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Minimal Simultaneous Embeddings of Central Simple Algebras

1. Introduction

Let L/K be a finite extension of fields and suppose A is a central simple L-algebra.

In [4] the question of determining the "minimal" finite dimensional central simple K-

algebra into which A embeds was studied. Two notions of minimality were studied;

that of degree minimality of A and matrix size minimality of A. In this paper,

the notion of degree minimality is extended to degree minimality of A1, A2, ,

where each Ai is a central simple L-algebra, and we determine the minimum degree

of a central simple K-algebra into which each Ai embeds simultaneously, provided

L K is a finite extension of stable fields.

We begin with some terminology and a summary of results concerning central

simple algebras. A more detailed discussion can be found in [3]. A ring A is called

a K-algebra if there exists a monomorphism a: K --* A such that a(K) is contained

in Z(A), the center of A. We say A is a central simple K-algebra (or AIK is
central simple) if a(K) = Z(A), A is simple, and [A : K] is finite, where [A : K] is

the vector space dimension of A over K. If such an A is a division ring, we call it

a K-division ring.

If A is a central simple K-algebra then [A : K] is a square, and if [A: K] = m2

we call m the degree of A and write deg(A) = m. From Wedderburn's Theorem

we know that A M(D), the ring of n x n matrices with entries in a K-division

ring D (unique up to isomorphism) and some suitable (unique) n. D is called the

skew field component of A and n is called the matrix size of A.

The class of central simple K-algebras is closed under tensor product. Two central

simple K-algebras A and B are called similar, denoted A B , if there are integers

s and t such that A OK Ms(K) B OK M(K). The relation is an equivalence

relation, and if the skew field components of A and B are D and E, respectively, we
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have A B if and only if D E. The equivalence class of A is denoted [A] and the

set of equivalence classes forms an abelian group, B(K), called the Brauer group

of K, under the operation [A] -I- [B] = [A OK B]. In B(K), 0 = [K] = [1\472(K)]

and [A] = [A°P] where A°P is the opposite algebra of A, i.e. A" = (A, +, o) has

multiplication a o b = ba. The p-primary component of B(K) is denoted B(K)p.

If [A] E B(K), then A -L2 Mt(D) for some K-division ring D, and we define the

index, ind(A), of A to be OD : K]. Thus deg(A) = t ind(A). By [1, (12.16)]

deg(A OK B) = deg(A) deg(B). The order of [A] in B(K) is called the exponent of

A and is denoted exp(A). We say K is stable if ind(A) = exp(A) for every central

simple AIK. We call K a global field if it is either an algebraic number field or an

algebraic function field in one variable over a finite constant field. By [5, 32.19],

global fields are stable.

If L is an extension field of K and A is a central simple K-algebra then A OK L

is a central simple L-algebra and the restriction map ResLoc:B(K)--+B(L) given by

[A] [A OK L] is a homomorphism of groups. The relative Brauer group, denoted

B(LIK), is the kernel of this homomorphism. Thus [A] E B(LIK) if and only if

A OK L Mr(L) for some r. In this case, L is called a splitting field for A.

We summarize some results concerning central simple algebras which can be found

in [3, §9].

PROPOSITION 1. Let LI K be a finite extension of fields, and suppose A and B are

central simple K-algebras. Then:

ind(A OK L) divides ind(A).

If (ind(A), [L : K]) = 1 then ind(A OK L) = ind(A).

ind(A OK B) divides ind(A) ind(B).

If (ind(A),ind(B)) = 1 then ind(A OK B) = ind(A) ind(B).

If D is a K-division ring and ind(D) = peii is the prime factorization

of its index, then D Dpi OK Dpn with K-division rings Dpi such

that ind(Dpi) = p:i for i = 1,2, ... , n.
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Proposition 1,(b) tells us that if D is a K-division ring and (ind(D), [L : X]) = 1,

then D OK L remains a division ring, and Proposition 1,(d) tells us that if D and

E are K-division rings of coprime index, then D OK E remains a division ring.

If n is a positive integer and p is a prime, we let np denote the p-part of n;

n = nn' where (np,n') = 1. If G is a group and a E G, we say a has order n and

write ord(a) = n, if an = 1 and n is the smallest positive integer with this property.

If a has order n = nn', then a is uniquely expressible as a = apa' where ap (the

p - component of a) has order a power of p and a' (the p - regular component of a)

has order relatively prime to p. Moreover, ap and a' commute, for if 1 = unp vn'

we have ap = avn' and a' = aunP. If A/ L is central simple then A ®A where

the tensor product is taken over L and over all primes p, and where deg(A) is a

power of g [5, p. 256]. We have [Ap] = [A]p. Also note that if 0 is a homomorphism

between groups H and G, and a E 0(H) then both ap and a' E 0(H) since each

is a power of a. In particular, if [A] E ResL/K(B(K)), then [Ap] E ResL/K(B(K))

and E ResL/K(B(K)).

Let (G,+) be an abelian group in which each element has order a power of a

prime p. Suppose a, b E G with ord(a) = pm and ord(b) pn where m < n. We

wish to determine what can be said about ord(a b). If m < n then pn (a b) = 0

so ord(a b) divides pn. But

pn 1(a + b) = pnla +pnlb pnlb

so ord(a b) = pn = ord(b). If m = n, we still have ord(a b) divides pn so

ord(a b) < = ord(b), but nothing more may be said in general. We will make

use of these facts repeatedly in the work which follows. In particular, if L is a stable

field and Ai /L and A2/L are central simple with ind(Ai) = pm and ind(A2) = pn

where m < n, then ind(Ai OL A2) = 13", as ind(Ai) = exp(Ai) for i = 1,2.

If AIL is central simple and LIK is finite dimensional, we say AIL is embeddable

in a central simple BI K provided there exists a K-algebra monomorphism 0:A B
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with 0(1A) = 1B The condition that 0(1A) = 1B is required since we are concerned

with finding the minimum of the degree of B, and by [4, Prop. 1] if 0(1A)

this minimum will not be attained. If 3 exists we usually identify A with its image

in B.

Note that if r divides s then there exists an embedding from Mr(D) into Ms(D)

given by sending the r x r matrix [d2.i] to the s x s matrix which consists of blocks

of the matrix [dii] along its diagonal and 0 elsewhere.

Following the notation of [4] we now make precise the notion of "minimal" with

the following definition:

Definition: Let LIK be a finite extension of fields and let AIL be central simple.

Define

dK(A) = min{eleg(B)IBIK is central simple and AIL embeds into B}.

If AIL embeds in a central simple BIK and deg(B) = dK(A), we say that BIK

is degree minimal for AIL.

Next we extend this idea with the following definition.

Definition: Let LIK be a finite extension of fields and let A1, A2, ... A central

simple L-algebras. Define

dK(Ai; ; An) =

min{deg(B) IBIK is central simple and Ai/L embeds into BIK for i 1, ... ,n}.

Note that if AilL is central simple and LIK is finite, then AilL embeds into

Bi =Mui(K) where ui = [Ai : K] via the left regular representation. Thus each Ai

embeds into B = OriL1Bi, so that both dK (A) and dic(Ai; ;A) exist.
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In order to determine dK(Al; ; An) we must find embeddings of each Ai into

a central simple K-algebra B. We see that if A/ OL An embeds into B, then

each Ai also has an embedding into B so that

dK(Ai; ; An) < dK(Ai OL An).

We will show that equality does not hold in general. However it does hold if

(deg(A/ ), , deg(An)) = 1.



2. Cyclic Algebras and Hasse Invariants

In this section we define cyclic algebras and Hasse invariants and gather some

results needed in the following sections. We begin with the following definition.

Definition: Let LIK be a finite cyclic extension of fields with Gal(L/K) = (a) and

suppose [L : K] = n. Let a E K*, let u be a symbol and form the associative

K-algebra
n-1

uiA = (LIK,a,a) =

where multiplication in A is defined by

= a and u = a(x)u for all x E L.

A is a finite dimensional central simple K-algebra and is called a cyclic algebra.

By [5, 32.20], every central simple K algebra is a cyclic algebra if K is a global

field.

Now let R be a complete discrete valuation ring with maximal ideal P irR 0

and suppose K is the quotient field of R. Each k E K* can be written in the form

k = 7rre where e is a unit and r is an integer. Let vic be the exponential valuation

on K, i.e. if k = rre then vK(k) = r and vK(0) = oo. Let K = RIP be the residue

class field and suppose IKI = q.

Suppose D is a K-division ring with ind(D) = m. Let W be the unique unramified

extension of K of degree m. So W K(w) where w is a primative (qtri 1)th root

of unity over K. W is a cyclic extension of K and Gal (W/K) is generated by

the Frobenius automorphism of WIK, denoted awiK, where CTWIK is defined by

awiK(w)=wq [6, 3-2-12].

In [5, §30] it is shown that D (WI K, a1,rs) where s E 7.

6
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Definition: Let D be a K-division ring of index m, so D (WIK,a,,,,,718) where

W = K(w). The Hasse invariant of D is defined to be E Q/Z. If AIK is central

simple, say A P,'f M t(D) with D (W /K, re), we define the map

inv: B(K) Q/1 by inv[A] = ---- (mod 1).

From [5, 31.8] we have the following.

PROPOSITION 2. inv: B(K) Q/Z is an additive isomorphism.

Now suppose K is an algebraic number field. A prime of K may be viewed as

either a prime ideal in the ring of integers of K or as one of the equivalence classes of

valuations on K. A prime is called finite or non-archimedean if it extends the p-adic

valuation of Q, and is called infinite or archimedean if it extends the usual absolute

value on the rational field Q. If L is an extension field of K and -y is a valuation

defined on L such that 7(k) = r(k) for every k E K, where 7r is a valuation on K,

we say that 7 divides 71 or -y extends 71.

If 7r is a prime of K, we let K, denote the 7r-adic completion of K. If 71 is

archimedean, K is either the real field and 71 is called a real prime, or is the

complex field C, and 71 is called a complex prime.

If AIK is central simple we set A, = A OK K. Then A is a central simple

K-algebra so we have a homomorphism of Brauer groups given by

B(K) B(K,)

[A] [A,].



inv,[A] =

inv[A,]; if 7r is finite;

0; if 7r is complex;
1. if 7r is real and Air H;

0; if 7r is real and A,

8

Definition: Let K be an algebraic number field, AIK central simple, and 7r a prime

of K (finite or infinite). The Hasse invariant of A at 7r is defined by

where H denotes the division ring of real quaternions. The denominator of inv,[A]

as a fraction reduced to lowest terms is called the local index of A at 7r and is

denoted 1.i.,(A).

We see if A where D, is a K,-division ring, then 1.i.,(A) = ind(D,).

In particular, if invw[A] = 0 then Dir K so ind(D,) = 1 and 1.i.,(A) = 1.

We summarize some properties of Hasse invariants which can be found in [5, §32].

PROPOSITION 3. Let S be the set of primes of K, and let AIK and BIK be central

simple. Then:

inv,T[A] = 0 for all but finitely many 7r E S.

E7res inv, [A] 0 (mod 1).

A K if and only if inv,r[A] = 0 for all 7 E S.

A ,B if and only if inv,JA] = inv,[B] for all 7r E S.

exp (A) = 1.c.m.{1.i.,(A) 17r E S}.

We also state the following two propositions whose proofs are found in [2, Satz

4, p. 113] and [2, Satz 9, p. 119], respectively.

PROPOSITION 4. Suppose LIK is a finite extention of fields, 7r a prime of K and -y

a prime of L dividing 7r. Then, if D is a K-division ring,

[L... : Kfl.] inv,r[D] inv[D OK L] (mod 1).



PROPOSITION 5. Let 'xi, 7r2, ,7rn be a set of primes of K, 111, u2,... , 'an rational

numbers in lowest terms such that

0 < ui <1, E ui 0 (mod 1),
i=1

= 0 or if 7r . is real, and u . 0 if 7r . is complex.
2

Then there exists a K-division ring D with inv, [D]= ui for all j and inv[D] = 0

for all other primes ir of K.

9



3. Computing dK(A)

We begin this section by gathering some standard results about the centralizer of

a simple subalgebra of BIK. We denote the centralizer in B of a subalgebra E by

C B(E) = Ix E B I xy = yx for all y E El.

PROPOSITION 6. Let LIK be a finite extension of fields and suppose AIL is central

simple. Suppose AIL embeds into a central simple BIK. Let Y be the centalizer

of A in CB(L). Then:

Y IL is central simple such that CB(L)='_,' A 01, Y.

B OK L r=j Mr(C B(L)) where r = [L: K].

deg(B) = deg(A) deg(Y) [L: K] and [A] + [Y] E ResLiK(B(K)).

proof: This follows from [5, pages 94-96].

Now we summarize some results from [4] dealing with the computation of dK(A).

If A Mt(A) where A is an L-division ring, then by [4, Cor. 3]

dK(A) = t dK(A).

Moreover, if AIL embeds into a central simple BIK then dK(A) divides deg(B)

[4, Thm. 12]. In particular, this shows that d1(A) divides dK(Ai; ; An) for each

i = 1, , n, if A1, , An are central simple L-algebras.

We will also state the following proposition which is proven in [4, Prop. 5].

PROPOSITION 7. Let LIK be a finite extension of fields and suppose AIL is central

simple. If [A] = [D OK L], D a K-division ring, then there exists an integer w such

that AIL embeds into B =Mw(D) so that A CB(L) and

10

deg(B) = deg(A) [L: K] = dK(A).
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A numerical invariant ,u of a central simple L-algebra A is said to localize if

p(A)p = ,u(Ap). Since d K(A) does not localize, a new invariant of AI L is introduced.

Proposition 6 shows that if AIL embeds into BIK and Y is the centralizer of A in

C B(L) then deg(B) = deg(A) deg(Y) - : K] so deg(B) will be minimal provided

deg(Y) is minimal. Thus, following the notation of [4], we define:

Definition: Let LIK be finite and AIL central simple. Define

rK(A) = minfind(Y) J Y is an L division ring with [A] + [Y] E ResLiK(B(K))}.

By [4, Prop. 8], rK(A) localizes and by [4, Thm. 6], we have the following.

PROPOSITION 8. Let LIK be a finite extension of fields and let AIL be central

simple. Then d K(A) = deg(A) r K(A) [L : K].

From [4, Cor. 11] we also have

PROPOSITION 9. Let LIK be a finite extension of fields and suppose AIL is central

simple. Then rK(A) divides ind(A).



4. Computing dK(Ai; ... ;An)

Next we turn our attention to computing dK(Ai; ; An) where each Ai is a

central simple L-algebra. Throughout this section let LIK be a finite extension

of stable fields. We will use freely the fact that if AIL is central simple then

ind(A) = exp(A). Given central simple L-algebras A1, , An we will give an

algorithm for determining a central simple L-algebra A such that d K(Al ; ; An) =

d K(A) = deg(A) rK(A) [L : K].

One might assume that a candidate for such an L-algebra A would be one of

minimum degree into which each Ai embeds. We begin with an example to show

that this is, in general, not the case.

EXAMPLE 1. Let K = Q and L = Q(4. Then a prime p ramifies if and only if

p = 2, p remains prime if and only if p +3 (mod 8), and p splits if and only if

+1 (mod 8) [6, 6-2].

Let p1 1 (mod 8) and let ai and a2 be primes of L extending pl. Let p2

3 (mod 8) and let 13 be the prime of L extending p2. By Proposition 5, there exists

L-division rings A1 and A2 such that

1
invai [A ] = inva,2 [Al] = inv[Al] =

1

and invP[Al] = 0
1

for all other primes p of L, and

7
inval [A2 1

= inv[A2] = 1
and invP[A2] = 09

for all other primes p of L.

We will show that the minimum degree of any L-algebra A into which both Ai

and A2 embed is 27, but if Ai and A2 embed into A where deg(A) = 27, then

d K(A)> dK(Ai; A2).

12
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By Proposition 3,(c), ind(Ai) = 3 and ind(A2) = 9. Suppose Ai and A2 embed

into a central simple L-algebra A. Let Yi and 172 be the centralizers of Ai and

A2 in A, respectively. Then by Proposition 6,(a), A OL 6,2 01, Y2

so deg(A) = 3 deg(Y) = 9 deg(Y2). So 9 divides deg(A). Suppose deg(A) = 9.

Then deg(Y) = 3 and deg(Y2) = 1. But deg(Y2) = 1 implies 172 L, so A A2.

Then Yi A2 01, A7P so ind(Yi) = ind(A2 OL A?). But since ind(A2) = 9 and

ind(Ai) = ind(A7P) = 3 we have ind(A2 OL A?) = ind(A2) = 9, contrary to

deg(Y1) = 3. So Ai and A2 do not embed into any L-algebra of degree 9.

Note, however, that if Q is the L-division ring defined by

1 . 1
inva [ft] =

'
inva2[Q] = -5 , mvs [Q] = , and invp[Q] = 0

9

for all other primes p of L, we have Ai OL A2 rs-' Q, by Proposition 3,(d). Then since

deg(Ai 01, A2) = deg(Ai) deg(A2) = 27 we have Ai OL M3(Q). Thus Ai

and A2 embed into M3(1) and deg(M3(Q)) = 27, so the minimum degree L-algebra

into which both Ai and A2 embed has degree 27.

Next, let us compute dK(Ai; A2). We begin by finding dK(Ai) and dK(A2). By

[6, 2-4-4 (iv)], [L : Kpi] = [La2 : Kpi] = 1 and [L0 : K] = 2 so by Proposition 4

D OK L rs, Ai where D is the K-division ring with

1
invp, [D] = inv

2 ,
[D] = and invq[D] = 0

P 3

for all other primes q of K, whose existence is guaranteed by Proposition 5. Thus

E ResLiK(B(K)) and rK(Ai) = 1. So

dK(Ai) = deg(Ai) rK(Ai) [L : K] = 6.

Now suppose X is an L-division ring such that [A2 OL X] E ResL/K(B(K)),

rK(A2) = ind(X), and suppose E is a K-division ring such that EOKL --, A2 OL X .

Then by Proposition 4

inv [E] = Inva1 ®L = inv [A ®LPi al 2 L az 2 L



where the congruences are mod 1. So

2 .
+ nava [X] inva2[X].

But this forces l.i.1 [X] or 1.i. [X] to be 9, so by Proposition 3,(e) ind(X) > 9. But

rK(A2) ind(A2) since [A2OL1.7] E ResLiK(B(K)) and ind(A?) = ind(A2) = 9.

So rK(A2) = 9 and dK(A2) = 2 34

By Proposition 5 there exists L-division rings Pi and r2 such that

inval [r inv [r -8 inv ,[rii-25ci2 1 9'
and invp[Fi] = 0

for all other primes p of L, and

7
inv

,
a [r9i -2 inv[r2] = / and invp[r2] = 0

2

for all other primes p of L. Then by Proposition 3,(d) OL ri A2 OL r2 klf

where Alf is the L-division ring with

inva [T] = inva [W] =
2 9'

5
invo[W] = 5, and invp[T] = 0

14

for all other primes p of L. But deg(Ai OL 111) = 27 and deg(A2 OL P2) = 81

so Al OL ri M3(T) and A2 OL P2 C-=1"' M9(4). Then, since M3('1') embeds into

M9(11), Ai and A2 embed into M9(kli). Thus dK(Ai; A2) < dK(M9(4')). Now by

Proposition 4, F OK L where F is the K-division ring such that

inv
i ,
[F] = invP2 [F] = and invq[F] = 0P 9 9

for all other primes q of K. So r1(() = 1 and dK(M9(W)) = 2 34 But

dK(Ai; A2) 54 2 34

since dic(6,2) = 2 34 and dK(6.2) divides dK(Ai; A2). Thus dK(Ai; A2) = 2 34

Finally we show that there is no central simple AI L into which both Ai and A2

embed with deg(A) = 27 and dK(A) = 2 34 Suppose AI L has these properties.



In any case, 1.i.,

3, and therefore

First is the case

where (a, 9) = 1

rK(A) = ind(Z),

15

Then we have rK(A) = 3 by Proposition 8. Let Yi and Y2 be the centralizers of Ai

and .6,2 in A, respectively. So by Proposition 6,(a) A Li OL '2 014 ; and

hence deg(K) = 9 and deg(Y2) = 3. Since deg(Y2) = 3 we have either ind(Y2) = 1

or ind(Y2) 3. If ind(Y2) = 1 then A .A2 so rK(A) = rK(6.2) = 9, contrary to

rK(A) = 3. If ind(Y2) = 3 then 1.i., (Y2) = 1 or 1.i., (Y2) = 3, so

inv, [Y] = O,, or 3

[A2 OL Y2] = 9 so 1.i., (A) = 9. Also 1.i.(Y2) = 1 or 1.i.2(Y2)

1.i.,2(A) 1 or 1.i.,2(A) = 3. Thus we have two possibilities.

in which 1.i., (A) = 9 and 1.i.(A) = 1. Then inva, [A] =
9

and inva2 [A] = 0. Then if Z is a central simple L-algebra with

and H is a K-division ring such that

H OK L AOLZ,

by Proposition 5,

invp, [H] EE inva, [A OL Z] inv,2 [A OL Z]

SO

+ inv, [Z] EE inva [Z].
9 2

But then either 1..a [Z] = 9 or 1.i.2 [Z] = 9 and in either case ind(Z) = rK(A) = 9,

a contradiction. Secondly, we may have Li., (A) = 9 and 1.i., (A) = 3. But again,
1 2

by an argument similar to that given above, this forces rK(A) = 9. So there is

no AIL of degree 27 into which both Ai and A2 embed with dK(A) = 2 34 =

d K(Ai; ). This concludes the example.

Again let A1,..., An be central simple L-algebras. We wish to determine a central

simple L-algebra A with dK(Ai; ; An) = dK(A). Initially we will consider the

case in which deg(Ai) is a power of a prime p for each i 1, , n. We will give an

algorithm for finding a central simple L-algebra called the p-embedder of Al,. . . , An,
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and then show that the minimum degree central simple K-algebra into which it

embeds is dK(Ai; ; An).

Order the L-algebras A1, , An so that

deg(Ai) deg(A2) < deg(An)

and suppose deg(Ai) pri for i = 1, , n. Let rn be an L-division ring such that

An 01, rn E ResLiK(B(K)) and ind(rn) = rK(An).

Let 111 be the skew field component of An OL rn so

deg(An) ind(rn)
An 01, rn mt (T) with tn =

ind(W)

Note that ind(W) ind(An OL rn), so ind(W) is a power of p and hence tn is a

power of p.

For i = 1, , n 1, let ri be the L-division ring such that Ai OE, ri W. We see

ind(ri) is also a power of p. Then for i = 1, ,n we have

deg(Ai) ind(ri)
Ai Of, r. (T) with t.

ind(T)

Each ti is also a power of p so if t max{ti, , tn}, ti divides t for each i =

1, ,n and each A1, . . . ,A simultaneously embeds into M(W). We call M(W) a

p-embedder of A1, , A. Note that a p-embedder of A1, , An is not unique but

depends on the choice of the L-division ring F. We will show that

dK(A1; ;A) = dK(Mt(T))

where Mt(T) is any p-embedder of A1, , An, and use this result to prove our main

theorem which we now state.
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THEOREM A. Let A1, , An be central simple L-algebras and suppose p1,...,prn

are primes dividing deg(A) for any k = 1, ,n. Suppose Ak (Dr_i SIki where

Dki is a central simple L-algebra with deg() a power of pi for each k = 1, ... ,n

and i = 1, , m. Let Mti be a pi-embedder for 521i, S22i, , fini for each i =

1, ... ,m and let A = 07_1 Mt,(kIii). Then elk,(Ai; ...; An) = dic(A). Moreover,

rK(A) = 1 so dK(Ai;... ; An) = [L : K] ti ind(xlii).

We note that even though rK(A) = 1, in order to determine a pi-embedder

of Pni, it is necessary to determine rK(S2ii) for some j 1, , n.

Techniques for computing these values are illustrated in Example 1.

To prove these results we begin with the following three lemmas. Recall that

LI K is a finite extension of stable fields throughout this section.

LEMMA 10. Let A1, , An be central simple L-algebras with deg(Ai) = p a

prime. Suppose that each Ai embeds into a central simple K-algebra B, where

B D a K-division ring. For each i 1, , n, let Yi be the centralizer of

A in CB(L). If q is a prime, q p, and q divides deg() for each i, then each Ai

embeds into a central simple K-algebra B' where deg(B1) < deg(B) .

proof: Since q divides deg(Y) we may write Yi Yiq OL YI where deg(Yiq) is a

power of q and (deg(n),q) = 1. By Proposition 6,(c)

deg(B) deg(Ai) deg(Yiq) deg(Yi') [L : K] for each i 1, ,n.

So

deg(A j) deg(Yiq) deg(Y1) deg(Ai) deg(Yiq) deg(Y!) for i, j 1, . . . , n.

Equating the q-regular components yields

(3) deg(Ai) deg(n) deg(Ai) deg(YI) for i, j 1, . . . , n.



Also we see ql deg(B) so either qt or qlind(D).

If qlind(D) write D Dq D' where Dq and D' are K-division rings with

ind(Dq) a power of q and (ind(D1), q) = 1. By Proposition 6

D OK L Ai OL Yi for i = 1, , n.

So

(Dq OK L) (D' OK L) Ai OL Yiq OL

and equating the q-regular components of [D OK L] in B(L), we have

D' OK L Ai OL

Then by Proposition 7, Ai embeds into Mvi (D') with

V1
deg(Ai)

ind(DO
deg(Y1) [L : K]

for i = 1, . . . , n.

But then by (3), v1 = v2 = vn. Let v be this common value so that Ai embeds

into Mv(D') for each i and

deg(Mv(D')) = deg(Ai) deg(n) [L : K]

which is strictly less than deg(B) unless Yiq L, which is contrary to q dividing

deg(Yiq).

Next suppose qt and q ind(D). We have

D OK L OL Yiq OL Yi' for i = 1, ... n

SO

ind(D OK L) = ind(A.i LYiq LY1) for i= 1, , n.

By Proposition 1,(a), ind(D OK L)lind(D) so q ind(D OK L). Thus

q ind(A OL Yiq OL Y').

18



But by Proposition 1,(d), ind(Ai OL Yiq OL Y') = ind(Ai 0/, Y') ind(Yiq) SO

q ind(Yiq).

But qj deg(Yiq) so Yiq Mni(L) where qlui. But then

D OK L OL Yi'.

So Ai embeds into IVIn,.(D) with

deg(Ai) deg(Yi') [L: K]
w. for i = 1, . . . , n.

z ind(D)

Again by (3), w1 = w2 = wn. Let w be this common value so that Ai embeds

into Mw(D) for i = 1, . .. , n, and deg(Mn,(D)) = deg(Ai) deg(n) [L : K] which is

strictly less than deg(B) unless yq L, which is contrary to q dividing deg().

LEMMA 11. Suppose A1,..., An are central simple L-algebras with deg(Ai) = pri,

p a prime. If q is prime, q p, such that q [L: K], then q dK(Ai; . An).

proof: Let B/K be central simple such that dK(Ai; ...; An) = deg(B) and suppose

q divides deg(B). Let Yi be the centralizer of Ai in C B(L) for each i = 1, ,n. By

Proposition 6,(c)

deg(B) = deg(Ai) deg(Yi) [L : K] for i =

Since (q,deg(Ai)) = (q, [L : K]) = 1, q divides deg(Y) for each i, and thus by

Lemma 10, Ai embeds into B' /K for each i, where deg(H) < deg(B), contrary to

deg(B) dK(Ai; . AO-

LEMMA 12. Suppose A1,, An are central simple L-algebras with deg(Ai) = pri.

Then dic(Ai; ; An) = 13' [L : K] for some t.

proof: Without loss of generality we may assume that the L-algebras are ordered

SO

deg(Ai) deg(A2) 5_ deg(A.)

19



or

Let B/K be central simple such that dK(Al; ...; An) = deg(B) and suppose

[L : K] = pa qiai q;2 qial

is the prime factorization. By Proposition 9, rK(Ai) divides deg(Ai) for each i =

1, , n so we may write rK(Ai) = psi for some and since rK(A) < deg(A),

s. < r.. By Proposition 8,

dK(Ai) = pri+ai [L : K] for i 1, . . . , n.

We know dK(Ai) divides dK(Ai; ; An) for each i, so

dK(Ai; ...; An) = m [L : K]

where v = max{ri si i= 1, , n}. By Lemma 11, the only primes which

may divide in are p,q1,...,qi. To prove the lemma we must show that qj m for

j=1,...,1.

Let Yi be the centralizer of Ai in C B(L) for i = 1, , n. Then

deg(B) = deg(Ai) deg(Yi) [L: K]

SO

in pv [L : K] = pl.; deg(Yi) [L : K]

in pv-ri deg(Yi).

Suppose qjlm for some j = 1,. ,l. Then qj divides deg(Y) for each i = 1, n. So

by Lemma 10, each Ai embeds into a central simple B' /K where deg(B") < deg(B),

contrary to dK(Ai; ; An) = deg(B).

20

We are now in a position to compute c/K(Ai; ; A) for the case in which

each central simple L-algebra Ai has degree a power of a prime p. We will show
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dic(Ai; . An) = dK(Mt(W)) where Mt(*) is any p-embedder of A1, , An. Let

us recall how we determine a p-embedder of A1,... , A.

Suppose A1, , An are central simple L-algebras with deg(Ai) = pri ordered so

deg(Ai) deg(A2) 5_ deg(An),

and suppose rK(Ai) = psi for i = 1, ,n. Then by Proposition 8

dK(Ai) pri+si [L : K] for i 1, . , n.

Let rn be an L-division ring such that

An OL rn E ResLiK(B(K)) and ind(rn) = r K(An) p8".

Let T be the skew field component of An OL rnso

deg(An). ind(rn)
An 01,F,f-s--=' Mtn (W) with tn =

ind(T)

Note that T E ResLIK(B(K)) so rK(T) = 1 and dK(T) = ind(T) [L : K].

For i = 1, , n 1, let Fi be the L-division ring such that Ai OL Fi T. Say

ind(ri) = pus. Then for i 1, ,n we have

deg(Ai) ind(ri)
Ai OL ri Mti NO with t.

ind(T)

A p-embedder of A1, , An is Mt(k11) where t = max{ti, , tn}, and, as noted

previously, A1,... , An simultaneously embed into Mt (111), so

(4) dK(Ai; . . . ; An) < dK(Mt(T)).

THEOREM 13. Let the context be as above. Then dK(Ai;... ; An) = dK(Mt(T)).

proof: We consider two cases.



Case 1. t = tn.

In this case d K(Ai; ;A) < tn cli,-(111) = deg(A) ind(Fn) [L : K], and

dK(Ai; ...; An) 14 deg(An) ind(l'n) [L K] since dK(An) divides dK(Ai; An),
and dK(An) deg(An) ind(rn) [L : K].

Case 2. t = ti for some j < n.

In this case we may assume that tn <t, so

deg(An) ind(rn) < deg(Ai) ind(ci)

which yields in.d(r) < ind(ri) as deg(Ai) < deg(An). In particular we have

ind(ri OL 17) = ind(ri) puJ .

By (4)
dK(Ai; ...; An) dK(Mti(T))

= deg(Ai) ind(fi) [L : K]

[L K].

We wish to show that equality holds.

Suppose dic(Ai; ; An) < pri+ul [L : K]. Using Lemma 12 and the fact that

dic(Ai) divides dK(Ai; ; An) we know

dK(Ai;...; An) = pri+sj+k [L : K]

for some k between 0 and u3. s . 1 inclusive.
.7

Let BIK be central simple such that A1, , An each embed into B and

pri+si+k [L : K].deg(B) = dR.(Ai; ; An) =

Let Yi be the centralizer of Ai in C B(L) and let lin be the centralizer of An in

CB (L). Then
deg(B) deg(Ai) deg(Yj) [L : K]

deg(An) deg(Yn) [L : K]

22



or

psi+k = deg(Y3) and prii+sf+krn = deg(Y.)

By Proposition 6

B L Ai 0L Yi OL Yn

so

An OL A7 L Y77 .

Thus ind(An OL Ar) = ind(Yj Of, Y:P). But rj <r so

pri+si+k-rn <

and thus

ind(An 01, A7) = ind(Yi 01, Yr7) < psi+k < pui .

But An OL A7 r; ®LFfl so

ind(An Of, A7) = ind(F j OL 17) ind(r j) = pn

a contradiction.

As noted previously, if AIL embeds into BIK then dic(A) divides deg(B). We

have an analogous theorem in our situation.

THEOREM 14. Let A1,..., A, be central simple L-algebras with deg(Ai) = pri for

each i = 1, ,n. If A1, , An embed into a central simple BIK, then

dK(Ai; ...; An) divides deg(B).

proof: Again we may assume the L algebras are ordered so

deg(Ai) < deg(A2) 5 deg(An).

Let rn be an L-division ring such that

An OL PT, E ResL/K(B(K)) and r K(An) = ind(Fn).

23
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Say ind(Fn) p. Let be the skew field component of An 0,, lin and suppose for

i = 1, . . . , n 1, Ti is an L-division ring such that Ai OL ri W. Say ind(Fi) = pui

Let
deg(Ai) ind(Il)

ind( )

so for i = 1, . . . , n we have Ai OL r Mti(T) and by Theorem 13 we know

dK(Ai; ...; An) = dic(Mt(T)) where t =

In particular, if t = in then

dK(Ai;...; An) = deg(An) ind(Fn) [L : K] = pr.+3. {L: K]

and if t t . for some j <n then

d K(Ai; . . . ; An) = deg(Ai) ind(Fi) [L : K] pri+ui [L : K].

Suppose A1, , An each embed into a central simple K-algebra B Ma(D)

where D is a K-division ring. If

dK(Ai;... ;A) prn+3. [L: K]

then the result follows easily as

d K(An) = prn+s. [L : K]

and we know dK (An) divides deg(B).

Suppose dK(Ai; ; An) = pri+ui [L : K]. We must show that I); +ui [L: K]

deg(B)
divides deg(B) or, equivalently, that pri+ui divides

[L : K].

Suppose pri deg(B)+uidoes not divide We know dK(Aj) = pri±ui
[L : K]

[L : K]

deg(B)
divides deg(B), so pri divides [L : I] Let v be the greatest integer such that pr.i+v



e.d g(B)deg(B)
divides

[L: K],
say in pr.z-f-v

[L KJ
where (m,p) = 1 and v <

:

Let Yi be the centralizer of Ai in C B(L) for each i 1, ,n. Then

deg(B) = deg(Ai) deg(Iii) [L: K]

or
pri+vri deg(Y) for i = 1, ... n.

Thus ITZ divides deg(Y) for each i. Let

e2 qe
rn q2

be the prime factorization. So for each i we may write

Yz Yz ®/, °L, Yzp

where Y and Y are central simple L-algebras withspsqk

deg(Yiqk) = ekk and deg(Yip)= r. +vr. for k = 1,...,/ and i =1,...,n.

In particular note that deg(yip) = pv, and

deg(Ai) deg(Yip) = pr v for each i = 1, . . ,n.

Thus the product deg(Ai) deg(Yip) does not depend on i.

We may write

D Dqi ®K Dqi OK D'

where
Dqk

and D' are K-division rings with
ind(Dqk

) a power of qk and

(ind(D'),qk) = 1 for k = 1,...,1.

By Proposition 6

D OK L Ai OL OL Yiqi L Yip for each i = 1, ,n.

25
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So

(Dqi OK L) L (Dq, K L) 01, (D' K L) Ai OL Yiqi OL Yiqi 01, Yip

for i = 1, , n. Equating the qk-regular components of [D OK L] in B(L) for each

k 1,..., 1, we see that

D' OK L Ai OL Yip for each i = 1, ,n.

Thus by Proposition 7, Ai embeds into M. (D') where

deg(Ai) deg(Yzp) [L: K]
w. =

ind(D')
for i = 1, . , n.

But then w1 = w2 = = wn since deg(Az) deg(Yip) is constant for all i. Let w

be this common value so A. into M(D1) and

deg(Mw(D1)) = deg(Ai) deg(Yip) [L : K] for each i =

In particular
deg(Mw(D')) = deg(Ai) deg(Yip) [L : K]

pri+v [L : K]

< pri+ui [L : K]

= dic(A1,. An),

a contradiction. Thus dK(Ai;... ; An) divides deg(B).

We are now in a position to compute dic(Ai;...; An) in the general case.

THEOREM 15. Let A1, , An be central simple L-algebras and suppose that

are primes dividing deg(A) for any k 1, ,n. Suppose

rn

Ak = Qki
i=1



where is a central simple L-algebra with deg() a power of pi for each

k = 1, , n and i = 1, , m.

Then
. Q

dK(Ai; ...; An) [L : K] H K-; SI2i;..;
ni)[L: K]

= 1.C.M.{c/K(52ii; 2i; ; = 1, , ml.

proof: The second equality follows from Lemma 12 which assures us that

0/K(Qii; Si2i; = pi [L: K]

for some ti. So

711

1.CA11.-{dK(ciii; Q2i; ; = 1, , = [L : K] llp:i

dK(S 5221 ; S22.;
= [L : K]

[L :K]

For i = 1, ... ,rn let Bi be a central simple K-algebra such that 52ki embeds into

Bi for each k = 1, ,n and

deg(B2) = d (S2ii; ;

and suppose Bi Mui(Di) where Di is a K-division ring. Let Yki be the centralizer

of Siki in GB. (L) for i = 1, , m and k = 1, , n. Then

deg(B2) = deg(Stki) deg(Yki) [L : K]

and

i=1

Di OK L 0/, Yki for i = 1, . , m and k 1, . , n.
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Let D be the skew field component of 0:./1 D. Then

DOKL, (g)(QkiL Yki) A, ®L(0 Yki) for each k = 1, , n.
i=1 ir=1

Then by Proposition 7, Ak embeds into Mtk (D) for each k = 1, ,n with

deg(Ak) (nim=i deg(Ykpi)) [L: K]

SO

k =
ind(D)

(Hai deg() deg(Yki)) [L : K]

ind(D)
Now

deg(Bi) = deg(Qki) deg(Yki) : K] for i = 1, . , m and k = 1, . , n

m in

H deg(Bi) = 11(deg(Qk2) deg(Yki) [L: K])
i=1 i=1

and thus
f1 deg(Bi)

[L: K] ll(deg(Qki) deg(Yki)) =
[L : K]rn-1

1=1

So the product
771

[L : K] 11(deg(1ki) deg(Yki))
1=1

is the same for each k = 1, , n. But then ti = t2 = tn. Let t be this common

value, so for each k = 1, , n, Ak embeds into M1(D) and

rn

deg(Mt(D)) = (1-1 deg() deg(Yki)) [L : K]
i=1

deg(B)
[L : K]rn-1

HZI dK(Qii;Q2i;
[L : A]m-1

d (Qi.; Q2.; ...;Q.i)
= [L : K] K[L :K]i=1
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Thus

dK(Ai;...; An) < deg(Mt(D))

md S2
: 11 2i1 S2ni)

i=i [L : K]

=1.c.m.{dK(Stit;S-22i; ; 1,...,m}.

To complete the proof, we need to show that equality holds. Suppose B / K is

central simple such that A1,..., An embed into B and deg(B) dK(Ai; An).

Then fikt embeds into B for k 1, ,n and i = 1, , m, so by Theorem 14

dK(Ctii; 9,2i; . ; Sint) divides deg(B) for i 1, ,m.. But then

1.c.m.{dK(S2ii; 92i; ; 127131 i = 1, , m1 divides deg(B).

That is deg(Mt(D)) divides deg(B) and thus dK(Ai; ...; An) = deg(Mt(D)). 111

We are now in a position to prove our main theorem.

THEOREM A. Let A1,. , An be central simple L-algebras and suppose pl, ,

are primes dividing deg(A) for any k = 1, , n. Suppose Ak 07_1 c2ki where

ftki is a central simple L-algebra with deg() a power of pi for each k = 1, ...,n

and i = 1, , m. Let M(W) be a pt-embedder for 5-21,, C2rit for each i =

1, ,'m and let A =Ø Mt,(kift). Then dK(A1;...; An) = d K(A). Moreover

rK(A) = 1, so dK(Ai; ...; An) [L: K] lriti ind(Tt).

proof: By Theorem 13 dK(Slii; Q2i; ; C/ni) = dK(Mt,(Tt)) where M(T)is a

pi-embedder of 1/22,Slnt for i 1,... ,m. Also

dK(Mt,(Tt)) = ti ind(Ti) [L : K]

by Theorem 8. Let
rn

A = G)Mti(klit).
i=z1
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Since 52ki embeds into M for k = 1, , n, kl®LC42°L.. ®L km embeds

into

mti(Ti) ®L m1,(4/2)0L OLMtn,(1F m).

That is, Ak embeds into A for each k = 1, ,n.

Now dK(A) = deg(A) r(A) [L : K]. But r K(A) = 1 since

Al®L®LWm

and each Ti E ResLiK(B(K)). So

d K(A) [L : K] deg(A)

[L : K] Hdeg(Mti(lii))

in

= [L : K] ind(Ti)

proof: Suppose

in

[L : K]
K]

z--=1

m dK(c2ii; Q2i;
[L : K]

[L : K]
i=--1

= dK(Ai; . . . ; An).

We conclude this section with the following corollary which generalizes Theorem

14.

COROLLARY 16. Let A1,... , An be central simple L-algebras which each embed

into a central simple BIK. Then dK(Ai; ; An) divides deg(B).

Ak 0ki
i-----1
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where Qki is a central simple L-algebra with deg(I2) a power of pi for each

k = 1, , n and i 1, , m.

Since each Ai embeds into B, we have that Qicz embeds into B for each k = 1, ,n

and i = 1, , m, so by Theorem 14, dK(Siii; S-22i; ; S-2) divides deg(B) for each

i 1, , m, and hence 1.c.m.{dK(Qii; SZ2i; j Stni)I i 1, , m} divides deg(B),

that is dK(Ai; ...; An) divides deg(B).
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5. An Example

In this section we define two central simple L-algebras A1 and A2 and compute

dK(Ai; A2). We do this by decomposing A1 and A2 into their p-components and

then determining p-embedders for these components. Then, using Theorem A, we

produce a central simple L-algebra A E ResLIK(B(K)) such that dK(Ai; A2) =

dK(A) deg(A) [L :

EXAMPLE 2. Let K = Q and L Q(4, and let p1 .7_ 1 (mod 8) and p2 a--

3 (mod 8) be primes and suppose ai and a2 are primes of L extending pp and p is

the prime of L extending p2.

Let A1 'Ls M5(6,1) where Ai is the L-division ring such that

7 1 1inv[L1J = inv I = invo[Ai] and invp[Ai] = 0
(12 3 '

for all other primes p of L. Let A2C--s= M3(A2) where 6,2 is the L-division ring such

that

1
inv

2
I = inv,,, [Aq] = inv[A2] = and invp[A2] = 0cti 61 2

for all other primes p of L. We wish to compute dK(Ai; A2). Note that deg(Ai) = 60

and deg(A2) = 18 so the primes dividing deg(Ai) or deg(A2) are 2, 3, and 5.

First we decompose A1 and A2. We see

A1'L T2 OL T3 OL M5(L)

and

A2Q2 OL M3(Q3)

where T2, T3, f22 and 113 are defined as follows:

1 3
in.val [T2 = 1

inv[T2] = and invP [T2] = 04
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for all other primes p of L,

1
inva [T3 j = invo, [T,} inv [T3 = and invP[T31 = 0l 2 # 3

for all other primes p of L,

1

invai [2S2] = inv [S-221 = and invP[C22] = 0

for all other primes p of L, and

2 1
inva [S23] =

'
inv[S-2,3] -= and invp[C23] =- 0

for all other primes p of L.

We will find

33

and

mt(4j3)/ a 5-embedder of M5(L), L.

Then by Theorem A, if

A = Mti(411)OLM12('112) OLMt3(413)

we will have dK(Ai; A2) = dK(A).

Now let us find Mt, (4f1). By applying techniques similar to the previous examples

we find rK(T2) = 4. Since deg(S12) = 2 < deg(T2) = 4 we begin by finding an

L-division ring 1'2 such that

T2 0,, 1'2 E ResLiK(B(K)) and ind (1'2) rK(T2) = 4.

For example, let 1'2 be such that

1 3inva [r =
2 2 4'

inv#[F2) = and invp[F2] = 0

a 2-embedder of T2) C22)

a 3-embedder of T3, M3(.23),



for all other primes p of L. Then T2 01, 112 :=7--j M4(1fi) where is the L-division

ring such that

1 1
inval1 =

invcv
[klf] = 4' inv/3[41 1

= and invP[1l11] = 0
2 1

for all other primes p of L.

Now let r1 be the L-division ring such that 522 Of, r1 T, i.e. F is such that

1
invai [rd inva [ri] -3, invo [Pi] = , and invp ] = 0

2 4

for all other primes p of L. Then 112 Or, r1 m2(4/0. so m4('111) is a 2-embedder

of T2,112.

Next let us find Mt,(1112). Again applying techniques similar to the previous ex-

amples we find rK(M3(113)) = 3. Since deg(T3) = 3 < deg(M3(523)) = 9 we begin

by finding an L-division ring 02 such that

m3(113) 02 E ResLiK(B(K)) and ind (02) = rK(M3(113)) = 3.

For example, let 02 be such that

inva [0,] =-2 A, 3, and invp[02] = 0

for all other primes p of L. Then 1\43(113)0L02 M9(W2) where k112 is the L-division

ring with

inval2 ] = inva [W,] = inv[W2] = 2, and invp[T2] = 0
2 A. p 3

for all other primes p of L. Now let 01 be the L-division ring such that

T3 ®L01 klf2,

i.e. 01 is such that

1inv[0] = inva [el] = inv[el] = and invP[01] = 0cvi 2
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invo [02] =
1
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for all other primes p of L. Then T3 01, 01':-='-' M3(4/2), SO M9(W2) is a 3-embedder

of T3,113.

Finally we see that M5(L) is a 5-embedder of M5(L),L so if

A = M4(xli1) OL M9(1,2) 01, M5(L)

then
dK(Ai; A2) = d K(A)

= deg(M4(T1) OL M9(412) 01, M5(L)) [L : K]

= 25 33



6. Remarks on dK(Ai; An)

In the proof of Theorem 13 it was necessary to order the central simple L-algebras

Ai, , An so that

deg(Ai) 5_ deg(A2) 5_ deg(An)

in order to determine the L-division ring rn with

An OL rn E ResLIK(B(K)) and rK(An) = ind(rn).

This in turn allowed us to find the skew field component W of the L-algebra Mt(111)

into which each Ai was embeddable with the property that

dK(Ai; ...; An) = dK(Mt(kIf)).

Suppose we began by picking an L-algebra Ai which does not have maximum degree

and then find an L-division ring 52.i such that

Ai COL fti E ResLiK(B(K)) and rK(A.i) =

If A is the skew field component of Ai Of, SZ.i, and is the L-division ring with

Ai OL A for i = 1, , n,

and

36

deg(Ai) ind(S2i)
t. =

ind(A)

then Ai OL Iti M(A) for i = 1, , n. So if t = max{ti, .,t} each Ai is
embeddable into M(A) and

dic(Ai; ;A) < c/K(Mt(A)).

However we do not necessarily have equality in this instance, as the following ex-

ample illustrates.



OL Qi E ResLiK(B(K)) and rK(Ai) = ind(121) = 9.
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EXAMPLE 3. Let K Q and L = Q(V-2-). Let p1 and p2 be primes with p1 E.---_

1 (mod 8) and p2 -P.. 3 (mod 8). Suppose cri and ce2 are primes of L extending p1

and /3 is the prime of L extending p2. Let A1 and A2 be L-division rings such that

1inva [Ai] =inv ] = inv[A
'

l] = and invP[Al] = 09 a2 1 9 ' 3

for all other primes p of L, and

1 1015
invai [A2] = inv ia2 [A2] = , nvfl[A2] = and invp[A2] = 0

for all other primes p of L. Using techniques similar to those in the previous

examples we find rK(Ai) = 9 and rK(A2) = 3. Ordering the L algebras by degree,

we begin by finding an L-division ring r2 such that

A2 OL 1'2 E ResLiK(B(K)) and rK(A2) = ind(F2).

For example, let 1'2 be such that

1 2
invai Er21 = inv[r2] = / and invp[F2] = 0

for all other primes p of L. Then A2 OL M3(W) where is the L-division ring

such that

10 7
invai [T] = inva2[W] = inv[T] = -TT, and invp[T] = 0

for all other primes p of L. Then let F1 be the L-division ring such that715
inv ] = inva [Fi]

=al1 27 - 2 27 invfi[11/] = FT, and invp[Fi] = 0

for all ther primes p of L. So A1 OL F1 M9(4f). Then by Theorem 13

dK(Ai; A2) = dK(M9(W)) = 2 35

Now suppose we first find an L-division ring S-11 such that



Say Qi is the L-division ring such that

1 8
inval [01] invs[Qi] = and invp[Qi] = 0

for all ther primes p of L. Let A be the skew field component of A1 01, Qi. So

inva [A] = inva [A] =
2 9'

5
invo [A] = 5, and invp[A] = 0
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for all other primes p of L. Then A1 01, Qi M9(A). Now let Q2 be the L-division

ring such that

5 23 26
invn, [Q.)

,
] = inva, [Q2] = invo [Q2] = , and invp [Q2] = 0

.4 27

for all other primes p of L. Then A2 Of, Q2 M81 (A). SO A1 and A2 both embed

into M81(A), but dK(M9i(A)) = 2 dK(Ai; A2).

As noted at the end of Chapter 1, we will have a much simpler means of computing

dK(Ai; ; An) provided the degrees of the central simple L-algebras are pairwise

relatively prime, that is,

dK(Ai; ; An) = dR. (Ai OL An).

In order to show that this is the case, we first prove the following lemma.

LEMMA 17. Let LIK be a finite extension of fields and suppose A1, , An are

central simple L-algebras with (ind(A1),ind(A2), , ind(An)) = 1. Then

rK(Ai OL A2 0/, An) = rK(Ai) ric(A2) rK(A.)

proof: We prove the lemma by induction on n.

For n = 2 we know r1(A1) divides ind(Ai) and rK(A2) divides ind(A2) by

Proposition 9, and therefore (rK(Ai), rK(A2)) = 1.



Let X, Y and 2 be L-division rings such that

[A1 0/, X] E ResLiK(B(K)), [A2 0/, Y] E ResL/K(B(K)),

[A1 OL A2 01, Z] E ResLiK(B(K))

and

rK(Ai) = ind(X), rK(A2) = ind(Y) and rK(Ai 01, A2) = ind(Z).

We see [A1 01, A2 01, X OL Y] = [A1 01, X] + [A2 01, Y] E ResLiK(B(K)) so

rK(Ai OL A2) < ind(X 01, Y) = ind(X) ind(Y) = rK(Ai) rK(A2).

Also

[A1 OL A2 OL Z] E ResLiK(B(K))

so rK(Ai) divides ind(A2 0/, Z) [4, Cor. 10]. But

ind(A2 Of, Z) divides ind(A2) ind(Z)

by Proposition 1,(c), so rK(Ai) divides ind(A2)ind(Z). But (rK(Ai), ind(A2)) = 1,

so rK(Ai) divides ind(Z). Similarly, rK(A2) divides ind(Z). Then, since

(rK (Ai), rK(A2)) = 1,

we have rK(Ai) -rK(A2) divides ind(Z), i.e. rK(A1)rK(A2) divides rK(Ai ®L A2).

So rK(Ai) r1(42) < rK(Ai OL A2), and thus we have equality.

Assume now that the lemma is valid for n 1 central simple L-algebras. Let

A1, ,A be central simple L-algebras with (ind(Ai), ,ind(A,i)) = 1. Let

A = 01, An_i.

By Proposition 1,(d),

n-1
ind(A) = ind(Ai) so (ind(A),ind(An)) = 1.

i=i
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Then
rK(Ai 01, An) = rK(A Or, An)

rK(A) rK(An)

rK(Ai) rK(An_i) rK(An)

THEOREM 18. Let LIK be a finite extension of stable fields and suppose A1, , An

are central simple L-algebras with (deg(Ai ), deg(A2), , deg(An)) = 1. Then

dK(Ai; ; An) = dK(Ai OL An).

proof: Suppose Pkl V k2' are the primes dividing deg(A) for k = 1, , n.km,

Write
Mk

Ak -r== Oki

where ftki is a central simple L-algebra with deg() a power of pki Then by

Theorem 15

dic(Ai; . . . ; An) = [L : K] (llini dK 011 i; L; . . . ; L)) (fid K(S22i; L; . . . ; L)

i=1

)
[L : K] [L : K]

i=1

dK(; L;...;L))
[L: K]

(T411
m dK(S2ii)) (rim dK(S22 i)) (rim

=[L : K]
dK(S2ni))

[L : K] 1=1 [L : K] in=1 [L : K]

mi in2

= [L : K] deg(ltf/ .) rIC (ISt t.) deg(S22 i) rK(S22i)
i=1

40
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= [L : K] (cleg(Ai) rK(A1)) (deg(A2) rK(A2)) (deg(An) rK(A,i))

= [L : K] deg(Ai 0/, An) rK(Ai OL OL An)

= dK(Ai Or, An).

Note that the conclusion of Theorem 18 is not valid if we only require that

(ind(A1),ind(A2)) = 1 rather than the stronger condition (deg(A1),deg(A2)) = 1.

We illustrate this with the following example.

EXAMPLE 4. Let K = Q and L =-- Q(4, and suppose

p1 1(mod 8), p2 3(mod 8)

and al and ct2 are primes of L extending pp and # is the prime of L extending p2.

Let A1 = M2(A1) where Ai is such that

1inv[L1] inva2 [Al] = invi3[A1] and invp [Ai] = 0

for all other primes p of L, and let A2 = M2(L). Then A1 OL A2 M4(A1), SO

dK(Ai OL A2) = 4 dK(Ai) = 23 3.

But A1 01, M2(L) so by Theorem 15

dK(M2(L);M2(L)) dK(Ai;L)
d K(Ai; A2) = [L : K] = 22 3.

[L : K] [L : K]
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