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APPLICATIONS OF COLLECTIVELY COMPACT OPERATOR
THEORY TO THE EXISTENCE OF EIGENVALUES OF

INTEGRAL OPERATORS

I. INTRODUCTION

In a recent paper by Russell and Shampine [7], the existence of

eigenvalues for certain types of integral operators with continuous

kernels is demonstrated. The proofs in [7] employ several basic

concepts of numerical integration, finite matrix theory and calculus

to derive the existence results for eigenvalues. One of the types of

kernels treated in [7] is continuous and positive on the unit square.

Russell and Shampine use several uniform continuity and compactness

arguments to extend the eigenvalue properties of positive matrices to

integral equations with positive, continuous kernels. Anse lone and

Lee [2] treat the same problem, but instead of continuity arguments,

they employ collectively compact operator theory. Two additional

classes of kernels discussed in [7] are:

(a) k(s, t) is complex-valued and continuous on the unit

square; the trace of kP, the p -th iterated kernel,

is nonzero for some p > 3;

and

(b) k(s,t) is continuous and nonnegative on the unit square;

the trace of kP is nonzero for some p > 1.



The objective of this paper is to illustrate how collectively

compact operator theory can be used to obtain simple derivations of

existence and related results for eigenvalues of integral operators.

Specifically, as in [7], it is shown here that integral operators with

kernels (a) and (b) have nonzero eigenvalues. However, the collec-

tively compact operator theory allows us to sharpen the results

obtained in [7]. Namely, we prove that the spectral radius of an

integral operator with kernel (b) is a nonzero eigenvalue with an

associated nonnegative eigenfunction.

In Chapter II, some fundamental definitions and results of col,

lectively compact operator theory and matrix theory, of use in the

subsequent analysis, are reviewed. Then, in Chapter III, the theory

is applied to the classes of integral equations with kernels described

by (a) and (b). The kernels in this paper are defined on the closed

unit interval for convenience, any interval [a, b] would suffice.
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II. COLLECTIVELY COMPACT OPERATOR THEORY

The following results of collectively compact operator theory,

along with the accompanying notation, will be employed throughout

this thesis. For proof of these results, the reader is referred to

[1, Ch. 1, 2 and 4].

Let X be a complex Banach space, Q. {x E XI II xII 1

the closed unit ball and [X] the Banach space of bounded linear

operators on X. Of particular importance in this paper are C

and C', the complex Banach spaces of continuous functions defined

on the unit interval and the unit square, respectively. Both C and

C' have the uniform norm

max I x(t) I ,

0 < t < 1
X E C

114 = max Ik(s,t)I, k E C'.
0 < S,t < 1

If Tn, T E [X] for n = 1, 2, ... , then T n --" T denotes

pointwise convergence on X, that is, II T x Tx II 0 as
n

n 00 for each x E X. For T E [X], the spectrum of T is

denoted by ci(T),

c(T) = {Xlthere does not exist (X-T)-1 E [X]}

The spectrum is compact and contains the eigenvalues of T. The
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number r(T) = max.(' IXI I X E o-(T)} is the spectral radius of T. In

the case where T is a compact operator, cr(T) has the following

des cription.

Recall that an operator K E [X] is compact if KE3 is

relatively compact, i.e. , Kfit is compact. The Arzea-Ascoli

theorem provides a means for identifying relatively compact sets in

C and C'.

The Fredholm Alternative [1, p. 119] states that for X 0 and

K E [X] a compact operator, there exists (X-K)
-1 if and only if

(-K)X = X, in which case (X-K)
-1 is bounded. This implies that

the nonzero elements of o-(K) are all eigenvalues of K. If X is

infinite dimensional, then 0 E cr(K), and the eigenvalues of K are

either finite in number or form an infinite sequence converging to

zero [1, p. 120].

Collectively Compact Sets of Operators

A set of operators X C [X] is collectively compact if

R.ta={1(xIK EX, xE is relatively compact. Every element of a

collectively compact set is compact, and

(1) if A is any bounded set of scalars, then AX is

collectively compact.

Of interest to this thesis is the situation in which K,Kn E [x]l



n = 1, 2, ..., such that

(2) {Kn} is collectively compact and

(3) as n co.n

Together, (2) and (3) imply that K is compact; and the following

results concerning the spectral properties of the operators Kn and

K hold [1, Ch. 4]:

(4) any neighborhood of cr- (K) contains o-(Kn) for all

sufficiently large;

(5) if X
n E o-(Kn) for n = 1, 2, ... , and X -- X ,

n

(6)

then X E cr(K);

if X E cr(K), then there exist X.n E 6(Kn ),

n = 1, 2, ... , such that Xn -- X .

(7) r(Kn) r(K) as

Reduction of Integral Operators to Finite Algebraic Systems

Let k(s, t) E C'. The eigenvalue problem (EVP)

00

(8)
1

k(s, t)4)(t)dt = X4 (s), 0 < s < 1
0

5



where (I) E C, can be approximated by means of numerical integra-

tion using the rectangular quadrature formula:

(9)

n

1k(s , j /n)(1)n(j /n) = AncOn(s),

j=1

0 < s < 1.

6

For An 0, (9) suggests an interpolation formula for .4)n in terms

of the values st.ri(j j = 1, ...,n. In fact (see (17) below), when

An 0, EVP (9) is equivalent to the matrix EVP

(10) n 11c(i j in).0n(j in) = Xnitori(i i = 1,

j=1

This discretization procedure allows us to consider the EVP (8) by

means of a passage to the limit as n co in EVPs (9) and (10).

Define operators L,Ln E [C], n = 1, 2, ..., by

1

(L4)(s) = J k(s, t)(1)(t)dt
0

n

(12) (Lnsb)(s)
- 1

k(s, j in)(13.(j in) ,

where k(s,t) e C'. The convergence of the rectangular quadrature

formula on C and the Arzela-Ascoli theorem imply that the

operators L and Ln, n = 1, 2, , satisfy (2) and (3), so that
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results (4)-(7) apply to the EVPs

(13) L4 = X4

and

(14) Ln4n = Xn4)n

Define Ln as the n x n matrix

(15) Ln = [n-lk(i/n, j/n)], 1 < i, j < n.

2Let 4-)n = (O1n, 4)n, , 4)n), wheren

Then (10) can be rewritten as

(16)

4ni (1)n(i in)

L = Xn n n n

for i = 1, ,n.

oo
Consider 4)n to be an element of in, the Banach space of

n-tuples v = (v1, , vn) with complex components, equipped with

the uniform norm

II 711 = max I vil
1 < j < n

ooThen Ln E [in ], and the following easily verified relationship

between EVPs (14) and (16) holds [1, p. 19]:

oo
(17) for An 0 and v = , vn ) E in,



Ln v = Xnv

if and only if

where

and prOn(s) =

n

Ln.tin = Xn (1)n and v = (v1, vn)

v. = n (j/n), j = 1,

It follows that the nonzero eigenvalues of Ln and Ln

same, hence

(18) r(Ln) = r(Z,
n)

.

are the

Along with results of certain compactness arguments, (18) will be

used to extend several properties of specific types of matrices to the

operators Ln, and ultimately in passing to the limit as 00,

to the operator L.

Iterated Kernels and Matrix Theory

The following definitions and results of integral equations and

matrix theory will be used in the subsequent analysis.

Let k(s, t) E C'. For a positive integer P,

iterated kernel is defined recursively [5, p. 22] by

the p-th

8



1k (s,t) = k(s,t)

1

kP(s , t) k13- (s, w)k(w, t)dw, p > 1.
0

The trace of kP is

1

-r(kP) kP(s, s)ds, p > 1.
0

The p-th iterated kernel is an element of and T is a

bounded linear functional on C'.

The trace of a complex-valued n x n matrix A = {a..] is
iJ

defined to be

(19) T(A) = a..

i=1

The Euclidean and uniform norms of A are defined respectively by

and

II All E

n

i,j=1

II A 11 oo
= max

1 < <n
j=1

If X1, ...,Xn are the eigenvalues of A, then Schur's inequality
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[8] states that

(20)

n

i=1

Let 46p,
n

= {(t 1) . 3 t
P

) I t.= 1 , , n for i = 1, 2, . . ,p}. Then, the

p-th power of A is

where

(21)

AP =[c..], 1<i, j<n,
13

c.. =
13

A p- 1, n

a a . aitl at
(p- l)j

It is an elementary result of matrix theory [3, p. 95] that

(22) T(AP) = X P ; p>1.
1=1

The n x n matrix P = [p..] is said to bepositive if
Lj

p., > 0 for all (i, j). Therefore,
lj

0<a= min p,. < max p..
. 1.3 . . 13i,3 1,3

The properties of positive matrices that will be useful in the subse-

quent analysis are the following:
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(23) The positive n x n matrix P has a unique eigen-

value X. of maximum modulus; X > 0 (hence

= r(P) ) and simple; and X. has a corresponding

eigenvector with positive components, (positive

eigenvector) [6];

(24) If A = [a..] is an n x n matrix with I a..I < p..
1.3

for all (i, j), then r(A) < r(P). (In fact, the

inequality holds for any nonnegative matrix P)

[9, p. 47].

(25) If v = (v 1, , vn) is any positive vector, then [4]

--..
(P v). (P v).

1.min 1 < r(P) < max ---
v. v.

i. 1 1 i.

For v = (1, , 1), the above inequalities become

n n

0 < na. < min p.. < r(P) < max p.. < nP

i=1
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III. THE EXISTENCE OF EIGENVALUES OF INTEGRAL
OPERATORS WITH CONTINUOUS KERNELS

The results developed in the previous chapter will now be

applied to prove two theorems concerning the existence of eigenvalues

of specific types of integral operators. The operators L, Ln and

Lin referred to below are defined by (11), (12) and (15). The letter

'ID' always denotes a positive integer.

Theorem 1. Let k(s, t) E C'. If T(kP) is not zero for some

p > 3, then there exists a nonzero eigenvalue of the operator L.

Proof. Let M = max I k(s, t) I , 0 < s, t < 1.
(s,t)

Consider the matrix EVP (16). Let X
n1

be the eigenvalue of maxi-

mum modulus for Ln, with corresponding eigenvector
14)n'

n 1, 2, . The basic idea of the proof is to establish that the

sequence {X
n1 is bounded away from zero and co for all n

sufficiently large. Then, by means of a simple collectively compact

operator approximation theory argument, it will, follow that L has

a nonzero eigenvalue.

Thus,

From the definitions of e.'1,n, Xnl and On, we have

Xn1 = Ln n .

<M, n > 1 .



13

To show that the sequence {x
n1}

is bounded away from zero for all

but a finite number of n, we make use of the following lemma.

Lemma 1. If k(s,t) E C1 then -r[(tn)P] -r(kP) as n

for p > 1.

Proof. Define T, Tn C' , n = 1,2, . , by

(Tf)(s,t)=.5- k(s,w),(w,t)dw
0

(T t) =

j=1

lk(s, j /n)f(j in, t), f E C'

Letting f = k, we obtain for any p > 1

(26)

and

(27) (TP-ik.)(s,t) =

(TP-1k)(s, t) = kP(s,t)

A p-1,n

n-r(p-1)k(s, t
1

/n)k(t
1

In, t2 /n).

, . , k(t /21,0
P-1

0 0
(T = Tn = I, the identity operator on C').

From (21) and (27), we see that the p-th power of rn is

(28) (r,
n

)P = [n-1(TP-1k)(i j /n)J, 1 < i, j < n .

00,
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The operators T, Tn are bounded linear operators, hence continu-

ous, on C'. Also, the convergence of the rectangular quadrature

formula on C implies that Tn T as

Hence, for any p > 1 , TP, TP E [C1, n = 1,2, ., and

(29) TP TP as n
n

By (26) and (29) we obtain

(30) II TP- lk-kP II 0 as

Therefore, by the continuity of the trace function,

(31) IT(TP-1k)--r(kP)1 0 as n oo

Convergence of the rectangular quadrature formula on C implies

00

(32)
1-1 1

Tn k)(j j in) - (TP- 'k)(s, s)ds I -4.0
0

However, by (19)

(33) n-1

j=1
and

(34)

as n ~ co.

P-1k)(j/n, j/n) = [(11,n)P]

1

(Tn 1k)(s, s)ds = T 13-1k)

0



Making the substitutions of (33) and (34) into (32),

(35) I

n
)131 (TP- lk) I -- 0 as n

Together, (31) and (35) give the desired result

n)P1
-r(kP) as n 00

00

Now, suppose there exists a subsequence of the eigenvalues

denoted by {x,1 }, such that I 0 as n' co.n1 n'l
Denote the eigenvalues of t

n by X

By (22)

(36)
n

,)P]I =

n' n

Let p > 3.

i=1

Schur's inequality implies

n'

i =1

so that (36) becomes

Hence,

Xn,i I < II Ln' E
2

i=1

IT[(1-in,)13]1 < Ix 11D-27,A.2
n'll

(37) ndp] 0 as n 00

15



16

Consequently, Lemma 1 and (37) imply that r(kP) = 0 for all

p > 3, which contradicts the hypothesis of Theorem 1.

Therefore, there exists m > 0 and a positive integer N

such that

(38) m < IX
n.1

< M for all n > N.

(Without loss of generality, let N = 1. ) Thus, there exists a scalar

X. and a subsequence {X. } such that X. X and I X.I >m > 0.n'l n'l
For each n', let 4n

,(t) be the eigenfunction of the operator Ln,

corresponding to Xn '1. As sume II 4:8n, II = 1 for all n'.

The following argument employs the results of collectively com-

pact operator theory to show that there exists a subsequence of {4) ,}

that converges in norm to an eigenfunction 4 of the operator L,

with associated eigenvalue X.

By (38) the sequence {(X.n'l )
1} is bounded; hence (1) implies

that the set

is collectively compact. Thus,

4)n' (Xn 1) 1Ln14)n? E

of {4)n,}, denoted by 4110, and a function e C such that

= {(xn'l)

ta. is relatively compact. Since

for all n', there exists a subsequence

(39) 114)n-4)II as n" 00.
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Also, successive application of the triangle inequality and the Banach-

Steinhaus theorem reveals that

(40) 114)n-x-11411 = 11(Xn1)-1Les.n-c1L4 0

Together, (39) and (40) imply

1_,01) = X(1) .

as n"

The function is nontrivial because for all n"

and

Hence

11. CO

11(on11 = 1

11 (On $111 Sin -4)11 0 as n" oo.

110 = 1.

Therefore, ). is a nonzero eigenvalue of L, which is the desired

result.

used:

Notation. In the next theorem, the following notation will be

S is the unit square;

)P is defined by (28).

The p-th power of the integral operator L is denoted by L.



18

It is easily verified that LP is an integral operator on C with

kernel kP, the p-th iterated kernel. Thus,

1

(LPCI)(S) = 1 kP(S,t)01)(t)dt, E C.
0

Let (LP)
n

be the n x n matrix

"-or,
,(Vin = 1

k
p

(i in, /n) , j 1, . , n.

Theorem Z. Let kE C' such that k > 0 on S, and

T(kP) > 0 for some p > 1. Then r(L) is a positive eigenvalue of

L, with corresponding nontrivial eigenfunction (I) > 0 on [0, 1].

Proof. Because k is continuous and nonnegative on S, and

7(kp) 5- kP(s, s)ds > 0 for some p > 1,
0

it follows that there exists a point (s
0
,s

0
)ES and a neighborhood

0 of (s0' sO) in S such that kP(s, t) > 0 on Cl. Let

0 < a < kP(so, so). Without loss of generality, S2 can be chosen to

be a closed square, symmetric about the diagonal s = t, with sides

parallel to the sides of S, such that kP(s, t) > a for all (s, t) E O.
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Figure 1

Let An be the set of points in defined by

An = {(i in, j in) i = 1, . . . , n and j = 1, . , n}

Then, the image of An under (TP- 1k), arranged in the
n

noappropriate square array, is the matrix (Ln)
13

. It is easy to see that

there exists a positive integer N1 such that for all n N
1

, An

intersects C2. Therefore, for n ..> N1, define Pn to be the

mn x mn submatrix of
(1%)13

obtained by deleting all entries

n- 1(T- lk)(i. in, j in) of (tn)P such that On, j in) is not ann

element of O. By (28) and (30), the difference between the

mr
i-jth entries of (Ln)

B
and (LP)n goes to zero, uniform-

ly in i-j, as n -0- 00. Thus, there exists a positive inte-

ger N
2

N
1

such that

1 ap,. > n (-2 ) > 0 for all entries

when n > N2.
2

p., Pn



By simultaneously permuting the rows and columns of

we see that (Ln )' is similar to

n
Qn

(7C

A

B

Ln

20

where A, B and C are nonnegative block matrices, and both Pn

and B are square. Thus,

r(6-#,n)P) = r(Q n)

NLet Qn be the n x n

the entries of matrices

matrix obtained

A, B and C

n

from Qn

by zeros.

0

by replacing all

Then,

QOn
0 0

Note that triangularization of Qn is essentially triangularization of

n so that

ev0 es,
) .

n
r(Q ) = r(P

n

Application of (24) and (25) yields

,y -
r((Ln)P) = r(rin) > r(Un6 ) = r(Pn) >mn(iln-)

for n > N2.
2



Also, it is not difficult to see from Figure 1 that

lim m (-1) =b - a.n n
co

Hence, the above limit and the fact that

r((irn)P) = (r(lin))P

imply

lim (r(Ln ))
p a( b-a)

> > O.
n

2

Therefore,

(41) r(L) = lim r(L ) = lim r(L ) > a(b-a
n nn co n-00

11p > o.

21

It remains to be shown that r(L) is an eigenvalue of L. The proof

will be simplified by the following lemma.

Lemma 2. Let B be an n x n matrix with nonnegative

entries. Then r(B) is an eigenvalue of B, having a correspond-

ing nontrivial eigenvector x, such that the coordinates of x are

nonnegative.

Proof. Let B denote the matrix obtained from B bym

adding lim to each entry of B,

(42) 11B -Bm

m = 1, 2, . . . Then

0 as m oo
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Bm is a positive matrix for all m > 1. Therefore, by (23) Bm

has a positive eigenvalue X = r(B ), and X has an associatedmm m
positive eigenvector x = (xml, ...,xmn). Assume thatm

(43)

By (24)

Il x II
= max 1 x 1 = 1 , m = 1, 2.

1 < i < n mi

Xi = r(Bi) > X2 = r(B2) > > r(B) > 0.

Therefore, there exists a nonnegative number X such that

(44) X --- X > r(B) >0 as m °0.m

Also, (43) implies that there exists a subsequence Ix r} and a
111

vector x such that

(45) 11xm,-x 11 - 0 as m' 00.

Hence, 11;11 = and the coordinates of x are nonnegative. By

(42) and (45) and the fact that B ,x , = X ,x we havem m m m

and

Ilx 17c 1-33;11 11B 1-3c
1-13;11 -1- 000 as m' ,m m m m

11 X m Ixm 1-Xx11 -- 0 as m' 00.

Therefore Bx =Xx and recalling (44), we see that X = r(B) is an

eigenvalue of B.
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Thus, by Lemma 2, r(Ln) = is an eigenvalue of Ln with

corresponding nonnegative eigenvector (I)n such that II c II = 1,

for all n > 1. Let r(L) > 13 > 0. Then, from (17) and (41) it

follows that there exists a positive integer N, such that for all

n > N, the following results are obtained:

i) r(Ln) = r(Ln) = Xnl > P ;

ii) r(Ln) is an eigenvalue of Ln,

function
(I)n >

with corresponding eigen-

defined by (17), such that II Sin II = 1;

iii) Ln L as n 00;

iv) r(L ) r(L), hence r(L) = X. is an eigenvalue of L.
n

In addition, application of the compactness argument used in the

proof of Theorem 1 yields a subsequence {(1)
n,}

and a function

E C such that

and

II 43'n t -4)11 1- 0 as

(1) > 0, 11 (H1

L(I) = 4.

co
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