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Abstract
The dream of ubiquitous virtual reality (VR) tools has been a powerful presence in pop culture 

since before the turn of the century. But for all of its charm, VR applications are few and far between 
due to the high cost of hardware setups and cumbersome form factor. This project investigates the 
possibility of bringing VR concepts to mobile devices, which have become relatively inexpensive, 
travel-savvy computing platforms that are capable of displaying 3D graphics at interactive speeds. The 
investigation examines related work in the context of the VR community's evolving ontology and 
taxonomy, builds and tests an example VR interface that leverages the user's kinesthetic sense modality, 
and discusses a plan for future study.
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Introduction
What happened to the dream of virtual reality (VR)? Sometime in the last 20-30 years, popular 

media turned its eye on VR technology and spectacular ideas about what the future might hold for it 
began to emerge. These ideas are visible everywhere from novels like Snow Crash and Daemon to 
movies such as TRON, Lawnmower Man and The Matrix and they paint dramatic pictures, both hopeful 
and scary, about how VR could shape the way we experience life. And yet, as inspired as popular 
culture was by these ideas, as much as we have learned about the benefits of VR technology from 
existing work, VR applications are relatively inaccessible and uncommon. [2], [3]

Unlike VR applications, mobile devices are quite accessible and common1, but recent advances 
in mobile device design have introduced some similarities too. The current generation of smart phones 
and tablet computers is capable of rendering complex virtual environments (VE) at interactive speeds 
[4–8] and using built-in micro-electromechanical systems (MEMS) sensors to detect how users 
manipulate these devices in space. These two features make smart devices appear desirable as potential 
platforms for VR applications as the combination of these features resembles existing VR applications 
that use motion-tracked wands and other artifacts. [9–11] If robust, usable VR applications could be 
implemented on mobile devices, it would allow developers to bring the advantages and inspiration 
applied VR interfaces offer to a much wider audience.

The differences between traditional VR interfaces and the new interfaces that could be built on 
mobile devices still represent a challenge in forwarding this idea. To begin with, how does this kind of 
interface compare to previous work? Milgram's taxonomic framework of mixed reality (MR) systems 
gives some direction: an application built on a device with a small screen that uses real world 
interaction would ostensibly have a high level of world knowledge, a low level of reproduction fidelity 
and a low level of presence. Such an application would either be an augmented reality2 (AR) interface 
or an augmented virtuality3 (AV) interface depending on how the application represents its VE. [1] 

This aircraft HUD is an AR interface. Information such as the attitude, altitude, and heading of this plane are superimposed  
onto the pilot's view of the outside airspace [picture reference: http://htka.hu/wp-content/uploads/2010/04/HUD.jpg].

1 Gartner, Inc. estimates that over 821 million smart phones and tablet computers were sold world-wide in 2012 and 
predicts that sales will exceed 1.2 billion in 2013. [Gartner]

2 Augmented reality interfaces complement real world visuals, such as camera feeds or objects seen directly without 
intermediate tools, with virtual, digital artifacts, such as waypoints. [1]

3 Augmented virtuality interfaces complement VE visuals, such as digital terrain maps, with real world visuals or object 
interaction, such as camera feeds or real world objects. [1]

http://htka.hu/wp-content/uploads/2010/04/HUD.jpg
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However, this taxonomy only describes the visual aspect of the interface, what about the haptic aspect? 
Secondly, do the sensors and graphics hardware shipped with these devices perform well in this kind of 
interface? While graphics benchmarking tests indicate that they do [4–8], the author could not find 
mobile device research that evaluated the performance of the onboard sensor hardware in VR or AR 
interfaces.

This project explores the challenges in developing VR interfaces on mobile devices by 
addressing the question: “Are current-generation mobile devices suitable platforms for VE navigation 
applications?” To do this, this paper surveys the history and language of VR research, visualizing a 
more open-ended understanding of immersive technology based on suggestions by Bowman and 
Mcmahan in Virtual Reality: How Much Immersion Is Enough? [3]. The paper then describes the 
implementation and testing of a proof-of-concept interface, named “a Low-Immersion Virtual 
Environment” (aLIVE) on an example mobile device. The paper closes with suggestions for future 
work to realize a more robust version of aLIVE.

Related Work
There are many examples of successful traditional4 VR interfaces in the wild: flight simulators 

[12], video games [13], amusement park rides [14]. Yet they are far from ubiquitous. The academic 
community and popular culture's fashion sensibilities tend to agree this is largely due to the costs of 
preparing and using such an environment and the equipment's burdensome form factor. Jesse Fox et. al. 
summarize this sentiment in “Virtual Reality for Social Scientists”: 

Because of the claims of many futurists in the early 1990s, when 
people hear the words “virtual reality,” it is often with a dose of 
skepticism and technological trepidation: What happened to that 
bizarre world where everyone sits at home and experiences life in 
a funky helmet? The fact is that much of the high-end virtual 
reality technology featured in these futuristic fantasies has not 
diffused as quickly as other emergent technologies (e.g., cellular 
phones) because it remains too costly and cumbersome for 
everyday use. [2]

To illustrate this, consider the requirements for a CAVE Automatic Virtual Environment (CAVE). Since 
a CAVE is essentially a closed room in which the walls have been converted into a single, continuous 
display surrounding the user, this UI would require a dedicated usage space, a set of wall-mounted 
screens or projectors and some means of providing input to the application. 

4 There are two ways the word “immersion” has been used to talk about VR applications. The first is a continuum 
describing the extent to which the users senses are incorporated into a VR application's control loop. The second is a set 
of hardware and software configurations that an interface must have before it can be considered a VR interface. This set 
of configurations includes head-mounted displays, CAVEs, and other techniques for helping a user feel immersed in the 
VE. For clarity, this paper will refer to this second definition as “traditional VR”.
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CAVE display by Antycip Simulation [http://www.antycipsimulation.com/files/uploads/UTBM_Cave_Yview.jpg]

For private consumers, acquiring a CAVE would require obtaining these parts, then assembling and 
calibrating the environment by hand or contracting with an organization such as Mechdyne 
(www.mechdyne.com) that specializes in implementing CAVEs. In addition to these resource costs, 
traditional VR interfaces may also create health and safety costs such as motion-sickness, loss of visual 
acuity, and disorientation. [15] When all of these costs are taken into consideration, traditional VR 
interfaces do not seem practical for most everyday applications.

If the cost of these traditional VR interfaces is so high, what is it we are paying for exactly? In 
the common case, immersion and presence. In his article, “A Note On Presence Terminology” Mel 
Slater defines “immersion” as the objective, measurable outputs that a computer system uses to create 
the feeling of being in a VE. These outputs are connected to our sensory modalities in such a way that 
they create what Slater calls “presence”, the subjective, immeasurable, psychological response to the 
VE. [16] In an ideal system, a user's presence will allow them to make intelligent decisions about how 
to interact with the VE, closing the control loop. Leveraging the combination of immersion and 
presence in these interfaces is a powerful technique because it allows the user to intuit ways to interact 
with the VE.

For anyone interested in using immersion, presence or other concepts that have come from VR 
but don't have the resources to use traditional VR interfaces, there are two options: find a way to lower 
the cost or re-think what VR offers. In “Virtual Reality: How Much Immersion Is Enough?”, Bowman 
and Mcmahan discuss the VR community's narrow focus on the combination of immersion and 
presence in virtual environments, pointing out that by defining immersion as a “multidimentional 
continuum” the VR community may find other advantages, besides presence, to leverage in VR 
applications. Some of the benefits hypothesized in their work are: improved spatial understanding, 
reduced information clutter, and increased peripheral awareness. [3] Bowman and Mcmahan do not 
indicate what the dimensionality of this immersion continuum might look like, but even without much 
detail we can see how this idea changes the VR design space. To illustrate this, let the immersion 
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continuum be defined by a plane with the human senses along the X-axis and relative fidelity5 along the 
Y-axis:

This version of the immersion continuum, created in this paper to visualize Bowman and Mcmahan's point, is a qualitative 
representation of the design space that only takes into account two of the many possible dimensions we could use to 

describe VR.

In this representation of the immersion continuum, if Application A is more immersive than Application 
B, A will have higher-level fidelity scores in more sense modalities. Thus, A will have a “footprint” 
with a larger area than B. Additionally, A and B will likely have footprints with different shapes 
depending on the techniques they use to interact with a user's senses. Note that fidelity must be taken in 
a relative sense as the qualia a user experiences in a VR application can be difficult to quantify: How 
do we define high-fidelity smell? Which gives better visual fidelity: a head-mounted display or a 
CAVE? Below are some footprints for existing VR applications.

Relative Fidelity Scale6:
0 :: Not Used
1 :: Low
2 :: Medium
3 :: High

Project Sight Touch Sound Smell Taste

Sword of 
Damocles [17]

1: HMD with 
wireframe 
graphics

1: head-tracked 
perspective

0 0 0

Virtual 
Research V8 

2: HMD with 
640x480 

1: head-tracked 
perspective

0 0 0

5 For this discussion, fidelity refers the level of detail that an application can represent in a given human sense modality. 
For certain applications this is synonymous with realism.

6 These fidelity values are not determined by research. They were created from performance descriptions and screenshots 
of each project for the purpose of illustrating the state of the design space.
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Project Sight Touch Sound Smell Taste

HMD [18] resolution

UIC 
CAVE [18]

3: 1280x1024 
resolution

variable 
depending upon 
input device

variable 
depending upon 
application

0 0

Fakespace 
BOOM [19]

variable 
depending upon 
“display head”

2: head-tracked 
HMD with 
wide range of 
motion

0 0 0

While this coarse visualization oversimplifies years of hard work in pushing the boundaries of what we 
mean by fidelity, we can see that these projects are in the traditional VR style and do not occupy much 
space in this continuum of immersion; focusing heavily on visual fidelity. This visualization implies 
that there is still a range of senses to explore and a plethora of undiscovered techniques for creating 
different stimuli for these senses. Below is a list of other projects that have begun to explore other 
senses and techniques, breaking away from traditional VR:
 

Project Sight Touch Sound Smell Taste

Virtual Audio 0 1: head-tracked 3: Headphone- 0 0

Sight Touch Sound Smell Taste

0

0.5

1

1.5

2

2.5

3

Sword of Damocles
Virtual Research V8 HMD

Fakespace BOOM
UIC Cave

Footprints the Sensory Fidelity Continuum

R
el

at
iv

e 
F

id
el

ity
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Project Sight Touch Sound Smell Taste

Server [20] perspective based 
stereophonic 
output

Immersion 
Engine 3000 

[21]

0 2: force-
feedback stylus

0 0 0

Bowman and Mcmahan go on to suggest that, while immersion has been shown to increase a user's 
ability to complete a wide variety of tasks, a given application may require different levels of 
immersion or presence, providing examples of existing applications that do not require presence. The 
project featured here, a Low-Immersion Virtual Environment (aLIVE), seizes upon Bowman and 
Mcmahan's idea by creating a VE-exploration application that occupies a small part of the user's visual 
field and incorporates the control device with the screen as is necessary with a mobile device. The 
result is an application that must be used while the space surrounding the user is clearly visible and the 
entire apparatus can move freely through space:

Sight Touch Sound Smell Taste

0

0.5

1

1.5

2

2.5

3

Immersion Engine 3000

Virtual Audio Server

Footprints in the Sensory Fidelity Continuum

R
el

at
iv

e 
F

id
el

ity
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Project Sight Touch Sound Smell Taste

aLIVE 1: tiny screen 3: 3-axis 
accelerometer 
and gyroscope

0 0 0

aLIVE has a unique profile in the immersion continuum as it targets a platform that cannot easily 
represent a VE with a high degree of fidelity/immersion. However, as Bowman and Mcmahan 
predicted, this offers the application some unique advantages: relatively inexpensive hardware, the 
ability to use the application in a mobile setting and the ability to incorporate real world context into 
the usage of the application.

Magic Lenses

aLIVE is a variation on magic lens interfaces7. Historically, magic lenses have been 
implemented as physical objects or software entities that represent an optional, secondary view that 
may be nested inside an application's primary viewing mode. [24–30] Of these, the prominent VR 
applications that implement magic lenses do so in the traditional VR style with the addition of a flat, 
motion-tracked artifact. 

7 A type of UI that simulates a lens with “magical” properties. Objects seen through the lens are perceived differently by 
the user than objects not perceived through the lens. Ex: a 3D model-viewing magic lens that allows the user to view the 
inside contours of the 3D model.

Sight Touch Sound Smell Taste

0

0.5

1

1.5

2

2.5

3

Footprints in the Sensory Fidelity Continuum

R
el

at
iv

e 
F

id
el

ity
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Personal Interaction Panel [http://www.cg.tuwien.ac.at/research/vr/pip/images/sheet04.jpg]

The user sees the magic lens behavior in the virtual space that the motion-tracked artifact occupies in 
the VE [27–30]. aLIVE differs in that the object describing the magic lens (the mobile device's screen), 
the input device and the machine running the VE are all the same physical object. The magic lens' place 
in the application is secondary only to the user's view of their real world surroundings. Magic lens 
interfaces are well-studied for applications ranging from desktop CAD [24] to AR [26]. However, it has 
been difficult to find studies with performance data for magic lens interfaces comparing navigation and 
search tasks in VR magic lens applications to related technologies. Studies comparing navigation tasks 
in more visually-immersive environments have been performed and these suggest that visual 
immersion improves user completion time for search and navigation tasks [31].  However, the devices 
tested in these studies occupied vastly different areas on the immersion spectrum (desktop application 
vs. HMD). The studies I have been able to find using magic lens interfaces in VR applications discuss 
novel implementation techniques that allow the user access to a greater degree of object metadata in a 
single view or window [24], [26], [28–30]. As these studies do not seem relevant to navigation and 
search in VR applications, I have been unable to find a significant amount of related work in this 
capacity.

Design and Implementation
The application created for this project, aLIVE, is designed to explore the research question: 

“Are current-generation smart devices suitable platforms for VR applications?” This section will 
discuss the implementation of aLIVE by summarizing the tools and techniques used in the creation 
process, then discussing the design goals for the application and how they are addressed. Complications  
that arose in the development of the aLIVE will also be addressed at the end of this section for the 
benefit of those who might wish to replicate this project's design.



Carr 13

Design Summary

The development machine (left) and the mobile device (right) running aLIVE in debug mode.

Development environment:

• iMac and Macbook Pro

• Mac OS 10.8.3

◦ required for Xcode 4.6

• Xcode 4.6.1 IDE

◦ required for iOS 6.0 SDK

Mobile device:

• 3rd generation iPad 

◦ required for on-board gyroscope and accelerometer

• iOS 6.0.1

Application design:

• Based on Xcode's “OpenGL ES Game” application template

• Renders scene from VE to a single view that occupies the entire screen. Some debugging 
functionality is included via on-screen buttons.

• Navigation though 3D environment provided by the gyroscope and accelerometer

Design Goals

As this is an exploratory project, there are three design goals:

1. Render a VE on a current-generation mobile device at interactive speeds with useful 
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presentation 

2. Allow the user to manipulate their vantage point of the scene by manipulating the mobile device

3. Establish the performance capabilities of this kind of interface in a basic implementation

1) Render a VE on a current-generation mobile device at interactive speeds with useful presentation

This first design goal must be met in order to establish that current-generation mobile devices 
are suitable for 3D applications of any kind, VR or otherwise. The recent advances in the mobile 
computing industry have demonstrated that there are many affordable devices that exceed the hardware 
requirements for this goal to be met. [4], [6], [7] As more and more different devices become available 
that meet these requirements, it becomes difficult to design a proof-of-concept project that is useful to 
the myriad developers working on the devices that may be able to use this kind of interface. To make 
sure that this project could meet this goal such that the results are applicable to as many platforms as 
possible, aLIVE could have been implemented either as a device-agnostic application or it could be 
built natively for a single platform that would represent a reasonable standard of performance across 
the market. Since this project is intended to rely heavily on built-in motion sensors, it was decided that 
the application should be built natively so as to avoid performance issues that might arise in trying to 
use this hardware in a device-agnostic manner and leverage native API support for motion sensing. As 
there is currently no agreed-upon standard platform in the mobile device market, the authors felt that 
the iPad 3 would be the most appropriate platform for this project to target because it is known that the 
iPad 3 has the graphics and motion sensing features aLIVE requires [5], [32] and because of its current 
position in the mobile device market8. Even if other mobile device developers are not very familiar 
with Apple devices, they need to at least have an idea of how their devices compare to Apple devices in 
order to be competitive in the current market.

Since it has already been shown that the iPad can render much more complex environments at 
interactive speeds[5], a simple VE and UI is sufficient for the purposes of this project. The VE used in 
the tests and demonstrations of aLIVE is composed of simple cubes as defined in the OpenGL ES 
Game template project available in Xcode. (Appendix, Geometry section). The aLIVE UI is as 
straightforward as possible: a single window or view that uses the entire screen space in order to 
maintain the affordances of a magic lens interface:

8 While there is substantial disagreement on current market trends, iPads are currently the dominating tablet computers 
with ~39% of worldwide tablet sales in the first quarter of 2013. [22], [23]
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Screenshot taken from test device while running aLIVE

The decision to include debugging settings on the screen allows for faster configuration during testing, 
however they can be turned off to reduce screen clutter.

2) Allow the user to manipulate the vantage point displayed on screen by manipulating the mobile 
device

This goal represents aLIVE's strongest mode of immersion and the primary area of testing in 
this project. In order to meet this goal, the authors selected the 3 rd generation iPad over previous 
versions of iPad as it was the most recently available Apple tablet with the hardware to support motion 
sensing9. Additionally, Xcode, the recommended Apple IDE for app development, comes with a variety 
of frameworks that provide tools for quickly developing apps that efficiently use the target device's 
resources. The frameworks this project uses to achieve this goal are the Core Motion framework and 
the GLKit framework. The Core Motion framework allows access to the tablet's motion sensor data 
while the GLKit framework provides a collection of tools for rendering 3D scenes using OpenGL ES. 
These two frameworks together allow the application to gather motion data to guess the device's 
position in space and render the VE to reflect the device's position as though it were in the VE.

The Core Motion framework defines three objects for using motion data: an accelerometer data 
object, a gyroscope data object, and a device motion object. The aLIVE application uses the device 

9 This device ships with 3-axis MEMS accelerometer and gyroscope. Previous generations of iPad shipped with only the 
accelerometer which was insufficient to detect rotational translation of the device.
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motion object because it provides the sensor fusion logic needed to intelligently use the iPad's 
accelerometer and gyroscope together to guess the device's position in space. The Core Motion 
framework also allows for a variety of different configurations for gathering and using data via the 
device motion object including sampling speed and device calibration attitude10. This project requires 
that aLIVE can use different combinations of these configurations:

• Adjustable sensor sampling rate (Appendix, Sensor Sampling Configurations section)
• “Push” or “Pull” sensor interaction (Appendix, Sensor Sampling Configurations section)

“Push” and “Pull” are Apple Inc's names for their Core Motion framework implementation of sensor 
interruption and sensor polling respectively. Push uses an Objective-C block handler to collect sensor 
data at the specified sensor sampling rate by pushing block handler instances onto a queue which can 
be popped off as the system uses them. 

Push: the sensor hardware updates its readings at the specified sampling rate. Every update, the new sensor datum is pushed 
onto a queue in the View Controller. The View Controller may then dequeue this data as it is used.

Pull reads a sensor datum whenever a higher-level application functions asks for one while the sensors' 
state is updated at the given sensor sampling rate. 

Pull: the sensor hardware updates its readings at the specified sampling rate. The View Controller requests the current datum 
as it is needed to redraw the scene.

10 Attitude in this context refers to orientation in 3D space as defined by Euler angles or quaternions.
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Preliminary testing of these two different methods in aLIVE's development process indicated that there 
was no difference between the two except that push method is more memory intensive as there is a 
queue of sensor data that must be maintained. For testing purposes, this paper only evaluated 
performance for the pull method.

Using fused data to derive a device's translation through space is still difficult in this context 
due to limitations in current sensor technology. A sensor's ability to accurately measure a phenomenon 
is a ratio of the device's sampling rate to the phenomenon’s rate of change. Therefore, to capture 
sudden, rapidly changing mobile device movement, a high sampling rate is required. However, as the 
sampling rate increases, the amount of erroneous noise data increases and the system resources 
available for other computationally-heavy tasks, such as rendering a 3D scene, decrease. Further, 
deriving a position datum from a feed of accelerometer data is problematic because position is a double 
integral of acceleration – small errors in acceleration data can lead to enormous errors in position. 
[33] With this in mind, aLIVE tests a simple clamping technique and a simple filtering technique 
(Appendix, Clamping and Filtering section) for reducing sensor noise.

3) Establish the performance capabilities of this kind of interface in its most basic form

As more research is performed in the areas of VR, user motion sensing and mobile devices, it 
will be important to understand how that research impacts the capabilities of the techniques we have 
already developed. For example, the intended impact on aLIVE in the VR community is to demonstrate 
that it is possible to create applications that use immersion and presence in a mobile environment. This 
third design goal is intended to help create a sort of benchmark for future work in this area; any 
technologies that wish to expand or improve aLIVE's capabilities will need to meet or beat its current 
abilities. This goal is addressed by focusing on VE navigation using dead-reckoning11 as the author felt 
it would be the simplest technique for creating kinesthetic immersion on a mobile device. By focusing 
aLIVE's development on this technique, the testing process is simplified and the possibility of future 
work is much more open-ended.

While the iPad 3 may have been the best platform to target from the perspective of this study it 
is important to note that this decision had a substantial impact on the implementation process. In 
particular, Apple's developer program hindered development speed and certain Xcode features 
improved the implementation experience. However, the benefits of these features was somewhat 
mitigated by Apple's documentation practices. Participation in Apple's developer program is required in 
order to be able to run custom code on Apple devices. While the details of the registration process are 
beyond the scope of this paper, anyone wishing to replicate this work should know that it will be 
necessary to research hardware and SDK requirements in advance as these will have dependencies that 
must be supported by the Apple-registered development environment. Additionally, the documentation 
of the tools available in the Core Motion framework did not facilitate detailed understanding of the 
limitations and requirements of the device's sensors. The effects this had on the project as a whole are 
evaluated in the Discussion section of this paper.

Discussion
In order for aLIVE to show conclusively that the current generation of mobile computers is 

11 Dead-reckoning is a navigation technique that does not use calibration or correction information from outside of the 
device. This technique calculates the device's current location based upon a starting point or “fix” and a log of motion 
data gathered after the fix was established. The term comes from maritime navigation, when a navigator has only the 
tools onboard the ship to determine the vessel's whereabouts.



Carr 18

suitable for VE navigation applications, it must first be shown that the application can correctly map its 
position in real space to its position in the VE within a certain acceptable amount of error over time. 
Errors in this kind of mapping due to calibration problems or sensor errors will be experienced by the 
user as drift12. If the application drifts to the extent that the user has very little control over their 
position in the VE, it will indicate that motion-based dead-reckoning on the iPad 3 is not sufficient for a 
VE navigation application, similar implementations on other platforms will likely have the same issues 
with drift and other resources must be brought to bear in order to make this kind of application 
possible. If the application drifts to the extent that the user has a moderate amount of control over their 
position in the VE, then we can say that the application might be suitable for navigation applications 
that only require a coarse degree of control. If the application does not appear to drift at all, then 
previously impossible applications such as indoor GPS will become trivial as the user's location 
indoors will be the sum of their last GPS coordinate and the vector sum of their mobile device's 
movements since entering the building. This last case is so unlikely it is absurd, however, if it turns out 
that the application can maintain a within-tolerances coupling between its real space location and its 
VE location for long enough, applications such as indoor GPS might not be as unlikely a possibility as 
originally thought.

To assess the application's drift and to better understand how much drift is tolerable, aLIVE's 
motion sensing capabilities are assessed in in two different tests:

1. To assess application's drift in translational motion, the device is carried in a vertical position, 
screen facing the user, and walked steadily forward in a straight line. Every 10 feet (3.05 
meters) the user stops walking and the device's calculated position in user space is read. The 
configuration for this test was a sampling rate of 50 Hz and an accelerometer clamping 
threshold of .3 Gs (or 2.941995 m/s2). (Appendix Test 1 Data section)

2. To assess application's drift in rotational motion, the device is placed upon a flat, level surface 
and rotated about each of its axes a specified amount. The configuration for this test was a 
sampling rate of 50 Hz and an accelerometer clamping threshold of .3 Gs. (Appendix Test 2 
Data section)

If test 1 were performed on an ideal system, the ratio of distance traveled to distance reported 
by the application would be 1:1 for every measurement. The data from this test run shows that it 
approximates a 1:1 ratio, but with some odd behavior, particularly at the 15-foot mark. Prior to this 
point, the distance the application reported was close to the actual the device had traveled. However, 
once the device had traveled 15 feet, there was a large discrepancy between the reported and actual 
position. After this point, the reported position becomes increasingly accurate. While these results are 
somewhat promising, the drift was quite noticeable and without further knowledge on how the MEMS 
sensors work and how the Core Motion framework uses them, it is impossible to say whether the odd 
behavior at the 15-foot mark was a fluke or the apparent stability up to that point was a fluke.

As indicated by test 2, rotation drift is almost a non-issue. Deriving a device's attitude through 
sensor fusion may be done more reliably than deriving position as there is more data available in the 
derivation process; the current attitude is derived from the reference orientation, the x-axis, y-axis, and 
z-axis rotation values, and a gravity vector which is calculated from the accelerometer while current 
position can only be derived by integrating the changes in acceleration over time.

The linchpin of this proof-of-concept is the extent to which we are able to use the iPad's sensors 
to obtain accurate readings of device position as mapping from real space is the application's only 

12 As the difference between what the user expects to experience and what they actually experience increases, the 3D scene 
will appear to float or “drift” free of the user's input.
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immersion technique. Since position is a double integral of acceleration, noise will be exacerbated and, 
if any filtering/clamping is present, low or constant acceleration will not be detected. Further, 
depending on how acceleration filtering or clamping has been implemented, the iPad's physical 
properties when speeding up or slowing down will feel odd, hampering the user's presence in the 
application. If we were able to obtain exact position data more directly as other, non-mobile 
applications do, there would be little to no drift at all. However, this is nearly impossible to do in a 
mobile setting without resorting to computationally-expensive techniques, such as terrain feature 
recognition via camera, or non-standard sensor hardware, such as LIDAR, which could also be 
computationally-expensive to use.

Though was straightforward to accomplish project design goal number 2 as it was written, 
“allow the user to manipulate the vantage point displayed on screen by manipulating the mobile 
device”, the drift behavior encountered in test 1 indicates that an application like aLIVE is not suited 
for handling tasks that require precise translational motion. This finding is disappointing because it 
mitigates one of the key advantages to the aLIVE implementation: the application platform is mobile 
but it cannot accurately replicate, in a VE, the kind of long-distance motion mobile devices see in 
everyday use. Based upon the findings from test 3, it would take only a couple minutes of active use for 
the drift to become so severe that it would not be possible to see the user's expected position within the 
VE from the device's actual position in the VE. However, there are still a wide range of application 
where this kind of performance would suffice. For example: if a museum had a persistent VE that 
patrons could experience using aLIVE, so long as the application could be re-calibrated at every 
exhibit, ~10(?) feet via QR code or other marker, the experience could still feel cohesive.

Future Work
The possibilities for further investigation on aLIVE and the design space it resides in are too 

many to be enumerated here but there are phases that future work in this vein will need to pass through 
in order to become acceptable for everyday use. The first phase of future work will include work that 
answers the original research question of this paper: “Are current-generation mobile devices suitable 
for VE navigation applications?” The second phase will explore additional methods and consequences 
of human interaction with this interface.

The first phase of future work will have two sub-parts. The first part will focus on tools and 
techniques for addressing drift and the second part will focus on human subjects testing. Before human 
subjects testing will yield useful data, it will be important to make aLIVE's most important immersion 
technique as dependable as possible and this cannot happen without reducing the adverse effects of  
drift. Techniques that could be used toward this end (and have seen success in other applications) 
include sophisticated accelerometer filtering techniques, such as Kalman filtering, or relying on other 
onboard tools, such as the GPS and compass, or placing markers in the environment for updating the 
device's fix or combinations of the above. Another approach to reducing the negative effects of drift 
would be to expand the application's magic lens metaphor to include drift-tolerant behavior. This could 
be done by simulating friction, spring action, or other behaviors in the virtual representation of the 
tablet. Once techniques have been found that can correct drift to within a certain tolerance, the second 
part of this first phase will use human subjects testing to answer questions like: Does the small screen 
size prevent users from feeling present in the VE? Is there an optimal scale size for VE applications in 
this context? How does this kind of interface compare to older immersive interfaces for search and 
navigation tasks? Are users able to split their attention between an abstract VE's terrain features and 
real world terrain features to safely avoid collisions? Once these questions have been answered, we can 
determine whether or not the current-generation of mobile devices is suitable for VE navigation 
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applications.
The second phase of future work will examine the effectiveness of other tools and technologies 

integrated into a more fully-fledged version of aLIVE. For example, this phase could explore 
functionality based on other mobile platform features such as multitouch screen actions or the inclusion 
of other users and their mobile devices in the VE. Of particular interest in this area is 3D object 
selection. 3D object selection techniques have been well-studied on stationary computing platforms but 
not for mobile devices and will be an important feature for future VE navigation applications.

Conclusion
This paper has begun to answer the question, “Are current-generation mobile devices suitable 

for VE navigation applications?” by examining the evolution of VR taxonomy and implementation, 
taking a small step in exploring the dimensionality of Bowman and Mcmahan's immersion continuum, 
building an experimental interface and testing its performance. The current trend in the VR community 
is pushing the boundaries of what immersion means by designing alternative means of engaging non-
traditional human sense modalities to create the experience of being in a VE. The project featured in 
this paper, aLIVE, combines the idea of engaging non-traditional sense modalities with mobile devices 
to create a user interface that can explore a VE without being tied to a stationary location or preventing 
the user from interacting with their surroundings. The application was built and tested on the iPad 3 and  
attempts to use dead-reckoning navigation to turn basic kinesthetic motion into an intuitive means of 
navigating a VE. Though the application is found to be excellent at capturing and modeling rotational 
motion, it is unable to accurately model translational motion and suffers from drift. As translational 
motion is a key part of the interface's design and mobile device usage in general, the application 
indicates that this design is suitable for applications that only require the user to provide very coarse 
translation data or none at all. This finding is somewhat disappointing as it represents a major barrier 
preventing this kind of application from being used effectively in a mobile setting.

Although this project has found a major barrier to the usefulness of this style of interface, future 
work in addressing drift is promising. There are numerous other fields from which navigation 
techniques can be leveraged to this end as well as changes that could be made to the device's control 
loop to tighten translational motion in the application. The results of this project and the successes of 
other, similar technologies indicate that while a robust, satisfying, mobile VE navigation application is 
not possible on this version of aLIVE, it is likely that it will be possible on a device that is very similar 
to it.



Carr 21

Appendix

Geometry

GLfloat gCubeVertexData[216] = 
{
    // Data layout for each line below is:
    // positionX, positionY, positionZ,     normalX, normalY, normalZ,
    0.5f, -0.5f, -0.5f,        1.0f, 0.0f, 0.0f,
    0.5f, 0.5f, -0.5f,         1.0f, 0.0f, 0.0f,
    0.5f, -0.5f, 0.5f,         1.0f, 0.0f, 0.0f,
    0.5f, -0.5f, 0.5f,         1.0f, 0.0f, 0.0f,
    0.5f, 0.5f, 0.5f,          1.0f, 0.0f, 0.0f,
    0.5f, 0.5f, -0.5f,         1.0f, 0.0f, 0.0f,
    
    0.5f, 0.5f, -0.5f,         0.0f, 1.0f, 0.0f,
    -0.5f, 0.5f, -0.5f,        0.0f, 1.0f, 0.0f,
    0.5f, 0.5f, 0.5f,          0.0f, 1.0f, 0.0f,
    0.5f, 0.5f, 0.5f,          0.0f, 1.0f, 0.0f,
    -0.5f, 0.5f, -0.5f,        0.0f, 1.0f, 0.0f,
    -0.5f, 0.5f, 0.5f,         0.0f, 1.0f, 0.0f,
    
    -0.5f, 0.5f, -0.5f,        -1.0f, 0.0f, 0.0f,
    -0.5f, -0.5f, -0.5f,       -1.0f, 0.0f, 0.0f,
    -0.5f, 0.5f, 0.5f,         -1.0f, 0.0f, 0.0f,
    -0.5f, 0.5f, 0.5f,         -1.0f, 0.0f, 0.0f,
    -0.5f, -0.5f, -0.5f,       -1.0f, 0.0f, 0.0f,
    -0.5f, -0.5f, 0.5f,        -1.0f, 0.0f, 0.0f,
    
    -0.5f, -0.5f, -0.5f,       0.0f, -1.0f, 0.0f,
    0.5f, -0.5f, -0.5f,        0.0f, -1.0f, 0.0f,
    -0.5f, -0.5f, 0.5f,        0.0f, -1.0f, 0.0f,
    -0.5f, -0.5f, 0.5f,        0.0f, -1.0f, 0.0f,
    0.5f, -0.5f, -0.5f,        0.0f, -1.0f, 0.0f,
    0.5f, -0.5f, 0.5f,         0.0f, -1.0f, 0.0f,
    
    0.5f, 0.5f, 0.5f,          0.0f, 0.0f, 1.0f,
    -0.5f, 0.5f, 0.5f,         0.0f, 0.0f, 1.0f,
    0.5f, -0.5f, 0.5f,         0.0f, 0.0f, 1.0f,
    0.5f, -0.5f, 0.5f,         0.0f, 0.0f, 1.0f,
    -0.5f, 0.5f, 0.5f,         0.0f, 0.0f, 1.0f,
    -0.5f, -0.5f, 0.5f,        0.0f, 0.0f, 1.0f,
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    0.5f, -0.5f, -0.5f,        0.0f, 0.0f, -1.0f,
    -0.5f, -0.5f, -0.5f,       0.0f, 0.0f, -1.0f,
    0.5f, 0.5f, -0.5f,         0.0f, 0.0f, -1.0f,
    0.5f, 0.5f, -0.5f,         0.0f, 0.0f, -1.0f,
    -0.5f, -0.5f, -0.5f,       0.0f, 0.0f, -1.0f,
    -0.5f, 0.5f, -0.5f,        0.0f, 0.0f, -1.0f
};

- (void)setupGL
{
    [EAGLContext setCurrentContext:self.context];
    
    [self loadShaders];
    
    self.effect = [[GLKBaseEffect alloc] init];
    self.effect.light0.enabled = GL_TRUE;
    self.effect.light0.diffuseColor = GLKVector4Make(1.0f, 0.4f, 0.4f, 1.0f);
    
    glEnable(GL_DEPTH_TEST);
    
    glGenVertexArraysOES(1, &_vertexArray);
    glBindVertexArrayOES(_vertexArray);
    
    glGenBuffers(1, &_vertexBuffer);
    glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer);
    glBufferData(GL_ARRAY_BUFFER, sizeof(gCubeVertexData), gCubeVertexData, 
GL_STATIC_DRAW);
    
    glEnableVertexAttribArray(GLKVertexAttribPosition);
    glVertexAttribPointer(GLKVertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 24, 
BUFFER_OFFSET(0));
    glEnableVertexAttribArray(GLKVertexAttribNormal);
    glVertexAttribPointer(GLKVertexAttribNormal, 3, GL_FLOAT, GL_FALSE, 24, 
BUFFER_OFFSET(12));

    // Creating and binding marker VAO/VBO
    
    glGenVertexArraysOES(1, &_markerVertexArray);
    glBindVertexArrayOES(_markerVertexArray);
    
    glGenBuffers(1, &_markerVertexBuffer);
    glBindBuffer(GL_ARRAY_BUFFER, _markerVertexBuffer);
    glBufferData(GL_ARRAY_BUFFER, sizeof(gMarkerVertexData), gMarkerVertexData, 
GL_STATIC_DRAW);
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    glEnableVertexAttribArray(GLKVertexAttribPosition);
    glVertexAttribPointer(GLKVertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 0, 
BUFFER_OFFSET(0));
    
    glBindVertexArrayOES(0);
}

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
    glClearColor(0.65f, 0.65f, 0.65f, 1.0f);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    
    switch (modeSwitch.selectedSegmentIndex) {
        case WIREFRAME_TEST_ENV:
            
            glBindVertexArrayOES(_markerVertexArray);
            [self.effect prepareToDraw];
            glDrawArrays(GL_LINES, 0, 126);
            
            break;
            
        case WIREFRAME_BOXES:
            
            glBindVertexArrayOES(_vertexArray);
            
            // Render the object with GLKit
            [self.effect prepareToDraw];
            
            glDrawArrays(GL_LINE_LOOP, 0, 36);
            
            // Render the object again with ES2
            glUseProgram(_program);
            
            glUniformMatrix4fv(uniforms[UNIFORM_MODELVIEWPROJECTION_MATRIX], 1, 0, 
_modelViewProjectionMatrix.m);
            glUniformMatrix3fv(uniforms[UNIFORM_NORMAL_MATRIX], 1, 0, _normalMatrix.m);
            
            glDrawArrays(GL_LINE_LOOP, 0, 36);
            
            break;
            
        default:
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            glBindVertexArrayOES(_vertexArray);
            
            // Render the object with GLKit
            [self.effect prepareToDraw];
            
            glDrawArrays(GL_TRIANGLES, 0, 36);
            
            // Render the object again with ES2
            glUseProgram(_program);
            
            glUniformMatrix4fv(uniforms[UNIFORM_MODELVIEWPROJECTION_MATRIX], 1, 0, 
_modelViewProjectionMatrix.m);
            glUniformMatrix3fv(uniforms[UNIFORM_NORMAL_MATRIX], 1, 0, _normalMatrix.m);
            
            glDrawArrays(GL_TRIANGLES, 0, 36);
            
            break;
    }

}

Sensor Sampling Configurations

// ------------- DEBUG ENV OPTIONS ---------------- //

#define DeviceMotionWithQueue           0
#define DeviceMotionNoQueue             !DeviceMotionWithQueue

#define ApplyFilters                    1
//#define FilterThreshold                 .3 // Moved to UI

#define DebugEulerAngles                0
#define DebugQuat                       0
#define DebugUserAccel                  1

- (void) enableDeviceMotionSensors
{
    if ( ![sensorManager isDeviceMotionActive] ) {
        
        [sensorManager setDeviceMotionUpdateInterval: 1.0f/sensorFrequencyStepper.value ];
        [sensorFrequencyLabel setText:[ NSString stringWithFormat:@"%f", 
sensorFrequencyStepper.value]];
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#if DeviceMotionWithQueue
        
        // CMAttitudeReferenceFrame is a predefined enum:
        // CMAttitudeReferenceFrameXArbitraryZVertical - Z axis oriented vertically, as on a table.
        // CMAttitudeReferenceFrameXArbitraryCorrectedZVertical - Uses magnetometer to correct yaw 
and results in increased CPU usage
        
        // Apple says this uses "Push" method to retreive sensor data
        [sensorManager 
startDeviceMotionUpdatesUsingReferenceFrame:CMAttitudeReferenceFrameXArbitraryCorrectedZVe
rtical toQueue: [[NSOperationQueue alloc] init] withHandler: ^(CMDeviceMotion *dmReceived, 
NSError *error)
        {
            
            CMQuaternion currentAttitude_CM = dmReceived.attitude.quaternion;
            double x_posNext, y_posNext, z_posNext;
            double x_velNext, y_velNext, z_velNext;

            // multiplying out Gs to get m/s^2
            double currentAccelerationX = (dmReceived.userAcceleration.x) * Gs;
            double currentAccelerationY = (dmReceived.userAcceleration.y) * Gs;
            double currentAccelerationZ = (dmReceived.userAcceleration.z) * Gs;

            // ROTATION
            // We negate the Z rotation in order to simulate a lens
            GLKQuaternion currentAttitude_raw = GLKQuaternionMake( -currentAttitude_CM.x, 
-currentAttitude_CM.y, -currentAttitude_CM.z, currentAttitude_CM.w);
            GLKQuaternionNormalize( currentAttitude_raw );
            cmRotate_modelViewMatrix = GLKMatrix4MakeWithQuaternion(currentAttitude_raw);

            
            // TRANSLATION
            // We assume constant acceleration over the sampling interval
            //
            //          time_n               time_n+1             time_n+2
            //  --------|--------------------|--------------------|---------
            //          x_pos                x_posNext
            //          x_vel                x_velNext
            
#if ApplyFilters
            if ( fabs(currentAccelerationX) < filterValStepper.value) currentAccelerationX = 0.0f;
            if ( fabs(currentAccelerationY) < filterValStepper.value) currentAccelerationY = 0.0f;
            if ( fabs(currentAccelerationZ) < filterValStepper.value) currentAccelerationZ = 0.0f;
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#endif
            
            x_posNext = x_pos + (x_vel * (1.0/sensorFrequencyStepper.value)) + (.5 * 
currentAccelerationX * pow(1.0/sensorFrequencyStepper.value,2));
            y_posNext = y_pos + (y_vel * (1.0/sensorFrequencyStepper.value)) + (.5 * 
currentAccelerationY * pow(1.0/sensorFrequencyStepper.value,2));
            z_posNext = z_pos + (z_vel * (1.0/sensorFrequencyStepper.value)) + (.5 * 
currentAccelerationZ * pow(1.0/sensorFrequencyStepper.value,2));
            
            x_velNext = x_vel + (currentAccelerationX * (1.0/sensorFrequencyStepper.value));
            y_velNext = y_vel + (currentAccelerationY * (1.0/sensorFrequencyStepper.value));
            z_velNext = z_vel + (currentAccelerationZ * (1.0/sensorFrequencyStepper.value));
            
            // We negate the direction of the vector to simulate a lens

            cmTranslate_modelViewMatrix = GLKMatrix4MakeTranslation( x_posNext, y_posNext, 
z_posNext );
            
            x_pos = x_posNext;
            y_pos = y_posNext;
            z_pos = z_posNext;
            
            x_vel = x_velNext;
            y_vel = y_velNext;
            z_vel = z_velNext;
            
            // ----------------------------------- LOGGING DEVICE DATA TO SCREEN ------------------------------ //

            // VE Position Data
            x.text = [NSString stringWithFormat:@"X pos: %f", x_pos];
            y.text = [NSString stringWithFormat:@"Y pos: %f", y_pos];
            z.text = [NSString stringWithFormat:@"Z pos: %f", z_pos];
            
#if !SensorStats
            
            // Euler Angles
#if DebugEulerAngles
            NSString * pitch = [[NSString alloc] initWithFormat: @"Pitch : %6.2f ", 
dmReceived.attitude.pitch ];
            NSString * roll = [[NSString alloc] initWithFormat: @"Roll : %6.2f ", dmReceived.attitude.roll ];
            NSString * yaw = [[NSString alloc] initWithFormat: @"Yaw : %6.2f ", 
dmReceived.attitude.yaw ];
            
            NSString * combineAll = [pitch stringByAppendingString: [roll stringByAppendingString: yaw] ];
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            [self logToScreenAndConsole:combineAll];
#endif
            
            // Quaternion
#if DebugQuat
            NSString * quaternionScalar = [[NSString alloc] initWithFormat: @"Scalar : %6.2f ", 
dmReceived.attitude.quaternion.w ];
            NSString * quaternionVX = [[NSString alloc] initWithFormat: @"VX : %6.2f ", 
dmReceived.attitude.quaternion.x ];
            NSString * quaternionVY = [[NSString alloc] initWithFormat: @"VY : %6.2f ", 
dmReceived.attitude.quaternion.y ];
            NSString * quaternionVZ = [[NSString alloc] initWithFormat: @"VZ : %6.2f ", 
dmReceived.attitude.quaternion.z ];
            
            NSString * combineQuat = [quaternionScalar stringByAppendingString: [quaternionVX 
stringByAppendingString:[ quaternionVY stringByAppendingString:quaternionVZ]]];
            [self logToScreenAndConsole:combineQuat];
#endif
            
            // User Acceleration
#if DebugUserAccel
            NSString * xAccel = [[NSString alloc] initWithFormat: @"X Acceleration : %6.2f ", 
dmReceived.userAcceleration.x ];
            NSString * yAccel = [[NSString alloc] initWithFormat: @"Y Acceleration : %6.2f ", 
dmReceived.userAcceleration.y ];
            NSString * zAccel = [[NSString alloc] initWithFormat: @"Z Acceleration : %6.2f ", 
dmReceived.userAcceleration.z ];
            
            NSString * combineUserAccel = [xAccel stringByAppendingString: [yAccel 
stringByAppendingString: zAccel] ];
            [self logToScreenAndConsole:combineUserAccel];
#endif
            
#endif
            
            // Sensor Statistics
#if SensorStats
            [xAccelStats dupdate:dmReceived.userAcceleration.x];
            [yAccelStats dupdate:dmReceived.userAcceleration.y];
            [zAccelStats dupdate:dmReceived.userAcceleration.z];
            
            [xVelStats fupdate:x_velNext];
            [yVelStats fupdate:y_velNext];
            [zVelStats fupdate:z_velNext];
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#endif
            
        }];
        
#else   // DeviceMotionNoQueue
        // This usage of startDeviceMotion is recommended for videogames which are only interested in 
the current position data of the device. Since we're storing the previous device motion data in the 
ViewController we don't really need to have the queue. However, this option does not seem to take 
into account the update interval.
        [sensorManager startDeviceMotionUpdates];
#endif
    }
    
}

Clamping and Filtering

#define ApplyFilters                    1
//#define FilterThreshold                 .3 // Moved to UI
#define Clamping                        1
#define Filtering                       !Clamping

#if ApplyFilters
#if Clamping
            if ( fabs(currentAccelerationX) < filterValStepper.value) currentAccelerationX = 0.0;
            if ( fabs(currentAccelerationY) < filterValStepper.value) currentAccelerationY = 0.0;
            if ( fabs(currentAccelerationZ) < filterValStepper.value) currentAccelerationZ = 0.0;
#endif
#if Filtering
            currentAccelerationX = [self HiPassFilter2:currentAccelerationX prev:prevAccelX];
            currentAccelerationY = [self HiPassFilter2:currentAccelerationY prev:prevAccelY];
            currentAccelerationZ = [self HiPassFilter2:currentAccelerationZ prev:prevAccelZ];
            prevAccelX = currentAccelerationX;
            prevAccelY = currentAccelerationY;
            prevAccelZ = currentAccelerationZ;
#endif
#endif

- (double) HiPassFilter2:(double)currentVal prev:(double)previousVal {
    return currentVal - ( (currentVal * filterValStepper.value) + (previousVal * (1.0 - 
filterValStepper.value)) );
}
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Test 1 Data

Meters (actual) Meters (reported)
0.00 0.00
3.05 2.52
6.10 6.48
9.15 9.48

12.20 12.36
15.24 13.38
18.29 17.04
21.34 20.28
24.39 24.36
27.44 27.72
30.49 31.62
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3.05 1.210
6.10 0.941
9.15 0.965

12.20 0.987
15.24 1.139
18.29 1.074
21.34 1.052
24.39 1.001
27.44 0.990
30.49 0.964
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Meters (actual)
actual/reported by 
interval

3.05 1.210
6.10 0.770
9.15 1.016
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Test 2 Data

Rotation about Z-axis:

Degrees yaw
0 0.45

45 43.75
90 90.75

135 129.86
180 179.78

Rotation about X-axis:

Degrees pitch
0 -0.75

45 36.15
90 88.03

135 45.97
180 0.68
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Rotation about Y-axis:

Degrees roll
0 0.71

45 -43.23
90 -92.9

135 -131.2
180 -179.32
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