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wall temperature uniformity and decrease both pressure drop and flow power
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maximize the benefits of fractal-like branching channels by means of a

gradient-based optimization algorithm. The algorithm identifies the geometric

parameters that yield the highest ratio of benefit to cost; the benefit being the

heat transfer with cost being flow power. The stream-wise pressure and wall

temperature distributions were determined numerically using one-dimensional

models validated using experimental diagnostics and computational flow analyses.

Pressure distributions were used to assess flow power, and wall temperature was

used as an optimization constraint. Several geometric constraints were imposed

during optimization to ensure sufficient bonding area for fabrication, to maximize



convective surface area and to prevent channel overlap. Three fractal-like devices

were studied and optimized: a single-phase heat sink, a two-phase heat sink and

a single-phase oil-to-water heat exchanger. The flow rate of the three devices was

constrained using a maximum wall temperature constraint for the single-phase

heat sink, the critical heat flux for the two-phase heat sink, and a fixed cold side

mass flow rate and temperature rise in the case of the heat exchanger.

The optimized solutions were found to depend highly on both the geometric and
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the co-flow configuration . . . . . . . . . . . . . . . . . . . . . . . . 184

B.3 Benefit to cost ratio of geometry G3 for varying ∆Tc, R, and ṁc in
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the counter-flow configuration . . . . . . . . . . . . . . . . . . . . . 188

B.7 Benefit to cost ratio of geometry G3 for varying ∆Tc, R, and ṁc in
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in the co-flow configuration . . . . . . . . . . . . . . . . . . . . . . 191

B.10 Benefit to cost ratio of geometry G2 for varying ∆Tc, wm, and ṁc
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in the counter-flow configuration . . . . . . . . . . . . . . . . . . . . 196



LIST OF APPENDIX FIGURES (Continued)

Figure Page

B.15 Benefit to cost ratio of geometry G3 for varying ∆Tc, wm, and ṁc
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Nomenclature

Roman

a Inlet plenum diameter constraint

A Cross sectional channel area (m2)

b Terminal channel spacing constraint

C Heat capacity rate ṁCp (W/K)

C∗ Heat capacity rate ratio Cmin

Cmax

Cf,app Apparent friction factor (µm)

CLM Phase interaction parameter

Cp Specific heat (J/kg-K)

d Interior channel overlap constraint

Dh Channel hydraulic diameter (m)

G Mass flux (kg/m2s)

Gz Graetz Number

H Channel height (m)

h Heat transfer coefficient (W/m2-K)

hfg Latent heat (J/kg)

k Branch level index

ks,f Thermal conductivity of the solid (s) or fluid (f) (W/m-K)

L Channel length (m)

m Total number of branch levels

ṁ Mass flow rate (kg/s)



NTU Number of transfer units UA
Cmin

(µm)

Nu Nusselt number

n0 Number of inlet plenum channels

P Pressure (Pascal)

q Heat transfer (Watts)

q′′ Disk heat flux (W/m2)

Q Volumetric flow rate (mL/min)

R Disk radius (m)

Re Reynolds number

T Temperature (◦C)

t Interface material thickness (µm)

< Flow resistance (kg/m4s)

UA Overal heat transfer coefficient (Watts/K)

um Average axial fluid velocity (m/s)

w Channel width (m)

x Streamwise distance (m)

X Lockhart-Martinelli Parameter

z Vapor quality

Greek

α Void fraction

β Width ratio

γ Length ratio



δ Liquid film thickness (m)

∆x Discretization distance (m)

∆P Pressure drop across the device (Pascals)

ε Heat exchanger effectiveness

εp Benefit to cost ratio

η Fin efficiency

θ Temperature difference Tw − Tb (K)

λlo Single-phase friction factor

ρ Density (kg/m3)∑
R Thermal resistance (K/W )

φ2 Two-phase frictional pressure drop multiplier

Subscripts

c Cold side

CHF Critical heat flux

e exit

h Hot side

i Discretization index

in Inlet plenum

k Branch level index

l Liquid phase

m Terminal branch level

max Maximum



min Minimum

s Solid interface

v Vapor phase



Dedication

To my wife, thanks for being there.



On the Optimization of Performance in Fractal-like Branching

Microchannel Heat Transfer Devices
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Chapter 1 – Introduction

!"#$%&%

%
!

!

"
" ' % (')%

%
!

!

#
# ' % (*)%

+,$-$% %./%0,$%+.10,%-"0.23% !" %./%0,$%+.10,%24%0,$%!$%%5$6$5%7,"88$5%(0,$% 9! %5$6$5%

2-.#.8"0$/%"0%0,$%.85$0%:5$8;<)3% %./%0,$%5$8#0,%-"0.23%"81% !# %./%0,$%5$8#0,%24%0,$%!
$%%5$6$5%

7,"88$5=%%>,$%020"5%5$8#0,3 $&$# %24%0,$%7,"88$5/%.8%0,$%8$0+2-?%./%2@0".8$1%4-2<%0,$%5$8#0,%

24%0,$%4.8"5%@-"87,.8#%5$6$53 '# %0,-2;#,%0,$%42552+.8#%

%
'

(
('$&$ ##

9

' % (A)%

!$87$%B'*C%,"/%/,2+8%0,"0%42-%/.8#5$%:,"/$%452+/%0,$%4-"70"5D5.?$%@-"87,.8#%7,"88$5/%,"6$%

/<"55$-%:-$//;-$%1-2:/%42-%.1$80.7"5%452+%-"0$/%0,"8%/0-".#,0%-$70"8#;5"-%7,"88$5/%+.0,%0,$%

/"<$%+"55%/;-4"7$%"-$"=%%%

% % %
% ")% @)%

Figure 1.%E7,$<"0.7%5"F2;0%24%4-"70"5D5.?$%7,"88$5%8$0+2-?/%.8%"%7.-7;5"-%,$"0%
/.8?=%%E,2+.8#%")%"/F<<$0-.7%@-"87,.8#%"81%@)%/F<<$0-.7%@-"87,.8#%

(a) (b)

Figure 1.1: Representative flow networks with 16 branches emanating from the
inlet plenum at the center of the disk, m = 4 branching levels and (a) decreasing
channel length, and (b) increasing channel length

Since the groundbreaking findings of Tuckerman and Pease [1] on the advan-

tages and drawbacks of microscale flow, countless studies have sought to further

increase the heat transfer capabilities, and mitigate pressure drop and flow insta-

bilities associated with single-phase and flow boiling at the microscale. The spe-

cific topic of the present study is on the modeling and optimization of fractal-like

branching microchannels. Representative fractal-like flow networks are shown in
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Fig. 1.1, illustrating the difference between fractal-like designs with (a), decreasing

channel lengths and (b), increasing channel lengths. One-dimensional models of the

the temperature and pressure distributions through the fractal-like microchannel

heat transfer devices form objective functions to be minimized through a gradient-

based optimization algorithm. Constraints on the geometry and flow are employed

to mimic real-world operating conditions. Three separate studies are presented

in this dissertation: (i) The Optimization of Single-Phase Fractal-like Branching

Channel Heat Sinks, (ii) The Optimization of Two-Phase Fractal-like Branching

Channel Heat Sinks and (iii) Modeling s Single-Phase Fractal-like Branching Mi-

crochannel Heat Exchanger. While all three of these manuscripts studies a different

type of fluidic system, what ties all three together is the end goal of finding an

optimum flow network subject to real-world physical constraints.

The uniqueness of the three manuscripts stems from the analysis of the fractal-

like branching micro-channel flow networks. These fractal-like flow networks mimic

designs found in nature, i.e. mammal and plant vascular networks. The flow net-

works have constant width and length ratios, i.e., each the ratio of the subsequent

downstream channel length and width to the upstream length and width are fixed,

respectively. Moreover, following each bifurcation (split of the channel into two

downstream channels) the thermal and hydrodynamic boundary layers were found

to re-develop [2, 3]. The re-development of the boundary layers following each

bifurcation results in an enhancement of the heat transfer coefficient, but also an

increase in the wall shear stress. Thus, the purpose of this dissertation is to find an

optimal balance between benefit (heat transfer) and cost (flow power) by varying
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the geometry and flow conditions in fractal-like microscale heat transfer devices.
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Chapter 2 – Optimization of Single-Phase Fractal-like Branching

Channel Heat Sinks

2.1 Introduction

Disk-shaped heat sinks with branching microchannels were first proposed by Pence

[4] as a means to reduce both the pressure drop and the maximum streamwise wall

temperature difference observed in parallel microchannel heat sinks. A fractal-like

branching flow network, inspired by nature, was studied. Representative fractal-

like flow networks in a disk-shaped heat sink configuration are shown in Fig. 1.1.

Flow enters the network from the inlet plenum located at the center of the disk

and exits at the periphery. Each channel emanating from the inlet plenum bifur-

cates into two narrower channels, each of which in turn bifurcates. This repetitive

pattern is considered fractal-like because the ratio of the channel widths and chan-

nel lengths between the consecutive branch levels are fixed. The objective of the

present study is to develop an optimization algorithm to identify geometric char-

acteristics, subject to operating and fabrication constraints, of a fractal-like flow

network that achieves the minimum single-phase flow power for a desired heat

removal.

The gradient-based optimization algorithm used in the present study employs

the one-dimensional model developed by Pence [5] for predicting pressure and wall
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temperature distributions in fractal-like branching channel networks. The model

is based on developing laminar flow and heat transfer under a constant wall heat

flux condition. Hydrodynamic [6] and thermal [7] boundary layers were assumed to

redevelop following each bifurcation. Alharbi, et al. [2,3] validated the model using

three-dimensional computational fluid dynamic and thermal analyses, respectively.

Using the one-dimensional model of Pence [5], Pence and Enfield [8] investigated

the influence of several geometric parameters on the pressure drop and maximum

wall temperature. It was determined that increasing the number of branch levels

resulted in reduced flow resistance, but also resulted in an increase in the maximum

predicted wall temperature.

Using constructal theory, Bejan [9] designed optimal flow networks that min-

imized global flow resistance between a single point and a volume. Bejan and

Errera [10] extended the analysis to simultaneously minimize flow and thermal

resistance while optimizing the cooling of a volume experiencing uniform heat gen-

eration. Using the disk shaped concept proposed by Pence [4], Lorente et al. [11]

employed constructal theory to minimize cooling path lengths from the center of

a planar disk to a series of equally spaced points on the disk circumference. It was

concluded that minimizing channel lengths yielded flow resistances very similar

to those based on a minimization of flow resistance, which were presented in a

parallel study by Wechsatol et al. [12]. In the same disk configuration, Wechsatol

et al. [13] later minimized both the flow and thermal resistances. For a fixed flow

rate the thermal resistance was minimized with non-branching channels, whereas

flow resistance was minimized with increased numbers of branch levels. In these
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optimization studies of constructal networks [9–13], the flow was assumed laminar

with fully developed flow, variable length and width scale ratios were considered,

and a fixed coolant volume was imposed. Gonzales et al. [14], also assuming fully

developed flow, optimized the heat transfer and fluid resistances by varying the

number of downstream branches coupled to an upstream branch.

In the present optimization study of fractal-like flow networks, more restrictive

fabrication constraints than have been previously considered are taken into ac-

count. In addition to a maximum wall temperature constraint, the present study

also includes a restriction on the inlet plenum diameter, which is highly influenced

by the number of channels connected to the inlet plenum. Several constraints

imposed by the fabrication process, such as the minimum channel width and min-

imum spacing between channels to allow sufficient bonding area, are also imposed.

Optimization is performed for a fixed physical space, in this case the disk diameter,

as opposed to a fixed fluid volume. The objective of the optimization is to find the

flow network that minimizes flow power or pressure drop while providing a required

cooling load and adhering to a maximum wall temperature constraint. Results of

the gradient-based optimization are validated with a direct search over the entire

range of variables and are compared with results from a genetic algorithm.

In the direct numeric search, each parameter is varied at discrete intervals over

a specified range. The flow power for each parametric permutation is computed

using the one-dimensional model. Finally a search of the entire set of results is

conducted to determine the geometry that minimizes flow power, the process being

very time intensive.



8

The gradient-based steepest descent search starts at a single point within the

parameter space, evaluates the gradient, and moves in incremental steps in the

direction of the minimum [15]. The steepest descent approach has two distinct

advantages over the direct search. First, there is a reduction in the number of

executions of the one-dimensional model to determine the optimized flow network.

The second advantage is continuous parameters with finer resolution than can be

achieved using the direct search and its discrete intervals. A major drawback of

the steepest descent approach is its inability to distinguish between a local and

global minimum. However, repeating the search for a range of randomly selected

starting points within the parameter space can mitigate this drawback.

Inspired by the role genetics plays in the evolutionary process [16], the genetic

algorithm starts with a randomly selected population of potential solutions within

the parameter space. After assessing the quality of these potential solutions, new

solution sets are created in which the desired traits from the best possible solutions

of the original set are combined and in some cases, improved. The process is

repeated until variations in parameters are insignificant. An advantage of the

genetic algorithm is that it is not hindered by the presence of local minima in its

search for a global minimum. The drawback of this method is that the solution to

which it converges can depend upon the size of the initial population.
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2.2 Geometric parameters and constraints

For applications conducive to disk-shaped heat sinks, specified parameters include

the disk radius, R, and applied heat flux, q′′. For many applications, including

electronic cooling applications, the heat sink has a maximum junction temperature

limit. Using a resistance analogy, the junction temperature limit can be related to

the maximum wall temperature, Tw,max, of the flow network. The wall temperature

can be reduced by lowering the inlet fluid temperature, Tin, and/or by increasing

the inlet volumetric flow rate, V̇tot. The inlet temperature of the working fluid,

which is water for the present study, is fixed at 20◦C. Increasing the flow rate is done

at the expense of increased pressure drop, hence, increased flow power. Therefore,

the lowest flow rate that just meets a specified maximum wall temperature limit

is selected.

The available fabrication technique imposes additional constraints, generally

on the maximum depth of the microchannels, H, the narrowest channel width,

wm,min, and the minimum inter-channel and terminal channel spacing, wkd and

bwm, respectively, as noted in Fig. 2.1. In general, holding all other geometric and

flow parameters constant, an increase in channel depth increases the channel wall

area, which for a fixed heat flux applied to a heat sink of highly conductive material

results in a decrease in maximum wall temperature. An increase in channel depth

also increases the cross-sectional area of the channels, which for a fixed flow rate

results in a decrease in pressure drop and flow power. Thus the channel depth is set

at the maximum allowed by the fabrication technique, which for the present study
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Figure2

Figure 2.1: Schematic representation of branch level channel lengths and channel
widths, and constraints on channel spacing

is 150 µm. The smallest channel width that can be fabricated is assumed to be 50

µm. The center-to-center spacing of the terminal channels around the periphery

of the disk, as well as between channels in other levels of the flow network, must

be sufficiently large to provide a surface to which the layers forming the heat sink

can be bonded together. Channel spacing limitations are discussed in more detail

later in terms of constraints on the geometry of the flow network.

Free to vary in the optimization are the width ratio, β, and length ratio, γ,

between consecutive branch levels, which are defined by

β =
wk+1

wk
(2.1)
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γ =
Lk+1

Lk
(2.2)

and where wk and Lk represent the width and length, respectively, of a channel

within branch level k (see Fig. 2.1). Note that k varies from 0 through m, with m

denoting the total number of branch levels. The 0th level branches, denoted by n0,

are those that emanate from the inlet plenum.

Ranges of β, γ, wm, m, and n0 are specified for each disk of radius, R. In

addition, four fabrication constraints on the network geometry are imposed in the

optimization algorithm. The first is that the inlet plenum radius is restricted to

less than or equal to 10 percent of the disk radius. The parameter a represents the

ratio of inlet plenum radius to disk radius. The inlet plenum radius is determined

from its circumference, which is equal to the number of 0th level channels, n0, times

their width, w0. The value of w0 can be assessed from

w0 =
wm
βm

(2.3)

yielding the following first geometric constraint, which constrains the inlet plenum

diameter

n0wm
βm

≤ 2πRa (2.4)

The second and third geometric constraints are both applied to the terminal chan-

nel geometry, i.e. there must be sufficient material between channels to support

bonding of a top disk to finalize the flow network. A dimensionless parameter, b,

is defined as the center-to-center spacing between the terminal (m level) channels
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divided by the width of the terminal channels, wm. This parameter is allowed to

vary between a minimum value, bmin, and a maximum value, bmax. A similar spac-

ing parameter, d, is defined for the levels k = 0 through m-1, and for the present

analysis is set equal to bmin.

To ensure that the terminal channels are adequately spaced, the circumference

of the disk divided by bmax and by bmin must bracket the sum of the widths of the

terminal channels as in

2πR

bmax
< 2mn0wm <

2πR

bmin
(2.5)

Eq. (5) imposes two separate constraints on the terminal channel spacing at the

periphery of the disk. For the remaining branch levels, i.e. k = 0 through m-1,

a minimum center-to-center spacing of wkd is ensured between channels of width

wk, if the following inequality

(
2πRβm

n0wm
− 1

)∑k
i=0 γ

i∑m
i=0 γ

i
> d (2β)k+1 − 1 (2.6)

is valid. Eq. (6) represents the fourth geometric constraint, a constraint on the

internal channel spacing, which is imposed at each level k. Although ranges of m

and n0 are specified, the upper limit on m is constrained by

2m <
2πR

bminn0, minwm, min
(2.7)

as determined from Eq. 2.5.

To summarize, the following needs to be specified by the flow network designer:
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(I) single values for geometry variables a, bmin, bmax, d, H, and R, (II) ranges for

geometry values m, n0, β, γ, and wm, and (III) single values for operating variables

q′′ and Tw,max. If solving using the direction numeric search, increments also need

to be specified for β, γ, and wm. Within the parametric space defined by ranges

of β, γ, and wm there may be numerous possible flow configurations. Of these,

many will not adhere to the geometric constraints imposed by Eqs. (4-6) and

are considered invalid geometries. Figure 2.2 shows a representative range of valid

length and width ratios for a fixed R, wm and n0. Contours in Fig. 2.2 indicate flow

power determined by a direct search [8]. Although the branching level, m, is also

a flow configuration variable, its value is fixed in Fig. 2.2 to simplify visualization

of the valid space.

2.3 Optimization Techniques

The primary method of optimization for the present study is the gradient-based

steepest descent (SD) search, which is validated using the direct numeric search

(DS) and compared with results from the genetic algorithm (GA).

2.3.1 Gradient-Based Steepest Descent Search

Although a relatively straight forward optimization approach, discrete, integer

values of m impose challenges to the steepest decent search. If an optimization is

performed for eachm value, however, this problem is alleviated. As noted in Enfield
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Figure 3. 

 

Figure 2.2: Representative division between valid and invalid geometries for R =
20mm, wm = 85µm, n0 = 10 and m = 6. Contours indicate flow power determined
from the direct search conducted by Enfield et al. [8]

et al. [8], the discrete nature of n0 creates steps, or local minima, in the geometric

constraint boundaries that render complicated search paths along the boundaries

that are difficult to calculate. Fortunately, n0 is also represented by an integer

value. Therefore, to simplify the steepest descent search, the search is conducted

in a region defined by a single value of m and a range of integer values of n0.

The steepest descent approach proceeds as follows. A starting point that meets all

constraints is chosen arbitrarily for a given m and n0. Using predefined increments

of β, γ, and wm, six points (±∆β, ±∆γ, ±∆wm) surrounding the arbitrarily

selected point are identified and the pressure drop or flow power is assessed. Using

these seven points, the local gradient of the function to be minimized is numerically
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determined at the arbitrarily chosen point. Incremental steps are taken in the

negative gradient direction until the local value of the function in question, for

example the flow power, stops decreasing. At this new point, the gradient is again

determined, and the value of the function at the current point is compared to

those at neighboring points. If the current point is not a minimum, incremental

steps are taken in the new direction, i.e. in the negative gradient direction. The

process is repeated until a minimum, defined by the gradient tending toward zero,

is achieved. For a given value of m, the optimum flow network, defined by the

lowest pressure drop or flow power, is identified for each n0. The minima for all

n0 values are then compared to find the optimum for a fixed value of m. By

comparing the minimum values of pressure drop or flow power for each valid m,

the final optimized flow geometry is determined.

2.3.2 Direct Numerical Search

In a direct numerical search, all possible parametric permutations of the flow ge-

ometry are considered for a given disk radius. Using Eqs. (2.4-2.6), flow geometries

violating any of the constraints are removed from further consideration. The one-

dimensional model by Pence [5] is run for all valid flow geometries to determine the

flow rate that just yields the acceptable maximum wall temperature for a specified

heat flux. This requires an iterative process. Because the model also provides the

total pressure drop, the minimum flow power among all valid flow geometries can

be determined. The flow network configuration yielding the minimum flow power
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is specified as optimal.

2.3.3 Genetic Algorithm

For each m and n0 combination, the genetic algorithm searches for the optimum

combination of β, γ, and wm that yields the lowest flow power that just meets the

Tw,max constraint. An initial population is created from 50 random combinations

of traits β, γ, and wm that satisfy the geometric constraints. Each of these possible

solution combinations, referred to as individuals, is evaluated for its fitness. The

fitness function is the one-dimensional model by Pence [5], where the fitness value is

the inverse of the pumping power. The individuals are then ranked from the highest

fitness value to the lowest. The two individuals with the highest fitness values,

termed elite individuals, are passed unaltered to the next generation population

set. The remaining individuals in the top 40% fitness rankings are selected for

crossover. During crossover, individuals are randomly paired to create offspring

by combining traits from each individual. The traits of the remaining individuals

in the population are mutated to ensure that all constraints are satisfied. The

mutants, offspring, and elite individuals form a new population. The process

is repeated with each new population until variations in the magnitude of the

fitness values throughout the population is less than the precision of the computer

(2× 10−16).
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2.4 Results

Gradient-based steepest descent optimization results are presented for two separate

searches, one in which pressure drop is minimized and the other in which flow is

power minimized. Comparison of this optimization method with direct numeric

and genetic algorithm searches are limited to the flow power minimization criterion.

Flow geometries for six different heat fluxes [10, 30, 100, 200, 500, 1000 W/cm2],

five disk radii [10, 20, 30, 40, 50 mm] and six maximum wall temperatures [40 50,

60, 70, 80, 90 ◦C] were considered. The range considered for wm was 50 to 150 µm,

with 1 µm increments employed for the direct search. The ranges for β and γ were

constrained between 0.5 and 1.5 and between 0.5 and 1.0, respectively. Increments

of 0.01 were used for the direct search. Values for m and n0 were allowed to vary

from 2 to 9 and from 3 to 100, respectively. The remaining geometric parameters

were held fixed and assigned values H = 150 µm, a = 0.1, bmin = d = 1.5, and

bmax = 2.5.

2.4.1 Comparison of Gradient-based, Genetic Algorithm and Direct

Search Results

Outlined in Table 2.1 are flow powers minimized using the gradient-based steepest

descent (SD), the direct numeric search (DS), and genetic algorithm (GA) for R

= 20 mm, Tw,max = 70◦C and three values of heat flux: 10, 500, and 1000 W/cm2.

Flow powers, ℘, from the steepest descent are within 10% of those from the direct
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Table 2.1: Comparison of optimized flow power results from the direct numeric
search (DS), genetic algorithm (GA), and gradient-based steepest descent (SD)
methods with purely geometric-based (GB) results (R = 20 mm and Tw,max =
70◦C)

q′′ (W/cm2) DS GA SD GB
10 ℘ (mW ) 0.19 0.2 0.19 0.20

Q (mL/s) 0.21 0.26 0.22 0.183
∆P (kPa) 0.91 0.77 0.82 1.07
εp 5.9E5 5.7E5 6.3E5 5.8E5

500 ℘ (mW ) 1336 1661 1219 1304
Q (mL/s) 10.6 12.3 10.6 8.99
∆P (kPa) 126 135 115 145
εp 4246 3415 4652 4350

1000 ℘ (mW ) 10,980 11,300 10,000 11,300
Q (mL/s) 26.3 24.7 26.3 29.3
∆P (kPa) 418 458 381 385
εp 1033 1004 1134 1004

search. Flow powers minimized using the genetic algorithm differ by as much as

25% from direct search results. Also included in Table 2.2 are the total volumetric

flow rate, pressure drop and benefit-to-cost ratio associated with these optimal

flow powers. Shown in Table 2.2 are the parameters, or traits, of the correspond-

ing optimal flow networks. Included are width ratio, length ratio, terminal channel

width, and the numbers of branch levels and 0th order channels. Geometric-based

(GB) results are discussed later. Each optimization algorithm considered suffers

from some drawback. The direct search suffers from excessive computational re-

quirements and limited resolution. As an example, 525,207 permutations of flow

and geometrical conditions were computed in 36 hours to find the minimum flow
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Table 2.2: Comparison of optimized flow power network traits from the direct
numeric search (DS), genetic algorithm (GA), and gradient-based steepest descent
(SD) methods with purely geometric-based (GB) results (R = 20 mm and Tw,max =
70◦C)

q′′ (W/cm2) DS GA SD GB
10 β 0.67 0.65 0.64 0.67

γ 1.09 0.98 1.06 1.08
wm(µm) 52 53 51 50
m 6 7 7 7
n0 21 11 11 13

500 β 0.76 0.76 0.75 0.67
γ 1.19 1.06 1.18 1.08
wm(µm) 50 53 50 50
m 4 4 4 7
n0 78 79 79 13

1000 β 0.76 0.84 0.75 0.67
γ 1.19 1.28 1.18 1.08
wm(µm) 50 51 50 50
m 4 3 4 7
n0 78 144 79 13

power condition using the direct numerical search. The resolution of β and γ were

0.01 and wm was 1 µm for this direct search. The steepest descent is fast, but

requires runs with various starting points to avoid local minima. For each starting

point, and for the same parameter space as the direct search, minimum flow power

condition was obtained within 23.4 seconds using the same computational resource.

The genetic algorithm is faster than the direct search but considerably slower than

the steepest descent. For the same parameter space as the gradient-based and

direct numerical searches, a minimum in flow power condition was determined in
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2300 seconds. In addition, the genetic algorithm suffered from not always finding

a converged solution, a condition that may have resulted from a lack of diversity

due to a small initial population. However, increasing the population size results

in an increase in the convergence time. In comparing results to the direct search,

the steepest descent method, as implemented, yielded only global minima.

The parameters β, γ, and wm that characterize the optimized geometries appear

to be fairly independent of optimization method used (within approximately 15%).

Differences between the different methods are mainly influenced by the increment

size in the direct search and the initial population size employed in the genetic

algorithm.

2.4.2 Gradient-Based Steepest Descent Results

For each discrete value of disk radius, R, maximum wall temperature constraint,

Tw,max, and disk heat flux, q′′, the geometric parameters β, γ, and wm that yielded

the lowest flow power or pressure drop for a given m and n0 were determined using

the steepest descent optimization method.

2.4.2.1 Pressure drop minimization

Minimal values of pressure drop are shown in Fig. 2.3 as a function of the number of

branch levels, m, for applied heat fluxes ranging from 10 to 1000 W/cm2. Assumed

is a disk-shaped heat sink having a radius of 20 mm and constrained by a maximum
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wall temperature of 70◦C. Circles are used to identify the optimum number of

branch levels, m, for each specified heat flux. Observed in Fig. 2.3 is that as

the heat flux increases the pressure drop increases and the optimal value of m

decreases. For a fixed flow network configuration, as the heat flux increases, the

flow rate must also increase so as not to violate the maximum allowable wall

temperature constraint. This results in an increase in pressure drop.

Although pressure drop is plotted as a function of m in Fig. 2.3, m is not the

only parameter changing. Rather, changes in m are accompanied by changes in n0.

For example, if the width ratio, length ratio, terminal channel widths and terminal

channel spacing are all fixed, a unit decrease in m yields an automatic doubling

of n0. This assumes the inlet plenum constraint (Eq. 2.4) is not violated. Also

changing with m is the convective surface area defined as

Aw = n0L0

[
m∑
k=0

2k+1γk
(
H +

wm
βm−k

)]
(2.8)

The surface area is based on an assumption of constant heat flux applied to

four walls of the channel. Evident from Eq. 2.7 is that independent increases in n0

and in m result in increases in convective surface area. The magnitude by which

surface area increases depends upon the values of m, n0, β and γ. However, for a

fixed disk heat flux and flow rate an increase in convective area yields a decrease

in wall temperature. Because the optimization process identifies the lowest flow

rate that just achieves the maximum wall temperature constraint, the optimal flow

rate is also decreased with increases in convective surface area. An increase in m
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Figure 4. 
 

Figure 2.3: Minimized pressure drop versus m as a function of disk heat flux for
R = 20mm and Tw,max = 70◦C. Large circles denote optimal m values for each
heat flux.
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while holding all other parameters constant, including n0, results in a reduction

in pressure drop due to a decrease in flow resistance. This occurs because the

channel lengths in each branch level become shorter while the width of the widest

channel increases. An increase in n0 while holding all other parameters constant,

including m, results in a decrease in flow rate through each channel. As noted

previously, changes in these parameters are not independent of changes in other

parameters. However, in general, increases in Aw, m, and n0 can be thought to

result in decreases in flow rate, pressure drop and flow rate, respectively.

The relationship between the convective surface area, Aw, and parameters n0,

β, γ, and wm are shown as a function of m in Fig. 2.4. The disk diameter is fixed

at 20 mm, subjected to a heat flux of 1000 W/cm2 and limited to a maximum wall

temperature of 70◦C. The terminal channel width, wm, is made non-dimensional

using the fixed channel depth, H, and identified with a * superscript. As noted

previously, a unit decrease in m tends to yield twice the number of n0, which is

illustrated in Fig. 2.4a by the exponential decay in n0 with increases in m. As m is

decreased and n0 increased, there is a noticeable increase in the convective surface

area, Aw, in Fig. 2.4f. Also contributing to the increase in convective surface areas

are increases in β and γ, as noted in Figs. 2.4b and 2.4c, respectively. Evident from

Eq. 2.8 and by comparing Fig. 1.1(a) (β = 0.7) to Fig. 1.1(b) (γ = 1.4), holding

all other parameters constant, higher values of γ tend to increase the convective

area. This trend is observed for m less than 7 in Fig. 2.4c. However, as is noted

by the large value of w+
m at m = 9 in Fig. 2.4d, γ is also influenced by the terminal

channel width. This anomalous value of w+
m is addressed later.
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Figure 5. 

 

Figure 2.4: Minimized pressure drop flow network parameters, benefit-to-cost ratio
and channel area versus m for q′′ = 1000W/cm2, R = 20mm, and Tw,max = 70◦C.
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Values of β in Fig. 2.4b are influenced by the inlet plenum diameter constraint.

For a unit decrease in m, in which case n0 is doubled, the sum of the widths

of the n0 channels must adhere to the inlet plenum constraint. Two ways in

which this may be achieved are by decreasing wm or increasing β. It is clear from

Fig. 2.4d that the minimum channel width constraint of 50 µm, corresponding

to a dimensionless width of 0.33, is reached for most values of m. This is an

indication that, if permitted by fabrication constraints, smaller terminal channel

widths should be considered. For β equal to the upper limit of unity, as is the case

for m = 2, the channel widths do not increase with decreasing k, but rather stay

the same allowing for maximum convective area. As the number of branch levels,

m, increase, β must decrease in order to adhere to the inlet plenum and interior

channel spacing constraints.

Shown in Fig. 2.4f for this high heat flux condition of 1000 W/cm2 is that the

convective surface area is highest for low values of m and high values of n0, with

a peak value at m = 2. The benefit-to-cost ratio is defined as the rate at which

thermal energy is extracted divided by the flow power,

εp =
q′′πR2

V̇∆P
(2.9)

and shown in Fig. 2.4e on semi-log axes. A peak in εp occurs at m = 4. Both the

convective area peak and the peak value of εp are close to m = 3, which corresponds

to the minimum pressure drop for the 1000 W/cm2 heat flux in Fig. 2.3. Because

the pressure drop, not the benefit-to-cost ratio nor convective area, was optimized,
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the peak values do not correspond identically.

Referring back to Fig. 2.3, wherein the cause for increases in pressure drop with

heat flux was clear, the cause for decreases in the optimal value of m with increasing

heat flux is less clear. Recall that each different symbol in Fig. 2.3 corresponds to

the optimal flow network for a given value of m and disk heat flux. The optimal

m value for a given heat flux, i.e. the one that yields the smallest pressure drop,

is identified in Fig. 2.4 with a circle. In Fig. 2.5 are the geometric parameters

and εp corresponding to the optimal values of pressure drop for each disk heat flux

noted in Fig. 2.3. These parameters are plotted as a function of disk heat flux.

It is evident from Figs. 2.5a and 2.5b that as the disk heat flux is increased, the

decreases in the optimal number of m observed in Fig. 2.3 are accompanied by

increases in n0. In agreement with observations made in Fig. 2.4, higher values of

n0 are generally accompanied by higher values of β and γ. However, the influence

on convective surface area resulting from simultaneous decreases in m and increases

in n0, β and γ is not exactly clear.

For the minimal pressure drop cases (i.e., circles) in Fig. 2.5a and 2.5b, changes

in the disk heat flux from 200 to 500 W/cm2 result in a decrease in m from 6 to 5,

whereas n0 approximately doubles from 22 to 42. The values of β and γ at their

respective heat fluxes are available from Figs. 2.5c and 2.5d, respectively. Using

these numbers in Eq. 2.8 and accounting for changes in L0, there is a 30% increase

in surface area for the optimized configuration at 500 W/cm2 compared with that

at 200 W/cm2. The competing effects of decreased flow rates accompanying in-

creases in Aw and n0 compared with the increased pressure drop accompanying
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Figure 6. 

 

Figure 2.5: Flow network parameters and benefit-to-cost ratio versus applied heat
flux for R = 20mm, and Tw,max = 70◦C. Dashed lines illustrate similarities be-
tween pressure drop and flow power optimization results.
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a decrease in m contribute to the observed minimum in Fig. 2.3 for a given heat

flux.

In Fig. 2.5, the optimal flow network for the highest heat flux of 1000 W/cm2

has the highest n0 and lowest m. To achieve cooling within the desired maximum

wall temperature constraint, significantly high mass flow rates are required as

are high convective surface areas, the latter of which are maximized through use

of very narrow channels. Because pressure drop is inversely proportional to the

hydraulic diameter to the fourth power for a given laminar flow rate, it is desired

to reduce the flow rate as a means of minimizing pressure drop. Increases in m

result in scaled decreases in channel length at each level, thereby providing a scaled

reduction in frictional pressure drop. On the other hand, increases in n0 yield a

proportional decrease in flow rate, which in turn yields a proportional decrease

in frictional pressure drop. As noted in Fig. 2.5e, the lower limit of 50 µm (w+
m

= 0.33) is again regularly reached. Competing effects resulting from a desire to

maximize thermal transport while minimizing flow resistance are responsible for

the trends in the optimal m values observed in Fig. 2.3 with increasing disk heat

flux. Shown in Fig. 2.5f on log-log axes is the benefit-to-cost ratio as a function of

heat flux. The overall performance of the heat sink, assessed using εp, decreases

as heat flux is increased. In order to understand the trend in εp, recall that for

constant thermophysical properties

q′′πR2 = V̇ ρCp (Tex − Tin) (2.10)
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from which it is evident that

V̇ ∝ q′′ (2.11)

Recall also that the pressure drop across a channel for laminar flow is related to

flow rate as follows

∆P ∝ V̇ (2.12)

Substituting Eqs. 2.10-2.12 into Eq. 2.9 yields εp ∝ 1/q′′. On log-log axes, this re-

lationship should be linear. Fig. 2.5f shows a nearly linear relation, with the slight

departure a consequence of employing temperature dependent thermo-physical

properties in the one-dimensional model.

2.4.2.2 Flow power minimization

Having studied the flow network optimization based on minimizing pressure drop,

the minimal flow power assessed for each discrete value of m is plotted in Fig. 2.6

for disk heat fluxes ranging from 10 to 1000 W/cm2. The trends are very similar

to those exhibited in Fig. 2.3. Again, the number of branch levels characterizing

the optimal flow network for each disk heat flux is identified with circles. How-

ever, with the exception of optimal geometries for q′′ = 1000W/cm2, the optimal

flow geometries for minimized flow power have fewer branch levels than in those

optimized for minimal pumping power for the same heat flux. This is also evident

in Fig. 2.5a.

The geometric parameters corresponding to the optimal values of flow power
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Figure 7. 

 

Figure 2.6: Minimized flow power versus m as a function of disk heat flux for
R = 20mm, and Tw,max = 70◦C. Large circles denote optimal m values for each
heat flux.
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for each disk heat flux noted in Fig. 2.6 are provided in Fig. 2.5. For minimal

flow power optimization, as was the case for minimal pressure drop optimization,

increases in surface area are necessary for increases in disk heat flux. As noted

previously, this can be achieved by either an increase in m or an increase in n0.

However, increasing n0 has the added benefit of increasing the cross-sectional flow

area and thereby decreasing the flow rate. Because pressure drop is directly pro-

portional to volumetric flow rate, the flow power is proportional to the square of the

volumetric flow rate. Therefore, achieving the necessary increase in surface area

via increases in n0 yield better solutions and lower optimal m values when opti-

mizing flow power as opposed to optimizing pressure drop. Consider the optimum

m value in Fig. 6a for q′′ = 10 W/cm2 for the case in which flow power is mini-

mized. This is the same optimum m value (see dashed line) for q′′ = 100W/cm2

when pressure drop is minimized. Examination of the corresponding dashed lines

in Figs. 2.5b- 2.5e reveals that all other optimized geometric parameters, n0, β and

γ and w+
m, are identical for q′′ = 10W/cm2 based on minimized flow power and for

q′′ = 100 W/cm2 based on minimized pressure drop. The one heat flux in Fig. 2.5

for which this is an exception is 1000 W/cm2, in which case the two flow networks

are identical. This is not unexpected, however, because of the combined need for

both narrow channels and high flow rates for such high heat flux cooling results in

the pressure drop being the primary contributor to the flow power.
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Figure 8. 

 

Figure 2.7: Minimized pressure drop and minimized flow power flow network pa-
rameters and performance coefficient versus R for q′′ = 200W/cm2, and Tw,max =
70◦C.

2.4.2.3 Parametric variation of disk radius

Figure 2.7 illustrates the change in m, n0, and εp as a function of disk radius for

both minimized pressure drop and minimized flow power cases. Held fixed are

the disk heat flux at 200 W/cm2 and maximum wall temperature constraint at

70◦C. As was noted in the discussion of Fig. 2.5 in which R was fixed and q′′

was varied, increases in n0 were achieved at the expense of reduced values of m.

However, in Figs. 2.7a and 2.7b, values of m remain constant and independent

of R while values of n0 are observed to increase linearly with R. In addition to

m, the remaining geometric parameters β, γ, and w+
m remained unchanged with

R. Therefore, as the disk radius is increased, the lengths of the individual branch

levels increase. To fill the outer periphery with channels within the center-to-center

spacing constraints provided, i.e., 1.5 < b < 2.5, the number of n0 channels are

also increased. Increases in n0, which would pose a problem at the inlet plenum for
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fixed diameter disks, do not pose a problem in this case because the inlet plenum

radius is a fixed ratio of the disk diameter. The inlet plenum constraint embedded

in Eq. 2.4 can be rearranged to yield

n0

R
=

2πaβm

wm
(2.13)

to predict the slopes observed in Fig. 2.7b. Recall that a = 0.1 for the present

study and the fixed geometric parameters are available from Fig. 2.5. For the

case of minimized pressure drop, where β is 0.666, wm is 50 µm and m is 6, the

predicted and measured slope is 1.1 mm−1, compared with a slope of 2.1 mm−1

for the minimized flow power case in which β, wm, and m are 0.7, 50 µm, and 5,

respectively.

The benefit-to-cost ratio, εp, is shown on semi-logarithmic axes in Fig. 2.7c as

a function of R. Substituting Eq. 2.12 into Eq. 2.9 to eliminate ∆P , followed by

elimination of volumetric flow rate using the relation proportional to q′′2πR yields

εp ∝ 1/R2. This mathematical relationship is observed in Fig. 2.7c. The cause

for the observed decrease in heat sink performance is due to the increase in flow

resistance resulting from an increase in disk radius and, hence, the total length of

the flow network. This increase in pressure drop outweighs the benefit of decreased

flow rate that accompanies increases in both convective surface and cross-sectional

flow areas. The convective surface area increases with both R and n0, whereas

increases in cross-sectional flow area result from increases in n0.
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Figure 9. 

 

Figure 2.8: Minimized pressure drop and minimized flow power flow network
parameters and benefit-to-cost ratio versus Tw,max for q′′ = 200W/cm2, and
R = 20mm.

2.4.2.4 Parametric variation of wall temperature constraint

Figure 2.8 shows that m and n0 are invariant with Tw,max between 50 and 90◦C for

the minimized flow power case and between 50 and 80◦C for the minimized pressure

drop case. At the lowest and most stringent temperature constraint considered, i.e.

40◦C, more convective surface area and larger cross-sectional flow areas become

necessary, resulting in optimum geometries with lower m and higher n0 values.

Conversely, at the highest and less stringent wall temperature constraint of 90◦C,

the minimized pressure drop flow geometry has an increased number of branch

levels. The increased value of m and corresponding decreased value of n0 result

in a sufficient convective surface area to constrain the wall temperature. On the

other hand, this combination of m and n0 would be less ideal for achieving an

optimal flow power because of the increase in flow rate needed to constraint the

wall temperature and the subsequent increase in flow power.
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2.4.2.5 Parametric variation of terminal channel width

Because the lower limit of the terminal channel width constraint was repeatedly

reached during optimization, it is instructive to investigate lower terminal channel

widths. Additional minimum terminal channel width constraints of 10, 20, 30, and

40 µm were considered. Figure 2.9 shows the minimized flow power as a function

of m terminal channel width constraints between 10 and 50 µm. For each value

of wm,min in Fig. 2.9 there is an optimal value of m, indicated with a circle. As

wm,min decreases, more channels can be fit around the periphery of the disk. To

connect terminal channels to the inlet plenum requires either an increase in the

number of branch levels or an increase in the number of 0th level branches. As

mentioned previously, increases in m primarily yield decreases in pressure drop

whereas increases in n0 result in decreases in flow rate. Because pressure drop is

inversely proportional to the hydraulic diameter to the fourth power for a fixed

laminar flow rate, minimizing pressure drop via increases inm becomes increasingly

more important than by reductions in flow rate as the minimum terminal channel

constraint is reduced.

For 10, 20, and 40 µm minimal channel width constraints, there is an anomalous

order of magnitude increase in flow power with a unit increase in m at the higher

values of m. The primary reason for this is that as the terminal channel width

gets smaller while the number of branch levels increases, the spacing constraints

inside the disk severely reduce the number of valid flow network configurations.

In particular, the values of γ associated with the anomalously high flow powers
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Figure 10. 

 

Figure 2.9: Minimized flow power versus m as a function of minimal channel width
constraint for q′′ = 200W/cm2, R = 20mm, and Tw,max = 70◦C.
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Figure 11. 

 

Figure 2.10: Length scale ratio and total convective surface area versus m and a
function of minimum terminal channel widths for q′′ = 200W/cm2, R = 20mm,
and Tw,max = 70◦C.

in Fig. 2.9 are generally very small. This is evident from Fig. 2.10a, in which γ

is plotted as a function of m for the wm,min = 20, 30 and 40 µm constraints in

Fig. 2.9. Although the 30 µm constraint does not exhibit this anomalous behavior

it does provide a nice comparison. The value of γ reduces significantly at the

values corresponding to the anomalous flow powers, which are m = 10 and m = 9

for the 20 µm and 40 µm constraints, respectively. As noted from Fig. 2.10b there

is also a significant decrease in convective surface area at these anomalous points.

This is primarily a result of the significant decrease in the length scale ratio, γ,

observed in Fig. 2.10a. The consequence of a decrease in γ on the convective

surface area is evident from comparing Fig. 1.1a with γ = 0.7 to Fig. 1.1b with

γ = 1.4. Recall that a decrease in convective surface area requires higher flow
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rates to achieve the cooling necessary to maintain the maximum wall temperature

constraint. Although larger values of m and smaller values of γ generally result in

lower pressure drops, this advantage is overwhelmed by the disadvantage of high

pressure drops resulting from high flow rate through the very narrow channels.

The geometric parameters that correspond with the optimal values of m for

minimized flow power and minimized pressure drop, rerun with lower wm,min values,

are shown in Fig. 2.11 as a function of wm,min. Unlike in Fig. 2.5 where the value of

m was always less than or equal, and n0, β and γ were always greater than or equal,

for a flow network optimized for a minimal flow power compared to one optimized

for a minimal pressure drop, there are no such clear trends in Fig. 2.11. The

divergence from these previously observed trends occurs for wm,min less than 30

µm. Evident from Fig. 2.11e, the terminal channel width for flow networks in which

pressure drop was minimized did not drop below 30 µm, even though allowed for

by the constraints. This is mainly due to the considerable increase in pressure drop

at these smaller channel dimensions. The impact of which is observed to influence

the other optimized design parameters, including m, β and γ. For very narrow

channels, flow power is more easily minimized with very low flow rates resulting

from high convective surface and cross-sectional flow area networks expected from

the m, n0, β and γ combinations shown in Fig. 2.11. Minimizing based on pressure

drop also negatively impacts the benefit-to-cost ratio for wm,min < 30, indicating

that wm,min plays a more crucial role in optimizing for ∆P than for ℘.

As a final note, as is event from Figs. 2.5d and 2.11d, no optimized flow net-

work configuration has a length scale ratio less than unity. Although pressure drop
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Figure 2.11: Minimized pressure drop and minimized flow power flow network
parameters and performance coefficient versus wm,min for q′′ = 200W/cm2, R =
20mm, and Tw,max = 70◦C.
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has previously been minimized using lower length scale ratios in absence of impos-

ing a maximum wall temperature constraint [5], this wall temperature constraint

severely limits the valid range of γ. The value of γ is also restricted by the internal

and peripheral spacing constraints. For example, for γ > 1, the internal spacing

constraint was most often violated at the bifurcation between the k = 0 and 1

branch levels, whereas for γ < 1, the violations occurred between the k = (m− 1)

and m branch levels.

2.4.3 Summary

Evident from Figs. 2.5 and 2.11, the steepest descent optimized parameters, β, γ,

and wm, based on flow power minimization vary by less than 7% over the range

of q′′ and wm studied. This limited variation in β, γ, and wm over a wide range

of heat fluxes is due to the considerable influence of the fabrication constraints

on the optimal flow network parameters. Recognizing the influence of fabrication

constraints on network design, coupled with a recognition of the time necessary to

program and implementation optimization codes, Pence [17] proposed a simple and

purely geometric fractal-like flow network design approach for single-phase flows

in disk shaped heat sinks. Using average values of 1.08 for γ and 0.67 for β, a com-

parison of εp for the optimized configurations with those from the geometric-based

design yielded values within 11%. These geometrically based results are repeated

here in Tables 2.1 and 2.2 and designated by GB. Note that although the values for

m and n0 in Table 2.2 are significantly different between the geometrically based
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design and steepest descent approach for heat fluxes of 500 and 1000 W/cm2, the

flow powers and benefit-to-cost ratios reported in Table 2.1 are within 13%. These

results indicate the possibility that a number of optimal flow networks exist that

can yield very similar performance results. It also appears that a single geomet-

rically based flow network, using average length and width ratios determined by

fabrication constraints, may provide near optimal performance without the need

for extensive optimization.

2.5 Conclusions

Using a previously validated one-dimensional model for predicting pressure drop

and wall surface temperatures, fractal-like flow networks in disk-shaped heat sinks

were optimized. Flow geometries resulting from minimizing pressure drop were

compared to those from minimizing flow power. A direct numeric search to find

minimal flow powers was conducted as a means of validating the results of the

gradient-based steepest descent search. Results between these two techniques are

within 10%. A genetic algorithm was also employed as a potential alternative to

the steepest descent technique. Compared with the direct search, these results

were also within 10% for the 10 and 1000 W/cm2 heat fluxes, but within 25% for

the 500 W/cm2 case. In addition, the time to a converged optimal solution was

considerably longer for the genetic algorithm than for the steepest descent.

The heat flux, maximum wall temperature constraint, and geometrical con-

straints had a significant impact on the flow network design. In most cases, the
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narrowest terminal channel widths were also found to be preferable. Benefit-to-

cost ratios were found to decrease with increases in disk heat flux, in disk radius

and in the minimum channel width constraint.

For higher heat flux cooling applications, fewer branch levels with many chan-

nels emanating from the inlet plenum are also found to be desirable. The optimal

flow networks at higher heat fluxes exhibit larger β and γ values than at lower

fluxes. These fractal-like flow networks allow for the highest convective surface

and cross-sectional flow areas, a combination desired for high cooling capabilities

with the lowest flow power requirements.

Results from optimization demonstrate the vital importance of employing con-

straints imposed by fabrication techniques in addition to the thermal and flow

variables in a multivariable optimization algorithm. On the other hand, results

from the geometrically based flow network design procedure outlined in Pence [17]

suggest that good designs exist without a need for optimization. This is the case

because the average gamma and beta ratios used by Pence [17] were significantly

influenced by the geometric constraints.
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Chapter 3 – Optimization of Two-Phase Fractal-like Branching

Channel Heat Sinks

3.1 Introduction

Disk-shaped heat sinks with fractal-like branching microchannels were first pro-

posed by Pence [4] as a means to reduce both the pressure drop and the max-

imum streamwise wall temperature difference observed in parallel microchannel

heat sinks. A fractal-like branching flow network, inspired by nature, was studied.

Representative fractal-like flow networks in a disk-shaped heat sink configuration

are shown in Fig. 1.1. Flow enters the network from the inlet plenum located at

the center of the disk and exits at the periphery. Each channel emanating from

the inlet plenum bifurcates into two narrower channels, each of which in turn bi-

furcates. This repetitive pattern is considered fractal-like because the ratio of the

channel widths and channel lengths between the consecutive branch levels are fixed.

Fractal-like flow networks have been studied under single-phase and two-phase, or

boiling conditions.

Bowers and Mudawar [18, 19] were among the first to study both the heat

transfer and pressure drop characteristics of flow boiling in microchannels, the

most significant finding was that the same heat transfer rate could be achieved

with a lower two-phase flow rate compared to single-phase flow. However the
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increase in heat transfer does not come without penalty, Daniels [20] found that

for certain cases of heat flux and mass flow rate, the two-phase pressure drop

is larger than the single phase, increasing the cost. The cost can be minimized

through an optimization algorithm such as the ones employed by Heymann et

al. [21]. The goal of this study is to assess the performance of a two-phase flow

optimization algorithm under different constraints, how those constraints affect

the performance of the algorithm and the heat sink design.

The gradient-based optimization algorithm used in the present study employs

the one-dimensional model developed by Daniels [20] for predicting pressure and

wall temperature distributions in two-phase fractal-like branching channel net-

works, assuming laminar flow and uniform wall heat flux. Hydrodynamic and

thermal boundary layers were assumed to redevelop following each bifurcation.

Daniels [20] experimentally validated the model for adiabatic boiling flow by re-

ducing the exit pressure to sub-atmospheric conditions. Daniels [20] found that

the pressure drop predictions agreed well with the experimental results. However,

the void fraction distribution in the channel was not explained well by the model.

Edward [22], studying the void fraction distribution for diabatic flow in branching

channels found similar results, but noted that the total void fraction (integrated

over the entire tree and averaged over time) predicted by the model and the experi-

mental results agreed well, and the distribution discrepancy was due to instabilities

forcing vapor backwards. Similarly, Cullion, et al. [23] found that when liquid mo-

mentum of the flow was not sufficient to counter the capilary forces an entrained

bubble, that there was blockage in the branching channels. The constraints of
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the present optimization approach seek to mitigate the issue of instabilities arising

from the non-favorable force balance.

Kandlikar [24], identified the surface tension, evaporative momentum and liquid

inertia forces, and noted that a positive downstream balance of the forces results

in stable flow. Kandlikar [24] restricted the analysis to a straight channel, where

the net surface tension force of a straight, elongated bubble is zero. Lee et al. [25]

utilized geometries that result in a positive net force balance in the downstream di-

rection. The geometries studied by Lee et al. [25] include expanding cross sectional

area channels and channels with inlet orifices. For more complicated geometries

the surface tension forces may not be zero, such as the fractal-like channels of

the present study, although it should be noted that some a priori knowledge of

the exact vapor distribution in the channel is required to model the evaporative

force in the channel. However, most importantly, the reverse flow instability was

mitigated in channels with decreasing downstream flow resistance.

There is an upper limit to the capacity of two-phase flow, at which any further

increase in heat flux results in catastrophic failure to the system due to extremely

high wall temperatures. Critical heat flux (CHF) is an additional phenomenon that

constrains the operation conditions of the fractal-like branching channel heat sink.

The knowledge of the conditions at which CHF occur is essential to avoiding it,

Qu and Mudawar [26] developed a correlation for CHF in a straight microchannel

and was found to agree with experimental data to a mean-average error of approx-

imately 4%. Revellin and Thome [27] constructed a numerical model of ordinary

differential equations to account for the interfacial wave troughs in contact with
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Figure 3.1: Illustration off a fractal-like branching channel tree

the wall, the CHF condition where the film thickness is still greater than zero.

Other than avoiding CHF certain designs may increase it, allowing for higher heat

fluxes. Revellin et al. [28] applied the model of [27] to a disk-shaped heat sink of

constructal design and found the CHF to increase as the number of n0 channels

increased. Mauro et al. [29] also found the CHF to increase by utilizing a split flow

system, in which there is a single outlet and one inlet. The present study avoids

CHF by constraining the mass flow rate to greater than or equal to a critical value

derived from a modified model of Revellin et al. [28], different than the model

used to predict the two-phase heat transfer and pressure drop in the fractal-like

branching microchannels.
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3.2 Model

3.2.1 Fractal Geometry

The geometry of the fractal-like branching channels is defined solely by the disk

radius R, channel height H, terminal channel width wm, length and width ratios

γ and β, the number of branching levels m, and the number of 0th level channels

n0, all other geometric parameters are derived from these variables. Each branch

level is indexed by k, beginning with the 0th and mth level connecting the tree to

the inlet and exit plenum, respectively. The structure of the fractal-like branching

channel geometry is best illustrated in Fig. 3.1, the half tree, which has the same

increasing length ratio of 1.41 as the geometry of Fig. 1.1(b). The fixed width ratio

is

β =
wk+1

wk
(3.1)

with the fixed length ratio

γ =
Lk+1

Lk
(3.2)

The total channel length, Ltot is determined by subtracting the inlet plenum radius

from the disk radius

Ltot = R− wmn0

βm2π
= L0

m∑
k=0

γ k (3.3)
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Figure 3.2: Flow chart of the two-phase flow algorithm for solving Eqns. 3.5-3.9

The 0th level channel length can be ascertained from γ and the total channel length,

Ltot, determined from Eqn 4.3 to get an expression for L0

L0 =
Ltot∑m
k=0 γ

k
(3.4)
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3.2.2 Pressure and temperature

The pressure and temperature profiles through the fractal-like microchannels are

estimated with the two-phase flow model of Daniels [20] by solving the momentum

and energy balance equations. The boundary conditions are a fixed, uniform inlet

temperature and exit pressure as well as a uniform heat flux boundary condition

imposed on the channels walls. The inlet temperature is set at 25◦C, the exit

pressure is set at 101.3 kPa-absolute (except under the maximum wall temperature

constraint), and the disk heat flux is varied from 10 - 300 W/cm2. The channels

are made of silicon with a relatively high thermal conductivity of 130 W/m-K,

thus the channel heat flux is assumed uniform and the equal to the disk heat flux

multiplied by the disk area to channel area ratio.

The first of the two equations solved in the model is the energy balance, ex-

pressed in nodal form as

zi+1 = zi +
q′′2 (w +H) ∆x

ṁhfg
(3.5)

The pressure is then solved for with the one-dimensional two phase momentum

balance

Pi+1 = Pi −∆Pa −∆Pf (3.6)

Because the inlet temperature is in the sub-cooled liquid region, the algorithm

of Pence [4] is used to compute the single phase pressure drop and temperature

rise up to the location of incipient boiling where T ≥ Tsat. From this point, and
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onward downstream the two-phase pressure drop of Eqn. 3.6 is used to compute

The change in momentum resulting from the expansion of vapor in the channel is

characterized by the acceleration pressure drop, ∆Pa, derived in [20] and expressed

as

∆Pa = −G2

(
z2

ρvα

∣∣∣∣
i+1

− z2

ρvα

∣∣∣∣
i

+
(1− z)2

ρl (1− α)

∣∣∣∣∣
i+1

− (1− z)2

ρl (1− α)

∣∣∣∣∣
i

)
(3.7)

The frictional contribution to the two-phase pressure drop is expressed as

∆Pf =
G2

ρl2Dh

∫ i+1

i

φ2
l (1− z)λlodz (3.8)

where

φ2
l = 1 +

CLM
X

+
1

X2
(3.9)

with CLM as the phase interaction parameter and X2 as the Lockhart-Martinelli

parameter [30]. The void fraction, α, is computed from the quality, z, by using the

separated flow model of Zivi [31]. Because Eqns. 3.7 and 3.9 are dependent on z,

the energy and pressure drop equations are coupled and must be solved iteratively.

The iterative algorithm for which the temperature and pressure are solved

for is illustrated in Fig. 3.2. An initial guess of the inlet pressure, Pin, provides a

starting point for which to evaluate properties in the energy equation and compute

the pressure drop. Eqns. 3.5 and 3.6 are evaluated from the inlet plenum to the
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outlet plenum, at which point the computed exit pressure is compared to the actual

exit pressure at which point the inlet pressure guess is increased or decreased to

compensate for the computed outlet pressure being lower or higher than the actual

outlet pressure being too low or high.

3.3 Optimization

3.3.1 Objective function

The outcome of the optimization algorithm is to minimize the non-dimensional per-

formance parameter, εp, expressed as the flow power divided by the heat transfer.

The objective function is expressed mathematically as

min


1

εp
=

Q∆P

q′′π

(
R2 −

(
n0wm

2πβm

)2)
 (3.10)

The volumetric flow rate, Q, heat flux, q′′, and geometry are all specified while

the pressure drop, ∆P is predicted from the aforementioned 1-D model. These

quantities form the objective function of the optimization algorithm, where the

ratio of flow power to heat transfer is minimized.

A gradient-based numerical optimization algorithm was employed, identical

to that of [21], varying β and γ. Several starting points to the gradient-based

algorithm were considered to test the convergence to local minima, no local minima

were found, a result which will be confirmed in Section 3.3.3 was corroborated by
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Heymann et al. [21] for single-phase flow.

3.3.2 Constraints

Geometric constraints

Four fabrication constraints on the network geometry are imposed in the opti-

mization algorithm. The first is that the inlet plenum radius is restricted to less

than or equal to 10 percent of the disk radius. The parameter a represents the

ratio of inlet plenum radius to disk radius. The inlet plenum radius is determined

from its circumference, which is equal to the number of 0th level channels, n0, times

their width, w0. The value of w0 can be evaluated from

w0 =
wm
βm

(3.11)

yielding the following first geometric constraint, which constrains the inlet plenum

diameter

n0wm
βm

≤ 2πRa (3.12)

The second and third geometric constraints are both applied to the terminal chan-

nel geometry, i.e. there must be sufficient material between channels to support

bonding of a top disk to finalize the flow network. A dimensionless parameter, b,

is defined as the center-to-center spacing between the terminal (m level) channels

divided by the width of the terminal channels, wm. This parameter is allowed to

vary between a minimum value, bmin, and a maximum value, bmax. A similar spac-
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ing parameter, d, is defined for the levels k = 0 through m-1, and for the present

analysis is set equal to bmin.

To ensure that the terminal channels are adequately spaced, the circumference

of the disk divided by bmax, and by bmin, must bracket the sum of the widths of

the terminal channels as in

2πR

bmax
< 2mn0wm <

2πR

bmin
(3.13)

Eqn. 3.13 imposes two separate constraints on the terminal channel spacing at the

periphery of the disk. For the remaining branch levels, i.e. k = 0 through m-1,

a minimum center-to-center spacing of wkd is ensured between channels of width

wk, if the following equation

(
2πRβm

n0wm
− 1

)∑k
i=0 γ

i∑m
i=0 γ

i
> d (2β)k+1 − 1 (3.14)

is valid. Eqn. 3.14 represents the fourth geometric constraint, a constraint on the

internal channel spacing, which is imposed at each level k. Although ranges of m

and n0 are specified, the upper limit on m is constrained by

2m <
2πR

bminn0, minwm, min
(3.15)

as determined from Eqn. 3.13. To summarize, the following needs to be specified

by the flow network designer: (I) single values for geometry variables a, bmin, bmax,

d, H, and R, (II) ranges for geometry values m, n0, β, γ, and wm, and (III) a
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single value for q′′. Within the parametric space defined by ranges of β, γ, and

wm there may be numerous possible flow configurations. Of these, many will not

adhere to the geometric constraints imposed by Eqns. 3.12-3.15 and are considered

invalid geometries. In addition to the geometric constraints, there must be some

minimum flow rate, otherwise an optimization algorithm will yield solution with

the absolute minimum flow power, i.e. a zero mass flow solution.

Maximum wall temperature

The volumetric flow rate must be constrained in order to avoid a null solution

to the optimization problem, one way to achieve this is to set a maximum wall

temperature to anticipate a maximum junction temperature, similar to Heymann

et al. [21]. Wall temperature is inversely proportional to the volumetric flow rate,

Q, therefore a maximum wall temperature sets a minimum volumetric flow rate.

The minimum volumetric flow rate that satisfies the maximum wall temperature

cannot be found explicitly because wall temperature is an output of the 1-D model,

an iterative method is required.

A volumetric flow rate that satisfies the maximum wall temperature is found

via the bisection method since trials with the shooting method proved unstable.

Moreover, the outlet pressure was set to 6 kPa-absolute in order to effectively

lower the saturation temperature to 36◦C. While a refrigerant, such as R-134a has

a similarly low saturation temperature, water was used because of its high latent

heat; hfg, water = 2.4× 106 J/kg compared to hfg, R134a = 2.2× 105 J/kg.

A gradient-based optimization of the two-phase objective function was per-

formed subject to the geometric constraints and maximum wall temperature limit
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of 70◦C. The results from the single phase optimization of Heymann et al. [21]

and the two-phase optimization are compared in Fig. 3.3 for heat fluxes ranging

from 20 to 300 W/cm2.

The results of Fig. 3.3 indicate that even at sub-atmospheric pressures, the two-

phase heat sink does not perform better than the single phase. With the exception

of q′′ = 20 W/cm2, which resulted in single phase flow no matter what the exit

pressure, all of the two-phase flow powers are greater than the single-phase, simply

due to the increase in pressure drop for a given flow rate. Upon closer inspection

of the data, it was found that the location of the maximum wall temperature was

in the single phase region, immediately upstream of the point of incipient boiling,

meaning that for all intents and purposes the maximum wall temperature occurs

in the single-phase region, thus the volumetric flow rates will be similar. However,

the advantage of two-phase flow (lower flow rate for the same heat transfer) is not

taken advantage of because the minimum mass flow rate is set by a constraint in

the single-phase regime, up to the point of incipient boiling. The larger two-phase

pressure drop is what increases the flow power for the same heat flux and number

of k levels.

Clearly, when a maximum wall temperature constraint of 70◦C is applied to the

design, there is no justification for two-phase flow as evident from the increase in

flow power between the single-phase and two-phase devices in Fig. 3.3. However, if

wall temperatures approximately 10◦C higher than the saturation temperature are

acceptable, the volumetric flow rate of the device may be constrained differently.

Critical heat flux
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The minimum mass flow rate through the fractal-like branching channel net-

work may also be set by the critical heat flux (CHF) constraint, i.e. for a given

heat flux, the mass flow rate must be great enough as to avoid CHF. A modified

model of the CHF model first proposed by Revellin and Thome [27] is used to

estimate the mass flow rate required for the applied heat flux to be equal to 50%

of the CHF. The present algorithm differs from [27] in that no pressure drop is

computed and the model is applied to rectangular channels rather than circular
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used in the analyses of [27] and [28].

The model estimates CHF by solving the mass and energy equations describ-

ing the decay of liquid film surrounding the vapor core. Mass is transferred by

phase change from the liquid film to the vapor core and the velocities and areas of

the respective regions change along all along the length of the channel. The total

mass flow rate that results in a zero liquid film thickness at the exit of the chan-

nel is assumed to be critical heat flux. The control volumes for the CHF model

are illustrated in Fig. 3.4, the liquid film region is assumed to be a rectangular

annulus with uniform film thickness, δ, the area of the liquid region can be solely

characterized by the channel dimensions and δ as

Al = wH − (w − 2δ) (H − 2δ) (3.16)

and likewise the vapor area is expressed as

Av = (w − 2δ) (H − 2δ) (3.17)

Like the model of [27], the first is determined from the energy balance in the liquid

region. Re-writing Eqn. 3.5 in differential form results in

d (ρvAvuv)

dx
=
q′′2 (w +H)

hfg
(3.18)

Additionally, the conservation of mass at the interface between the liquid and

vapor regions results in d (ρvAvuv) = −d (ρlAlul), and yields the second equation,
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similar to [27] as

d (ρlAlul)

dx
=
−q′′2 (w +H)

hfg
(3.19)

While Revellin and Thome [27] used the pressure drop equations and Young-

Laplace equation to couple the velocity to pressure and film thickness to pressure,

respectively, the present study simply uses the conservation of mass of the entire

channel to link the film thickness and velocities. Because there is no mass source

inside the channel, the derivative of the total mass flow rate with respect to the

axial distance, x is equal to zero, i.e. dṁ/dx = 0, this is expressed explicitly in
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terms of ul, uv and δ and their derivatives as

dṁ

dx
= 0 = ρvuv

dAv
dδ

dδ

dx
+ ρvAv

duv
dx

+

ρlul
dAl
dδ

dδ

dx
+ ρlAl

dul
dx

(3.20)

The Eqns. 3.18-3.20 are linear in terms of dul/dx, duv/dx and dδ/dx and can

are solved to form three first order ordinary differential equations (ODE) to be

solved by a Runge-Kutta algorithm. The inlet conditions are δin = 0.45Dh, ul,in =

uv,in = ṁ/ρlAl,in which are the same employed by Revellin and Thome [27]. The
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relationships employed by Revellin et al. [28] at the branch levels are also used

in the present study; immediately following each bifurcation, the conservation of

void fraction and conservation of quality are used to determine the film thickness

and velocities, respectively. In order to estimate the mass flow rate at CHF, the

ODE solver is iterated using a bisection algorithm to find the mass flow rate that

satisfies δ = 0 at the exit plenum.

When the three-equation ODE model is compared to the five-equation ODE

model for a circular tube 70 mm long, 500 µm in diameter, with a mass flux of

500 kg/m2-s and R-134a as the working fluid. Figure 3.5 illustrates the estimate

liquid and vapor velocities as a function of streamwise channel distance of the

three-equation model as well as Revellin and Thome’s [27] five-equation model.

One noticeable difference is the liquid film velocity of [27] is approximately 25%

of the three-equation model, which is reasonable given the difference in film thick-

ness, illustrated in Fig. 3.6, where the liquid-vapor interface profile is plotted as a

function of streamwise channel distance.

At any point along the channel length, the film thickness of the five-equation

model is at least twice that of the three-equation model, meaning that the mass

flow rate of vapor between the three and five-equation models is not too different.

In fact, the slope of the vapor mass flow rate for the five-equation model is ap-

proximately 80% of the three-equation model, which may be attributed to differing

thermo-physical properties.

Stability

The stability criterion used in the present study is applied to the geometry of
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the fractal-like channels, thus it is solely a geometric constraint. However, it is

specifically applicable to two-phase flow and is different than the aforementioned

geometric constraints that are for either single or two-phase flow. The fractal-like

branching channel stability criterion was inspired by the work of Lee et al. [25]

where geometries of decreasing downstream flow resistance resulted in stable flow.

In the present study, a stable geometry is one in which the flow resistance of the

channel decreases as the k level increase. First, the flow resistance, <, is defined

as

< =
∆P

Q
(3.21)

is an analogous to electrical resistance, where pressure represents the potential

difference, and fluid flow, rather than electron flow is used. The flow resistance is

re-written for Poiseuille flow, fractal-like geometry assuming uniform flow division

at each bifurcation, and expressed purely in terms of the fractal-like geometric

parameters as

< =
βm−k

wmH

fReβm−k
(

wm

βm−k +H
)2
ν

(2wmH)2
ρLtotγ

k

2
∑m

k=0 γ
k

(3.22)

The constraint for the stability criterion is established by taking the derivative of

the flow resistance with respect to the k-level and setting equal to zero, i.e. ∆</∆k =

0. It is at this condition that the flow can be considered quasi-stable, that is, there

is neither an increase or decrease in flow resistance as a function of the k level.

Thus the criterion separates the regions of decreasing flow resistance and increas-
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ing flow resistance as a function of an increasing k level. An explicit form of the

stability constraint for γ in terms of β, wm, and H is

γ ≤ (β − 0.1)(
(3H+wm)
H+wm

) (3.23)

and is referred to as the analytical stability constraint. The extra buffer of 0.1

in Eqn. 3.23 is a safety factor designed to ensure stable and not quasi-stable con-

ditions for the optimized solution, furthermore, the simplification was attained

by setting k = m, resulting in the most restrictive constraint. To determine the

mathematical validity of Eqn. 3.23, the actual flow resistances were computed us-

ing Eqn. 3.22 for a discrete range of β and γ, the change in flow resistance as a

function of k level was computed and the solid line in Fig. 3.7 is referred to as the
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Table 3.1: Range of optimization variables

Min Max
β 0.5 2.0
γ 0.5 2.0

numerical stability and represent the point at which the change in flow resistances

is at or near zero. The analytical and numerical estimates for the flow stability

criterion compare well, evident in Fig. 3.7, where Eqn. 3.23 is plotted with the nu-

merical solution as a dashed line. The sawtooth pattern of the numerical solution

is a result of the finite discretization of beta and gamma of ≈ 0.05. The invalid

geometries shown in Fig. 3.7 stem from the previously discussed geometric con-

straints. The analytical solution to the stability criterion provides another simple

constraint that may be easily implemented in an optimization algorithm. Note

however, that the stability constraint has not been experimentally verified and

that the results presented in this analysis are strictly theoretical. Minimization of

the two-phase objective function (Eqn. 3.10) is achieved by the quasi-newton (a

gradient based) implementation of the Sequential Quadratic Programming algo-

rithm. Optimization was performed for discrete values of m and n0 and the range

of the variables, β, γ, and wm, are listed in Table 3.1. The remaining parameters

were set as follows: H = 150µm, R = 20mm, bmin = d = 1.5, bmax = 2.5, a = 0.1,

and q′′ = 0.5q′′CHF .
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Figure 3.8: Optimized flow power versus m for disk heat fluxes of 35−300 W/cm2,
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markers are two-phase flow networks not subjected to the stability constraint

3.3.3 Results and Discussion

Optimization with and without the stability constraint was performed over the

aforementioned range and parametrical configuration. The preliminary results flow

power results are illustrated in Fig. 3.8, results without the stability constraint are

plotted as open markers, two-phase results with a stability constraint are plotted

as open markers. The most obvious feature of Fig. 3.8 is the that an increase in

applied disk heat flux, q′′, is accompanied with an increase in the optimum flow

power, ℘. The increase in optimum flow power with increase in heat flux was

also observed by Heymann et al. [21], and was found to be a result of an increase

in mass flow rate in order to meet the maximum wall temperature constraint.

A similar effect exists in the two-phase results as well; the increase in heat flux
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results in a higher mass flow rate in order to meet the CHF constraint, simply

due to the fact that as heat flux is increased, the liquid film in the CHF model

evaporates faster, thus more mass flow is required for the same CHF condition. The

preliminary results of Fig. 3.8 also paint an account of the performance differences

between two-phase flow with and without the stability constraint in the branching

networks.

The two-phase flow networks (sans the stability constraint) consistently out-

perform the single-phase flow networks, simply due to the decrease in mass flow

rate necessary for the equivalent heat transfer. The optimum m differers between

the single and two-phase networks, but the improvement in optimum pumping

power is between 8% and 62%. However, the stability constraint attenuates the
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performance of the two-phase networks to the point that they are not competitive

with the single-phase flow networks. Figure 3.8 illustrates the inferior performance

of the two-phase networks constrained for stability according to Eqn. 3.23, the flow

power of the stability-constrained networks is, for m = 8, an order of magnitude

greater than the single-phase flow networks. It appears that there is a steep price

in the form of flow power for stable flow and the best way to conceptualize the

reason for the flow power increase is by mapping flow power as a function of β and

γ.

The parameters of wm = 100 µm, H = 150µm, and R = 20mm were used

to generate Fig. 3.9 with and q′′ = 200 W/cm2. Flow power is monotonically

proportional and inversely proportional to β and γ, respectively, thus according to

Fig. 3.9 the minimum flow power occurs for low β and high γ. Unfortunately, the

stability constraint restricts the minimum, explaining the decrease in performance

of flow networks subjected to the constraint. In summary, according to the analysis

if stability is of great concern to the designer, a single-phase flow network is one

to select in terms of performance. If the stability criterion is neglected, with the

flow rate constrained to operate the device at 50% of CHF, the two-phase flow

networks operate more efficiently than their single-phase counterparts.

The stability criterion of Eqn. 3.23 has been shown to increase the optimized

flow power in the fractal-like heat sinks, thus it is necessary to evaluate whether

or not stability is improved. The manner in which stability is assessed should be

dependent on mass flow rate since the stability criterion of Eqn. 3.23 is purely

geometric in nature, thus non-dimensional ratios of the relevant forces are used
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to assess stability in the two-phase flow networks. The three important forces

considered in this analysis are the evaporative expansion force, liquid inertia force

and the surface tension force between the liquid and vapor interface. The first

non-dimensional ratio, is the ratio of inertia to surface tension forces, commonly

known as the Weber number, We. The second non-dimensional number used to

assess the stability of the flow is the ratio of evaporative to inertial forces, used by

Kandlikar [24] and Lee et al. [25], and is referred to in the present study as F̄k and

expressed for each k level of the branching channel geometry as

F̄k =
ρl
ρg

(
n02

k

ṁ

q′′wLk2 (wk +H)

hfg

)
(3.24)

The above expression assumes that all of the wall heat flux, q′′w is absorbed in the

latent heat exchange between the liquid and vapor phases at the front of a bubble

occupying 99% of the length of the kth channel. The parameter F̄k assumes a

fixed vapor distribution within the microchannel, therefore it was not used as a

stability constraint since any a priori knowledge of the vapor distribution is not

available. In summary, the Weber number is proportional to the degree of stability,

i.e., an increase in Weber number means more stable flow conditions; conversely,

the parameter, F̄ is inversely proportional to the degree of stability – decreases in

F̄ result in a lower evaporation force relative to the inertial force resulting in more

stable flow conditions.

The maximum Weber number for all k levels of a particular branching channel

geometry is plotted as a function of m in Fig. 3.3.3 for optimized flow networks
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for R = 20mm, H = 150µm, wm = 50µm, filled markers are flow networks subject
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with and also without being subject to the stability constraint of Eqn. 3.23. Both

flow networks are shown to illustrate any possible improvement in the stability of

the flow, lower Weber numbers mean that the surface tension force pushing the

bubble upstream is greater than the inertia force pushing the bubble downstream,

thus lower Weber numbers constitute more unstable flow conditions. It should be

noted that the minimum Weber number out of each k level represents the worst-

case scenario, however the minimum Weber number does not change with the

use of the stability constraint, therefore the maximum Weber number is plotted

in Fig. 3.3.3, representing the best case scenario. Figure 3.3.3 illustrates that by

employing the stability constraint, for m > 3, the ratio of inertia to surface tension



70

forces increases, thereby stabilizing the flow. However, it should be noted that the

degree of stability should be verified experimentally, all that can be determined

from the present analysis is that stability is improved.

Additional evidence that stability is improved with the constraint of Eqn. 3.23

is evident by looking at the maximum ratio of evaporative to inertia force, F̄ for all

k levels of the optimized branching channel networks. Figure 3.3.3 illustrates the

maximum value of F̄ over all k levels of the optimized branching channel geometry

with and without being subject to the stability constraint. Unlike the maximum

Weber number, the maximum value of F̄ over all k levels represents the worst-

case scenario, i.e., the case with the greatest evaporation force forcing the bubble

upstream. The open markers in Fig. 3.3.3 indicate flow networks not subject to the

stability constraint, filled markers indicate flow networks subject to the stability

constraint. With the exception of the m = 8 and m = 9, with the inclusion of

the stability constraint, the degree of stability is improved based on the reduction

of F̄ in Fig. 3.3.3. It should be mentioned that the m = 8 and m = 9 flow

networks for q′′ = 300W/cm2 result in single-phase flow, which is why the values

for F̄ are so low, for this reason it is not a fair to make a judgement regarding

the stability of those networks. In summary, the use of the stability constraint

(expressed in Eqn. 3.23) does increase the optimum flow power by restricting the

range of optimization, seen in Fig. 3.8, however improvement in the degree of flow

stability is evident by examining the change in the non-dimensional parameters,

We and F̄ in Figs. 3.3.3 and 3.3.3.

The optimal β and γ values of the solutions found in Fig. 3.8 are plotted in
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Figure 3.11: Evaporative to inertia force ratio, F̄max, generated from the optimized
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Fig. 3.12. Values of γ are plotted on the right most axes, while values of β are

plotted on the leftmost axis of Fig. 3.12. The most obvious aspect of Fig. 3.12 is

that the optimal values of β are consistently less than one, a finding corroborated

by the flow power contours of Fig. 3.9. Furthermore, the dependence of the optimal

values of β and γ are very weak with respect to heat flux. However, the dependence

of the optimal geometric parameters of Fig. 3.12 with m is clearly evidence and is

in part due to the changing active constraints.
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3.4 Conclusions

A one-dimensional model developed and validated by Daniels [20] was used to es-

timate the flow power of a two-phase network of fractal-like branching microchan-

nels. The flow power formed an objective function to be minimized, subject to

several geometric constraints to account for fabrication and practical limitations.

Two methods were considered to constrain the mass flow rate, a maximum wall

temperature limitation and a critical heat flux constraint. In addition, the effects

of a stability constraint were examined.

First, it was found that the wall temperature constraint yielded two-phase flow

networks with inferior performance compared to single-phase networks of Heymann

et al. [21] due to the maximum wall temperature being immediately upstream of



73

the point of incipient boiling. Second, if the maximum wall temperature is not of

great concern to the design, a two-phase fractal-like flow network constrained to

50% of critical heat flux outperformed the single-phase flow networks. Third, the

performance of the two-phase flow networks was attenuated with the inclusion of

the stability constraint.

In addition to optimizing over a greater range of heat fluxes and m values, this

study may be improved by considering the cost and benefit of constraining the

device to operate at different percentages of the critical heat flux.
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Chapter 4 – Modeling a Single-Phase Fractal-like Branching

Microchannel Heat Exchanger

4.1 Introduction

Disk-shaped heat sinks with fractal-like branching microchannels were first pro-

posed by Pence [4, 5] as a means to reduce both the pressure drop and the max-

imum streamwise wall temperature difference observed in parallel microchannel

heat sinks. A fractal-like branching flow network, inspired by nature and charac-

terized by fixed length and width scale ratios between consecutive branch levels

was studied. Representative fractal-like flow networks in a disk-shaped heat sink

configuration are shown in Fig. 1.1. Flow enters the network normal to the page

at the inlet plenum located at the center of the disk and exits parallel to the page

at the periphery. Each channel emanating from the inlet plenum bifurcates into

two narrower channels, each of which in turn bifurcates. This repetitive pattern is

considered fractal-like because the ratio of the channel widths and channel lengths

between the consecutive branch levels are fixed. The heat transfer coefficient is en-

hanced downstream of each bifurcation as the thermal boundary layer redevelops at

the newly formed walls and the hydraulic diameter decreases. A three-dimensional

computational fluid dynamic (3-D CFD) model employed by Alharbi et al. [2] con-

firmed the boundary layer redevelopment and validated the fractal-like branching
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channel model of Pence [5]. The fractal-like heat exchanger makes use of two disks

of identical branching channels configuration, for example in Fig. 1.1(a), with a

thin interface separating the two fluid streams. For the present analysis, heat is

transferred between a hot stream of Paratherm NF to a cold, single-phase stream

of water.

The goal of the present study is to develop a reasonably accurate and efficient

one-dimensional (1-D) model for estimating the heat transfer and hydrodynamic

characteristics of a fractal-like branching microchannel heat exchanger. Reason-

able accuracy is needed for comparing one design with another and an efficient

algorithm is necessary to analyze a significant number of configurations within a

reasonable time. A balance between accuracy and efficiency is beneficial for itera-

tive optimization techniques such as gradient based searches or genetic algorithms.

In the present study, the performance of the heat exchanger is characterized

by the ratio of heat transfer, q, over the flow power, Q∆P . Others have sought

an optimized design by minimizing the entropy generation rate [32–34] as well as

minimizing the size [35].

Heat exchangers using flow networks characterized as constructal have been

studied using 1-D analyses in order to minimize the total flow and thermal re-

sistances. Bejan [36] sought to minimize the bulk fluid temperature drop and

thermal resistance by employing channels with short flow lengths to restrict flow

to the developing region. da Silva et al. [37] sought to minimize the thermal and

hydrodynamic resistances of counter-flow heat exchangers. In the same fashion as

da Silva et al. [37], Zimparov et al. [38] minimized the thermal and hydrodynamic
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resistances in a co-flow heat exchanger for three different network designs.

While there is little debate regarding the computational efficiency of 1-D mod-

els, Chong et al. [39] addressed their accuracy by comparing results from a simpli-

fied 1-D resistance model of heat transfer through a double layer heat sink with

results from 3-D CFD simulations. The flow network consisted of an array of par-

allel channels. The 1-D model incorporated developing flow correlations from Shah

and London [7] and a fin efficiency from Incropera and DeWitt [40] to account for

thermal resistance in the walls of the heat sink. Results from the 1-D model with

fin efficiency included compared well with the 3-D CFD simulations.

A detailed account of conduction in heat exchangers is provided by Shah and

Sekulic̀ [41]. It was concluded that conduction in the fins (sidewalls) and stream-

wise conduction in the interface material between the two streams may significantly

affect the predictive capabilities of a 1-D model.

4.2 Model

4.2.1 Fractal Geometry

For the present study, the geometry of the fractal-like branching channels is defined

solely by the disk radius, R, channel height, H, terminal channel width, wm, length

ratio, γ, and width ratio, β, the number of branching levels, m, and the number

of 0th level channels, n0. The value of n0 can be thought of as the number of

fractal-like trees in a disk. All other geometric parameters are derived from these
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Figure 4.1: Illustration of a fractal-like branching channel tree

variables. Evident from Figs. 1.1(a) and 1.1(b) is that n0 = 16. Each branch level,

identified on the half fractal-like tree shown in Fig. 4.1, is indexed by k, with the

0th level and mth level connecting the tree to the inlet plenum and exit plenum,

respectively. The width ratio is defined by

β =
wk+1

wk
(4.1)

with the length ratio defined by

γ =
Lk+1

Lk
(4.2)
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The total channel length, Ltot, is the sum of the consecutive branch lengths and

can be determined by subtracting the inlet plenum radius from the disk radius

Ltot = R− wmn0

βm2π
(4.3)

The length of the 0th level channel can be ascertained from γ and the total channel

length, Ltot, using

L0 =
Ltot∑m
k=0 γ

k
(4.4)

from which the consecutive channel lengths can be determined using Eqn. 4.2.

4.2.2 Pressure Drop

Because the momentum equation is not coupled between the hot and cold sides of

the heat exchanger, the pressure drop through each side of the branching channel

heat exchanger is determined in the same fashion as described by Pence [5]. In

the 1-D model the entire path length, from the inlet plenum to the exit plenum is

divided into discrete lengths, ∆x. The outlet pressure is specified and the pressure

distribution is computed using the 1-D pressure equation

pi = pi+1 +
1

2
ρu2mCf,app

4∆x

Dh

(4.5)

given by White [6], where the Cf,app factor accounts for the increased pressure

drop in the hydrodynamically developing region. The solution to the pressure
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Figure 4.2: Representative control volumes for the energy balance

distribution is computed with little computational effort because Eqn. 4.5 is simply

a backward substitution.

4.2.3 Energy Balance

In Pence [5], the walls of the fractal-like network were subjected to a uniform heat

flux. With temperature specified at the inlet, the energy equation was easily com-

puted with forward substitution. However, the heat exchanger model, a conjugate

problem because the hot and cold stream energy balances are coupled with the

material interface, requires a different approach to solving the energy balance. El-
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emental control volumes for the hot and cold fluids and for the solid interface are

illustrated in Fig. 4.2. Conduction in two directions (x and y) is included in the

energy balance of the solid control volumes. Fluxes at the faces of the fluid control

volumes include advection and conduction. To maintain the one-dimensionality

of the model, the y-component of the energy transport is quantified by a sum of

thermal resistances. For example the sum of the resistances,
∑
R accompanying

a ∆T = (Tw − Tc) is defined by

∑
Rc =

t

2kmatwk∆x
+

1

2hcηfin,c (wk +H) ∆x
(4.6)

The first term in Eqn. 4.6 represents the resistance due to conduction through 1/2

of the material interface. The second term in Eqn. 4.6 is convective resistance,

the total of which is illustrated in the “Front View” of Fig. 4.2 where the sum

of the resistances in between Tc and Ts is ΣRc and equivalently, the sum of the

thermal resistances in between Th and Ts is ΣRh, eliminating the need to solve

a discretized energy balance in the y-direction. The thermal resistance through

the side walls of the interface material is addressed with the fin efficiency in a

subsequent sub-section.

The longitudinal thermal resistance through the interface material is a result

of the material type, cross-sectional area, Ac and total conduction length, L. To

determine if the longitudinal conduction is significant compared to the change in
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enthalpy of the fluid, Shah and Sekulić [41] give the non dimensional parameter,

λ =
kmatAc

L (ṁCp)min
(4.7)

which gives the ratio of the interface conduction to stream convection for a given

temperature drop in the counterflow-configuration. The conductive interface ma-

terial of the present study is disk-shaped, thus λ must be modified to λ′, given

as

λ′ =
2πkmatt

ln
(

2πRβm

n0wm

)
(ṁCp)min

(4.8)

For λ′, values of O (1) or greater, the longitudinal interface conduction is not neg-

ligible. For a fractal-like disk with a water flow rate of 10 g/min, a disk radius of

20mm, thickness of 500 µm, λ′, is approximately 0.2 and 6 for stainless steel and

copper interfaces, respectively. Since the aforementioned conditions and geome-

tries are typical for this type of device, the longitudinal conduction should not be

neglected in the counter-flow configuration.

By summing the fluxes around the control volumes in each region and collecting

terms, expressions for the control volume temperature in terms of the neighboring

temperatures are obtained. The cold stream energy balance becomes

0 = Tc,i−1

(
ṁc,kCp,c +

kf,cwkH

∆x

)
+ Tc,i

(
−ṁc,kCp,c −

2kf,cwkH

∆x
− 1∑

Rc,i

)
(4.9)

+ Tc,i+1

(
kf,cwkH

∆x

)
+ Ts,i

(
1∑
Rc,i

)
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With the solid interface energy balance being

0 = Ts,i−1

(
ksAxs,i−1/2

∆x

)
+ Ts,i

(
−ks

(
Axs,i−1/2 + Axs,i+1/2

)
− 1∑

Rc,i

− 1∑
Rh,i

)
(4.10)

+ Ts,i+1

(
ksAxs,i+1/2

∆x

)
+ Tc,i

(
1∑
Rc,i

)
+ Th,i

(
1∑
Rh,i

)

The area of the solid interface changes as a function of the radial distance from

the inlet of the 0th level channel, x and determined from

As,i =

(
n0wm
2πβm

+ xi

)
2πH (4.11)

The hot stream energy balance is expressed in a form similar to that of the cold

stream

0 = Th,i−1

(
ṁh,kCp,h +

kf,hwkH

∆x

)
+ Th,i

(
−ṁh,kCp,h −

2kf,hwkH

∆x
− 1

Rh,i

)
+ Th,i+1

(
kf,hwkH

∆x

)
+ Ts,i

(
1

Rh,i

)
(4.12)

In order to maintain numerical stability when solving the system of equations,

the advection fluxes are approximated using the upwind differencing scheme. Ad-

vection heat transfer leaving the control volume is approximated at Th,i and the

advection entering the control volume is approximated at Th,i−1. The temperatures
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utilized in Eqn. 4.12 for the advection terms need only to be changed when the flow

changes direction, i.e. in a counter flow heat exchanger. The Th,i−1 temperature

would no longer have a ṁCp term, instead the flow is moving from right to left in

the hot stream of Fig. 4.2, therefore the upstream temperature is now at the i+ 1

index. Concerning boundary conditions, the conduction fluxes at the boundaries

were estimated by assuming a piecewise linear temperature distribution between

the temperature nodes. The boundary conditions of the 1-D model were chosen for

convenience and to mimic the conditions a designer would face; a known uniform

inlet temperature distributions as well as zero conduction at the inlet and outlet

of the device.

All thermo-physical properties are set constant With the inclusion of the lon-

gitudinal conduction term and stream coupling terms, the coefficient matrix for

temperature is no longer strictly lower triangular; it becomes a banded matrix and

cannot be solved for with forward substitution, instead the native banded matrix

solver in MATLAB is used.

4.2.4 Nusselt Number Determination

One of the important aspects of the branching channel geometry is the re-development

of the thermal and hydrodynamic boundary layers following each bifurcation. For

a uniform heat flux boundary condition, the heat transfer coefficient can be deter-

mined from the non-dimensional Nusselt number, Nu from Shah and London’s [7]

correlation for simultanuously developing thermal and hydrodynamic boundary
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Figure 4.3: Example of temperature distribution obtained from the 3-D CFD model

layers. As mentioned previously, under only special circumstances is a uniform

heat flux or uniform boundary condition present at the walls of the heat exchanger.

Therefore, the convenient Nusselt number correlation of Shah and London [7]

should not be employed without first verifying the validity under the boundary

conditions of the heat exchanger.

To determine the Nusselt number as a function of the inverse Graetz number,

x∗, a the fluid flow and heat transfer of a simple two-stream heat exchanger was
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modeled in three dimensions using the commercial CFD package, StarCCM+. An

illustration of the mesh, geometry and temperature distributions from the solver

is illustrated in Fig. 4.3. Two different interface materials, copper and stainless

steel were used to characterize the importance of conduction through the fins (i.e.,

walls) of the microchannel heat exchanger. Four flow rates between 0.24-2.37 m/s

were chosen to ensure that less than 50% of the channel occupied the developing

flow regime, defined by

x∗ = Gz−1 =
x

DhRePr
< 0.001 (4.13)

The remaining geometrical parameters are; the height, H was 250 µm, and inter-

face thickness was 150 µm. The fin thickness was chosen to be 1/2 of the channel

width, W = 250 µm. Other widths were used to ascertain the effects of changing

aspect ratio, however the change in the solution was negligible compared to the

spread of the data. A 50 µm grid size was used and found to yield a grid-refined

solution. A symmetry boundary condition was applied at the mid-plane of the

channel to reduce the number of control volumes by one-half. Both a uniform

temperature and velocity inlet boundary condition was enforced at the channel

entrances, with a zero-diffusion, constant pressure outlet condition was applied to

both the hot and cold streams. The time to solve a single case with approximately

10,000 control volumes was approximately 15 minutes running StarCCM+ on a

desktop computer, utilizing all four cores of an Intel vPro processor with 4GB of

RAM. The heat transfer coefficient can be determined from the temperature and
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velocity data obtained from the CFD analysis by

h (x) =
q′′ (x)

Tw (x)− Tb (x)
(4.14)

Where the heat flux at the boundary, q′′x and the wall temperature, Tw,x are readily

known quantities, averaged over the circumference of the channel wall. The bulk

fluid temperature, essentially a mass-flow weighted average temperature, Tb,x is

estimated from

Tb (x) =

∫
y,z
T (x, y, z) ṁ (x, y, z)∫

y,z
ṁ (x, y, z)

≈ 1

ṁtot

∑
y,z

T (x, y, z) ṁ (x, y, z) (4.15)

The Nusselt number is computed using the hydraulic diameter, Dh of the channel,

and the thermal conductivity, kf of the fluid for both hot and cold streams of the

heat exchanger. The results are presented for both stainless steel and copper

interface materials in Fig. 4.4.

The most obvious feature of Fig. 4.4 is the difference in Nusselt numbers be-

tween the stainless steel and copper interface materials. The deviation comes from

the manner in which the heat transfer coefficient is determined in Eqn. 4.14, as-

suming that the wall temperature and heat flux are uniform around the periphery

of the channel. To mitigate this, an expression accounting for the non-uniformity

of the temperature distribution through the walls, i.e., fins of the heat exchanger

may be employed. This is known as the fin efficiency, η.
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dashed line (- -) is the least squares fit

4.2.5 Fin Efficiency

The fin efficiency can be found in [40], and since the outer boundary of the wall

is insulated the adiabatic tip boundary condition is used. In order to compare the

temperature distributions between the CFD data and the analytic solution, the

relation

θ

θy=0

=
cosh

(√
h

kmatt
(H − y)

)
cosh

(√
h

kmatt
H
) (4.16)
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Figure 4.5: Comparison of analytical [40] and 3-D CFD model of fin temperature
distributions through both copper and stainless steel

is used. Where, θ is the temperature difference, Tw,x,y − Tb,x between the wall

and the bulk fluid. The analytical function and CFD data for the temperature

distribution ratio, θ/θy=0 in the fin at x = 500µm for copper and stainless material

is illustrated in Fig. 4.5. Both distributions of the CFD data agree well enough

with the analytic solution to warrant employing the fin efficiency, described by the

temperature distribution in the analysis.

The previous estimation of the heat transfer coefficient was ineffective, as it did

not provide a result independent of material type. By including the fin efficiency

in the analysis of the CFD data, the effects of the non-uniform temperature dis-
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tribution due to conduction in the walls should be mitigated to provide a Nusselt

number independent of material. The fin efficiency for the adiabatic tip boundary

condition is

η =
tanh

√
h

kmatt
H√

h
kmatt

H
=

q′′

hθb
(4.17)

The true heat transfer coefficient is buried on the right hand side and in the

hyperbolic tangents of Eqn. 4.17, it is therefore necessary to solve the non-linear

equation in a numeric solver. This was done and the results are presented in

Fig. 4.6. Notice that for η = 1 Eqn. 4.17 reduces to Eqn. 4.14, thus it should

not be surprising that for copper with a high thermal conductivity there is less

change between the Nusselt number distributions of Figs. 4.4 & 4.6. There is now

little difference between the Nusselt numbers of the stainless steel and copper CFD

datas, thus the independence is achieved through accounting for the fin efficiency

when estimating the heat transfer coefficient. By including the fin efficiency in the

model, results change by approximately 10% in a stainless steel fractal-like heat

exchanger. The Nusselt number correlations in Figs. 4.4 and 4.6 were determined

by the non-linear least squares fit of

Nu (x∗) = C1x
∗C2 (4.18)

to the data. The sensitivity of the coefficients in Fig. 4.6 to the number of signif-

icant digits was found to be small for the C1 coefficient, but larger for for the C2

coefficient. For example, rounding C1 to 0.50 and C2 to 0.56 resulted in ≈ 1 %



90

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
0

10
1

10
2

10
3

10
4

x*

N
u

Nu = 0.494x*−0.562

RMS error of fit = 5.956
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change in the correlation of Eqn. 4.18. The improvement in agreement between

the copper and stainless steel CFD data after accounting for fin efficiency is some-

what devalued by the increase root-mean-squared (RMS) error of the fit between

Figs. 4.4 and 4.6. However, the C2 coefficient in Fig. 4.6 of -0.56 agrees with the

h ∝ u
1/2
m , with x∗ ∝ 1/um dependance given by Shah and Sukulić [41]. Fig. 4.7

compares the correlation of the present study with the correlation given by Shah

and London [7], which takes the form

Nu =
1

a0 [1− exp (−a1x∗a2)]
(4.19)
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Figure 4.7: Nusselt number correlations from Shah and London [7] and present
study from Eqn. 4.18 with C1 = 0.50 and C2 = 0.56 as a function of x∗

for simultaneous thermal and hydrodynamic boundary layer redevelopment under

a uniform heat flux boundary condition. The coefficients, a0−2 are tabulated as a

function of channel aspect ratio. The characteristic slopes of the two correlations

are nearly identical, what separates them is the constant term for which x∗ is

multiplied by. However, it is clear that when comparing the difference in between

the two correlations that there is little difference between the correlations compared

to the magnitude of the error, especially at low values of x∗. For example the

RMS error between the correlation of Shah and London [7] and the CFD data

is approximately 3.7%. Moreover, the skill of the fit (commonly referred to as
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the coefficient of determination, or R2 value) in Fig. 4.6 is approximately 0.64,

compared to the skill of the Shah and London [7] correlation to the CFD data of

0.63 illustrates that the fit of the data is not any more statistically significant than

the [7] correlation. Although there was no significant improvement to the Nusselt

number correlation studied in a heat exchanger, this does not mean that the CFD

analysis was performed in vain, it illuminated the need for a fin efficiency. The

Nusselt number correlation provided by Shah and London [7] will be used in the

1-D model because the dependency of aspect ratio is well defined.

4.3 Results

The bulk of the present study is the development and validation of the fractal-

like branching channel heat exchanger model. Some preliminary comparisons of

different fractal and parallel channel geometries are presented in this section to

illuminate the need for further study and optimization of the fractal geometries.

4.3.1 Algorithm validation

A comparison of the ε-NTU model results to the analytical solutions of [40] was

performed to determine if the algorithm is consistently solving the energy equation.

The co and counter flow ε-NTU relationships given by

ε =
q

(ṁCp)min (Th,i − Tc,i)
=

1− exp [−NTU (1 + C∗)]

1 + C∗
(4.20)
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and

ε =
1− exp [−NTU (1− C∗)]

1− C∗exp [−NTU (1− C∗)] (4.21)

respectively for a concentric tube are appropriate for the present model, despite

the complex fractal geometries, because at each discrete control volume, there is

one pass of two fluids flowing in either co or counterflow configurations. Fig. 4.8

illustrates that the algorithm solves the energy equation in a manner consistent

with the ε-NTU method and compares two fractal-like heat exchangers with an

array of straight parallel channels, which will be discussed in a later subsection.
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To test the dependence of the solution to the grid size, three grid sizes, ∆x =

1 mm, 100 µm and 10 µm. A grid sizes of 1 µm resulted in a domain with 18,000

elemental volumes, which exceeded the memory limit of the desktop computer.

The axial temperature profiles are illustrated in Fig. 4.9. The solution time in the

legend of Fig. 4.9 is the time it takes to construct and solve the coefficient matrix

for both pressure and temperature. Between the grid sizes of 1 mm and 100 µm,

the solution time increases by a factor of 2, but the temperature between the two

solutions changes by approximately 10 ◦C. As the grid becomes even more refined,

between the grid sizes of 100 µm and 10 µm, the solution time increases by a factor

of 325, but the temperature between the two solutions changes by approximately

1 ◦C. The 100 µm grid size offers a compromise between grid independence and

computational time in order to keep the algorithm as efficient as possible.

4.3.2 Experimental validation

The results of the 1-D model were compared with experimental data obtained

by Stull and Sabo [42] in a stainless steel fractal-like branching channel heat ex-

changer. The fractal geometry of the heat exchanger is similar to that of Fig.

1.1(b), with γ = 1.41, β = 0.707, wm = 93 µm, H = 250 µm and t = 717 µm. The

cold side fluid is distilled, deionized water, and the hot side fluid is Paratherm NF

heat transfer fluid. The heat exchanger was operated in the co-flow configuration

with a cold side mass flow rate of 60 g/min while varying the hot side flow rate

from 200-400 g/min. Fig. 4.10 provides an exploded view of the test device, man-
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Figure 4.9: Bulk fluid and interface temperature profiles as a function of axial
distance and grid size obtained from the 1-D model, the three sets of datas corre-
spond to the hot bulk fluid temperature, interface temperature and cold bulk fluid
temperature

ifold and measurement locations The inlet temperature of the hot side was set at

115 ◦C, and datas for three cold side inlet temperatures of 25, 40, and 60 ◦C were

gathered.

Fig. 4.11 illustrates the comparison of the experimental ∆Tlm with the ∆Tlm

computed from results obtained from the 1-D model under the same operating

conditions. There is a negligible dependency of ∆Tlm to the hot side mass flow

rate observed by Stull and Sabo [42], therefore the datas for each inlet tempera-

ture are clustered together, illustrated in Fig. 4.11. The highest cluster of ∆Tlm
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Figure 4.10: Illustration of the testing apparatus used to experimentally test the
fractal-like branching channel heat exchanger [42], geometry is outlined in Table
4.1

corresponds to the lowest cold side inlet temperature and monotonically decreases

as the inlet temperature increases, simply due to the fact that a higher cold side

inlet temperature means a lower potential temperature difference. This relation-

ship aside, the model predictions of ∆Tlm agree with the experimental data to

an average deviation of 12%. The experimental uncertainty, determined from the

Kline and McClintock method [43] is approximately 5◦C, illustrated in Fig. 4.11

as an error bar. Moreover, the average error of the data around this deviation is

approximately 1.1◦C, pointing to the possibility that there may be some physi-

cal significance to the disagreement, since the numerical predictions of ∆Tlm are

consistently higher than the experimental data. Further experimental study is

warranted to ascertain the reason for the discrepancy.
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Figure 4.11: Experimental versus 1-D Numerical Model ∆Tlm for ṁc = 60 g/min,
ṁh = 200, 300 and 400 g/min and three cold side inlet temperatures from [42]

4.3.3 Heat exchanger performance

Three geometries, two fractal-like (m = 4) and one array of straight parallel chan-

nels (m = 0) were considered for the following analyses, their geometric parameters

are outlined in Table 4.1. The the three geometries were given the same global

dimensions and subject to the same total mass flow rate and inlet temperatures in

order to make a fair comparison of their performance. The overall size of the heat

exchanger was made so that the planform extrema occupied the same space. For

example, since the fractal-like heat exchangers are disk shaped, the total planform

area taken up by the disk is a square of dimensions 2R × 2R, thus the array of
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Table 4.1: Geometric parameters of the three heat exchanger geometries with
H = 250 µm, t = 717 µm and R = 20 mm

n0 m wm(µm) β γ
Fractal 1 16 4 100 0.707 1.41
Fractal 2 79 4 50 0.750 1.18
Straight Channels 400 0 50 - -

straight parallel microchannels may also take up the dimension 2R × 2R, which

gives an advantage to the array of straight channels in that the channels occupy

the the entire area defined by the extrema.

The first fractal geometry in Table 4.1 (Fractal 1) is an equivalent of the test

device fabricated and tested under adiabatic and diabatic boiling conditions in

several studies [23, 44, 45]. It is included for comparison to an existing device and

was also used by Stull and Sabo [42]. The second fractal geometry (fractal 2) was

chosen as a result of the optimized single-phase microscale fractal-like branching

channel heat sink geometry determined by Heymann et al. [21]. The third and final

geometry is an array of straight, parallel microchannels given the same terminal

channel width of 50 µm which is what allows 400 channels to be packed into the

area 2R×2R = 40mm×40mm. All geometries have a channel heigh, H = 250 µm

and interface thickness, t = 717 µm.

Inlet temperatures of 20 ◦C and 150 ◦C were set for cold and hot sides, respec-

tively. A channel height, H of 250 µm and interface thickness, t of 717 µm, finally

the mass flow rates of the hot and cold sides were varied from 10 to 130 g/min.

The heat transfer, q versus log-mean temperature difference (∆Tlm) for all three
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Figure 4.12: Heat transfer vs. log-mean temperature difference for C∗ = 0.019, and
ṁc = 10 − 130 g/min obtained from the 1-D model, solid line (–) corresponds to
co-flow, dashed line (- -) corresponds to counter flow

devices is illustrated in Fig. 4.12, while the performance parameter, εp, defined as

εp =
q

Qh∆Ph +Qc∆Pc
(4.22)

versus hot side and cold side mass flow rates is presented in Fig. 4.13.

The improvement in heat transfer performance between the fractal geometries

and straight channels is not unexpected since the fractal geometry takes advantage

of the the boundary layer redevelopment following each bifurcation, thus the heat

transfer coefficient is higher and UA increases. The aforementioned flow conditions
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of Fig. 4.12 are identical to that of Fig. 4.13. In order to draw a parallel between the

two figures, it is helpful to note the increase in C∗, the ratio of heat capacity rates,

accompanies an decrease in effectiveness and therefore a decrease in heat transfer.

Thus, as C∗ increases UA decreases, since UA is proportional to q and inversely

proportional to ∆Tlm and the concavity of the curves in Fig. 4.12 is positive, hence

q decreases at a rate higher than ∆Tlm decreases. With the UA dependency on

q and ∆Tlm in mind Fig. 4.12 illustrates the monotonic increase of UA from the

straight channel geometry, to Fractal 1, up to the optimized heat sink geometry,

Fractal 2. These effects are also mirrored in the ε−NTU curves of Fig. 4.8 where,

for the same range of mass flow rates and value of C∗, the optimized design of

Fractal 2 outperforms the other two. However, this relationship changes when the

non-dimensional ratio of benefit to cost, εp is examined.

While the Fractal 2 geometry (optimized for the case of a heat sink in [21]) does

result in higher heat transfer for a given mass flow rate, the overall flow power of

the Fractal 2 geometry is higher compared to Fractal 1, evident by the difference in

εp in Fig. 4.13. Higher flow power relative to the amount of heat that is transferred

from the hot to the cold stream results in a lower εp. The geometry of Fractal 2

was generated for a heat sink a mass flow rate of ≈ 600 g/min and heat transfer

of ≈ 6 kW subject to a maximum wall temperature constraint. The maximum

wall temperature constraint of [21] requires that the mass flow rate increases as

the heat flux increases. The lower performance of Fractal 2 compared to Fractal

1, evident in Fig. 4.13 and the incongruence of thermal constraints illustrates the

need to optimize the heat exchanger geometry, since it is not subject to a maximum
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Figure 4.13: Performance parameter εp, versus mass flow rates of the hot and
cold side of the heat exchanger obtained from the 1-D model for C∗ = 0.17, and
ṁc = 10 − 130 g/min obtained from the 1-D model, solid line (–) corresponds to
co-flow, dashed line (- -) corresponds to counter flow

wall temperature constraint, but may be subject to a fixed outlet temperature

constraint.

4.3.4 Parametric variations subject to constrained mass flow rates

While it may be useful to maximize the heat transfer of a heat exchanger without

regard to any constraints on the flow, such as the analysis of section 4.3.3, many

applications require fixed cold side mass flow rates and temperature drops. For
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Table 4.2: Parameters of the cost benefit analysis of Section 4.3.4
Parameter Value Unit
ṁc 1, 10, 100, 250, 500 g/min
∆Tc 10, 20, 30, 50, 60 ◦C
R 10-80 (20) mm
wm 50-150 (50) µm
error 10−3 ◦C

example, say a manufacturing process needed to heat water from 25◦C up to a

desired cold side exit temperature, Tc,e,set of 65◦C at 10 g/min, if the hot side

inlet temperature is 150◦C, there is a unique hot side mass flow rate for a given

geometry which satisfies those requirements. A least-squares search was employed

to find the unique ṁh that satisfies

|Tc,e (ṁh)− Tc,e,set| ≤ error (4.23)

Where error is the minimum acceptable absolute difference between the desired

cold side exit temperature, Tc,e,set and the actual computed cold side exit temper-

ature, Tc,e. The value error was set at 10−3 ◦C.

The aforementioned search for an ṁh that satisfies Eqn. 4.23 was performed

under the conditions listed in Table 4.2. The parameters, ṁc and ∆Tc were varied

under every possible combination with respect to each other. Conversely, wm was

varied in increments of 10 µm with respect to a constant disk radius, R = 20mm

and vice versa, with R varied in increments of 10 mm while wm = 50µm.

Two geometries were employed in the study, one array of straight channels, one
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square array of straight channels, and one fractal-like disk with the same geometric

parameters listed in Table 4.1 for the “Straight Channel” and “Fractal 2” geome-

tries, respectively. The purpose is to demonstrate any possible improvements in

heat exchanger performance by utilizing the branching channels networks, opposed

to an array of straight channels. In order to make a fair comparison of the perfor-

mance between the two geometries, identical geometric extrema were given to the

total size of each heat exchanger. For example, a fractal-like disk has a radius of

R, thus the array of straight channels are packed into a square heat exchanger of

dimensions 2R × 2R. This gives the array of straight channels the advantage of

having a total planform area being 4/π times larger than the fractal-like disk.

Because the variation of the terminal channel width, wm, and the disk radius,

R, change the number of channels that may be packed into a fractal disk or array of

straight channels, constraints were employed to increase the number of n0 channels

accordingly. The first constraint sets the number of n0 channels according to the

how the terminal channel width changes and is expressed as

n0,adj =

⌊(
n0wm
wm,adj

)⌋
(4.24)

Where the bxc denotes the floor of the x, i.e. round x to the nearest integer

towards negative infinity, while the adj subscript denotes the variable that is ad-

justed from it’s original baseline value in Table 4.1. Using these similar rules, the
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adjusted n0 value as R is changed may be formulated as

n0,adj =

⌊(
n0Radj

R

)⌋
(4.25)

From the expressions in Eqns. 4.24 and 4.25, it is clear how as wm decreases, and

conversely as R increases, the packing of n0 channels, or trees increases, the effects

of which are illustrated and discussed in detail in Section 4.3.4.1. The remaining

parameters were kept constant throughout the parametric analysis, a hot side inlet

temperature, Th,i = 150◦C, a cold side inlet temperature, Tc,i = 25◦C, an interface

thickness, t = 717 µm and channel height, H = 250 µm. The complete results

from the parametric study are found in Appendix B, a small sub-sample of the

results are presented in Sections 4.3.4.1 - 4.3.4.3 in order to highlight the salient

findings of the parametric study.

4.3.4.1 Fractal versus Straight Channel Performance

The differences in performance between the Fractal 2 and Straight Channel ge-

ometries of Table 4.1 are illustrated in Figs. 4.14-4.18 as a function of cold side

mass flow rate for both the counter and co-flow arrangements. What is clear in

the figures, is that the fractal-like channels consistently outperform the straight

channels in terms of εp (see Fig. 4.14) and ε (see Fig. 4.18) for a given cold side

mass flow rate and temperature drop. Before further analysis is presented, it is

important to call attention to the differences between the performance parameters,
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Figure 4.14: Benefit to cost ratio, εp versus cold side mass flow rate ṁc for the
Fractal 2 and Straight Channel geometries, with ∆Tc = 20◦C, R = 20mm and
wm = 50µm

εp and ε.

The unique nature of the present analysis is that the fixed cold side mass flow

rate and temperature drop yield a fixed heat exchanger heat transfer, thus εp (see

Eqn. 4.22) is only a function of the combined flow power of the hot and cold sides.

Conversely, ε (see Eqn. 4.20) is only a function of the minimum heat capacity rate,

Cmin = (ṁCp)min, because the heat transfer, q and (Thi − Tci) are fixed.

The most universal trend of Figs. 4.14 and 4.18 is that both εp and ε are

inversely proportional to the cold side mass flow rate, ṁc. This is simply due

to the fact that as ṁc, ṁh must increase accordingly to meet the heat transfer
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ṁc (g/min)

 

 
Fractal-like Co-Flow

Straight Co-Flow

Fractal-like Counter-Flow

Straight Counter-Flow

Figure 4.15: Heat exchanger hot side mass flow rate, ṁh versus cold side mass
flow rate ṁc for the Fractal 2 and Straight Channel geometries, with ∆Tc = 20◦C,
R = 20mm and wm = 50µm

requirement. Higher mass flow rates mean higher flow power, reducing εp, and

correspondingly, (ṁCp)min increases, decreasing ε, see Eqns. 4.22 and 4.26. Im-

provements in εp by utilizing the fractal-like channels, compared to the array of

straight channels are realized by the increase in cross-sectional flow area as each

channel bifurcates, reducing the flow velocity and thereby reducing the pressure

drop, as was reported by Pence [5]. In addition, lower hot side mass flow rates

are achieved in fractal-like branching channel networks because of the greater than

two fold increase in UA found in fractal-like geometries that make use of the re-

development of the thermal boundary layers. A device with an increased UA does
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Figure 4.16: Heat exchanger UA versus cold side mass flow rate ṁc for the Fractal
2 and Straight Channel geometries, with ∆Tc = 20◦C, R = 20mm and wm = 50µm

not need as high of a hot side mass flow rate to achieve the same heat transfer.

Fig. 4.15 illustrates the differences in ṁh between the fractal and straight channel

geometries for both counter and co-flow. Note that the hot side mass flow rate in

the fractal geometry is consistently lower only in the parallel flow configuration. In

the counter-flow configuration, for ṁc ≤ 150g/min the decrease in pressure drop

is primarily what improves the εp performance of the fractal geometry. Further-

more, the higher ṁh in the counter-flow fractal networks, compared to the straight

channels at ṁc ≤ 150g/min is explained by the sudden decrease in UA (as seen

in Fig. 4.16) as the cold side mass flow rate decreases below 150 g/min. How-

ever, overall the fractal-like branching channel networks outperform the straight
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channels, simply because straight channels of uniform cross-sectional area do not

have the advantage of a decreasing flow velocity while simultaneously increasing

the convective area. In addition, the UA of the straight channels is much lower

than that of the fractal-like channels, evidenced in Fig. 4.16, simply because there

is only one thermally developing region in a straight, non-branching channel.

The last thing to take note of in Fig. 4.16 is the difference in UA between the

counter and co-flow configurations of both the fractal-like and straight channel

geometries. The fractal-like counter-flow UA values are consistently higher than

their co-flow counterparts, however, the opposite is true for the straight geome-

tries, the result is a higher straight channel co-flow ε than counter-flow for the

same mass flow rate. For both fractal geometries in Fig. 4.18, as expected, the

counter-flow configuration results in higher heat transfers for a given ṁc compared

to the parallel-flow configuration, indicative of higher UA values in the counter-flow

case, confirmed in Fig.. 4.16. However the opposite is true for the straight channel

geometry, the parallel-flow configuration outperforms the counter-flow configura-

tion, evidence of higher UA values in the parallel-flow case compared with the

counter-flow arrangement for identical mass flow rates, channel geometry and inlet

temperatures. Because the algorithm performs in accordance with the expecta-

tions of Eqns. 4.20 and 4.21, evidenced in Fig. 4.8, any computational error can

be ruled out. The incongruous relationship between parallel and counter flow in

straight channels may be made more clear by looking at the relationship between

ε and UA, given as

ε ∝ UA

Cmin
(4.26)
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Figure 4.17: Overall heat transfer coefficient per unit area (U) versus axial distance
of the straight channel geometry for C∗ = 0.17, Th,in = 150◦C and Tc,in = 25◦C

where Cmin = (ṁCp)min. Figs. 4.15 and 4.16 illustrate that, for a fixed cold side

mass flow rate, that an increase in UA results in a decrease in ṁh, which results in

a higher ε because, for these cases, Cmin = (ṁCp)h. Under thermally developing

flow conditions, the U value at any x location is dependent on both the hot and

cold heat transfer coefficients, i.e. thermal resistances, R. The value of UA in

Eqn. 4.26 is diminished with one high value of thermal resistance on either the

hot or cold side. This is evidenced in Fig. 4.17, where in the counterflow case,

the developing regions are at opposing ends of the channel, thus the U values are

attenuated at each extrema because either the hot or cold thermal resistance is

very high, leaving a low overall U at both inlets in the counter-flow arrangement.
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Figure 4.18: Heat exchanger effectiveness, ε versus cold side mass flow rate ṁc for
the Fractal 2 and Straight Channel geometries, with ∆Tc = 20◦C, R = 20mm and
wm = 50µm

In the parallel-flow orientation, the developing regions of the hot and cold sides

are alongside on another, complementing one another, resulting in a beneficial ar-

rangement of thermal resistances, where the high thermal resistance at the outlet

is negligible compared to the disproportionately low thermal resistance at the in-

let of the parallel-flow configuration. For some perspective on the difference in U

values between the parallel and counter configurations, the average counter-flow U

in Fig. 4.17 is 340 (W/m2K), while the average parallel flow U is 600 (W/m2K).

What is more interesting, is that the extreme attenuation of the counter-flow U is

only present in the straight channel geometry. The fractal-like geometries utilize
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shorter channel lengths, thus the thermally developing region takes up a higher per-

centage of the total channel length, meaning lower thermal resistances throughout

each branch level resulting in higher overall UA values, seen in Fig. 4.16. Thus the

disadvantage of the developing region at opposing ends of the channel is diminished

in the fractal-like geometries. Other than the influence of the counter and co-flow

arrangements on the ε values, the results of Fig. 4.18 mirror those of Fig. 4.14 with

the exception that the values of ε do not improve by an order of magnitude as the

values of εp do between the fractal and straight channel geometries.

50 100 150

10
0

10
5

εp

wm(µm)
50 100 150

10
0

10
5

εp

wm(µm)

50 100 150

10
0

10
5

εp

wm(µm)
50 100 150

10
0

10
5

εp

wm(µm)

50 100 150

10
0

10
5

εp

wm(µm)
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ṁc = 250g/min
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Figure 4.19: Heat exchanger effectiveness, ε and benefit to cost ratio, εp for both
the fractal and straight geometries versus terminal channel width, wm for a ∆Tc =
20◦C, and R = 20mm in the counter-flow configuration
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4.3.4.2 Parametric Variation of the Terminal Channel Width, wm

The variation of the terminal channel width was performed according to the con-

ditions outlined in Section 4.3.4. The results of which are presented in the current

section and should highlight the tradeoffs in εp and/or ε associated with increasing

or decreasing the terminal channel width. Both ε and εp versus wm are presented in

Fig. 4.19 for the geometry Fractal 2 in Table 4.1 with R = 20mm and ∆Tc = 20◦C.

The results of varying wm in Fig. 4.19 are consistent with the universal trend of

Figs. 4.14 and 4.18 in that both ε and εp decrease with increasing ṁc, see the

beginning of Section 4.3.4.1 for an explanation.

The relationships between εp, ε as a function of wm is not universal, increases

in the terminal channel width result in a higher benefit to cost ratio, εp, but a

lower value of effectiveness, ε. To explain how εp varies with wm, the relationship

between ∆P and wm is presented in mathematical form as

∆P ∝ 1

wmD2
h

(4.27)

and is based on the analytical fully developed flow equation in [46] for a constant

volumetric flow rate, Q. When the proportionality of Eqn. 4.27 is combined with

Eqn. 4.22, a relationship in the form of

εp ∝ wmD
2
h (4.28)

illustrates the relationship exhibited in Fig. 4.19(c); that as the terminal channel
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increases, so should the benefit to cost ratio, εp.

Conversely, the relationship between ε and wm in Fig. 4.19(b) is monotonically

decreasing, i.e. smaller channel widths yield greater values of heat exchanger effec-

tiveness. The reason for this has to do with how ε varies with UA and UA varies

with wm. First, from Fig. 4.8, we know that ε ∝ UA/Cmin, and from Figs. 4.15

and 4.16 that Cmin ∝ 1/UA. Thus, as UA increases, so should the heat exchanger

effectiveness, ε. Moreover, because UA is simply the inverse of the sum of the ther-

mal resistances between the hot and cold fluid bulk temperatures, UA ∝ 1/Dhw,

resulting in

ε ∝ 1

Dhwm
(4.29)

which corroborates the results illustrated in Fig. 4.19(c), that as wm decreases

the heat exchanger effectiveness increases. The increase is primarily due to two

effects; first, the increase in convective surface area by packing in a greater number

of smaller channels into a fixed volume (see Eqn. 4.24), second, from Eqn. 4.19,

the heat transfer coefficient increases as the hydraulic diameter increases.

4.3.4.3 Parametric Variation of the Disk Radius, R

The variation of the disk radius, R was performed according to the conditions

outlined in Section 4.3.4. The results of which are presented in the current section

and highlight the relationship between both R and the performance parameters; εp

and ε. Both ε and εp versus R are presented in Fig. 4.19 for the geometry Fractal

2 in Table 4.1 with wm = 50µm and ∆Tc = 20◦C. The results of varying R in



114

20 40 60 80
10

2

10
3

10
4

10
5

10
6

εp

R(mm)

 

 

(a) Change in εp as a function of R in the
co-flow configuration
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ṁ c = 100g /min
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(b) Change in ṁh as a function of R in the
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Figure 4.20: Change in εp and ṁh of Fractal 2 in co-flow as a function of R for
∆Tc = 20◦C and wm = 50µm

Fig. 4.19 are consistent with the universal trend of Figs. 4.14 and 4.18 in that both

ε and εp decrease with increasing ṁc, see the beginning of Section 4.3.4.1 for an

explanation.

Changes in εp versus R for ṁc = 1, 10, 100, 250 and 500 g/min and ∆Tc = 20◦C

are illustrated in Fig. 4.20(a), the accompanying variation in ṁh is also plotted in

Fig. 4.20(b) for the same conditions. As the cold side mass flow rate is increased,

the hot side mass flow rate also increases to achieve the required temperature drop

in the manner outlined in Section 4.3.4. Thus, with both increasing mass flow rates,

the flow power cost increases, decreasing the benefit to cost ratio in Figs. 4.20(a)

and 4.21(a). Aside from changes in εp with respect to ṁc, it is interesting to point

out the fact that there no noticeable change in εp or ṁc as a function of R for the

co-flow configuration, illustrated in Figs. 4.20(a) and 4.20(b), for cold side mass
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(a) Change in εp as a function of R in the
counter-flow configuration
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ṁ c = 1g /min
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Figure 4.21: Change in εp and ṁh of Fractal 2 in counter-flow as a function of R
for ∆Tc = 20◦C and wm = 50µm

flow rates of 1 and 10 g/min. This lack of trend can be attributed to the fact that

at low flow rate (ṁc = 1 and 10 g/min), the flow is moving slow enough that there

is no benefit from any increase in the total flow length provided by the increase

in R. Conversely, at high flow rates, ṁc ≥ 100 g/min, increased values of εp are

seen by increasing the disk radius, R because of the accompanying decrease in

ṁh, illustrated in Fig. 4.20(b). The decrease in ṁh is accomplished by increasing

the hot side residence time and total convective surface area needed for values of

ṁc ≥ 100 g/min in the co-flow configuration.

The changes in εp and ε with R are not as clear-cut as the changes with respect

to wm in Section 4.3.4.2, especially for the counter-flow configuration. Figs. 4.21(a)

and 4.21(b) show the same dependence of εp with R for high flow rates, but have

an opposite trend for ṁc ≤ 10 g/min. The opposing trend being for R ≤ 40
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mm, there is noticeable improvement in the benefit to cost ratio, εp, illustrated in

Fig. 4.21(a). The reason this trend is only seen for low flow rates in the counter-

flow configuration is because there is an additional benefit in the counter-flow

configuration by reducing the total flow length, R. When Ch > Cc, as is the case

when ṁc ≤ 10 g/min, there is no benefit from increasing the residence time in the

hot side, simply because the residence time in the cold side is much higher. Thus,

if the time the fluid spends flowing through the hot side (i.e. residence time) is

fixed, decreases in the length, result in a decreased mass flow rate, improving the

benefit to cost ratio, εp, illustrated in Fig 4.21. The benefit from decreasing the

mass flow rate is not possible in the co-flow configuration because there exists no

high ∆Th potential, whereas a ∆Th potential of 130◦C exists in the counter-flow

configuration.

Heat exchanger effectiveness, ε, was also examined as a function of disk radius,

R. The trends are more clear-cut than those of Figs. 4.20 and 4.21, ε consistently

improves with increasing disk radius, simply due to the increase in convective

surface area because of the increase in R, illustrated in Figs. 4.22 and 4.23. What

is interesting to point out, is that there seems to be a maximum effectiveness under

the co-flow configuration, εmax,co, and is evident in Fig. 4.22. This maximum is the

result of the fixed temperature drop, ∆Tc applied to the cold side. The variable,

εmax,co can be found from the Eqn. 4.20 for ε, under the conditions where Ch = Cmin

and is expressed as

εmax,co =
(Th,in − Tc,e)
(Th,in − Tc,in)

(4.30)
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Figure 4.22: Heat exchanger effectiveness, ε versus cold side mass flow rate, ṁc for
Fractal 2 in the co-flow configuration with wm = 50µm and ∆Tc = 20◦C

For the conditions in Fig. 4.22, εmax,co is calculated as 0.846, which matches the

asymptote in Fig. 4.22. For counter flow, the maximum effectiveness, is 1.0, since

the cold side inlet temperature, Tci constrains the hot side exit temperature, The

when Cmin = Ch. Thus, no asymptote is present in the results of ε versus R in

Fig. 4.23, clearly indicating counter-flow outperforms co-flow configurations as far

as ε is concerned.

Conversely, there exists a minimum effectiveness, εmin when Cmin = Cc, and

is the same for co and counter-flow simply due to the fact that a fixed cold side

temperature drop is applied. The form of the equation is similar to that of Eqn. 4.30



118

10 20 30 40 50 60 70 80

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ε

R(mm)
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Figure 4.23: Heat exchanger effectiveness, ε versus cold side mass flow rate, ṁc for
Fractal 2 in the counter-flow configuration with wm = 50µm and ∆Tc = 20◦C

and is expressed as

εmin =
Tc,e − Tc,in
Th,i − Tc,in

(4.31)

For the conditions of Figs. 4.22 and 4.23, εmin = 0.133, by examining Figs. 4.22 and

4.23, it is clear that the values presented in this section are well above εmin = 0.133.

However, the minimum limitation can be seen in the figures of Appendix B.

4.4 Summary and Conclusions

A one-dimensional model of a fractal-like branching channel heat exchanger was

developed to determine the pressure and bulk fluid temperature distributions. The
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model was constructed to be both reasonable in terms of quantifying heat transfer

and efficient in that there is little computational effort to solve the system of

equations. The heat transfer coefficient is employed in lieu of solving any discrete

y distribution of temperature in the energy equation. The validity of a heat transfer

coefficient correlation applied to a heat exchanger was determined by analysis of a

the results of a simple two stream heat exchanger modeled by a three dimensional

computational fluid dynamics package. Shah and London’s [7] correlation proved

to describe the CFD data to a degree no more statistically significant than a

power fit to the data. Moreover, the fin efficiency was found to be important in

capturing the difference in heat transfer between a material of high versus low

thermal conductivity.

While the fin efficiency of the channel walls in the heat exchanger was found to

be important for the particular geometry, a more detailed analysis is necessary to

determine under what conditions it can be neglected, i.e., for what combination(s)

of fin height, material type, etc will result in a enough heat transfer to ignore the fin

temperature distribution effects. Additionally, an analysis of the heat exchanger

under a fixed cold side mass flow rate and fixed inlet and exit temperatures was

performed to determine the change in performance of different heat exchanger

designs under the process cooling constraints. It was found that decreases in the

terminal channel width increased the effectiveness but decreased the benefit to

cost ratio of the heat exchanger. Furthermore, increases in the disk radius, R,

yielded increases in heat exchanger effectiveness but the relationship between R

and benefit to cost was found to depend highly on the cold side mass flow rate as
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well as whether the heat exchanger is operating in co or counter-flow configuration.
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Appendix A – MATLAB Code

A.1 Single-Phase Heat Sink Optimization Code

A.1.1 One-Dimensional Single Phase Heat Sink Model

% clear all

clear AC L SD cp
mdot xLehplus %h

clear AR Mdot SD table d h plot
mtrue xLet

clear ARs Nuz Tb dP hfluid mu
xLetstar

clear ARtab Nuzplot Tbplot hs n
z % data store

clear ARtemp P Tin den htc
zend % no

clear Ac Pexit Tw dhdz i ns
zeta

clear Apstot Power Twmax dratio k nu
zplot

clear Aptot Pplot Twplot ds kfl
rho zs

clear Aptotf Pr U kfluid ri
zsend % dx

clear Astot Prplot V dxs kset ro
zstar

clear Atot Psat alpha dxtrue ktemp sd
clear Atotb Psatplot alphas energy steps

%ktrue
clear CfpRe Pstart alphaset factor l

totalsteps
clear CompTitle Ptemp ans %w

flux lengthf
clear D Q fluxf ls

%wN beta
clear c fluxs lstemp ws

%Qtot K
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clear Kinf Re m xLeh %gamma
count

% close all
% home
%%%setting global values to determine the Re through a straight

channel to get same pressure drop as through fractal network
% global ARs ws hs ds ls ns rho nu Pnew power
% global k Mdot h fluxf alpha Q

%%%see paper by Pence (2000) for nomenclature definitions...
%%%assumes hydraulic diameter is sufficient for computations...

change if otherwise (line 15??)
%%%assumes water at this point

%%% Fractal channel input
n=2; %number of branches following each fractal

bifurcation
% no=1; %number of initial, 0th order, branches
% ktrue=4+1; %number of branching levels, k, plus '1' for the 0

th branch
% w(ktrue)=100; %terminal branch width in microns
% lengthf=16.3; %total fractal branch length in mm
% h=250; %constant channel depth in microns
% flux=350; %Watts per centimeter squared for the fractal

channel only
% Qtot=10; %total fractal flow rate in ml/s
%TEMPORARY ONLY
%Qtot=2;

%%% straight channel input %either square or rectangular - match the
terminal hydraulic diameter

%ws=w(ktrue); %terminal branch width of straight channel in microns
%hs=h; %Input constant channel depth in microns
ws=4*h*w(ktrue)/(2*h+2*w(ktrue));
hs=ws;

%%% comparison information
dratio=1; % (0 ==> hydraulic diameter ratio is equal to beta -

NOT RECOMMENDED )
% (1 ==> width ratio is equal to beta - RECOMMENDED

BASED ON OPTIMIZATION)
% (2 ==> area ratio is equal to betaˆ2, which is

equal to the width ratio equal to betaˆ2 for a
constant channel height - NOT RECOMMENDED)
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lstemp=0; % to make channel length identical to fractal channel
length enter zero (0)

% to make channel length fit a square plate foot
print, select (-1)

% to set a channel length in mm - simply specify the
number

alphaset=2; %plate surface to convective surface area ratio
%(1 ==> As s/As f=1 & Ap s/Ap f=1) === plate area

assumed to be equal to total convective area
%(0 ==> As s/As f=1 & Ap s/Ap f 6=1) === channel

surface areas identical - plate areas differ
%(2 ==> Ap s/Ap f=1 & As s/As f 6=1) === plate areas

identical - channel surface areas differ
energy=1; % to make total energy input equal between the

straight and fractal devices, set equal to (1)
% NOTE: when running alphaset=1 or alphaset=2 this

will be the default (i.e. energy=1)...
% to make flux equal between devices, set equal to

(0)
AC=2; % flow optimization factor AC = 2 for width ratio -

RECOMMENDED- area conserving for hydraulic diameter ratio - see
notes from 12-09-02

% flow optimization factor AC = 3 for hydraulic
diameter

%filename for output
%filename=['Q',num2str(Qtot),'alpha',num2str(alphaset),'ls',num2str(

lstemp),'old'];
% filename=['h',num2str(h),'L',num2str(lengthf),'k',num2str(ktrue),'

wt',num2str(w(ktrue)),'Q',num2str(Qtot),'q',num2str(flux),'ls',
num2str(lstemp),'as',num2str(alphaset),'es',num2str(energy),'AC',
num2str(AC),'.mat'];

%%% additional input items - may change
% dx=0.01; %initial spatial increment for pressure drop and

Nusselt number calculations (changes with l)
Pexit=0;%101300; %exit pressure at exit plenum [Pa]

%%%geometry restrictions that won't change
D=2; %Euclidean dimension

%%%keep items below - integrate into the optimization program
Q(1)=Qtot/no; % flow rate through each initial branch
fluxf=flux*10000; % conversion of flux to Watts per meter squared (

assigned to fractal network)
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Tin=22+273; % inlet plenum temperature in Kelvin for branching
channel network

%Tbs(1)=Tb(1); % inlet plenum temperature in Kelvin for
straight channels

%%%assumes water as fluid with constant properties evaluated at inlet
T of 22 deg Celcius

rho=998.2; %kg/m-m-m
mu=0.001002; %kg/m-s
nu=mu/rho; %m-m/s
cp=4183; %specific heat in J/kg-K at 295 K
kfl=0.603; %thermal conductivity W/m-K at 295 K
Pr=(rho*cp*nu)/kfl; %calculation of Prandtl number

%%%computing mass flow rate, branching dimensions, surface area, and
entrance lengths for the fractal array

mdot=rho*Q(1)/1000000; %total mass flow rate kg/
s through a single branch leaving plenum

% beta=nˆ(-1/AC); %diameter ratio
% gamma=nˆ(-1/D); %length scale ratio
d(ktrue)=4*(w(ktrue)*h)/(2*w(ktrue)+2*h); %hydraulic diameter in

microns
k=ktrue; %assign an increment to

retain true number of branchings, ktrue
kset=[1:1:ktrue]; %set up vector for

computing terminal branch length
l(ktrue)=lengthf/sum(1./gamma.ˆ(kset-1)); %determination of

terminal branch length
Q(ktrue)=Q(1)/(nˆ(ktrue-1)); %evaluation of flow rate

through terminal branch

while k>1
if dratio==0;

w(k-1)=w(k)*h/(beta*(w(k)+h)-w(k)); %determination of lower
order branching widths - based on hydraulic diameter ratio
equal to beta

elseif dratio==1;
w(k-1)=w(k)/beta; %width ratio equal to

beta
elseif dratio==2;

w(k-1)=w(k)/betaˆ2; %actual area ratio equal
to beta

end
l(k-1)=l(k)/gamma; %determination of lower

order branching lengths
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% d(k-1)=d(k)/beta; %determination of lower
order hydraulic diameters
d(k-1)=2*h*w(k-1)/(h+w(k-1));
Q(k-1)=Q(k)*n; %evaluation of flow rate

through each branch
k=k-1; %increment for k

end % end of while

V=Q./(w./10000*h/10000); %velocity in cm/s
through each branch

Re=V/100.*d/1000000/nu; %calculation of
Reynolds number for each branch

xLeh=d./1000.*(0.6./(1+0.035.*Re)+0.056.*Re); %calculation of
hydrodynamic entrance length - mm

xLet=d./1000.*(0.6./(1+0.035.*Re*Pr)+0.056.*Re*Pr); %calculation of
thermal entrance length - mm

xLehplus=xLeh.*1000./(d.*Re); %dimensionless
hydrodynamic entrance length

xLetstar=xLet.*1000./(d.*Re*Pr); %dimensionless
thermal entrance length

ktemp=[1:1:ktrue]; %temporary vector
width for branching levels

Atotb=(n.ˆ(ktemp-1).*l.*(w+h)*2/1000); %calculation of
the total convective surface area per branch - mmˆ2

Atot=sum(Atotb)*no; %calculation of
the total convective surface area for an entire branching flow
network - mmˆ2

%determine plenum size
ri=no*(w(1)/1000)/(2*pi)*1.05; %inside diameter of inlet plenum - mm
ro=ri+sum(l); %outside diameter of plate - mm
Aptotf=pi*(roˆ2-riˆ2); %fractal plate surface area in mmˆ2

if alphaset==0; %plate surface area to be included in
analysis - but channel surface area of straight array is

identical to that of the fractal array
Aptot=Aptotf; %fractal plate surface area in mmˆ2
alpha=Aptot/Atot; %fractal plate to convective surface

area ratios
elseif alphaset==1; %all energy is provided through walls

of channels (plate area is neglected)
Aptot=Atot; %total plate area is a nonreal

quantity
alpha=alphaset; %set alphas to unity for case when

plate surface area is identical to convective surface area
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elseif alphaset==2; %plate surface area to be included in
analysis - but plate contact area of straight array is identical

to that of the fractal array
Aptot=Aptotf; %fractal plate surface area in mmˆ2
alpha=Aptot/Atot; %fractal plate to convective surface

area ratios
end % end of if

if lstemp==0
ls=sum(l); %total straight channel length

elseif lstemp==-1
ls=sqrt(Aptot); %determine the channel length necessary to

achieve a square foot print for the plate area
else

ls=lstemp; %maintains assigned straight channel length
end % end of if

if alphaset==0; %plate surface area
to be included in analysis - but channel surface area (convective)
of straight array is identical to that of the fractal array
ns=round(Atot/(ls*2*(ws+hs)/1000)); %determine the number

of channels that will give the same convective area as the
fractal

Apstot=(ns*(2*ws/1000)+ws/1000)*ls; %determine the plate
surface area for a straight channel array with identical
convective surface area as the fractal array

Astot=ns*2*(ws+hs)/1000*ls; %determine the total
convective surface area based on the number of channels - mmˆ2

alphas=Apstot/Astot; %straight channel
plate to convective surface area ratios

elseif alphaset==1; %all energy is
provided through walls of channels (plate area is neglected)
ns=round(Atot/(2*ls*(ws+hs)/1000)); %determine the number

of straight channels for equal convective surface as a
fractal network

Astot=ns*2*(ws+hs)/1000*ls; %determine the total
convective surface area based on the number of channels - mmˆ2

Apstot=Astot; %set plate area equal
to convective surface area (i.e. neglect plate area)

alphas=alphaset; %set alphas to unity
for case when plate surface area is identical to convective
surface area

elseif alphaset==2; %plate surface area
to be included in analysis - but plate contact area of straight
array is identical to that of the fractal array
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ns=round((Aptot/ls-ws/1000)/(2*ws/1000)); %determine the number
of straight channels to equal convective surface area of a
single branching channel network

Astot=ns*2*(ws+hs)/1000*ls; %determine the total
convective surface area based on the number of channels - mmˆ2

Apstot=(ns*(2*ws/1000)+ws/1000)*ls; %determine plate
surface area based on the number of parallel channels - mmˆ2

alphas=Apstot/Astot; %straight channel
plate to convective surface area ratios

end % end of if

%Straight channel bulk fluid and wall surface temperatures
if energy==0; %computations based on

the assumption that the heat flux between the two devices are
equal
fluxs=fluxf; %flux for the straight

array is set equal to the fractal array
elseif energy==1; %based on the assumption

that the total heat input to the straight array is the same as the
fractal array
fluxs=fluxf*Aptot/Apstot; %determine the straight

flux from the total energy to the fractal array
end % end of if

steps=l./dx; %determination of number of
increments of dx in length of channel branch

mtrue=round(steps); %actual integer number of steps per
branch

totalsteps=sum(mtrue); %total number of steps from inlet to
exit of heat sink

m=totalsteps; %initialization for reverse ordering
pressure

dxtrue=l./mtrue; %true spatial increment to
accommodate full length of each branch

load sd data table; %load coefficient data - already
determined from sd td table formulation.m

ARtab=SD table(:,1); %reassignment of data
SD(:,:)=SD table(:,2:4);

% THIS IS THE BEGINNING OF KENT ENFIELD'S VARIABLE PROPERTY SECTION
L = l; % to avoid confusion

between the number "1" and the letter "l".
Mdot = Q*rho/1e6; % [kg/s] With changing

density, mass flow rate is constant. Volumetric flow rate is not.
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dhdz = fluxf*alpha*(2*(h+w))./Mdot/1e6; % Heat load per channel
length [J/m].

Ac = h*w; % Cross-channel area [
micronsˆ2].

zend = round(L./dxtrue + 1);
for k = 1:ktrue

z(k,1:zend(k)) = 0:dxtrue(k):L(k);
end

% enthalpy of flow [J/kg]
hfluid(1,:) = dhdz(1)*z(1,:)/1e3 + hf of T(Tin-273);
for k = 2:ktrue

hfluid(k,1:zend(k)) = dhdz(k)*z(k,1:zend(k))/1e3+hfluid(k-1,zend(
k-1));

end

Tb = Tofh(hfluid); % Bulk temperature [deg C] based on
enthalpy.

den = 1./vf(PofT(Tb)); % Density of liquid [kg/mˆ3].
nu = nuf(PofT(Tb)); % Kinematic viscosity [mˆ2/s].
Pr = PrfofT(Tb); % Prandtl number
kfluid = kf(PofT(Tb)); % Thermal conductivity [W/m-K].
Pstart = 0; % Initial guess for inlet pressure [Pa].

for k = 1:ktrue
U(k,1:zend(k)) = Mdot(k)./den(k,1:zend(k))/Ac(k)*1e12;

% average velocity [m/s]
Re(k,1:zend(k)) = U(k,1:zend(k))./nu(k,1:zend(k))*d(k)/1e6;

% local Re based on diameter
zeta(k,1:zend(k)) = z(k,1:zend(k))/1e3./Re(k,1:zend(k))/d(k)*1e6;

% zeta parameter
zstar(k,1:zend(k)) = zeta(k,1:zend(k))./Pr(k,1:zend(k));

% non-dimensional length for Nux
zeta(k,1) = eps;
zstar(k,1) = eps;
AR = min(h,w(k))/max(h,w(k));
[CfpRe,Kinf,c]=Pconstant(AR);
ARtemp=max((round(AR*100))/100,0.25);
sd(1)=interp1(ARtab,SD(:,1),ARtemp);
sd(2)=interp1(ARtab,SD(:,2),ARtemp);
sd(3)=interp1(ARtab,SD(:,3),ARtemp);
Nuz(k,1:zend(k)) = 1./(sd(1)*(1-exp(sd(2)*zstar(k,1:zend(k)).ˆsd

(3))));
htc(k,1:zend(k)) = Nuz(k,1:zend(k)).*kfluid(k,1:zend(k))./(d(k)*1
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e-6);
Tw(k,1:zend(k)) = Tb(k,1:zend(k)) + fluxf*alpha./htc(k,1:zend(k))

;
Psat(k,1:zend(k)) = PofT(Tb(k,1:zend(k)))*1e2; % Saturation

pressure in kPa.
if k==1

P(k,1) = Pstart;
else

P(k,1) = P(k-1,zend(k-1));
end
for i = 2:zend(k)

P(k,i) = P(k,i-1) + 0.25*(den(k,i)+den(k,i-1))*(U(k,i)+U(k,i-
1))ˆ2*...
( zeta(k,i-1)*(3.44/sqrt(zeta(k,i-1)) + (CfpRe + Kinf/(4*

zeta(k,i-1)) - 3.44/sqrt(zeta(k,i-1)))/(1+c/zeta(k,i-
1)ˆ2)) ...

- zeta(k,i)*(3.44/sqrt(zeta(k,i)) + (CfpRe + Kinf/(4*zeta
(k,i)) - 3.44/sqrt(zeta(k,i)))/(1+c/zeta(k,i)ˆ2)) );

% Pressure in Pa
end

end

P = (P-P(ktrue,zend(ktrue))) + Pexit;

Pplot = P(1,1:zend(1));
Tbplot = Tb(1,1:zend(1));
zplot = z(1,1:zend(1));
Nuzplot = Nuz(1,1:zend(1));
Twplot = Tw(1,1:zend(1));
Psatplot = Psat(1,1:zend(1));
Prplot = Pr(1,1:zend(1));
h plot = htc(1,1:zend(1));
Re plot = Re(1,1:zend(1));
Uplot = U(1,1:zend(1));
for k = 2:ktrue

Pplot = [Pplot P(k,1:zend(k))];
Tbplot = [Tbplot Tb(k,1:zend(k))];
zplot = [zplot z(k,1:zend(k))+zplot(end)];
Nuzplot = [Nuzplot Nuz(k,1:zend(k))];
Twplot = [Twplot Tw(k,1:zend(k))];
Psatplot = [Psatplot Psat(k,1:zend(k))];
Prplot = [Prplot Pr(k,1:zend(k))];
h plot = [h plot htc(k,1:zend(k))];
Re plot = [Re plot Re(k,1:zend(k))];
Uplot = [Uplot U(k,1:zend(k))];
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end

dP = Pplot(1)-Pplot(end);
Q = Mdot(1)*no/den(1);
Pow = dP*Q;
Twmax = max(Twplot);

ARs=min(hs,ws)/max(hs,ws); %set straight channel dimensions the
same as the terminal channel in the fractal network

ds=4*(ws*hs)/(2*ws+2*hs); %calculation of hydraulic diameter of
straight channel

dxs=ls/(round(ls/dx)); %updated node spacing
zs=[0:dxs:ls]; %new x vector for Pressure

calculations
zsend = length(zs);

A.1.2 Optimization Algorithm

A.1.2.1 Tw,max Constraint

function f out = frac4(geometry)
% function f out = frac4(geometry)
% Function that returns dP, Pow, Twmax, Qtot for fractal with given

geometry
% specified by above beta, gamma, and wN
% designed to run with FMINCON in frac opt.m

global flux p Radius h m TWMAX a bmin d Qt nf n0 min n0 fix wm max
global Twmax Qtot no
% disp(geometry)

beta = geometry(1);
gamma = geometry(2);
wN = geometry(3)*wm max;

N = m;
R = Radius/1000; % [convert to mm for fractal vp 2]

Qtot = Qt;

no = n0 fix;

count break = 0;
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if no < n0 min
f out = NaN;
Twmax = NaN;
Qtot = NaN;

else

ktrue = N+1;
w(ktrue) = wN;
lengthf = R - no*(wN/1000)/(betaˆN)/(2*pi); % [mm]
w temp = wN./beta.ˆ[N:-1:0]; % [microns]
L temp = lengthf*(gamma.ˆ[0:N])/sum(gamma.ˆ[0:N]); % [mm]
Area wall f = sum(2*L temp.*(w temp+h)/1e3.*(2.ˆ[0:N]))*no; % [mm

ˆ2]
Area plate = pi*Rˆ2; % [mmˆ2]
load = flux p*1e4*Area plate*1e-6; % [W]
flux = flux p*Area plate/Area wall f; % [W/cmˆ2]

% Qtot = 10; % [ml/s]
dx = 1; % [microns]

if lengthf ≤ 0
f out = NaN;
Twmax = NaN;
return

end

fractal vp 2b
count = 1;

Twmax old = Twmax;
dP old = dP;
Pow old = Pow;
Qtot old = Qtot;

count = 1;
TOL = 1e-4;
QERR = 1;
TTOL = 1e-4; % relative tolerance on Twmax
omega = 1.50; % relaxation factor on Qtot

while QERR > 0

Qtot = ((Twmax-Tin+273)/(TWMAX-Tin+273))ˆomega*Qtot old;
% disp(Qtot)

ERR = 1;
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dx = 1;

while ERR > TOL

dx = dx/2;
fractal vp 2b
count = count+1;
ERR = max(abs([(Twmax-Twmax old)/Twmax old, (dP-dP old)/

dP old, (Pow-Pow old)/Pow old]));
Twmax old = Twmax;

% disp(Twmax)
dP old = dP;
Pow old = Pow;
if count ≥ 50000

disp('max iterations reached')
count break = 1;
break

end
end
Qtot old = Qtot;
QERR = ((Twmax > TWMAX*(1+TTOL)) | (Twmax < (1-TTOL)*TWMAX));

% disp([Qtot,((Twmax-Tin+273)/(TWMAX-Tin+273))ˆomega])
if count break

break
end

end

if nf == 1
f out = dP;

else
f out = Pow;

end

end

Qt = Qtot;

% disp(f out)

A.1.2.2 Gradient Based Search

% runs multiple iterations of frac opt v3 f
% for P = 0:1
% for q = [10:5:30,50:25:100,150]%[200,300,500,1000]
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% frac opt v3 f([20,q,70,150],[0.5,1.0,0.5,1.5,50,150],[0.1,1
.5,2.5,1.5],P);

% pack
% end
% end
% for P = 0:1
% % if P == 0
% % Rrange = 50;
% % else
% Rrange = 10:10:30;%40:10:50;
% % end
% for R = Rrange
% frac opt v3 f([R,200,70,150],[0.5,1.0,0.5,1.5,50,150],[0.1

,1.5,2.5,1.5],P);
% pack
% end
% end
clear;clc;close all
global data store max store
tic
for P = 0

T = 70;
for q r = 10;

frac opt v3 f([20,q r,T,150],[0.5,1.0,0.5,1.5,50,150],[0.1,1
.5,2.5,1.5],P);

pack
end

end
toc
disp(data store);
disp(max store);
save(['results on ' datestr(now,30) '.mat'],'data store','max store')

;

%for P = 0:1
%for b = [1.5,2,3,4,5]

% frac opt v3 f([20,200,70,150],[0.5,1.0,0.5,2.5,50,150],[0.1,
b,b+2,1.5],P);

% pack
% end

%end
% for P = 0:1
% for w = [10,20,50]
% frac opt v3 f([20,200,70,150],[0.5,1.0,0.5,1.5,w,150],[0.1

,1.5,2.5,1.5],P);
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% pack
% end
% end
%for P = 0:1
% for H = [75:25:175]
% frac opt v3 f([20,200,70,H],[0.5,1.0,0.5,1.5,50,150],[0.1,1

.5,2.5,1.5],P);
% pack
% end
%end
%for P = 0:1
% for A = [0.05:0.05:0.25]
% frac opt v3 f([20,200,70,150],[0.5,1.0,0.5,1.5,50,150],[A,1

.5,2.5,1.5],P);
% pack

% end
%end

function f output = frac opt v3 f(HeatSink,SearchRange,ConParam,
dP or Pow)

% Master m-file for testing optimization programing in function form.
% Inputs are HeatSink, SearchRange, ConParam, and dP or Pow
% HeatSink is a 4-element vector of the form:
% [Radius [mm], heat flux [W/cmˆ2], Max wall temp [deg C], channel

depth
% [microns]]
% SearchRange is a 6 element vector of the form:
% [beta min, beta max, gamma min, gamma max, wm min, wm max]
% wm min and wm max are in microns
% ConParam is a 4 element vector in the form:
% [a, bmin, bmax, d]
% dP or Pow is a scalar
% 1 for pressure drop
% anything else for pumping power

warning off MATLAB:divideByZero

global a bmin bmax d wm max
global flux p Radius h m TWMAX Qt nf n0 min n0 fix g0
global data store max store
global Twmax Qtot
tic

stor dir = 'OutputRun02/';
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nf = dP or Pow; % 1 for pressure drop
% other for pumping power

Radius = HeatSink(1); % [mm]
flux p = HeatSink(2); % [W/cmˆ2]
TWMAX = HeatSink(3); % [deg C]
h = HeatSink(4); % [microns]

beta min = SearchRange(1);
beta max = SearchRange(2);
gamma min = SearchRange(3);
gamma max = SearchRange(4);
wm min = SearchRange(5);
wm max = SearchRange(6);

a = ConParam(1);
bmin = ConParam(2);
bmax = ConParam(3);
d = ConParam(4);

Radius = Radius*1000; % [microns]
Qt = 100; % [ml/s, intitial guess]

n0 min = 3;

lower = [beta min, gamma min, wm min/wm max];
upper = [beta max, gamma max, 1]; % NOTE wm max/wm max = 1

g0 = [beta min, gamma max, wm min/wm max];

options = optimset('LargeScale','off','Display','off','TolFun',1e-6,'
TolCon',1e-6,'DiffMinChange',10e-4,'TypicalX',[0.5,0.5,0.5]);%,'
PlotFcns' ,{ @optimplotfval @optimplotstepsize });%,'MaxFunEvals
',10ˆ1);

m min = ceil(-log(a*bmax)/log(2*beta max));
m min = max(1,m min);
m max = floor(log(2*pi*Radius/(bmin*n0 min*wm min))/log(2));

max store = [];

% m loop
wait id = waitbar(0,'Starting . . . ');

k=0;
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% n0 aa=[251;144;79;42;22;11;5;3;]; % 1000 W/cmˆ2 case
% n0 aa=[5;3];%[251;144;79;42;22;11;5;3;];
% n0 aa=[251;143;79;42;22;11;5;3;]; %
% n0 aa=[168;139;79;42;22;11;5;3;]; % 50
n0 aa=[84;101;78;42;22;11;6;3;]; % 10
for m =2:9;%m min:m max

k=k+1;
data store = inf*ones(1,9);

% finds upper and lower limits on n0
n0 limits

no n0 = n0 u-n0 l+1;
bar top = ['m = ',num2str(m),' (from ',num2str(m min),' to ',

num2str(m max),')'];
bar bot = [' (from ',num2str(n0 l),' to ',num2str(n0 u),')'];
waitbar(0,wait id,strvcat(bar top,['n 0 = 0',bar bot]));
n0 a=[];
for n0 fix = n0 aa(k) %n0 l:n0 u

% disp(' ')
% disp([m,n0 fix])
% disp(' ')

% if ((Qt == Inf) |(Qt == NaN))
Qt = 10;
% end

opt method='genetic';
switch opt method

% should put in a wait bar
% waitbar((n0 fix-n0 l+1)/no n0,[wait id,strvcat(

bar top,['n 0 = ',num2str(n0 fix),bar bot])]);

case 'gradient'
gstart finder; %% Does this find the valid

range, or a starting point?
[g, fval, exitflag, output] = fmincon(@frac4,gstart

,[],[],[],[],lower,upper,@constraints,options);

case 'genetic'
options=gaoptimset('PopulationSize',10,'Generations'

,10ˆ2,... 'PopulationSize',200,
...



143

'StallGenLimit',10ˆ2,'StallTimeLimit',1200,...
'PlotFcns',@gaplotbestindiv,'MigrationInterval'

,1,'display','iter');
[g, fval, exitflag] = ga(@frac4,3,[],[],[],[],lower,

upper,@constraints,options);
% ga(...)
% results comparison and storage

end
if fval < data store(6)

data store(1:5) = [m,n0 fix,g];
f = frac4(g);
data store(6:8) = [f,Twmax,Qtot]; % Storing the results
data store(9)=exitflag;

else
data store(9)=exitflag;

end

end

if ¬isempty(data store)
max store(m-m min+1,1:9) = data store;

else
max store(m-M min+1,1:9) = [m,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN

];
end

end

close(wait id)
%
% % toc
% % return
%
% warning on MATLAB:divideByZero
%
% output name = [stor dir,'frac opt out2 ',datestr(now,30)];
% output name(find(output name==' '))=' ';
%
% diary([output name,' setup.txt'])
% if dP or Pow == 1
% disp(['dP or Pow = dP']);
% else
% disp(['dP or Pow = Pow']);
% end
% disp(['flux p= ',num2str(flux p)]);
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% disp(['radius= ',num2str(Radius)]);
% disp(['TWMAX= ',num2str(TWMAX)]);
% disp(['h= ',num2str(h)]);
% disp(['a= ',num2str(a)]);
% disp(['bmin= ',num2str(bmin)]);
% disp(['bmax= ',num2str(bmax)]);
% disp(['d= ',num2str(d)]);
% disp(['beta min= ',num2str(beta min)]);
% disp(['beta max= ',num2str(beta max)]);
% disp(['gamma min= ',num2str(gamma min)]);
% disp(['gamma max= ',num2str(gamma max)]);
% disp(['wm min= ',num2str(wm min)]);
% disp(['wm max= ',num2str(wm max)]);
% diary off
%
% csvwrite([output name,' results.txt'],max store);
% % save(['frac opt out ',datestr(now),'.mat'],'flux p','Radius','

TWMAX','h','a','bmin','bmax','d',...
% % 'beta min','beta max','gamma min','gamma max','wm min','

wm max','max store');
%
% disp(' ')
% toc
%
% [min val,min loc] = min(max store(:,6)); % Returns the minimum flow

power or pressure drop
% % and its location
% f output = max store(min loc,:);

A.2 Two-Phase Heat Sink Optimization Code

A.2.1 Critical Heat Flux Estimation

function mdot=OneDCHF(qflux,m,n0,beta,gamma,wm,L,H)
% Find the mass flow rate at critical heat flux of a fractal-like

branching
% channel network by solving a system of one-dimensional ODEs, first
% proposed by
if any(isnan([qflux,m,n0,beta,gamma,wm,L,H]))

return
end
% [1] R. Revellin and J . R . Thome. A theoretical model for

the prediction
% of the critical heat flux in heated microchannels.
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International
% Journal of Heat and Mass Transfer, 51(5-6):pp. 1216-1225,

2008.

% The conservation of void fraction and quality for computing the
film

% thickness and velocities, respectively was adapted for square
channels

% from

% [2] R. Revellin , J . R . Thome, A. Bejan , and J. Bonjour.
Constructal

% tree-shaped microchannel networks for maximizing the
saturated critical

% heat flux. International Journal of Thermal Sciences, 48(2)
:342 ? 352,

% 2009. Nano Micro Mini Channels and Computational Heat
Transfer.

% Run solver here to find the mass flow rate
% mdot = fsolve(@FINDMdot,...)
xt=linspace(0,L,100);
[Wa,¬,Lf,¬,¬]=fractalGeometry(m,beta,gamma,wm,xt);
% Properties
T = 100+273.15;
sigma = 58.9e-3; %53.6e-3;% N/meter
vl=Vlw(T);%0.842e-3;%
vv=Vvw(T);%0.0265;%
hfg=hvw(T)-hlw(T);%172e3;%
% mul = 0.01905e-2;%muliq w(T,1); muv = muvap w(T,1);
% muv = 12.4e-6;
g = 9.81;
Y = 0;
% Solving for the mass flow rate
guess1 = 0.52*n0/16*n0/60000*qfluxˆ2/(12.3*100ˆ2)ˆ2;
opmdot = optimset('display','none','tolx',0.01*n0/60000,'tolfun',1e-

6);
% mdot=fmincon(@FINDMdot,guess1,[],[],[],[],eps,1000*n0/60000,[],

opmdot);
key = 0;
mdot = fzero(@FINDMdot,guess1,opmdot);

% key = 1;
% FINDMdot(mdot);
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% mdot = abs(mdot);
% mdot = FINDMdot(5000*wm/betaˆm*H*n0);
% Ma=(.3522)*n0/60000;
% resa=0*Ma;count = 0;
% for mm=Ma
% count = count + 1;
% resa(count)=FINDMdot(mm);
% end
% % figure,plot(Ma,resa);
% keyboard

function residualm=FINDMdot(M)
if M≤0

residualm = (M);
return

end
% M = abs(M);

% Run ODE here to find r, uv, ul, pv and pl
% with the Kelvin-Helmholtz stability criteria at the exit
% Initial Conditions
Dhi = 2*(Wa(1)*H)/(Wa(1)+H);
y0(1) = M/(n0*Wa(1)*H)*vl;
y0(2) = M/(n0*Wa(1)*H)*vl;
y0(3) = Psw(T)-sigma*2/Dhi;
y0(4) = Psw(T);
Dref = min([Wa(1) H]);
y0(5) = (Dref - 0.1*Dref)/2;
Dhe = 2*(Wa(end)*H)/(Wa(end)+H);
% VL=[];xlt=[];Vv=[];dd=[];
Ya = [];
for k=0:m

% Solving the ODE
% dyo=y0';
W = wm/betaˆ(m-k);
opode=odeset('RelTol',1e-3,'AbsTol',1e-6);%,'NonNegative

',[1 2]);
[xl,Y] = ode113(@ODES,[0 Lf(k+1)],y0,opode); %#ok<ASGLU>
d = Y(end,5); ul = Y(end,1); uv = Y(end,2);
Al = 2*d*(W+H-2*d); Av = W*H-2*d*H-2*d*W+4*dˆ2;

W = wm/betaˆ(m-(k+1));

% Liquid Thickness
d1 = (betaˆm*((Hˆ2*betaˆ(2*m) + 8*beta*betaˆ(2*m)*dˆ2 +

betaˆ2*betaˆ(2*k)*wmˆ2 - 4*H*beta*betaˆ(2*m)*d - 4*
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beta*betaˆk*betaˆm*d*wm)/betaˆ(2*m))ˆ(1/2) + H*betaˆm
+ beta*betaˆk*wm)/(4*betaˆm);

d2 = (H*betaˆm - betaˆm*((Hˆ2*betaˆ(2*m) + 8*beta*beta
ˆ(2*m)*dˆ2 + betaˆ2*betaˆ(2*k)*wmˆ2 - 4*H*beta*beta
ˆ(2*m)*d - 4*beta*betaˆk*betaˆm*d*wm)/betaˆ(2*m))
ˆ(1/2) + beta*betaˆk*wm)/(4*betaˆm);

if any([(H-2*d1) (wm/betaˆ(m-k-1)-2*d1)] <0)
y0(5) = d2;

else
y0(5) = d1;

end
% Pressures
y0(3) = Y(end,3); y0(4) = Y(end,4);
% Velocities
Aln = 2*y0(5)*(W+H-2*y0(5));Avn = W*H-2*y0(5)*H-2*y0(5)*W

+4*y0(5)ˆ2;
y0(1) = 1/2*ul*Al/Aln; y0(2) = 1/2*uv*Av/Avn;

% variables for plotting
% if k>0
% xlt = [xlt (xl'+xlt(end))];
% else
% xlt = xl';
% end
% VL = [VL Y(:,1)'];
% Vv = [Vv Y(:,2)'];
% dd = [dd Y(:,5)'];
if key==1

Ya = [Ya;Y(:,5)];

end
end
if key==1

xtemp = linspace(0,L,length(Ya));
figure,plot(xtemp,Ya);

end

% W = interp1(xt,Wa,xlt);
% Alf = 2*dd.*(W+H-2*dd);Avf = W*H-2*dd*H-2*dd.*W+4*dd.ˆ2;
% xl=xlt;
% figure,plot(xl,W/2-dd);
% hold on;plot(xl,W/2,'k-','linewidth',2.0);
% legend('Vapor Core Height','Wall');
% patch([xl fliplr(xl)],[W/2-dd fliplr(W/2)],'b')
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% xlabel('x (m)');ylabel('\∆ (m)');
% figure,plot(xl,[VL' Vv']);
% xlabel('x (m)');ylabel('u (m/s)');
% legend('u l','u v');
% figure,plot(xl,[Alf' Avf']);
% xlabel('x (m)');ylabel('A (mˆ2)');
% figure,plot(xl,[Alf'.*VL'/vl Avf'.*Vv'/vv Alf'.*VL'/vl+Avf'

.*Vv'/vv]);
% xlabel('x (m)');ylabel('mdot (kg/s)');
% legend('Liquid','Vapor','Total');
% figure,plot(xl,Avf'.*Vv'./vv./(Alf'.*VL'/vl+Avf'.*Vv'/vv));
% xlabel('x (m)');ylabel('Quality');
% keyboard

% residualmdot = (R-r) - Eqn. (19)
ind = (Y(:,1)≤0);
Y(ind,end)=-Y(ind,end);
uv=Y(end,2);ul=Y(end,1);
uv = abs(uv);ul = abs(ul);

residualm = Y(end,end)-0*0.15*Dhe/2*(uv/ul)ˆ(-3/7)...

*((1/vl-1/vv)*g*0.25*Dheˆ2/sigma)ˆ(-1/7);
residualm = real(residualm);
function dy=ODES(x,y) %#ok<INUSL>

% Constants
ul=y(1); uv=y(2);
%Pl=y(3); Pv=y(4);
d=y(5);
% find the fractal geometry at a specific x level
W=wm/betaˆ(m-k);
Al = 2*d*(W+H-2*d); dAl = 2*W+2*H-8*d;
Av = W*H-2*d*H-2*d*W+4*dˆ2; dAv = -2*H-2*W+8*d;
% Pi = 2*(W-2*d)+2*(H-2*d);
% Plw = 2*(W+H);

% Determine flow conditions and shear stresses
% Vapor
% Dhv = 4*Av/(Pi); Rev = uv*Dhv*vv/muv;
% if Rev<2300;Cf = 16/Rev;else Cf = 0.078*Rev

ˆ(-1/4);end
% taulv = 1/2*Cf/vv*uvˆ2;
% tauvl = -taulv;
% Liquid
% Dhl = 4*Al/(Plw); Rel = ul*Dhl*vl/mul;
% if Rel<2300;Cf = 16/Rel;else Cf = 0.078*Rel

ˆ(-1/4);end
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% taulw = 1/2*Cf/vl*ulˆ2;

% Define and quantify the values and their derivatives
here

% Solving the nonlinear system of derivatives
A= [Al,0,ul*dAl;

0,Av,uv*dAv;
Al/vl,Av/vv,ul*dAl/vl+uv*dAv/vv];%0,0,1,-1,sigma*rˆ(-

2)];%
b=[-qflux*2*(W+H)*vl/hfg;

qflux*2*(W+H)*vv/hfg;
0];

%if any(isnan(A(:))) | | any(A(:)==inf)
% keyboard

%end
dy=pinv(A,eps)*b;
dy=[dy(1:2);0;0;dy(3)];

end

end

end

function [W a L a L f xf k array]=fractalGeometry(m,beta,gamma,wm,x)
% Calculates the fractal channel widths, individual channel lengths,
% cumulative channel length at each bifurcation and generates an

array of
% the same size as x with each variable
if max(size(x))==1

L ch=x;
x=linspace(0,L ch,m+1);

else
L ch=x(end);

end
dx=mean(diff(x));
wo=wm/betaˆm;
% Running Sum Channel Array
Lo=L ch/sum(gamma.ˆ(0:m)); % Branch 0 length in meters
L a=zeros(1,m+1);L f=L a;wa=L a;
for k=0:m

% Array of channel lengths (m)
% Cumulative channel length
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L a(k+1)=Lo*sum(gamma.ˆ(0:k));
% Individual channel lengths
L f(k+1)=Lo*gamma.ˆk;
% and widths
wa(k+1)=wo*beta.ˆk;

end
% Bifurcation Indices
bif ind=zeros(1,m+1);
try

for k=1:length(L a)
bif ind(k)=find(x≤L a(k),1,'last');

end
catch

save(['fractalGeometryError' datestr(now,30) '.mat']);

end
% These are arrays used for finding flow conditions in each branch

level
W a=wo*ones(size(x));
k array=0*x;
for k=1:m

% Array of k level numbers
k array(bif ind(k)+1:bif ind(k+1))=k;
% Channel Width
W a(bif ind(k)+1:bif ind(k+1))=wo*betaˆk; % meters

end
if length(x)==m+1

W a=wa;
end
% Generating the individual channel lengths for computing the

entrance
% effects
bif ind=[0 bif ind];
for k=1:m+1

xf(bif ind(k)+1:bif ind(k+1))=linspace(dx,L f(k)...
,length(bif ind(k)+1:bif ind(k+1)));

end

A.2.2 Optimization

A.2.2.1 Main Algorithm

function run 2p(choose flux)
warning off all
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%choose flux=100;
% wm (um)
% beta
% gamma
% H (um)
% L (m)
% m-1
% n0
% T in
% q in - wall heat flux (W/cmˆ2))
% m dot - inlet mass flow rate (g/min)
global g0 T a Tw a P a quality a VF a Pe% for finding the starting

point
study type='Parametric';
% study type='Gradient';
% study type='Direct';
% study type='Genetic';
%% Geometry and Flow
H=150; % microns
R=0.020; % meters

%% Constraints
a=0.1;bmin=1.5;bmax=2.5;d=1.5;
wm min=50; wm max=150;
wm = wm min;
beta min=0.5; beta max=2.0;
gamma min=0.51; gamma max=2.0; n0 min=3;
g0=[wm min beta min gamma min];
lower=[beta min gamma min];
upper=[beta max gamma max];
%% Execution
switch study type

case 'Parametric'
%
Pe range=101.3; % kPa-absolute
% Setting Ranges
Tin range=25;
qflux range=choose flux;%[10 50 100 150];
% m dot range=[5 25 50 75];
% wm range=100;%[10 50 70 100];
% beta range=[0.5 0.7 0.9 1.0 1.1 1.3 1.5];
% gamma range=[0.5 0.7 0.9 1.0 1.1 1.3 1.5];
for Pchf=0.7;%[0.7 0.8 0.9];

for Pe=Pe range;
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for qfluxd=qflux range
for Tin=Tin range

% for wm=wm range
% for beta=beta range;
% for gamma=gamma range
for m=9:-1:2

[n0 l n0 u]=n0 limits; % Finds acceptable limits for n0
for n0=n0 l:1:n0 u

disp([m n0])
%x=[wm beta gamma];
try

tic,
options start=optimset('display','final','

MaxFunEvals',1e4,'MaxIter',1e4);%,'Algorithm'...
%,'interior-point');
options=optimset('display','iter','MaxFunEvals',1e4

,'MaxIter',1e4,'tolfun',1e-4,'tolx',1e-3);
% Optimizing...
g0=[beta min,gamma max];
% x00=[0.5*(

beta max+beta min)...
% ,0.5*(

gamma min+gamma max)];
x00=[1*(beta max)...

,1*(gamma min)];
% Finding Starting Location:

x0=fmincon(@gstart,x00,[],[],[],[]...
,lower,upper,@(x)constraints(x,wm,H*1e-6,R,m,n0,a

,bmin,bmax,d,wm min)...
,options start);

[xf fval exitflag]=fmincon(@opt run 2p,x0
,[],[],[],[],lower,upper...

,@(x)constraints(x,wm,H*1e-6,R,m,n0,a,bmin,bmax,d
,wm min)...

,options);
endt=toc;
% recording the solution data:
sol name=['Opt CHF solution data StabConst '

num2str(qfluxd) '.txt'];% num2str(R) ' '...
%,num2str(qfluxd) ' ' num2str(wm) ' ' num2str(Tin)

'.txt'];
% Recording the temperature, pressure, quality and
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void fraction
% profiles
% Presssure
P a=P a(1)-P a(end);
%dlmwrite([sol name(1:end-4) ' P.txt'],P a,'-append

')
% Bulk Temperature
T a=max(T a);
%dlmwrite([sol name(1:end-4) ' T.txt'],T a,'-append

')
% Wall Temperature
Tw a=max(Tw a);
%dlmwrite([sol name(1:end-4) ' Tw.txt'],Tw a,'-

append')
% Qualtiy
W a=max(quality a);
%dlmwrite([sol name(1:end-4) ' quality.txt'],

quality a,'-append')
% Void Fraction
VF a=max(VF a);
%dlmwrite([sol name(1:end-4) ' VF.txt'],VF a,'-

append')
sol data=[m n0 xf P a T a Tw a W a VF a m dot qflux

wm Tin Pe endt fval exitflag];
dlmwrite(sol name,sol data,'-append');

catch
disp(lasterr);

%save(['Run2pErrorAt' datestr(now,30) '.mat']);
continue

end
end % n0 loop

end % m loop
% end % gamma loop
% end % beta loop
% end % wm loop

end % inlet Temperature Loop
end % Wall heat flux range

end % Exit Vacuum Condition Range
end % percent of CHF loop

end % switch study type

function Pow=opt run 2p(x)
%wm=x(1);
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beta=x(1);gamma=x(2);
%disp([beta gamma])
if any(isnan([beta,gamma,wm*1e-6]))

% beta = x0(1);
% gamma = x0(2);
% x = x0;
%wm = x0(1);

disp('NaN Values Appeared');
% NaN values are not allowed

end
Z=R-n0*wm*1e-6/(betaˆm*2*pi);
Z = 10e-6*round(Z/10e-6);
% check constraints
% c a=constraints(x,H,R,m,n0,a,bmin,bmax,d,wm min);
% disp(c a);

% Area generation for wall heat flux:
Lo=Z/sum(gamma.ˆ(0:m));wo=wm/betaˆm*1e-6;
Area s=sum(n0.*2.ˆ(0:m).*Lo.*gamma.ˆ(0:m)...
.*2.*(wo.*beta.ˆ(0:m)+H*1e-6));

Area d=pi*(Rˆ2-(R-Z)ˆ2);
qflux=qfluxd*Area d/Area s;
% Determine mdot from CHF condition

% Qu and Mudawar
%m dot a=CHFmdot(qflux*100ˆ2,H*1e-6,Z,m,beta,gamma,wm*1e-6,Pchf);

% g/min, initial guess for Twmax constraint
%m dot=max(m dot a.*n0.*2.ˆ(0:m))*60000;

% Revellin and Thome

m dot = OneDCHF(1/0.5*qflux*100ˆ2,m,n0,beta,gamma,wm*1e-6,Z,H*1e-
6);

m dot = m dot*60000; % g/min

[DP m dot T a Tw a P a quality a VF a]=run 2p code(x,wm,H,Z,m,n0,
Tin,qflux,m dot,1,[],Pe);

% Skipping to the single-phase algorithm
% if quality a(end)==0 | | isnan(quality a(end))==1
% % Run Pence's single phase code
% % with constraint for Twmax0-m dot iterations
%
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% [xs del Tb del Ts del P del]...
% =fractal(n0,m,m dot*1000/60000,wm,gamma,beta,

bmin,qflux,Z,H,Pe,Tin);
% DP=P a(1)-P a(end);
%
%
%
%
% end
Pow=m dot/1000/60000*DP; % Watts

end % Objective function for optimization

function res=gstart(x)

res=sum(sqrt((g0-x).ˆ2));

end % Function for finding a feasible starting loc.
function [n0 l n0 u]=n0 limits

wm min=wm min*1e-6;wm max=wm max*1e-6;
for kk = 1:m

k2 = kk-1;
gamma lim(2*kk-1) = 2*pi*R*beta maxˆm/(wm min*(((2*beta min)ˆk2

*d-1)*sum(gamma min.ˆ[0:m])/sum(gamma min.ˆ[0:k2])+1));
gamma lim(2*kk) = 2*pi*R*beta maxˆm/(wm min*(((2*beta min)ˆk2

*d-1)*sum(gamma max.ˆ[0:m])/sum(gamma max.ˆ[0:k2])+1));
end
n0 u = min(floor([2*pi*R*a*beta maxˆm/wm min, ...
2*pi*R/(2ˆm*bmin*wm min), ...
gamma lim]));

n0 l = max(ceil([n0 min,2*pi*R/(2ˆm*bmax*wm max)]));

wm min=wm min*1e6;wm max=wm max*1e6;
end

end % end the run 2p function

A.2.2.2 Sub Function

function [DP m dot T a Tw a P a quality a VF a]=run 2p code(xfunv,...
wm,hcin f,Z f,Levs f,No f,Tin t f,qsize,msize,rec array,TWMAX,Pe)

%#ok<INUSD,INUSL>
% This is the objective function for which optimization takes place
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wct f=wm;beta f=xfunv(1);gama f=xfunv(2); %#ok<NASGU>
% qsize=200;
% msize=9.71571862068966; %#ok<NASGU>

% Initializing necessary accounting arrays
Cipsize=2/3*ones(size(qsize)); %#ok<NASGU>
casen=(1:1:length(qsize)); %#ok<NASGU>
% finding mass flow rate to avoid CHF

% Executing Function
if rec array==1

Psize=100000*ones(size(qsize)); %#ok<NASGU>
StartPdrop f;

m dot=Gin*No f*wct f/beta fˆLevs f*hcin f*(1e-6)ˆ2*60000; %
Assigning the output

T a=real(T);
Tw a=real(Tw);
P a=real(P);
quality a=real(W);
VF a=real(VF);
DP=P(1)-P(end);

end % recording array statement

end % function

A.2.3 Constraints

function [c ceq]=constraints(x,...
wm,H,R,m,n0,a,bmin,bmax,d,wm min)

% With unit corrections
beta = x(1);
gamma = x(2);
wm = wm*1e-6;

ceq = [];

c(1) = n0*wm/betaˆm - 2*pi*R*a;



157

c(2) = -1;%2*pi*R/(2ˆm*bmax) - n0*wm;
c(3) = -1;%n0*wm - 2*pi*R/(2ˆm*bmin);
c(4:4+m-1)=zeros(1,m);
for k = 0:m-1

c(k+4) = d*(2*beta)ˆ(k+1) - 1....
- ((2*pi*betaˆm*R)/(n0*wm) -1)*sum(gamma.ˆ(0:k))/sum(gamma.

ˆ(0:m)); %#ok<AGROW>
end

c(k+4+1)=wm min*1e-6-wm/betaˆm;

c(k+4+2) =real(gamma-(beta-0.1)ˆ((3*H+wm)/(H+wm)));

end

A.2.4 Post Processing

clear;clc;%close all
% Opt CHF solution data betaall 100
% With stability criterion, set markers solid
mark = {'-ko','-ks','-kd','-kˆ','-kv','-k<','-k>','-kx','-k*'};
facecolor = 'none';
handvis = 'on';
count = 0;
%
% [35 60 80 125 200 300] % W/cmˆ2 betaall
%% Properties
sigma = 58.9e-3; % N/m
rho = 1/1.044e-3; % kg/mˆ3
mu = 279e-6; % Pa-s
Pr = 1.76;
R = 0.020; % meters
H = 150e-6; % meters
%% Plotting

for flux = [10 20 80 125 150 200] % W/cmˆ2 StabConst
count = count+1;
% load the data
data = importdata(['Opt CHF solution data NoStabConst ' num2str(

flux) '.txt']);
% find the limits of the data over which to loop over
% [m n0 xf P a T a Tw a W a VF a m dot qflux wm Tin Pe endt fval

exitflag]
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m = data(:,1); n0 = data(:,2); gamma = data(:,4); beta = data(:,3);
wm = data(:,12)*1e-6; P = data(:,5); T = data(:,6); Tw = data(:,7);

quality = data(:,8);
VF = data(:,9); mdot = data(:,10); qflux = data(:,11); endt = data

(:,15);
Pow = data(:,16); FLG = data(:,17);
tempPow = zeros(1,length(min(m):max(m)));tempQuality = tempPow;
tempBeta = tempPow; tempGamma = tempPow; tempWm = tempPow;
tempN0 = tempPow;tempflg = tempPow;tempmdot = tempPow;
ReMax = tempPow; ReMin = tempPow;WeMax = tempPow; WeMin = tempPow;
LsMax = tempPow; LsMin = tempPow;
ii=0;

for k = min(m):max(m)
ii=ii+1;
[tempPow(ii) ind] = min(Pow((m==k & FLG>0)));
tempQuality(ii) = quality(ind);
tempBeta(ii) = beta(ind);
tempGamma(ii) = gamma(ind);
tempWm(ii) = wm(ind);
tempN0(ii) = n0(ind);
tempflg(ii) = FLG(ind);
tempmdot(ii) = mdot(ind);
% Renolds, Webber and Lstar parameters
Re = fractalReynolds(k,tempN0(ii),tempBeta(ii),tempWm(ii),H,...

tempmdot(ii)/60000,rho,mu);
ReMax(ii) = max(Re);ReMin(ii) = min(Re);
We = fractalWebber(k,tempN0(ii),tempBeta(ii),tempWm(ii),H,...

tempmdot(ii)/60000,rho,sigma);
WeMax(ii) = max(We);WeMin(ii) = min(We);
Ls = fractalxstar(k,tempN0(ii),tempBeta(ii),tempGamma(ii),...

tempWm(ii),H,R,tempmdot(ii)/60000,rho,mu,Pr);
LsMax(ii) = max(Ls);LsMin(ii) = min(Ls);

end
% Power
figure(1);set(1,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),tempPow,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
% % flags
% figure(2);set(1,'position',[682 184 860 420]);
% hold on;plot(min(m):max(m),tempflg,mark{count},'markersize

',10,'displayname',...
% ['q'''' = ' num2str(flux) ' W/cmˆ2']);
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% n0
figure(6);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),tempN0,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);

% Quality
figure(2);set(2,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),tempQuality,mark{count},'markersize',10,

'displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
figure(7);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),ReMax,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
figure(8);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),WeMax,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
figure(9);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),LsMax,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
figure(10);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),ReMin,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
figure(11);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),WeMin,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
figure(12);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),LsMin,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
continue
% Beta
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figure(3);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),tempBeta,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
% Gamma
figure(4);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),tempGamma,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);
% wm
figure(5);set(gcf,'position',[682 184 860 420]);
hold on;plot(min(m):max(m),tempWm,mark{count},'markersize',10,'

displayname',...
['q'''' = ' num2str(flux) ' W/cmˆ2'],'markerfacecolor',facecolor,

'handlevisibility',handvis);

end
for i=[1:6 7:12];figure(i);h=legend('toggle');set(h,'Location','

EastOutside');end
figure(1);set(gca,'yscale','log')
ylabel('Flow Power (Watts)');
xlabel('m');
% figure(2);set(gca,'yscale','linear')
% ylabel('Convergence Flag');
% xlabel('m');
figure(7);
ylabel('Re {max}');
xlabel('m');
set(gca,'yscale','log')
figure(8);
ylabel('We {max}');
xlabel('m');
set(gca,'yscale','log')
figure(9);
ylabel('Ls {max}');
set(gca,'yscale','log')

xlabel('m');
figure(10);
ylabel('Re {min}');
xlabel('m');
set(gca,'yscale','log')
figure(11);
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ylabel('We {min}');
xlabel('m');
set(gca,'yscale','log')
figure(12);
ylabel('Ls {min}');
xlabel('m');
set(gca,'yscale','log')

figure(2);
ylabel('Quality');
xlabel('m');
figure(3);
ylabel('\beta');
xlabel('m');
figure(4);
ylabel('\gamma');
xlabel('m');
figure(5);
ylabel('w m (\mu m)');
xlabel('m');
figure(6);
ylabel('n 0');
xlabel('m');

function Fratio = fractalEvapMom(m,n0,beta,gamma,wm,R,H,qflux,mdot,
rhol,rhov,hfg)

Ltot = R-n0*wm/betaˆm/2/pi;
L0 = Ltot/sum(gamma.ˆ(0:m));
L = zeros(1,m+1);
for k = 0:m
i = k+1;
L(i) = L0*gamma.ˆk;

end
Adisk = pi*(Rˆ2-(R-Ltot)ˆ2);

Awall = n0*L(1)*(sum(2.ˆ((0:m)+1).*gamma.ˆ(0:m).*(H+wm./beta.ˆ(m-(0:m
)))));

qfluxwall = qflux*Adisk/Awall;

Fratio = L*0;
for k = 0:m

i = k+1;
Fratio(i) = rhol/rhov*(n0*2ˆk/mdot*qfluxwall*L(i)*2*(wm/betaˆ(m-k)+
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H)/hfg)ˆ2;
end

end

function Re = fractalReynolds(m,n0,beta,wm,H,mdot,rho,mu)
% Determines the Reynolds number = VDh/nu at each k level
Re = zeros(1,m+1);
for i = 1:m+1
k = i-1;
wk = wm/betaˆ(m-k);
Dh = 2*wk*H/(wk+H);
V = mdot/(rho*n0*2ˆk*wk*H);
Re(i) = rho*V*Dh/mu;

end

end

function We = fractalWebber(m,n0,beta,wm,H,mdot,rho,sigma)
% Determines the Webber number rhoVˆ2Dh/sigma at each k level
We = zeros(1,m+1);
for i = 1:m+1

k = i-1;
wk = wm/betaˆ(m-k);
Dh = 2*wk*H/(wk+H);
V = mdot/(rho*n0*2ˆk*wk*H);
We(i) = rho*Vˆ2*Dh/sigma;

end

function xs = fractalxstar(m,n0,beta,gamma,wm,H,R,mdot,rho,mu,Pr)
% determines the xˆ* = x/(DhRePr) value at each k level
Re = zeros(1,m+1);
xs = Re;
Ltot = R-n0*wm/betaˆm/(2*pi);
sg = sum(gamma.ˆ(0:m));
for i = 1:m+1

k = i-1;
wk = wm/betaˆ(m-k);
Dh = 2*wk*H/(wk+H);
V = mdot/(rho*n0*2ˆk*wk*H);
Re(i) = rho*V*Dh/mu;
L = Ltot/sg*gammaˆk;
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xs(i) = L/(Dh*Re(i)*Pr);
end

end

A.3 Single-Phase Heat Exchanger Model Code

A.3.1 Model Function File

function [epsilon,DTlm,UA,NTU,FlowPower h,FlowPower c,Eout,Cstar,
Thend,Tcend]=...
fractalHXsolver(xvariable,m dot c,m dot h,Thi,Tci,m,n0,ploton,L)

% Solves for the temperature and pressure in one fractal tree
% clear;%clc
% clc;close all

beta = xvariable(1);
gamma = xvariable(2);
wm = xvariable(3);
% close all;
% set(0,'DefaultFigureWindowStyle','normal')
%% PROPERTIES
m dot c=m dot c/n0;
m dot h=m dot h/n0;
% m dot c=30/60000;%3.6704e-06;%.30/60000/16; % kg/s
% m dot h=-3/60000;%3.6704e-06;%.30/60000/16; % kg/s
Th in=Thi;%115;%400-273.15; % Degrees C
Tc in=Tci;%115-75;%300-273.15; % Degrees C
k mat=400;%15.1; % W/mK
Pexit=101300; % Pascals
% Geometry
R=L;
H=250e-6; % meters
W=wm;%50e-6; % terminal channel width, meters
dx=100e-6;
t=717e-6;%500e-6; % Meters, the thickness of hot-cold interface
% n0=16;
mm=m;
% gamma=sqrt(2);
% beta=1/sqrt(2);
wo=W/betaˆmm;wm=W;
if mm>0
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L ch=R-n0*W/betaˆmm/2/pi; % meters, length of the tree
elseif mm==0

L ch = R*2;
end

% round L ch to the nearest dx
L ch=dx*round(L ch/dx);
% Controls:
% for the optimum
% to xˆ(-1/3)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% OUTPUT

% Tc new = 1 x N array: Final bulk cold side temperature
% Th new = 1 x N array: Final bulk hot side temperature
% q in = Global energy balance (hot side)
% q out = Global energy balance (cold side)
% run time = Total time to attain solution to residual criterion
% m = number of iterations to attain solution
% x = 1 x N array: x locations
% hot res = m x 2 array with residuals and their locations
% cold res = m x 2 array with residuals and their locations

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Saturated liquid water at 300K
rho c=997.56; % kg/mˆ3
Cp c=4.1817e3; % J/kg K
mu c=888.7e-6; % Ns/mˆ2
nu c=mu c/rho c; % mˆ2/s
k wat=620.3e-3; % W/mK
Pr c=Cp c*mu c/k wat; % Prandtl Number
% % Air at 300K
% rho c=1.184; % kg/mˆ3
% Cp c=1003; % J/kg K
% mu c=1.855e-5; % Ns/mˆ2
% nu c=mu c/rho c; % mˆ2/s
% k wat=0.02603; % W/mK
% Pr c=Cp c*mu c/k wat; % Prandtl Number

N=round((L ch/dx)+1);
u m c=m dot c/(rho c*H*W/betaˆmm); % meters/sec.

% % Engine Oil at 300K
% rho h=884; % kg/mˆ3
% Cp h=1.909e3; % J/kg K
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% mu h=48.6e-2; % Ns/mˆ2
% nu h=mu h/rho h; % mˆ2/s
% k oil=145e-3; % W/mK
% Pr h=Cp h*mu h/k oil; % Prandtl Number
% % Paratherm(R)
% rho h=720; % kg/mˆ3
% Cp h=1.909e3; % J/kg K
% mu h=0.00072; % Ns/mˆ2
% nu h=mu h/rho h; % mˆ2/s
% k oil=116e-3; % W/mK
% Pr h=Cp h*mu h/k oil; % Prandtl Number
% % Paratherm NF
rho h=863; % kg/mˆ3
Cp h=2.009e3; % J/kg K
nu h=11/1000ˆ2; %mu h/rho h; % mˆ2/s
mu h=nu h*rho h; % Ns/mˆ2
k oil=104e-3; % W/mK
Pr h=Cp h*mu h/k oil; % Prandtl Number
% Saturated liquid water
% rho h=997.56; % kg/mˆ3
% Cp h=4.1817e3; % J/kg K
% mu h=888.7e-6; % Ns/mˆ2
% nu h=mu c/rho c; % mˆ2/s
% k oil=620.3e-3; % W/mK
% Pr h=Cp h*mu h/k oil; % Prandtl Number
% % Air at 300K
% rho h=1.184; % kg/mˆ3
% Cp h=1003; % J/kg K
% mu h=1.855e-5; % Ns/mˆ2
% nu h=mu c/rho c; % mˆ2/s
% k oil=0.02603; % W/mK
% Dhh=4*(W*H)/(2*(W+H)); % m, hydraulic diameter
% Pr h=Cp c*mu c/k wat; % Prandtl Number
kf c=k wat;kf h=k oil;
% k l=k wat;k h=k oil;
u m h=abs(m dot h/(rho h*H*W/betaˆmm));
% Initializing the streamwise distance array
x=0:dx:L ch;
% building the matrix
%% SOLID GEOMETRY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Axial heat transfer area
if mm>0

Axs=(([0 x(1:end-1)+dx/2])+wo*n0/2/pi)*2*pi/n0*t; % mˆ2
else
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Axs=wm*2*t*ones(1,N);
end
%% COLD SIDE GEOMETRY AND FLOW
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Running Sum Channel Array
Lo=L ch/sum(gamma.ˆ(0:mm)); % Branch 0 length in meters
L a=zeros(1,mm+1);L f=L a;
for k=0:mm

% Array of channel lengths (m)
L a(k+1)=(1*Lo*sum(gamma.ˆ(0:k)));
L f(k+1)=(1*Lo*gamma.ˆk);

end
% Bifurcation Indices
bif ind=zeros(1,mm+1);

for k=1:length(L a)
bif ind(k)=find(x≤L a(k),1,'last');

end
bif ind(end) = length(x); % ensure no roundoff errors
% These are arrays used for finding flow conditions in each branch

level
V a c=0*x;m dot c a=0*x;
W a=wo*ones(size(x));
V a c(1:bif ind(1))=u m c;
m dot c a(1:bif ind(1))=m dot c;
k array=0*x;
for k=1:mm

k array(bif ind(k)+1:bif ind(k+1))=k;
% Velocity
V a c(bif ind(k)+1:bif ind(k+1))=u m c/(2ˆk*betaˆk); % m/s
% Mass Flux
m dot c a(bif ind(k)+1:bif ind(k+1))=m dot c/(2ˆk); % kg/s/mˆ2
% Channel Width
W a(bif ind(k)+1:bif ind(k+1))=wo*betaˆk; % meters

end
% Fin width
r=(x+wm*n0/2/pi/betaˆmm);
if mm>0

Wf=(r*2*pi-W a.*n0.*2.ˆk array)./(n0*2.ˆk array)+1e-6;
else

Wf=wm;
end
Dh=4*W a*H./(2*(W a+H));
Re c=V a c.*Dh/nu c;
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% Generating the individual channel lengths for computing the
entrance

% effects
bif ind=[0 bif ind];
for k=1:mm+1

xf(bif ind(k)+1:bif ind(k+1))=linspace(dx,L f(k)...
,length(bif ind(k)+1:bif ind(k+1)));

end
% Generating Nusselt Number Correlations and thermal resistance
Nu c=0.0949*(xf./(Dh.*Re c*Pr c)).ˆ(-0.7875);h c=Nu c./Dh*k wat;
mL=sqrt(2*dx*Nu c./Dh*k wat./(k mat*Wf*dx)).*(H+Wf/2);
eta c=tanh(mL)./mL;
R c=1./(eta c.*h c.*2.*(W a+H)*dx)+t./(2*(k mat*W a*dx));
%% HOT SIDE GEOMETRY AND FLOW
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Running Sum Channel Array
Lo=L ch/sum(gamma.ˆ(0:mm)); % Branch 0 length in meters
L a=zeros(1,mm+1);L f=L a;
for k=0:mm

% Array of channel lengths (m)
L a(k+1)=(1*Lo*sum(gamma.ˆ(0:k)));
L f(k+1)=(1*Lo*gamma.ˆk);

end
x=0:dx:L ch;
% Bifurcation Indices
bif ind=zeros(1,mm+1);
for k=1:length(L a)

bif ind(k)=find(x≤L a(k),1,'last');
end
bif ind(end) = length(x); % ensure no roundoff errors
% These are arrays used for finding flow conditions in each branch

level
V a h=0*x;m dot h a=0*x;
W a=wo*ones(size(x));
V a h(1:bif ind(1))=u m h;
m dot h a(1:bif ind(1))=m dot h;
k array=0*x;
for k=1:mm

k array(bif ind(k)+1:bif ind(k+1))=k;
% Velocity
V a h(bif ind(k)+1:bif ind(k+1))=u m h/(2ˆk*betaˆk); % m/s
% Mass Flux
m dot h a(bif ind(k)+1:bif ind(k+1))=m dot h/(2ˆk); % kg/s/mˆ2
% Channel Width
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W a(bif ind(k)+1:bif ind(k+1))=wo*betaˆk; % meters
end
Dh=4*W a*H./(2*(W a+H));
Re h=V a h.*Dh/nu h;
% Generating the individual channel lengths for computing the

entrance
% effects
bif ind=[0 bif ind];
for k=1:mm+1

switch sign(m dot h)
case 1

xfh(bif ind(k)+1:bif ind(k+1))=linspace(dx,L f(k)...
,length(bif ind(k)+1:bif ind(k+1)));

case -1
xfh(bif ind(k)+1:bif ind(k+1))=fliplr(linspace(dx,L f(k)

...
,length(bif ind(k)+1:bif ind(k+1))));

end
end
% Generating Nusselt Number Correlations and thermal resistances
Nu h=0.0949*(xfh./(Dh.*Re h*Pr h)).ˆ(-0.7875);h h=Nu h./Dh*k oil;
mL=sqrt(2*dx*Nu h./Dh*k oil./(k mat*Wf*dx)).*(H+Wf/2);
eta h=tanh(mL)./mL;
R h=1./(eta h.*h h*2.*(W a+H)*dx)+t./(2*(k mat*W a*dx));

%% PRESSURE DROP AND FLOW POWER CALCULATIONS
AR=zeros(1,N);Ph=AR+Pexit;Pc=Ph;
% Generate the coefficients for each x-location
switch sign(m dot h)

case 1
Narray=N-1:-1:1;

case -1
Narray=2:N;

end
for i=Narray

% Aspect Ratio
AR(i)=min([H/W a(i) W a(i)/H]);
[CfpRe Kinf CC]=Pconstant(AR(i));
% Hot Side
psi=xfh(i)/(Re h(i)*Dh(i));
Cfapp=(3.44/sqrt(psi)+...

(CfpRe+(Kinf/4/psi)-3.44/sqrt(psi))...
/(1+(CC/psiˆ2)))/Re h(i);

Ph(i)=Ph(i+sign(m dot h))+1/2*rho h*(V a h(i))ˆ2*Cfapp*4*dx/(Dh(i
));
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end
% Cold Side
for i=N-1:-1:1

[CfpRe Kinf CC]=Pconstant(AR(i));
psi=xf(i)/(Re c(i)*Dh(i));
Cfapp=(3.44/sqrt(psi)+...

(CfpRe+(Kinf/4/psi)-3.44/sqrt(psi))...
/(1+(CC/psiˆ2)))/Re c(i);

Pc(i)=Pc(i+1)+1/2*rho c*(V a c(i))ˆ2*Cfapp*4*dx/(Dh(i));
end
% Flow Power
FlowPower h=n0*(Ph(1)-Ph(end))*m dot h/rho h;
FlowPower c=n0*(Pc(1)-Pc(end))*m dot c/rho c;
%% COLD SIDE HEAT TRANSFER MATRIX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % Cold matrix
% Cdiag= [1 -m dot c a(2:end)*Cp c-[2*kf c*W a(2:end-1) kf c*W a

(end)]*H/dx-[1./R c(2:end-1) 0]];
% Cdiagupper= [0 kf c*W a(2:end-1)*H/dx];
% Cdiaglower= m dot c a(2:end)*Cp c+kf c*W a(2:end)*H/dx;
%
% C=diag(Cdiaglower,-1)+diag(Cdiag,0)+diag(Cdiagupper,1);
% % Cold to solid matrix
% C S=diag([0 1./R c(2:end-1) 0],0);
switch sign(m dot c);

case -1
Tc out=Tc in;
Tc in=0;
InletCoef=Cp c*m dot c a(2)-kf c*W a(1)*H/dx;
InnerCoef=Cp c*m dot c a(3:end)-2*kf c*W a(2:end-1)*H/dx-1./

R c(2:end-1);
OutletCoef=1;
CCdiaglower=[kf c*W a(2:end-1)*H/dx 0];
CCdiagupper=-Cp c*m dot c a(2:end)+kf c*W a(1:end-1)*H/dx;

case 1
Tc out=0;
InletCoef=1;
InnerCoef=-Cp c*m dot c a(2:end-1)-2*kf c*W a(2:end-1)*H/dx-1

./R c(2:end-1);
OutletCoef=-Cp c*m dot c a(end)-kf c*W a(end)*H/dx;
CCdiagupper=[0 kf c*W a(2:end-1)*H/dx];
CCdiaglower=Cp c*m dot c a(2:end)+kf c*W a(2:end)*H/dx;

end
CCdiag=[InletCoef InnerCoef OutletCoef];
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C=diag(CCdiaglower,-1)+diag(CCdiag,0)+diag(CCdiagupper,1);
C S=diag([0 1./R c(2:end-1) 0],0);

%% SOLID HEAT TRANSFER MATRIX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Sdiag= [-k mat*Axs(1)/dx -k mat*Axs(1:end-2)/dx-k mat*Axs(2:end-

1)/dx-1./R c(2:end-1)-1./R h(2:end-1) -k mat*Axs(end-1)/dx];
Sdiagupper= k mat*Axs(1:end-1)/dx;
Sdiaglower= k mat*Axs(1:end-1)/dx;
S=diag(Sdiag,0)+diag(Sdiagupper,1)+diag(Sdiaglower,-1);
% Hot to solid matrix
HH S=diag([0 1./R h(2:end-1) 0],0);

%% HOT SIDE HEAT TRANSFER MATRIX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch sign(m dot h);

case -1
Th out=Th in;
Th in=0;
InletCoef=Cp h*m dot h a(2)-kf h*W a(1)*H/dx;
InnerCoef=Cp h*m dot h a(3:end)-2*kf h*W a(2:end-1)*H/dx-1./

R h(2:end-1);
OutletCoef=1;
HHdiaglower=[kf h*W a(2:end-1)*H/dx 0];
HHdiagupper=-Cp h*m dot h a(2:end)+kf h*W a(1:end-1)*H/dx;

case 1
Th out=0;
InletCoef=1;
InnerCoef=-Cp h*m dot h a(2:end-1)-2*kf h*W a(2:end-1)*H/dx-1

./R h(2:end-1);
OutletCoef=-Cp h*m dot h a(end)-kf h*W a(end)*H/dx;
HHdiagupper=[0 kf h*W a(2:end-1)*H/dx];
HHdiaglower=Cp h*m dot h a(2:end)+kf h*W a(2:end)*H/dx;

end
HHdiag=[InletCoef InnerCoef OutletCoef];
HH=diag(HHdiaglower,-1)+diag(HHdiag,0)+diag(HHdiagupper,1);

%% SOLVING THE HEAT TRANSFER MATRIX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Z=zeros(N);
A= [C C S Z;C S S HH S;Z HH S HH];
b=[Tc in zeros(1,2*N-2) Tc out Th in zeros(1,N-2) Th out]';
T=A\b; % Solving
Tc=T(1:N);Ts=T(N+1:2*N);Th=T(2*N+1:end);
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%% OUTPUT PARAMETERS
% Ein=n0*m dot c*Cp c*(Tc(end)-Tc(1));%+n0*kf c*W a(1)*H*(Tc(2)-Tc(1)

)/dx;
Tcend=max(Tc);
Thend=min(Th);
Eout=n0*m dot h*Cp h*(Th(1)-Th(end));%-n0*kf h*W a(1)*H*(Th(2)-Th(1))

/dx+...
% Eout=Ein;
% n0*kf h*W a(end)/dx*(Th(end)-Th(end-1))*2ˆmm;
% figure(4);hold on;plot(Ein,Eout,'ko');hold off;
Cstar=min(abs([m dot h*Cp h/m dot c/Cp c m dot c*Cp c/m dot h/Cp h]))

;
DTlm=((Th(1)-Tc(1))-(Th(end)-Tc(end)))/log((Th(1)-Tc(1))/(Th(end)-Tc(

end)));
UA=Eout/DTlm;
Cmin=n0*min(abs([m dot c*Cp c m dot h*Cp h]));
NTU=UA/Cmin;
epsilon=max([abs(Tc(1)-Tc(end)) abs(Th(1)-Th(end))])/(Thi-Tci);
% epsilon=Eout/Cmin/(Thi-Tci);
endt=toc;
if ploton==1;

mark='-';
figure(10),
cla
plot(x,Tc,['b' mark],'displayname',...

['Gridsize = ' num2str(1e6*dx,'%3.0f') ' \mum,\newlineSolution
time = ' num2str(endt,'%2.2f') ' sec']...

,'linewidth',1.5);hold on;
plot(x,Ts,['k' mark],'handlevisibility','off','linewidth',1.5);
plot(x,Th,['r' mark],'handlevisibility','off','linewidth',1.5);
plot(x,Tc(1)+40+x*0,'k--','linewidth',1.5);
hold off
xlabel('$x¬(meters)$','interpreter','latex');
ylabel('$T¬(ˆ\circ C)$','interpreter','latex');
drawnow;pause(0.1);
Dprintpdf(gcf,['/Users/Doug/Desktop/OSUResearch/

OptimizationAlgorithm/fractalHXmodel/ParametricStudy/mdot'
num2str(m dot h*60000) '.pdf']);

% title(['m = ' num2str(mm)]);
% text(x(round(N/4)),Thi,{['\epsilon = ' num2str(epsilon,'%2.2f')

],...
% ['C C = ' num2str(m dot c*n0*Cp c)],...
% ['C H = ' num2str(m dot h*n0*Cp h)]});

end
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end

A.3.2 Parametric Search

function CounterFlowParametricFractalHX(beta,gamma,n0,m,wmo,nameid)
warning off all
% [epsilon,DTlm,UA,NTU,FlowPower h,FlowPower c,Eout,Cstar,endt,Tcend

]=...
% fractalHXsolver(xvariable,m dot c,m dot h,Thi,Tci,m,n0,ploton,L

);
%% Controls, Constants and Limits
n0o = n0;
ploton = 1;
beta min = 0.5; beta max = 2.0;
gamma min = 0.5; gamma max = 2.0;
wm min = 50e-6; wm max = 150e-6;
Thio = 150;
Thi a = 60:40:200;
Tci = 20;
flag2 = NaN;
Ro = 0.020; % meters, disk radius
R a = 0.01:0.01:0.080;
%wmo = 100e-6;
wm a = (wm min:10e-6:wm max);
DT a = 40;%(10:10:70); % degrees C temperature rise on the cold side
m dot c a = 30/60000;%[1 10 50 100 150 250 500]/60000; % kg/s cold

side mass flow rate
d = 1.5; bmin = 1.5; bmax = 2.5;
a = 0.1; n0 min = 3;
options mdot = optimset('display','none','tolx',eps,'tolfun',eps...
,'maxiter',10000,'maxfuneval',10000);

%% Vary wm
R = Ro; Thi = Thio;
savename = ['CounterFlowParametric 3geom ' nameid '.txt'];
for m dot c = m dot c a
for DT = DT a

for wm = wm a % The independent variable loop
disp(wm);

n0 = floor(n0o*wmo/wm);
if n0≤0
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n0=1;
end
try

tic
xfinal = [beta gamma wm];
if 1;%all(constraints(xfinal,R,m,n0,a,bmin,bmax,d,wm)≤0)
% Running Model
OptEpsilon p = FindFractalHXmdot(xfinal);
keyboard
% [xfinal,OptEpsilon p,flag2]=fmincon(

@FindFractalHXmdot,x0,...
% [],[],[],[],[beta min,gamma min,

wm min],[beta max,gamma max,wm max]...
% ,@(x)constraints(x,R,m,n0,a,bmin,bmax

,d,wm min),opt options);
endt = toc;

savedata = [m,n0,xfinal,R,epsilon,DTlm,UA,NTU,PowH,PowC,
Eout,Cstar,Tce,Thi,The,m dot h,OptEpsilon p,flag1,flag2,
endt];

dlmwrite(savename,savedata,'-append');
end
% Printing the error and continuing

catch %#ok<CTCH>
disp(lasterr); %#ok<LERR>

end
end % the variable loop

end % the DT Loop
end % the m dot c loop
%% Vary R
Thi = Thio; wm = wmo;
for m dot c = m dot c a
for DT = DT a

for R = R a % The independent variable loop
disp(R);

n0 = floor(n0o*R/Ro);
if n0≤0

n0=1;
end
try

tic
xfinal = [beta gamma wm];
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if 1;%all(constraints(xfinal,R,m,n0,a,bmin,bmax,d,wm)≤0)
% Running Model
OptEpsilon p = FindFractalHXmdot(xfinal);

% [xfinal,OptEpsilon p,flag2]=fmincon(
@FindFractalHXmdot,x0,...

% [],[],[],[],[beta min,gamma min,
wm min],[beta max,gamma max,wm max]...

% ,@(x)constraints(x,R,m,n0,a,bmin,bmax
,d,wm min),opt options);

endt = toc;

savedata = [m,n0,xfinal,R,epsilon,DTlm,UA,NTU,PowH,PowC,
Eout,Cstar,Tce,Thi,The,m dot h,OptEpsilon p,flag1,flag2,
endt];

dlmwrite(savename,savedata,'-append');
end
% Printing the error and continuing

catch %#ok<CTCH>
disp(lasterr); %#ok<LERR>

end
end % the variable loop

end % the DT Loop
end % the m dot c loop
%% Vary Thi
R = Ro; wm = wmo;
for m dot c = m dot c a
for DT = DT a

for Thi = Thi a % The independent variable loop
disp(Thi);
try

tic
xfinal = [beta gamma wm];
if 1;%all(constraints(xfinal,R,m,n0,a,bmin,bmax,d,wm)≤0)
% Running Model
OptEpsilon p = FindFractalHXmdot(xfinal);

% [xfinal,OptEpsilon p,flag2]=fmincon(
@FindFractalHXmdot,x0,...

% [],[],[],[],[beta min,gamma min,
wm min],[beta max,gamma max,wm max]...

% ,@(x)constraints(x,R,m,n0,a,bmin,bmax
,d,wm min),opt options);
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endt = toc;

savedata = [m,n0,xfinal,R,epsilon,DTlm,UA,NTU,PowH,PowC,
Eout,Cstar,Tce,Thi,The,m dot h,OptEpsilon p,flag1,flag2,
endt];

dlmwrite(savename,savedata,'-append');
end
% Printing the error and continuing

catch %#ok<CTCH>
disp(lasterr); %#ok<LERR>

end
end % the variable loop

end % the DT Loop
end % the m dot c loop
%% Functions

% Function to find the mass flow rate
function Epsilon p inverse = FindFractalHXmdot(xvar)

[m dot h,¬,¬,flag1]=lsqnonlin(@fractalsect,-m dot c,-inf,0,
options mdot);

[epsilon,DTlm,UA,NTU,PowH,PowC,Eout,Cstar,The,Tce]...
=fractalHXsolver...
(xvar,m dot c,m dot h,Thi,Tci,m,n0,ploton,R);

Epsilon p inverse = (PowH+PowC)/Eout;
function y=fractalsect(x)

% [epsilon(i,j),DTlm(i,j),UA(i,j),NTU(i,j),PowH(i,j),
PowC(i,j),Eout(i,j),Cstar(i,j),endt,y]...

[¬,¬,¬,¬,¬,¬,¬,¬,¬,y]...
=fractalHXsolver...
(xvar,m dot c,x,Thi,Tci,m,n0,ploton,R);

y=y-(Tci+DT);

end
end

% Function to find the n0 limits
function [n0 l n0 u]=n0 limits %#ok<DEFNU>

gamma lim = zeros(1,2*m);
for kk = 1:m

k2 = kk-1;
gamma lim(2*kk-1) = 2*pi*R*beta maxˆm/(wm min*(((2*beta min)ˆk2

*d-1)*sum(gamma min.ˆ(0:m))/sum(gamma min.ˆ(0:k2))+1));
gamma lim(2*kk) = 2*pi*R*beta maxˆm/(wm min*(((2*beta min)ˆk2
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*d-1)*sum(gamma max.ˆ(0:m))/sum(gamma max.ˆ(0:k2))+1));
end
n0 u = min(floor([2*pi*R*a*beta maxˆm/wm min, ...
2*pi*R/(2ˆm*bmin*wm min), ...
gamma lim]));

n0 l = max(ceil([n0 min,2*pi*R/(2ˆm*bmax*wm max)]));

end

end

A.3.3 Post Processing

% PP4Geom.m
clear;clc;close all

%% Conditions and formatting
GEOM = [1/sqrt(2) sqrt(2) 16 4 100e-6

1/sqrt(2) 1/sqrt(2) 16 4 100e-6
0.75 1.18 79 4 50e-6
1/sqrt(2) sqrt(2) 400 0 50e-6];

GeomName = {'frac1','frac2','frac3','straight'};
mdoth = [1 10 100 250 500]; % g/min
flowconf = {'CoFlow','CounterFlow'}; %
mdoth leg = {'k-','k--','k-.','k-o','k-*'};
chilpos = [ 0.1848 0.1163 0.2799 0.2157

0.6251 0.4423 0.2799 0.2157
0.1848 0.4423 0.2799 0.2157
0.6251 0.7696 0.2799 0.2157
0.1848 0.7696 0.2799 0.2157]; % positions for the subplots

DTa = [10 20 30 50 60];
DT a = (10:10:70); % degrees C temperature rise on the cold side
m dot c a = [1 10 50 100 150 250 500]/60000; % kg/s cold side mass

flow rate
Ra = 0.01:0.01:0.08;
wmind = 5; % index for wm
yind = 18; % epsilon 7; % e p 19 % mdoth 18
ylabelstr = '$\dot{m} h (g/min)$';rotation = 90;
% ylabelstr = '$\varepsilon$'; rotation = 0;
% ylabelstr = '$\epsilon p$'; rotation = 0;
% varname = 'epsilon';
% varname = 'ep';
% ylimshift = 4; % ep, eps
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ylimshift = 0; % mdot
varname = 'mdot';
% setylim = [0.505 1]; % epsilon
% setylim = [1e2 1e6]; % e p
setylim = [1e-1 500]; % mdoth
setyscale = 'log';
for j = 1:length(flowconf);

for i = 1:size(GEOM,1)
if i 6=3

continue
end
beta = GEOM(i,1); gamma = GEOM(i,2); n0 = GEOM(i,3); m = GEOM(i

,4); % wmo = GEOM(i,5);
newloadname = ['New' flowconf{j} 'Parametric 3geom ' GeomName{i}

'.txt'];
data = importdata(newloadname);

% [m,n0,beta,gamma,wm,R,epsilon,DTlm,UA,NTU,PowH,PowC,Eout,Cstar,
Tce,Thi,The,m dot h,OptEpsilon p,flag1,flag2,endt,mdotc,DTc];

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24%

%% Filtering out bad data
data = data(data(:,20)>0,:);% non-convergence
data = data(data(:,13)>0,:);% bad energy
data = data(data(:,7)≤1,:);% bad epsilon

%% Plotting for Varying R
varind = 6; % Radius
wmo = GEOM(i,5);
Tho = 150;

iind = (data(:,wmind)==wmo & data(:,16)==Tho); %
ydata = data(iind,yind);
mdata = data(iind,23);
DTdata = data(iind,24);
vardata = data(iind,varind);
% filter the x and y data, for best cases corresponding to a

specific
% disk radius
figure(i+(j-1)*4);set(i+(j-1)*4,'Position',[440 -17 637

795],'name'...
,[varname GeomName{i} flowconf{j} 'R']);

count = 0;
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for DT = DTa
if DT 6=20 %&& DT 6=60

continue
end
count = count+1;
ax=subplot(3,2,count);
count2 = 0;
for mdot = mdoth

count2 = count2+1;
ind = (mdata==mdot & DTdata==DT);
tempdata=[vardata(ind) ydata(ind)];
tempdata=sortrows(tempdata,1);
% Plotting each subplot
if yind==19 % e p

tempdata(:,2) = 1./tempdata(:,2);
elseif yind==18 % mdoth

tempdata(:,2) = 60000*abs(tempdata(:,2));
end
plot(tempdata(:,1)*1e3,tempdata(:,2),mdoth leg{count2}...

,'linewidth',1.0,'displayname',['$\dot{m} c = ' num2str(
mdot,'%3.0f') 'g/min$']);hold on

% plot(tempdata(:,1)*1e3,(1./tempdata(:,3))/0.5e6,
mdoth leg{count2}...

% ,'linewidth',1.0,'handlevisibility','off');hold on
end
set(ax,'ylim',setylim,'xlim',[10 80],'yscale',setyscale);
yla = ylabel(ylabelstr,'interpreter','latex','rotation',

rotation);
set(yla,'position',get(yla,'position')-[ylimshift 0 0]);
xlabel('$R (mm)$','interpreter','latex')
% "a" begins with 97
titlestring = ['$(' char(96+count) ') \Delta T c = ' num2str(DT

) 'ˆ{\circ}C$'];

% tt=title(titlestring,'interpreter','latex');
% set(tt,'units','normalized');
% postt = get(tt,'Position');
set(gca,'position',chilpos(6-count,:));
posax = get(gca,'Position');
an = annotation('textbox',[posax(1),posax(2)-0.0955,posax(3),0

.0332],...
'string',titlestring,'interpreter','latex','

HorizontalAlignment','center'...
,'EdgeColor','none');

end
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% Fixing the legend
p1leg = legend('toggle','location','BestOutside');
set(p1leg,'interpreter','latex','Position',[0.6001 0.0833 0

.2834 0.1981])

%% Plotting for Varying wm
varind = 5; % w m
varo = GEOM(i,5);
Ro = 0.020;

iind = (data(:,6)==Ro & data(:,16)==Tho); %
ydata = data(iind,yind);
mdata = data(iind,23);
DTdata = data(iind,24);
vardata = data(iind,varind);

% Plot the independent variable (parametrically varied) versus
the

% performance variable of interest
figure(i+(j-1)*4+8);set(i+(j-1)*4+8,'Position',[440 -17 637

795],'name'...
,[varname GeomName{i} flowconf{j} 'Wm']);

count = 0;
for DT = DTa

if DT 6=20 %&& DT 6=60
continue

end
count = count+1;
ax=subplot(3,2,count);
count2 = 0;
for mdot = mdoth

count2 = count2+1;
ind = (mdata==mdot & DTdata==DT); % inner indices
tempdata=[vardata(ind) ydata(ind)];
tempdata=sortrows(tempdata,1);
% Plotting each subplot
if yind==19

tempdata(:,2) = 1./tempdata(:,2);
elseif yind==18 % mdoth

tempdata(:,2) = 60000*abs(tempdata(:,2));
end
plot(tempdata(:,1)*1e6,tempdata(:,2),mdoth leg{count2}...
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,'linewidth',1.0,'displayname',['$\dot{m} c = ' num2str(
mdot,'%3.0f') 'g/min$']);hold on

% plot(tempdata(:,1)*1e6,(1./tempdata(:,3))/0.5e6,
mdoth leg{count2}...

% ,'linewidth',1.0,'handlevisibility','off');hold on

end
set(ax,'ylim',setylim,'xlim',[50 150],'yscale',setyscale);
ylabel(ylabelstr,'interpreter','latex','rotation',rotation)
xlabel('$w m (\mu m)$','interpreter','latex')
% "a" begins with 97
titlestring = ['$\left(' char(96+count) '\right) \Delta T c = '

num2str(DT) 'ˆ{\circ}C$'];
set(gca,'position',chilpos(6-count,:));
posax = get(gca,'Position');
an = annotation('textbox',[posax(1),posax(2)-0.0955,posax(3),0

.0332],...
'string',titlestring,'interpreter','latex','

HorizontalAlignment','center'...
,'EdgeColor','none');

end

% Fixing the legend
p1leg = legend('toggle','location','BestOutside');
set(p1leg,'interpreter','latex','Position',[0.6001 0.0833 0

.2834 0.1981])
%% Plotting for Varying Tin

end
end
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Appendix B – Fractal-like Heat Exchanger Parametric Analysis
Figures
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Table B.1: Geometric parameters of the three heat exchanger geometries with
Tc,in = 20◦C, Th,in = 150◦C, H = 250 µm, t = 717 µm and R = 20 mm

Geometry n0 m wm(µm) β γ
G1 16 4 100 0.707 1.41
G2 16 4 100 0.707 0.707
G3 79 4 50 0.750 1.18
G4 400 0 50 - -

Table B.1 outlines the various geometries used to generate the following plots
in this appendix. It should be mentioned that G4 in Table B.1 is not fractal-like,
rather it is an array of parallel, straight channels arranged in a square geometry,
not a disk shape. The results of this Appendix were generated by solving for the
hot side mass flow rate that satisfied a fixed cold side mass flow rate and cold side
temperature drop.
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ṁc = 250g/min
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Figure B.1: Benefit to cost ratio of geometry G1 for varying ∆Tc, R, and ṁc in
the co-flow configuration
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Figure B.2: Benefit to cost ratio of geometry G2 for varying ∆Tc, R, and ṁc in
the co-flow configuration
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Figure B.3: Benefit to cost ratio of geometry G3 for varying ∆Tc, R, and ṁc in
the co-flow configuration
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Figure B.4: Benefit to cost ratio of geometry G4 for varying ∆Tc, R, and ṁc in
the co-flow configuration
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Figure B.5: Benefit to cost ratio of geometry G1 for varying ∆Tc, R, and ṁc in
the counter-flow configuration
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ṁc = 10g/min

ṁc = 100g/min
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Figure B.6: Benefit to cost ratio of geometry G2 for varying ∆Tc, R, and ṁc in
the counter-flow configuration
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Figure B.7: Benefit to cost ratio of geometry G3 for varying ∆Tc, R, and ṁc in
the counter-flow configuration
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Figure B.8: Benefit to cost ratio of geometry G4 for varying ∆Tc, R, and ṁc in
the counter-flow configuration
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ṁc = 100g/min
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Figure B.9: Benefit to cost ratio of geometry G1 for varying ∆Tc, wm, and ṁc in
the co-flow configuration
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Figure B.10: Benefit to cost ratio of geometry G2 for varying ∆Tc, wm, and ṁc in
the co-flow configuration
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Figure B.11: Benefit to cost ratio of geometry G3 for varying ∆Tc, wm, and ṁc in
the co-flow configuration
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Figure B.12: Benefit to cost ratio of geometry G4 for varying ∆Tc, wm, and ṁc in
the co-flow configuration
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Figure B.13: Benefit to cost ratio of geometry G1 for varying ∆Tc, wm, and ṁc in
the counter-flow configuration
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ṁc = 10g/min
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Figure B.14: Benefit to cost ratio of geometry G2 for varying ∆Tc, wm, and ṁc in
the counter-flow configuration
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Figure B.15: Benefit to cost ratio of geometry G3 for varying ∆Tc, wm, and ṁc in
the counter-flow configuration
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Figure B.16: Benefit to cost ratio of geometry G4 for varying ∆Tc, wm, and ṁc in
the counter-flow configuration
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Figure B.17: Heat exchanger effectiveness of geometry G1 for varying ∆Tc, R, and
ṁc in the co-flow configuration
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Figure B.18: Heat exchanger effectiveness of geometry G2 for varying ∆Tc, R, and
ṁc in the co-flow configuration
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Figure B.19: Heat exchanger effectiveness of geometry G3 for varying ∆Tc, R, and
ṁc in the co-flow configuration
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Figure B.20: Heat exchanger effectiveness of geometry G4 for varying ∆Tc, R, and
ṁc in the co-flow configuration
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Figure B.21: Heat exchanger effectiveness of geometry G1 for varying ∆Tc, R, and
ṁc in the counter-flow configuration
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Figure B.22: Heat exchanger effectiveness of geometry G2 for varying ∆Tc, R, and
ṁc in the counter-flow configuration
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Figure B.23: Heat exchanger effectiveness of geometry G3 for varying ∆Tc, R, and
ṁc in the counter-flow configuration
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Figure B.24: Heat exchanger effectiveness of geometry G4 for varying ∆Tc, R, and
ṁc in the counter-flow configuration
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Figure B.25: Heat exchanger effectiveness of geometry G1 for varying ∆Tc, wm,
and ṁc in the co-flow configuration
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Figure B.26: Heat exchanger effectiveness of geometry G2 for varying ∆Tc, wm,
and ṁc in the co-flow configuration
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Figure B.27: Heat exchanger effectiveness of geometry G3 for varying ∆Tc, wm,
and ṁc in the co-flow configuration
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ṁc = 1g/min
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Figure B.28: Heat exchanger effectiveness of geometry G4 for varying ∆Tc, wm,
and ṁc in the co-flow configuration
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Figure B.29: Heat exchanger effectiveness of geometry G1 for varying ∆Tc, wm,
and ṁc in the counter-flow configuration
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Figure B.30: Heat exchanger effectiveness of geometry G2 for varying ∆Tc, wm,
and ṁc in the counter-flow configuration
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Figure B.31: Heat exchanger effectiveness of geometry G3 for varying ∆Tc, wm,
and ṁc in the counter-flow configuration
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Figure B.32: Heat exchanger effectiveness of geometry G4 for varying ∆Tc, wm,
and ṁc in the counter-flow configuration
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