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An optical diagnostic system capable of measuring angular displacements in

a torsionally loaded shaft through noncontact means has been developed. Conven-

tional torsion diagnostic mechanisms must come in contact with the shaft to be

analyzed. The signal-to-noise ratio response of conventional systems is compro-

mised by dirt and wear. Another consequence of these devices is that the shaft being

diagnosed must be cut in half to implement the mechanism.

In this work, the shaft angle of twist (4) is measured utilizing precision optics

and HeNe laser light. Accuracy in the placement and orientation of mirrors on the

shaft surface is shown to be crucial, since precise bending of the laser light is required

to effectively measure twisting distortions.

A CdS photoresistor was augmented with a high gain operational amplifier

for light sensing. This system was then implemented as the receiving source of

optically measured torsional displacements. Experimental results confirm that the

voltage response of the amplifier varies linearly with4. It is shown that the amplifier

output voltage varies as a function of the amount of optical energy received from the

shaft reflected laser light. The amount of optical energy transmitted to the circuit is

dependent on the angle of twist in the shaft. The system performs these tasks

without any physical contact between the laser source, shaft, or the photocircuitry.
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Noncontact Measurement of Shaft Torsional Displacements by Optical Means

Chapter 1. Introduction

1.1. Background and Motivation

An important diagnostic technique for marine manufacturers and the electric

power industry is the determination of torque in a rotating shaft. Currently, there

exists a need for a more efficient and inexpensive method for measuring torsional

displacements in the shaft used to transfer power from a steam turbine to an electric

generator. When power is transmitted by the turbine, the linking shaft must

undergo a torsional twisting through an angle which is proportional to the transmit-

ted torque. Measuring the resultant angle of twist is a difficult diagnostic task

because the changes in shaft shearing strains are very small and occur at rapid rates.

The measurement of strain and torque in such instances is certainly not a new

development. One current practice of torsion diagnostic testing involves dividing

a shaft and permanently installing a $6,000 in-line transducer to link the two parts.

This necessitates turbine shut down and the disassembly of other machine parts so

that the torsion diagnostic unit can be fitted over the shaft. This downtime

accumulates due to periodic maintenance and the replacement of worn and dirty

parts, which seems to conflict with the demand for increased productivity. Yet such

labor tasks are unavoidable to help maintain an accurate operation of sensing and

transmitting torque transduced signals (e.g., a good signal-to-noise ratio must be

preserved). The expense and inefficiencies involved in employing current torque

sensors has established the need for a system capable of providing a signal propor-

tional to the torque carried by a shaft, while avoiding the problems associated with

present in-line diagnostic methods.



1.2. Literature Review

The two principal functions of a noncontact torque sensor are (1) the detec-

tion of angular twisting distortions in a shaft subjected to a static or dynamic

torsional load, and (2) conversion of the elastic response into electrical information

that can be spatially transmitted to a remote receiver-demodulator unit (RD). The

RD circuitry must be designed to respond to small changes of the transmitted signal

which correspondingly change with shaft torsional displacements.

The fundamental idea is to avoid contact between the shaft and the torsion

diagnostic unit unlike currently marketed torque sensors which come in direct

contact with the shaft. Nevertheless, current devices effectively measure torsional

displacements in stationary and nonstationary shafts. This section gives a detailed

discussion of the operation of currently used devices.

Currently marketed torsion diagnostic mechanisms can be divided into two

major categories: (I) In-line rotating shaft torque sensors and (II) windup torque

sensors. The former is classified as a device which is placed directly in series with the

shaft, whereas the latter may be viewed as a system suspended from the shaft. Those

types which correspond to (I) are subclassified into four groups: (A) The classical

slip-ring construction; (B) the rotary transformer type; (C) the Torsional Variable

Differential Transformer (TVDT); and (D) the optical slip-ring type. The devices

of category (II) are classified as phase shift torque measuring systems.

1.2.1. Type (I) Torsion Diagnostic Mechanisms (Series Configurations)

The first of the in-line rotating shaft torque sensors to be discussed is that

manufactured by Lebow® products [1992] and is illustrated in Figure 1.2.1.1. This

design is of the classical slip-ring construction and operates in the following manner.

2
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Figure 1.2.1.1. Slip-ring rotating shaft torque diagnostic system by Lebow®

The second of the in-line rotating shaft torque sensors to be discussed is also

manufactured by Lebow® [19921 and is illustrated in Figure 1.2.1.2. This design is

configured as the rotary transformer type. In general, rotary transformers differ

3

A strain gauge bridge is composed of four gauges connected to four silver slip-

rings mounted on a rotating shaft. Silver graphite brushes rub on these slip-rings

and provide an electrical path for the incoming bridge excitation and the outgoing

signal (either AC or DC voltages can be used to excite the strain gauge bridge). When

rotating in a strong magnetic field, the slip-ring system will generate small extrane-

ous voltages which are amplified by a readout circuit. Because of millivolt signal

levels produced by the strain gauge bridge, the rings and brushes must be periodi-

cally cleaned to maintain a satisfactory signal-to-noise ratio of the bridge elastoelectric

response signal.

BRUSHES

READOUT

STAT. COMP.
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from conventional transformers only in that either the primary or secondary

winding is free to rotate. One transformer is used to transmit the AC excitation

voltage to the strain gauge bridge and the second transformer transfers the output

signal to the nonrotating part of the torque transducer. Thus, two transformers take

the place of four slip-rings, and no direct contact is required between the rotating

and stationary elements of the transducer.

Lebow® describes the transformers as a pair of concentrically wound coils

with one coil rotating within or beside a stationary coil. Magnetic lines of flux are

produced by applying a time varying voltage to one of these coils. A high-

permeability core resides between the windings, thereupon concentrating magnetic

flux and improving coupling between the coils. There is a gap in this core to allow

the passage of a support member for the inner rotating coil; this particular geometry

Figure 1.2.1.2. Lebow's® rotary transformer rotating shaft torque sensing system.
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(Lebow® Pat. No. 3,611,230) enables the transformer to exhibit a high coefficient of

coupling. Eaton Corporation [19921 suggests purchasing a suitable carrier instru-

ment to be used with the rotary transformer torque sensor which provides AC

excitations in the range of 3 kHz (e.g., Lebow® model 7540).

The third type of torque sensor investigated was the Torsional Variable

Differential Transformer (TVDT). This design is illustrated in Figure 1.2.1.3 and

is manufactured by Lebow® products. The TVDT design measures the angular

deflection of a shaft under an applied torque by means of a magnetic field. A shaft

made of nonmagnetic material has attached to it three tubular pieces of a magnetic

material (A,B,C) with gaps at 45° to the shaft axis. A torque applied to the ends of

the shaft will cause one of the gaps to close and the other to open; this action causes

..

MAGNETIC PATH

GAPS OPENING GAPS CLOSING

A

SECONDARY COILS

Brc

PRIMARY COILS

Figure 1.2.1.3. The Torsional Variable Differential Transformer' by Lebow®.
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the magnetic reluctance in each gap to correspondingly increase and decrease,

respectively. Blitzer [19741 states that an AC voltage applied to a primary coil will

necessarily induce a voltage in a secondary coil. Thus, as the shaft is twisted, one

secondary coil will show a voltage increase and the other a proportionate decrease.

These secondary voltages are transmitted to a circuit which adds the signals together

to produce a signal with a polarity that indicates the direction of torque and with a

magnitude that is proportional to the torque. Eaton Corporation [1992] claims that

a specially designed carrier instrument is needed to supply the power and condition

the signal in a system of this kind.

The fourth and last of the in-line rotating shaft torsion sensors is the optical

slip-ring type. Such a device is manufactured by Litton® Fiber Optic Products [1994]

and is illustrated in Figure 1.2.1.4. Litton's® fiber optic rotary joints are fiber optic

slip-rings capable of transferring strain signal data between rotating and stationary

components. Unlike conventional torque monitors, this type of device is a self-

contained capsule which includes ball bearings and one meter of fiber optic cable on

RECEIVER
(TRANSMITfER)

1

ROTATING COMPONENT

STATIONARY COMPONENT

TRANSMITFER
(RECEIVER)

Figure 1.2.1.4. Litton's® fiber optic rotary joint (slip-ring) torsion diagnostic system.
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Figure 1.2.2.1. PDDS torque transmission shaft with electromagnetic sensors.
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each end of the capsule. Classical slip-ring circuits must be hybridized with the fiber

optic rotary joint because electrical current is needed to power internal photoelec-

tronic circuits. The operating wavelength (?) of this device lies in the range of 0.83

1.30 microns.

1.2.2. Type (II) Torsion Diagnostic Mechanisms (Phase Shift Configuration)

The type (II) torsion diagnostic mechanism of interest is manufactured by

Ono Sokki® Co., Ltd. [1994] and is called the Phase Difference Detection System

(PDDS). The chief component used to describe the principle of operation of this

system is called the torque transmission shaft and is illustrated in Figure 1.2.2.1.

POWERI
SINK
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The PDDS mechanism operates in a manner similar to conventional strain

gauge diagnostic units in that torsional displacement or windup is converted to a

proportional electrical signal. Two pulse-type magnetic sensors are employed, one

at either end of the torque transmission shaft. As shown in Figure 1.2.2.1, a series of

evenly spaced discontinuities (similar to gear teeth) are located at either end of the

shaft and are labeled gears A and B. Directly under these gears are a pair of

electromagnetic detectors which are labeled C and D.

When the shaft of Figure 1.2.2.1 is subjected to a torsional load, it will twist

through an angle proportional to the magnitude of the applied torque, so that the

teeth of gears A and B will be displaced in relative position by an amount equal to

the shaft angle of twist, 4. Since sensors C and D generate AC voltages with

waveforms that track the rotation of gears A and B, the phase difference between the

output signals will vary in proportion to 4. In other words, twisting of the shaft

generates a phase shift between the sinusoidal outputs from each of the electromag-

netic sensors. The applied shaft torque can therefore be determined by measuring

the phase difference between the two AC response signals generated by sensors E

and F.

1.3. Extended Literature Search: The F-2003 Single-Channel Telemetry System

The F-2003 single-channel telemetry system developed by Binsfeld Engi-

neering Inc. [19931 is designed to measure rotational torque in a spinning shaft while

avoiding the problems associated with the traditional in-line diagnostic methods

discussed in section 1.2. According to a description published by Mechanical

Engineering Magazine (May 1993), the F-2003 system operates in the following

manner.



1.4. Research Objectives

9

A torsion-sensitive strain gauge () is bonded directly to a rotational shaft by

a typical cyanoacrylate adhesive. Upon deformation, the elastoelectric response of

the gauge is detected and processed by a battery-powered F-1OO1' transmitter, 'L

This transmitter is securely strapped to the shaft and is connected to the strain

through a pair of short wires.

As the shaft experiences variations in torsional loads, the resistance of the

strain gauge changes, thereupon generating a torsionally transduced voltage signal.

This elastoelectric response is converted by the transmitter circuitry to radio

frequencies in the 88-to-100 MHz band; this band of frequencies (5) is then trans-

mitted to a remote receiving antenna (.) located at an isolated site. This antenna is

connected by a coaxial cable to a Binsfeld F2003Tht Receiver Demodulator ('RP); the

RD unit has a built-in FM receiver that converts the radio signal into an audio

frequency response. An operator has the option of switching on a speaker so that

an audio tune corresponding to changes in torque can be observed; increases in the

speaker response reflect a positive torque and decreases in the tone correspond to

a negative torque.

A demodulator circuit (ED) converts the audio signal into a DC voltage

appropriate for output to a chart recorder, CR The resultant hard copy is a record

of the real-time shaft torque measurement. Thus, the F-2003 diagnostic system

operates according to the principle of telemetry, and can be used on rotating shafts

with diameters from 1 to 22 inches. Figure 1.3.1 is a schematic which summarizes

the operating principle of this system.

Most of the torsion diagnostic systems investigated require sophisticated

measuring instruments in order to demodulate the information about the torque.
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.
'0-i

FREQUENCY PRO!'.

Figure 1.3.1. Basic operating principle of the F-20O3 torsion telemetry system.

The accuracy and precision of the torsionally transduced response signals generated

by such devices decrease with time as moving parts accumulate dirt and wear out.

Simple maintenance schedules for these systems necessarily create plant downtime

since shaft disassembly is usually required.

The F-2003 telemetry system removes the problem of sending gauge

elastoelectric response signals across a mechanical interface, the accuracy of which

is compromised by dirt and wear. But this system also requires special electronic

instrumentation. In addition, attenuation phenomena via coaxial lines attenuate the

elastoelectric response signals generated by the strain gauges.

Another possible approach is to optically measure and transmit information

on torsional displacements. In this study, the focus is on the development and

experimental observation of an optical system which can measure variations in the

angle of twist (4) in a torsionally loaded shaft through transmission to a photosen-

sitive configured network. The objectives are: (1) To use a low power laser beam to

continually and repeatedly track changes in the angle of twist in a shaft subjected to

a static torque; (2) to transmit the laser light to an inexpensively designed electronic
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circuit capable of responding to small changes in the amount of optical radiation

energy 'E absorbed by a sensor, such that E = ¶E(4); and (3) to derive an empirical

expression relating the shaft angle of twist as a function of the photosensitive circuit

response, such that:

(1)

where is the angle of twist of a torsionally loaded shaft and V is the corre-

sponding output voltage of the circuit. In other words, the proposed circuit must be

capable of an output response that varies in voltage depending on the amount of

laser radiation absorbed by a photosensor in the network; in turn, the energy

absorbed by the sensor will be dependent on (this will be thoroughly discussed in

Chapter 3). Figure 1.4.1 illustrates the mechanical/optical/electronic conversion

process of the proposed system.

The remaining chapters of this thesis are arranged as follows: Chapter 2 will

discuss the process of interfacing laser light with twisting distortions in a solid

circular shaft. Basic relationships from mechanics of materials will be employed and

correlated with relations from physical optics. Chapter 3 will deal exclusively with

the design of the optoelectronic network. Chapter 4 presents: (1) The experimental

procedure for implementing the optical measuring system; (2) observation of the

measured voltage response of a photosensitive configured amplifier to changes in

shaft torsional displacements; and (3) discussion of experimental results. Conclu-

sions and recommendations for future research are presented in Chapter 5.
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Figure 1.4.1. Proposed mechanical-to-optoelectronic conversion process.
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Chapter 2. Linear Displacement of a Reflected Optical Beam as Related to
Shaft Angle of Twist

2.1. Introduction

In order to describe how laser light can be made to measure the angle of twist

in a torsionally loaded shaft, an understanding of how linear displacements of a

reflected optical beam change in proportion to the shaft angle of twist is essential.

First, the mechanical response of a shaft to a torsional load must be elastic.

Second, means must be obtained to force the laser light to track angular distortions

caused by a state of pure shear. Achievement of this process will lead to the

development of an empirical expression relating the angle of twist of a shaft to the

displacement of the returning optical beam. It is assumed that displacements of the

optical beam will be linear for small values of . This will be experimentally verified.

2.2. Torsional Loading of a Solid Circular Shaft

Throughout this paper, torsion relations as described by Gere and Timoshenko

[1962] will be used as a theoretical basis. In the following analysis and all subsequent

experimental work, it will be assumed that all shaft specimens will remain within

the range of their elastic limits during and after the removal of torsional loads.

Consider the solid circular elastic shaft of Figure 2.2.1 which is used to

transmit torque T from a steam turbine to an electric generator. Specifically, it is of

interest to analyze the effects of the elastic twist caused by shearing stresses between

test planes P1 and P2. Let the amount of shaft length between these two planes be set

at .x =3 inches. This incremental segment was chosen since it is the actual exposed

length observed in most turbine-generator systems (the torsion diagnostic mechan-

13
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isms discussed in Chapter 1 occupy this length). In the development of the proposed

optical system, twisting deformations in this region will be analyzed.

Figure 2.2.1. Torsional loading of a solid circular elastic shaft and elastic response.

Assuming that the shaft of Figure 2.2.1 is subjected to a pure shear and that

the response of the material is consistent with Hooke's law, the shearing strain y can

be calculated by the analytical expression:

Tr
= GJ

(2)

where T is the applied torque which generates a state of pure shear, I is the polar

moment of inertia, r is the shaft radius, and C is the shear modulus. Since Young's

modulus E and Poisson's ratio v are known, G can be calculated by the equation:

G
E

- 2(1+v) (3)



The angle of twist in segment P1P2 is obtained as:

where represents the angle of twist between planes P1 and P2.

2.3. Optical Measurement Approach

The fact that a laser generated beam must follow changes in the angle of twist

of a torsionally loaded shaft has provided the incentive for allowing the source light

to fall incident on plane P1, and to somehow reflect this beam to plane P2. This must

be performed in a manner which will allow an intermediate reflected optical beam

to follow the shearing angle of the segment Ax as distortion due to twisting occurs.

The end goal is to utilize a final reflected optical beam as the information

carrier of the value of c. In order to compel laser generated light to measure changes

in the angle of twist between planes P1 and P2, means must first be obtained to direct

the source light incident on plane P1 to plane P2 in a repeatable and predictable

manner.

Consider a vector k which designates the direction of propagation of a laser

generated beam. Allowing this vector to reside in the x-z plane of the shaft along the

negative z-axis (see the defined coordinate system in Figure 2.2.1), one can write:

= ke cos 'P (5)

TAx

GJ
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(4)

which is the equation for a wave propagation vector k1 residing in the x-z plane at

an angle P with the positive x-axis.



Figure 2.3.1. Creation of an intermediate reflected optical beam using a mirror M.

The reflected optical beam vector kr will reside in the x-z plane along the

positive x-axis (towards plane P2). Then:

k =ke sin'P (6)r x

Therefore, a second mirror iM located at point B on the shaft surface (see Figure 2.2.1)

could be used to reflect kr at a 90° angle in the positive z-direction. The latter process

will generate the final reflected optical beam, the magnitude and direction of which

16

If the incident source beam is directed at a mirror at plane P1, then k1 will

reflect at an angle determined by the angular position of the mirror with respect to

the projecting optical beam. Figure 2.3.1 illustrates the reflection of the incident

source beam by a mirror 9vL with a surface normal n oriented at 'P = 45° with respect

to the x-axis of the shaft. Thus, the resultant reflected optical beam can be

characterized by an intermediate wave vector kr at an angle of 900 with k1.



The integral in (8) can be used to calculate the arc length of the path traced out by the

angle of twist as reflected by the final optical beam, where 4)'(x) represents the first

17

is described by the vector kf. This effect is illustrated in Figure 2.3.2.

Upon the application of a torque, will necessarily follow point B to B*

through an angle of 4) (i.e., the angle of reflection of M will change in direct

proportion to the angle of twist 4) as seen" by the vector kr) At point B*, the vector

kf will have changed in direction but not in magnitude (i.e., Eremains unchanged).

This new vector representing a deformed state of the shaft will be symbolized by k*f.

Figure 2.3.2 shows that the angle between kf and k*f is 4). Note from the illustration

that the mirror at point A has not displaced. In reality, this is not the case; only the

deformation at point B was exaggerated to illustrate that changes in the laser light

will reflect at an angle of 4).

The irradiance of reflection of the final reflected optical beam can be ex-

pressed as:

'Reflect = 1* cos2 ('P + L.4)) (7)

where P is the maximum irradiance reflected when 'P = 9Ø0 (i.e., the vector normal

n is colinear to k1). Throughout this work, 'P will always be equal to 45° with respect

to any beam so as to produce the effect illustrated in Figure 2.3.2. The variable A4)

is the radial arc swept out by 4) from point B to B*; the length of this arc will be

constrained by the photosensor dimensions (see Chapter 4). For all practical

purposes, it will be assumed that this arc length is small enough to be approximated

by a linear displacement, s. The exact value of .s can be calculated by:

M =J[i + 4)'(x)]1"2 dx (8)
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derivative of (x). Hence, the energy of optical radiation absorbed by the sensor will

change according to 'E = ¶LXAS).

The integral in (8) will not be solved analytically. Instead, Es will be equated

to an empirical function which relates the linear displacement of the final reflected

optical beam as a function of the shaft angle of twist. This numerical approximation

will be derived from experimental data (see Chapter 4).

Figure 2.3.2. Illustration of the final reflected optical beam displacing linearly by As.

2.4. Closure

The problem of creating and effectively transmitting a reflected optical beam

detectable by a photo conductor has been solved. A final task remains: Synthesizing

a circuit capable of an output response that varies in voltage as a function of the

incidence of optical radiation received, such that V = Given that ¶E= E(As),
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it is immediately evident that the voltage response of the circuit will change as a

function of the beam displacement .s. The subject of the next chapter is a circuit with

this capability.



Chapter 3. Configuring an Operational Amplifier to Respond to Linearly
Changing Optical Energy

3.1. Purpose

The basic requirement of the proposed photodetection circuitry is that it must

be capable of an output response that varies in voltage as a function of the incidence

of laser radiation received. Specifically, the laser radiation of interest is that

contained in the final reflected optical beam k*f of Figure 2.3.2. As the angular

displacement of the optical lever arm changes due to shaft torsional loads, then the

intensity of the reflected laser light at any given instant in time can be expressed as

the illumination surface density of energy absorbed by the photoconductive cell.

Since variations in resistance of a photoconductive device are based on the amount

of optical radiation impinged on the cell, then this type of element will be incorpo-

rated in the design of the proposed circuitry.

With respect to the relationship between the resistance R for an intrinsic

semiconductor device (i.e., a CdS photoresistor) and the energy of optical radiation

¶E impinged on its active surface, a linearized model yields:

R=R0TJ (9)

where R0 is the resistance of a photoconductive cell when E is equal to 1 W-s. The

superscript N is a dimensionless number that represents the slope of a straight line

on a log-log resistance versus flux density graph; the numerical value of N can be

calculated using the equation:

ln(R1/R2)
N=

ln(E1 /

20

(10)
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where R1 and R2 are the resistance values of a photoconductor resulting from

incident radiation energies L and E2, respectively. In this work, a beam impinged

on the active surface of a photoconductor at a position s1 will mean that the cell is

absorbing a radiation energy of E1. When this beam is deflected to positions2 on the

active surface, the energy will be E2, where ¶E2 < None of the variables expressed

in equations (9) or (10) will actually be calculated; but knowing how to apply

equation (9) in the design of a circuit that can convert a change in resistance to a

change in current is essential. Realizing the extreme sensitivity of a CdS photo-

conductor to HeNe laser wavelengths (i.e., eNe
= 632.8 nm), a CdS device will be

used with of the photodetection-amplifying circuitry.

3.2. The Differential Amplifier Configuration

If the photoresistive response of a CdS device is to be augmented by a voltage

generating circuit, then the output voltage of the candidate configuration must

effectively respond to changes in the amount of optical radiation received by the CdS

cell. Further, output sensitivity and magnitude of the voltage response are crucial

considerations. Realizing that the operational amplifier can provide enormous

voltage gains with the proper choice of input resistive loops, this device appears to

be a good candidate in the interest of this work.

Consider the 741 op amp differential amplifier illustrated in Figure 3.2.1; this

particular configuration contains a CdS cell as a feedback resistor in the noninverting

circuit. This op amp will generate an output voltage that is proportional to the input

current differential (iii) to yield an output voltage that is related to illumination.

Depending on the amount of laser light that falls incident on the CdS cell, a large

mismatch between gains can result; because slight changes in the incidence of

optical radiation can cause large changes in resistive values of the CdS cell, this gain
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gain mismatch effect will be greatly amplified. For the inverting input (-), the gain

magnitude is R2/R1, while the noninverting input (+) gain yields 1+ (R/ R3). In either

case, R2 and Rare feedback resistors.

// CdS device

R1

votlt

Figure 3.2.1. A differential amplifier with a CdS cell as a positive feedback resistor.

The output voltage of the op amp circuit illustrated in Figure 3.2.1 is

expressed by the equation:

' R' R
vout = V1 + + R1) R3 + R V2

where V1 and V2 represent the bias voltages to the inverting and noninverting

resistor loops, respectively. Substituting equation (9) into (11) yields:

R / R' RTJ"
= R1 V1 + (i + R1) R3 +R0FJ'

(12)

Equation (12) can be used to draw the following conclusions: (1) The voltage at the

R2

741
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amplifier output will increase as the input illumination decreases. (2) The sensitivity

of the output response can be adjusted by varying the value of R2 (i.e., the gain will

be affected). (3) The output voltage sensitivity to changes in input current through

the noninverting terminal is very high; this implies that small variations in R, will

greatly affect the magnitude of V.

3.3. Integrating the Reflected Beam with the CdS Dependent Op Amp

With respect to Figures 2.3.2 and 3.2.1, a state of zero input torque to the shaft

will mean that the final optical beam as reflected by M will contain the maximum

amount of laser radiation energy as detected by the CdS device. In this instance, the

energy absorbed by the detector will be represented by , and the circuit of Figure

3.2.1 will be calibrated such that V = 0 volts. As the shaft undergoes torsional

loading, changes in the angle of twist will displace the vector kf until the last in-

crement of light leaves the photo conducting surface of R. At this point, the amount

of laser radiation energy absorbed by the CdS device will be a minimum, and is

represented here as = 0 W-s. From equation (12), a state of 'E = 0 W-s means that

V = -(R2/R1)V1 or VMax Figure 3.3.1 illustrates how changes in the shaft angle of

twist will induce this response in the CdS/amplifier scheme. It is relevant to note

that the beam energy 'E does not change as the shaft is twisted; the symbols ¶E1 and

2
represent two states of the energy absorbed by the CdS cell.

At this point, the only task remaining is the laboratory implementation of the

combined systems illustrated in Figure 3.3.1. Specifics pertaining to the choice of

optics, electronics, instrumentation, and shaft material and size are the subject of

Chapter 4. Experimental results will also be presented here, followed by a discus-

sion of the results.



V1 when R absorbs E(s1)

V2 when R absorbs ¶E(AS2)

V2> V1

Figure 3.3.1. Amplifier voltage response as a function of optical energy absorbed by the CdS cell.
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Chapter 4. Laboratory Implementation: Application, Results, and Discussions

4.1. Objectives and Strategies

The intent of this study has been to combine the mechanical, optical, and

electronic components of Chapters 2 and 3 to form an operational system suitable

for experimental observation. The system defined by Figure 3.3.1 was used to

measure the angle of twist in one and two inch 1045 solid circular steel shafts, and

a three inch 4140 solid circular steel shaft. Shear strain, amplifier output voltage, and

optical beam displacement measurements were correlated with .

To effectively implement the system of Figure 3.3.1 and insure the reproduc-

ibility of experimental results, the following strategies were applied:

Twisting deformations of each specimen were limited to the

linear elastic region of the material.

A system of lenses were used to render irregularities in the final

reflected optical beam into a one dimensional line image.

The exposed active surface of the CdS sensor was configured

into an equilateral triangle; the beam width of the impinging

line image was magnified to a width of at least 1.5 times that of

the triangular base.

By enforcing items (1) through (3), a linear response of the amplifier to the

shaft twisting angle was realized. These results were supported by iterative

experimentation. It was verified that as R continuously absorbed fewer amounts

of laser radiation energy contained in a line image, a linear trend in the voltage

response of the amplifier circuitry was produced. The CdS device implemented as

R is illustrated in Figure 4.1.1. The resistance range of this device is characterized

by 250 12 k1 constrained by 100 0.1 footcandles, where us illumination.



Figure 4.1.1. Two terminal CdS device implemented as R.
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4.2. Experimental Procedure

Figure 4.2.1 is an illustration of the complete experimental apparatus that was

tested in the laboratory. Each shaft specimen was augmented with two Edmund

Scientific 6.5 mm ( 1/4 inch) diameter first surface mirrors (i.e., M and ±M). Using

a typical cyanoacrylate adhesive, each mirror was affixed to the tip of a 45° bracket;

in turn, the bracket was fastened to each shaft specimen yielding a mirror orientation

of 'I' = 45° to the shaft surface. The distance between the centers of the reflective and

receiving surface of each mirror was L.x = 3 inches.

A MA-06-250TK-3501 torsion sensitive strain gauge was bonded to the

surface of each shaft specimen at midpoint. This was done so that: (1) Shear strain

measurements could be recorded and correlated with the output voltage response

of the amplifier circuitry; and (2) input torque could be calculated. Strain measure-

ments were made using two Micromeasurements® P3500 strain indicators.

4.2.1. Shaft Mounting and Laser Alignment

Each shaft was mounted separately in a 60,000 in-lbf Tinius Olsen torsion

machine located in Graff Hall. The shaft mounting procedure was aided using a

Melles Griot 1mW helium-neon (He-Ne) laser. The intent of the laser alignment

procedure was to accurately produce the effect illustrated in Figure 2.3.2; that is to

say, it was imperative that the optical beam returned by mirror M was reflected

parallel to the laser source. The distance between the parallel beams was i.x = 3 inches

(i.e., the distance between test planes P1 and P2). This effect was induced to insure

that the final reflected optical beam followed the shaft angle of twist in a propor-

tional manner. Regardless of the shaft diameter, the distance from the laser aperture

to was consistently held at 432 mm (= 17 inches).
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+15 V 0

R =lOkQPot

BANDPASS FILTER 632.8 nm

LASER

HeNe

-15V0 150mm

x = 76.2 mm

108.75mm R1=10O

50.8 mm

R3 =20 kQ

'\/V\ 0+15V

432mm 450='IJ

P3500

SHAFT

vout

P3500

Figure 4.2.1. Schematic of test arrangement showing laser, lens assortment, CdS cell, and 741 amplifier.

508 mm

R2=100k

450 = jJ



4.2.2. Optical Beam Conditioning

An Edmund Scientific 312.5 mm2 ( 0.484 inch2) right-angle prism was used

to reflect the optical beam at a 90° angle downward (e.g., so as to impinge the laser

light onto an easily accessible horizontal surface). The distance from ±M to the right-

angle prism was consistently maintained at 508 mm (20 inches) to compensate for

the different radii of each shaft. The height from the bottom of the prism to the

horizontal surface was consistently held at 210 mm ( 8.250 inches).

In all cases, the optical beam as reflected by 1M was not perfectly symmetric

in shape and did not have a uniform intensity distribution. These irregularities were

minimized by using the lens arrangement illustrated in Figure 4.2.1. A 25 mm

diameter, 50 mm focal length PCX lens was used to condense the irregular beam

shape. A 50 mm focal length cylinder lens transformed the condensed beam into a

nearly uniform and intense elliptical-line. In all three cases, the elongated major axis

of the elliptical-line image was consistently maintained at 16.7mm ( 0.656 inches).

4.2.3. Amplifier Circuit

A 741 op amp was powered by a Tektronix CPS25O triple output power

supply. The CdS photoresistor of Figure 4.1.1 was used as R. The diameter of this

package is 11.11 mm (7/16 inches). A portion of the active surface was masked off

with black electrical tape, leaving an exposed equilateral triangular surface area of

0.393 cm2 ( 0.061 inch2). This procedure was performed to achieve maximum

linearity between the displacement of the conditioned optical beam and the ampli-

fier response. As a final precaution, an Edmund Scientific 632.8 nm laser bandpass

filter was placed over the remaining exposed surface of the CdS cell. This filter

blocked out all unwanted peripheral radiation except for that of the He-Ne light.
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4.2.4. Calibration and Observation

After the reflected optical beam was aligned with the conditioning optics and

the CdS cell, the 10 k potentiometer was adjusted until the voltage at the amplifier

output was V =0. At this point, an input torque was applied to the shaft until each

strain indicator registered an output of 1 .tc and -1 .tc (i.e., a net result of y = 2 te).

Amplifier voltage response and strain measurements were simultaneously recorded

and documented for each additional 1 p. until the beam left the surface of the CdS

device. These steps were repeated for each shaft.

4.3. Results

On the basis of consistently repeated strain measurements, voltage observa-

tions were averaged over a set of eight experiments to provide reasonable assurance

of obtaining reproducible findings. Statistical analysis performed on raw voltage

data confirmed repeatability through measures of central tendency and dispersion.

A brief discussion concerning these results are presented in section 4.5.2.

With respect to a voltage arithmetic mean, linear regression analysis was

used to develop a set of empirical equations relating 4 and y as a function of V.

Equations relating As as a function of 4i were also generated. These equations form

to standardize input torque calculations to a 1045 or 4140 steel shaft using the

optoelectronic techniques of this study (i.e., without the use of the strain gauges).

Each relation was used to generate the curves of Figures 4.3.1 through 4.3.3.

These plots illustrate the linearity of the optical beam displacement (As) as a function

of shaft angle of twist (4), and the linearity of the amplifier voltage response (V)

as a function of d? and y. The symbols plotted on each curve are purely for visual

identification; plots of raw data fitted with these same curves are in Appendix A.
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Figure 4.3.1. Linearized optical beam displacements (zS.$) as a Function of .
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4.4. Discussion of Results

4.4.1. Linear Optical Beam Displacement Results

In performing optical beam displacement measurements, it was found that

for each value of i = 6.0(106) radians, a beam displacement of approximately 0.032

inches resulted. This was more or less a consistent finding for all shafts tested. The

precision of these measurements were limited by visual observation; that is to say,

the inability for one to discern displacements smaller than 0.032 inches. Hence, the

curves of Figure 4.3.1 illustrate an acceptable idealization of these findings. The

main purpose of this test was to build confidence that the linearity of As() would

induce a linear response in the amplifier.

The constraint of 0 6.0(10) radians resulted in a linear set of displace-

ments constrained by 0 As 0.313 inches; the limits of the latter inequality were pre-

experimentally determined since 0.313 inches was the maximum limit that the beam

could displace before leaving the sensor surface. In all three cases, the linearity of

As() serves to confirm the observed linear voltage response of the amplifier to

displacements in the reflected optical beam (as seen in Figures 4.3.2 and 4.3.3).

Finally, the function As() was applied as a numerical solution to the integral

of equation (9). For the one, two, and three inch diameter steel shafts, the resulting

numerical approximations yield, respectively:

As(41) 5.45(10) - 0.004 [inches]

5.417(10)42 - 0.003 [inches]

As3(43) 5.426(10)3 - 0.004 [inches]
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V(41) = 1.879(1O) - 0.274 [volts]

V(2) = 1.912(10)2 - 0.374 [volts]
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Equations (13a) through (13c) confirm the existence of a linear relationship

between optical beam displacements and the shaft angle of twist. Although these

equations can be used to calculate 4, the main idea has been to confirm linearity

between shaft torsional displacements and the voltage response of the amplifier.

4.4.2. Determining and T from Amplifier Voltage Data

It was found that the voltage response of the amplifier varied linearly in

proportion to the shaft angle of twist (i.e., through linear displacements of the

reflected optical beam). As an initial standardization, it was necessary to correlate

strain and voltage measurements. For the one, two, and three inch diameter shafts

tested, respectively, the following inequalities relating y to V were realized:

o 10(101 Eve] constrained by: 0 11.2 [volts] (14a)

o 20(106) [pVc] constrained by: 0 11.2 [volts] (14b)

o 30(106) [pe] constrained by: 0 11.2 [volts] (14c)

In each case, 'ywas used to calculate input torque to the shaft using equation

(2); equation (4) was then used to compute 4. Using linear regression analysis,

empirical equations relating amplifier voltage response as a function of were

generated. For the one, two, and three inch shafts, the respective expressions are:



VOut(43) 1.9(10)43 - 0.24 [volts]

solving for 2' and yields:

l(VOut) = 5.322(10-6)VOu + 1.457(10-6) [radians]

2(VOut) = 5.229(106)VOut + 1.953(10-6) [radians]

43(VOut) = 5.264(106)VOut + 1.262(10-6) [radians]
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(15c)

(16a)

(1 6b)

(16c)

Substituting equations (16a), (16b), and (16c) into equation (4) and solving for shaft

input torque yields:

T (V )
GJ [5.322(1o6)vOu+ 1.457(10-6)]

I Out Ax

T (V ) GJ [5.22910-6vOu+ 1.953(106)]
2 Out Ax

T3(VOut) = [5.2M1o6)VOu+ 1.262(10-6)]

Equations (17a), (17b), and (17c) form to standardize input torque calcula-

tions to a 1045 or 4140 steel shaft based solely on optical dependent voltage

measurements. Plots of these equations are shown in Figure 4.4.2.1 and illustrate the

linearity of shaft input torque as a function of VOu.

In order to demonstrate how close in accuracy VOut compared for like values

of 4 amongst the three shafts tested, linear interpolation and error analysis was

applied to equations (iSa), (15b), and (15c). These results are tabulated in Table 4.5.1.

A statistical analysis to determine experimental repeatability will follow.
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Figure 4.4.2.1. Linearized shaft input torque as a function of (V).
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4.5. Error and Statistical Analysis of Results

4.5.1. Error Analysis Performed on Voltage Data

Performing linear interpolation and error analysis on equations (15a), (15b),

and (15c) for 0 6.0(10) radians yields the results in Table 4.5.1.1:

Table 4.5.1.1. Error analysis results of voltage data for all three shafts.

38

ange

(rads)

Vi(pge)

(volts)

V2(4
e

(volts)

V3( eg

(volts)
%Err(V1,V2) %Err(V11V3) %Err(V21V3)

0 0 0 0 0 0 0

6.0(10) 0.853 0.773 0.900 9.379 5.510 16.429

8.0(10) 1.229 1.156 1.280 5.940 4.150 10.727

1.2(10) 1.981 1.920 2.040 3.079 2.978 6.250

1.6(10) 2.732 2.685 2.800 1.717 2.484 4.283

1.8(10) 3.108 3.068 3.180 1.287 2.317 3.651

2.0(10) 3.484 3.450 3.560 0.976 2.181 3.188

2.4(1O) 4.236 4.215 4.320 0.496 1.983 2.491

2.8(10) 4.987 4.980 5.080 0.140 1.865 2.008

3.0(10) 5.363 5.362 5.460 0.019 1.809 1.828

3.2(10) 5.739 5.744 5.840 0.087 1.760 1.671

3.6(10) 6.490 6.509 6.600 0.293 1.695 1.398

4.0(10) 7.242 7.274 7.360 0.442 1.629 1.182

4.2(10) 7.618 7.656 7.740 0.499 1.601 1.097

4.4(10) 7.994 8.039 8.120 0.563 1.576 1.008

4.8(10) 8.745 8.804 8.880 0.675 1.544 0.863

5.2(10) 9.479 9.568 9.640 0.939 1.696 0.753

5.4(1ft5) 9.873 9.951 10.020 0.790 1.489 0.693

5.6(1ft5) 10.248 10.333 10.400 0.829 1.483 0.648

6.0(10) 11.000 11.098 11.160 0.891 1.455 0.559
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With respect to Table 4.5.1.1, it is apparent that as the shaft angle of twist was

increased (i.e., a decrease in the amount of optical radiation absorbed by the CdS

cell), the error between amplifier response voltages had a tendency to decrease.

There are two probable causes for this phenomenon: (1) At lower voltage levels in

the range of 0.733 1.280 V, it is speculated that low frequency band com-

ponents (i.e., interference) were present at the amplifier output; or (2) high fre-

quency band components (i.e., noise) were present at the amplifier output.

Inherently, no signal generated as a result of a voltage drop across the R1JR3

resistive divider will be "pure". Contamination will always exist as a result of

internal capacitance discharge, ripple, and other low band components generally

categorized as interference. It is important to discern the difference between

interference and noise in this context. Interference would be an error induced in the

voltage drop across the R/R3 network; this is usually the result of parasitic circuit

elements and cannot be predicted quantitatively. Though noise will also manifest

itself as an error in a voltage measurement, its origin lies in the physical nature of the

CdS device or the readout circuit; noise is a predictable performance parameter

controlled by design.

Speculating that interference caused the errors tabulated in Table 4.4.1, then

this problem could be minimized by placing a capacitor in parallel with the CdS

device; this would cause any low bandfrequencies to pass through the capacitor and

not through the terminals of the photoresistor. In addition, the DC voltage drops

which make up the signal input to the noninverting terminal of the amplifier would

be blocked by the capacitor.

Assuming that unwanted high band frequencies mixed with information

containing signals in the readout circuitry, then a simple low-pass filter connected

to the amplifier output would act to modulate any noise contaminated signals to

ground (i.e., the capacitor would act as a short at these higher frequencies).



4.5.2. Statistical Analysis: Confirming Experimental Repeatability

With respect to measures of central tendency, all sets of observed voltage data

had a distinct inclination to cluster about a central point. Thus for each of these data

sets, it was reasonable to calculate an arithmetic mean voltage. For the one, two, and

three inch shafts tested, this arithmetic mean voltage was used as a basis in deriving

equations (15a) through (15c), such that VAVg = These voltages are tabulated in

Table 4.5.2.1 and in Appendix A.

For the one inch shaft, the worst case measure of dispersion (i.e., the greatest

variation of all data sets) resulted in a variance of 0.02 V2 and a standard deviation

of = 0.139 V for a mean voltage of = 2.02 V. Calculating plus-and-minus two

standard deviations from the mean resulted in +2a = 2.298 V and -2 = 1.742 V. At

higher voltage levels, the standard deviation was at worst 95.1% of the mean and

99.8% at best.

For the two inch shaft, the greatest measures of dispersion resulted in a

variance of 0.819 V2 and ci = 0.905 for V = 0.747. The second worst case observed
Avg

was = 0.072 V2 and ci = 0.269 VAvg for = 10.35 V. At other voltage levels, the standard

deviation was at worst 96.7% of the mean and 98.9% at best.

For the three inch shaft, GM = 0.05 V and a = 0.069 V for mean voltages of

VAVg =1.063 and 8.201 V, respectively. At other voltage levels, the standard deviation

was at worst 95.8% of the mean and 98.9% at best.

It would not be practical nor an efficient use of time to generate a frequency

distribution for each of the observed data sets. Simple measures of central tendency

and dispersion have provided reasonable assurance of obtaining reproducible

findings.
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Table 4.5.2.1. Arithmetic mean voltages for corresponding values of .
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1" diam. shaft 2" diam. shaft 3" diam. shaft

(rads)

V0

(volts) (rads)

V

(volts) (rads)

Vc,ut

(volts)

0 0 0 0 0 0

1.2(10) 2.02 6.0(106) 0.747 8.O(106) 1.07

2.4(10) 3.86 1.2(10) 2.02 1.2(10) 2.16

3.6(10) 6.23 1.8(10) 3.04 1.6(10) 2.93

4.8(10) 8.87 2.4(10) 3.97 2.O(10) 3.58

6.0(1O) 11.2 3.0(10) 5.04 2.4(1ft5) 4.14

3.6(10) 6.27 2.8(10) 4.82

4.2(10) 7.49 3.2(10) 5.65

4.8(10) 8.82 3.6(10) 6.53

5.4(10) 10.4 4.0(10) 7.41

6.0(10) 11.2 4.4(10) 8.20

4.8(10) 9.14

5.2(10) 9.80

5.6(10) 10.2

6.0(10) 11.2



Chapter 5. Conclusions and Recommendations for Future Research

5.1. Conclusions

The primary objective of this research was to design and experimentally test

an optoelectronic system capable of measuring angular displacements in a torsion-

ally loaded shaft through noncontact means.

A laser was used as an "optical gauge" in measuring shaft angle of twist (4)

in one and two inch 1045 steel shafts, and a three inch 4140 steel shaft. All shaft

specimens tested were solid and circular. It was of interest to measure over a three

inch segment of shaft length. Doing so by optical means was made possible by

affixing mirrors at either end of the three inch segment. These mirrors were oriented

at angles of 45 and 135 degrees with respect to the shaft surface. Due to small

imperfections in the surface of each mirror used, the reflected optical beam was

nonuniform in shape and intensity. This problem was minimized by using a system

of lenses which acted to magnify the beam in only one dimension.

In order to determine how linearly the reflected optical beam would displace

in proportion to , a simple ruler was used to measure incremental displacements

(As) for every y=2 .te of input. Due to limitations of discernment in the human eye,

it was approximated that for every value of 4 = 6.0(106) radians, a displacement of

As = 0.032 inches resulted for each shaft tested. It was determined that the

displacement As for small angles of was linear with torque. The magnitude of this

linearity increased with the length of the optical lever arm.

Through observance of the linearity of optical beam displacement, it was

speculated that a photosensitive circuit would produce a corresponding linear set

of output voltages depending on the amount of optical radiation received by the

photoconductor. This led to the design of a optically configured differential

amplifier which was used to indirectly measure through a DC voltage response.
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For a known set of input shaft strains, voltage and strain measurements were

simultaneously recorded. Using values of shear strain to compute shaft input torque

and d?, linear regression was fitted to these results to obtain linear relationships

between q, y, and T as a function of the amplifier voltage response. The effectiveness

of the experimental apparatus and techniques in this research were determined

through error analysis of empirical equations of the form V = The re-

peatability of experimental findings were determined using statistical analysis

through measures of central tendency and dispersion. It was concluded that the

optical techniques and apparatus of this work are effective in measuring shaft

angular displacements. Also, the results obtained were verified to be reproducible.

5.2. Recommendations for Future Research

The future tasks recommended for future research and development may be

summarized as follows:

Selecting a more efficient photoconductive device: The CdS cell used

in all of the experimental work produced favorable results only when

the laser light was displace along the photoconducting surface; in ad-

dition, the circular surface of the device had to be masked off into a tri-

angular configuration to maximize linearity in the voltage response of

the amplifier.

With respect to a prudent choice of a photoconductive device, a single

conduction band cell with a tapered triangular cross section appears

to be a suitable option. This would still allow for continuous voltage

measurements.

Using a densely packed photodiode array is also an attractive choice,

especially since some of these packages contain built in digital read-
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especially since some of these packages contain built in digital read-

out circuits. For those packages that lack the extra electronics, the cir-

cuitry developed in this research could be used to augment such a de-

vice.

The mirrors used in all of the experiments were first surface mirrors,

which are very vulnerable to abrasions. It is recommended that hard

coated 45° diagonal mirrors be used (e.g., Edmund Scientific N30,876,

with a 20 mm2 mounting surface). These mirrors have an elliptically

shaped surface on a right angle prism shaped substrate.

Augment the CdS dependent amplifier with an AID converter, thus

allowing for digitization of the analog response signal. The digitized

response could be further processed by a preprogrammed computer

for the sole purpose of obtaining values of shaft input torque in real

time.
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Appendix A. Treatment of Laboratory Data

In this section, recorded shear strain data and arithmetic mean voltages are

treated using linear regression analysis. All units are expressed in inches, pounds,

and volts. Shaft input torques and corresponding values of shaft angle of twist are

also calculated. MathCad was used in processing all of the results.
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A1.1. Data Set No. 1: Shaft Parameters and Recorded Strain/Displacements.

1-inch diameter 1045 steel shaft.

j = 0.. 5 This is the number of recorded
data points.

3 This is the spacing between shaft
test planes P1 andP2 (i.e., where

mirrorsM1 andM2 are affixed);

units are in inches.

E 30.106 This is Young's modulus for steel;
units are in lbf I in2,

V: 0.3 Poisson's ratio for steel.

G
E

Shear modulus of elasticity; units
2.(1 -F v)

r
1

:= 0.5 Shaft radius; units are in inches.

Polar moment of inertia; units are
in in4.

2

are in lbf/ jfl2
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Data Set No. 1 (Continued):

GJ i' 1
This is the equation for cakulating

r1 shaft input torque from shear strain
data; units are in lbf/

This is the equation for calculating the
shaft angle of twist from input torque
T (yr); units are in radians.

49

Shear Strain (Output)

0

Amplifier Voltage

0

(Output) Calculated Torque

0

(Input)

2.106 2.02 4.53 1

4.10-6 386 9.062
7 1 6.10-6 623

T( 1) = 13.593

8. 10-6 8.87 18.125

10.10-6 11.2 22.656

T
T1

GJ
1



Data Set No. 1 (Continued):

Torque Matrix (Intput) Angle of Twist (Output) Linear Beam Displacement

Perform linear regression analysis. The slope = slope(71, V1) returns a scalar: The slope

of the least-squares regression line for the shear strain-amplifier voltage data points.
Similarly, slope = slope(41,V1), slope(41,As1), and slope(T1,V1) will be computed.

The intercept = intercept(y1,V1) returns a scalar: The y-intercept of the least squares

regression line for the shear strain-amplifier voltage data points. Similarly, intercept =
intercept(1, V1), intercept(1,As1), and intercept(T1, V1) will be computed.
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0 0 0

4.53 1 1.210 0.063

9.062 2.41cr5 0.125

13.593 3.6 10
As

1 0.188

18.125 4.8 10 0.250

22.656 6 iO5 0.313



Treatment of Data Set No. 1

m
1

slope(
1
,V ) Therefore: m

1
= 1127.106

b
1 intercept (7 1 v 1) and: b

1
= -0.274

The empirical equation for amplifier output voltage as a function of shear strain yields:

V(71) = l.127(l06)y - 0.274 [volts]

where the slope m1 has units of volts per microstrain. Solving this equation for 7i yields:

y1(V) = 8.873(10)V + 2.429(10) [j.tt]

As for the angle of twist () and linear displacement of the reflected optical beam (As1),

a similar analysis gives:

m'
1 slope(4 1 v i) Therefore: m'

1
= 1.87910

b'
1

intercept( j,v ) and: b'
1

=-0.274

and:
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Treatment of Data Set No, 1 (Continued):

rn"
1 slope ( L5

)
Therefore: m'

1
=5.2121O

b"
1

intercept( i and: b"
1

=1.4291O

The resultant empirical equations for: (1) The shaft angle of twist; and (2) linear
optical beam displacement yield, respectively:

= 5,322(106) + 1.457(1O) [radians]

and:

= 5.212(1O) + 1.429(1O) [inches]

An expression relating input torque as a function of amplifier voltage response yields:

1
slope(T 1,V i) Therefore: rn'° i O.498

b"'
1

intercept(T 1,V
)

and:
1

0274

Thus:

T1 (V) = 2.01 V+ 0.55 [ifl-lbf]
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A1.4. Plotting the Experimental Data Using Linear Regression Analysis

310 4.510 61O

1i
Optical beam displacement (inches)
Linear regression result

'l

o Amplifier response (volts)
Linear regression result

Figure Al .4. la.
Reflected optical
beam displace-
ment versus shaft
angle of twist (1
inch diameter
steel shaft).
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Figure A1.4.lb.
Amplifier voltage
response versus
shaft angle of twist

4 (1 inch diameter
steel shaft).

0.35

0.262

As

0
0.175

m" 1+i.-i-b" 1
1

0.087



12

9

vi.
0

6

m"1T1 -t-b'"1
i

3

0

2.5.106 5.106 7.5.106

if

Amplifier response (volts)
Linear regression result

Figure A1.4.lc.
Amplifier voltage
response versus
shaft shearing
strain (1 inch
diameter steel
shaft).

Figure A1.4.ld.
Amplifier voltage
response versus
shaft input tprque
(1 inch diameter
steel shaft).
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0 6 12 18 24

T1.

Amplifier response (volts)
Linear regression result



A1.2. Data Set No. 2: Shaft Parameters and Recorded Strain/Displacements.

2-inch diameter 1045 steel shaft.

j 0.. 10 This is the number of recorded
data points.

Ax 3 This is the spacing between shaft
test planes P1 and P2 (i.e., where

mirrors M, andM2 are affixed);
units are in inches.

E: 30.106 This is Young's modulus for steel;
units are in lbf/ in2

V : = 0.3 Poisson's ratio for steel.

are in lbf/

Shaft radius; units are in inches.

Polar moment of inertia; units are
in

E
G := Shear modulus of elasticity; units

2.(1 + v)
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r2 := 1

7tr2

2



Data Set No. 2 (Continued):

This is the equation for calculating
shaft input torque from shear strain
data; units are in lbf/ in2.

T2Ax

GJ2
This is the equation for calculating the
shaft angle of twist from input torque
T (72); units are in radians.

Shear Strain (Output) Amplifier Voltage (Output) Calculated Torque (Input)

0

56

0
2.106 0

0.747
4.106

2,02
36.249

72.4986.106 3.04
108 .7 47

8.10-6 3.97
144.997

10.10-6 V2: 5.04 T (72) = 181.246

12.10-6 6.27 217,495

14.10-6 7.49 253.744

16 10-6 8.82 289.993

18.10-6 10.4 326.242

20 10-6
11.2 362.491



Data Set No. 2 (Continued):

Torque Matrix (Intput) Angle of Twist (Output) Linear Beam Displacement

Perform linear regression analysis. The slope = slope(y2, V2) returns a scalar: The slope

of the least-squares regression line for the shear strain-amplifier voltage data points.
Similarly, slope = slope(2,V2), slope(42,As), and slope(T2,V2) will be computed.

The intercept = intercept(y2, V2) returns a scalar: The y-intercept of the least squares

regression line for the shear strain-amplifier voltage data points. Similarly, intercept =
intercept(42, V7), intercept(42,is2), and intercept(T2, V2) will be computed.
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0
0 0

36. 24 9
6.106

0.032

72.498 1.2 i0 0.063

108.747 1.8 i0 0.093

144.997 2.4 io 0.125

T 2 181.246 3 10- 0.157

217.495 3.610 0.188

253.744 4.210 0.219

289.993 4,810 0.250

326.242 5.410 0.282

362.49 1 0.313
6 10



Treatment of Data Set No. 2

m 2 s1ope( 2,V 2) Therefore: m 2 =5.7371O

b 2 intercept(y 2,V 2) and: b 2

The empirical equation for amplifier output voltage as a ftinction of shear strain yields:

V0(y2) = 5.737(105)y2 - 0.374 [volts]

where the slope m2 has units of volts per microstrain. Solving this equation for 12 yields:

= 1.743(106)V + 6.511(10) [p.s]

As for the angle of twist () and linear displacement of the reflected optical beam (As2),

a similar analysis gives:

m' 2 slope( 2,V 2) Therefore: m 2 = 1.91210

b' 2 intercept( 2) and: b' 2 03'M

and:
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Treatment of Data Set No. 2 (Continued):

rn" 2 slope ( 2' iS 2) Therefore: rn" 2 = 5.214O

b" 2 intercept ( 2' 2) and: b" 2 = 1.3641O

The resultant empirical equations for: (1) The shaft angle of twist; and (2) linear
optical beam displacement yield, respectively:

= 5.229(106)V + 1.953(106) [radians]

and:

2(42) = 5.214(1O)2+ 1.364(1O) [inches]

An expression relating input torque as a function of amplifier voltage response yields:

m'" 2 slope (T 2) Therefore: m9' 2 = 0M32

2 = intercept (T 2,v 2) and: b" 2 =

Thus:

T2 (V) = 31.593 V+ 11.801 [in-lbf]
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LS 2
J

0

m'2j2 --b"2

V2.
J

0

mt242. b'2

0.35

0.262

0.175

0.087

12

1.510 310 4.510 610

Figure Al .4. le.
Reflected optical
beam displace-
ment versus shaft
angle of twist (2
inch diameter
steel shaft).
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Figure Al .4. if.
Amplifier voltage
response versus
shaft angle of twist

4' (2 inch diameter
steel shaft).

0 Amplifier response (volts)
Linear regression result

+

0 Optical beam displacement (inches)
Linear regression result



V2.
0

m2y2 + b2

12

9

V2.
3

6

m"2T2 -i-b"2

3

0

5.106 pio5 1.Y105

Amplifier response (volts)
Linear regression result

0 95 190

T2
3° Amplifier response (volts)

Linear regression result

Figure A1.4.lg.
Amplifier voltage
response versus
shaft shearing
strain (2 inch
diameter steel
shaft).

Figure Al .4. lh.
Amplifier voltage
response versus
shaft input torque
(2 inch diameter
steel shaft).
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A1.3. Data Set No. 3: Shaft Parameters and Recorded Strain/Displacements.

3-inch diameter 4140 steel shaft.

k 0.. 14 This is the number of recorded
data points.

LX3 This is the spacing between shaft
test planes P1 andP2 (i.e., where

mirrors M andM2 are affixed);
units are in inches.

E: 3O 106 This is Young's modulus for steel;
units are in lbf/ in2.

V = 0.3 Poisson ratio for steel.

G
E

Shear modulus of elasticity; units
2.(1 + v)

r3 1.5 Shaft radius; units are in inches.

Polar moment of inertia; units are
in in4.

are in lbf/ in2.
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Data Set No. 3 (Continued):

(T3)

GJ3y3
r3

T3L\x

GJ3

This is the equation for calculating
shaft input torque from shear strain
data; units are in lbf/ in2.

This is the equation for calculating the
shcxft angle of twist from input torque
T (); units are in radians.
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Shear Strain

0

4.106

6 106

8.106

(Output) Amplifier Voltage

0

1.07

2.16

2.93

(Output) Calculated Torque

0

(Input)

10 10 244.682
3.58

12.10-6
4.14

367.023

14 10-6 4.82
489.363

611.704

7 3 16 10-6 V3 5.65 T(73) =
734.045

18 10-6 6.53
856.386

20 10-6 7.41 978.727

22.10-6 8.20
1.101

9.14
24.10-6 1.22310

9.8
26 10-6

10.2 1.346

28 10-6 11.2 1.46810

3010-6
1.59

1.713

1.83510



Data Set No. 3 (Continued):

Perform linear regression analysis. The slope = slope(y3, V3) returns a scalar: The slope

of the least-squares regression line for the shear strain-amplifier voltage data points.
Similarly, slope = slope(4)3, Vi), slope(4)34s3), and slope(I, V3) will be computed.

The intercept = intercept(y3,V) returns a scalar: The y-intercept of the least squares

regression line for the shear strain-amplifier voltage data points. Similarly, intercept =
intercept(4)3, Vi), intercept(4)3,As3), and intercept(T3, V) will be computed.
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Torque

T3

Matrix (Intput)

0

244.682

367.023

489.363

6 11.704

734.045

856.386

978.727

i.ioiio3

1.223 iO3

1.346

1.468 iO3

1.59 iO3

1.713 iO3

1.835 1&

Angle

4)3

of Twist (Output)

0

8 10-6

1.210

1.6 10

210

2.410

2.810

3.210

3.610

3.99910

4401 10

4.810

5.199 i0

5.60110

6 i05

Linear Beam

As3

0

0.042

0.063

0.083

0.104

0.125

0.146

0.167

0.188

0.208

0.229

0.250

0.271

0.292

0.313

Displacement



Treatment of Data Set No. 3

m slope (7 3 ,V 3) Therefore: m 3.7991O

b3 : intercept(73,V3) and: b3 =-O.24

The empirical equation for amplifier output voltage as a function of shear strain yields:

V(y3) = 3.799(10)y3 - 0.24 [volts]

where the slope m3 has units of volts per microstrain. Solving this equation for 73 yields:

73(V) = 2.632(1O6)V + 6.3 12(1O) [JiE]

As for the angle of twist () and linear displacement of the reflected optical beam (As3),

a similar analysis gives:

slope( 3 ,V 3) Therefore: m' = 1.91O

b'3 :Hntercept(43,v3) and: b'3 -O.24

and:
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Treatment of Data Set No. 3 (Continued):

m" = slope ( 3,As 3) Therefore: m" = 5.2k 1. iO3

b" := intercept(4 ,As 3) and: b" 4.5521O

The resultant empirical equations for: (1) The shaft angle of twist; and (2) linear
optical beam displacement yield, respectively:

43(V) = 5.264(1O6)V + 1.262(106) [radians]

and:

AS3(43) = 5.21 1(1O)3 + 4.552(1O) [inches]

An expression relating input torque as a function of amplifier voltage response yields:

rn"' = slope (T , V 3) Therefore: m'" = 0.006

intercept(T 3,V 3) and: b'" =-0.24

Thus:

I (V) = 16O.988V+ 38.621 [in-lbf]
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v
0

m3.4I3kb'3

0.32

0.24

AS
3k

0
0.16

ml! + b"

0.08

12

1.510 310 4,510 610

3k
Amplifier voltage response (volts)
Linear regression analysis

Figure Al .4. ii.
Reflected opical
beam displace-
ment versus shaft
angle of twist (3
inch diameter
steel shaft).

Figure Al .4. lj.
Amplifier voltage
response versus
shaft angle of twist

4 (3 inch diameter
steel shaft).
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0 Optical beam displacement (inches)
Linear regression result

1.510 310 4.510 610



V
3k

0

m373kb 3

12

7.5.106 1.510 2.2510 310

Figure A1.4.lk.
Amplifier voltage
response versus
shaft shearing
strain (3 inch
diameter steel
shaft).

Figure A1.4.11.
Amplifier voltage
response versus
shaft input torque
(3 inch diameter
steel shaft).
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0 Amplifier response (volts)
Linear regression result

T,
0 Amplifier response (volts)

Linear regression result



As
1 ( ) 5.212.1O

1
+ 1.4291O

s.214.1o3.2 + 1.3641O

As3(3) 5.211.O.3 +4.5521O

0.35

0.28

0.07

4

Reflected beam disp. for 1" shaft [inches]
° Reflected beam disp. for 2" shaft [inches]

Reflected beam disp. for 3" shaft [inches]

Figure Al .4. im. Reflected laser beam displacement (As) versus shaft angle of twist (4).
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V 1) 1.87910 1 - 0.274

1.912.105.2 - 0.374

V3 ( 3) 1.9. iO3 - 0.24

I I I

210 310 410 510 610

'1j'2j'3k
Amplifier output voltage for 1 shaft
Amplifier output voltage for 2" shaft
Amplifier output voltage for 3" shaft

Figure Al .4. in. Amplifier output voltage (V) versus shaft angle of twist (4).
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12

10

2- .. -

I I I I

5.106 P105 1.510 210 2.Y1053105

7 1j'72i'Y3

Amplifier output voltage for 1" shaft
° Amplifier output voltage for 2H shaft

Amplifier output voltage for 3 shaft

Figure Al .4.lo. Amplifier output voltage (V) versus shaft shearing strain (').
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V 1J27.1067 1 - 0.274

v2(2) 5.737.10.y2 - 0.374

v3(3) 3.799.1O.y3 -0.24



V
1 (T i) o.498T 1 - 0.274

V 2(T 2) 0.032T2 - 0.374

V (T ) o,0O6T - 0.24

vi(Ti).

V3(T3)

12

9

6

3

0

72

0 500 1000 1500 2000

T T T
i 2j 3k

Amplifier output voltage for 1" shaft
' Amplifier output voltage for 2" shaft

Amplifier output voltage for 3" shaft

Figure A1.4. ip. Amplifier output voltage (V) versus shaft input torque (T).
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Appendix B. Statistical Analysis of Amplifier Voltage Response To Estimate
Experimental Repeatability

In this section, MathCad was used to perform a statistical analysis on raw

voltage measurements. For each shaft tested, eight experiments were performed in

order to assure experimental repeatability.

For consistently repeated values of input strain, corresponding values of

amplifier output voltage were recorded; these discretized voltage sets have been

labeled Data Set A, B, C, etc. Experimental repeatability has been determined

through measures of central tendency and dispersion on each of these data sets.



Bil. Statistical Analysis of Amplifier Voltage Response Data To Estimate
Experimental Repeatability

1-inch diameter 1045 steel shaft.

1.97

1.74

2.12

2.07

2.14

2.21

1.99

1.92]

meau(DataA) 2.02

stdev(DataA) 0.139

plus2sig : mean (Data A) + 2.stdev (Data A)

plus2sig = 2.298

nunus2sig =mean(Data A) 2de (Data A)

xninus2sig = 1.742
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3.72
mean(Data s) = 3.857

3.67 stdev(DataB) =0.191

4.11

4.02 plus2sig mean(Data B) -F- 2.stdev (Data B)

3.87 plua2sig = 4.24
3.52

3.92 minua2sig mean(Data B) - 2.stdev(Data B)

4.03
minus2sig = 3.475

mean(Data) 6.234

stdev(Data) = 0.173

plus2sig mean(Data c) + 2's (Data c)

plua2sig = 6.58

minua2sig mean (Data c) 2.Jev (Data c)

minus2sig = 5.887

Data A=

Data B

6.52

6.07

6,34

6.13
Data

5.98

6.41

6.29

6.13



mean(DataD) = 8.863

stdev(DataD) = 0.089

plus2sig mean(Data D) + 2.stdev (Data D)

plus2sig = 9.04 1

minus2sig mean(Data D) - 2.stdev (Data I))

minus2sig = 8.684

75

8.92

8.72

8,94

8.83
Data D=

8.79

9.02

8.81

8.87



B1.2. Statistical Analysis of Amplifier Voltage Response Data To Estimate
Experimental Repeatability

2-inch diameter 1045 steel shaft.

Data B=

mean(DataA) =0.747

stdev(DataA) = 0.079

plus2sig I mean (Data A) + (Data A)

plus2sig = 0.905

nunus2sig :mean(Data A) - 2.stdev(Data A)

minus2sig = 0.589

mean(DataC) = 3.037

atdev(Data) = 0.049

plus2sig mean(Data c) + 2'stdev (Data c)

plus2sig 3.136

minus2sig mean(Data c) - 2'stdev (Data c)

minus2sig = 2.939
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1.97
mean (Data B) = 2.026

2.05 stdev (Data B) = 0.067

2.11

2.06 plus2sig mean(Data B) 2'stdev (Data B)

2.02
plus2sig = 2.161

1.96

2.12 minua2sig : mean (Data B) - 2'stdev (Data B)

1.92
minus2sig 1.891

0.582

0.709

0.727

0.782
Data A=

0.749

0.767

0.778

0.882

3.03

3.07

2.98

3.12
Data CE

3.08

2.96

3.04

3,02



mean(DataD) = 3977

stdev (Data D) = 0.088

plua2sig mean (Data D) 2'stdev (Data D)

plus2sig = 4.153

minus2sig mean (Data D) - 2'stdev (Data D)

minua2sig 3.802

mean(DataE) 5.036

stdev (Data E) 0.077

plus2sig mean (Data E) + 2'stdev (Data E)

plua2sigS.l9

minus2sig mean(Data F) - 2'stdev (Data E)

minus2sig = 4.882

mean(DataF) = 6.265

stdev (Data F) = 0.092

plus2sig mean(Data F) + 2'stdev (Data F)

plus2sig = 6.449

minus2sig mean(Data F) - 2'stdev (Data F)

minus2sig = 6.08 1
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3.82

4.05

3.96

4.11
Data D=

4,02

3.88

4.02

3,96

5.04

5.07

4.98

5.05
Data E=

5.12

5.01

5.14

4.88

6.38

6.22

6.12

6.27
Data p

6.42

6.23

6.19

6.29



mean(DataG) = 7.487

stdev(DataG) = 0.085

plus2sig mean(Data G) + 2stdev (Data 6)

plus2sig = 7.657

minua2sig mean(Data G) - 2'stdev (Data G)

minus2sig 7.318

mean(Data H) = 10.35

stdev(DataH) = 0.269

plus2sig mean(Data H) + 2'stjev (Data H)

plus2sig 10.887

minua2sig mean(Data H) - 2stdev (Data H)

minus2sig = 9.813
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7.52

7.61

7.43

7.39
Data G=

7.47

7,41

7.63

7.44

10.7

9.98

10.6

10.3
Data H=

9.92

10.4

10.3

10.6



B1.3. Statistical Analysis of Amplifier Voltage Response Data To Estimate
Experimental Repeatability

3-inch diameter 4140 steel shaft.

mean (Data A) = 1.063

stdev(DataA) = 0.05

plus2sig mean(Data A) + 2'stdev (Data A)

plua2sig= 1.164

minua2aig mean(Data A) - 2.stdev (Data A)

minus2sig = 0.963

mean(DataB) = 2.156

stdev(DataB) = 0.09

plus2aig mean(Data B) + 2stlev (Data B)

plus2sig = 2.336

minua2sig mean(Data B) - 2.stdev (Data B)

minua2sig = 1.977

mean(DataC) = 2.939

stdev(Data) = 0.069

plus2sig =mean(Data c) '- 2.stdev(Data c)

plus2sig = 3.076

xninus2sig : mean (Data c) - 2'stdev (Data c)

minus2sig = 2.80 1
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0.994

1,06

1.12

1.08
Data A=

1.11

1.07

0.972

1.10

2.21

2.12

2.24

1.97
Data B=

2.09

2.16

2.27

2.19

3.03

3.01

2.84

3.00
Data

2.92

2.88

2.97

2.86



mean(DataD) = 3.589

stdev(DataD) =0.08

plus2sig mean(Data D) + 2.stdev (Data D)

plus2sig = 3.749

minus2sig mean(Data D) - 2stdev (Data D)

minus2sig =3.429

mean(DataE) 4,135

stdev(DataE) = 0.059

plus2sig mean (Data E) + 2stdev (Data E)

plus2sig = 4.252

minus2sig :mean(Data E) - 2.stdev (Data F)

minus2aig = 4.018

mean(DataF) = 4.824

stdev(DataF) = 0.076

plus2sig :=me(Data F) +2'stdev(Data F)

plus2sig = 4.97 6

minus2sig :mean(Data F) - 2stdev (Data F)

minus2sig = 4.671
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3.52

3.47

3.57

3.72
Data D=

3.63

3,54

3.69

3.57

4.22

4.17

4.09

4.02
Data FE

4.18

4.16

4.14

4.10

4.77

4.69

4.88

4.91
Data F=

4.75

4.83

4.92

4.84



mean(DataG) = 5.634

stdev(DataG) 0.133

plus2sig mean(Data G) + 2'stdev (Data G)

plua2sig 5.9

minus2sig =mean(Data G) - 2.stdev (Data G)

minus2sig = 5.367

mean(DataH) = 6.537

stdev(DataH) 0.108

plus2sig :=mean(Data H) -i- 2'stdev (Data H)

plus2sig = 6.7 54

minus2sig mean(Data H) - 2'stdev (Data H)

minua2aig = 6.321

mean(Dataj) =7.411

atdev(Datai) = 0.081

plus2sig =mean (Data i) -I- 2'stdev (Data i)

plus2aig = 7.572

minus2sig mean(Data j) - 2.stdev (Data i)

minus2sig = 7.25
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5.77

5.45

5.52

5.62
Data G=

5.73

5.49

5.64

5.85

6,67

6.52

6.72

6.38
Data H=

6.51

6.44

6.59

6.47

7.47

7.36

7.53

7.29
Data j

7.39

7.32

7.50

7.43



mean (Data j) 8.20 1

stdev (Data j) = 0,069

plus2sig mean(Data j) + 2.atdev (Data j)

plus2sig = 8.34

minus2sig mean(Data j) - 2.stdev (Data j)

minus2sig = 8.063

mean(DataK)= 9.14

stdev(DataK)=0.138

plus2sig mean(Data K) -- 2.stdev (Data K)

plus2sig = 9.4 17

minus2sig :mean(Data K) - 2.stdev (Data K)

minus2sig 8.863

mean(DataL) = 9.825

stdev(DataL) =0.159

plus2sig mean(Data L) + 2'stdev (Data L)

plus2sig 10.143

minus2sig Zmean(Data L) - 2stdev (Data L)

minus2sig = 9.507
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8.12

8.27

8.09

8.22
Data jE

8.19

8.31

8.24

8.17

8.88

9.36

9.08

9.21
Data K=

9.04

9.27

9.11

9.17

10.1

9.84

9.90

9.68
Data L=

9.59

9.77

10.0

9.72



mean (Data M) = 10.285

stdev(DataM) 0,229

plus2sig mean(Data M) +2stdev (Data M)

plus2sig 10.744

minus2sig mean(Data M) - 2stdev (Data M)

minus2sig 9.826
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10.7

10.3

10.4

9.98
Data M=

10.2

10.2

10.5

10.0




