and Oligocene        
  

The very first lands of modern-day Oregon, the Klamath Mountains, did not join 

the North American continent until the early Cretaceous (~144 Ma).  The volcanic arc that 

would become the Blue Mountains completed the first Oregon coastline by the middle 

Cretaceous (~100 Ma).  The palms and other tropical flora of Oregon's coastline and the 

ferns of the mountain foothills were likely eradicated at the end of the Cretaceous, along 

with 70% of all plant and animal species on earth, during catastrophic meteorite impacts at 

the K-T Boundary (Bishop, 2003).  The oldest known flora in the state, and the only one 

representing Paleocene times, was collected and described by Gordon (1985) near Pilot 

Rock in north-central Oregon.  Most of the plants described are dicotyledonous woody taxa 

from the Rutaceae (citrus) family, Betulaceae (birch) family, and Lauraceae (laurel) family, 

pteridophytes such as Dryopteris sp. (wood fern), and gymnosperms such as Taxodium sp. 

(bald cypress) and Glyptostrobus sp. (swamp cypress).  This vegetation assemblage 

suggests a mildly subtropical climate, although conditions would continue to warm into the 

Eocene.  Middle Eocene fossil plants in the Clarno Nut Beds (part of the John Day Fossil 

Beds National Monument) include species from the Palmae (palm) family, Juglandaceae 

(walnut) family, Menispermaceae (moonseed) family, Lauraceae (avocado) family, 

Magnoliaceae (magnolia) family, and Moraceae (fig) family, among others, and indicate 

tropical rain forest conditions (Manchester, 1981).  The climate was likely much like 

modern-day lowlands of Central America.  The highly-weathered kaolinite-rich paleosols 

in the Clarno Nut Beds are further indicators of a warm, wet climate (Retallack, 1981).  

Fossils dating to the late Eocene reflect a transition to a more temperate vegetation 



 

 

93
assemblage of grassland and woodland (Retallack, 1991).  The late Eocene and the 

Eocene-Oligocene transition are the earliest periods commonly examined by paleoclimate 

and paleovegetation studies in eastern Oregon.   

Bestland (1997) used geomorphic concepts about what drives fluvial aggradation 

and incision along with examinations of paleosols in dated geologic materials of central 

Oregon's John Day Formation to look at late Eocene to middle Oligocene climatic change.  

The Big Basin Member of the John Day Formation contains a kaolinite-rich Ultisols-like 

paleosol that is truncated at approximately 33.2 Ma (interpreted as the Eocene-Oligocene 

transition) and overlain by thick alluvial deposits.  A smectite-rich, Alfisols-like paleosol 

developed in the upper part of these sediments.  This sequence suggests an abrupt climatic 

shift from an Eocene subtropical humid climate to an Oligocene temperate humid climate 

with a period of vegetation disequilibrium and resulting massive soil erosion at the 

transition.  A stack of red, well-developed paleosols and decreased alluvial deposition in 

the 32.6 to 32 Ma time span suggest an early Oligocene warming period where recovering 

vegetation suppressed additional erosion.  Meyer and Manchester (1997) suggest a mean 

annual precipitation (MAP) of about 1000-1500 mm and a mean annual temperature (MAT) 

of 3 to 9° C at ~32 Ma based on the Bridge Creek flora of the John Day Formation.  

Bestland et al. (1997) found similar paleosol sequences in the Clarno and John Day 

Formations.  They also discovered Inceptisols-like paleosols with calcic horizons in 

mid-Oligocene sediments (30-28 Ma), suggesting another period of cooling and decreasing 

precipitation.  Bestland (1997) suggests that ~30 Ma marks another major climatic shift, as 

evidenced by the transition from non-calcareous smectitic paleosols to calcareous zeolitic 

paleosols.  Geochemical analysis of Eocene-Oligocene paleosols in the Clarno and John 
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Day Formations by Sheldon et al. (2002) provides refined paleoprecipitation and 

temperature estimates for local climate, and these figures are consistent with general and 

regionally-applicable observations made in earlier research based on depth to calcic 

horizons and plant fossils.  Another study looking at the fossil record and pedogenic 

features in the paleosols of the middle John Day Formation (Retallack et al., 2004) found 

that vegetation communities of the Oligocene alternated between semiarid sagebrush 

steppe and subhumid wooded grassland.  This study also found that Oligocene climate 

change was likely cyclic with Milankovitch-obliquity cycles (41,000-year-intervals).  

Other studies by Retallack (2007; 2004a), give credence to the Milankovitch-obliquity 

theory.  Most cycles were represented by one paleosol with a deep calcic horizon 

containing large carbonate nodules (MAP = 490 ± 50 mm) buried by two paleosols with a 

shallower calcic horizon containing smaller carbonate nodules (MAP = 366 ± 36 mm) 

(MAP estimates are from a pedotransfer function based on depth to calcic horizon).  The 

soils with deeper calcic horizons also contained dung beetle (Pallichnus) and earthworm 

(Edaphichnium) fossils, indicative of grassland ecosystems, while the soils with shallow 

calcic horizons contained cicada (Taenidium) fossils, which are found in modern semiarid 

sagebrush ecosystems (Retallack et al., 2004).  Retallack (2004a; 2007), presents evidence 

based on soil morphological features (such as presence of fine root traces and crumb soil 

structure) that bunchgrasses first appeared in the late Oligocene (~30 Ma) during a 

punctuated warmer, wetter period.  This appearance, along with the appearances of short 

sod grassland in the middle Miocene and tall sod grassland in the late Miocene, was 

followed by longer-term cooling and drying.  This evidence stands in stark contrast with 

common beliefs that grasses expanded during cool and dry periods (Retallack, 2007).  
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Although local volcanic and tectonic phenomena (such as the rising Cascades and Coast 

Range mountains) likely influenced Oligocene paleoclimate to some extent, results from 

all of these studies are well-correlated to global climate shifts that are documented in 

marine oxygen isotope records and sea-level changes (Bestland et al., 1997; Bestland, 

1997).   

Miocene 
 

   The oldest sod grassland paleosols in Oregon appeared in the early Miocene (ca. 

19 Ma) and indicate a MAP of less than 400 mm (Retallack, 2004a).    The Miocene 

Mascall Formation of the John Day area contains fossils of cool-temperate deciduous 

angiosperms and conifers, animal fossils, and thin calcareous paleosols that indicate dry, 

open grassy woodland vegetation similar to that of modern-day southern Indiana and Ohio 

(Retallack, 1991).  With an estimated MAT of 9 to 10° C, upper elevations would likely 

have experienced wintertime snow (Retallack, 1991).  Evidence for an early to middle 

Miocene global warm-wet trend can be found in the lateritic paleosols present as far north 

as the northwestern U.S., Germany, and Japan, and as far south as southern Australia 

(Schwarz, 1997).  Woodlands were dominant in Oregon during this time, and Retallack 

(2007) used paleosol pedogenic features to derive mid-Miocene (16 Ma) paleoclimate 

estimates that agreed with those found by Chaney and Axelrod (1959) using leaf 

physiognomy in the Mascall flora (ca. 1270 mm MAP and ca. 17°C MAT).  Red, clayey 

paleosols with coarse, sparse root traces found between flows of the Picture Gorge basalt 

group support this paleoclimate estimate (Retallack, 1991).  Climate warmed to a global 

thermal maximum in the mid-Miocene (at 16 Ma), but this temperature increase was short 

lived; fossil plants indicate significant cooling by 15 Ma and vegetation communities 
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progressed toward the sagebrush steppe assemblages that would be re-emerge by late 

Miocene (Retallack, 2004b).  Fossil plants in mid-Miocene (ca. 12 Ma) paleosols near 

Unity and Juntura, Oregon indicate grassy live oak (Quercus pollardiana) woodland 

savannah while depth to pedogenic carbonate and clay chemical composition indicate a 

MAT of 13°C and MAP of ca. 879 mm (2004b).   Paleosols in the Rattlesnake Formation 

show a major shift from woodland to tall grassland (subhumid to semiarid climate) that 

occurred ca. 7.3 Ma, followed by another shift to desert shrubland ca. 7.2 to 7.1 Ma 

(semiarid climate similar to that of present-day) (Retallack et al., 2002).  Fossil flora, along 

with soil morphological features such as concentrically banded rhizoconcretions and 

abundant silts and salts, indicate that a Mediterranean (summer dry) climate was present in 

eastern Oregon by the late Miocene (Retallack, 2004b).  However, Ashwill (1983) points 

out that the late Miocene Vibbert flora (described near Gateway, Oregon) contains 

abundant specimens of Populus (poplar), Acer (maple), Platanus (sycamore) and Quercus 

(oak), all of which point to a climate significantly less arid than present-day.  Retallack's 

paleopedology studies (2007; 2004a), suggest a brief warm wet spike occurred in the late 

Miocene (ca. 7 Ma) and ushered in the first appearance of tall sod grassland vegetation.  

These conditions would likely have persisted long enough to support the hardwood 

vegetation found in the Vibbert flora, even if the overall trend of the late Miocene was 

toward a cooler, drier climate.   

Pliocene 

The earliest stages of the Pliocene were cool and dry with a semiarid climate 

similar to that of today.  Plant fossils in the Rattlesnake and Deschutes formations of 

north-central Oregon support this assertion (Retallack, 1991).  When he described the 
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Deschutes flora, Chaney (1938) concluded that at ca. 4.3 Ma the climate was cool and 

semiarid with approximately 130 mm more rainfall than today.  Retallack (2007) suggests 

a global warm-wet spike occurred ca. 4 Ma, as evidenced by base-depleted soils with deep 

calcic horizons dating to this time frame in the John Day area.  Work by Robert Thompson 

(1991; 1996), shows that part of southeastern Oregon and the western Snake River Plain in 

Idaho were blanketed in conifer forests during the middle Pliocene, and large graben 

valleys in the area were filled with deep lakes.  Conditions continued to warm (although 

interspersed with punctuated cool dry periods) throughout most of the Pliocene.  

Palynological studies on the western Snake River Plain indicate that warmer, wetter 

periods were dominated by coniferous forests (Pinus and Juniperus species) while cooler, 

drier periods were characterized by steppe vegetation (Chenopodiaceae, Poaceae, 

Artemisia, Amaranthus and Ambrosia species) (Thompson, 1991; Thompson, 1996).  

Changing global air and ocean circulation patterns ushered in a cooling period in the late 

Pliocene (ca. 2 Ma) that eventually led to the Ice Age (Thompson, 1991).
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Appendix II:  MCSPSS Rubric for Distinguishing Between Mollisols and Aridisols 
and Assigning Appropriate Subgroups 
 
**This model is only applicable for slopes less than 15%** 
 
MESIC Temperature Regime: 
 
Aridisols (Typic, generally Vitrandic subgroup):  
 

1) Shadscale vegetation  
2) Elevation < 4000 ft.  
3) MLRA 24  
4) Precipitation 6 to 10" 

 
Aridisols (bordering on Xeric, generally Vitrixerandic subgroup):   
 

1) Sagebrush vegetation  
2) Elevation 4000-4500 ft. 
3) MLRA 25 (occasional MLRA 24)  
4) Precipitation 8 to 11" 
 

(Some frigid Aridisols occur on north slopes.  Floke, Aritolla, and Rockstop series are 
exceptions to the precipitation and elevation rules due to skeletal conditions.) 
 
FRIGID Temperature Regime: 
 
Mollisols (Aridic bordering on Xeric, generally Vitritorrandic subgroup):   

 
1) Idaho fescue present 
2) Elevation 4500 to 4700 
3) MLRA 23 and 25  
4) Precipitation 11-13"  

 
(Soils sometimes key out as Aridisols in this area due to the thin mollic epipedon. These 
soils, with the exception of the three listed above, have been correlated to Mollisols) 
  
Mollisols (xeric, generally Vitrandic subgroup):  
 

1) Mountain big sagebrush and Idaho fescue, occasional bitterbrush   
2) Elevation > 4700 ft  
3) MLRA 25  
4) Precipitation > 13"  
5) sometimes Pachic 
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Appendix III: Box Plots, Histograms, Summary Statistics, Outlier Maps and 
Discussion for October 12, 2007 Predictive Run 
 
 

 
 
 

 
 
 

Figure A3-1: Histogram and Box Plot for Mean Annual Precipitation
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Figure A3-2: Histogram and Box Plot for Average Minimum Temperature 
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Figure A3-3: Histogram and Box Plot for Minimum January Temperature 
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Figure A3-4: Histogram and Box Plot for Elevation 
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Figure A3-5: Outlier Map for Elevation 
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Figure A3-6: Histogram and Box Plot for Average Maximum Temperature 
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Figure A3-7: Outlier Map for Average Maximum Temperature 
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Figure A3-8: Histogram and Box Plot for LandSat TM Band 6 Reflectance 
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Figure A3-9: Outlier Map for LandSat TM Band 6 Reflectance 
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Figure A3-10: Histogram and Box Plot for Diffuse Radiation Received 
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Figure A3-11: Outlier Map for Diffuse Radiation Received 
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Figure A3-12: Histogram and Box Plot for Slope 
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Figure A3-13: Outlier Map for Slope 
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Figure A3-14: Histogram and Box Plot for LandSat TM 4/3 Band Ratio 
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Figure A3-15: Outlier Map for LandSat TM 4/3 Band Ratio 
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Discussion 

Outlier Detection and Descriptive Statistics for October 12, 2007 Predictive Run 

 Box-plot analysis shows that several of the input variables used for prediction have 

outliers.  The elevation data set has several outliers below 1075 m.  Mapping their locations 

on top of the elevation and hillshade layers shows that all outliers occur in the Owyhee 

River canyon, which is several hundred meters deep in this region.  The outliers appear to 

be legitimate data points, so no data manipulation is necessary.  Outliers in the Average 

Maximum Temperature data set are found in a broad, low-elevation river valley where 

temperatures are expected to be warmer.  The LandSat TM Band 6 Reflectance data set has 

many outliers, both mild and extreme.  Band 6 measures reflectance in the 10.4-12.5µm 

range (far infrared part of the electromagnetic spectrum) and is useful for assessing soil 

moisture and vegetation cover differences.  Mild outliers with higher values (greater than 

200) occur on lower-elevation summits or ridges where higher temperatures and landscape 

position make them particularly droughty.  These drier regions reflect more far-infrared 

energy and have higher values.  The rest of the mild outliers and all of the extreme outliers 

have values below 167 and 154 reflectance units respectively, and all occur either along the 

Owyhee River, on irrigated farmland, or over water bodies.  Wetter soils and green 

vegetation absorb far infrared light, so the smaller reflectance values are expected.  The 

diffuse radiation data set has a few mild and many extreme outliers in the low range.  Direct 

radiation is comprised of energy that comes from sunbeams directly striking the Earth’s 

surface, while diffuse radiation is that which is scattered from the direct solar beam by 

particles in the Earth’s atmosphere.  It is unclear why diffuse radiation (instead of direct 

radiation) proved to be an important predictor in the model.  Since most of the study area is 



 

 

115
made up of broad, gently sloping lava plateaus it makes sense that most of it would 

receive relatively high amounts of radiation.  Mapping the outliers shows that all occur 

either in the Owyhee River canyon or along highly-sloping scarps at edges of distinct 

geologically-controlled landscape features where we would expect less of the sun’s energy 

to reach the surface.  Outliers in the slope data set occur in roughly the same locations as 

the diffuse radiation outliers, and all look reasonable.  Outliers with very large values 

(>100%) nearly all occur within the Owyhee River canyon.  The only area that appears 

suspect is a single pixel with a value of 610 that actually occurs outside of the study area 

boundary.  Even if it were within the study area, the likelihood of a single pixel negatively 

influencing the rule sets or map unit delineation is almost nil.  The LandSat TM 4/3 Band 

Ratio data set also shows several outliers.  This band ratio (near infrared / red) is a useful 

vegetation index since living vegetation is the only terrestrial material that both absorbs red 

light and reflects near infrared light (Jensen, 2005).  Lighter tones (higher reflectance 

values) indicate that more healthy vegetation is present.  Outliers occur primarily on 

irrigated farmland (high values), but some also occur on Antelope Reservoir, Upper and 

Lower Cow Lakes, along the Owyhee River, and on parts of the Jordan Craters lava flow 

(low values).  With the exception of the single data point in the slope data set, all outliers 

appear to be legitimate and meaningful data points that might have significant importance 

for predicting certain soil types or characteristics.   

Descriptive statistics readily apparent from the box plots are consistent with those 

calculated from the histogram using the Geostatistical Analyst in ArcMap.  All statistics 

appear reasonable in context of their extent and the landscape characteristics.  As expected, 

data sets with outliers have high kurtosis values (>2.5).    
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Appendix IV: Predicted Soils Maps, Sampling Points, Accuracy Summaries and 
Soil Map Unit Descriptions for Early Runs 
 
 

 
Figure A4-1: June 16, 2007 Predictive Map 
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Table A4-1: Accuracy Summary for June 16, 2007 Predictive Map 
 

 Order Suborder Great Group Subgroup Map Unit 

Jordan Valley 74% 59% 33% Not 
considered 

Not 
Considered 

Antelope Reservoir 59% 57% 34% Not 
considered 

Not 
considered 

Downey Canyon 68% 66% 36% Not 
considered 

Not 
considered 

 
Overall 67% 61% 35% Not 

considered 
Not 

considered 
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Table A4-2: Soil Map Units for June 16, 2007 Predictive Map 

 
Soil Type Code Classification (Great Group) 

5 Argixerolls 
6 Argixerolls, Camborthids 
7 Argixerolls, Cryaqualfs, Durixerolls 
8 Argixerolls, Cryoborolls, Haploxerolls 
9 Argixerolls, Cryoborrols, rock outcrop 

10 Argixerolls, Durargids 
11 Argixerolls, Durixeralfs 
12 Argixerolls, Durixerolls 
13 Argixerolls, Haplargids 
14 Argixerolls, Haplargids, Palexerolls 
15 Argixerolls, Haploxeralfs 
16 Argixerolls, Haploxerolls 
17 Argixerolls, Haploxerolls, barren lacustrine deposits 
18 Argixerolls, Haploxerolls, Haplargids 
19 Argixerolls, Paleargids, Palexerolls 
20 Argixerolls, Palexerolls 
21 Argixerolls, rock outcrop 
24 Cryoborolls 
25 Cryoborolls, Haplargids 
26 Cryoborolls, Haplargids, Haploxeralfs 
28 Cryoborolls, Haploxeralfs, rock outcrop 
29 Cryoborolls, rock outcrop 
30 Cryorthents, Haploxerolls 
31 Durargids, Haplargids 
33 Durixeralfs, Durixerolls 
34 Durixeralfs, Durixerolls, Haploxeralfs 
35 Durixeralfs, Haplargids 
36 Durixeralfs, Haploxeralfs 
40 Durixerolls 
42 Endoaquolls, Haploxerolls 
51 Haploxeralfs, Torriorthents 
52 Haploxeralfs, Torriorthents, rock outcrop 
53 Haploxerolls 
55 Haploxerolls, rock outcrop 
56 Lake and stream deposits of sand, gravel, cobbles and stones 
57 Open excavations and waste rock piles 
61 Water 
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Figure A4-2: July 23, 2007 Predictive Map 

 
 

Table A4-3: Accuracy Summary for July 23, 2007 Predictive Map 
 

 Order Suborder Great Group Subgroup Map Unit 
Whitehorse Butte 83% 83% 74% 71% 17% 

Parsnip Peak 100% 100% 87% 87% 4% 
Jordan Valley 72% 59% 51% 49% 0% 

Antelope Reservoir 91% 89% 84% 82% 18% 
Danner 86% 71% 67% 62% 60% 

Threemile Hill 91% 46% 46% 27% 18% 
Arock 88% 56% 54% 2% 0% 

Overall 87% 73% 67% 53% 14% 
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Figure A4-3: August 3, 2007 Predictive Map 

 
Table A4-4: Accuracy Summary for August 3, 2007 Predictive Map 

 

 Order Suborder Great Group Subgroup Map Unit 
Arock 98% 66% 64% 14% 8% 

Bogus Bench 85% 71% 66% 39% 20% 
Cow Lakes 58% 49% 49% 32% 19% 

Downey Canyon 79% 67% 30% 25% 0% 
Jordan Valley 69% 56% 54% 44% 17% 

Antelope Reservoir 71% 69% 44% 25% 20% 
Parsnip Peak 100% 100% 87% 65% 0% 

Overall 80% 67% 55% 32% 13% 
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Table A4-5: Soil Map Units for July 23, 2007 and August 3, 2007 Predictive Runs 
 

Soil Type Code Classification (Subgroup) 
102 Durinodic Xeric Haplargids 
105 Cambidic Durixerolls 
108 Abruptic Xeric Argidurids 
109 Xeric Haplargids, Vitrixerandic Paleargids 
110 Durinodic Xeric Haplargids 
115 Xeric Torrifluvents 
116 Xeric Haplocambids, Vitrandic Argidurids 
117 Vitrixerandic Haplargids 
118 Durinodic Haplocalcids 
119 Durinodic Xeric Paleargids 
120 Rock outcrop, Rubbleland 
121 Xeric Haplocambids 
122 Vitritorrandic Argixerolls 
123 Xeric Haplargids, rock outcrop 
124 Vitrixerandic Haplargids, rock outcrop 
125 Abruptic Xeric Argidurids 
126 Vitrandic Palexerolls 
127 Xeric Haplargids 
128 Aridic Argixerolls 
129 Fluventic Haploxerolls, Vitritorrandic Haploxerolls 
130 Vitritorrandic Durixerolls 
132 Cumulic Haploxerolls, Xerertic Argialbolls 
133 Xerollic Paleargids 
134 Typic Haplargids, Typic Palexerolls 
135 Xeric Argidurids 
136 Vitritorrandic Argixerolls 
137 Aquandic Palexeralfs 
138 Abruptic Xeric Argidurids 
139 Vitrandic Argixerolls, Xeric Haplargids, rock outcrop 
140 Abruptic Xeric Argidurids 
141 Vitrandic Palexerolls, rock outcrop 
142 Vitritorrandic Argixerolls 
145 Xeric Argidurids 
146 Vitrandic Argixerolls 
147 Vitrandic Argixerolls, rock outcrop 
148 Lithic Haploxerolls, Vitrandic Argixerolls 
149 Vitrandic Argixerolls 
150 Abruptic Xeric Argidurids, Durinodic Xeric Paleargids, Aridic Argixerolls 
151 Vitrandic Argixerolls 
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Table A4-5 Continued: Soil Map Units for July 23, 2007 and August 3, 2007  
Predictive Runs 

 
Soil Type Code Classification (Subgroup) 

153 Vertic Argiaquolls 
154 Vitritorrandic Argixerolls, Abruptic Xeric Argidurids 
155 Abruptic Argiduridic Durixerolls 
156 Aridic Argixerolls, Vitrandic Argixerolls, rock outcrop 
157 Lithic Haploxerolls 
158 Vitritorrandic Argixerolls, Abruptic Xeric Argidurids 
159 Vitrandic Argixerolls, Abruptic Xeric Argidurids 
160 Vitrandic Argixerolls, Aquandic Endoaquolls 
161 Vitrandic Haploxerolls 
162 Vitrandic Haploxerolls 
163 Vitritorrandic Argixerolls 
165 Vitritorrandic Argixerolls, Aquic Paleargids 
167 Xeric Epiaquerts, Aquandic Palexeralfs 
168 Vitritorrandic Argixerolls 
170 Cumulic Haploxerolls, Vitritorrandic Haploxerolls 
171 Vitrandic Palexerolls 
172 Aridic Argixerolls, rock outcrop, Vitrandic Argixerolls 
173 Vitritorrandic Argixerolls 
174 Durinodic Xeric Paleargids, Playa, Aquandic Endoaquolls 
175 Vitrixerandic Argidurids, Vitritorrandic Argixerolls, lava flows 
179 Vitrixerandic Haplocambids, Vitrandic Palexerolls 
180 Vitrixerandic Haplargids, Aquandic Palexeralfs 
182 Vitrixerandic Argidurids 
184 Lava flows, Vitrixerandic Argidurids 
186 Vitrixerandic Haplocambids 
189 Vitrixerandic Argidurids, lava flows, Typic Haplargids 
196 Durinodic Xeric Haplocambids, Durinodic Xeric Haplargids 
199 Abruptic Xeric Argidurids, lava flows 
200 Vitritorrandic Argixerolls, Aridic Argixerolls 
201 Abruptic Xeric Argidurids 
260 Vitritorrandic Argixerolls, Cumulic Haploxerolls, Aquandic Palexeralfs 
999 Water 

1003 Private land - not yet mapped 
1291 Fluventic Haploxerolls, Vitritorrandic Haploxerolls 
1381 Abruptic Xeric Argidurids 
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Figure A4-4: September 14, 2007 Predictive Map 

 
Table A4-6: Accuracy Summary for September 14, 2007 Predictive Map 

 
 Order Suborder Great Group Subgroup Map Unit 

Arock 92% 67% 65% 12% Not Considered 
Bogus Bench 83% 63% 56% 29% Not Considered 
Cow Lakes 71% 47% 47% 29% Not Considered 

Downey Canyon 73% 61% 30% 30% Not Considered 
Jordan Valley 72% 62% 28% 26% Not Considered 

Antelope Reservoir 68% 68% 50% 32% Not Considered 
Parsnip Peak 100% 100% 83% 83% Not Considered 

Overall 79% 65% 50% 30% Not Considered 



 

 

124
Table A4-7: Soil Map Units for September 14, 2007 Predictive Run 

 
Soil Type Code Classification (Subgroup) 

1 Abruptic Xeric Argidurids 
2 Abruptic Xeric Argidurids, Vitritorrandic Argixerolls 
3 Aridic Argixerolls 
4 Aridic Argixerolls, rock outcrop, Vitritorrandic Argixerolls 
5 Aridic Argixerolls, Vitrandic Argixerolls, Rock Outcrop 
6 Cambic Durixerolls 
7 Cumulic Haploxerolls, Vitritorrandic Haploxerolls 
8 Cumulic Haploxerolls, Xerertic Argialbolls 
9 Durinodic Haplocambids, Typic Argidurids 

10 Durinodic Xeric Haplocambids 
11 Durinodic Xeric Paleargids 
12 Durinodic Xeric Paleargids, Playa, Aquandic Endoaquolls 
13 Durinodic Xeric Paleargids, Vitritorrandic Argixerolls,  

Xeric Argidurids 
14 Fluventic Haploxerolls, Cumulic Vitritorrandic Haploxerolls 
15 Haploxeralfic Argidurids 
16 Lithic Haplargids, Vitritorrandic Argixerolls, rock outcrop 
17 Lithic Haploxerolls, Vitrandic Argixerolls 
18 Pachic Argixerolls 
19 Pachic Argixerolls, Vitritorrandic Argixerolls 
20 Lava Flows, Vitrixerandic Argidurids 
21 Rock outcrop, Pachic Argixerolls, Xeric Haplargids 
22 Rock outcrop, rubbleland 
23 Shallow Vitrandic Durixerolls 
26 Vertic Argixerolls, rock outcrop 
27 Vitrandic Argixerolls 
28 Vitrandic Argixerolls, Abruptic Xeric Argidurids 
29 Vitrandic Argixerolls, Cumulic Endoaquolls 
30 Vitrandic Argixerolls, Lithic Xeric Haplargids 
31 Vitrandic Argixerolls, rock outcrop 
32 Vitrandic Haploxeralfs 
33 Vitrandic Haploxeralfs (Cumulic and Fluventic) 
35 Vitrandic Palexerolls 
36 Vitritorrandic Argixerolls 
37 Vitritorrandic Argixerolls, Abruptic Xeric Argidurids 
38 Vitritorrandic Argixerolls, Aquic Paleargids 
39 Vitritorrandic Argixerolls, Aridic Argixerolls 
40 Vitritorrandic Durixerolls 
42 Vitritorrandic Haploxerolls 
43 Vitrixerandic Argidurids 
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Table A4-7 Continued: Soil Map Units for September 14, 2007 Predictive Run 
 

Soil Type Code Classification (Subgroup) 
44 Vitrixerandic Argidurids, rock outcrop, Haploxeralfic Haplargids 
45 Vitrixerandic Argidurids, Xeric Haplargids 
46 Vitrixerandic Haplargids 
47 Vitrixerandic Haplargids, rock outcrop 
48 Vitrixerandic Haplargids, Vitrixerandic Argidurids 
49 Vitrixerandic Haplocambids, rock outcrop 
50 Vitrixerandic Haplocambids, Haploxeralfic Argidurids 
51 Vitrixerandic Haplocambids, Vitritorrandic Argixerolls 
53 Abruptic Xeric Argidurids 
55 Xeric Haplargids, Durinodic Xeric Haplargids 
56 Xeric Haplargids, Vitrandic (Aridic) Palexerolls 
57 Xeric Haplocambids 
58 Xeric Paleargids 
59 Xeric Torrifluvents 
60 Xerollic Paleargids 
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Appendix V: Map Unit Descriptions for the Threemile Hill Area 
 

Table A5-1: Map Unit Descriptions for the Threemile Hill Area 
 

Soil Map Unit Summary, Threemile Hill Area 

Map 
Unit Name % Classification 

102C Muni gravelly ashy loam,  
1 to 15% slopes 

90 Loamy, mixed, superactive, mesic shallow Haploxeralfic Argidurids 

105B Garnet loamy sand,  
1 to 6% slopes 

85 Coarse-loamy, mixed, superactive, mesic Cambidic Durixerolls 

108C Sandhollow ashy sandy loam,  
2 to 15% slopes 

85 Loamy, mixed, superactive, mesic shallow Vitrixerandic Argidurids 

80 rock outcrop 120D Rock outcrop-Rubbleland 
complex, steep 15 rubbleland 

121B Drewsey ashy silt loam,  
1 to 4% slopes 

85 Coarse-loamy, mixed, superactive, mesic Xeric Haplocambids 

60 Fine, smectitic, frigid Abruptic Xeric Argidurids 122C Foleylake-Martinson complex,  
2 to 15% slopes 25 Fine, smectitic, frigid Vitritorrandic Argixerolls 

70 Fine-loamy, mixed, superactive, mesic Vitrixerandic Haplargids 123D Morfittash-rock outcrop complex, 
15 to 50% slopes 20 rock outcrop 

65 Fine, smectitic, mesic Vitrixerandic Haplargids 124D Hardtrigger-Rock outcrop 
complex, 15 to 50% slopes 20 rock outcrop 

55 Clayey-skeletal, smectitic, mesic, shallow Abruptic Argidurids 125C Suncold-Catchell complex,  
2 to 15% slopes 35 Fine, smectitic, mesic Abruptic Argidurids 

126C Bigflat stony ashy silt loam,  
2 to 15% slopes 

85 Fine, smectitic, frigid, Xeric Paleargids 
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Table A5-1 Continued: Map Unit Descriptions for the Threemile Hill Area 
 

Map 
Unit Name % Classification 

127C Toney ashy silt loam, 
 2 to 15% slopes 

85 Fine, smectitic, mesic Xeric Paleargids 

70 Fine-loamy, mixed, superactive, frigid Fluventic Haploxerolls 129A Beetville-like-Koosharem 
complex, 1 to 4% slopes 20 Fine-loamy, mixed, superactive, frigid Vitritorrandic Haploxerolls 

136B Wisher ashy silt loam,  
1 to 5% slopes 

85 Fine-silty, mixed , superactive, mesic Pachic Argixerolls 

137A Upcreek-like ashy silt loam,  
<2% slopes 

90 Fine-silty, mixed, superactive, mesic Vitritorrandic Argixerolls 

140C Midraw very stony ashy loam,  
2 to 15% slopes 

85 Clayey, smectitic, mesic, shallow Abruptic Xeric Argidurids 

75 Fine, smectitic, frigid Vitrandic Haploxeralfs 167A Jacares-Silverash complex,  
<3% slopes 15 Fine, smectitic, frigid Vitrandic Haploxeralfs 

40 Loamy, mixed, superactive, mesic, shallow Vitrixerandic Haplargids 

30 Fine-silty, mixed superactive, mesic Vitritorrandic Argixerolls 175C Cocklebur-Wisher-Rock outcrop 
complex, 2 to 15% slopes 

20 rock outcrop 

50 Loamy-skeletal, mixed, superactive, mesic Vitrixerandic Haplocambids 179D Felcher-Patron complex,  
15 to 35% slopes 

35 Fine, smectitic, mesic Vitritorrandic Argixerolls 

182C Clarksbutte cobbly ashy silt loam, 
2 to 15% slopes 90 Fine, loamy, mixed, superactive, mesic Vitrixerandic Argidurids 

65 rock outcrop 184C Rock outcrop-Clarksbutte 
complex, 2 to 15% slopes 25 Fine-loamy, mixed, superactive, mesic Vitrixerandic Argidurids 

186C Felcher loam, 15 to 50% slopes 85 Fine-loamy, mixed, superactive, mesic Vitrixerandic Haplocambids 
50 Coarse-loamy, mixed, superactive, mesic Vitrixerandic Haplocambids 187C Arock-Drewsey complex,  

2 to 15% slopes 40 Coarse-loamy, mixed, superactive, mesic Vitrixerandic Haplocambids 
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Table A5-1 Continued: Map Unit Descriptions for the Threemile Hill Area 
 

Map 
Unit Name % Classification 

40 Fine-loamy, mixed, superactive, mesic Vitrixerandic Argidurids 
30 rock outcrop 189B 

Clarksbutte-Rock outcrop- 
Rimview complex,  

1 to 8% slopes 15 Fine-loamy, mixed, superactive, mesic Typic Haplargids 

190C Tribeca fine sandy loam,  
10 to 25% slopes 

85 Coarse-loamy, mixed, superactive, mesic Typic Haplargids 

70 Loamy, mixed, superactive, mesic shallow Vitrixerandic Argidurids 191C Muni dry-Drewsey Dry complex, 
2 to 15% slopes 

20 Fine-loamy, mixed, superactive, mesic Vitrixerandic Haplargids 

60 Coarse-loamy, mixed, superactive, mesic Durinodic Haplocambids 196C Sagehill-Muni dry complex, 
10-25% slopes 

25 Fine-loamy, mixed, superactive, mesic Typic Argidurids 
80 Fine-loamy, mixed, superactive, mesic Vitrixerandic Argidurids 199B Clarksbutte-Rock outcrop 

complex, 1 to 8% slopes 15 rock outcrop 
50 Fine, smectitic, frigid Vitritorrandic Argixerolls 200D Zymans-like-Barbermill complex, 

15 to 40% slopes 35 Clayey, smectitic, mesic, shallow Aridic Argixerolls 

201B Craterlak ashy silt loam,  
1 to 8% slopes 

85 Fine, smectitic, mesic Xeric Argidurids 

204A Silverash-like ashy loam,  
<2% slopes 

90 Fine, smectitic, frigid Typic Palexeralfs 

224 Wisher silty clay loam,  
0 to 2 percent slopes 80 Fine-loamy, mixed, superactive, mesic Vitritorrandic Argixerolls 

70 Fine-loamy, mixed, superactive, mesic Durinodic Haplargids 261C Crunchie-Tribeca complex, 
2-15% slopes 20 Fine-loamy, mixed, superactive, mesic typic Xeric Haplargids 

45 Coarse-loamy, mixed, superactive, mesic Xeric Haplocambids 
25 lava flows 266B Skinnerpit-Lava flows-Cheatroad 

complex, 2-15% slopes 
15 Coarse-loamy, mixed, superactive, mesic Xeric Haplodurids 
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Table A5-1 Continued: Map Unit Descriptions for the Threemile Hill Area 

 
Map 
Unit Name % Classification 

35 Coarse-loamy, mixed, superactive, mesic Durinodic Xeric Haplocambids 
30 Fine-loamy, mixed, superactive, mesic Durinodic Xeric Haplargids 273 Orovada-Zevadez,dry-Nevador 

complex, 4 to 18 percent slopes 
20 Fine-loamy, mixed, superactive, mesic Durinodic Xeric Haplargids 

998 lava flows 98 lava flows 
999 water 100 water 
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Appendix VI: Directions for Generating Confusion Matrices with ENVI; 
Confusion Matrices for October 12, 2007 and April 10, 2008 Predictive Maps 
 
 

Directions for Generating Confusion Matrices with ENVI 4.3 
 

1. Convert your maps for the training area (mapped soils and predicted soils, 
hereafter referred to as MAPPED and PREDICTED) to TIFF files (.tif).   

2. Start ENVI, and Load MAPPED (File → Open External File → Generic 
Formats → TIFF/GeoTIFF).   

3. Click on Band1 and “Load Band” to display the map. 
4. Use Tools → Color Mapping → ENVI Color Tables to find a color 

combination that highlights most of your map units.  As you try to locate 
different units, you may have to play with different color schemes and the 
“Stretch Bottom” and “Stretch Top” options to get certain units to show up. 

5. Display MAPPED in ArcMap to use for reference. 
6. In ENVI, in your Band1 window, open the ROI tool (Tools → Region of 

Interest → ROI Tool).   
7. Before you do anything else, for “Window”, select Off.  This option allows you 

to choose which window to use to delineate a region of interest (ROI), so if a 
window is activated and you click in it (ex. to navigate), it will start drawing an 
ROI.   

8. You will want to create an ROI for every map unit type.  Click on “New 
Region” to generate one region for each soil class.  You can then click on the 
“ROI Name” to rename each ROI with your soil class/type.  I prefer to create 
new regions and name them for all of my map units before I start delineating 
ROIs. (**You only need ONE ROI for each soil class—not one within every 
mapping unit of that class).      

9. First, look at MAPPED in ArcMap.  Use the identify tool to locate a mapping 
unit for your first soil class.  Visually locate the same unit in your ENVI 
window.  (**Note: You have three windows in ENVI for looking at your data.  
The “Scroll” window shows the whole dataset.  A red square in that window 
delineates what is shown, closer-up, in the “Image” window.  A red square in 
the “Image” window delineates what is shown in the “Zoom” window. 

10. To delineate an ROI, first make sure the correct ROI name is highlighted in the 
ROI Tool window.  Then, select the window you wish to use to delineate the 
ROI.  You can use the Image window for large units, but in most cases you will 
want to use the Zoom window.  Use the left mouse button to place vertices for 
your ROI.  Right-click to complete the polygon, and then right-click again to 
accept the ROI placement.  As long as the ROI is completely within your unit of 
interest, it can be any shape you wish.  Keep the size to a minimum!  ENVI only 
needs a few pixels to classify the image in this case, and the smaller the polygon 
the shorter the processing time will be.  When you finish the ROI, switch your 
window to “OFF” so you can navigate to the next soil unit.  When you’re 
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finished, you can save your ROI’s.  In the ROI tool window, click File → 
Save ROIs.     

11. Repeat this process for every map unit type on the map.  This should be a quick 
process.   

12. When finished delineating the ROI’s, you will classify your image.  In the main 
menu bar, go to Classification → Supervised → Parallelepiped.  Select 
MAPPED as the input and click OK.  In the “Select Classes from Regions” box, 
click “Select All Items”.  Output Result to File, and click “Choose” to navigate 
to the appropriate folder and name your file.  You can click the toggle to turn 
“Output Rule Image?” to “No”.  It may take the classification several minutes 
to run, depending on the size of your area and the size of your ROI’s.   

13. After the classification is finished, load the band and look at it—the classified 
unit boundaries should match exactly with your original MAPPED boundaries. 

14. Close ENVI and then start a new session.  Load your PREDICTED .tif image 
and display.  Do the exact same thing with the PREDICTED map—define 
ROI’s and then run the classifier. 

15. Once both images are classified, the pixel values can be compared to generate 
the error matrix.  To do this, in the main menu bar, click on Classification → 
Post-Classification → Confusion Matrix → Using Ground Truth Image.  For 
“Select Input File” select your CLASSIFIED PREDICTED image.  If it isn’t 
currently loaded in ENVI, you can click Open → New File and navigate to it 
(open the file with the correct name, but with no extension).  Click OK.  For the 
“Ground Truth Input File” select your CLASSIFIED MAPPED image.  Click 
OK.  A window opens called “Match Classes Parameters”.  Here, you just have 
to pair the equivalent classes (easy if you named the map units the same way on 
both maps).  Select the “ground truth class” that matches the “classification 
image class” and then click the “Add Combination” button.  Match up all of the 
classes.  Click OK.  In the Confusion Matrix Parameters window, you can 
choose to generate an Error Image, which will show you the location of all the 
incorrectly classified pixels.  Click the “choose” button to navigate to a folder 
and name the output file.  Click OK, and the Confusion Matrix is generated.   

 
**Notes** 
 
-If there are discrepancies between an original map and a classified map, there was 
probably an ROI with some noisy pixels of a different class included.  You should use a 
cleaned/filtered version of your predicted map for the confusion matrix, and be careful 
when delineating the ROI’s.                  
 
-All map units have to be matched to an analogous unit on the other map to be included in 
the confusion matrix. If map units with a small areal extent are present on one image but 
not the other, you may choose to either not delineate an ROI for that area (if it’s only a few 
pixels), or to mask the area on both images as NoData (if it is a bit larger and may 
significantly impact the statistics).   
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Table A6-1: Confusion Matrix for Training Data, October 12, 2007 Run 

 
 

Confusion Matrix: H:\Project\ErrorMatrix\PredictClassify   
   
Overall Accuracy = (1399029/1420580)  98.4829%   
Kappa Coefficient = 0.9755   
 

Ground Truth (Percent) 
 

    Class         Unclass    102         105        108         120    
 Unclass          99.93     0.06        0.00       0.09        0.53   
     102           0.02    97.51       41.67       0.46        0.00   
     105           0.00     0.02       58.33       0.00        0.00   
     108           0.01     1.60        0.00      97.03        1.73   
     120           0.00     0.00        0.00       0.41       96.29   
     121           0.00     0.34        0.00       0.02        0.00   
     122           0.00     0.00        0.00       0.45        0.00   
     123           0.00     0.03        0.00       0.11        0.00   
     124           0.00     0.00        0.00       0.03        0.00   
     125           0.00     0.00        0.00       0.05        0.00   
     126           0.01     0.00        0.00       0.07        0.00   
     127           0.00     0.29        0.00       0.65        0.00   
     136           0.00     0.00        0.00       0.00        0.00   
     137           0.00     0.00        0.00       0.00        0.00   
     140           0.00     0.00        0.00       0.12        0.00   
     167           0.00     0.00        0.00       0.00        0.00   
     175           0.01     0.00        0.00       0.00        0.00   
     179           0.00     0.00        0.00       0.00        0.00   
     182           0.00     0.00        0.00       0.00        0.00   
     184           0.01     0.00        0.00       0.00        0.00   
     186           0.00     0.00        0.00       0.07        0.00   
     187           0.00     0.00        0.00       0.01        0.00   
     189           0.00     0.00        0.00       0.43        0.25   
     190           0.00     0.00        0.00       0.00        0.00   
     191           0.00     0.00        0.00       0.00        0.89   
     196           0.00     0.15        0.00       0.00        0.30   
     199           0.01     0.00        0.00       0.00        0.00   
     200           0.00     0.00        0.00       0.00        0.00   
     201           0.00     0.00        0.00       0.00        0.00   
     261           0.00     0.00        0.00       0.00        0.00   
     266           0.00     0.00        0.00       0.00        0.00   
     204           0.00     0.00        0.00       0.00        0.00   
     273           0.00     0.00        0.00       0.00        0.00   
     998           0.00     0.00        0.00       0.00        0.00   
     999           0.00     0.00        0.00       0.00        0.00   
     Total       100.00   100.00      100.00     100.00      100.00   
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Table A6-1 Continued: Confusion Matrix for Training Data,  

October 12, 2007 Run 
 

Ground Truth (Percent) 
  
    Class           121      122         123        124         125  
 Unclass           0.00     0.35        0.00       0.00        1.51   
     102          29.55     0.00        6.22       0.00        0.00   
     105           0.00     0.00        0.00       0.00        0.00   
     108           0.60     0.36        1.43       4.01        0.16   
     120           0.00     0.00        0.00       0.00        0.20   
     121          65.91     0.00        0.00       0.00        0.00   
     122           0.00    98.25        5.81      11.50        0.79   
     123           0.00     0.84       86.54       0.00        0.00   
     124           0.00     0.12        0.00      83.69        0.00   
     125           0.00     0.08        0.00       0.00       95.91   
     126           0.00     0.00        0.00       0.00        0.00   
     127           3.95     0.00        0.00       0.80        0.00   
     136           0.00     0.00        0.00       0.00        0.00   
     137           0.00     0.00        0.00       0.00        0.00   
     140           0.00     0.00        0.00       0.00        1.11   
     167           0.00     0.00        0.00       0.00        0.00   
     175           0.00     0.00        0.00       0.00        0.00   
     179           0.00     0.00        0.00       0.00        0.08   
     182           0.00     0.00        0.00       0.00        0.00   
     184           0.00     0.00        0.00       0.00        0.00   
     186           0.00     0.00        0.00       0.00        0.00   
     187           0.00     0.00        0.00       0.00        0.00  
     189           0.00     0.00        0.00       0.00        0.00   
     190           0.00     0.00        0.00       0.00        0.00   
     191           0.00     0.00        0.00       0.00        0.00   
     196           0.00     0.00        0.00       0.00        0.00   
     199           0.00     0.00        0.00       0.00        0.00   
     200           0.00     0.00        0.00       0.00        0.00   
     201           0.00     0.00        0.00       0.00        0.00   
     261           0.00     0.00        0.00       0.00        0.00   
     266           0.00     0.00        0.00       0.00        0.00   
     204           0.00     0.00        0.00       0.00        0.00   
     273           0.00     0.00        0.00       0.00        0.00   
     998           0.00     0.00        0.00       0.00        0.00   
     999          0.00     0.00        0.00       0.00        0.24     
     Total       100.00   100.00      100.00     100.00      100.00   
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Table A6-1 Continued: Confusion Matrix for Training Data,  
October 12, 2007 Run 

 
 

Ground Truth (Percent) 
 

    Class           126      127         136         137        140   
 Unclass           0.00     0.08        0.00        0.15       0.09   
     102           0.00     0.52        0.00        0.00       0.00  
     105           0.00     0.00        0.00        0.00       0.00   
     108           0.45     0.84        0.00        0.00       0.01  
     120           1.08     0.00        0.00        0.00       0.00   
     121           0.00     0.07        0.00        0.00       0.00   
     122           0.00     0.03        0.00        0.00       0.00   
     123           0.00     0.09        0.00        0.00       0.00   
     124           0.00     0.64        0.00        0.00       0.00   
     125           0.00     0.00        0.00        0.00       0.36   
     126          80.02     0.00        0.00        0.00       0.00   
     127           0.00    96.71        0.00        0.00       0.00   
     136           0.00     0.00       91.10        0.00       0.11   
     137           0.00     0.00        0.00       95.17       0.01   
     140           0.00     1.00        4.20        4.69      96.89   
     167           0.00     0.00        1.34        0.00       0.00   
     175           0.00     0.00        0.00        0.00       0.43   
     179           0.00     0.00        0.00        0.00       0.32   
     182           0.00     0.00        0.00        0.00       0.00   
     184           0.00     0.00        0.11        0.00       0.65   
     186           0.00     0.00        0.00        0.00       0.19   
     187           0.00     0.00        0.00        0.00       0.00   
     189           0.00     0.00        0.00        0.00       0.00   
     190           0.00     0.00        0.00        0.00       0.00 
     191           0.00     0.00        0.00        0.00       0.00   
     196           0.00     0.00        0.00        0.00       0.00   
     199           0.00     0.00        0.22        0.00       0.00   
     200           5.00     0.00        0.58        0.00       0.00   
     201           0.21     0.00        0.00        0.00       0.00   
     261           0.00     0.00        0.00        0.00       0.00   
     266           0.00     0.00        0.00        0.00       0.25   
     204           0.00     0.00        0.00        0.00       0.00  
     273           0.00     0.00        0.00        0.00       0.00   
     998          13.24     0.00        0.33        0.00       0.19   
     999           0.00     0.02        2.13        0.00       0.50   
     Total       100.00   100.00      100.00      100.00     100.00   
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Table A6-1 Continued: Confusion Matrix for Training Data,  
October 12, 2007 Run 

 
 

Ground Truth (Percent) 
 

    Class           167      175         179        182         184    
 Unclass           0.00     0.00        0.00       1.85        0.04   
     102           0.00     0.00        0.00        0.00       0.00   
     105           0.00     0.00        0.00        0.00       0.00  
     108           0.00     0.00        0.00        0.00       0.00   
     120           0.00     0.00        0.00        0.00       0.00   
     121           0.00     0.00        0.00        0.00       0.00   
     122           0.00     0.00        0.00        0.00       0.00   
     123           0.00     0.00        0.00        0.00       0.00   
     124           0.00     0.00        0.00        0.00       0.00   
     125           0.00     0.00        0.75        0.00       0.00   
     126           0.00     0.00        0.00        0.00       0.00   
     127           0.00     0.00        0.00        0.00       0.00   
     136           0.21     0.00        0.00        0.00       0.02   
     137           0.00     0.00        0.00        0.00       0.00   
     140           0.00     0.66        4.71        0.00       0.35   
     167          98.95     0.00        0.00        0.00       0.00   
     175           0.00    97.49        0.00        0.00       0.07   
     179           0.00     0.00       94.46        0.00       0.00   
     182           0.00     0.00        0.00       82.88       0.05   
     184           0.00     0.26        0.00        4.38      99.36   
     186           0.00     0.00        0.00        0.00       0.00   
     187           0.00     0.00        0.00        0.00       0.00   
     189           0.00     0.00        0.00        0.00       0.00   
     190           0.00     0.00        0.00        0.00       0.00   
     191           0.00     0.00        0.00        0.00       0.00   
     196           0.00     0.00        0.00        0.00       0.00   
     199           0.84     0.00        0.00       10.44       0.11  
     200           0.00     0.00        0.00        0.00       0.00   
     201           0.00     0.00        0.00       0.00        0.00   
     261           0.00     0.00        0.00       0.00        0.00 
     266           0.00     1.58        0.00       0.00        0.00   
     204           0.00     0.00        0.00       0.00        0.00   
     273           0.00     0.00        0.00       0.00        0.00   
     998           0.00     0.00        0.00       0.45        0.00   
     999           0.00     0.00        0.07       0.00        0.00   
     Total       100.00   100.00      100.00     100.00      100.00   
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Table A6-1 Continued: Confusion Matrix for Training Data,  
October 12, 2007 Run 

 
 

Ground Truth (Percent) 
 

    Class           186      187         189        190         191   
 Unclass           0.00     0.00        0.00       1.54        4.57  
     102           0.00     0.00        0.00       0.00        0.00   
     105           0.00     0.00        0.00       0.00        0.00   
     108           5.00     1.21        0.98       0.00        0.00   
     120           0.00     0.00        0.87       0.00        2.02   
     121           0.00     0.00        0.00       0.00        0.00   
     122           0.00     0.00        0.00       0.00        0.00   
     123           0.00     0.00        0.00       0.00        0.00   
     124           0.00     0.00        0.00       0.00        0.00   
     125           0.00     0.00        0.00       0.00        0.00   
     126           0.00     0.00        0.00       0.00        0.00   
     127           0.00     0.00        0.00       0.00        0.00   
     136           0.00     0.00        0.00       0.00        0.00   
     137           0.00     0.00        0.00       0.00        0.00   
     140           1.15     0.00        0.00       0.00        0.00   
     167           0.00     0.00        0.00       0.00        0.00   
     175           0.00     0.00        0.00       0.00        0.00   
     179           0.00     0.00        0.00       0.00        0.00   
     182           0.00     0.00        0.00       0.00        0.00  
     184           0.00     0.00        0.00       0.00        0.00   
     186          85.81     1.35        0.00       0.00        0.00   
     187           2.60    96.45        0.00       0.00        0.00   
     189           0.62     0.00       97.67       0.00        0.00   
     190           0.00     0.00        0.00      95.03        1.03  
     191           0.00     0.00        0.00       1.99       92.12   
     196           4.83     0.99        0.48       0.00        0.25   
     199           0.00     0.00        0.00       0.00        0.00   
     200           0.00     0.00        0.00       0.00        0.00   
     201           0.00     0.00        0.00       0.00        0.00   
     261           0.00     0.00        0.00       0.00        0.00   
     266           0.00     0.00        0.00       0.00        0.00   
     204           0.00     0.00        0.00       0.00        0.00   
     273           0.00     0.00        0.00       1.45        0.00   
     998           0.00     0.00        0.00       0.00        0.00   
     999           0.00     0.00        0.00       0.00        0.00   
     Total       100.00   100.00      100.00     100.00      100.00   
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Table A6-1 Continued: Confusion Matrix for Training Data,  

October 12, 2007 Run 
 
 

Ground Truth (Percent) 
 

    Class           196      199         200        201         261   
 Unclass           0.23     0.00        0.00       0.00       96.95   
     102           0.79     0.00        0.00       0.00        0.00   
     105           0.00     0.00        0.00       0.00        0.00   
     108           0.00     0.00        0.00       0.00        0.00   
     120           0.00     0.00        0.00       0.00        0.00   
     121           0.00     0.00        0.00       0.00        0.00  
     122           0.00     0.00        0.00       0.00        0.00   
     123           0.00     0.00        0.00       0.00        0.00   
     124           0.00     0.00        0.00       0.00        0.00   
     125           0.00     0.00        0.00       0.00        0.00   
     126           0.00     0.00        2.81       3.76        0.00   
     127           0.00     0.00        0.00       0.00        0.00   
     136           0.00     0.00        0.80       0.00        0.00   
     137           0.00     0.00        0.00       0.00        0.00   
     140           0.00     0.00        0.00       0.00        0.00   
     167           0.00     0.05        0.00       0.00        0.00   
     175           0.00     0.00        0.00       0.00        0.00   
     179           0.00     0.00        0.00       0.00        0.00   
     182           0.00     0.13        0.00       0.00        0.00    
     184           0.00     0.82        0.00       0.00        0.00   
     186           0.41     0.00        0.00       0.00        0.00   
     187           0.35     0.00        0.00       0.00        0.00   
     189           0.00     0.00        0.00       0.00        0.00   
     190           0.00     0.00        0.00       0.00        1.69   
     191           0.00     0.00        0.00       0.00        0.74    
     196          98.21     0.00        0.00       0.00        0.00   
     199           0.00    98.51        0.00       0.00        0.00   
     200           0.00     0.00       83.58       2.32        0.00   
     201           0.00     0.00        0.10      70.41        0.00   
     261           0.00     0.00        0.00       0.00        0.00   
     266           0.00     0.00        0.00       0.00        0.00   
     204           0.00     0.06        0.00       0.00        0.00   
     273           0.00     0.00        0.00       0.00        0.63   
     998           0.00     0.43       12.71      23.50        0.00   
     999           0.00     0.00        0.00       0.00        0.00   
     Total       100.00   100.00      100.00     100.00      100.00   
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Table A6-1 Continued: Confusion Matrix for Training Data,  
October 12, 2007 Run 

 
 

Ground Truth (Percent) 
 

    Class           266      204         273        998         999   
 Unclass           0.00     0.00        3.19       0.14        0.98   
     102           0.00     0.00        0.00       0.00        0.00   
     105           0.00     0.00        0.00       0.00        0.00   
     108           0.00     0.00        0.00       0.00        0.00   
     120           0.00     0.00        0.00       0.00        0.00   
     121           0.00     0.00        0.00       0.00        0.00   
     122           0.00     0.00        0.00       0.00        0.00   
     123           0.00     0.00        0.00       0.00        0.00   
     124           0.00     0.00        0.00       0.00        0.00   
     125           0.00     0.00        0.00       0.00        0.00   
     126           0.00     0.00        0.00       0.03        0.00   
     127           0.00     0.00        0.00       0.00        0.00    
     136           0.00     0.00        0.00       0.00        0.00   
     137           0.00     0.00        0.00       0.00        4.68   
     140           3.18     0.00        0.00       0.00        1.85   
     167           0.00     0.00        0.00       0.00        0.00   
     175           0.28     0.00        0.00       0.00        0.00   
     179           0.00     0.00        0.00       0.00        0.00   
     182           0.00     0.00        0.00       0.00        0.00   
     184           0.00     7.84        0.00       0.00        0.00   
     186           0.00     0.00        0.00       0.00        0.00    
     187           0.00     0.00        0.00       0.00        0.00   
     189           0.00     0.00        0.00       0.00        0.00   
     190           0.00     0.00        0.25       0.00        0.00   
     191           0.00     0.00        0.00       0.00        0.00   
     196           0.00     0.00        0.00       0.00        0.00   
     199           0.00     6.54        0.00       0.18        0.00   
     200           0.00     0.00        0.00       0.04        0.00  
     201           0.00     0.00        0.00       0.00        0.00   
     261           0.00     0.00        0.00       0.00        0.00   
     266          96.54     0.00        0.00       0.00        0.00   
     204           0.00    85.62        0.00       0.00        0.00   
     273           0.00     0.00       96.56       0.00        0.00   
     998           0.00     0.00        0.00      99.60       13.82   
     999           0.00     0.00        0.00       0.00       78.67   
     Total       100.00   100.00      100.00     100.00      100.00   
   



 

 

139
   
 

    Table A6-1 Continued: Confusion Matrix for Training Data,  
October 12, 2007 Run 

 
 
    Class Areal Percentages  
 
   Class             Total   
 Unclass             60.42   
     102              1.59   
     105              0.02   
     108              7.50   
     120              0.75   
     121              0.05   
     122              1.34   
     123              0.11   
     124              0.08   
     125              0.21   
     126              0.33   
     127              1.49   
     136              0.19   
     137              0.05   
     140              7.84   
     167              0.04   
     175              0.98   
     179              0.20   
     182              0.22   
     184              3.64   
     186              0.34   
     187              0.17   
     189              1.20   
     190              0.08   
     191              0.45   
     196              1.44   
     199              4.75   
     200              0.42   
     201              0.11   
     261              0.00   
     266              0.64   
     204              0.02   
     273              0.11   
     998              3.12   
     999              0.10   
     Total          100.00   
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Table A6-1 Continued: Confusion Matrix for Training Data,  
October 12, 2007 Run 

 
 
 
   Class    Commission      Omission      Commission      Omission   
             (Percent)      (Percent)      (Pixels)       (Pixels)   
 Unclass       0.43            0.07      3726/858306     625/855205   
     102       6.25            2.49       1410/22549      540/21679   
     105       1.65           41.67            4/242        170/408   
     108       1.36            2.97      1452/106599    3216/108363   
     120       7.42            3.71        794/10703      382/10291   
     121      17.14           34.09          114/665         85/836   
     122       3.81            1.75        727/19090      327/18690   
     123      18.94           13.46         296/1563       197/1464   
     124      16.61           16.31         187/1126       183/1122   
     125      17.10            4.09         498/2913       103/2518   
     126       8.62           19.98         400/4642      1059/5301   
     127       3.80            3.29        805/21187      693/21075   
     136       6.88            8.90         186/2704       246/2764   
     137       8.06            4.83           57/707         33/683   
     140       1.15            3.11      1275/111351    3530/113606   
     167      12.75            1.05           69/541          5/477    
     175       4.27            2.51        597/13968      344/13715   
     179      12.60            5.54         364/2889       148/2673   
     182       4.58           17.12         140/3055       602/3517   
     184       3.15            0.64       1631/51697      320/50386   
     186       8.38           14.19         408/4870       738/5200   
     187       9.26            3.55         219/2365        79/2225   
     189       3.29            2.33        563/17109      394/16940   
     190      10.40            4.97         122/1173        55/1106   
     191       2.12            7.88         135/6370       533/6768   
     196       2.13            1.79        435/20462      364/20391   
     199       0.86            1.49        578/67472     1014/67908   
     200       6.23           16.42         376/6032      1111/6767   
     201       2.45           29.59          38/1554       637/2153   
     261       0.00          100.00              0/0      2848/2848   
     266       5.42            3.46         496/9157       310/8971   
     204      14.10           14.38           43/305         44/306   
     273       2.16            3.44          34/1576        55/1597   
     998       6.17            0.40       2734/44277      165/41708   
     999      46.88           21.33         638/1361        196/919   
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Table A6-1 Continued: Confusion Matrix for Training Data,  
October 12, 2007 Run 

 
 
 
   Class   Prod. Acc.     User Acc.     Prod. Acc.        User Acc.   
           (Percent)      (Percent)      (Pixels)          (Pixels)   
 Unclass     99.93          99.57     854580/855205   854580/858306   
     102     97.51          93.75       21139/21679     21139/22549   
     105     58.33          98.35           238/408         238/242   
     108     97.03          98.64     105147/108363   105147/106599   
     120     96.29          92.58        9909/10291      9909/10703   
     121     65.91          82.86           551/836         551/665   
     122     98.25          96.19       18363/18690     18363/19090   
     123     86.54          81.06         1267/1464       1267/1563  
     124     83.69          83.39          939/1122        939/1126   
     125     95.91          82.90         2415/2518       2415/2913   
     126     80.02          91.38         4242/5301       4242/4642   
     127     96.71          96.20       20382/21075     20382/21187   
     136     91.10          93.12         2518/2764       2518/2704  
     137     95.17          91.94           650/683         650/707   
     140     96.89          98.85     110076/113606   110076/111351   
     167     98.95          87.25           472/477         472/541   
     175     97.49          95.73       13371/13715     13371/13968   
     179     94.46          87.40         2525/2673       2525/2889   
     182     82.88          95.42         2915/3517       2915/3055   
     184     99.36          96.85       50066/50386     50066/51697 
     186     85.81          91.62         4462/5200       4462/4870   
     187     96.45          90.74         2146/2225       2146/2365   
     189     97.67          96.71       16546/16940     16546/17109   
     190     95.03          89.60         1051/1106       1051/1173   
     191     92.12          97.88         6235/6768       6235/6370   
     196     98.21          97.87       20027/20391     20027/20462   
     199     98.51          99.14       66894/67908     66894/67472   
     200     83.58          93.77         5656/6767       5656/6032   
     201     70.41          97.55         1516/2153       1516/1554   
     261      0.00           0.00            0/2848             0/0  
     266     96.54          94.58         8661/8971       8661/9157   
     204     85.62          85.90           262/306         262/305   
     273     96.56          97.84         1542/1597       1542/1576   
     998     99.60          93.83       41543/41708     41543/44277   
     999     78.67          53.12           723/919        723/1361   
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Table A6-2: Confusion Matrix for Threemile Hill Quad, October 12, 2007 Run 
 
Confusion Matrix: H:\Project\ErrorMatrix\ThreemileErrorMatrix\ThreeMiPred   
   
Overall Accuracy = (114727/155124)  73.9583%   
Kappa Coefficient = 0.6693   
 

Ground Truth (Percent) 
 

   Class         Unclass     102         108        123         127    
 Unclass          99.02     0.05        0.02       0.00        0.00   
     102           0.06    15.66        0.03       3.96        0.00   
     108           0.00    14.68       24.62      35.80        0.00   
     123           0.00     1.89        0.00      49.54        0.00   
     127           0.02     0.55        0.00       0.00       30.48   
     140           0.27    28.73       53.75       0.79       69.52   
     186           0.00     2.80        4.31       9.91        0.00   
     189           0.06     2.38        3.44       0.00        0.00   
     196           0.49    33.26       13.69       0.00        0.00   
     184           0.08     0.00        0.13       0.00        0.00   
   Total         100.00   100.00      100.00     100.00      100.00   
   
  

Ground Truth (Percent) 
  

   Class            140      186         189        196         184    
 Unclass           0.01     0.00        0.04       0.45        0.02   
     102           0.00     0.14        0.00       0.00        0.00   
     108           0.00     0.14        0.02       0.00        0.06   
     123           0.00     0.00        0.00       0.00        0.00   
     127           2.83     0.00        0.00       0.00        0.14   
     140          93.51    44.57        4.13       0.00        4.04   
     186           1.32    42.98        1.50       4.16        0.00   
     189           0.03     0.24       84.79       6.26        6.45   
     196           0.00    11.08        9.53      89.12        0.00   
     184           2.30     0.87        0.00       0.00       89.29   
    Total       100.00    100.00      100.00     100.00      100.00   
   
   
   Class Areal Percentages  
  
   Class             Total   
 Unclass              4.06   
     102              1.87   
     108              4.21   
     123              0.46   
     127              1.07   
     140             41.32   
     186              2.89   
     189             12.85   
     196              8.92   
     184             22.34   
     Total          100.00   
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Table A6-2 Continued: Confusion Matrix for Threemile Hill Quad,  
October 12, 2007 Run 

 
 
   
  Class      Commission      Omission      Commission      Omission   
              (Percent)      (Percent)      (Pixels)       (Pixels)   
 Unclass        0.79           0.98          50/6303        62/6315   
     102        1.55          84.34          45/2904    15395/18254   
     108       45.69          75.38        2982/6527    10852/14397   
     123       47.92          50.46          345/720        382/757   
     127       93.55          69.52        1553/1660        244/351   
     140       27.81           6.49      17824/64101     3214/49491   
     186       51.34          57.02        2304/4488      2898/5082   
     189       18.13          15.21       3615/19941     2929/19255   
     196       75.71          10.88      10471/13831       410/3770   
     184        3.49          10.71       1208/34649     4011/37452   
 
 
  Class    Prod. Acc.     User Acc.     Prod. Acc.        User Acc.   
           (Percent)      (Percent)      (Pixels)          (Pixels)   
Unclass      99.02          99.21         6253/6315       6253/6303   
    102      15.66          98.45        2859/18254       2859/2904   
    108      24.62          54.31        3545/14397       3545/6527   
    123      49.54          52.08           375/757         375/720   
    127      30.48           6.45           107/351        107/1660   
    140      93.51          72.19       46277/49491     46277/64101   
    186      42.98          48.66         2184/5082       2184/4488   
    189      84.79          81.87       16326/19255      16326/19941   
    196      89.12          24.29         3360/3770       3360/13831   
    184      89.29          96.51       33441/37452      33441/34649   
 



 

 

144
 
 

Table A6-3: Confusion Matrix for Training Data, April 10, 2008 Run 
 
Confusion Matrix: H:\ThreemileReRun\ErrorMatrix\TrainingArea\PredClassify   
   
Overall Accuracy = (1399979/1419539)  98.6221%   
Kappa Coefficient = 0.9785   
   
   

Ground Truth (Percent) 
 

   Class         Unclass     102         105        108         120    
 Unclass          99.98     0.00        0.00       0.00        0.00   
     102           0.00    97.59       13.50       0.40        0.00   
     105           0.00     0.10       85.19       0.00        0.00   
     108           0.00     0.87        0.00      98.56        0.85   
     120           0.00     0.00        0.00       0.21       97.33   
     122           0.00     0.35        0.00       0.14        0.00   
     123           0.00     0.06        0.00       0.00        0.00   
     124           0.00     0.00        0.00       0.01        0.00   
     125           0.00     0.00        0.00       0.02        0.00   
     126           0.00     0.00        0.00       0.05        0.08   
     127           0.00     0.30        0.00       0.23        0.00   
     136           0.00     0.00        0.00       0.00        0.00   
     140           0.00     0.00        0.00       0.05        0.00   
     167           0.00     0.00        0.00       0.00        0.00   
     175           0.00     0.00        0.00       0.00        0.00   
     179           0.00     0.00        0.00       0.00        0.00   
     182           0.00     0.00        0.00       0.00        0.00   
     184           0.00     0.00        0.00       0.00        0.00   
     186           0.00     0.00        0.00       0.08        0.00   
     187           0.00     0.00        0.00       0.00        0.00   
     188           0.00     0.00        0.00       0.26        0.44   
     189           0.00     0.00        0.00       0.00        0.00   
     190           0.00     0.00        0.00       0.00        0.00   
     196           0.00     0.09        0.00       0.00        0.38   
     199           0.00     0.00        0.00       0.00        0.00   
     200           0.00     0.00        0.00       0.00        0.00   
     201           0.00     0.00        0.00       0.00        0.00   
     204           0.00     0.00        0.00       0.00        0.00   
     213           0.00     0.00        0.00       0.00        0.00   
     221           0.00     0.00        0.00       0.00        0.00   
     222           0.00     0.00        0.00       0.00        0.00   
     224           0.01     0.43        1.31       0.00        0.00   
     261           0.00     0.20        0.00       0.00        0.00   
     265           0.00     0.00        0.00       0.00        0.00   
     266           0.00     0.00        0.00       0.00        0.00  
     273           0.01     0.00        0.00       0.00        0.00   
     998           0.00     0.00        0.00       0.00        0.00   
     999           0.00     0.00        0.00       0.00        0.00   
     191           0.00     0.00        0.00       0.00        0.92   
     Total       100.00   100.00      100.00     100.00      100.00   
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 
 
 

Ground Truth (Percent) 
 

   Class         122         123         124        125         126    
 Unclass        0.00        0.00        0.00       0.00        0.00   
     102        1.11        2.05        0.00       0.00        0.00   
     105        0.00        0.00        0.00       0.00        0.00   
     108        1.36        6.21        6.68       2.99        1.16   
     120        0.00        0.00        0.00       0.37        0.03   
     122       97.07        7.31        5.49       0.41        0.00   
     123        0.10       84.43        0.00       0.00        0.00   
     124        0.30        0.00       84.35       0.00        0.00   
     125        0.01        0.00        0.00      90.20        0.00   
     126        0.00        0.00        0.00       0.66       87.32   
     127        0.05        0.00        3.48       0.00        0.00   
     136        0.00        0.00        0.00       0.00        0.00   
     140        0.00        0.00        0.00       5.37        1.16  
     167        0.00        0.00        0.00       0.00        0.00   
     175        0.00        0.00        0.00       0.00        0.00   
     179        0.00        0.00        0.00       0.00        0.00   
     182        0.00        0.00        0.00       0.00        0.00   
     184        0.00        0.00        0.00       0.00        0.00   
     186        0.00        0.00        0.00       0.00        0.00   
     187        0.00        0.00        0.00       0.00        0.00   
     188        0.00        0.00        0.00       0.00        0.00   
     189        0.00        0.00        0.00       0.00        0.00   
     190        0.00        0.00        0.00       0.00        0.00   
     196        0.00        0.00        0.00       0.00        0.00   
     199        0.00        0.00        0.00       0.00        0.00   
     200        0.00        0.00        0.00       0.00       10.33   
     201        0.00        0.00        0.00       0.00        0.00   
     204        0.00        0.00        0.00       0.00        0.00   
     213        0.00        0.00        0.00       0.00        0.00   
     221        0.00        0.00        0.00       0.00        0.00   
     222        0.00        0.00        0.00       0.00        0.00   
     224        0.00        0.00        0.00       0.00        0.00   
     261        0.00        0.00        0.00       0.00        0.00   
     265        0.00        0.00        0.00       0.00        0.00   
     266        0.00        0.00        0.00       0.00        0.00   
     273        0.00        0.00        0.00       0.00        0.00   
     998        0.00        0.00        0.00       0.00        0.00   
     999        0.00        0.00        0.00       0.00        0.00   
     191        0.00        0.00        0.00       0.00        0.00   
     Total    100.00      100.00      100.00     100.00      100.00   
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 

 
 

Ground Truth (Percent) 
 

   Class         127         136         140        167         175   
 Unclass        0.00        0.00        0.00       0.00        0.00   
     102        0.62        0.00        0.00       0.00        0.00   
     105        0.00        0.00        0.00       0.00        0.00   
     108        1.74        0.00        0.04       0.00        0.00   
     120        0.00        0.00        0.00       0.00        0.00   
     122        0.17        0.00        0.00       0.00        0.00   
     123        0.10        0.00        0.00       0.00        0.00   
     124        0.31        0.00        0.00       0.00        0.00   
     125        0.00        0.00        0.16       0.00        0.00   
     126        0.00        0.00        0.00       0.00        0.00   
     127       96.96        0.00        0.01       0.00        0.00   
     136        0.00       94.02        0.27       8.71        0.00   
     140        0.06        1.79       98.06       0.00        0.50   
     167        0.00        0.69        0.00      89.04        0.00   
     175        0.00        0.00        0.23       0.00       90.90   
     179        0.00        0.00        0.09       0.00        0.00   
     182        0.00        0.00        0.00       0.00        0.00   
     184        0.00        0.26        0.82       0.00        7.66   
     186        0.00        0.00        0.13       0.00        0.00   
     187        0.00        0.00        0.00       0.00        0.00   
     188        0.00        0.00        0.00       0.00        0.00   
     189        0.00        0.00        0.00       0.00        0.00 
     190        0.00        0.00        0.00       0.00        0.00   
     196        0.00        0.00        0.00       0.00        0.00   
     199        0.00        1.79        0.00       2.25        0.00   
     200        0.00        0.91        0.00       0.00        0.00   
     201        0.00        0.00        0.00       0.00        0.00   
     204        0.00        0.00        0.05       0.00        0.00   
     213        0.02        0.51        0.00       0.00        0.00   
     221        0.00        0.00        0.00       0.00        0.00   
     222        0.00        0.00        0.00       0.00        0.00   
     224        0.00        0.00        0.00       0.00        0.00   
     261        0.00        0.00        0.00       0.00        0.00   
     265        0.00        0.00        0.00       0.00        0.00   
     266        0.00        0.00        0.09       0.00        0.95   
     273        0.00        0.00        0.00       0.00        0.00   
     998        0.00        0.00        0.00       0.00        0.00   
     999        0.01        0.04        0.07       0.00        0.00   
     191        0.00        0.00        0.00       0.00        0.00   
     Total    100.00      100.00      100.00     100.00      100.00   
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 
 
 

Ground Truth (Percent) 
 

     Class       179         182         184        186         187    
   Unclass      0.00        0.00        0.00       0.00        0.00   
       102      0.00        0.00        0.00       0.00        0.00   
       105      0.00        0.00        0.00       0.00        0.00   
       108      0.00        0.00        0.00       1.57        0.76   
       120      0.00        0.00        0.00       0.00        0.00   
       122      0.00        0.00        0.00       0.00        0.00   
       123      0.00        0.00        0.00       0.00        0.00   
       124      0.00        0.00        0.00       0.00        0.00   
       125      0.22        0.00        0.00       0.00        0.00   
       126      0.00        0.00        0.00       0.00        0.00   
       127      0.00        0.00        0.00       0.00        0.00   
       136      0.00        0.00        0.02       0.00        0.00   
       140      6.65        0.00        0.24       1.80        0.00   
       167      0.00        0.00        0.00       0.00        0.00   
       175      0.00        0.00        0.02       0.00        0.00   
       179     93.13        0.00        0.00       0.00        0.00   
       182      0.00       86.89        0.54       0.00        0.00   
       184      0.00        8.24       98.90       0.00        0.00   
       186      0.00        0.00        0.00      88.82        1.44   
       187      0.00        0.00        0.00       2.97       96.50   
       188      0.00        0.00        0.00       0.02        0.00   
       189      0.00        0.00        0.00       0.00        0.00   
       190      0.00        0.00        0.00       0.00        0.00   
       196      0.00        0.00        0.00       3.84        0.27   
       199      0.00        4.28        0.18       0.00        0.00   
       200      0.00        0.00        0.00       0.00        0.00   
       201      0.00        0.00        0.00       0.00        0.00   
       204      0.00        0.00        0.00       0.00        0.00   
       213      0.00        0.00        0.00       0.00        0.00  
       221      0.00        0.00        0.00       0.00        0.00   
       222      0.00        0.00        0.00       0.27        0.85   
       224      0.00        0.00        0.00       0.06        0.18   
       261      0.00        0.00        0.00       0.00        0.00   
       265      0.00        0.32        0.07       0.00        0.00  
       266      0.00        0.00        0.00       0.00        0.00   
       273      0.00        0.00        0.00       0.66        0.00   
       998      0.00        0.28        0.00       0.00        0.00   
       999      0.00        0.00        0.01       0.00        0.00   
       191      0.00        0.00        0.00       0.00        0.00   
       Total  100.00      100.00      100.00     100.00      100.00   
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 
 
 

Ground Truth (Percent) 
 

     Class       188         189         190        196         199   
   Unclass      0.00        0.00        0.00       0.00        0.00   
       102      0.00        0.00        0.00       0.03        0.00   
       105      0.00        0.00        0.00       0.00        0.00   
       108      1.08        0.00        0.00       0.00        0.00   
       120      0.58        0.00        0.00       0.01        0.00   
       122      0.00        0.00        0.00       0.00        0.00   
       123      0.00        0.00        0.00       0.00        0.00   
       124      0.00        0.00        0.00       0.00        0.00   
       125      0.00        0.00        0.00       0.00        0.00   
       126      0.00        0.00        0.00       0.00        0.00   
       127      0.00        0.00        0.00       0.00        0.00   
       136      0.00        0.00        0.00       0.00        0.00   
       140      0.00        0.00        0.00       0.16        0.02   
       167      0.00        0.00        0.00       0.00        0.01   
       175      0.00        0.00        0.00       0.00        0.00   
       179      0.00        0.00        0.00       0.00        0.00   
       182      0.00        0.00        0.00       0.00        0.26   
       184      0.00        0.00        0.00       0.00        0.59   
       186      0.02        0.00        0.00       0.59        0.00   
       187      0.00        0.00        0.00       0.20        0.00   
       188     98.28        0.00        0.00       0.00        0.00   
       189      0.00       98.95        0.00       0.57        0.00   
       190      0.00        0.00       96.33       0.00        0.00   
       196      0.00        0.47        0.00      95.57        0.00   
       199      0.00        0.00        0.00       0.00       98.88   
       200      0.00        0.00        0.00       0.00        0.00   
       201      0.00        0.00        0.00       0.00        0.00   
       204      0.00        0.00        0.00       0.00        0.05   
       213      0.00        0.00        0.00       0.00        0.00   
       221      0.00        0.00        0.00       0.42        0.00   
       222      0.00        0.00        0.00       0.53        0.00   
       224      0.00        0.58        0.00       0.05        0.00   
       261      0.00        0.00        1.31       1.26        0.00   
       265      0.00        0.00        0.00       0.00        0.00   
       266      0.00        0.00        0.00       0.00        0.00   
       273      0.04        0.00        0.79       0.62        0.00   
       998      0.00        0.00        0.00       0.00        0.20   
       999      0.00        0.00        0.00       0.00        0.00   
       191      0.00        0.00        1.57       0.00        0.00   
       Total  100.00      100.00      100.00     100.00      100.00   
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 
 
 

Ground Truth (Percent) 
 

     Class       200         201         204        213         221   
   Unclass      0.00        0.00        0.00       0.00        0.00   
       102      0.00        0.00        0.00       0.00        0.00   
       105      0.00        0.00        0.00       0.00        0.00   
       108      0.00        0.00        0.00       0.00        0.00   
       120      0.00        0.00        0.00       0.00        0.00   
       122      0.00        0.00        0.00       0.00        0.00   
       123      0.00        0.00        0.00       0.00        0.00   
       124      0.00        0.00        0.00       0.00        0.00   
       125      0.00        0.00        0.00       0.00        0.00   
       126      0.81        0.00        0.00       0.00        0.00   
       127      0.00        0.00        0.00      27.06        0.00   
       136      0.55        0.00        1.01       9.02        0.00   
       140      0.18        0.00        1.41       0.00        0.00   
       167      0.00        0.00        0.00       0.00        0.00   
       175      0.00        0.00        0.00       0.00        0.00   
       179      0.00        0.00        0.00       0.00        0.00   
       182      0.00        0.00        0.00       0.00        0.00   
       184      0.00        0.00        0.47       0.00        0.00   
       186      0.00        0.00        0.00       0.00        0.00   
       187      0.00        0.00        0.00       0.00        3.53   
       188      0.00        0.00        0.00       0.00        0.00   
       189      0.00        0.00        0.00       0.00        0.00   
       190      0.00        0.00        0.00       0.00        0.00   
       196      0.00        0.00        0.00       0.00        6.99   
       199      0.00        0.00        5.31       0.00        0.00   
       200     96.41        4.68        0.00       0.00        0.00   
       201      0.67       95.18        0.00       0.00        0.00   
       204      0.00        0.00       89.46       0.00        0.00   
       213      0.00        0.00        0.00      63.92        0.00   
       221      0.00        0.00        0.00       0.00       67.78   
       222      0.00        0.00        0.00       0.00        5.24   
       224      0.00        0.00        0.00       0.00       11.76   
       261      0.00        0.00        0.00       0.00        0.40   
       265      0.00        0.00        0.00       0.00        0.00   
       266      0.00        0.00        0.00       0.00        0.00   
       273      0.00        0.00        0.00       0.00        4.32   
       998      1.38        0.14        0.00       0.00        0.00   
       999      0.00        0.00        2.34       0.00        0.00   
       191      0.00        0.00        0.00       0.00        0.00   
     Total    100.00      100.00      100.00     100.00      100.00   
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 
 
   

Ground Truth (Percent) 
 

     Class       222         224         261        265         266   
   Unclass      0.00        0.00        0.00       0.00        0.00   
       102      0.00        0.14        0.00       0.00        0.00   
       105      0.00        0.14        0.00       0.00        0.00   
       108      0.00        0.00        0.00       0.00        0.00   
       120      0.00        0.00        0.00       0.00        0.00   
       122      0.00        0.00        0.00       0.00        0.00   
       123      0.00        0.00        0.00       0.00        0.00   
       124      0.00        0.00        0.00       0.00        0.00   
       125      0.00        0.00        0.00       0.00        0.00   
       126      0.00        0.00        0.00       0.00        0.00   
       127      0.00        0.00        0.00       0.00        0.00   
       136      0.00        0.00        0.00       0.00        0.00   
       140      0.00        0.00        0.00       0.00        6.48   
       167      0.00        0.00        0.00       0.00        0.00   
       175      0.00        0.00        0.00       0.00        0.51   
       179      0.00        0.00        0.00       0.00        0.00   
       182      0.00        0.00        0.00      19.16        0.00   
       184      0.00        0.00        0.00      39.85        0.64   
       186      0.03        0.00        0.00       0.00        0.00   
       187      0.15        0.06        0.00       0.00        0.00   
       188      0.00        0.00        0.00       0.00        0.00   
       189      0.12        0.24        0.00       0.00        0.00   
       190      0.00        0.00        0.91       0.00        0.00   
       196      1.98        1.00        0.65       0.00        0.00   
       199      0.00        0.00        0.00       0.00        0.00   
       200      0.00        0.00        0.00       0.00        0.00   
       201      0.00        0.00        0.00       0.00        0.00   
       204      0.00        0.00        0.00       0.00        0.00   
       213      0.00        0.00        0.00       0.00        0.00   
       221      2.37        2.13        0.51       0.00        0.00   
       222     77.88        8.16        0.94       0.00        0.00   
       224      6.68       83.73        0.38       0.00        0.00   
       261      2.75        0.64       93.88       0.00        0.00   
       265      0.00        0.00        0.00      41.00        0.00   
       266      0.00        0.00        0.00       0.00       92.20   
       273      7.78        3.15        2.34       0.00        0.00   
       998      0.00        0.00        0.00       0.00        0.00   
       999      0.00        0.00        0.00       0.00        0.18   
       191      0.27        0.62        0.40       0.00        0.00   
       Total  100.00      100.00      100.00     100.00      100.00   
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 
 
 

Ground Truth (Percent) 
 

     Class       273         998         999        191           
   Unclass      0.00        0.00        0.00       0.00            
       102      0.00        0.00        0.00       0.00            
       105      0.00        0.00        0.00       0.00            
       108      0.00        0.00        0.00       0.00             
       120      0.00        0.00       24.06       1.65            
       122      0.00        0.00        0.00       0.00            
       123      0.00        0.00        0.00       0.00           
       124      0.00        0.00        0.00       0.00             
       125      0.00        0.00        0.00       0.00           
       126      0.00        0.00        0.00       0.00            
       127      0.00        0.00        0.45       0.00            
       136      0.00        0.01        0.39       0.00            
       140      0.00        0.00        7.89       0.00             
       167      0.00        0.00        0.00       0.00             
       175      0.00        0.00        0.00       0.00             
       179      0.00        0.00        0.11       0.00            
       182      0.00        0.01        0.00       0.00            
       184      0.00        0.00        0.96       0.00            
       186      0.09        0.00        0.00       0.00            
       187      0.00        0.00        0.00       0.00           
       188      0.63        0.00        0.00       0.00            
       189      0.00        0.00        0.00       0.00            
       190      0.57        0.00        0.00       0.56           
       196      3.80        0.00        0.00       0.15             
       199      0.00        0.18        0.00       0.00            
       200      0.00        0.16        0.34       0.00             
       201      0.00        0.00        0.68       0.00             
       204      0.00        0.00        0.28       0.00            
       213      0.00        0.00        0.00       0.00            
       221      0.28        0.00        0.00       0.00            
       222      1.98        0.00        0.00       0.00           
       224      0.81        0.00        0.28       0.06             
       261      1.64        0.00        1.41       2.53            
       265      0.00        0.00        0.00       0.00             
       266      0.00        0.00        0.00       0.00            
       273     89.65        0.00        0.00       0.30            
       998      0.00       99.64        6.54       0.00            
       999      0.00        0.00       54.03       0.00             
       191      0.56        0.00        2.59      94.75            
       Total  100.00      100.00      100.00     100.00           
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 
 
     
    Class Areal Percentages 
 
   Class             Total   
 Unclass             58.54   
     102              1.47   
     105              0.05   
     108              7.65   
     120              0.75   
     122              1.36   
     123              0.09   
     124              0.07   
     125              0.17   
     126              0.21   
     127              1.47   
     136              0.21   
     140              7.84   
     167              0.05   
     175              1.07   
     179              0.16   
     182              0.43   
     184              3.63   
     186              0.33   
     187              0.17   
     188              0.99   
     189              0.14   
     190              0.09   
     196              1.66   
     199              4.72   
     200              0.64   
     201              0.15   
     204              0.09   
     213              0.01   
     221              0.17   
     222              0.25   
     224              0.36   
     261              0.42   
     265              0.02   
     266              0.52   
     273              0.56   
     998              2.95   
     999              0.08   
     191              0.46   
     Total          100.00   
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 
 
 
   Class    Commission      Omission      Commission      Omission   
             (Percent)      (Percent)      (Pixels)       (Pixels)   
 Unclass       0.00            0.02         0/831069     161/831230   
     102       4.48            2.41        933/20837      491/20395   
     105       3.65           14.81           27/740        124/837   
     108       1.34            1.44      1452/108576    1564/108688   
     120       7.96            2.67        852/10697      270/10115   
     122       2.22            2.93        429/19352      571/19494   
     123       4.62           15.57          56/1211       213/1368   
     124      12.94           15.65         137/1059       171/1093   
     125       8.41            9.80         202/2401       239/2438   
     126       5.22           12.68         154/2951       406/3203   
     127       2.11            3.04        440/20850      639/21049   
     136      15.36            5.98         468/3046       164/2742   
     140       1.30            1.94      1442/111222    2175/111955   
     167       3.94           10.96           26/660         78/712   
     175       1.98            9.10        300/15166     1489/16355   
     179       4.50            6.87          99/2201       155/2257   
     182       8.93           13.11         540/6047       831/6338   
     184       6.54            1.10       3369/51515      535/48681   
     186       8.74           11.18         412/4716       542/4846   
     187      12.61            3.50         310/2459        78/2227   
     188       2.66            1.72        374/14078      240/13944   
     189       7.45            1.05         152/2040        20/1908   
     190      10.62            3.67         131/1234        42/1145   
     196       3.94            4.43        931/23623     1051/23743   
     199       0.85            1.12        570/67001      753/67184   
     200       5.83            3.59         532/9132       320/8920   
     201       3.39            4.82          72/2127       104/2159   
     204       7.66           10.54          95/1241       135/1281   
     213       9.94           36.08           18/181         92/255   
     221      14.04           32.22         336/2393       978/3035   
     222      26.09           22.12         930/3564       748/3382   
     224      17.04           16.27         862/5060       816/5014   
     261      13.51            6.12         810/5996       338/5524   
     265      20.45           59.00           55/269        308/522   
     266       3.46            7.80         255/7368       602/7715   
     273      12.57           10.35         998/7942       802/7746   
     998       0.94            0.36        394/41894      152/41652   
     999      12.34           45.97         135/1094       816/1775   
     191       4.01            5.25         262/6527       347/6612   
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Table A6-3 Continued: Confusion Matrix for Training Data, April 10, 2008 Run 
 
   
   Class   Prod. Acc.     User Acc.     Prod. Acc.        User Acc.   
           (Percent)      (Percent)      (Pixels)          (Pixels)   
 Unclass     99.98         100.00     831069/831230   831069/831069   
     102     97.59          95.52       19904/20395     19904/20837   
     105     85.19          96.35           713/837         713/740   
     108     98.56          98.66     107124/108688   107124/108576   
     120     97.33          92.04        9845/10115      9845/10697   
     122     97.07          97.78       18923/19494     18923/19352   
     123     84.43          95.38         1155/1368       1155/1211   
     124     84.35          87.06          922/1093        922/1059   
     125     90.20          91.59         2199/2438       2199/2401   
     126     87.32          94.78         2797/3203       2797/2951   
     127     96.96          97.89       20410/21049     20410/20850   
     136     94.02          84.64         2578/2742       2578/3046   
     140     98.06          98.70     109780/111955   109780/111222   
     167     89.04          96.06           634/712         634/660   
     175     90.90          98.02       14866/16355     14866/15166   
     179     93.13          95.50         2102/2257       2102/2201   
     182     86.89          91.07         5507/6338       5507/6047   
     184     98.90          93.46       48146/48681     48146/51515   
     186     88.82          91.26         4304/4846       4304/4716   
     187     96.50          87.39         2149/2227       2149/2459   
     188     98.28          97.34       13704/13944     13704/14078   
     189     98.95          92.55         1888/1908       1888/2040   
     190     96.33          89.38         1103/1145       1103/1234   
     196     95.57          96.06       22692/23743     22692/23623   
     199     98.88          99.15       66431/67184     66431/67001   
     200     96.41          94.17         8600/8920       8600/9132   
     201     95.18          96.61         2055/2159       2055/2127   
     204     89.46          92.34         1146/1281       1146/1241   
     213     63.92          90.06           163/255         163/181   
     221     67.78          85.96         2057/3035       2057/2393   
     222     77.88          73.91         2634/3382       2634/3564   
     224     83.73          82.96         4198/5014       4198/5060   
     261     93.88          86.49         5186/5524       5186/5996   
     265     41.00          79.55           214/522         214/269   
     266     92.20          96.54         7113/7715       7113/7368   
     273     89.65          87.43         6944/7746       6944/7942   
     998     99.64          99.06       41500/41652     41500/41894   
     999     54.03          87.66          959/1775        959/1094   
     191     94.75          95.99         6265/6612       6265/6527   
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Table A6-4: Confusion Matrix for Threemile Hill Quad, April 10, 2008 Run 

 
Confusion Matrix: 
H:\ThreemileReRun\ErrorMatrix\PredictedArea\PredClassify   
   
Overall Accuracy = (114295/153367)  74.5239%   
Kappa Coefficient = 0.6785   
   
                   
   
   

Ground Truth (Percent) 
 

   Class         Unclass     108         123        127         140    
 Unclass           97.47    0.00        0.00       0.93        0.00   
     108            0.00    5.04       41.56       0.00        0.00   
     123            0.00    0.00       57.93       0.00        0.00   
     127            0.00    0.00        0.00      86.34        0.00   
     140            0.03   78.13        0.00       4.35       97.44   
     184            0.00    0.01        0.00       0.00        1.93   
     186            0.06    4.78        0.00       0.00        0.17   
     189            0.20    0.66        0.00       0.00        0.13   
     196            1.45   11.36        0.00       0.00        0.01   
     222            0.00    0.00        0.00       0.00        0.00   
     224            0.00    0.00        0.00       0.00        0.00   
     261            0.00    0.00        0.00       0.00        0.00   
     999            0.00    0.00        0.00       0.00        0.30   
     102            0.79    0.03        0.50       8.39        0.01   
     Total        100.00  100.00      100.00     100.00      100.00   
   
   

Ground Truth (Percent) 
 

   Class            184      186        189         196         222    
 Unclass           0.00     0.00       0.00        0.00        0.00   
     108           0.00     3.94       1.04        0.00        0.00   
     123           0.00     0.00       0.00        0.00        0.00   
     127           0.00     0.00       0.00        0.00        0.00   
     140           1.49    17.73       0.58        0.00        0.00   
     184          83.52     1.40       0.00        0.00        0.00   
     186           0.19    50.79       0.12        2.33        0.00   
     189          14.56     0.35      97.11        6.00        1.98   
     196           0.12    24.11       0.16       91.66       20.46   
     222           0.00     0.00       0.00        0.00       20.13   
     224           0.00     0.00       0.00        0.00        9.57   
     261           0.00     0.00       0.00        0.00       40.26   
     999           0.01     0.00       0.00        0.00        0.00   
     102           0.11     1.69       0.99        0.00        7.59   
     Total       100.00   100.00     100.00      100.00      100.00   
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Table A6-4 Continued: Confusion Matrix for Threemile Hill Quad, April 10, 2008 Run 
 
 

Ground Truth (Percent) 
 

   Class            224      261        999         102        
 Unclass           0.00     0.00       0.00        0.00         
     108           0.00     0.00       0.00       37.45         
     123           0.00     0.00       0.00        0.95         
     127           0.00     0.00       0.00        1.20         
     140           0.00     0.00      61.88        1.60        
     184           0.00     0.00       0.00        0.00        
     186           0.00     0.00       0.00        0.00        
     189           0.00     0.00      11.88        2.70        
     196           0.00    44.79       0.00       31.83         
     222           0.00     2.45       0.00        0.79       
     224          56.38     0.00       0.00        0.01        
     261           3.19    52.76       0.00        0.48        
     999           0.00     0.00      26.25        0.00       
     102          40.43     0.00       0.00       22.97        
     Total       100.00   100.00     100.00      100.00       
   
   
 
   Class Areal Percentages 
   
   Class             Total   
 Unclass              4.12   
     108              5.26   
     123              0.41   
     127              0.32   
     140             39.11   
     184             21.32   
     186              1.78   
     189             16.25   
     196              7.89   
     222              0.13   
     224              0.09   
     261              0.20   
     999              0.15   
     102              2.97   
     Total          100.00   
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Table A6-4 Continued: Confusion Matrix for Threemile Hill Quad, April 10, 2008 Run 
 
 
  Class      Commission      Omission      Commission      Omission   
              (Percent)      (Percent)      (Pixels)       (Pixels)   
Unclass         0.05           2.53           3/6318       164/6479   
    108        90.68          94.96        7315/8067    14164/14916   
    123        26.87          42.07          169/629        334/794   
    127        43.50          13.66          214/492         44/322   
    140        22.40           2.56      13436/59977     1221/47762   
    184         2.97          16.48        971/32692     6261/37982   
    186        36.07          49.21         983/2725      1688/3430   
    189        25.99           2.89       6478/24929      550/19001   
    196        70.11           8.34       8486/12104       329/3947   
    222        70.39          79.87          145/206        242/303   
    224        22.06          43.62           30/136         82/188   
    261        71.33          47.24          214/300         77/163   
    999        63.95          73.75          149/233        236/320   
    102        10.51          77.03         479/4559    13680/17760   
   
   
 
 
  Class    Prod. Acc.     User Acc.     Prod. Acc.        User Acc.   
           (Percent)      (Percent)      (Pixels)          (Pixels)   
Unclass      97.47          99.95         6315/6479       6315/6318   
    108       5.04           9.32         752/14916        752/8067   
    123      57.93          73.13           460/794         460/629   
    127      86.34          56.50           278/322         278/492   
    140      97.44          77.60       46541/47762     46541/59977   
    184      83.52          97.03       31721/37982     31721/32692   
    186      50.79          63.93         1742/3430       1742/2725   
    189      97.11          74.01       18451/19001     18451/24929   
    196      91.66          29.89         3618/3947      3618/12104   
    222      20.13          29.61            61/303          61/206   
    224      56.38          77.94           106/188         106/136   
    261      52.76          28.67            86/163          86/300   
    999      26.25          36.05            84/320          84/233   
    102      22.97          89.49        4080/17760       4080/4559   
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