Understanding Software-2.0: A Study of Machine Learning
library usage and evolution

MALINDA DILHARA, AMEYA KETKAR, and DANNY DIG, Oregon State University and University
of Colorado

Enabled by a rich ecosystem of Machine Learning (ML) libraries, programming using learned models, i.e.,
SOFTWARE-2.0, has gained substantial adoption. However, we do not know what challenges developers
encounter when they use ML libraries. With this knowledge gap, researchers miss opportunities to contribute
to new research directions, tool builders do not invest resources where automation is most needed, library
designers cannot make informed decisions when releasing ML library versions, and developers fail to use
common practices when using ML libraries.

We present the first large-scale quantitative and qualitative empirical study to shed light on how developers
in SOFTWARE-2.0 use ML libraries, and how this evolution affects their code. Particularly, using static analysis
we perform a longitudinal study of 3,340 top-rated open-source projects with 46,110 contributors. To further
understand the challenges of ML library evolution, we survey 109 developers who introduce and evolve ML
libraries. Using this rich dataset we reveal several novel findings.

Among others, we found an increasing trend of using ML libraries: the ratio of new Python projects that
use ML libraries increased from 2% in 2013 to 50% in 2018. We identify several usage patterns including: (i)
36% of the projects use multiple ML libraries to implement various stages of the ML workflows, (ii) developers
update ML libraries more often than the traditional libraries, (iii) strict upgrades are the most popular for ML
libraries among other update kinds, (iv) ML library updates often result in cascading library updates, and (v)
ML libraries are often downgraded (22.04% of cases). We also observed unique challenges when evolving and
maintaining SOFTWARE-2.0 such as (i) binary incompatibility of trained ML models, and (ii) benchmarking ML
models. Finally, we present actionable implications of our findings for researchers, tool builders, developers,
educators, library vendors, and hardware vendors.

CCS Concepts: » Software and its engineering — Software development techniques; - Computing method-
ologies — Machine learning.

Additional Key Words and Phrases: Machine learning libraries, Empirical Studies, Software-2.0

1 INTRODUCTION

Software 2.0 was first coined by Karpathy [80] in 2017. Later on, in his inspirational keynote at
FSE’2018, Erik Meijer [96] characterizes two radically different ways for developing software: “In
Software 1.0: Engineers formally specify their problems, carefully design algorithms, compose systems
out of subsystems or decompose complex systems into smaller components. In Software 2.0: Engineers
amass training data and simply feed it into an ML algorithm that will synthesize an approximation of
the function whose partial extensional definition is that training data. Instead of code as the artifact of
interest, in Software 2.0 it is all about the data where compilation of source code is replaced by training
models with data”. In addition to functions that are synthesized by ML algorithms, SOFTWARE-2.0
often contains many other functions which developers implement using SOFTWARE-1.0 paradigm.

SOFTWARE-2.0 has gained substantial popularity over the past years. Programming using learned
models has completely reinvented domains such as self-driving cars [132], drug discovery [26],
automatic language translation [102], financial fraud detection [119], malware detection [24], and
even software engineering tools [57, 79, 87]. Similarly to how the availability of a rich ecosystem of
reusable libraries has contributed to huge productivity gains during SOFTWARE-1.0, the availability

Authors’ address: Malinda Dilhara, malinda.malwala@colorado.edu; Ameya Ketkar, ketkara@oregonstate.edu; Danny Dig,
danny.dig@colorado.edu, Oregon State University, Corvallis, OR, 97333, University of Colorado, Boulder, CO, 80301.

, Vol. 1, No. 1, Article . Publication date: March 2021.

of libraries such as TensorFlow, Scikit-Learn and Keras is a key component [21, 108] for the growth
of SOFTWARE-2.0. Companies like Google, Facebook, Microsoft, and Amazon besides releasing
and promoting their own ML frameworks, actively invest in open source ML libraries [21]. The
availability of reusable ML libraries makes it easy to leverage state-of-the-art ML algorithms with
minimal effort and therefore promotes the use of ML in software applications. Nowadays, leveraging
ML libraries, developers can develop SOFTWARE-2.0 applications from scratch, or they can transform
SOFTWARE-1.0 applications to SOFTWARE-2.0 by retrofitting ML libraries.

Despite having lots of similarities with SOFTWARE-1.0, SOFTWARE-2.0 inherits additional chal-
lenges from ML libraries - (i) Data-dependence: ML algorithms infer rules that govern the behavior
of systems from training data and produce ML models that comprise the learned rules. The ac-
curacy of the decisions made by ML models depends on the training data [20]. (ii) Dependence
upon Pre-trained model: SOFTWARE-2.0 run trained ML models to make the decisions in production
environments (e.g., identify an email as spam or not spam) [1, 108]. (iii) Rapid evolution: researchers
discover new ML algorithms and continue to improve existing ML algorithms. Therefore, ML
libraries that implement these algorithms change rapidly releasing new versions very frequently.
(iv) Requirement for optimized hardware: ML libraries usually require optimised hardware such as
GPU and TPU to efficiently train ML models. Due to these unique characteristics, the use of ML
libraries deserves special considerations from researchers.

A substantial number of software engineering researchers extensively studied traditional libraries
used in SOFTWARE-1.0 [15, 16, 30, 35, 37, 38, 40, 47, 75, 129]. In contrast, there are very few studies
about ML libraries used in SOFTWARE-2.0. Islam et al. [69, 70] study StackOverflow posts and
GitHub bug reports to identify ML-related bugs. Humbatova et al. [62] study GitHub issues and
StackOverflow posts to create a taxonomy of bugs for SOFTWARE-2.0 while Han et al. [56] study
the same subject systems to discover the trends of discussion topics in SOFTWARE-2.0. However,
none of these answer fundamental questions about usage, evolution, challenges, practices, and tool
support for using ML libraries in SOFTWARE-2.0.

Despite some folkloric evidence about the widespread use of ML libraries, there is no systematic
study about the use of ML libraries in SOFTWARE-2.0. How do developers maintain and evolve
ML libraries in SOFTWARE-2.0? What challenges do developers face when using ML libraries?
What are the tools the developers are currently using to evolve SOFTWARE-2.0? What are the
new opportunities to better assist SOFTWARE-2.0 developers? We have very little quantitative and
qualitative knowledge to answer these questions. This lack of knowledge negatively impacts five
audiences:

(1) Researchers are unaware of the research gaps (i.e., the actual unsolved problems faced by the
SorFTWARE-2.0 developers) that arise with the special attributes of ML libraries, and thus miss
opportunities to improve the current state of the art for SOFTWARE-2.0.

(2) Library vendors are unaware of the challenges that their clients face and whether the clients
use the library according to their design goals.

(3) Hardware vendors are left in the dark without knowing what to optimise on accelerators.

(4) Tool builders do not know how to tailor their tools to the actual needs and practices of the
developers when maintaining and evolving ML libraries.

(5) Developers are not aware of the good and bad practices related to the use of ML libraries.

To fill in these crucial gaps, we employ complementary established research methodologies.
In this work, we present the first large-scale static analysis on 3,340 open-source ML library
client projects hosted on GitHub, containing 809,534 ML library constructs. Moreover, we study
the evolution history of these projects longitudinally to discover trends in evolving ML libraries.
Furthermore, to better understand the challenges that developers face when retrofitting ML libraries

or adapting their code because of ML library evolution, we survey 109 avid users of ML libraries.
Using this rich information, we answer these novel research questions:

RQ1: What is the trend in ML library usage? We found that between 2013 and 2018 the ratio of
new SOFTWARE-2.0 projects to other new projects in GitHub each year has increased from
1.75% to 49.63%. In the same period, the ratio of new ML library forks to all new forks added
in GitHub each year has increased from 0.41% to 3.21%.

RQ2: What combinations of libraries do developers use? Among many of our findings, we observed
that 40.10% of the SOFTWARE-2.0 projects use at least two ML libraries to implement various
stages of the ML development workflow.

RQ3: How do developers update ML library dependencies? Among others, we found that developers
update versions of ML libraries more often than the other libraries used in the projects. ML
library downgrades are more frequent compared to the other libraries in the projects, and
41.52% of ML library updates trigger cascading library updates.

RQ4: What challenges arise when updating ML libraries? We surveyed developers about the
challenges of evolving SOFTWARE-2.0 and found 7 common challenges, including binary
incompatibility of trained ML models, re-selecting decision thresholds, benchmarking ML
models, and supporting multiple versions.

RQ5: What help do developers seek for updating ML libraries? Our survey showed that 26.66% of
the ML library updates have taken more than a week to complete the update process. Further,
developers mostly use the tools that are designed for SOFTWARE-1.0 when updating ML library
versions while preferring six different kinds of new tool support to evolve SOFTWARE-2.0.

RQ6: What challenges arise when retrofitting ML libraries to SOFTWARE-1.0? We surveyed devel-
opers about why they retrofit ML libraries and what challenges they encountered. We found
five reasons and eight challenges. Among others, we identified reasons such as augmenting
functionalities with ML and replacing existing non-ML techniques with ML techniques. We
identified challenges such as gathering data, managing data-pipeline, and adding ML to edge
devices.

Based on these findings, we highlight several actionable implications: new tool building opportu-
nities to better assist SOFTWARE-2.0, opportunities to improve existing infrastructure according to
the requirements of SOFTWARE-2.0, common practices of maintaining and evolving SOFTWARE-2.0,
and blind spots in current SOFTWARE-2.0 research.

This paper makes the following contributions:

(1) To the best of our knowledge, this is the first large-scale empirical study answering questions
about the usage and evolution of SOFTWARE-2.0 through analyzing the source code and its
evolution.

(2) We propose a dependency update model for Python libraries that can be used to identify different
kinds of Python library updates.

(3) We designed and conducted three surveys with 109 avid users of ML libraries to identify the
challenges that developers face when maintaining and evolving SOFTWARE-2.0.

(4) We make the collected data publicly available for further research and reuse [91].

(5) We present an empirically-justified set of implications of our findings from the perspective
of five audiences: researchers, tool builders, ML library vendors, hardware vendors, and ML
developers.

2 BACKGROUND

In this section, we discuss the impact of Python upon machine learning, package management
system in Python, and the nine stages of the machine learning development workflow.

Lingua Franca for ML: Python is an interpreted, high-level, general-purpose programming lan-
guage. It unites the power of general-purpose programming with the ease of use of domain-specific
scripting languages. Python has become the lingua franca for machine learning [21] (the fastest
growing field in computer science).

ML Libraries: ML comprises several kinds of learning algorithms such as supervised learning,
unsupervised learning, deep learning, and reinforcement learning. To provide fast access to these
algorithms, the open-source community has developed many open source Python ML libraries such
as Scikit-Learn [108], TensorFlow [1], Theano [4], Caffe [73], Keras [27], and PyTorch [29]. These
libraries provide ready-made algorithms that allow developers to easily apply ML-based solutions
to business objectives. However, using these libraries pose unique challenges due to dependence
upon data and pre-trained models, rapid evolution and a need for optimized hardware.

In addition to ML libraries, developers often use libraries that provide optimized numerical
computations (e.g. Numpy), efficient data structures (e.g. Pandas), visualisation (e.g., Matplotlib), or
other utilities. In the rest of the paper we refer to these libraries as traditional libraries.

Because ML libraries bring unique challenges to SOFTWARE-2.0, in the rest of the paper we focus

on their usage and compare some of our results with the traditional libraries.
Package-management system: A package manager is a software tool that automates the process
of installing, upgrading, and removing libraries. For example, Java developers maintain a pom.xml
for using Maven [48] and Python developers maintain a requirements.txt [110] file to configure
the PIP or Conda package management systems [113]. Python development tools (e.g., Pycharm
IDE [72], CLI tools) create a runtime environment for executing Python programs based on this
requirement. txt file. PEP [111] suggests a standard syntax for the requirements. txt to the Python
community. An entry (e.g., scikit-learn >= 1.0.4) in the requirements.txt is composed of a library
name (e.g., scikit-learn) and an optional version specifier. The version specifier (e.g., >= 1.0.4) is
composed of a version clause (e.g., >=) and an identifier (e.g., 1.0.4).
Machine learning workflow: Amershi et al. [8] describe nine stages of ML development workflow
and group these stages into data and model oriented categories. The data-oriented stages are:
(i) Model requirements (identifying the appropriate ML models and suitable features), (ii) Data
collection (collecting datasets from available data pools or generating a new dataset), (iii) Data
cleaning (removing inaccurate or noisy records from the dataset), (iv) Data labeling (assigning
ground truth labels to each data record), and (v) Feature engineering (identifying informative
features of a dataset for the model). The model-oriented stages are: (i) Model training (identifying
the model and training it with the labeled dataset), (ii) Model evaluation (evaluating the trained
model), (iii) Model deployment (deploying the model in software solutions), and (iv) Model monitoring
(monitoring the model for possible errors).

3 RESEARCH-METHODOLOGY

In this study, we employ both quantitative and qualitative methods to answer six research questions.
We first statically analysed a corpus 18,122 Python projects on GitHub, and performed a longitudinal
study over the commit history of 3,340 projects that we identified as SOFTWARE-2.0 applications. In
addition, we conduct a qualitative study by surveying 477 developers who updated or introduced a
ML library in a project from our corpus.

The quantitative analysis helps us understand how developers use ML libraries and how the usage
evolves over the project’s lifetime, while the qualitative study reveals the motivations and challenges
associated with introducing ML libraries and updating them. The results of the quantitative study
motivated the qualitative study, in turn the results of the qualitative study led to several research
questions, that we can answer thoroughly. Blending the two methods has the advantage that the
results can be triangulated [45].

Table 1. Usage of top ML libraries

Library Name Clients Releases per year ‘ Library Name Clients Releases per year

TensorFlow 1711 24.44 Inc-mxnet 91 4.48

Scikit-Learn 1313 10.67 TfLearn 40 5.95

Pytorch 935 9.15 Sonnet 16 13.14
Keras 744 11.34 CNTK 14 12.0
Theano 342 4.44 Paddle 8 10.72
Caffe 224 3.99 Neon 4 13.08
SpaCy 104 22.09 Pattern 0 11

NLTK 99 3.47

1 The library has only one release in 2013.

3.1 Subject Systems

3.1.1 Top rated Python Projects: Our corpus contains 18,122 large and popular Python projects
hosted on GitHub. Our project selection process is inspired from Yu et al. [142], who studied
the usage of Java annotations in practice. We retrieve all non-forked and non-archived Python
repositories whose stargazers counts (that indicate popularity of projects [18, 19]) are larger than
50 as of December 31, 2018. To avoid inactive projects, we discard the ones that do not have a single
event of activity within 6 months prior to our data collection date, 31 Dec 2018. Next, following
the guidance in Kalliamvakou et al. [78], we exclude repositories with less than 3 contributors
to further focus on the active projects. This results 18,122 repositories. The studied repositories
include most well-known Python projects in GitHub such as Seaborn, Bokeh and Gensim.

The projects cover a variety of domains like frameworks, web utilities, database, utilities, robotics,
image processing, etc. Our data set is diverse with respect to the application domain, size, develop-
ment ecosystem, contribution governance, and testing practices. This diversity is important to make
sure that the collected data is representative. Section 3.1.1 depicts violin/box plots for the different
metrics of the 18,122 projects, including the number of lines of code, Python files, programming
languages and contributors. A range of dimensions of the metrics that are relevant for the generality
of a research topic define the space of the research topic and improve the generalizability [101].

—

3 37 5076 12 22

©o

16 1170 2513369 1 87 8969 10 1067 1380¢

(a) LOC (b) Python files (c) Commits (d) Contributors (e) Languages
Fig. 1. Size metrics for projects in our corpus

3.1.2 ML Libraries: Braiek et al. [21] identified 7 popular company-driven and 8 popular
community-driven Python-based high-level ML libraries. While previous researchers [56, 69, 70,
125, 144, 145] have particularly studied the usage of the six most popular libraries (TensorFlow,
Scikit-Learn, Keras, PyTorch, Caffe, and Theano). We identified all the clients of these 15 libraries
(identified by Braiek et al.) from our corpus, as shown in Table 1. We found that 95% of the projects
in our corpus use the six popular libraries (identified by researchers [56, 69, 70, 125, 144]). In the
rest of the paper, we analyse the clients of these six libraries and refer to them as“ML libraries”.

3.2 Static Source Code Analysis

We analyze the latest version of each project in our corpus to identify the clients of ML libraries
and the usage of these libraries.

3.2.1 Identifying SOFTWARE-2.0 applications: To study the evolution of ML library usage in
SOFTWARE-2.0, it is important to identify projects that use ML library(s). We analyzed the major
releases of these ML libraries and collected all the root package names. To determine if a project
indeed uses a ML library, we check (i) if the project contains import statements pointing to the root
packages from the ML library, and (ii) the project invokes at least one API method from the ML
library. We identified a total of 3,340 projects that use the six popular ML libraries (Section 3.1.2).
The complete list of projects is available in the companion website !.

3.2.2 Analysing the API usage: We further analyze these 3,340 project to understand how
developers use the APIs provided by the ML libraries, by identifying the method invocations and
object references that are bound to these ML libraries. Python is dynamically typed, thus the
required type binding information is available at run-time only. However, it is not feasible to run
3,340 to extract the type binding information. To overcome these challenges, tool builders have built
tools such as Jedi[71] and MyPy [100] which perform static code analysis on Python programs and
infer the types. MyPy requires the code to have these type annotations [50] (introduced with Python
v3.5) to infer types. However, 93.88% projects in our corpus have not adopted type annotations,
while Jedi only requires all the external dependencies and the entire source code to infer the
binding information. Jedi is a popular (4000 GitHub stars), widely adopted (47,300 users) tool and
used in previous studies[41, 44]. Therefore we use Jedi for inferring type binding information.

3.3 Tracking ML library introduction and update :

3.3.1 Dependency Model: Previous researchers [5, 30, 38, 40, 129, 129] studied library update
and migration in context of Java, but studying it in context of Python is not straightforward. To
study library updates, it is important to detect when a library was updated or replaced. Kula
et al. [85] proposed a dependency model which works for Java, where developers can specify
dependencies as one particular version of a library (e.g. deeplearning4J == 0.7.0).

The previously proposed dependency model [85] will not work for Python, since Python package
managers allow developers to specify a set of versions of a library as dependencies (e.g. tensorflow
>= 1.0.4) in a requirements.txt file. PEP 440 [51], the standard for Python version identification and
dependency specification, specifies six supported version clauses, namely: (i) compatible release (~=),
(ii) version matching (==), (iii) version exclusion (! =), (iv) inclusive ordered comparison (<=, >=), (v)
exclusive ordered comparison (<, >), and (vi) arbitrary equality (===). An entry in requirements.txt
without any version specifier (specify only the library name) will install the latest version of the
library. Using these clauses, developers can express sets of individual versions or as a range of
versions. We abstract the information needed to track library update into a dependency model that
captures the versions of the library dependencies associated with each Python project.

DErFINITION 1. Library Versions (LV): Let L be a set of Python libraries and v be a valid version
identifier. For library 1 € L, a library version is a tuple LV = (1 ,{v}), where {v} is a chronologically
ordered set of version numbers of 1. For example, (tensorflow, {1.0.0, 1.0.4, 2.0.0}).

DEFINITION 2. Software Project and Dependencies: Let P be a set of Python projects, such that
each project p € P contains a requirements. txt. For each p at version i there exist a requirement. txt

Ihttps://serene-beach-16261.herokuapp.com

https://serene-beach-16261.herokuapp.com

Table 2. Categories of Library version update

Rule
Category (Yol evsy Description Example (from = to)
Y 02 € vsy)
. . tensorflow==1.0.4 = tensorflow==1.0.5
Strict Upgrade v2¢vs; &v2>vl Update to newer version(s)

Strict Downgrade

Non-Strict Upgrade

Non-Strict Downgrade

Support more versions

v2¢vus; &v2<vl

Either v2 € vs;
orv2 ¢ vs; & v2>vl
Either v2 € vs;

or v2 ¢ vs; & v2<vl

vl € vsy

Update to older version(s)

Extend support for
newer versions
Extend support for
older versions

Extend support for

tensorflow <= 1.0.0 = tensorflow>1.0.4
tensorflow==1.0.4 = tensorflow==1.0.3

tensorflow > 1.0.4 = tensorflow==1.0.4

tensorflow==1.0.4 = tensorflow>=1.0.4

tensorflow>=1.0.4 = tensorflow>=1.0.3

tensorflow>1.0.0 and tensorflow<2.0.0 =

older and newer versions tensorflow>0.9.0 and tensorflow<2.1.1

Remove support for tensorflow>1.0.0 =

Support fewer versions | v2 € vs;

some versions tensorflow>1.0.0 and tensorflow!=1.0.6

file RF; which specifies {LV}, a set of library versions for p. For example, project Texar ? specifies

dependencies - { (tensorflow, {1.10.0 , ... 1.15.x}), (sentencepiece, {0.1.8, ..., 2.1.85,})...}.

DEFINITION 3. Library Version Update: We state that the project p € P has changed the library
version of library l € L from vsy to vsy, if the requirement file at version i, RF; contains dependency
LV; = (1, vs1) and if LV; is replaced by LV; = (I, vs3) in RF; (at version j), wherei < j and vs; != vs,.

DEeFINITION 4. New Library Introduction: We state that the project p € P introduces a new
library l € L, if the requirement file RF;, (I, _) ¢ RF; and (I, _) € RF; at version j, where i < j.

3.3.2 Detecting Library Version Change: We analyse the source code history of each project p
€ P. At each version i we extract the model RF; by parsing the requirements.txt file. When versions
are specified individually, we simply add the version to LV. If the versions are specified as a range,
we obtain the subset of versions from all possible versions of that library (obtained from GitHub
API), which satisfy the version specification clauses. At each commit, we check if a ML library’s
version is changed or a ML library is introduced. We categorise library version changes into six
categories (i) strict upgrade (ii) strict downgrade (iii) non-strict upgrade (iv) non-strict downgrade
(v) supporting more versions (vi) supporting fewer versions as shown in Table 2. These reported
ML library version changes and new ML library introduction enable us to gain deeper insight into:

e evolution of ML library dependencies (RQ3) and the associated challenges (RQ4)
e retrofitting ML and the associated challenges (RQ6)

3.4 Association rule mining

We discover association rules in ML library combinations and cascade library updates (i.e., libraries
that are updated together). This technique has been used in many fields in software engineering
research such as API auto-completion [13], software error prediction [89], etc.

Association rules are in the form X = Y, where X is called the antecedent (if) and Y the consequent
(then). To define the confidence of a mined rule, the technique use term called "Confidence" which
is the number of transactions where X and Y co-occur divided by the total number of transactions in

Zhttps://github.com/asyml/texar/blob/0704b3d4c93915b9a6f96b725e49ae20bf5d 190/ requirements.txt#L.1

which X occurs. In our study, we use the FP-Growth [55] algorithm as our association rule mining
algorithm [126]. The algorithm uses a set of transactions as its input and produces (a) frequent
itemset, and (b) strong association rules. To define whether a particular itemset is frequent or not
and generate the rules only from the frequent item set, support count is used. It is simply the
number of transactions in which both X and Y occur.

frequency(X U Y)

confidence(X = Y) = frequency(X)

support_count(X = Y) = frequency(X UY)

3.5 Qualitative Study

The most reliable way to understand the motivations and challenges associated with retrofitting
and updating ML libraries is to ask the developers who performed it. To achieve this, we surveyed
three groups of developers:

(1) Group-A (Developers who updated ML library version): These are developers of the commits
where ML library version was updated. Surveying these developers reveals challenges and
current practices.

(2) Group-B (Developers who did not update ML library versions): We selected these developers
from the projects where none of the ML libraries were updated, although the developers have
updated the traditional libraries in the projects. Surveying these developers reveals factors
that prevent updates.

(3) Group-C (Developers who retrofitted ML library): These are developers who retrofitted the
ML libraries in the project. Surveying these developers reveals challenges and motivations
for retrofitting ML libraries.

Table 3. Survey questions for each group

Survey . L. Response
Questions Motivation
Group rate

What changes were performed to update the ML library?
Was the update difficult?
Group A' | How long it took to perform this update?

Discover associated challenges, the
time required for it, current tool us- | 60/264

. age and identify new opportunities | (22.72%)
Was the update performed manually or with tools ? . . i

. . to assist developers in this process.
Would automating the manual tasks be helpful for the Project?

. . . Discover the factors that prevent de-
What prevents the project from updating the ML library? . .
) . velopers from updating their depen- | 21/85
Group B* | What would help the Project to perform updates?
dencies and identify new opportuni- | (24.70%)
Would you desire to have tools to perform these updates? . .
ties to assist them.

Why did i troduce the ML b i th ect? Discover the reasons and chal- 28/128

Group C? Y didyou miroduce He thrary tn Hhe project lenges when adding ML libraries to

What challenges were faced and how were they resolve? . (21.88%)
a software solution

! Developers who updated ML library version.
2 Developers who did not update ML library versions.

3 Developers who retrofitted ML library.

Our goal in designing the survey was to keep as short as possible, while still gathering all of the
relevant information. In the Table 3 we summarize the survey questions of the three groups and
our motivations for asking them.

3.5.1 Contacting the developers: We designed different survey questions for the three groups
of developers mentioned above. To assign developers in Group-A and Group-C we first collected
all the commits where a ML library version was updated or a ML library was retrofitted. To assign
developers in Group-B, we first collected the projects where no ML libraries was updated but at
least one other library was updated. From these projects, we identified the commits where the
updates were performed. For all the aforementioned commits, we gathered the developer’s name
and email address, and then sent the respective survey questions as an email. In the body of the
email, we include:

o A short message introducing the research team and explaining the purpose of our study.
o A timeline of library version updates and new library introductions of the project.

e A GitHub URLs to the commit, so that the developer can easily find it and inspect it.

e Questions for the participant.

The sample emails for the three categories are available in the companion website. In addition, to
avoid spamming the same developers with multiple emails, we follow the best practices suggested
by Mazinanian et al. [93]:

o If a developer is an author of more than one commits, we sent an email for the most recent event
o If a participant has not responded to our first email, we send a final reminder after a week

In total, we sent 477 emails to developers, out of which 109 responded, bringing us to a 23%
response rate. This is significantly higher than the usual response rate achieved in questionnaire-
based software engineering surveys, which is around 5% [123]. The category-wise response rate,
shown in Table 3 highlights that each of the surveys had a response rate higher than 21%. Our
survey design philosophy is to provide the developer with valuable information about the project
along with the survey questions. For example rank of the project among the examined projects
concerning the average density of ML library API calls per project file. Developers praised us for
the information provided, for example, a developer said, ‘I did not know the statistics that you write
and they are really interesting! Can I publish them, for example on the MadTwinNet repo and/or social
media?”.

3.5.2 Thematic Analysis: Since all of our survey questions are open-ended questions, we received
all of our responses in free-form text (i.e., emails). Therefore, a qualitative data analysis approach is
needed to systematically extract useful information from the emails. Thematic analysis is "a method
for identifying, analyzing, and reporting patterns (themes) within data" [31] and a widely-used
qualitative approach that allows gaining a deeper understanding of the data [138].

We followed the steps required by thematic analysis as suggested by best practices guidelines [22].
Two authors of the paper independently read the responses carefully and assigned one or more
descriptive phrases (i.e., codes) to each sentence. Both authors conducted the initial meeting after
coding around 25% of the data (the suggested minimum size is 10% [25]). During the meeting, the
authors carefully discussed the coding process and also negotiated any disagreements between
the assigned codes. After 80% inter-coder agreement was achieved, the authors started assigning
codes in the entire data set of the participants’ responses. (recommended inter-coder agreement
level is ranging from 70% to more than 90% in the literature [25]). After the coding finished, the
authors held another meeting in order to finalize the codes and extract themes. Themes capture
something important about the data in relation to the research question. It also represents some
level of patterned response or meaning within the data set [22]. The two authors reviewed the
initial themes against the data several times and refined their names and definitions until they both
agreed that there were no further refinements possible.

4 RESULTS

In this section we present and discuss the results of our six research questions. We use qualitative
and quantitative methods to answer each research question.

4.1 RQ1: What is the trend in ML library usage?

Over the last decade, the open source and company-driven communities have developed many
machine learning libraries. These libraries have gained popularity with tens of thousands of users,
thousands of stargazers and forks. In software, the primary units of reuse are functions, algorithms,
libraries, and modules. Also, a software engineer can find the source code for a library (e.g. on
GitHub), fork it, and easily make changes to the code, using the same skills they use to develop
their own software. What is the trend of using the ML libraries? What is the trend of forking the
ML libraries? Are developers increasing the usage of the ML library APIs overtime? Answering
these research questions can motivate researchers to understand the challenges developers face
when using and extending these libraries. It will also motivate library developers to make informed
decisions when evolving their libraries. To understand the trend, we analyse all 18,122 projects in
our corpus.

27% 25% 22%
36% 3% 8% S99 319 /u
6% s 14% 19%

2%
246 |.3/
(10.1%)

“ . ! . “ @

2013 2014 2015 2016 2017 2018

34%

traditional projects
software-2.0
sklearn

caffe

theano

tensorflow

keras

torch

1%

13 %

Fig. 2. The larger pie charts at the bottom show the distribution of SOFTWARE-2.0 and SOFTWARE-1.0 per year.
The smaller pie charts at the top show the library-wise breakdown per each year.

4.1.1 Trend of creating ML projects: We group the projects in our corpus of 18,122 Python
Projects, by the year in which they were created. For the creation date we consider the first commit
date in Git log instead of project creation date given by GitHub search API. (to handle cases where
projects moved from a different code management system like GitLab/BitBucket to GitHub). Figure 2
shows library usage distribution in each year. It further shows the ratio of new projects using ML
libraries (SOFTWARE-2.0) to the total number of projects created in each year. While in 2013 only
1.75% new projects used ML library(s), this ratio increased to 49.63% by 2018.

To conduct a more accurate and fine-grained trend analysis, we split the data further into monthly
intervals and apply a statistical trend test on it. Particularly we used Mann-Kendal trend test; a
non-parametric statistical test that examines the null-hypothesis that “there is no trend in the data”.
Obtaining small p-values (e.g., smaller than « = 0.05) will lead to rejecting the null-hypothesis (i.e.,
there is a trend in the data). In this case, the test can also show the degree of the monotonicity of
trend (i.e., the 7 value). The 7 value is ranging between —1 < 7 < 1, where -1 shows a perfectly
decreasing trend, and 1 shows a perfectly increasing trend. While there are other ways to assess
trends in the data (e.g., regression analysis), the Mann-Kendall test makes the fewest assumptions
about the underlying data, making it suitable for our analysis. Indeed, this test has been used in
previous software engineering studies, e.g., for examining the applicability of Lehman’s Laws of
Software Evolution [6]. Running this test on the dataset revealed that there is a strong positive
trend in using ML libraries in the new Python projects created each month, i.e. p-value < 0.05 and

10

7 = 0.87. In addition, we used the Sen’s estimator [122] to compute the slope of the trendline for
the number of new projects using ML libraries each year for the entire epoch of six years. This
estimator is basically the median slope of the lines drawn between all the pairs of points, which
turned out to be 8 X 1072, which essentially shows the ratio of ML libraries introduced is increased
in each month within the period we analyzed.

4.1.2 Trend of using ML library API within the projects. We delve deeper into the trend of
the usage of ML libraries within the project by performing a longitudinal analysis of ML API calls.
For the last commit in each month of the project’s history, we normalize the number of ML APIs
used in the project by the project size (i.e., number of files). The normalization eliminates the
adverse chance of observing an increasing (or decreasing) trend due to the increase (or decrease) of
the amount of code committed to the repository [43].

To statistically assess the trend of using ML APIs, we used the Mann-Kendal trend test (Sec-
tion 4.1.1). Applying this trend test revealed a p-value < 0.05 for 57% of the projects. This suggests
that there is a significant increasing or decreasing trend in using ML APIs for these 1903 projects.
Since the null hypothesis is not rejected for the other 43% projects, no conclusion can be made for
them.

0,=0.26

— —
Q,=-0.39 03=0.47
10 -05 0.0 0.5 1.0

Fig. 3. ML API adoption trend as measured by 7 value computed with the Mann-Kendal trend test

We further investigate if this trend is increasing or decreasing by studying the values of z, for
all the projects. Figure 3 shows that the median of 7 in all projects having a significant trend in
adopting ML APIs is 0.26 i.e., a moderate, increasing trend. We further found that 87.76% of these
projects show an increasing trend in adopting ML APIs (i.e. 7 > 0). To compute the slope of the
trendline for the number of ML APIs introduced per Python file per month in the commit history of
all projects, we used the Sen’s estimator [122]. The value turned out to be 2.37 X 107!, This shows
that developers add 0.237 average number of ML APIs per Python file in each month.

4.1.3 Trend of ML library forks: Developers usually fork repositories to contribute to it by
fixing bugs, adding new features and optimizations, or for keeping a copy of the source code [74].
For example, Intel maintain their own fork[66] of TensorFlow, Caffe and Theano where they add
optimisations for Intel CPUs [65, 67, 68]. We found that TensorFlow is the most forked Python
repository on GitHub with over 78k forks and other ML libraries like Keras, Caffe and Scikit-Learn

11%

13% 12%

5

14% 11% 780//c

57% 9% 59% 5%

10% s >

o

33,760
(3.5%)

16%

other projects
ML libraries
sklearn
theano

caffe
tensorflow

5% 26“/
32% 37%
. 60%
85% 8% 24% 5%
7%

8,636
(2:2%)

68%

621
(0.4%)

46, 103
(3.2%)

keras
torch

2013 2014 2015 2016 2017 2018

Fig. 4. The larger pie charts at the bottom show the distribution of the newly created forks of ML and non-ML
projects per year. The smaller pie charts at the top show the library-wise breakdown per each year.

11

being forked more than 17 thousand times. Figure 4 shows the ratio of the number of new forks
created from the ML libraries to the total number of new forks created on GitHub each year. While
in 2013 only 0.41% of total forks created were created from the ML libraries, this increased to 3.21%
in 2018. To conduct more fine-grained and accurate analysis upon the trends, we split the data
further into monthly intervals and then apply statistical trend tests similar to Section 4.1.1. Running
these tests on the dataset revealed that there is a strong positive trend in creating forks from ML
libraries each month, i.e. p-value < 0.05 and 7= 0.52. Also the slope of the trendline using the Sen’s
estimator turns out to be 9 x 1074, which essentially shows the ratio of ML libraries forked increases
month within the period we analyzed.

Observation 1: There is an increasing number of new projects using ML library(s) each year.
ML library usage increases from 1.75% in 2013 to 49.63% in 2018. Furthermore, the amount
of ML library API usage increases: in 50% of the projects in our corpus, developers add 0.237
ML APIs per Python file each month. We also observed an increasing number of forks of ML
Library(s) each year, from 0.41% in 2013 to 3.21% in 2018.

4.2 RQ2: What combination of libraries do developers use?

With dozens of competing ML libraries that share the same objectives, developers can often feel
overwhelmed when deciding which libraries best suit their requirements. They also need to invest
significant time to become expert users of these libraries. How can they leverage the wisdom of
the crowds and learn from others’ success? Moreover, global companies like Intel, AMD, NVidia,
Apple, Google, IBM [7, 10, 63, 66] are heavily investing in dedicated hardware accelerators to
optimize ML workloads in real-time on the device. Without knowing the combinations of libraries
that ML developers are using in the practice, these hardware and library vendors are left in the
dark. How many ML libraries do developers use in their projects? What are the most common
combinations of ML libraries used in practice? How does the ML development workflow affect
the ML libraries used? Answering these questions will (i) motivate researchers to understand the
challenge of using multiple ML libraries, (ii) open new opportunities for tool builders to assist
developers (e.g., addressing library co-evolution), and (iii) help hardware and library vendors to
make informed decisions.

4.2.1 Popular combinations of ML libraries: We performed static source code analysis as
described in Section 3.2.1 to identify the ML libraries that are used in the projects. We found
that 1,338 (40.10%) projects in our corpus use a combination of ML libraries (e.g., TensorFlow and
PyTorch), while the remaining 59.90% projects use a single ML library. Table 4 shows that, while
TensorFlow and PyTorch are the most popular libraries used by projects that depend upon a single
ML library, Scikit-Learn and TensorFlow are the most commonly used libraries in the projects that
use combinations of ML libraries.

We further analyse the combinations of ML libraries, by discovering association rules between
the ML libraries used in combination (e.g. “Projects which used TensorFlow also use X”). Finding
such rules can provide insight for hardware and ML library vendors to make informed decision for
improving the current features or introducing new features in their products. We use the Frequent
Pattern Growth (FP-Growth) algorithm [9] to identify the association rules (Section 3.4). Following
the guidance as in previous works [13, 147], we choose thresholds that are not too low and not to
high to ensure a trade-off between the number of rules and their relevance. We set the minimum
support as 130 (~10% of data) and the confidence threshold as 0.5.

Table 5 shows all the mined association rules. TensorFlow and Theano provide symbolic model-
building APIs where the developers can use them to build static computational graphs. For example,

Table 4. Library usage in projects

Table 5. Association rules

Single ML library projects | Multiple ML library projects

(2,002 Projects) (1,338 Projects) # ‘ Rule (antecedent = consequent)
Library Clients Library Clients 1| PyTorch = TensorFlow
TensorFlow 690 Scikit-Learn € L'~ 793 M 2| Theano = Scikit-Learn
PyTorch 502 1 TensorFlow € L! 7751 3| PyTorch = Scikit-Learn
Scikit-Learn 405 | Keras € L 5811 4| Keras = Scikit-Learn
Keras 1721 PyTorch € L 3341 5| TensorFlow = Scikit-Learn
Theano 138 Theano € L1 204 | 6 | Keras, Scikit-Learn = TensorFlow
Caffe 95| Caffe € L! 1261 7| Keras = TensorFlow

1L is the set of ML libraries used by each project.

the nodes tf.add(x,y) and tf.subtract(x,y) in TensorFlow can be used to build a computational graph
to perform addition and subtraction. However, the actual computation happens when the created
graph is transformed into session.run(). In contrast, PyTorch, Scikit-Learn, and Keras follow the
imperative programming paradigm where the compute happens at each line of the written code.
This is quite similar to how a Python program is executed. The rules 1, 2, 5, and 6 (in Table 5)
suggest that developers use a combination of libraries using different programming paradigms.
Moreover, the rules 2, 3, 4, 5, and 6 (in Table 5) reveal that Scikit-Learn is often used with all the
other five libraries. Scikit-Learn does not support GPU computing (hardware support), unlike the
other libraries that support both CPU and GPU computing. The association rules reveal that the
developers use libraries together that provide complementary programming paradigms, hardware
support, and different strains of ML algorithms (e.g., supervised learning, unsupervised learning
neural network and deep learning). Rule 7 (in Table 5) is not surprising as Keras is designed as a
higher-level wrapper over TensorFlow.

[Model Oriented]| [Model Oriented | [Data Oriented | [Model Oriented | [Data (I)rientedl
/7 \ -7 ,: I
/ \ - | !
|Scikit—learn” TensorFlowl |Scikit—learn || TensorFlow | | Scikit-learn | | TensorFlow | | TensorFlow | | Scikit-learn |
Scenario A (2.09%) Scenario B (44.10%) Scenario C (34.91%) Scenario D (18.89%)

Fig. 5. Four Scenarios for implementing Model-oriented (shown with full lines) and Data-oriented stages
(shown with dashed lines) with ML libraries

4.2.2 ML library usage in ML development stages: One possible reason for using a combi-
nation of ML libraries is that some libraries are better suited for certain stages of ML software
development workflow (described in Section 2). For example, developers used sklearn.impute for the
imputation of missing values in a dataset and tensorflow.nn for training a neural network.

We identify 1,002 projects from our corpus, that use a combination of ML libraries and contain
a requirements.txt. We then analyze the source code of these projects using the type binding
information obtained from Jedi (Section 3.2.2) and found 7,151 unique ML library methods used
by these projects. The first two authors, assigned two labels for each ML library method - (i) data
or model oriented and (ii) stage of the ML development workflow. We used a similar approach
described under thematic analysis in Section 3.5.2 for the labeling process. The labels are assigned
based on the description of the package (or the sub-package), in which the method is declared.
We depended upon the description in the sub-package if the two authors could not come to a
conclusion based on the description in the main package. We did not assign the two labels for the

13

methods that (i) do not have a description in its package, or (ii) the two authors could not come to
the same conclusion considering descriptions in all sub-packages, leaving 6,058 labeled APIs.

Our results reveal that (i) 44.10% projects use a combination of libraries for the model-oriented
stages only (Scenario B in Figure 5), (ii) 2.09% projects use a combination of libraries for the data
oriented stages only (Scenario A in Figure 5), (iii) 34.91% projects use a combination of ML libraries
for both the data and model oriented stages (Scenario C in Figure 5), and (iv) 18.89% projects use
different libraries for the data and model stage (Scenario D in Figure 5).

Table 6. Libraries used in ML development stages

Data Oriented Stages Model Oriented Stages
Data . Data. FeaFure .| Model Training MOdeil Model Occurrences | Scenario
collection | cleaning | engineering evaluation | Deployment
g sl 8 = | £ s <
focslafsla: $(85es5e § |5 ¢
S g8l 8 dlgs 2|8 5 B2y £ 2 =
R AR RN s 8
v v v 34 D
v v 27 D
v v v/ v v 31 C
v v v v/ 26 C
v v/ 23 B
v v 21 B
4 v 5 A
v v/ 4 A

Table 6 summarizes the top two ways of implementing ML development workflow using a
combination of ML libraries in each scenario described in Figure 5 (We have given the results in
our companion website [91]). For example, 31 projects use PyTorch for Data Collection and Model
Deployment, and use the combination of PyTorch and Scikit-Learn for Model Training. We also
observe that projects commonly use a combination of Scikit-Learn and TensorFlow for data and
model oriented stages respectively.

Software engineering practice has found that modular designs with low coupling and high
cohesion help create maintainable code in which it is easy to make isolated changes and improve-
ments [52, 107]. SOFTWARE-2.0 projects that use combination of ML libraries exclusively in stages
(Scenario D in Figure 5) do not introduce dependence between the data and model oriented stages
and therefore could be easier to evolve the models independently. In contrast, projects that use
combination of libraries in multiple stages (Scenario A, B and C in Figure 5) potentially add depen-
dence among different stages, thus increasing the complexity of maintaining and evolving the ML
workflow stages independently.

Observation 2: 40.10% of the projects in our corpus use a combination of ML libraries. 34.91%
of these projects share ML libraries between data and model oriented stages while 18.89% of
the projects use ML libraries exclusively in both data and model oriented stages.

4.3 RQ3: How do developers update ML library dependencies?

ML libraries are rapidly evolving and releasing multiple versions each year to fix bugs, enhance
performance or provide new features. How frequently do developers update their ML libraries in
comparison to their traditional libraries? How frequently do developers upgrade or downgrade
their ML dependencies? What are the other libraries that are updated along with ML libraries?
Answering these questions will (i) highlight common practices for ML developers to follow, and (ii)
provide new opportunities for tool builders to assist developers to update their ML dependencies.

From our corpus of 3,340 projects we retain all the projects that contain the requirements.txt, thus
resulting in a set of 1,986 projects to answer this research question. We compare ML and traditional
library version update frequencies in Section 4.3.1 using all 4,057 git commits that perform library
updates. In these commits, we identified 1,055 commits in which at least one ML library version
update was performed. We use them in Section 4.3.2 to understand library updates that trigger
with ML library update. We further identified 8,389 library version updates from the git commits to
understand the kinds of library version updates in Section 4.3.3.

4.3.1 Update frequencies in ML libraries vs traditional libraries: To understand how fre-
quently projects update their libraries, we perform a longitudinal study in the commit history of all
1,986 projects that use requirements.txt. For each project in each category (i.e., ML vs traditional),
we compute the update ratio, the ratio of the total number of library updates for that category to
the total number of updates for the entire project (including all libraries across the categories). To
achieve this, we identify all library version updates applied on projects using the dependency model
explained in Section 3.3.1. Since the category of traditional libraries contains significantly many
more libraries than the six ML libraries that we study, we need to normalize the aforementioned
ratios with the number of libraries in each category.

Table 7. Association rules for updates
Fig. 6. ML library update ratio vs traditional library update ratio # | Rule (antecedent = consequent)
The box represents the interquartile range (IQR=Qs3 — Q1) bounded by first and third

quartiles and the central mark indicates the median. Anything outside 1.5 X IQR, 1 | Scikit-Learn = Pandas
shown with whiskers, is labeled as an outlier. 2 | Scikit-Learn = NumPy
ooe 3 | Matplotlib, Scikit-Learn = Scipy
g=-L s .
Traditional | | ‘ @00 0 0 o 5 4 | Scikit-Learn = Scipy
Libraries 0,20,05 03012 5 | Matplotlib, TensorFlow = NumPy
1=0.
6 | Theano, PyYAML = Keras
,=0.08
ML ‘ ‘ ‘ ° ! 7 | Tensorflow = Matplotlib
“branesoﬁoloo 05=0.33 8 | Matplotlib, NumPy = TensorFlow
9

0.0 0.2 0.4 0.6 0.8 1.0 Keras = TensorFlow

Figure 6 shows the distributions of the ML and traditional library update ratio as a violin plot,
which indicates that projects update their ML libraries more frequently than the traditional libraries.
To assess if there is a statistically significant difference, we applied the Wilcoxon Signed-Rank test
on the paired samples of ML library update ratio and traditional library update ratio for each
project. The test rejected the null hypothesis that the ratio of traditional library update is more
than the ratio of ML library at the significance level of 5% (p-value = 1.15 X 1078). We used the
Hodges-Lehman estimator to quantify the difference between the ratios of library updates in the
ML libraries and traditional libraries, as it is appropriate to be used with the Wilcoxon Singed-Rank
test. The value turned out to be 0.0582, which is equal to the estimated median of the difference
between the ratio of library updates in a sample taken from the ML libraries and a sample from the
traditional libraries.

So far we found that developers update ML libraries more frequently than the traditional libraries.
How do the ML library updates compare to traditional library updates in terms of complexity and
developer effort? To answer these, we triangulate our quantitative findings with the qualitative
analysis in Section 4.4 and Section 4.5.

4.3.2 Cascading library updates: To understand the impact of updating the ML library on the
entire software system, we study all 1,055 identified commits where a ML library was updated.
We found that in 41.52% of these commits, more than one library was updated. This shows that
developers often update some other libraries along with a ML library. We call this a cascading
library update. Researchers [76, 83] found that developers may take multiple commits to complete

15

a single logical change, so researchers use a sliding window to study it. A sliding window can also
introduce a large number of false positives. Therefore our results are a lower bound on the total
number of the true cascading library updates performed.

Studying just the frequency of cascading library updates is not enough, because it does not
identify the trigger of the cascading library updates. Association rule mining discovers rules that
contain antecedents and consequences, e.g., when the library(s) X is/are updated, library(s) Y is/are
also updated. We treat the set of libraries updated in each commit as a transaction, and apply the
FP-Growth algorithm (minimum-support=10% of data, confidence=0.5) [55] to mine the rules. The
mined rules shown in Table 7 reveal that antecedent of the rules (except rule 8) contain at least one
ML library. Thus, developers need to be aware that updating one ML library triggers cascading
library updates.

It is common for ML libraries to be built on top of composite libraries such as NumPy that provide
numerical compute algorithms. These composite libraries are automatically downloaded once the
developer installs the ML libraries into the development environment. Moreover, ML library clients
often use other supportive libraries such as MatplotLib if they want to further process or visualize
the results produced by ML libraries, or other libraries for unit testing, web development, etc.

The association shown in Table 7, reveal that developers often update the composite libraries
alongside ML library updates. For example, the rules 2, 3, 4, 5, 6, 8, and 9 (Table 7) reveal that
developers update NumPy, Scipy, or PyYYAML with Keras, TensorFlow, Theano or Scikit-Learn. Simi-
larly, the rules 6 and 9 (Table 7) further reveal that developers update TensorFlow or Theano with
Keras. TensorFlow or Theano are used as composites of Keras and hence developers update them
with Keras. We found that 60.41% of cascading library updates include at least one update of their
composite libraries.

Fig. 7. Number of libraries in cascading library updates (ex- Table 8. Libraries in cascading updates

cept ML libraries and dependency libraries of ML libraries).

‘ Library ‘ Freq. ‘ ‘ Library ‘ Freq. ‘
The box represents the interquartile range (IQR=Q3 — Q) bounded by first Matnlotlib 106 certifi 7
and third quartiles and the central mark indicates the median. Anything out- P
side 1.5 X IQR, shown with whiskers, is labeled as an outlier. Pandas 75 boto3 14
tqdm 31 botocore | 13
requests 25 urllib3 13
Updated Q2=1.00
supportive | | OO — &6 O—O—B— pytest 23 tornado 11
librari
per Icorrinmeii 0:1=0.00 Q3=3.00 opencv-python | 19 seaborn 10

0 2 4 6 8 10 12 14

Furthermore, the rules 1, 3, 5, 7, and 8 (in Table 7) indicate that developers update Matplotlib or
Pandas with Scikit-Learn or TensorFlow. Matplotlib and Pandas are supportive libraries for Scikit-
Learn or TensorFlow. Understanding cascading library updates that involve supportive libraries
is more challenging to study using associative rule mining because they do not have the same
minimum-support (Section 3.4) levels as the composite libraries. To study the supportive libraries,
we removed all the composite libraries from the cascading library updates. Figure 7 shows the
distribution of the number of supportive libraries that are updated together with ML libraries. The
median of the distribution shows that ML library updates usually contain 1 supportive library.

In the association rule generation, we use minimum-support count for the FP-Growth algorithm
which is 10% of the dataset. Hence the algorithm only accounts for the libraries that appear above
the minimum-support count for the rule generation. Therefore, the rules in Table 7 do not show
the infrequent libraries that are updated with ML libraries. We use the FP-Growth algorithm on the
aforementioned supportive libraries to generate frequently updated libraries and their frequencies
instead of mining the association rules. Table 8 summarises the libraries that appear in more than
ten cascading ML library updates. The complete list is available on the companion website [91]. We
manually analysed the application domains of these supportive libraries and observed that libraries

that use in Web developments (e.g., tornado, urllib3, certifi, and Requests), Data Visualization (e.g.,
Matplotlib and Seaborn), Software Testing (e.g., PyTest), and Software Developments tools (e.g., boto3,
botocore) are usually updated together with ML libraries.

We observed that developers include both composite libraries and supportive libraries in cascading
library updates. One possible reason for including composite libraries in cascading updates is that
ML libraries depend on specific versions of composite libraries. For example, Theano 0.9.0 release®
is only compatible with NumPy versions between 1.12 and 1.9.1. However, it is surprising that
developers update supportive libraries alongside ML libraries.

4.3.3 Kinds of ML library updates: To understand the frequencies of version update kinds
mentioned in Section 3.3.2, we studied 1,141 ML library updates and 7,248 traditional library
updates. We considered all the version updates performed in the projects and categorized the
updates of ML and traditional libraries according to the definitions in Table 2.

TensorFlow Keras Sklearn Strict d
18% 22% & rict upgrade
o) Few versions
27% N
46% 37% 5 B)
13% : 11% 47% Strict downgrade
14% Non-strict upgrade
129% 1% 11% Non-strict downgrade
’ 1% 10% L10% 9% 1% - comng
10% More versions
14% PyTorch 11%Theano 15% Caffe ~
8% 9% ::
10% o o 5 N
58% 8% [oo 6% B 1% B
9% 6% 6% o I Y
o] o 1 = B 1.4%
7%] 2% 3%
2%

Fig. 8. The bar chart shows the distribution of cumulative update kinds for all ML libraries. The pie charts
show the breakdown for each library.

From all the version updates for ML libraries, we identified (i) 48.62% strict upgrades, (ii) 12.81%
strict downgrades, (iii) 10.23% non-strict upgrades, (iv) 9.23% non-strict downgrades, (v) 1.38%
more version supports and (vi) 17.73% few version supports. Developers most frequently perform
strict upgrades compared to non-strict upgrades. We also observed that in 22.04% cases developers
performed library downgrades (strict and non-strict). We are interested to understand if developers
downgrade libraries irrespective of whether it is ML or traditional libraries. We found that 10.90%
of the traditional library updates were downgraded (strict and non-strict). This highlights that ML
libraries are downgraded more compared to the traditional libraries. We further analysed git commits
which have performed traditional library downgrades and observed 27.21% of the traditional library
downgrades have performed with at least one ML library downgrade. It substantiates that 27.21%
of traditional library library downgrades are done with ML library downgrades.

From our survey responses for Group-A, we try to understand the motivation for downgrading
ML libraries. We found three motivations for performing library downgrade - (i) Unsatisfactory
benchmarking results (e.g. developer S7 said, ‘T downgraded the library after benchmarking the new
ML model, and comparing it to the benchmark of the old ML model”), (ii) Mismatched hardware
instruction set (e.g. developer S8 said, T downgrade the TensorFlow because of this problem: Starting
from 1.6 release, our pre-built binaries will use AVX instructions. This may break TF on older CPUs”),
and (iii) library version conflicts (e.g., developer S9 said, “The time consuming part is to find the
conflict libraries and set the version to a fixed version number, i.e. usually a downgrade”).

Shttp://deeplearning.net/software/theano_versions/0.9.X/requirements.html

http://deeplearning.net/software/theano_versions/0.9.X/requirements.html

Observation 3: Developers update ML libraries more frequently than the traditional libraries.
Moreover, 41.52% of ML library updates trigger cascading library updates and 60.41% of them
update a composite library. We also observed that ML library downgrades are more frequent
(22.04% of version updates) compared to traditional libraries (10.90% of version updates).

Table 9. Top challenges of ML library version updates

Challenge Description Percentage

Updating the source code for adapting to the breaking changes and depre-

Updating source code . 51.85%
cation.
(i) Pre-trained ML model’s incompatibility across the ML library versions.
. (ii) Under-performing (in terms of precision and recall) decision thresholds
Retraining 40.74%
of ML models.
All these require developers to retrain the ML models.
Library version conflicts Mismatch of version usage due to direct and transitive dependencies. 30.86%
Understanding release documenta- Release documentation does not provide enough information about resolv- 20,997
tion ing breaking changes. .
i . . . Supporting multiple versions of the ML libraries in the latest release of the
Supporting multiple library versions . . . 14.81%
software is tedious due to frequent API breaks and deprecations.

. After updating the ML libraries developers retrain their models and com-
Benchmarking new ML models o 9.88%
pare the performance of it with the old model.

. Libraries stop supporting older versions of Python. Therefore, clients are
Moving to Python 3 7.41%

forced to update their Python version when updating the library.

Survey group = Group A and B
Number of responses = 81

4.4 RQ4: What challenges arise when updating ML libraries?

The ML libraries continuously and rapidly release updates which fix bugs, enhance features and
introduce new functionalities to compete with other ML libraries. For example, Table 1 highlights
that TensorFlow released almost 24 versions each year. The respondent S19 said, “It is easier to stay up
to date with a more stable package like Matplotlib than it is with an evolving package like scikit-Learn”.
Another respondent S18 said, “ML libraries are dependent upon input data and pre-trained models,
which makes it difficult to update them”. Therefore, understanding the challenges for updating ML
libraries that are dependent upon input data and pre-trained models will highlight blind spots in
research and tool support for SOFTWARE-2.0.

To gain a deeper insight into the associated challenges, we employ a quantitative and qualitative
method (developer survey). We use 81 survey responses from groups A and B (Table 3), to identify the
impediments to update ML dependencies and understand the reasons behind it. We then analyzed
the source code to highlight how widespread are the problems identified from the developer surveys.
Table 9 summarizes the challenges that are identified from the developer surveys. In some survey
responses, developers expressed multiple challenges (thus the percentages do not add to 100%). In
the following subsections, we provide a detailed explanation for the challenges along with real
examples from source code and quotes from the developers.

4.4.1 Retraining.

(1) Incompatibility of serialized ML models: The model training stage of ML software devel-
opment life cycle is resource-intensive [8]. Survey respondent S15 said, “Library updates are almost
always painful. For ML libraries like Scikit-Learn and TensorFlow, issues usually arrive from lack of
binary compatibility of serialized models, requiring retraining”. A case study done at Twitter [88]
describes that the models are trained, serialized and then written to memory, to facilitate reuse. Our

18

survey respondents also confirmed this while describing a problem that arises for the serialized ML
models with library version updates. When developers update their ML library dependencies, they
are often unable to read the previously serialized model. Hence, they have to retrain the model
which is time-consuming and tedious. Survey respondent S16 said, “In my experience, a model saved
in python 3.6 cannot be loaded in python 3.5, and same for python 3.5 -> python 3.6”. This further
highlights the incompatibility of serialized model across Python versions.

A recent study done at Microsoft [8] describes the importance of tagging ML models with a
provenance tag. This tag identifies the dataset that a model has been trained upon and the version
of the model. Our survey responses revealed that apart from the training data, developers track
the models based on library and language version. Developer S33 said, “Currently, we have four
separate pre-trained models, covering older/newer Scikit-Learn versions in both Python 2 and 3”. This
opens new opportunities for researchers and tool builders to assist ML software developers, who
continuously maintain, evolve and adapt the serialized models in addition to the source code.

(2) Selecting decision thresholds: Some ML models (like a SVM classifier for spam emails) work
with decision thresholds. Developers conduct several experiments to select decision thresholds
to get good trade-off on certain metrics, such as precision and recall. Sculley et al. [121] observed
that changing the training data may force users to re-select a new threshold value from possible
threshold values. Our survey respondents revealed that even updating the ML library may force
them to re-select the threshold values. The process of re-selecting these values is tedious and
time-consuming. This highlights a need for a technique that preemptively identifies when a version
update might affect the decision thresholds and assist the clients in choosing the new values.

44.2 Benchmarking new ML models: “In scikit-learn >= 0.20, they have changed the implemen-
tation of logistic regression and SVM, so the output of these two algorithms will be different (even
if we fixed all the parameters)”, said developer R34. ML library developers release updates that
introduce optimisations and enhancements. Usually the developers benchmark their models before
and after the library update. They expect the same or improved performance and accuracy for
the ML algorithms after a library update. If the update does not meets the expectations, they fall
back upon the previous version of the library. Our respondents revealed that this process is very
time-consuming. This constrains the developers to keep their ML library dependencies up-to-date.
try:
from sklearn.metrics import calinski_harabasz_score as chs

except ImportError:
from sklearn.metrics import calinski_harabaz_score as chs

Fig. 9. Supporting multiple versions of Scikit-Learn

4.4.3 Supporting multiple library versions: Respondent S19 said, “We are currently supporting
7 versions of scikit-learn; 2 major versions, 0.20 and 0.21 and 5 minor versions.”. About 15% of the
respondents reveal that they support multiple versions of the ML libraries in their project. This
is challenging because developers have to implement workarounds for breaking changes and
deprecation. The survey responses show that developers apply the import statements with exceptions
handling strategy, to support multiple ML library versions with potential breaking changes and
deprecation amongst them. For example, Figure 9 shows how the project Yellowbrick* applies the
exception handling strategy to use the module calinski_harabaz_score in Scikit-Learn 0.20.0 and
the renamed module calinski_harabasz_score in Scikit-Learn @.20.2. Likewise, developers can keep
adding more try-except statements to handle other breaking changes and deprecation for the same
module in the next version and support three library versions.

4https://github.com/Kautumn06/yellowbrick/commit/c525d1276d3d74d9e31£a7039906d3bd47f92600

https://github.com/Kautumn06/yellowbrick/commit/c525d1276d3d74d9e31fa7039906d3bd47f92600

We statically analyzed the source code of all 3,340 projects and found that 21.10% of the projects
use this strategy. The respondent S23,“Supporting multiple version adds some overhead, which
increased code complexity.”. Our analysis shows that ML libraries like TensorFlow release an average
of 24 versions each year (Table 1). Using the import statements with exceptions handling strategy to
support multiple ML library versions would eventually increase the complexity of version updates.
For example, if a project decides to support newer version(s) and stop supporting some older
version(s) of a library, developers have to clean up the dead code that supported the older version(s)
and add support for the new version(s).

Table 10. Number of Projects that use dependency libraries of ML libraries

TensorFlow Scikit-Learn PyTorch Keras Theano Caffe
1,632-Projects 1,204-Projects 842-Projects 753-Projects 342-Projects 221-Projects
library #projects library #project library #projects library #projects library #project s library #projects
numpy 1521 B numpy 1105 B numpy 781 M numpy 638 Bl numpy 305 B numpy 197
six 392 1 scipy 644 M torchvision 467 M scipy 247 B scipy 178 Bl scipy 113 W
h5py 130 | joblib 77 | PIL 311 B six 120 1 six 59 1 matplotlib 101 m
absl 45 - - - six 98 | h5py 93 | - - - PIL 93 W
grpc 25 | - - - - - - yaml 46 | - - - yaml 32 1

4.4.4 Library version conflicts: Survey respondent S12 said, “it’s difficult to maintain the
dependencies, because of the conflict between two library versions”. Problems arise when using
shared libraries on which several other libraries have dependencies but they depend on different
and incompatible versions of the shared libraries [35]. For example, a project uses NumPy with
TensorFlow and NumPy is a dependency library of TensorFlow. Therefore updating NumPy could
lead to version conflicts with TensorFlow®.

We are interested to find how widely this problem can happen in SOFTWARE-2.0. Therefore, we
identified all the dependency libraries of the ML libraries and analysed import statements of all our
3,340 projects to find the use of these libraries. Table 10 summarizes results with the number of
projects which use each dependency of ML libraries. Due to space limitations, we summarised only
the top five libraries and listed all the results on our companion website. From our static analysis,
we identified that 95.37% of the projects directly depend on transitive dependencies generated
by ML libraries. This substantiates how vulnerable the ML library clients are to the dependency
version conflicts and how the use of a combination of ML libraries will further amplify the issue.
Further, In Table 10, we observed that ML library clients and library vendors mostly share NumPy
and making version constraints for NumPy will initiate more version conflicts in ML library clients.

4.4.5 Updating source code.

(1) Change of computing architecture: The survey respondent S21 said “Tensorflow changed
from using sess.run to tf.Estimator, which changes "how" we can train on using multiple GPU. (tower
gradient -> mirrored strategy)”. These changes require rewriting the code that demands significant
developer effort to finish ML library update process.

(2) Python-specific source incompatibilities : Apart from the catalog of API changes proposed
by previous researchers [30, 38, 40] for Java, Python showcases different kinds of changes such
as default value update, keyword rename, keyword type change and transform parameter from
keyword to positional. Islam et al.[69] observed that developers search for software breaks that

Shttps://github.com/tensorflow/tensorflow/issues/21939

20

https://github.com/tensorflow/tensorflow/issues/21939

happened due to keyword renames between library versions. However, researchers have not delved
into extending the catalog of the API changes beyond Java, for languages like Python.

(3) Deprecation: The respondent S19 said, “Deprecated functionality is the most work especially
when there isn’t a 1-to-1 replacement”. Often the deprecation documentation suggests none or
multiple alternative APL Since the deprecate-replace-remove [39] cycle is not always followed
when deprecating ML APIs, handling such deprecation is challenging because developers have to
(i) find alternative APIs for the deprecated APIs, (ii) replace a deprecated API with multiple APIs
(iii) implement workaround for the deprecated APIs or (iv) add another ML library that provides
the deprecated capability.

(4) Library splitting: Apart from the above changes, ML libraries are also subjected to splitting.
Sometimes ML library developers create new library by separating a portion of the ML library.
Respondent S27 said, “Scikit Learn announced that Python2 support will be dropped and therefore
library six will not be part of sklearn.externals anymore”. This will force the developers to update
the separated APIs and maintain another separate dependency along with the original library.

4.4.6 Python 2 to Python 3: “There’s also the Python 3-only gap imposed by the latest version of
Scikit-Learn - we can’t upgrade to that until our package stops supporting Python 27, said respondent
S27. Python introduced backward incompatibility when they released Python 3. All ML libraries
adopted Python 3 and some of them have stopped supporting Python 2. For example, TensorFlow
release note® states, “TensorFlow 2.1 will be the last TF release supporting Python 2”. If the clients
want to use the latest version of these ML libraries, they have to adopt Python 3. However, this
could lead to many problems, especially if the client depends upon a library that does not support
beyond Python version 2. Malloy et al. [92] also confirm that developers have not been willing to
make a full transition to Python 3 from Python 2.

Observation 4: ML library update process consists of unique challenges such as "retraining”,
"benchmarking new ML models" and "updating decision thresholds" due to data/model depen-
dency. Our quantitative analysis shows ML libraries are highly vulnerable to the challenges
"supporting multiple library versions" and "dependency hell".

4.5 RQ5: What help do developers seek for updating ML libraries?

“TensorFlow often has backward-incompatible changes which make it difficult to know if the code in
our project will continue to run as expected. Also, in general, we’ve had issues with new versions of
packages breaking the build so not updating the version made it easier to ensure everything works”, said
a survey respondent. Continuous evolution and maintenance of software are the essential factors
for a healthy codebase. Therefore, it is important for researchers to identify and provide solutions
to the pain points developers face when updating ML libraries. What tools do developers use to
update ML libraries? What are the gaps in the current tooling? How can the current tooling be
extended to better assist developers to update their ML libraries? This will open new opportunities
for tool builders and researchers, to assist developers when performing ML library update.

We use answers from developer Group-A (Table 3) to identify the current tool usages and
development effort for updating ML libraries in Section 4.5.1. Further, we use answers from both
group A and B to spot gaps in the current tooling and ideas for some new tool assistance specifically
for updating ML libraries in Section 4.5.3.

Shttps://github.com/tensorflow/tensorflow/releases/tag/v2.1.0-rc0?linkId=78227050

21

https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0-rc0?linkId=78227050

Table 11. Tools used Table 12. Development effort

Suggestion Percentage Effort Percentage
Continuous integration 38.33% Less than a day 45.00%
Version control system 31.67% A day 5.00%
Automated test coverage generation 13.33% Few days but less than week 13.33%
Static Analysis tools 11.67% A week 18.33%
Containers 6.67% Few weeks but less than month ~ 3.33%
API update tool 3.33% Months 5.00%
Manually 48.33% I don’t know 10.00%
Survey group = Group A Survey group = Group A
Number of responses = 60 Number of responses = 60

4.5.1 Tools used by developers: The survey results reveal that 48.33% of the developers do
all the required changes manually while 43.33% of the developers use tool support to update ML
libraries. We summarise the observed tools in Table 11. The rest of this subsection explains how
ML developers use these tools in the ML library update process.

(1) Version Control System (VCS): Survey respondents reveal that ML models are checked for
fairness, performance, or accuracy after the update, prior to releasing it into production. Respondent
S47 said, “if we are not happy with the update, git version control helps to roll things back if needed”.
As highlighted in Section 4.4.1, developers of SOFTWARE-2.0 version data and ML models along with
the source code. Moreover, a recent online article [53] discusses the limitation of the current version
control system (e.g., Git) to assist in ML-specific problems like (i) storing and versioning large files
(ii) versioning data, models and source code such that multiple experiments can co-exist. Tools like
DVC’ and LFS? try to solve this problem. Surprisingly, none of of our respondents mentioned these
tools, highlighting the lack of awareness in the community.

(2) Static analysis tools: To identify undesirable behavior of a program that might lead to vulner-
abilities, developers use static analysis tools after a ML library update. Respondent S60 said, “if
there is more static analysis in the form of Python linters and Mypy, the source code is more robust
against error. So mypy usage just builds trust”. Tools like Jedi, Mypy [100] are static type checkers for
Python that aim to combine the benefits of dynamic typing and static typing. MyPy performs type
checking on program that have type annotations (introduced in Python-v3.5 in 2015). Moreover,
linters flag the presence of suspicious constructs, stylistic errors, code smells or bugs, thus enforcing
a standard quality of the source code.

(3) Continuous Integration: Continuous integration (CI) automates the compilation, building,
and testing of software. Hilton et al. [60] attribute the proliferation of CI for identifying bugs, testing
across multiple platforms, or enforcing a workflow. Respondent S55 said, “Most of our dependency
version issues after a library update have been caught using CI with AppVeyor and Travis”. Our survey
shows that 38.33% of the projects use a CI system to identify errors or bugs in the program after a ML
library update. However, SOFTWARE-2.0 systems change on three axes: the source code, the model,
and the data. Therefore, SOFTWARE-2.0 systems are harder to develop, harder to deploy, harder to
test and harder to explain than SOFTWARE-1.0. Companies like ThoughtWorks® are working on
adapting CI systems that are designed for SOFTWARE-1.0 to better suit SOFTWARE-2.0. Our survey
respondents still rely on CI designed for SOFTWARE-1.0 such as AppVeyor and Travis. Therefore, it

"https://dvc.org
8https://git-1fs.github.com
“https://www.thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml

22

https://dvc.org
https://git-lfs.github.com
https://www.thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml

Table 13. Requested tool capabilities

Suggested tool Percentage ‘ ‘ Suggested tool Percentage
Dependency analysis/management tool 34.43% ‘ ‘ Change summarizing tool 16.39%
Source Code update tool 31.15% H Impact analysis tool 8.20%
Model coverage detection tool 24.59% ‘ ‘ Do not like to have any tool 6.56%
ML Model benchmarking tool 18.03% ‘ ‘

Survey group = Group A and B

Number of responses = 81
highlights opportunities for these open source CI systems to evolve and adapt to mitigate challenges
for SOFTWARE-2.0.

(4) Containers: Developers use containers (Docker) to implement clean independent environments
for builds. Respondent S59 said, “We use Docker which I feel was very helpful in library update process.
Dockerfile clearly tells the instructions to follow and we can easily experiment with changes”. Our
survey shows that 6.67% of the projects use a container tool. Applications like Docker were originally
designed to support SOFTWARE-1.0. New open source tools like MLflow'? and Pachyderm!! are
designed to specifically assist developers containerize SOFTWARE-2.0, so that developers can manage
and track multiple experiments with different models or data. However, none of our respondents
mentioned these tools that are specifically designed to support SOFTWARE-2.0.

(5) Source Code Update: Respondents revealed two API update tools that they use to perform ML
library API updates - (i) Dependabord [36] reports the available new version updates and creates
pull requests with API update changes (ii) TensorFlow upgrade tool adapts the TensorFlow clients
to the API update. For example respondent S44 said, “This update consisted mainly of renaming
functions and prefixing them with tensorflow.compat.v1 and were done mostly automatically with the
tf_upgrade_v2 tool shipped with TensorFlow. This tool had a bunch of bugs at the time though so it did
not work perfectly”. Section 4.4.5 highlights the source code adaptations performed by developers
when updating the ML libraries, such as changing computing architecture or Python-specific source
incompatibilities. However, it remains unknown how representative are the source code adaptations
performed by these tools in the real world.

4.5.2 Library update effort: We surveyed developers to understand the estimated effort for
ML library updates and Table 12 summarizes the results. It shows that 39.99% of respondents take
more than a day to update ML library versions while 26.66% of respondents take a week or more to
update the ML library versions.

4.5.3 Tools suggested by developers: Table 13 summaries the new tool ideas revealed by survey
respondents. In the following section, we provide a detailed explanation for the tool suggestion
along with quotes from the developers.

(1) Testing tools

Model Coverage: Survey respondent S88 said, “Normal software update requires only to test source
code, but ML projects need a test for the dataset. A little bit of change in data will result in a crash.
Therefore, knowing the tested ML model and code coverage from the testing dataset would be helpful.”.
Depending on how representative the testing data is of the real-world data, the tested coverage
of the model could be incomplete and the model may not be a true representation of real world
application. Therefore, the concept of code coverage (i.e., a metric that describes the degree to which
the source code of a program is executed when a particular test suite is executed) of SOFTWARE-1.0

Ohttps://www.mlflow.org/docs/latest/projects.html
Uhttps://www.pachyderm.com/platform/#community

23

https://www.mlflow.org/docs/latest/projects.html
https://www.pachyderm.com/platform/#community

should be extended to model coverage in SOFTWARE-2.0. Researchers [109, 132] suggest test dataset
that gets full or high neurons activation of a deep learning model can be considered as a good
dataset for testing. Building end user tools that implement these techniques and integrating them
to CI of SorTwARE-2.0 will help developers when deciding to ship the ML model to the production.
For an example, developers in SOFTWARE-1.0 say “We can’t go into production with less than 87%
test coverage'?” whereas developers in SOFTWARE-2.0 can say “We can’t go into production with less
than 87% model coverage”.

ML Model benchmarking tool: ML developers benchmark the SOFTWARE-2.0 before and after a ML
library update as described in Section 4.4.2. Respondents requested tool support that can benchmark
the software and identify good trade-off on the metrics such as precision, recall, performance,
energy consumption, model bias, etc. It will help in the decision process when deciding to ship an
updated ML model into production.

(2) Update management tools

Impact analysis tool: Survey respondent S77 said, “An automatic task that updates the ML libraries
and analyse the codebase to check for run time crashes due to ML model changes would be a significant
removal of overhead”. Tonella [134] et al. studied the impact of source code changes on the software.
Ren et al. [114] propose a technique that detects mapping between the updated test cases and
the updated source code. However the current impact analysis techniques should be extended for
SOFTWARE-2.0, to identify the impact of ML model change (introduced by an update) upon the
source code.

Dependency analysis/management tool: Survey results reveal that developers frequently face
challenges due to dependency conflicts. Moreover the quantitative analysis Section 4.4.4 highlights
that 95.37% ML projects are vulnerable to dependency conflicts. Survey respondents want to have
automated support for (i) reasons about version conflicts considering all direct and transitive
dependencies, and (ii) recommends the possible compatible library version combinations. Ying et
al. [141] propose a tool that identifies version conflicts by analysing the requirements.txt. However, it
does not recommend possible library version combinations that can resolve the conflicts considering
runtime errors.

Change summarising tool: Before updating ML library from one version to another version,
developers need to understand all the changes between the two library versions. Since the frequency
of releasing ML library versions is high, number of versions between source and destination versions
will also be high. Therefore, understanding release documentation/code changes in a series of
releases are identified as a painful task. Respondent S79 said, “What helps me when updating is
a clear changelog in text and a git diff compared to the foregoing releases”. Foo et al. [47] present
a tool to automatically check if a library update between any two library versions, introduces
an API incompatibility for the software. While highlighting the applicability of these tools for
SOFTWARE-2.0, we observed that apart from the API incompatibilities, users expect a detailed
description with a summary of features, bug fixes and non-resolved bugs between any two versions.

4.5.4 Discussion: Section 4.4 describes a plethora of challenges that developers face when
developing SOFTWARE-2.0 and Section 4.3.1 highlights that developers update ML libraries more
frequently compared to the traditional libraries in the projects. Moreover, we found in Section 4.5.2,
that (39.99%) of the survey respondents required more than a day’s effort to update the ML library.
Section 4.5 highlights that the tools (e.g. VCS, static analyzers) that developers use are inept for
SoFTWARE-2.0. Therefore, all of these observations together highlight the requirements of adapting
existing tools and creating new tools to better assist SOFTWARE-2.0 developers.

12https://martinfowler.com/bliki/TestCoverage.html

24

https://martinfowler.com/bliki/TestCoverage.html

Observation 5: We observed that 39.99% of the respondents take more than a day to complete
a library update process. Respondents use the tools that are designed to fulfill the requirements
of SOFTWARE-1.0 while they are requesting specific tools to evolve SOFTWARE-2.0.

4.6 RQ6: What challenges arise when retrofitting ML libraries?

There is an abundance of SOFTWARE-1.0 systems that can be improved by transforming to SOFTWARE-
2.0. For example, detecting anomalies in old banking systems, making mobile applications more
personalised, suggesting items in old retail systems, etc. Some of these software systems have been
developed before ML gained widespread adoption. While the new software applications already
leverage the advantages of ML, we would like older software applications to take advantage of
these opportunities. What motivates developers to retrofit ML into their existing systems? What
are the challenges of retrofitting ML to an old software system? Answering these questions will
motivate SOFTWARE-1.0 developers to integrate ML techniques into existing software. It will also
highlight blind spots in current research and tool development while opening new opportunities
for researchers and tool builders.

= 4 >

3 >> »

S > Contacted Total

i_gj 34 > }‘m Cluster Retrofitted?
P P A Developers | Responses

E *&‘*@Q*‘ ® 6 2 2 (100%)
§ 21 ® A g
3 ’ v @ 22 4 4 (100%)
5] LA v ® 25 7 6 (86%)
= saias v ® 75 15 12 (80%)
£ ¥ 2 wv

s 04 v wew v

¥ .
: T T T T Table 14. Survey responses in each cluster
Number of all the commits (log10(x))

Fig. 10. ML retrofitting commits

4.6.1 Project selection: We first collect a set of projects that retrofit ML. For this purpose, we
first identify projects that introduce ML significantly later in the project life cycle. Figure 10 shows
a scatter plot, where each point in the plot corresponds to the point in the life-cycle of a project
when ML was introduced. The x-axis indicates the total number of commits in the version history
of the project (N;) and the y-axis indicates the total number of commits before introducing ML in
the version history of the project (N,). We then apply the K-Means clustering technique to group
projects that have introduced ML at similar points in their lifetime, as shown in Figure 10.

The value of “k” (i.e., number of clusters) in K-Means needs to be manually provided. To choose
the optimal value of “k”, we use Silhouette analysis [118]. For each data point, we compute the
Silhouette coefficient (s), where -1 < s <+1. It measures how similar a point is to its own cluster
compared to other clusters. Hence large s values are preferred. We found that the mean s of all data
points was close to 1 for k = 8,9, 10, and 11. We then manually analyzed the clusters at these values
of k, and concluded that k =9 was the most optimal value because the cluster sizes were uniform
and the mean of all clusters was the largest.

It can be observed from Figure 10 that projects in clusters 0, 1, 2, 3, and 4 have a very short
version history or introduce ML very early in their lifetime (within the first 100 commits). This
means that the projects in these clusters adopted ML at their inception and did not retrofit ML.
Therefore we discard these projects from our further analysis to understand the challenges around
retrofitting ML libraries.

We contacted 128 developers who retrofitted the ML into the projects in clusters 5, 6, 7, & 8. One
of our survey questions to these developers, confirms if the developer agreed that the project was

25

mature before adopting ML. Table 14 shows that 85.71% of the developers we contacted, agreed
that their project retrofitted ML. We then studied the motivations and challenges for retrofitting
ML by analysing the answers from these developers.

4.6.2 Motivations for retrofitting ML libraries: To find out the motivations why developers
retrofit ML libraries, we surveyed the developers in Group-C (Table 3). We found the following
scenarios that motivate developers to retrofit using a ML library.

(1) Add some brand new functionality: We found that 39.29% of the survey respondents in
Group-C started using ML algorithms when they added brand new functionality to their applica-
tions. For example, to emulate Instagram filters, project Pixelhouse!® (an animation library) used
TensorFlow to learn a neural network that approximates the functionality of the filter. Similarly, the
project Artemis!'* (a framework for organising experiments) introduced hyperparameter search
using Scikit-Learn.

(2) Replace existing non-ML techniques with ML: We found that 21.43% of the survey respon-
dents migrated from deterministic rule-based computation to probabilistic computation that relies
on ML algorithms implemented by the libraries. These ML algorithms are totally data-driven, and
their models are trained on historic data which is labeled by a human domain expert. Developers
continuously adapt to the changing trends and improve the models using feature engineering,
changing the algorithm, or parameter tweaking. For example, the developer of an automatic music
generation project Musegen'® said, “We don’t want to use any rule-based models, hand-craft grammar
or presets to compose songs. Therefore, we removed them and decided to use ML/DL to let computers
find and learn patterns ... Finally, we believe learning patterns from big data would produce more
creative results than merely writing rules”.

(3) Augment existing functionality: We observed that 14.29% of survey respondents enhanced
existing functionality using ML techniques. For example, to enhance the audio experience for its
users, AutoEq'® (an automatic audio equalizer) used TensorFlow to optimize the parameters of the
biquad filter. Similarly, Samacharbot2 (a Reddit bot for summarizing news) improved the reading
experience for its users by scraping news articles using ML-based text summarization techniques.

(4) Replacing a ML algorithm with ML library: We found that 7.14% of survey respondents
replace their own implementation of ML algorithms with the one provided by third-party libraries.
Developer S92 said, “When I found the project Pykrige'’, it was a natural fit for the Sklearn framework.
Newer advanced algorithms could be easily derived from the existing algorithms in the Pykrige package
that the Pykrige maintainers were not aware of at that time”.

(5) Use mathematical or data packages from ML library: We found that 3.57% of survey
respondents did not use any ML algorithm from the library. Instead they use other capabilities such
as (i) data and (ii) statistical functions. For example, the aircraft design toolbox (SUAVE'®) uses the
sklearn.gaussian_process to obtain a Gaussian distribution.

Bhttps://github.com/thoppe/pixelhouse/commit/850966b3ae74627d76d30bc1189729294d4e07ed
4https://github.com/QUVA-Lab/artemis/commit/fa686a7efcd33f720ad9f63a0e71de48b1
BShttps://github.com/salu133445/musegan/commit/be3e348276e6e97eab15b994b888523fbcb0as
16https://github.com/jaakkopasanen/AutoEq/commit/f121419df9b026cdd206252b8ead06a763216008
Thttps://github.com/GeoStat-Framework/PyKrige/commit/07af4a54260d602b6ba3eda92b20b928e9c9b57a
8https://github.com/suavecode/SUAVE/commit/96093098f49fF3e4d12f4082c8c564b11a13a14f

26

https://github.com/thoppe/pixelhouse/commit/850966b3ae74627d76d30bc1189729294d4e07ed
https://github.com/QUVA-Lab/artemis/commit/fa686a7efcd33f720ad9f63a0e71de48b1
https://github.com/salu133445/musegan/commit/be3e348276e6e97eab15b994b888523fbcb0a5
https://github.com/jaakkopasanen/AutoEq/commit/f121419df9b026cdd206252b8ead06a763216008
https://github.com/GeoStat-Framework/PyKrige/commit/07af4a54260d602b6ba3eda92b20b928e9c9b57a
https://github.com/suavecode/SUAVE/commit/96093098f49ff3e4d12f4082c8c564b11a13a14f

Table 15. Challenges faced when retrofitting ML

Challenge Percentage
Data gathering and labeling 39.29%
Refactoring the code 28.57%
Inadequate documentation & developer training 21.43%
Retrofitting ML to edge devices 17.86%
Updating data types 14.29%
Managing data pipeline 10.71%
New dependency conflicts 10.71%
Interacting with other languages 7.14%

Survey group = Group C
Number of responses = 28
4.6.3 Challenges when retrofitting ML libraries: Transforming an established software sys-
tem to depend on data and pre-trained models could be challenging. We surveyed developers
from group-C (Table 3) to understand these challenges. Table 15 reports how widespread are these
challenges for our survey respondents.
Due to space limitations, we provide a detailed explanation for five of these challenges faced by
developers along with quotes from the developers.

(1) Data gathering and labeling: “For the ML part, creating the training dataset was the most time
consuming. It needed to listen to hours of previous episodes of music and label parts manually”, said
respondent S89. Data gathering and labeling could be hard because of (i) scarcity of domain experts
to label the dataset or (ii) inaccessibility of the data (e.g., not having access to client data). Amershi
et al. [8] also observed that data gathering and labeling are costly and time-consuming.

(2) Documentation and developer training: “A challenge was the initial learning required to
understand how it works, especially the math involved in it”, said developer S90. Understanding ML
documentation for any developer (who lacks expertise in mathematics or statistics) could be hard
due to the underlying mathematical concepts in ML. To fill this gap, it is important to simplify and
summarize the documentation of ML libraries so that all users can better understand it.

(3) Retrofitting ML to edge devices: “Twanted to do advanced image processing on low-performance,
low-power, non-GPU equipped edge devices”, said developer S94. Retrofitting ML to applications
on mobile devices is challenging due to limited processing power and limited battery life [95].
Quantization is a possible software solution to increase the performance of ML algorithms on such
devices. However, a developer said, T tried to apply quantization to speedup but it sacrifices accuracy
instead of speeding up the inference”.

(4) Updating data types: “Main challenges were to develop a suitable framework of classes to hold
the classification and clustering code, that would interface with the existing data structures while
maintaining backward compatibility”, said developer S93. Since ML libraries use optimised data
types (e.g. numpy.array, pandas.DataFrame), the projects adopting the ML libraries also have to adopt
these types. However updating the project to use these types might require significant source code
changes and could potentially break existing clients.

(5) Managing data pipelines: “We had to build up a data pipeline [33] for each ML algorithm. We
could reuse some parts of previous pipelines but most parts were algorithm-specific”, said developer
S91. Selecting an appropriate ML model, requires experimenting with multiple libraries and models.
To conduct these experiments, developers create multiple data pipelines to perform Data collection,
Model training and Model evaluation. While tools like DVC [128] or MLFlow [34] facilitate multiple
experiment management, our survey respondents highlighted the cost of integrating these tools
into the workflow of mature projects.

27

Observation 6: We found five reasons and eight challenges for retrofitting ML libraries.
Among others, we identified reasons such as add brand new functionality (39.29% of respon-
dents), replace existing non-ML techniques with ML (21.43% of respondents). Among others, we
identified challenges such as data gathering/labeling (39.29% of respondents), retrofitting ML
to edge devices (17.86% of respondents), and managing data-pipeline (10.71% of respondents),

5 IMPLICATIONS

Using our findings we offer an empirically justified set of practical implications for researchers,
tool builders, library vendors, hardware vendors and software developers.

5.1 Researchers

R1. Call for more research on SOFTWARE-2.0 Libraries (RQ1): Our results reveal that the ratio
of new Python projects that used a ML library increased from 2% in 2013 to 50% in 2018.
This increasing trend highlights the prevalence of SOFTWARE-2.0 in open source Python
software systems. However, current research has focused on usage of libraries in SOFTWARE-
1.0: evolution and maintenance [30, 38, 40, 75, 137], development practices [60], and analysing
library usage specific to languages such as C# [106], Java [135]. Our dataset [91] contains a
set of 3,340 Python projects that use a single or a combination of ML libraries and the 1,211
GitHub commits where these projects updated or adopted ML library(s). We hope that the
research community would use our rich information as a starting point to investigate software
evolution and development practices specific to SOFTWARE-2.0.

R2. New Techniques to analyze and support multi-library projects (RQ2): We observed that 40.10%
of the projects use multiple ML libraries at once. Moreover, we found that developers prefer to
use multiple libraries to implement specific stages of the ML development workflow (e.g., Scikit-
Learn for Data collection, and TensorFlow for Model training). Therefore, these multi-library
environments pose several unique challenges for developers: the evolution of multi-library
systems, partial and multiple library migrations, communication incompatibilities between
libraries, inconsistent support for hardware accelerators, etc. These challenges offer a plethora
of problems that the research community can address. We provide examples of such multi-
library environments in our dataset that contains 1,338 multi-library projects.

R3. New techniques for solving ML model incompatibility (RQ4): When updating ML library ver-
sion, 32 developers (out of 81) revealed that they retrained their ML models after performing a
ML library update due to the binary incompatibility of serialized ML models that was trained
on previous library versions. While SOFTWARE-1.0 works based on source code of the program,
SoFTWARE-2.0 works based on source code of the program and trained ML models. This high-
lights new research opportunity for researchers to extend the previous research on source
code incompatibilities [30, 38, 40, 120, 139] to (i) understand the ML model incompatibility or
(ii) explore the interplay between source code and ML model incompatibilities.

R4. Catalog breaking changes for SorTware-2.0 (RQ4 & RQ5): We found that that 52% of the
respondents (out of 81) adapt the source code when updating a ML library. Our results highlight
Python-specific (e.g., keyword removing, keyword reordering, convert keyword parameter to
positional parameter,etc) or ML library specific breaking changes (e.g., change of computing
architecture). SOFTWARE-1.0 researchers [30, 38, 40] have focused on studying Java applications
and created a catalog of the most common breaking changes. Further, Cossette et al. [30]
categorize this catalog as fully, partially, or non automatable and Dietrich et al. [38] categorize
the breaking changes as binary (and/or) source incompatible. Our dataset [91] contains the

28

R5.

5.2

T1.

T2.

T3.

T4.

commits where a ML library was updated, which can be used to extend the catalog and explore
breaking changes for SOFTWARE-2.0.

Extend version control systems for SOFTwARE-2.0 (RQ5): Our results shows that 32% of respon-
dents use VCS (e.g., GitHub) in the library update process. SOFTWARE-1.0 researchers have
previously studied how the VCS affects the granularity of software changes [23, 77]. However,
current VCS systems have limitations when versioning large data files or ML models. ML
models are versioned in binary formats, so they are stored as large binary objects (which can
waste a lot of disk space) and users cannot understand model changes. Researchers need to
extend the current VCS tools to address unique challenges of SOFTWARE-2.0, study how the
proposed extensions impact the evolution of SOFTWARE-2.0, and study the effectiveness of
recently introduced ML specific VCS like DVC [128].

Tool Builders

Update ML libraries (RQ3): We observed several differences on how SOFTwWARE-2.0 developers
use ML libraries: (i) they upgrade/downgrade ML libraries more often than traditional libraries,
(ii) strict upgrades are the most popular among other update kinds (see Table 2), (iii) ML library
upgrades/downgrades often result in cascading library updates (see Table 7), (iv) developers
often downgrade ML libraries (22.04% of updates). The current research [37, 85] and tooling [28,
47, 86] for library updates in statically-typed languages work from one specific version to
another. This highlights blind spots in the current tooling that does not account for the strict
and non-strict nature of library updates in Python. Moreover, current techniques that support
only upgrades should also support downgrades. To help advance the current tooling, we release
1,055 GitHub commits with ML library (cascading) updates, categorized by update kind. Tool
builders [42, 46, 90, 97] can mine our dataset to learn from our mined exemplars.

Tools for evolving trained ML models (RQ5): From our survey with 81 developers who per-
formed a ML library update we found that developers need several tools specific for SOFTWARE-
2.0. (i) Tools for reporting model coverage (24.59% of respondents) compute coverage of ML model
based on the testing data. (ii) Tools for benchmarking of ML models (18.03% of respondents)
compute and compare metrics such as precision, recall, performance, energy consumption,
model bias, with ML models trained on other library versions. (iii) Impact analysis tools (8.20%
of respondents) examine the impact due to code and ML model changes.

Tools for type-related changes (RQ6): We found that when developers retrofit ML libraries
they start using optimized datatypes (e.g., numpy.array, pandas.DataFrame). Our survey also reveals
that developers experiment with multiple libraries to find a good trade-off between accuracy
and performance. This highlights the need for tools that perform type-related changes (e.g.,
type migration or library migration). The previous tools [81, 133, 137] that perform type-
related changes heavily rely on the type-binding information provided by the compiler. Since
in dynamically typed languages (like Python) type binding information is available only at
runtime, the type-related change tools need to be extended with type inference techniques.
Static analysis tools (RQ5): Our respondents said that static type checkers like MyPy and linters
(that catch stylistic errors or suspicious constructs) build developer trust. However, MyPy
requires type annotations to type check the program. To reduce the development effort of
manually adding type annotations, Hellendoorn et al. [57] proposed a type annotation inference
tool for JavaScript based on deep-learning. Extending this technique for Python and integrating
it with MyPy will be useful for SOFTWARE-2.0 developers. Moreover, tool builders can extend
tools that identify and eliminate bugs or code smells (e.g., Error prone [2] or JDeodorant [136])
to identify and repair ML-specific bug patterns proposed by Islam et al. [69, 70].

29

53

L1.

L2.

L3.

54

H1.

H2.

5.5
S1.

Library vendors

Manage increasing number of forks (RQ1): Our results highlight that there is an increasing
number of forks of ML Library(s) each year: 0.41% of all newly created forks in 2013 in GitHub
were for our studied ML Libraries, and this percentage grew to 3.21% in 2018. We also found that
TensorFlow is the most forked Python repository on Github with over 78K forks. Similarly, other
ML libraries like Keras, Caffe and Scikit-Learn have been forked around 18K times. Zhou et
al. [146] observed that forking results in (i) community fragmentation and competition, (ii) lack
of synchronization across the forks and the upstream, and (iii) disengagement of valuable
contributors from the main project. This highlights a need for library vendors and tool builders
to invest resources for mitigating the challenges faced by the ever growing number of forks.
Improve API documentation (RQ6): Developers who lack expertise in mathematics or statistics
find it hard to understand the documentation of ML libraries. This is confirmed by 21.43% of
respondents from our survey. To fill this gap, library developers should use novel techniques [3,
98] that simplify and summarize documentation of ML libraries.

Add API support for more languages (RQ6): Our survey results show that the unavailability
of ML library APIs across all major languages is a significant challenge. While TensorFlow
supports a wide variety of languages (like C++, Python, Java, C, R, Go and Swift), other ML
libraries only support a subset of Python, Java, and C++. The unavailability of ML library APIs
across all major languages is an impediment for projects that are trying to retrofit ML. While
providing support across all languages is not feasible, library vendors could invest resources to
develop bindings for their libraries for multiple languages.

Hardware vendors

Optimise ML library combinations (RQ2): We observe that 40.10% of the projects use multi ML
libraries at once. This highlights a blind spot for hardware manufacturers who are optimising
their hardware for one specific library [7, 10, 63, 66] (e.g., Intel is optimising its CPUs for
TensorFlow and Caffe, Apple is optimising TensorFlow, Keras, and Caffe). Our dataset contains
popular projects that use multi-libraries. We reveal the most frequently used combinations and
also identify the features that developers use in various stages of the ML workflow (Table 6).
When designing hardware accelerators for ML tasks, hardware vendors can use our dataset to
gain insights into representative patterns of computations in multi-library environments. This
helps them prioritize what to optimize on their hardware.

Optimise edge devices (RQ6): We observe that 18% of respondents retrofit ML in applications
for edge devices such as mobile and smartwatches. This is challenging because edge devices
have limited processing power and energy for running ML algorithms. Our respondents call for
hardware optimizations that allow processing on edge devices while maintaining the accuracy
of the output.

Software developers and educators

Rich educational resources (RQ2 and RQ3): Developers learn and educators teach new pro-
gramming constructs through examples. Robillard et al. [117] studied the challenges of learning
APIs and concluded that one of the important factors is the lack of usage examples. Using our
dataset of 809,534 total number of ML constructs that we mined in our corpus, developers and
educators can learn from real-world examples (e.g., selecting proper values for hyperparameters
in ML library APIs is not easy [17]. Developers can use our dataset to learn the values from
other codes). Moreover, we also release our data set with 1,055 commits that contain ML library
API updates.

30

$2. Awareness about ML-specific development tools (RQ5): We observed that developers use VCS
and CI systems that are specifically designed for SOFTWARE-1.0 development processes. Even
though there exists tools like DVC [128], Pachyderm [64], and MLFlow [34] that are specifically
designed for versioning and integrating SOFTWARE-2.0, these tools are still not popular among
developers. We encourage developers to use these novel tools for SOFTWARE-2.0.

6 THREATS TO VALIDITY
6.1 Internal validity

Did we skew the accuracy of our results with how we collected and analyzed information? The validity
of our results primarily depends on how accurately we detected the usage of ML library APIs in the
analyzed projects. Because of the dynamic nature of Python, the type binding information (which is
required for precise static analysis) is only available at runtime, thus it can be hard to disambiguate
similar constructs. We mitigated this threat by building our static analysis tools upon state of the
art tools: (i) Jedi [71] (for extracting ML library APIs), and (ii) Python standard AST parser (for
parsing the source code). Jedi is a widely used tool for Python static analysis and provides type
information. It has 47,300 clients, 4,000 GitHub stars, and it is also used in previous studies [41, 44].
To further increase the trust in our tools, we carefully tested our data extraction and statistics
generation tools with unit and end-to-end testing.

The findings in Section 4.3 (i.e., library update kinds and cascading library updates) depend on
accuracy of extracting library updates. Unlike other package managers like Maven or Gradle, Python
package manager (PIP) does not enforce that projects specify their library versions. Therefore,
extracting library version information of Python projects is not straightforward. We mitigated
this threat by studying the change history of requirements.txt which is the file the developers [49],
IDEs [72], and CLI tools [112] use to specify library versions of Python projects. We also used the
state-of-the art PyDriller [124] (for mining git history) to conduct longitudinal studies.

The manual coding of the open-ended responses in the survey and API labels according to API
description may have introduced subjective bias in the results. To remove the bias that can happen
when filtering out cases with an evident motivation, we sought the agreement of the first two
authors of the paper. In addition, we achieved an inter-coder agreement of 80% in assigning codes
to the survey responses and API labels, before labeling the entire dataset.

6.2 External Validity

Do our results generalize? Out of the top 18,122 Python projects on GitHub, we studied in depth all
projects which use at least one ML library API (this yielded 3,340 projects). They account for a wide
range of application domains, making the results of our study generalizable to other projects in
similar domains. However, we only analysed SOFTWARE-2.0 projects in Python. Developers in other
languages (e.g. C++, R or Scala) could have different practices and challenges when maintaining and
evolving SOFTWARE-2.0. However, Python has become the lingua franca for many SOFTWARE-2.0
applications [21, 99].

Moreover, a study of proprietary code-bases might also reveal different results. However, when
we surveyed contributors to the projects that we studied in our corpus, 15.03% of our respondents
had emails from domains from global IT companies.

6.3 Verifiability
Can others replicate our results? We provide all the necessary details about our study to help others

replicate. In particular, we released publicly [91] all studied programs, extracted data, and Python

31

scripts that we used for statistical analysis. The survey questions and emails are available in the
companion website.

7 RELATED WORK

We group the related work into two areas: (i) studies on SOFTWARE-2.0, (ii) studies on SOFTWARE-1.0
libraries.

7.1 Studies on SOFTWARE-2.0

There have been several studies on various aspects of SOFTWARE-2.0. Scully et al. [121] highlight
the rapid accumulation of technical debt in SOFTWARE-2.0. They explore several SOFTWARE-2.0
specific risk factors including boundary erosion, entanglement, hidden feedback loops, undeclared
consumers, and data dependencies. Tang et al. [127] studied 327 code patches in SOFTWARE-2.0
systems, identified 14 new refactorings and 7 new technical debt categories of SOFTWARE-2.0
systems. Amershi et al. [8] conducted a case study at Microsoft and identified common workflows
and practices for developing SOFTWARE-2.0. Braiek et al. [21] observed an unprecedented growth
of ML libraries. Further, they observed that contributions from both academics and companies fuel
the ML ecosystem. Mcintosh et al. [95] studied the power consumption of ML algorithms on mobile
devices and revealed that many ML algorithm implementations consume more power to train than
to evaluate.

Researchers have conducted several studies based on the StackOverflow posts and bug reports of
ML libraries. Abdul et al. [14] observed that the most frequently discussed topics of SOFTWARE-2.0
are ML algorithms, classification, and training data. Zhang et al. [144] revealed that the top three
most frequently asked questions in StackOverflow are program crashes, model migration, and
implementation questions. They further observed that the main root causes for many SOFTWARE-2.0
problems are: API misuse, incorrect hyperparameter selection, GPU computation, static graph
computation, and limited debugging support. Islam et al. [69, 70], Sun et al. [125] and Thung et
al. [130] categorize StackOverflow posts and GitHub bugs and identify fix patterns for the bugs of
SOFTWARE-2.0. Humbatova et al. [62] introduce a large taxonomy for SOFTWARE-2.0 bugs using
StackOverflow posts and bugs of TensorFlow, Keras, and PyTorch.

Even though there have been many studies on SOFTWARE-2.0, none of them study the challenges
of maintaining and evolving SOFTWARE-2.0. Using complementary quantitative and qualitative
methods, we answer six broad research questions using 3,340 SOFTWARE-2.0 projects and 109
survey responses. We identify (i) common practices of maintaining and evolving SOFTWARE-2.0
(see implications R2, T1, & H1 in Section 5.1), (ii) new tool building opportunities to better assist
SOFTWARE-2.0 (see implications T1, T2, R2, & R3 Section 5.1), (iii) opportunities to improve existing
infrastructure according to the requirements of SOFTWARE-2.0 (see implications R4, R5, T3, & T4 in
Section 5.1), and (iv) blind spots in current SOFTWARE-2.0 research (see implications L1, L2, L3, H1,
H2, S1 & S2 in Section 5.1).

7.2 Studies on SOFTWARE-1.0 libraries

7.2.1 Studies on software ecosystems: Researchers have studied software ecosystems to reveal
challenges and common practices. Hora et al. [61] studied how client projects react to the changes of
the Pharo ecosystem. They found that some clients want time to discover and apply the API changes
while the majority of clients do not act upon the changes at all. Robbes et al. [116] analysed Squeak
and Pharo software ecosystems and observe a ripple effect that arises due to API deprecations.
McDonnell et al. [94] observed fast evolving APIs are more popular than the slow evolving APIs
among the clients in Android ecosystem. Bavota [16] observed an exponential increase of inter-
dependencies among projects in the Apache ecosystem. Similarly, with the previous studies, we

32

identify challenges of maintenance and evolution, but in contrast to previous work, we focus on
the novel SOFTWARE-2.0 ecosystem.

7.2.2 Studies on library updates: Researchers have extensively studied API changes of libraries
in SOFTWARE-1.0 systems. Dig et al. [40] studied two versions of five libraries, classified API changes
from the perspective of refactoring and discussed how refactorings lead to breaking API changes
in client codes. Cossette et al. [30] explored how representative are the current library update
techniques, and classified API changes into fully, partially, and non-automatable. Dietrich et al. [38]
classified the Java compile-time and link-time incompatibilities in the Qualitas corpus and reported
that such incompatibilities exist but rarely affect client programs. In our research we observed that
developers perform API changes that are unique to SOFTWARE-2.0. Some of the Python-specific
API changes involve changes in the name and types of keywords and default values. Also some
API changes are ML library-specific and involve changes in the software architecture (e.g., from
programming with computational graphs to an imperative style). Our implication R4 in Section 5.1
provides more examples and highlights the need to extend API change research for SOFTWARE-2.0.

Researches have studied developer reactions to library updates. Kula et al. [84, 85] studied a
large corpus of library updates. They observed that updating a dependency is not a common
practice for many developers and most systems keep their libraries outdated. Bovita et al. [15]
monitored Apache projects for 14 years and found that clients are more likely to update libraries
when the library release includes major changes. In contrast to library updates in SOFTWARE-1.0, in
our quantitative analysis we discovered that SOFTWARE-2.0 developers update ML libraries more
frequently than traditional libraries (see Section 4.3.1).

Researchers have studied dependency networks and library version conflicts. Nguyen et al. [105]
studied the role of dependency network in the prediction of post-release failures. Daniel et al. [54]
analysed projects of R ecosystem and observed proportionality between the number of dependencies
and its popularity. Decan et al. [35] studied seven library ecosystems and Kikas et al. [82] studied
three library ecosystems. They observed that dependency networks and transitive dependencies of
projects grow with time. Artho et al. [11] grouped library conflicts into five main categories while
Ying et al. [141] found an automated approach to spot dependency conflicts of Python libraries. In
this paper, we observed that 95.37% of SOFTWARE-2.0 systems have transitive dependencies and
have complex versioning requirements. This highlights that SOFTWARE-2.0 might be even more
vulnerable to dependency conflicts (see Section 4.4.4).

As discussed above, researchers have studied library updates in SOFTWARE-1.0 systems from
different perspectives. For example, source code adaptation, version conflict, dependency networks,
etc. In our quantitative and qualitative analysis, we uncovered that ML library update process
shares the same challenges with SOFTWARE-1.0. Moreover, SOFTWARE-2.0 processes need to address
unique challenges (e.g., retrain ML models, reselect decision thresholds, benchmark ML models,
etc. — see implications R2, R3, R5 in Section 5.1 and T2 in Section 5.2).

7.2.3 Tools used in library update process: Researchers have developed tools to assist devel-
opers when maintaining and evolving libraries. API recommendation tools developed for statically-
typed languages [59, 103, 104, 115, 131] reduce developer burden when selecting the most appropri-
ate APIs in libraries. D’Souza [44] extended the API recommendation tools for dynamically-typed
languages (i.e., Python). Asaduzzaman et al. [12] and Zhan et al. [143] introduced parameter auto-
completion with their new tools. Researchers [32, 58, 86, 140] also automated the source code
adaptations that need to be performed due to library updates.

In this paper we discovered unique challenges (e.g., a high percentage of downgrades, six kinds
of updates, cascading library upgrades) for SOFTWARE-2.0 that require previous tools to be extended
(see implications T1 & T3 & T4 in Section 5.2). Moreover, we present several new criteria (e.g.,

33

model coverage, model benchmarking, and model impact analysis) for a new generation of tools
that address the workflow of SOFTWARE-2.0 (see implications T2 in Section 5.2).

8 CONCLUSIONS

Developers use learned models to build SOFTWARE-2.0 systems. This novel paradigm gained sub-
stantial popularity over the past years. A major contributor to the rapid growth of ML are the ML
libraries as they simplify the huge complexity of implementing SOFTWARE-2.0 systems. However,
the rate of growth will slow without understanding the practices and challenges of maintaining
and evolving ML libraries in SOFTWARE-2.0 systems. In this paper we use complementary empirical
methods (mining 3,340 software repositories containing over 809,534 ML constructs, and conducting
surveys with 109 avid users of ML libraries) to answer six broad research questions. Some of our
key findings are:

(1) SOFTWARE-2.0 projects that use ML Libraries are rapidly increasing. This is not a fad, but it is
an established trend.

(2) Developers use multiple ML libraries to implement ML development workflows.

(3) ML library updates result in cascading library updates.

(4) ML library updates pose more challenges (e.g, binary incompatibility of pre-trained ML models,
ML models benchmarking, etc.) than source code adaptations.

(5) SOFTWARE-2.0 developers use tools from SOFTWARE-1.0 (e.g., TravisCI, AppVeyor) that are not
suitable for their new needs. We discovered several new tools (e.g., reporting model coverage,
benchmarking ML models, etc.) for evolving SOFTWARE-2.0 systems.

(6) Retrofitting ML libraries for mature projects is challenging. We uncover eight different bar-
riers including inaccessible data, not-enough processing/battery power in edge devices, and
inadequate developer training/documentation.

We hope that this paper serves as a call to action to address unique challenges when maintaining
and evolving SOFTWARE-2.0 systems. Our goal is to inspire a symbiotic ecosystem where researchers,
tool builders, library vendors, and hardware vendors work together to assist developers towards
creating better SOFTWARE-2.0 systems.

9 ACKNOWLEDGEMENTS

We thank Grady Booch, Foutse Khombh, Ellick Chan, Johirul Islam, Minsuk Kahng, Rahul Khanna,
and the anonymous reviewers for their insightful and constructive feedback for improving the
paper. This research was partially funded through the NSF grant CCF-1553741, and by the PPI
Center at CU Boulder.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaoqgiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 16). USENIX Association, Savannah, GA, 265-283.
https://www.usenix.org/conference/osdil6/technical- sessions/presentation/abadi

[2] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan. 2012. Building Useful Program
Analysis Tools Using an Extensible Java Compiler. In Proceedings of the 2012 IEEE 12th International Working Conference
on Source Code Analysis and Manipulation (SCAM °12). IEEE Computer Society, USA, 14-23. https://doi.org/10.1109/
SCAM.2012.28

[3] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez, Mario Linares-Vasquez, Laura Moreno, Gabriele Bavota,
and Michele Lanza. 2019. Software Documentation Issues Unveiled. In Proceedings of the 41st International Conference
on Software Engineering (ICSE °19). IEEE Press, 1199-1210. https://doi.org/10.1109/ICSE.2019.00122

34

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/SCAM.2012.28
https://doi.org/10.1109/SCAM.2012.28
https://doi.org/10.1109/ICSE.2019.00122

[4] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric
Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, et al. 2016. Theano: A Python framework for fast
computation of mathematical expressions. (2016).

[5] Hussein Alrubaye, Deema AlShoaibi, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. How Does API Migration Impact
Software Quality and Comprehension? An Empirical Study. (Jul 2019). arXiv:cs.SE/1907.07724

[6] Theodoros Amanatidis and Alexander Chatzigeorgiou. 2016. Studying the Evolution of PHP Web Applications. Inf.
Softw. Technol. 72, C (April 2016), 48-67. https://doi.org/10.1016/j.infsof.2015.11.009

[7] AMD. 2020. Deep Learning Solutions. https://www.amd.com/en/graphics/servers-radeon-instinct-deep-learning.
Accessed: 2020-02-01.

[8] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar, Nachiappan Nagappan,
Besmira Nushi, and Thomas Zimmermann. 2019. Software Engineering for Machine Learning: A Case Study. In
Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP
’19). IEEE Press, Piscataway, NJ, USA, 291-300. https://doi.org/10.1109/ICSE-SEIP.2019.00042

[9] Apache. 2019. Frequent Pattern Mining. https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html#
fp-growth. Accessed: 2020-01-07.

[10] Apple. 2020. Machine Learning. https://developer.apple.com/machine-learning/. Accessed: 2020-02-01.

[11] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. 2012. Why Do Software
Packages Conflict?. In Proceedings of the 9th IEEE Working Conference on Mining Software Repositories (MSR ’12). IEEE
Press, 141-150. https://doi.org/10.1109/MSR.2012.6224274

[12] Muhammad Asaduzzaman, Chanchal K. Roy, Samiul Monir, and Kevin A. Schneider. 2015. Exploring API Method
Parameter Recommendations. In Proceedings of the 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME) (ICSME ’15). IEEE Computer Society, USA, 271-280. https://doi.org/10.1109/ICSM.2015.7332473

[13] Shams Azad, Peter C. Rigby, and Latifa Guerrouj. 2017. Generating API Call Rules from Version History and

Stack Overflow Posts. ACM Trans. Softw. Eng. Methodol. 25, 4, Article Article 29 (Jan. 2017), 22 pages. https:

//doi.org/10.1145/2990497

Abdul Ali Bangash, Hareem Sahar, Shaiful Chowdhury, Alexander William Wong, Abram Hindle, and Karim Ali. 2019.

What Do Developers Know About Machine Learning: A Study of ML Discussions on StackOverflow. In Proceedings of

the 16th International Conference on Mining Software Repositories (MSR °19). IEEE Press, Piscataway, NJ, USA, 260-264.

https://doi.org/10.1109/MSR.2019.00052

Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. 2015. How

the Apache Community Upgrades Dependencies: An Evolutionary Study. Empirical Softw. Engg. 20, 5 (Oct. 2015),

1275-1317. https://doi.org/10.1007/s10664-014-9325-9

Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. 2013. The

Evolution of Project Inter-Dependencies in a Software Ecosystem: The Case of Apache. In Proceedings of the 2013

IEEE International Conference on Software Maintenance (ICSM ’13). IEEE Computer Society, USA, 280-289. https:

//doi.org/10.1109/ICSM.2013.39

[17] James Bergstra, Dan Yamins, and David D Cox. 2013. Hyperopt: A python library for optimizing the hyperparameters
of machine learning algorithms. Citeseer.

[18] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding the factors that impact the popularity
of GitHub repositories. In 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
334-344. https://doi.org/10.1109/ICSME.2016.31

[19] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub star? understanding repository starring practices in
a social coding platform. Journal of Systems and Software 146 (2018), 112-129. https://doi.org/10.1016/.js5.2018.09.016

[20] Houssem Ben Braiek and Foutse Khomh. 2020. On testing machine learning programs. Journal of Systems and
Software 164 (2020), 110542. https://doi.org/10.1016/j.jss.2020.110542

[21] Houssem Ben Braiek, Foutse Khomh, and Bram Adams. 2018. The Open-Closed Principle of Modern Machine Learning
Frameworks. In Proceedings of the 15th International Conference on Mining Software Repositories (MSR °18). Association
for Computing Machinery, New York, NY, USA, 353-363. https://doi.org/10.1145/3196398.3196445

[22] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative research in psychology.
Qualitative Research in Psychology 3, 2 (2006), 77-101.

[23] Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig. 2014. How Do Centralized and Distributed

Version Control Systems Impact Software Changes?. In Proceedings of the 36th International Conference on Software

Engineering (ICSE 2014). Association for Computing Machinery, New York, NY, USA, 322-333. https://doi.org/10.

1145/2568225.2568322

Haipeng Cai. 2020. Assessing and Improving Malware Detection Sustainability through App Evolution Studies. ACM

Trans. Softw. Eng. Methodol. 29, 2, Article 8 (March 2020), 28 pages. https://doi.org/10.1145/3371924

(14

flan)

[15

—

(16

—

(24

[laa

35

http://arxiv.org/abs/cs.SE/1907.07724
https://doi.org/10.1016/j.infsof.2015.11.009
https://www.amd.com/en/graphics/servers-radeon-instinct-deep-learning
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html#fp-growth
https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html#fp-growth
https://developer.apple.com/machine-learning/
https://doi.org/10.1109/MSR.2012.6224274
https://doi.org/10.1109/ICSM.2015.7332473
https://doi.org/10.1145/2990497
https://doi.org/10.1145/2990497
https://doi.org/10.1109/MSR.2019.00052
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1145/3196398.3196445
https://doi.org/10.1145/2568225.2568322
https://doi.org/10.1145/2568225.2568322
https://doi.org/10.1145/3371924

[25] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. 2013. Coding in-depth semistructured
interviews: Problems of unitization and intercoder reliability and agreement. Sociological Methods & Research 42, 3
(2013), 294-320. https://doi.org/10.1177/0049124113500475

[26] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas Blaschke. 2018. The rise of deep
learning in drug discovery. Drug discovery today 23, 6 (2018), 1241-1250. https://doi.org/10.1016/j.drudis.2018.01.039

[27] Frangois Chollet et al. 2018. Keras: The python deep learning library. Astrophysics Source Code Library (2018).

[28] Kingsum Chow and David Notkin. 1996. Semi-Automatic Update of Applications in Response to Library Changes. In
Proceedings of the 1996 International Conference on Software Maintenance (ICSM ’96). IEEE Computer Society, USA,
359.

[29] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. 2002. Torch: a modular machine learning software library.

Technical Report. Idiap.

Bradley E. Cossette and Robert J. Walker. 2012. Seeking the Ground Truth: A Retroactive Study on the Evolution and

Migration of Software Libraries. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering (FSE ’12). Association for Computing Machinery, New York, NY, USA, Article Article 55,

11 pages. https://doi.org/10.1145/2393596.2393661

Daniela S Cruzes and Tore Dyba. 2011. Research synthesis in software engineering: A tertiary study. Information and

Software Technology 53, 5 (2011), 440-455. https://doi.org/10.1016/j.infsof.2011.01.004

[32] Barthelemy Dagenais and Martin P. Robillard. 2009. SemDiff: Analysis and Recommendation Support for API
Evolution. In Proceedings of the 31st International Conference on Software Engineering (ICSE °09). IEEE Computer
Society, Washington, DC, USA, 599-602. https://doi.org/10.1109/ICSE.2009.5070565

[33] Sato Danilo, Wider Arif, and Windheuser Christoph. 2020. Continuous Delivery for Machine Learning. https:
//martinfowler.com/articles/cd4mlhtml. Accessed: 2020-03-26.

[34] Databricks. 2020. Open source platform for managing the end-to-end machine learning lifecycle. https://www.mlflow.
org/docs/latest/projects.html. Accessed: 2020-03-26.

[35] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An Empirical Comparison of Dependency Network
Evolution in Seven Software Packaging Ecosystems. Empirical Softw. Engg. 24, 1 (Feb. 2019), 381-416. https:
//doi.org/10.1007/s10664-017-9589-y

[36] Dependabot. 2019. Dependabot. https://dependabot.com. Accessed: 13 Jun. 2019.

[37] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017. Keep Me Updated: An Empirical Study
of Third-Party Library Updatability on Android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS °17). Association for Computing Machinery, New York, NY, USA, 2187-2200.
https://doi.org/10.1145/3133956.3134059

[38] J. Dietrich, K. Jezek, and P. Brada. 2014. Broken promises: An empirical study into evolution problems in Java
programs caused by library upgrades. In 2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE Computer Society, Washington, DC, USA, 64-73. https:
//doi.org/10.1109/CSMR-WCRE.2014.6747226

[39] Danny Dig and Ralph Johnson. 2005. The Role of Refactorings in API Evolution. In Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM ’05). IEEE Computer Society, USA, 389-398. https://doi.org/
10.1109/ICSM.2005.90

[40] Danny Dig and Ralph Johnson. 2006. How Do APIs Evolve? A Story of Refactoring: Research Articles. . Softw. Maint.
Ewvol. 18, 2 (March 2006), 83-107. https://doi.org/10.1002/smr.328

[41] Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. 2018. Ariadne: Analysis for Machine Learning
Programs. In Proceedings of the 2Nd ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages (MAPL 2018). ACM, New York, NY, USA, 1-10. https://doi.org/10.1145/3211346.3211349

[42] Georg Dotzler, Marius Kamp, Patrick Kreutzer, and Michael Philippsen. 2017. More Accurate Recommendations for
Method-Level Changes. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 798-808. https://doi.org/10.1145/3106237.3106276

[43] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. 2014. Mining Billions of AST Nodes to

Study Actual and Potential Usage of Java Language Features. In Proceedings of the 36th International Conference

on Software Engineering (ICSE 2014). Association for Computing Machinery, New York, NY, USA, 779-790. https:

//doi.org/10.1145/2568225.2568295

Andrea Renika D’Souza, Di Yang, and Cristina V Lopes. 2016. Collective Intelligence for Smarter API Recommendations

in Python. In 2016 IEEE 16th International Working Conference on Source Code Analysis and Manipulation (SCAM).

IEEE, IEEE Press, Piscataway, NJ, USA, 51-60. https://doi.org/10.1109/SCAM.2016.22

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. 2008. Selecting empirical methods for

software engineering research. In Guide to advanced empirical software engineering. Springer, 285-311.

(30

=

(31

—

[44

=

(45

[}

36

https://doi.org/10.1177/0049124113500475
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1016/j.infsof.2011.01.004
https://doi.org/10.1109/ICSE.2009.5070565
https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
https://www.mlflow.org/docs/latest/projects.html
https://www.mlflow.org/docs/latest/projects.html
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://dependabot.com
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1109/ICSM.2005.90
https://doi.org/10.1109/ICSM.2005.90
https://doi.org/10.1002/smr.328
https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1145/3106237.3106276
https://doi.org/10.1145/2568225.2568295
https://doi.org/10.1145/2568225.2568295
https://doi.org/10.1109/SCAM.2016.22

[46] Mattia Fazzini, Qi Xin, and Alessandro Orso. 2019. Automated API-Usage Update for Android Apps. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2019). Association for
Computing Machinery, New York, NY, USA, 204-215. https://doi.org/10.1145/3293882.3330571

[47] Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma. 2018. Efficient Static Checking of
Library Updates. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). Association for Computing Machinery, New
York, NY, USA, 791-796. https://doi.org/10.1145/3236024.3275535

[48] Apache Software Foundation. 2019. Introduction to the POM. https://maven.apache.org/guides/introduction/
introduction-to-the-pom.html. Accessed: 2019-12-26.

[49] Python Foundation. 2019. Requirements file format. https://pip.pypa.io/en/stable/reference/pip_install/. Accessed: 13
Jun. 2019.

[50] Python Software Foundation. 2019. Python Type Hints. https://docs.python.org/3/library/typing.html. Accessed: 13

Oct. 2019.

Python Software Foundation. 2019. Version Identification and Dependency Specification. https://www.python.org/

dev/peps/pep-0440/. Accessed: 2019-08-23.

[52] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-Wesley Professional.

[53] Martin Fowler. 2019. Continuous Delivery for Machine Learning. https://martinfowler.com/articles/cd4ml.html.
Accessed: 2020-02-14.

[54] Daniel M. German, Bram Adams, and Ahmed E. Hassan. 2013. The Evolution of the R Software Ecosystem. In
Proceedings of the 2013 17th European Conference on Software Maintenance and Reengineering (CSMR ’13). IEEE
Computer Society, USA, 243-252. https://doi.org/10.1109/CSMR.2013.33

[55] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without Candidate Generation. In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ’00). Association for Computing
Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/342009.335372

[56] Junxiao Han, Emad Shihab, Zhiyuan Wan, Shuiguang Deng, and Xin Xia. 2020. What do Programmers Discuss about
Deep Learning Frameworks. Empirical Software Engineering (2020). https://doi.org/10.1007/s10664-020-09819-6

[57] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018. Deep Learning Type Inference. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA,
152-162. https://doi.org/10.1145/3236024.3236051

[58] Johannes Henkel and Amer Diwan. 2005. CatchUp! Capturing and Replaying Refactorings to Support API Evolution.
In Proceedings of the 27th International Conference on Software Engineering (ICSE ’05). Association for Computing
Machinery, New York, NY, USA, 274-283. https://doi.org/10.1145/1062455.1062512

[59] Rosco Hill and Joe Rideout. 2004. Automatic Method Completion. In Proceedings of the 19th IEEE International
Conference on Automated Software Engineering (ASE "04). IEEE Computer Society, USA, 228-235. https://doi.org/10.
1109/ASE.2004.1342740

[60] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. 2016. Usage, Costs, and Benefits of
Continuous Integration in Open-Source Projects. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE 2016). Association for Computing Machinery, New York, NY, USA, 426-437.
https://doi.org/10.1145/2970276.2970358

[61] Andre Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stephane Ducasse, and Marco Tulio Valente. 2015. How

Do Developers React to API Evolution? The Pharo Ecosystem Case. In Proceedings of the 2015 IEEE International

Conference on Software Maintenance and Evolution (ICSME) (ICSME ’15). IEEE Computer Society, Washington, DC,

USA, 251-260. https://doi.org/10.1109/ICSM.2015.7332471

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2020.

Taxonomy of Real Faults in Deep Learning Systems. (2020), 11. https://doi.org/10.1145/3377811.3380395

[63] IBM. 2020. Get started with PyTorch. https://developer.ibm.com/articles/cc-get-started-pytorch/. Accessed: 2020-02-

01.

Pachyderm Inc. 2019. Pachyderm. https://www.pachyderm.com/platform/#community. Accessed: 2020-02-14.

] Intel. 2019. Intel Caffe. https://github.com/intel/caffe. Accessed: 2019-11-19.

Intel. 2019. Intel Optimization for TensorFlow™. https://software.intel.com/en-us/frameworks/tensorflow. Accessed:
2020-01-03.

] Intel. 2019. Intel TensorFlow. https://software.intel.com/en-us/frameworks/tensorflow. Accessed: 2019-11-19.

] Intel. 2019. Intel Theano. https://github.com/intel/Theano. Accessed: 2019-11-19.

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A Comprehensive Study on Deep Learning

Bug Characteristics. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). Association for Computing Machinery,

(51

—

(62

—

— =
[AN
[S LN

flanr)

— r——
N
O 0
—

37

https://doi.org/10.1145/3293882.3330571
https://doi.org/10.1145/3236024.3275535
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://pip.pypa.io/en/stable/reference/pip_install/
https://docs.python.org/3/library/typing.html
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://martinfowler.com/articles/cd4ml.html
https://doi.org/10.1109/CSMR.2013.33
https://doi.org/10.1145/342009.335372
https://doi.org/10.1007/s10664-020-09819-6
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/1062455.1062512
https://doi.org/10.1109/ASE.2004.1342740
https://doi.org/10.1109/ASE.2004.1342740
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1145/3377811.3380395
https://developer.ibm.com/articles/cc-get-started-pytorch/
https://www.pachyderm.com/platform/#community
https://github.com/intel/caffe
https://software.intel.com/en-us/frameworks/tensorflow
https://software.intel.com/en-us/frameworks/tensorflow
https://github.com/intel/Theano

New York, NY, USA, 510-520. https://doi.org/10.1145/3338906.3338955

[70] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repairing Deep Neural Networks: Fix Patterns
and Challenges. In Proceedings of the 42nd International Conference on Software Engineering (ICSE °20). Association for
Computing Machinery, New York, NY, USA, 11. https://doi.org/10.1145/1122445.1122456

[71] JEDL 2019. Jedi - an awesome autocompletion/static analysis library for Python. https://jedi.readthedocs.io/en/latest/.
Accessed: 2019-08-23.

[72] Jetbrains. 2019. Managing Dependencies. https://www:.jetbrains.com/help/pycharm/managing-dependencies.html.

Accessed: 13 Jun. 2019.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and

Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM

international conference on Multimedia. ACM, 675-678.

Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang. 2017. Why and how developers fork

what from whom in GitHub. Empirical Software Engineering 22, 1 (01 Feb 2017), 547-578. https://doi.org/10.1007/

510664-016-9436-6

[75] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Hassan. 2016. Logging Library Migrations: A

Case Study for the Apache Software Foundation Projects. In Proceedings of the 13th International Conference on

Mining Software Repositories (MSR ’16). Association for Computing Machinery, New York, NY, USA, 154-164. https:

//doi.org/10.1145/2901739.2901769

Huzefa Kagdi, Shehnaaz Yusuf, and Jonathan I. Maletic. 2006. Mining Sequences of Changed-Files from Version

Histories. In Proceedings of the 2006 International Workshop on Mining Software Repositories (MSR ’06). Association for

Computing Machinery, New York, NY, USA, 47-53. https://doi.org/10.1145/1137983.1137996

Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M. German. 2015. Open Source-Style

Collaborative Development Practices in Commercial Projects Using GitHub. In Proceedings of the 37th International

Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, 574-585.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela Damian. 2016.

An In-depth Study of the Promises and Perils of Mining GitHub. Empirical Softw. Engg. 21, 5 (Oct. 2016), 2035-2071.

https://doi.org/10.1007/s10664-015-9393-5

Ritu Kapur and Balwinder Sodhi. 2020. A Defect Estimator for Source Code: Linking Defect Reports with Programming

Constructs Usage Metrics. ACM Trans. Softw. Eng. Methodol. 29, 2, Article 12 (April 2020), 35 pages. https://doi.org/

10.1145/3384517

Andrej Karpathy. 2017. Software 2.0. https://medium.com/@karpathy/software-2-0-a64152b37¢35. Accessed:

2020-05-05.

Ameya Ketkar, Ali Mesbah, Davood Mazinanian, Danny Dig, and Edward Aftandilian. 2019. Type Migration in

Ultra-Large-Scale Codebases. In Proceedings of the 41st International Conference on Software Engineering (ICSE ’19).

IEEE Press, 1142-1153. https://doi.org/10.1109/ICSE.2019.00117

[82] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure and Evolution of Package

Dependency Networks. In Proceedings of the 14th International Conference on Mining Software Repositories (MSR ’17).

IEEE Press, 102-112. https://doi.org/10.1109/MSR.2017.55

Miryung Kim, Dongxiang Cai, and Sunghun Kim. 2011. An Empirical Investigation into the Role of API-Level

Refactorings during Software Evolution. In Proceedings of the 33rd International Conference on Software Engineering

(ICSE °11). Association for Computing Machinery, New York, NY, USA, 151-160. https://doi.org/10.1145/1985793.

1985815

[84] Raula Gaikovina Kula, Daniel M German, Takashi Ishio, and Katsuro Inoue. 2015. Trusting a library: A study of the
latency to adopt the latest maven release. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 520-524. https://doi.org/10.1109/SANER.2015.7081869

[85] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro Inoue. 2018. Do developers update their
library dependencies? Empirical Software Engineering 23, 1 (2018), 384-417. https://doi.org/10.1007/s10664-017-9521-5

[86] Jun Li, Chenglong Wang, Yingfei Xiong, and Zhenjiang Hu. 2015. SWIN: Towards Type-Safe Java Program Adaptation
between APIs. In Proceedings of the 2015 Workshop on Partial Evaluation and Program Manipulation (PEPM ’15).
Association for Computing Machinery, New York, NY, USA, 91-102. https://doi.org/10.1145/2678015.2682534

[87] Yangguang Li, Zhen Ming (Jack) Jiang, Heng Li, Ahmed E. Hassan, Cheng He, Ruirui Huang, Zhengda Zeng, Mian
Wang, and Pinan Chen. 2020. Predicting Node Failures in an Ultra-Large-Scale Cloud Computing Platform: An AIOps
Solution. ACM Trans. Softw. Eng. Methodol. 29, 2, Article 13 (April 2020), 24 pages. https://doi.org/10.1145/3385187

[88] Jimmy Lin and Alek Kolcz. 2012. Large-scale Machine Learning at Twitter. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data (SIGMOD °12). ACM, New York, NY, USA, 793-804. https://doi.org/
10.1145/2213836.2213958

(73

-

(74

[l

(76

—

(77

—

(78

=

[79

—

(80

[t

(81

—

(83

=

38

https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/1122445.1122456
https://jedi.readthedocs.io/en/latest/
https://www.jetbrains.com/help/pycharm/managing-dependencies.html
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1145/2901739.2901769
https://doi.org/10.1145/2901739.2901769
https://doi.org/10.1145/1137983.1137996
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1145/3384517
https://doi.org/10.1145/3384517
https://medium.com/@karpathy/software-2-0-a64152b37c35
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1145/1985793.1985815
https://doi.org/10.1145/1985793.1985815
https://doi.org/10.1109/SANER.2015.7081869
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/2678015.2682534
https://doi.org/10.1145/3385187
https://doi.org/10.1145/2213836.2213958
https://doi.org/10.1145/2213836.2213958

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[100
[101

— =

[102]

[103]

[104]

[105]

[106]

[107]

[108

[t

[109]

Benjamin Livshits and Thomas Zimmermann. 2005. DynaMine: Finding Common Error Patterns by Mining Software
Revision Histories. SIGSOFT Softw. Eng. Notes 30, 5 (Sept. 2005), 296-305. https://doi.org/10.1145/1095430.1081754

Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H Deng. 2017. Vurle: Automatic vulnerability detection
and repair by learning from examples. In European Symposium on Research in Computer Security. Springer, 229-246.
10.1007/978-3-319-66399-9_13

Malinda. 2020. Study of Machine Learning Library Usage. https://serene-beach-16261.herokuapp.com. Accessed:
2020-01-14.

Brian A Malloy and James F Power. 2017. Quantifying the transition from Python 2 to 3: an empirical study of Python
applications. In 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM).
IEEE, 314-323. https://doi.org/10.1109/ESEM.2017.45

Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017. Understanding the Use of Lambda
Expressions in Java. Proc. ACM Program. Lang. 1, OOPSLA, Article Article 85 (Oct. 2017), 31 pages. https://doi.org/10.
1145/3133909

Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of API Stability and Adoption in the
Android Ecosystem. In Proceedings of the 2013 IEEE International Conference on Software Maintenance (ICSM ’13). IEEE
Computer Society, USA, 70-79. https://doi.org/10.1109/ICSM.2013.18

Andrea Mcintosh, Safwat Hassan, and Abram Hindle. 2019. What Can Android Mobile App Developers Do about the
Energy Consumption of Machine Learning? Empirical Softw. Engg. 24, 2 (April 2019), 562-601. https://doi.org/10.
1007/5s10664-018-9629-2

Erik Meijer. 2018. Behind Every Great Deep Learning Framework is an Even Greater Programming Languages
Concept (Keynote). In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). Association for Computing Machinery,
New York, NY, USA, 1. https://doi.org/10.1145/3236024.3280855

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and Applying Systematic Edits by Learning
from Examples. In Proceedings of the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,
502-511.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian Marcus, and Gerardo Canfora. 2016.
ARENA: an approach for the automated generation of release notes. IEEE Transactions on Software Engineering 43, 2
(2016), 106-127. https://doi.org/10.1109/TSE.2016.2591536

Andreas C Miiller, Sarah Guido, et al. 2016. Introduction to machine learning with Python: a guide for data scientists.
O’Reilly Media, Inc.".

Mypy. 2019. mypy. http://mypy-lang.org/. Accessed: 2019-08-23.

Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity in Software Engineering Research.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). Association for
Computing Machinery, New York, NY, USA, 466-476. https://doi.org/10.1145/2491411.2491415

A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan. 2019. Speech Recognition Using Deep Neural Networks: A
Systematic Review. IEEE Access 7 (2019), 19143-19165. https://doi.org/10.1109/ACCESS.2019.2896880

Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. 2012. GraPacc: A Graph-Based
Pattern-Oriented, Context-Sensitive Code Completion Tool. In Proceedings of the 34th International Conference on
Software Engineering (ICSE ’12). IEEE Press, 1407-1410.

Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi, Hung Viet Nguyen, Jafar Al-Kofahi,
and Tien N. Nguyen. 2012. Graph-Based Pattern-Oriented, Context-Sensitive Source Code Completion. In Proceedings
of the 34th International Conference on Software Engineering (ICSE ’12). IEEE Press, 69-79. https://doi.org/10.1109/
ICSE.2012.6227205

Thanh H. D. Nguyen, Bram Adams, and Ahmed E. Hassan. 2010. Studying the Impact of Dependency Network
Measures on Software Quality. In Proceedings of the 2010 IEEE International Conference on Software Maintenance (ICSM
’10). IEEE Computer Society, USA, 1-10. https://doi.org/10.1109/ICSM.2010.5609560

Semih Okur and Danny Dig. 2012. How Do Developers Use Parallel Libraries?. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering (FSE ’12). Association for Computing Machinery,
New York, NY, USA, Article Article 54, 11 pages. https://doi.org/10.1145/2393596.2393660

D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into Modules. Commun. ACM 15, 12 (Dec.
1972), 1053-1058. https://doi.org/10.1145/361598.361623

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python.
Journal of machine learning research 12, Oct (2011), 2825-2830.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated Whitebox Testing of Deep
Learning Systems. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17). Association for

39

https://doi.org/10.1145/1095430.1081754
10.1007/978-3-319-66399-9_13
https://serene-beach-16261.herokuapp.com
https://doi.org/10.1109/ESEM.2017.45
https://doi.org/10.1145/3133909
https://doi.org/10.1145/3133909
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1007/s10664-018-9629-2
https://doi.org/10.1007/s10664-018-9629-2
https://doi.org/10.1145/3236024.3280855
https://doi.org/10.1109/TSE.2016.2591536
http://mypy-lang.org/
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1109/ICSE.2012.6227205
https://doi.org/10.1109/ICSE.2012.6227205
https://doi.org/10.1109/ICSM.2010.5609560
https://doi.org/10.1145/2393596.2393660
https://doi.org/10.1145/361598.361623

[116]

[117]
[118]

[119]

[120]

[121]

[122]
[123]

[124]

[125

-

[126]

[127]

[128]

[129

—

[130

=

[131

—

[132]

Computing Machinery, New York, NY, USA, 1-18. https://doi.org/10.1145/3132747.3132785

PIP. 2019. Requirements. https://pip.readthedocs.io/en/1.1/requirements.html. Accessed: 2019-08-23.

Python. 2019. PEP Purpose and Guidelines. https://www.python.org/dev/peps/pep-0001/. Accessed: 13 Jun. 2019.
Python. 2019. PIP User Guide. https://pip.pypa.io/en/stable/user_guide/. Accessed: 2019-08-23.

Realpython. 2019. what is pip. https://realpython.com/what-is-pip/. Accessed: 2019-08-23.

Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004. Chianti: A Tool for Change
Impact Analysis of Java Programs. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA ’04). Association for Computing Machinery, New York,
NY, USA, 432-448. https://doi.org/10.1145/1028976.1029012

R. Robbes and M. Lanza. 2008. How Program History Can Improve Code Completion. In Proceedings of the 2008
23rd IEEE/ACM International Conference on Automated Software Engineering (ASE "08). IEEE Computer Society, USA,
317-326. https://doi.org/10.1109/ASE.2008.42

Romain Robbes, Mircea Lungu, and David Réthlisberger. 2012. How Do Developers React to API Deprecation?: The
Case of a Smalltalk Ecosystem. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering (FSE °12). ACM, New York, NY, USA, Article 56, 11 pages. https://doi.org/10.1145/2393596.2393662
Martin P. Robillard and Robert Deline. 2011. A Field Study of API Learning Obstacles. Empirical Softw. Engg. 16, 6
(Dec. 2011), 703-732. https://doi.org/10.1007/s10664-010-9150-8

Peter Rousseeuw. 1987. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. 7.
Comput. Appl. Math. 20, 1 (Nov. 1987), 53-65. https://doi.org/10.1016/0377-0427(87)90125-7

A.Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams, and P. Beling. 2018. Deep learning detecting fraud in credit card
transactions. In 2018 Systems and Information Engineering Design Symposium (SIEDS). IEEE Press, Piscataway, NJ,
USA, 129-134. https://doi.org/10.1109/SIEDS.2018.8374722

Thorsten Schéfer, Jan Jonas, and Mira Mezini. 2008. Mining Framework Usage Changes from Instantiation Code.
In Proceedings of the 30th International Conference on Software Engineering (ICSE ’08). Association for Computing
Machinery, New York, NY, USA, 471-480. https://doi.org/10.1145/1368088.1368153

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael
Young, Jean-Francois Crespo, and Dan Dennison. 2015. Hidden Technical Debt in Machine Learning Systems (NIPS’15).
MIT Press, Cambridge, MA, USA, 2503-2511.

Pranab Kumar Sen. 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Amer. Statist. Assoc. 63,
324 (1968), 1379-1389.

Janice Singer, Susan E Sim, and Timothy C Lethbridge. 2008. Software engineering data collection for field studies. In
Guide to Advanced Empirical Software Engineering. Springer, 9-34.

Davide Spadini, Mauricio Aniche, and Alberto Bacchelli. 2018. PyDriller: Python Framework for Mining Software
Repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). Association for Computing Machinery, New
York, NY, USA, 908-911. https://doi.org/10.1145/3236024.3264598

Xiaobing Sun, Tianchi Zhou, Gengjie Li, Jiajun Hu, Hui Yang, and Bin Li. 2017. An empirical study on real bugs for
machine learning programs. In 2017 24th Asia-Pacific Software Engineering Conference (APSEC). IEEE, IEEE Press,
Piscataway, NJ, USA, 348-357. https://doi.org/10.1109/APSEC.2017.41

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to Data Mining, (First Edition). Addison-Wesley
Longman Publishing Co., Inc., USA.

Yiming Tang, Raffi Khatchadourian, Mehdi Bagherzadeh, Rhia Singh, Ajani Stewart, and Anita Raja. 2021. An
Empirical Study of Refactorings and Technical Debt in Machine Learning Systems. In International Conference on
Software Engineering (ICSE °21). ACM/IEEE. To appear.

DVC Team. 2020. Open-source Version Control System for Machine Learning Projects. https://dvc.org. Accessed:
2020-03-26.

Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. 2014. A Study of Library Migrations in Java. J.
Softw. Evol. Process 26, 11 (Nov. 2014), 1030-1052. https://doi.org/10.1002/smr.1660

Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. An Empirical Study of Bugs in Machine Learning
Systems. In Proceedings of the 2012 IEEE 23rd International Symposium on Software Reliability Engineering (ISSRE ’12).
IEEE Computer Society, USA, 271-280. https://doi.org/10.1109/ISSRE.2012.22

Ferdian Thung, Shaowei Wang, David Lo, and Julia Lawall. 2013. Automatic Recommendation of API Methods from
Feature Requests. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE’13). IEEE Press, 290-300. https://doi.org/10.1109/ASE.2013.6693088

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated Testing of Deep-Neural-Network-
Driven Autonomous Cars. In Proceedings of the 40th International Conference on Software Engineering (ICSE ’18).
Association for Computing Machinery, New York, NY, USA, 303-314. https://doi.org/10.1145/3180155.3180220

40

https://doi.org/10.1145/3132747.3132785
https://pip.readthedocs.io/en/1.1/requirements.html
https://www.python.org/dev/peps/pep-0001/
https://pip.pypa.io/en/stable/user_guide/
https://realpython.com/what-is-pip/
https://doi.org/10.1145/1028976.1029012
https://doi.org/10.1109/ASE.2008.42
https://doi.org/10.1145/2393596.2393662
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/SIEDS.2018.8374722
https://doi.org/10.1145/1368088.1368153
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1109/APSEC.2017.41
https://dvc.org
https://doi.org/10.1002/smr.1660
https://doi.org/10.1109/ISSRE.2012.22
https://doi.org/10.1109/ASE.2013.6693088
https://doi.org/10.1145/3180155.3180220

[133] Frank Tip, Robert M. Fuhrer, Adam Kieundefinedun, Michael D. Ernst, Ittai Balaban, and Bjorn De Sutter. 2011.
Refactoring Using Type Constraints. ACM Trans. Program. Lang. Syst. 33, 3, Article Article 9 (May 2011), 47 pages.
https://doi.org/10.1145/1961204.1961205

Paolo Tonella. 2003. Using a Concept Lattice of Decomposition Slices for Program Understanding and Impact Analysis.

IEEE Trans. Softw. Eng. 29, 6 (June 2003), 495-509. https://doi.org/10.1109/TSE.2003.1205178

Weslley Torres, Gustavo Pinto, Benito Fernandes, Jodo Paulo Oliveira, Filipe Alencar Ximenes, and Fernando Castor.

2011. Are Java Programmers Transitioning to Multicore? A Large Scale Study of Java FLOSS. In Proceedings of the

Compilation of the Co-Located Workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11 (SPLASH

’11 Workshops). Association for Computing Machinery, New York, NY, USA, 123-128. https://doi.org/10.1145/2095050.

2095072

Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2008. JDeodorant: Identification and Removal

of Type-Checking Bad Smells. In Proceedings of the 2008 12th European Conference on Software Maintenance and

Reengineering (CSMR ’08). IEEE Computer Society, USA, 329-331. https://doi.org/10.1109/CSMR.2008.4493342

Victor L. Winter and Azamat Mametjanov. 2007. Generative Programming Techniques for Java Library Migration. In

Proceedings of the 6th International Conference on Generative Programming and Component Engineering (GPCE "07).

Association for Computing Machinery, New York, NY, USA, 185-196. https://doi.org/10.1145/1289971.1290001

Claes Wohlin and Aybiike Aurum. 2015. Towards a decision-making structure for selecting a research design in

empirical software engineering. Empirical Software Engineering 20, 6 (2015), 1427-1455.

[139] Wei Wu, Yann-Gaél Guéhéneuc, Giuliano Antoniol, and Miryung Kim. 2010. AURA: A Hybrid Approach to Identify

Framework Evolution. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume

1 (ICSE ’10). Association for Computing Machinery, New York, NY, USA, 325-334. https://doi.org/10.1145/1806799.

1806848

Zhenchang Xing and Eleni Stroulia. 2007. API-Evolution Support with Diff-CatchUp. IEEE Trans. Softw. Eng. 33, 12

(Dec. 2007), 818-836. https://doi.org/10.1109/TSE.2007.70747

[141] Wang Ying, Wen Ming, Liu Yepang, Wang Yibo, Li Zhenming, Wang Chao, Yu Hai, Cheung Shing-Chi, Xu Chang, and
Zhu Zhiliang. 2020. Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem. In In Proceedings of
42nd International Conference on Software Engineering (ICSE °20). ACM, New York, NY, USA, 11. https://doi.org/10.
1145/3377811.3380426

[142] Zhongxing Yu, Chenggang Bai, Lionel Seinturier, and Martin Monperrus. 2019. Characterizing the Usage, Evolution
and Impact of Java Annotations in Practice. IEEE Transactions on Software Engineering (2019), 1-1. https://hal.inria.
fr/hal-02091516

[143] Cheng Zhang, Juyuan Yang, Yi Zhang, Jing Fan, Xin Zhang, Jianjun Zhao, and Peizhao Ou. 2012. Automatic Parameter
Recommendation for Practical API Usage. In Proceedings of the 34th International Conference on Software Engineering
(ICSE ’12). IEEE Press, Piscataway, NJ, USA, 826-836.

[144] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An empirical study of common challenges in
developing deep learning applications. In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, IEEE Press, Piscataway, NJ, USA, 104-115. https://doi.org/10.1109/ISSRE.2019.00020

[145] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018. An Empirical Study on TensorFlow
Program Bugs. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2018). Association for Computing Machinery, New York, NY, USA, 129-140. https://doi.org/10.1145/3213846.3213866

[146] Shurui Zhou, Bogdan Vasilescu, and Christian Kastner. 2020. How Has Forking Changed in the Last 20 Years? A
Study of Hard Forks on GitHub. In In Proceedings of 42nd International Conference on Software Engineering (ICSE °20).
ACM, New York, NY, USA, 11. https://doi.org/10.1145/3377811.3380426

[147] Thomas Zimmermann, Peter Weissgerber, Stephan Diehl, and Andreas Zeller. 2005. Mining Version Histories to
Guide Software Changes. IEEE Trans. Softw. Eng. 31, 6 (June 2005), 429-445. https://doi.org/10.1109/TSE.2005.72

[134

flan)

[135

i

[136

—

[137

—

[138

=

[140

=

41

https://doi.org/10.1145/1961204.1961205
https://doi.org/10.1109/TSE.2003.1205178
https://doi.org/10.1145/2095050.2095072
https://doi.org/10.1145/2095050.2095072
https://doi.org/10.1109/CSMR.2008.4493342
https://doi.org/10.1145/1289971.1290001
https://doi.org/10.1145/1806799.1806848
https://doi.org/10.1145/1806799.1806848
https://doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1145/3377811.3380426
https://doi.org/10.1145/3377811.3380426
https://hal.inria.fr/hal-02091516
https://hal.inria.fr/hal-02091516
https://doi.org/10.1109/ISSRE.2019.00020
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/3377811.3380426
https://doi.org/10.1109/TSE.2005.72

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	3 RESEARCH-METHODOLOGY
	3.1 Subject Systems
	3.2 Static Source Code Analysis
	3.3 Tracking ML library introduction and update :
	3.4 Association rule mining
	3.5 Qualitative Study

	4 Results
	4.1 RQ1: What is the trend in ML library usage?
	4.2 RQ2: What combination of libraries do developers use?
	4.3 RQ3: How do developers update ML library dependencies?
	4.4 RQ4: What challenges arise when updating ML libraries?
	4.5 RQ5: What help do developers seek for updating ML libraries?
	4.6 RQ6: What challenges arise when retrofitting ML libraries?

	5 IMPLICATIONS
	5.1 Researchers
	5.2 Tool Builders
	5.3 Library vendors
	5.4 Hardware vendors
	5.5 Software developers and educators

	6 THREATS TO VALIDITY
	6.1 Internal validity
	6.2 External Validity
	6.3 Verifiability

	7 RELATED WORK
	7.1 Studies on Software-2.0
	7.2 Studies on Software-1.0 libraries

	8 CONCLUSIONS
	9 Acknowledgements
	References

