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1 Introduction

Cake-eating problems comprise a central element of macroeconomics. The agent is

faced with the decision of consuming now or consuming in the future. Cake-eating

problems can be generalized to model a wide range of economic phenomena. In

many macroeconomic models, agents are faced with a string of decisions that can be

formulated as a recursive problem. Using the techniques of dynamic programming,

we can solve these recursive problems.

Ramsey (1928) formulated the canonical dynamic programming problem, the in-

finite horizon deterministic growth problem. In this problem, the social planner

maximizes the utility of households subject to the aggregate constraints of the econ-

omy. In the Ramsey problem, there is one infinitely-lived household maximizing their

inter-temporal utility by choosing between consumption and savings, the household

receives wages for hours worked and interest payments for money saved. Further-

more, in this model, households are restricted from accumulating infinite debt to fuel

consumption. There are also firms in the economy that maximize profit by choosing

quantities of capital and labor. Higher consumption results in greater immediate

utility, whereas lower consumption results in higher savings and higher capital accu-

mulation and ultimately increases in utility. The social planner’s problem comes down

to optimizing utility by balancing consumption and capital accumulation. Ramsey

(1928) was able to use calculus of variations to solve for the optimal path of capital

accumulation which yields optimal societal utility.

Formally, the Ramsey growth problem can be expressed

U = max
ct

∞∑
t=0

βtu(ct) (1)

kt+1 = f(kt)− ct.



Where consumption is constrained by the law of motion of capital accumulation.

The cake-eating problem is a special case of the Ramsey problem. We can express

a version of the cake-eating problem by,

U = max
0≤ct≤wt

∞∑
t=0

βtu(ct) (2)

wt+1 = A(wt − ct)

w0 > 0 given.

There are two notable differences between these two problems. First, borrowing is

prohibited in the cake-eating problem, whereas in the Ramsey problem it is not.

Second, the production function in the cake-eating problem as exhibited by wt+1 =

A(wt − ct), is linear. In the most basic form of the problem, an agent is endowed

with a finite amount of cake and must choose a consumption path that maximizes

the utility derived from the cake over some time period.

The cake-eating problem is a special case of the Ramsey problem that has been

studied in considerable detail. The cake-eating problem is a very useful tool in macroe-

conomics. Macroeconomic models rely on utility-maximizing consumers and profit

maximizing firms. Cake-eating problems offer a mechanism for which agent’s opti-

mization can be understood. How can we best model an agent that we can place

into a macroeconomic model? She is maximizing her utility based on her resource

constraints- she has to choose how much to work, save, and spend. Furthermore

she lives in an uncertain world. She may lose her job or receive a large inheritance,

she may live until she is one hundred or she may die tomorrow. In order to answer

macroeconomic questions via models, an economist must first model consumers with

the desired level of complexity. Cake-eating problems are a way to model consumer

behavior as it applies to macroeconomics. The cake-eating problem can be formulated
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in varying degrees of complexity to satisfactorily model consumers. After formulat-

ing and studying the general problem, a number of complexities can be added. This

paper will focus on a general, deterministic case, but some extensions are outlined

below.

The literature of cake-eating problems have explored a wide variety of topics, and

have suggested means of optimizing consumption under a wide range of constraints.

Stokey and Lucas (1989), Ljungqvist and Sargent (2000), and Adda and Cooper

(2003) offer a comprehensive overview of applications and solutions of dynamic pro-

gramming and cake-eating.

Adding stochastic elements to cake-eating problems can help explore a wide variety

of problems. Adda and Cooper (2003) provide a useful survey of the ways that random

events can be incorporated into cake-eating problems.

Suppose for example that we introduce taste shocks into the problem. In other

words, there is uncertainty about the agent’s appetite in the future. We can imagine

that the consumer begins each period either hungry or already satiated. If she is

hungry, her utility will be scaled up, whereas if she is already satiated, her utility will

be scaled down. We can then express the agent’s utility by

εu(c),

where ε is a positive random variable representing the magnitude of the taste shock.

We can assume that ε satisfies the Markov property, which implies that the value of ε

in any time period depends solely on the value of ε in the previous time period. The

Markov property allows us to find the probability of ε changing between states.

In the nonstochastic cake-eating problem, the agent is concerned solely with the

size of the cake, whereas now the agent needs to take taste shocks into account as

well. Depending on the probabilities of the taste shocks in the next period, the agent
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may alter her consumption to maximize utility. Even with random taste shocks, we

can solve for the agent’s optimal policy function. The fact that a cake-eating problem

can handle stochastic shocks allows it to more accurately model consumer behavior.

Research has also been done into optimal consumption given an unknown lifes-

pan. Kumar (2005) explores the optimal horizon for cake eating problems. Given

an unknown lifespan, how ought an agent consume her cake? Knowing the prob-

ability distribution, and using Bayesian updating, the agent can formulate optimal

consumption in each period, given current information.

The usefulness of cake eating problems is not limited to modeling consumer be-

havior. Researchers have also used the cake-eating problem to explore the optimal

consumption of an unknown quantity of a resource. Kemp (1976) first explored this

question, and the discussion has been continued in Kemp (1977), Gilbert (1979), and

Kemp and Long (2007), among others.

This paper explores the following question: under what conditions do cake-eating

problems have no optimal solution? Furthermore, suppose that no optimal consump-

tion path exists. How then should consumers choose their consumption path? In

order to explore these questions, the remainder of this paper is structured as follows.

In section 2 we develop the basic cake-eating problem. In section 3 we move on to

solve cake-eating problems under specific constraints, including a set of constraints

that yield no optimal solution. In section 4 we explore how consumers might behave

when presented with utility streams that diverge to −∞.

2 The Problem

Cake-eating problems are applications of dynamic programming to the consumption-

savings problem. In the most basic form of the problem, an agent is endowed with
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a finite amount of cake and must choose a consumption path that maximizes the

utility derived from the cake over some time period (In this paper we will focus on

infinite-horizon problems). The amount of cake available in time t is denoted by wt

and utility in time t as a function of consumption is given by u(ct). Furthermore the

agent is impatient, as is represented by the discount factor β ∈ (0, 1). The consumer

is thus faced with the following problem,

U = max
0≤ct≤wt

∞∑
t=0

βtu(ct) (3)

wt+1 = A(wt − ct).

w0 > 0 given.

Note that in this version of the problem, borrowing of cake is prohibited, as evi-

denced by 0 ≤ ct ≤ wt. Furthermore, the evolution of cake over time is governed by,

wt+1 = A(wt − ct), where A is the growth rate of the cake (which in the context of a

consumption-savings problem often corresponds to the interest rate).

Now that we have a cake and a utility function, how do we go about solving the

problem? We will look at two approaches, solving using the Euler Equations and the

Transversality Condition, which Adda and Cooper (2003) refer to as the direct attack

method, and secondly by using optimal control theory and the methods developed by

Richard Bellman.

2.1 Direct Attack Approach

The direct attack approach relies on the relevant Euler Equation. The Euler Equa-

tion is a first order condition for optimality in a dynamic programming problem. It

restricts consumption paths where we can increase utility by shifting consumption
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across time periods.

2.1.1 Derivation of the Euler Equation

We can derive the Euler Equation by considering a simple example and using an arbi-

trage argument in the vein of Dixit (1990). Consider a two period problem expressed

by the following:

max
0≤ct≤wt

1∑
t=0

βtu(ct) (4)

w0 > 0 given

w1 = A(w0 − c0).

We can internalize the constraint and rewrite this problem as,

max
0≤c0≤w0

u(c0) + βu(A(w0 − c0)) (5)

w0 > 0 given.

We can now see that our two period utility is determined solely by the choice of c0,

since the agent will consume the entirety of the remaining cake in the second time

period. Therefore the utility the agent derives at t = 1 is entirely dependent on her

choice of c0.

Suppose that our agent arbitrarily chooses his first period consumption, c0, and

contemplate a small change in consumption. If this new consumption path results in

a higher utility level than the previous path, the agent shifts her consumption to the

new path. She continues this process until she finds a consumption path for which
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there exists no other path that yields superior utility. The inability to find a superior

path proves that the agent has found an optimal path.

Using the above method, suppose that we have found an optimal path. What

characterizes the states of this path? We once again consider a small change. Let

dc0 represent an infinitesimally small change in our consumption of c0. Consider

consuming dc0 less at t = 0. This frees up a bit more cake for consumption at t = 1.

So at t = 1 the agent can consume Adc0 more than on the previous path. How will this

affect the agent’s utility? Her previous utility was given by U = u(c0)+βu(A(w0−c0)),

whereas her new utility is be given by,

Û = u(c0 − dc0) + βu(A[w0 − (c0 + dc0)])

.

Looking at the change between the two, the agent’s utility decreased by the

marginal utility multiplied by the decrease in consumption at t = 0, and increased by

the discounted marginal utility multiplied by the product of the growth rate and the

change in consumption at t = 1. In other words the change in utility was equal to

∆U = U − Û = −u′(c0)dc0 + Aβu′(c1)dc0. (6)

In order to be at an optimal solution, the agent can not increase her utility by changing

c0. Therefore it must the case that −u′dc0 + Aβu′dc0 = 0, which implies the Euler

Equation,

u′(c0) = Aβu′(c1). (7)
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In other words, at optimality, the marginal utility of consumption at time t must be

equal to the product of the growth rate and the discounted marginal utility at time

t+1. If this condition does not hold, the agent can increase her utility by substituting

consumption across time periods.

The above argument showed that the Euler Equation must hold in a two-period

problem, however we can easily extend this condition to an n-period problem. Since

the Euler equation must hold between adjacent time periods, all of the periods are

linked together through a system of Euler equations. These equations can be com-

bined to express the Euler equation in generality,

u′(c0) = Atβtu′(ct). (8)

However it is important to note that as a first order condition, the Euler equation is

necessary for an optimal solution, but it is not sufficient. In fact it is possible for a

given objective function to have many consumption paths that satisfy the Euler equa-

tion. In order to identify which path is the optimal path, we rely on the transversality

condition. The transversality condition limits our accumulation of wealth in the infi-

nite horizon. In other words, no cake should be saved in the last period unless it is

costless to do so. Formally the transversality condition for the cake-eating problem

is,

lim
t→∞

βtu′(ct)wt ≤ 0. (9)

The proof of the transversality condition lays beyond the scope of this paper, for a

treatment see any advanced macroeconomics text or Kamihigashi (2001).The transver-

sality condition and the Euler equations give us enough information to solve for

the optimal consumption path, when one exists. The initial condition is given, the
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transversality condition is the terminal condition, and the Euler equations describe

the path that links the initial and terminal conditions. We can use these conditions

to solve recursively for the optimal solution when one exists.

2.2 Bellman Approach

Once again we start with a cake of size w0. Bellman’s insight into dynamic program-

ming problems was that we can break an infinite-horizon problem into a two period

problem. This can be done through the use of a value function. The value function

V (wn) =
∑∞

t=n β
tu(c∗t ), gives the total discounted utility of an optimal stream of

consumption c∗t , given an amount of cake wt. So instead of optimizing (3) directly,

the agent now faces the following functional equation,

V (w) = max
0≤ct≤wt

u(ct) + βV (wt+1), (10)

wt+1 = A(wt − ct)

wt > 0given

where we are solving for the function V(·). Rather than finding the entire consumption

path {ct}, Bellman’s method allows us to optimize our utility by choosing consump-

tion in one period subject to the constraint of maximizing the value function in the

next period. Bellman observed that the consumer doesn’t need to know the entire

consumption path {ct} in order to determine present consumption. Instead, she only

needs to know that she will choose {ct} optimally given the state wt+1. This is known

as Bellman’s principle of optimality, and from this we can derive an important first

order condition.

Internalizing the constraint wt+1 = A(wt − ct) into (10) yields,
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V (w) = max
0≤ct≤wt

u(ct) + βV (A(wt − ct)), (11)

we can maximize this value function by taking the derivative with respect to ct and

setting equal to zero (Assuming V is differentiable), which yields,

u′(ct) = βV ′(wt+1). (12)

However, we do not know what the derivative of value function, V ′, is. In order to take

the derivative of V , we look back to (10), which holds for all values of w. Looking back

to the derivation of the Euler Equation, we have that u′(ct) = Aβu′(ct+1). Combining

this with (12) yields

Aβu′(ct+1) = u′(ct) = βV ′(wt+1),

which allows us to express the Euler Equation in terms of the value function,

Au′(ct+1) = V ′(wt+1). (13)

As in the direct attack approach, the sequence of Euler equations make up necessary

conditions for w in each time period. The next step in finding a solution via the

Bellman approach is to find the relevant policy function. The policy function tells a

consumer how much cake they ought to consume as a function of their stock of cake.

The policy function can be written in the form ct = f(wt), and the stock of cake can

be written in the form wt+1 = A(wt − f(wt)). Plugging these two values into the

Euler equation allows us to express the problem in terms of policy functions alone,

u′(f(wt)) = Aβu′(f(Awt − Af(wt))). (14)
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If we can solve for closed form solutions to the value and policy functions, our work

is done. However, Adda and Cooper (2003) explain that generally, it is not possible

to find these closed form solutions.

Stokey and Lucas (1989) offer a number of results on the existence of solutions to

the value function. If we formulate the problem as they do, then we have,

V (s) = max
wt+1∈Γ(w)

u(ct) + βV (wt+1), for all w ∈ W. (15)

Where Γ(w) is the constraint set. We can then determine whether there is a value

function that solves (15).

Theorem 1 Assume that u(ct) is real-valued, bounded, and continuous. Furthermore

assume β ∈ (0, 1) and that the constraint set is nonempty, continuous, and compact

valued. Then there exists a unique value function that solves (15).

Proof. See Stokey and Lucas (1989), theorem 4.6.

However we can see that our problem does not satisfy the condition that u(ct) is

bounded. The CRRA utility function is not bounded above or below. It turns out

that we do not have a solution due to the fact that u(c)→ −∞ as c→ 0.

For a more complete analysis of when closed form solutions exist, see Stokey and

Lucas (1989). In the cases when no closed form solution exits, we can attempt to

solve numerically, or at the very least attempt to understand characteristics of the

solution.
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3 Applications with Functional Form

We will now explore actual applications of these methods by using utility functions

with a given functional form and constraints on the discount rate β and the growth

rate A. We will first solve for optimal consumption under logarithmic utility where

Aβ = 1, and then we will explore the case where Aβ < 1 given a constant relative

risk aversion utility function.

3.1 Logarithmic Utility

Suppose we are presented with the following problem,

U = max
0≤ct≤wt

∞∑
t=0

βtu(ct). (16)

subject to the following constraints,

wt+1 = A(wt − ct)

w0 > 0 given

Aβ = 1

u(c) = log(c).

This problem has a clear solution, and we can easily solve for the optimal con-

sumption path with either the direct attack or Bellman methods.

3.1.1 Solving Logarithmic Utility with Direct Attack

We begin by finding the relevant Euler Equations. We recall from (8) that the

marginal utility must be equal across time periods. We can combine this with the
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fact that βA = 1, which implies that the discounting of cake is perfectly balanced out

by the growth rate of cake. In other words, consumption must satisfy the following:

u′(c0) = Atβtu′(ct). (17)

Substituting in for the logarithmic utility function and solving for ct in terms of c0,

we have,

ct = (βA)tc0.

And since βA = 1, it must be the case that ct = c0 for all time periods. So the correct

consumption path is to consume a constant quantity c across all time periods. We

can easily solve for this amount by considering three cases of consumption.

Suppose that given our initial endowment of w0 in time t0, we consume an amount

of cake such that c = c0 > w0(1− β). Then our stock of cake in time t1 will be given

by w1 = A(w0− c0) < w0. It is clear that we can’t consume a fixed quantity in every

time period if that results in our stock shrinking down. If c = c0 > w0(1 − β), then

our stock of cake will eventually go to 0, and the Euler Equations will not hold.

Suppose instead that we consume an amount of cake such that c = c0 < w0(1−β).

Clearly the stock of cake in period t1 will be given by w1 = A(w0 − c0) > w0. In

other words, our stock of cake increases in every time period. This would result in the

stock of cake wt increasing to infinity, but we would still only consume a fixed amount

of cake. Clearly this can’t be optimal, because we could do better by consuming a

little bit more and not letting our stock increase towards infinity. So consuming

c = c0 < w0(1−β) can not be optimal. Formally, we can see that the Euler equations

hold, but the transversality condition does not, as the stock of cake increases fast

enough to offset the discount factor.
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Since we have shown that it isn’t optimal to consume c = c0 < w0(1 − β) or

c = c0 > w0(1 − β), the only remaining candidate is consuming such that c =

c0 = w0(1 − β). Since βA = 1, our stock will be replenished in each period, so

that w0 = wt. This consumption path alone satisfies the Euler equations and the

transversality condition. So the optimal policy is to consume a constant amount of

cake, determined by

c = w0(1− β).

Given that the above maximized (16), the maximum value of U is therefore given by,

V (w0) = max0≤ct≤wt
∑∞

t=0 β
tlog(ct) = log(c)

1−β = log(w0(1−β))
1−β .

We can then check whether our solution satisfies the transversality condition, (9).

Plugging in our calculated value of c, and taking the limit, we have,

limt→∞ β
tu′(ct)wt = limt→∞ β

t
(

1
w0(1−β)

)
wt = 0.

Clearly this limit goes to zero because β ∈ (0, 1), so βt goes to zero, while
(

1
w0(1−β)

)
wt

is constant. So our solution satisfies the transversality condition.

We can also arrive at the same solution using the value function approach of

Richard Bellman.

3.1.2 Solving Logarithmic Utility with the Bellman Approach

Adda and Cooper (2003) explain that it is often not possible to find policy functions or

closed form solutions for most utility specifications. In the cases where no closed form

solution exists, we can still attempt to solve numerically or to characterize aspects

of the solution. The logarithmic utility function is one of the specifications for which

we can solve for the closed form solution.

To solve for the policy function, we will use the method of undetermined coeffi-
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cients. Adda and Cooper (2003) suggest that we guess and verify that the solution

to the functional equation is of the form,

V (w) = M +Nlog(w), for all w.

Now if we can solve for the values of M and N , we will have our solution. However

it is not immediately clear that we can find values of M and N that will satisfy the

functional equation. Often times we cannot, but in this case we will assume that we

can for now. Plugging our guess of the form into (10) yields,

M +Nlog(wt) = max
0≤ct≤wt

log (ct) + β (M +Nlog (wt+1)) . (18)

Taking the first order condition we have that,

wt+1 =
βN

1 + βN
wt. (19)

We can plug this into (18), which gives,

M +Nlog(wt) = log

(
wt

1 + βN

)
+ β

(
M +Nlog

(
βN

1 + βN
wt

))
. (20)

We can group terms and use the fact that the functional equation (18) holds for wt

for all t, and work through some messy algebra to solve for the value N ,

N = 1
1−β .

Then we can plug this value of N back into (20), and solve for M .

M = βlog(β)+(1−β)log(1−β)
(1−β)2

Since we can solve for M and N, we can be confident that (18) holds for all t. We

can then plug the value of N that we calculated into the first order condition, (19),
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to solve for the decision rule

wt+1 = βwt.

Once again we find that the agent’s optimal solution is to consume a constant fraction

of the cake,

c = (1− β)wt.

3.2 CRRA Utility

The Constant Relative Risk Aversion utility function (also known as the isoelastic

or power utility function) exhibits some special properties that make it a logical

choice for many economic models. Since it is so widely used, we explore some of its

limitations here.

We begin by looking at the functional form of CRRA Utility,

u(c) = c1−σ−1
1−σ .

an important feature of CRRA utility is that continuity is still preserved as σ → 1.

Using l’Hopital’s rule, we can see that the limit as σ → 1=log(c). It is also useful to

note that at σ = 0 corresponds to risk neutrality, and as σ →∞, the agent approaches

infinite risk aversion.

Suppose we are presented with the following problem,

U = max
0≤ct≤wt

∞∑
t=0

βtu(ct). (21)

subject to the following constraints,

wt+1 = A(wt − ct)
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w0 > 0 given

Aβ < 1

σ > 0

u(c) = c1−σ−1
1−σ .

Assuming this maximization problem has a solution, the Euler equation must

hold, and tells us that u′(ct) = βAu′(ct+1), which assumes an interior solution. It

follows that if we let ψ = (βA)1/σ then,

ct = ψtc0. (22)

.

Therefore if ct satisfies (22), then we can solve recursively for wt,

wt = At

(
w0 − c0

(
1− ψ̂t

1− ψ̂

))
, where ψ̂ =

ψ

A
. (23)

The Euler equation has allowed us to solve for consumption and the stock of cake in

any time period. We will now use the transversality condition to narrow the paths

that satisfy the Euler equation down to the single optimal path. Recall that the

transversality condition states limt→∞ β
tu′(ct)wt = 0. By plugging in equations (22)

and (23) into the transveraliy condition, we get

lim
t→∞

βt(ψ−σ)tAt

(
w0 − c0

(
1− ψ̂t

1− ψ̂

))
= 0. (24)

Looking at the first part of this equation, we can see that βt(ψ−σ)tAt = 1. So it must

be the case that,
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lim
t→∞

(
w0 − c0

(
1− ψ̂t

1− ψ̂

))
= 0. (25)

(25) is a necessary condition for optimality. We can learn about the conditions under

which there exists an optimal consumption path by looking at the value of ψ̂. First

note that when ψ̂ = 1, the solution is indeterminate. Consider instead ψ̂ < 1. This

implies that w0 − c0
1−ψ̂ → 0 as t →∞. We can then see that c0 = (1− ψ̂)w0. Letting

α = 1 − ψ̂, and extending this relationship across all time periods yields, ct = αwt.

In other words, when ψ̂ < 1, the optimal policy is to consume a constant fraction α

of the cake.

Next consider the case ψ̂ > 1. It is immediately clear that (25) does not hold when

ψ̂ > 1. This is because their is no optimal solution to the objective function (21) when

ψ̂ > 1. We will prove this rigorously and discuss the implications of this in the next

section.

3.3 A Functional Form without an Optimal Solution

In this section, we explore the conditions under which a cake-eating problem given a

CRRA utility function has no optimal solution. To refresh the reader, the problem is

given by,

U = max
0<ct<wt

∑
t≥0

βt
(
c1−σ
t − 1

1− σ

)
(26)

where the evolution of cake over time is governed by,

wt+1 = A(wt − ct), w0 given,

and subject to the following constraints:
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A < 1

β < 1

σ > 0.

We know that the Euler equation is a necessary condition for an optimal solution.

As such, we have incorporated the Euler equation into our calculation of ct and wt as

demonstrated by equations (22) and (23). However we can see that when ψ̂ > 1, we

eventually have a negative stock of cake.

Lemma 2 If ct satisfies (22), wt satisfies (23), and ψ̂ > 1, then there exists a T such

that wT < 0 and c0 > 0

Proof. wt < 0⇔ w0 < c0

(
1−ψ̂t
1−ψ̂

)
≡ c0

(
ψ̂t−1

ψ̂−1

)

Corollary 1 If 0 < ct < wt and wt+1 = A(wt − ct) then ct 6= ψtc0

This then leads us to the fact that if ψ̂ is positive, then our maximization problem

has no interior solution.

Theorem 3 If ψ̂ > 1, then (26) has no solution.

Proof. Consider an optimal consumption path ĉt. By Corollary (1), (22) does not

hold. Therefore it must be that either ĉt > ψĉt−1 or ĉt < ψĉt−1. To prove these

cases, we will consider a slight deviation from the optimal path ĉt, and show that

this deviation results in a greater utility, so therefore by contradiction there does not

exist an optimal path.

Case 1. ĉt > ψĉt−1

ĉt > ψĉt−1 ⇔ ĉ−σt < ψ−σ ĉ−σt−1 ⇔ ĉ−σt−1 > βAĉ−σt ⇒ u′(ĉt−1) > βAu′(ĉt).
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If we let ct−1 = ĉt−1 + dct−1 ⇒ ct = ĉt − Adct−1. Thus {ct} is feasible. So the total

change in utility by contemplating a small change in the consumption path ĉt is given

by,

dU = u′(ĉt−1)dct−1 + βu′(ĉt)(−Adct−1) = (u′ (ĉt−1)− βAu′ (ĉt)) dct−1 > 0.

However the change in utility cannot be positive since ĉt was defined to be an optimal

solution. Therefore there is a contradiction, and it cannot be the case that ĉt > ψĉt−1.

Case 2. ĉt < ψĉt−1

ĉt < ψĉt−1 ⇔ ĉ−σt > ψ−σ ĉ−σt−1 ⇔ ĉ−σt−1 < βAĉ−σt ⇒ u′(ĉt−1) < βAu′(ĉt).

We once again consider a small change in the time periods ct−1 and ct. If we let

ct−1 = ĉt−1 − dct−1 ⇒ ct = ĉt + Adct−1. Once again the path {ct} is feasible. So the

total change in utility by contemplating a small change in the consumption path ĉt

is given by,

dU = u′(ĉt−1)(−dct−1) + βu′(ĉt)(Adct−1) = (−u′ (ĉt−1) + βAu′ (ĉt)) dct−1 > 0.

However, once again the change in utility from an optimal path ĉt cannot be positive.

Therefore there is a contradiction and it cannot be the case that ĉt < ψĉt−1.

Therefore if ψ̂ > 1, our maximization problem has no solution.

We can now ask the question why is there no optimal solution when ψ̂ > 1? What

characterizes our utility stream when ψ̂ > 1? We can in fact see that when ψ̂ > 1,

our infinite horizon utility, U , necessarily diverges to −∞. To show that this is the

case, we will construct a consumption path that bounds any feasible consumption

path from above, and show that this path diverges to U = −∞.

Theorem 4 If ψ̂ > 1, then U = −∞.

Proof. Suppose to the contrary that there exists a consumption path such that we
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could consume the entire stock of cake in each time period, and still be left with cake

in the next period. In effect, we would be consuming one unit of cake multiple (and

perhaps infinite) times. Let this consumption path be denoted {c̄t}, and be governed

by the following:

c̄t = wt = Awt−1 = Ac̄t−1.

In each period we consume the entire stock of cake, and in the next period our

stock of cake is equal to the previous period’s stock cake multiplied by the growth

factor, A. We can then solve recursively to get c̄t in terms of c̄0,

c̄t = Atc̄0.

Under the path {c̄t}, the agent is allowed to consume one piece of cake multiple

times. For this reason, the consumption path {c̄t} would be clearly superior to any

feasible consumption path in which the agent is allowed to consume each piece of cake

only once. As such {c̄t} acts as an upper bound on all of the feasible consumption

paths. Substituting this value of c̄t into the objective function yields the following

life time utility, Ū under the path c̄t:

Ū =
∞∑
t=0

βtu(c̄t) =
c̄1−σ

0

1− σ

∞∑
t=0

βtAt(1−σ) =
c̄1−σ

0

1− σ

∞∑
t=0

(βA(1−σ))t. (27)

Since σ > 1, it is clear that
c̄1−σ0

1−σ < 0. Furthermore, we can see that the summation

term diverges to ∞, because ψ̂ = (βA1−σ)1/σ > 1 implies that βA1−σ > 1, which

implies that
∞∑
t=0

(βA(1−σ))t =∞. Putting these two results together, we have that,

Ū =
c̄1−σ

0

1− σ

∞∑
t=0

(βA(1−σ))t = −∞. (28)
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So the path {c̄t} yields total utility Ū = −∞. Due to the specification of {c̄t}, the

path {c̄t} necessarily results in a higher lifetime utility than any feasible consumption

path. In fact for any feasible consumption path {ct}, it must be the case that for

any time period, ct ≤ c̄t. Since the agent must consume less on {ct} than on {c̄t},

the utility derived from {ct} is bounded above by that of {c̄t}. Since {ct} is bounded

above by −∞, U(ct) = −∞. Therefore there is no feasible path for which a consumer

can achieve an optimal solution.

Since the agent’s infinite horizon utility necessarily diverges to −∞, does she have

any decisions to make? Does it make a difference to her whether she consumes all of

her cake in the first period or never consumes it at all? In the next section we suggest

a method for comparing divergent utility streams in order to answer these questions.

4 Comparing Divergent Utility Streams

In this section we explore the question of how we might create a preference ordering

among divergent utility streams. We continue to look at the problem given in the

last section, CRRA utility and ψ̂ > 1.

We begin with the simplest case. Suppose that an agent has the choice between

two consumption paths that yield the utility streams u(zt) and u(yt), both of which

diverge to −∞ as t → ∞. If u(zt) > u(yt) for all t, then surely the agent should

prefer the utility stream u(zt) to that of u(yt). In fact under these conditions, the

agent should strictly prefer the consumption stream {zt} to that of {yt}.

An example of a path being strictly preferable to another can be easily constructed.

Adopting the CRRA utility function used in the previous section, we can allow the

consumption path zt to be governed by zt = αwt where α ∈ (0, 1), and allow the

consumption path yt to be governed by yt = zt
2

. We can then clearly see that the
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path zt is strictly preferrable to yt. This follows from the fact that along zt, the agent

is consuming a positive amount of cake in each time period, and therefore receives

a finite amount of utility in each period. Along yt the agent consumes less in each

period than she would on the path zt. So the utility in each period generated by

yt is strictly less than that generated by zt. Therefore the consumption path zt is

strictly preferred to yt. Even though the utility streams from both of the possible

consumption paths converge to −∞, we can say that zt is preferred to yt.

Next we consider the case of an agent weakly preferring one path to another. Once

again consider two paths, {zt} and {yt}. If u(zt) ≥ u(yt) for all t, then the agent

should weakly prefer the consumption stream {zt} to that of {yt}. It could be the

case that u(zt) = u(yt) for all t, in which case the agent would be indifferent between

the two. However if u(zt) ≥ u(yt) for all t, then we can say that {zt} is at least as

good as {yt}.

The above two instances are the simple cases. However, how do we rank con-

sumption paths in which the utility from one path is at some points greater than

the other path, and at other times less than that path? If it is the case that there

exist points in time such that u(zt) > u(yt) and other points where u(zt) < u(yt), we

cannot simply declare one to be preferable to the other. In order to examine these

cases, we can instead look at the partial sums of the utility streams. Let P (y, n) be

the partial sum of the utility stream of yt at time n, so that we have,

P (y, n) =
n∑
t=0

βtu(ct). (29)

We can use this partial sum to compare utility streams. If at a given time t,

P (y, t) > P (z, t), then we can say that up to time t, yt is preferable to zt. By using

partial sums, we can easily compare any two finite period consumption paths.
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We can also use partial sums to compare infinite horizon consumption paths.

If there exists a point in time, T , such that for all T < t it is the case that

P (y, n) > P (z, n), then we can say that as t → ∞, {yt} is preferred to {zt}. Since

we are attempting to maximize infinite horizon utility, we are only interested in the

comparison between utility streams as t→∞. Alternatively we can compare the two

streams as follows,

Definition If ∃T such that ∀n > T ⇒ P (y, n)−P (z, n) > 0, then {yt} is preferred

to {zt} as t→∞.

This method works as long as one of the consumption streams has a finite number

of partial sums of utility that are less than the other stream. In other words, it does

not matter if one stream alternates between being the superior and inferior stream

for a finite period, as long as ultimately there is a time period after which one of the

streams is always above the other.

For example if we allow y and z to be governed by the following: yt = αwt and

zt = γwt for α, γ ∈ (0, 1), α > γ. Since α is greater than γ, it follows that initially

the consumption under zt is greater than that under yt. This results in the stock of

cake under yt to decay faster than the stock under wt, which leads to some point n,

after which the consumption yt is always greater than that zt. Therefore if the partial

sums of utility derived from yt ever surpass zt, then the path yt will be preferable as

t→∞.

By looking at partial sums of utility, we can compare any two paths as long as

there exists a point T , after which all of the partial sums of one of the streams is

superior to the other. So what we are truly trying to find is the path that diverges

most slowly to −∞ utility.

Lemma 5 Given ψ̂ > 1 if yt = αwt and zt = γwt and α, γ ∈ (0, 1) with α < γ Then
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there exists an N such that n > N implies that
n∑
t=0

βtu(yt) >
n∑
t=0

βtu(zt)

Proof. Plugging in the CRRA utility function into (29), and noting that consuming

a constant fraction of cake α, implies that wt = At(1 − α)tw0. So we can calculate

the utility at time n as a function of α,

Un(α) =
(αw0)1−σ

1− σ

n∑
t=0

((βA1−σ)(1− α))t. (30)

We can then separate Un(α) into two component parts. Let

Un(α) = f(α)
n∑
t=0

R(α)t, (31)

where f(α) = (αw0)1−σ

1−σ , and R(α) = ((βA1−σ)(1− α))t.

Looking at f(α), we can se that since ψ̂ > 1, it must be that σ > 1, so for

any α ∈ (0, 1), −∞ < f(α) < 0. Furthermore, f(α) does not depend on t, so its

magnitude will be muted by the size of
∑n

t=0R(α)t. Looking at R(α), we have that

R(α) = ((βA1−σ)(1− α))t = (ψ̂σ(1− α)1−σ)t > 1.

Therefore Un(α)→ −∞ as t→∞.

We can see further properties by computing the derivatives of R(n) with respect

to α,

R′(α) = β(σ − 1)A1−σ(1− α)−σ > 0, (32)

R′′(α) = σA1−σβ(σ − 1)(1− α)−σ−1 > 0. (33)
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Therefore R(α) is increasing and concave up with respect to α. So for any α < γ, it

must be the case that

n∑
t=0

(R(γ)t −R(α)t)→∞, as t→∞. (34)

So even though it is the case that for α < γ that f(α) < f(γ), since f(∗) < 0, we can

choose a time N large enough such that n > N implies Un(α) > Un(γ).

So by Lemma 5, given ψ̂ > 1, and considering any two proportions of the cake

consume α and γ, the lesser of the two will always be preferable past some point n.

This leads us to the following theorem,

Theorem 6 There is no most-preferable consumption path of the form ct = αwt, α ∈

(0, 1).

Proof. Follows directly from Lemma 5.

Since there is no most-preferred consumption path of the form ct = αwt, α ∈ (0, 1),

we next consider the case of whether there is one of the form ct = αtwt.

Lemma 7 For any path ct = αtwt, there exists a path ĉt = γtwt, that is superior.

Proof.

Our consumption is given by ct = αtwt, and our stock of cake is given by wt =

A(wt−1 − ct−1). If we let {ct} be a consumption path such that ct = f(wt), and we

let {αt} be a sequence where {αt} ∈ (0, 1), where,
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ct = αtwt and wt+1 = A(wt − ct),

then we can use these equations to find ct+1 in terms of ct.

ct+1 = αt+1wt+1 = αt+1A(wt − ct) = αt+1A
(

1−αt
αt

)
ct

We can then extend this recursive process to find ct+1 in terms of c0, and we get the

following:

ct+1 = At+1c0

(
αt+1

α0

t∏
k=0

(1− αk)

)
(35)

Our utility up to time n is therefore given by,

Un(α) =
c1−σ

0 − n− 1

1− σ
+

c1−σ
0

1− σ

n∑
t=1

(
βA1−σ)t(αt

α0

t−1∏
k=0

(1− αk)

)1−σ

. (36)

We can then consider an alternative consumption path ĉt. If we let ĉt = γtwt, where

γt = αt
2

, then the utility up to time n is given by,

Un(γ) = Un(
α

2
) =

( c0
2

)1−σ − n− 1

1− σ
+

( c0
2

)1−σ

1− σ

n∑
t=0

(
βA1−σ)t(αt

α0

t−1∏
k=0

(
1− αk

2

))1−σ

.

(37)

Comparing Un(α) and Un(α
2
), we can observe three things. First looking at the terms

c1−σ0 −n−1

1−σ and
(
c0
2

)1−σ−n−1

1−σ , we can see that both are finite-valued for any 0 < c0 ≤ w0.

Next, we can see that because σ > 1, it must be that

−∞ <
( c0

2
)1−σ

1− σ
<

c1−σ
0

1− σ
< 0 (38)

for 0 < c0 ≤ w0. This leaves us the terms in the summation to consider. Since
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1− αk < 1− αk
2

and σ > 1, we can observe that

n∑
t=0

(
βA1−σ)t αt

α0

(t−1∏
k=0

(1− αk)

)1−σ

−

(
t−1∏
k=0

(
1− αk

2

))1−σ
→∞, as n→∞.

(39)

Since the difference between these values diverges to infinity, we can choose an N

large enough such that n > N implies that Un(αt) < Un(αt
2

).

Theorem 8 There is no most preferable consumption path of the form ct = αtwt, αt ∈

(0, 1).

Proof. Follows directly from Lemma 7.

So, we have that there is no most preferable consumption path, but given any

consumption path there exists a path that is preferable to that one. This allows us

to rank paths in order of preference, but it doesn’t allow us to decide upon a most

preferable path. How then does the consumer choose her consumption path? If she

ever decides on a path, she can easily find one that is superior to that one. The

consumer can always do better by consuming a smaller fraction of cake in each time

period.

5 Conclusion

We have shown that given,

U = max0<ct<wt

∑
t≥0 β

t
(
c1−σt −1

1−σ

)
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wt+1 = A(wt − ct), w0 given,

and subject to the following constraints:

A < 1

β < 1

σ > 0.

(βA)1/σ

A
> 1,

there is no optimal consumption path. Furthermore we have shown that the con-

sumer’s infinite-horizon utility will necessarily diverge to −∞. To deal with this

problem, we have offered a means of partially ranking divergent utility streams. We

have assumed that If ∃T such that ∀n > T ⇒ P (y, n) − P (z, n) > 0, then {yt} is

preferred to {zt} as t→∞. Under this convention, we have shown that we can rank

consumption paths, and furthermore that given any consumption path, we can find

an alternative consumption path that is superior.

We can use these results to examine aspects of cake-eating problems. Given a

CRRA utility function, we can use the test of whether ψ̂ > 1 to determine if there is

no solution to a given problem. Given that there is no solution to a particular problem

raises the question of whether or not the chosen parameters were a good choice for

the model. If we are attempting to model a consumer, and they necessarily end up

at −∞ utility, we must ask why that is the case. Does the consumer truly achieve

infinitely negative utility, or would a better choice of parameters have resulted in a

measurable amount of utility?

Having utility diverge to −∞ poses a number of problems for an agent or for a

modeling economist, but we have suggested a means for a partial ranking of divergent

utility streams. Using this convention, the agent still has reason to think about her
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choice of consumption path. This ranking of utility streams is only a partial ranking.

Our definition requires that the two utility streams that we are comparing do not

oscillate infinitely many times. Instead we need a point after which one utility stream

is always above the other. We believe that this is a natural way of ranking divergent

streams, but it is still limited by the type of utility streams that may be ranked.

In the future we would like to explore the question of how to more completely rank

divergent utility streams.
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