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Minimal Simultaneous Embeddings of Central Simple Algebras

1. Introduction

Let L/ K be a finite extension of fields and suppose A is a central simple L-algebra.
In [4] the question of determining the “minimal” finite dimensional central simple K-
algebra into which A embeds was studied. Two notions of minimality were studied;
that of degree minimality of A and matrix size minimality of A. In this paper,
the notion of degree minimality is extended to degree minimality of ALA,,. .. A,
where each A, is a central simple L-algebra, and we determine the minimum degree

of a central simple K-algebra into which each A, embeds simultaneously, provided

L/K is a finite extension of stable fields.

We begin with some terminology and a summary of results concerning central
simple algebras. A more detailed discussion can be found in [3]. A ring A is called
a K-algebra if there exists a monomorphism o: K — A such that o(K) is contained
in Z(A), the center of A. We say A is a central simple K-algebra (or A/K is
central simple) if o(K) = Z(A), A is simple, and [A : K] is finite, where [4 : K] is

the vector space dimension of A over K. If such an A is a division ring, we call it

a K-division ring,.

If A is a central simple K-algebra then {A : K] is a square, and if [A : K] = m?
we call m the degree of A and write deg(4) = m. From Wedderburn’s Theorem
we know that A = M,,(D), the ring of n x n matrices with entries in a K-division
ring D (unique up to isomorphism) and some suitable (unique) n. D is called the

skew field component of 4 and n is called the matrix size of A.

The class of central simple K-algebras is closed under tensor product. Two central
simple K-algebras A and B are called similar, denoted A ~ B | if there are integers

s and ¢ such that A®, M,(K)= B ®y M,(K). The relation ~ is an equivalence

relation, and if the skew field components of A and B are D and E, respectively, we
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have A ~ B if and only if D = E. The equivalence class of A is denoted [A] and the
set of equivalence classes forms an abelian group, B(K), called the Brauer group
of K, under the operation [A] + [B] = [A ®, B]. In B(K), 0 = [K] = [M, (X))
and —[A] = [A°?] where A°P is the opposite algebra of A, i.e. A°? = (4,+,0) has
multiplication a 0 b = ba. The p-primary component of B(K) is denoted B(K )p-
If [A] € B(K), then A = M,(D) for some K-division ring D, and we define the
index, ind(A), of A to be 4/[D: K]. Thus deg(A) = ¢t -ind(A4). By [1, (12.16)]
deg(A ®, B) = deg(A)-deg(B). The order of [A] in B(K) is called the exponent of
A and is denoted exp(A). We say K is stable if ind(A) = exp(A) for every central
simple A/K. We call K a global field if it is either an algebraic number field or an
algebraic function field in one variable over a finite constant field. By [5, 32.19),

global fields are stable.

If L is an extension field of K and A is a central simple K-algebra then A Qp L
:B(K)—B(L) given by

is a central simple L-algebra and the restriction map Res LK

[A] — [A®, L] is a homomorphism of groups. The relative Brauer group, denoted
B(L/K), is the kernel of this homomorphism. Thus [4] € B(L/K) if and only if
A®y L=M,(L) for some r. In this case, L is called a splitting field for A.

We summarize some results concerning central simple algebras which can be found

in [3, §9].

PROPOSITION 1. Let L/K be a finite extension of fields, and suppose A and B are
central simple K-algebras. Then:
(2) ind(A ®;, L) divides ind(A).
(b) If (ind(A),[L : K]) = 1 then ind(A ®, L) = ind(A).
(c) ind(A ®,, B) divides ind(A) - ind(B).
(d) ¥ (ind(A),ind(B)) = 1 then ind(A ® ; B) = ind(A4) - ind(B).
(e) I D is a K-division ring and ind(D) = pil -+-ptr is the prime factorization
of its index, then D 2 D, ®, - ®, D, with K-division rings D, such
that ind(D, ) = pyifori=1,2,...,n ’
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Proposition 1,(b) tells us that if D is a K-division ring and (ind(D),[L : K]) = 1,
then D @, L remains a division ring, and Proposition 1,(d) tells us that if D and

E are K-division rings of coprime index, then D ®,. E remains a division ring.

If n is a positive integer and p is a prime, we let n, denote the p-part of n;
n = nyn' where (n,,n') = 1. If G is a group and a € G, we say a has order n and
write ord(a) = n, if a™ = 1 and n is the smallest positive integer with this property.
If o has order n = n,n', then « is uniquely expressible as a = a,a' where a,, (the

p_- component of a) has order a power of p and o' (the p - regular component of a)

has order relatively prime to p. Moreover, a

» and &' commute, for if 1 = un, +vn'

we have a, = a*® and o = ¥, If A/L is central simple then A = ®,A, where
the tensor product is taken over L and over all primes p, and where deg(A4,) is a
power of p [5, p. 256]. We have [A4,] = [A],. Also note that if ¢ is a homomorphism
between groups H and G, and a € ¢(H) then both a, and o' € ¢(H) since each
is a power of a. In particular, if [A] € Res, . (B(K)), then [4,] € Res, , (B(K))

and [A'] € Res, , (B(K)).

L/K L/K

L/K

Let (G,+) be an abelian group in which each element has order a power of a
prime p. Suppose a,b € G with ord(a) = p™ and ord(b) = p™ where m < n. We
wish to determine what can be said about ord(a + b). If m < n then p®(a+b) =0
so ord(a + &) divides p”. But

pn—l(a+b)=pn—-1a+pn—-1b:pn—1b7é0,

so ord(a + b) = p® = ord(b). If m = n, we still have ord(a + b) divides p" so
ord(a 4 ) < p™ = ord(b), but nothing more may be said in general. We will make
use of these facts repeatedly in the work which follows. In particular, if L is a stable
field and A, /L and A, /L are central simple with ind(4,) = p™ and ind(4,) = p"
where m < n, then ind(4, ®; A,) =p”, as ind(4;) = exp(4,) for i = 1,2.

If A/L is central simple and L/K is finite dimensional, we say A/L is embeddable

in a central simple B/ K provided there exists a K-algebra monomorphism ¢:4 — B
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with ¢(1 ) = 15. The condition that ¢(1,) = 1 is required since we are concerned
with finding the minimum of the degree of B, and by [4, Prop. 1]if ¢(1,) # 15,
this minimum will not be attained. If ¢ exists we usually identify A with its image

i B.

Note that if r divides s then there exists an embedding from M,.(D) into M,(D)
given by sending the r X r matrix [dij] to the s x s matrix which consists of blocks

of the matrix [d, ] along its diagonal and 0 elsewhere.

Following the notation of [4] we now make precise the notion of “minimal” with

the following definition:

Definition: Let L/K be a finite extension of fields and let A/L be central simple.
Define

d;(A) = min{deg(B) |B/K is central simple and A/L embeds into B}.

If A/L embeds in a central simple B/K and deg(B) = d,.(A), we say that B/K
is degree minimal for A/L.

Next we extend this idea with the following definition.

Definition: Let L/K be a finite extension of fields and let A, A,,... A, be central

simple L-algebras. Define

di (A5 4,) =

min{deg(B)| B/K is central simple and A./L embeds into B/K fori=1,...,n}.
Note that if A;/L is central simple and L/K is finite, then A./L embeds into

B, =M, (K) where u; = [A, : K] via the left regular representation. Thus each A,
embeds into B = QL B,, so that both d;.(A) and d (A4;;...; Ay) exist.
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In order to determine d,.(A,;...; A,) we must find embeddings of each A, into
a central simple K-algebra B. We see that if A, ®, ---®, A, embeds into B, then
each A; also has an embedding into B so that

(A5 An) <dg(A, Qp -+~ ® Ay).

We will show that equality does not hold in general. However it does hold if
(deg(A,),. ., deg(A4n)) = 1.




2. Cyclic Algebras and Hasse Invariants

In this section we define cyclic algebras and Hasse invariants and gather some

results needed in the following sections. We begin with the following definition.

Definition: Let L/K be a finite cyclic extension of fields with Gal(L/K) = (o) and
suppose [L : K| = n. Let a € K*, let u be a symbol and form the associative
K-algebra

n—1
A= (L/K,0,a) = ZLui
—
where multiplication in A is defined by
u" =a and u-z=o(z)u for all z € L.

A is a finite dimensional central simple K-algebra and is called a cyclic algebra.

By (5, 32.20], every central simple K algebra is a cyclic algebra if K is a global
field.

Now let R be a complete discrete valuation ring with maximal ideal P = 7R # 0
and suppose K is the quotient field of R. Each k € K* can be written in the form

= n"e where € is a unit and r is an integer. Let v, be the exponential valuation
on K, i.e. if k = n"€ then v,.(k) = r and v,.(0) = co. Let K = R/P be the residue
class field and suppose |K| = q.

Suppose D is a K-division ring with ind(D) = m. Let W be the unique unramified
extension of K of degree m. So W = K(w) where w is a primative (¢™ — 1)*® root
of unity over K. W is a cyclic extension of K and Gal(W/K) is generated by
the Frobenius automorphism of W/K, denoted o, ., where oy, . is defined by
Ow k(W) =w? [6, 3-2-12].

In [5, §30] it is shown that D = (W/K,ay,,,,7*) where s € Z.
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Definition: Let D be a K-division ring of index m, so D = (W/K, 0, ,,7°) where

W = K(w). The Hasse invariant of D is defined to be Ze Q/Z. If A/K is central
m

simple, say A = M,(D) with D & (W/K, 0w x>»T"), we define the map

inv: B(K) — Q/Z by inv[A4] = % (mod 1).
From [5, 31.8] we have the following.

PROPOSITION 2. inv:B(K) — Q/Z is an additive isomorphism.

Now suppose K is an algebraic number field. A prime of K may be viewed as
either a prime ideal in the ring of integers of K or as one of the equivalence classes of
valuations on K. A prime is called finite or non-archimedean if it extends the p-adic
valuation of Q, and is called infinite or archimedean if it extends the usual absolute
value on the rational field Q. If L is an extension field of K and v is a valuation
defined on L such that y(k) = w(k) for every k € K, where 7 is a valuation on K,

we say that 4 divides = or v extends 7.

I 7 is a prime of K, we let K, denote the w-adic completion of K. If 7 is
archimedean, K, is either the real field R, and 7 is called a real prime, or is the

complex field C, and = is called a complex prime.

If A/K is central simple we set A, = A @y Kx. Then A is a central simple

K ,-algebra so we have a homomorphism of Brauer groups given by
B(K) — B(K,)
[A] = [Ax].
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Definition: Let K be an algebraic number field, A/K central simple, and 7 a prime
of K (finite or infinite). The Hasse invariant of A at 7 is defined by

inv[A,); if 7 is finite;

invo[A] = 0; if 7 is complex;
VA= %; if w is real and A, ~ H;
0; if 7 is real and A, ~ R;

where H denotes the division ring of real quaternions. The denominator of inv,[A]

as a fraction reduced to lowest terms is called the local index of A at 7w and is

denoted Li.r(A4).

We see if A = M, (D,) where D, is a K,-division ring, then Li.;(A) = ind(D,).
In particular, if inv,[A] = 0 then D, & K, so ind(D,) =1 and Li.z(4) = 1.

We summarize some properties of Hasse invariants which can be found in [5, §32].

PROPOSITION 3. Let S be the set of primes of K, and let A/K and B/K be central
simple. Then:

(a) inv.{A] = 0 for all but finitely many = € S.

(b) Yo resinva(A] =0(mod1).

(c) A~ K if and only if inv,[A] = 0 for all 7 € S.

(d) A ~ B if and only if inv,[A] = inv,[B] for all 7 € S.

(e) exp(A) = Lem.{li. (4) | 7 € S}

We also state the following two propositions whose proofs are found in [2, Satz

4, p. 113] and [2, Satz 9, p. 119], respectively.

PROPOSITION 4. Suppose L/K is a finite extention of fields, 7 a prime of K and v

a prime of L dividing w. Then, if D is a K-division ring,

[L., : K] -inv,[D] = inv,[D ® ; L] (mod 1).




PROPOSITION 5. Let 7, 7,,...,m, be a set of primes of K, Uy, Uy, ..., Uy, rational
numbers in lowest terms such that

0<u,<1, ZuiEO(mOdl),

i=1
=0 1 if . isreal, and u. =0if 7, i 1
uj = or "2' 1 7r] 1s réal, an uj = 1 7r] 1S Comp €X.

Then there exists a K-division ring D with v, [D] = u, for all j and inv,[D] =0
for all other primes 7 of K.
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3. Computing d,.(A)

We begin this section by gathering some standard results about the centralizer of

a simple subalgebra of B/K. We denote the centralizer in B of a subalgebra E by

Cgx(E) = {z € Bley = yzforallye E}.

PROPOSITION 6. Let L/K be a finite extension of fields and suppose A/L is central

simple. Suppose A/L embeds into a central simple B/K. Let Y be the centalizer
of Ain Cg4(L). Then:

(a) Y/L is central simple such that Cx(L) =2 A®, Y.
(b) B®, L= M, (Cyz(L)) where r = [L: K].

(c) deg(B) =deg(A)-deg(Y)-[L: K] and [A] 4 [Y] € Res, , .(B(K)).

L/K
proof: This follows from [5, pages 94-96]. ||

Now we summarize some results from [4] dealing with the computation of d,.(A).

If A= M,(A) where A is an L-division ring, then by [4, Cor. 3]

d (A)=t-d (A).

K K (

Moreover, if A/L embeds into a central simple B/K then d . (A) divides deg(B)
[4, Thm. 12]. In particular, this shows that d .(A4,) divides d.(A,;...; A,) for each

t=1,...,n,if A},..., A, are central simple L-algebras.
We will also state the following proposition which is proven in [4, Prop. §].
PROPOSITION 7. Let L/K be a finite extension of fields and suppose A/L is central

simple. If [A] = [D ®,. L], D a K-division ring, then there exists an integer w such
that A/L embeds into B = M,,(D) so that A = Cz(L) and

deg(B) = deg(A) - [L: K] = d (A).
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A numerical invariant y of a central simple L-algebra A is said to localize if
#(A)p = p(Ap). Since d;.(A) does not localize, a new invariant of A/L is introduced.
Proposition 6 shows that if A/L embeds into B/K and Y is the centralizer of A in
Cg(L) then deg(B) = deg(A) - deg(Y) - [L : K] so deg(B) will be minimal provided
deg(Y’) is minimal. Thus, following the notation of [4], we define:

Definition: Let L/K be finite and A/L central simple. Define

ri(A) =min{ind(Y) | Y is an L — division ring with [4] 4+ [Y] € ResL/K(B(K))}.
By [4, Prop. 8], r;(A) localizes and by [4, Thm. 6], we have the following.

PROPOSITION 8. Let L/K be a finite extension of fields and let A/L be central
simple. Then d,.(A) = deg(A)-r,(A)-[L: K].

From [4, Cor. 11] we also have

PROPOSITION 9. Let L/K be a finite extension of fields and suppose A/L is central
simple. Then r,.(A) divides ind(A).
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4. Computing d;(A;; ... ;A,)

Next we turn our attention to computing di(Ay;...; Ay) where each A, is a
central simple L-algebra. Throughout this section let L/K be a finite extension
of stable fields. We will use freely the fact that if A/L is central simple then
ind(A) = exp(A). Given central simple L-algebras A,,..., A, we will give an
algorithm for determining a central simple L-algebra A such that d k(A Ay =
di(A) = deg(A) - r(A) - [L: K].

One might assume that a candidate for such an L-algebra A would be one of
minimum degree into which each A, embeds. We begin with an example to show

that this is, in general, not the case.

EXAMPLE 1. Let K = Q and L = Q(+/2). Then a prime p ramifies if and only if
p = 2, p remains prime if and only if p = £3 (mod 8), and p splits if and only if
p = %1 (mod 8) [6, 6-2].

Let p; =1 (mod 8) and let @, and «, be primes of L extending p,. Let p, =
3 (mod 8) and let B be the prime of L extending p,. By Proposition 5, there exists
L-division rings A; and A, such that

inv, [A] = inve, [A] = invﬂ[Al] = %, and inv,[A]=0
for all other primes p of L, and
. 2 . 7 .
invy [A,] = 9’ 1nvﬂ[A2] =9 and inv,[A,] =0
for all other primes p of L.

We will show that the minimum degree of any L-algebra A into which both A,
and A, embed is 27, but if A| and A, embed into A where deg(A) = 27, then
d(A) > d (A A,).
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By Proposition 3,(c), ind(A,) = 3 and ind(A,) = 9. Suppose A and A, embed
into a central simple L-algebra A. Let Y, and Y, be the centralizers of A, and
A, in A, respectively. Then by Proposition 6,(a), A = A, ®, Y, £ A, ®, Y,
so deg(A) = 3 - deg(Y,) = 9 - deg(Y,). So 9 divides deg(A). Suppose deg(4) = 9.
Then deg(Y,) = 3 and deg(Y,) = 1. But deg(Y,) = 1 implies Y, 2 L, so A = A,,.
Then Y, ~ A, ®; A% so ind(Y,) = ind(A, ®, A{?). But since ind(A,) = 9 and
ind(A,) = ind(A??) = 3 we have ind(A, ®, A?) = ind(A,) = 9, contrary to
deg(Y;) = 3. So A, and A, do not embed into any L-algebra of degree 9.

Note, however, that if Q is the L-division ring defined by

invy [Q] = -g, inv, [Q] = 31))-, inv,[Q)] = -35, and inv,[Q] =0

for all other primes p of L, we have A, ®; A, ~ £, by Proposition 3,(d). Then since
deg(A; ®; A,) = deg(A,) - deg(A,) = 27 we have A @, A, = M;(£2). Thus A,
and A, embed into M,(£2) and deg(M,(£2)) = 27, so the minimum degree L-algebra

into which both A, and A, embed has degree 27.

Next, let us compute d,(A;; A,). We begin by finding d;.(A,) and d(A,). By
[6, 2-4-4 (iv)], [La, : Kp ] = [La, : Kp ] =1 and [Lg: K,.] = 2 so by Proposition 4
D ®, L~ A, where D is the K-division ring with

inv, [D] = %, inv, [D] = -z;, and inv,[D] =0

for all other primes ¢ of K, whose existence is guaranteed by Proposition 5. Thus

A, € ResL/K(B(K)) and r.(A;) =1. So
dp (D)) =deg(A)) rp (D)) -[L: K] =6.

Now suppose X is an L-division ring such that [A, ®, X] € ResL/K(B(K)),
r(A,) = ind(X), and suppose E is a K-division ring such that EQ . L ~ A,®, X.
Then by Proposition 4

inv, [E] = invy [A, ® X]=inv, [A, ®) X]
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where the congruences are mod 1. So

g + invy [X] = inv,, [X].

But this forces L.i.q [X] or Li., [X] to be 9, so by Proposition 3,(e) ind(X) > 9. But
r(4,;) < ind(A,) since [A,®; AP] € Res, . (B(K)) and ind(A%) = ind(A,) = 9.
Sorp(A,) =9 and d(A,)=2-3%

L/K

By Proposition 5 there exists L-division rings I'; and T', such that

2
, invﬂ[l"l]:§, and inv,[['] =0

©|

vy r,]= invo,z[l"l] =
for all other primes p of L, and
: 2 7 : _

inv, [I,] = 9’ 1nvﬂ[1"2] =3 and inv,[[,] =0

for all other primes p of L. Then by Proposition 3,(d) A, ®, T, ~A, ®, T, ~ ¥
where ¥ is the L-division ring with

. . 2 5 i
vy, (V] = 1nv02[\Il] =9 1nvﬂ[\Il] =g and inv,[¥] =0

for all other primes p of L. But deg(A; ®, T';) = 27 and deg(A, ®, T,) = 81
so A ®, 'y = My(¥) and A, ®, T, = My(¥). Then, since My(¥) embeds into
M,(¥®), A; and A, embed into Mg(¥). Thus d(A;A,) < dp.(My(¥)). Now by
Proposition 4, F ® K L ~ ¥ where F is the K-division ring such that

inv, [F]= %, v, [F]= -g, and inv,[F] =0
for all other primes ¢ of K. So r,.(¥) =1 and dp(Mg(¥)) =2- 3%. But
de(By; ;) 225
since dy.(A,) =2-3* and d,(A,) divides d,.(A;A,). Thus d.(A;;A,) =2 3%

Finally we show that there is no central simple A/L into which both A and A,
embed with deg(A4) = 27 and d,.(A) = 2- 3. Suppose A/L has these properties.
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Then we have r.(A) = 3 by Proposition 8. Let ¥, and Y, be the centralizers of A,
and A, in A, respectively. So by Proposition 6,(a) A=A, ®, Y, A, ®, Y, and
hence deg(Y;) = 9 and deg(Y,) = 3. Since deg(Y,) = 3 we have either ind(Y,) = 1
or ind(Y,) = 3. If ind(Y,) = 1 then A ~ A, so r.(A) = r (A,) =9, contrary to
ri(A)=3. If ind(Y,) = 3 then Lig (¥3) =1orli, (¥;) =3, s0

1

invy [Y)]=0,, or .

[\

(-]
(-]

In any case, Li.q [A, ® Y] =9s0li, (4) =9. Also Li, (¥;) =1orli, (V,) =
3, and therefore Lig,(4) = lor L4, (A) = 3. Thus we have two possibilities.
First is the case in which Li, (4) = 9 and Li., (4) = 1. Then inv, [4] = g
where (a,9) = 1 and invy [A] = 0. Then if Z is a central simple L-algebra with

ri(A) =ind(Z), and H is a K-division ring such that
HQ,L~AQ, Z,
by Proposition 5,
inv, [H] =inv, [A®, Z] =inv, [AQ Z]

S0

a

9
But then either Li., [Z] = 9 or li., [Z] = 9 and in either case ind(Z) = r, (4) =9,

+inv, [Z] = inv, [Z].

a contradiction. Secondly, we may have Liq (A) =9 and li, (A4) = 3. But again,
by an argument similar to that given above, this forces r,(A) = 9. So there is
no A/L of degree 27 into which both A, and A, embed with d,(4) = 2-3* =
d; (A5 A,). This concludes the example.

Againlet A ,... A, be central simple L-algebras. We wish to determine a central
simple L-algebra A with d,.(A;;...;A,) = d,(A). Initially we will consider the
case in which deg(A;) is a power of a prime p for each 7 = 1,... n. We will give an

algorithm for finding a central simple L-algebra called the p-embedder of A,...,A

ny
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and then show that the minimum degree central simple K-algebra into which it

embeds is d.(A;;...; Ay).
Order the L-algebras 4,,..., A, so that
deg(4;) < deg(4,) < -+~ < deg(An)
and suppose deg(A,;) =p"i fori =1,...,n. Let ', be an L-division ring such that

An®; Tn €Res, (B(K)) and ind(T,)=r,(A4n).

L/K
Let ¥ be the skew field component of A, ®; I', so

~ ) _deg(4,) -ind(T',,)
A,®, 'y _Mtn(\Il) with ¢, = 0d(0) .

Note that ind(¥) = ind(4, ®,; I';), so ind(¥) is a power of p and hence ¢, is a

power of p.

Fori=1,...,n—1,let T, be the L-division ring such that A, ®, I', ~ ¥. We see
ind(T';) is also a power of p. Then for i = 1,...,n we have

deg(4;) - ind(T';)

4@, T =M (9) with f = —=—io

Each ¢, is also a power of p so if t = max{t,,...,t,}, t; divides ¢ for each : =
1,...,n and each 4,,..., A, simultaneously embeds into M,(¥). We call M,(¥) a
p-embedder of A,,..., A,. Note that a p-embedder of 4 , ..., A, is not unique but
depends on the choice of the L-division ring I',,. We will show that

di (A5 An) = dp . (M (7))

where M, (V) is any p-embedder of A4, ..., A,, and use this result to prove our main

theorem which we now state.
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THEOREM A. Let A,,..., A, be central simple L-algebras and suppose p,,...,pm
are primes dividing deg(A,) for any k = 1,...,n. Suppose 4, = @, Q,, where
Q,, is a central simple L-algebra with deg({2,,) a power of p, for each k =1,...,n
and z =1,...,m. Let M, (¥,) be a p,-embedder for Q,,,Q,,,...,Q,; for each : =
1,...,m and let A = ®'7;1 M, (¥,). Then d,(A,;...;4,) = dy(A). Moreover,
ri(A) =1s0d (A;;...;A,) ='[L : K] [Tz, t, - ind(P,).

We note that even though r, . (A) = 1, in order to determine a p -embedder

of Q.,Q,,...,Q,,, it is necessary to determine 'I'K(le.) for some 7 = 1,...,n.

Techniques for computing these values are illustrated in Example 1.
To prove these results we begin with the following three lemmas. Recall that

L/K is a finite extension of stable fields throughout this section.

LEMMA 10. Let A,,..., A, be central simple L-algebras with deg(A;) = p"i, p a
prime. Suppose that each A, embeds into a central simple K-algebra B, where
B|= M,(D), D a K-division ring. For each i = 1,...,n, let Y, be the centralizer of
A, in Cg(L). If ¢ is a prime, ¢ # p, and ¢ divides deg(Y;) for each z, then each A,
embeds into a central simple K-algebra B’ where deg(B') < deg(B) .

proof: Since ¢ divides deg(Y;) we may write Y; = Y, ®, Y where deg(Y; ) is a

power of ¢ and (deg(Y}),q) = 1. By Proposition 6,(c)
deg(B) = deg(4,) - deg(Y; ) deg(Y{)-[L: K] foreachi=1,...,n.
So
deg(A,) - deg(Y; ) - deg(Y}) = deg(4,) - deg(Y ) - deg(Y/) fori,j=1,...,n.
Equating the g-regular components yields

3 deg(A.) - deg(Y!) = deg(A.) - deg(Y!) fori,j=1,...,n.
7 J g 1 g 1
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Also we see ¢| deg(B) so either ¢t or ¢|ind(D).

If ¢lind(D) write D = D, ®, D' where D, and D' are K-division rings with
ind(D,) a power of ¢ and (ind(D'),q) = 1. By Proposition 6

D®KLNA1'®LY1' for 1=1,...,n.

So
(Dy®y L) ®;, (D' @y L) ~ A; ®, Yiq ®, Y/

and equating the g-regular components of [D ® .. L] in B(L), we have
D'®,L~A®, Y.

Then by Proposition 7, A; embeds into M, (D') with

. deg(4,)- deg(Y))-[L: K]
i~ ind(D")

for 1=1,...,n.

But then by (3), v, = v, =--- = v,. Let v be this common value so that 4; embeds
into M, (D') for each ¢ and

deg(M,(D")) = deg(4,) - deg(Y}) - [L : K]

which is strictly less than deg(B) unless Y, = L, which is contrary to ¢ dividing
deg(Y; )-

Next suppose ¢|t and ¢ [ ind(D). We have
DRyL~A0, Y, ®, Y] for i=1,...,n

SO

ind(D ®, L) =ind(4, ®, Yiq ®,Y) for i=1,...,n

By Proposition 1,(a), ind(D ® . L)|ind(D) so ¢ }ind(D ® L). Thus

q [ind(4;®, Y, ® Y.
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But by Proposition 1,(d), ind(4, ®; Y, ®p Y)=ind(4;,®,Y')- ind(Y; ) so
q find(Y; ).
But q|deg(Yiq) SO Yiq o Mui(L) where g|u;. But then
D®,L~A QY]

So A; embeds into M,, (D) with

__ deg(A,) deg(¥}) - [L: K]
i ind(D)

for :=1,...,n.

Again by (3), w; =w, =--- = w,. Let w be this common value so that A; embeds
into My, (D) for i = 1,...,n, and deg(M, (D)) = deg(4;) - deg(Y) - [L : K] which is
strictly less than deg(B) unless Y, = L, which is contrary to ¢ dividing deg(Y;). m

LEMMA 11. Suppose A,,..., A, are central simple L-algebras with deg(4,) = p",
p a prime. If ¢ is prime, ¢ # p, such that ¢ J [L: K], then ¢ [ d (A,;...;A,).

proof: Let B/K be central simple such that dp(Ay;-. .5 Ay) = deg(B) and suppose
g divides deg(B). Let Y; be the centralizer of A, in Cz(L) for each ¢ =1,...,n. By
Proposition 6,(c)

deg(B) = deg(4;) - deg(Y;)-[L: K] for :=1,...,n.

Since (g,deg(4;)) = (¢,[L : K]) = 1, ¢ divides deg(Y;) for each ¢, and thus by
Lemma 10, A; embeds into B'/K for each ¢, where deg(B') < deg(B), contrary to
deg(B) =d,(A;;-..; An). |

LEMMA 12. Suppose A4,,...,A, are central simple L-algebras with deg(4,) = p":.
Then d;.(A,;...;A,) =p'-[L: K] for some t.

proof: Without loss of generality we may assume that the L-algebras are ordered
s0

deg(A;) < deg(4,) < -+ < deg(4,).
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Let B/K be central simple such that d, (A4,;...;A,) = deg(B) and suppose

[L:K]:pa.qzl-qgﬂ..-qzll

is the prime factorization. By Proposition 9, r,.(A;) divides deg(A;) for each : =
1,...,n so we may write r,.(A;) = p% for some s;, and since r (A4) < deg(4),

s; < r,. By Proposition 8,

dK(Ai)zpri+si-[L:I{] for 1=1,...,n.

We know d;.(A;) divides d; (A,;...;A,) for each ¢, so

di(Ay;...;Ap)=m-p”-[L: K]

where v = max{r, +s, | ¢ = 1,...,n}. By Lemma 11, the only primes which
may divide m are p,q,,...,q,. To prove the lemma we must show that g J m for
1=1,...,L

Let Y; be the centralizer of A; in Cyx(L) for i = 1,...,n. Then
deg(B) = deg(A,) - deg(Y;) - [L : K]
so
m-p¥-[L: K]=p" deg(Y;) [L: K]

or

m - p”~"i = deg(Y)).

Suppose q].[m for some j =1,...,l. Then q; divides deg(Y;) for each: =1,...n. So
by Lemma 10, each A; embeds into a central simple B’/ K where deg(B') < deg(B),
contrary to d,.(A,;...; A,) = deg(B). ]

We are now in a position to compute d,.(A,;...;Ay) for the case in which

each central simple L-algebra A; has degree a power of a prime p. We will show
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dp(Ay.. 5 Ap) = dp (M () where M, () is any p-embedder of 4,,...,A4,. Let

us recall how we determine a p-embedder of A ,..., A,.

T

Suppose A,,..., A, are central simple L-algebras with deg(A,) = p" ordered so

deg(4,) < deg(4,) < --- < deg(Ay),
and suppose r,(A;) = p° for i =1,...,n. Then by Proposition 8

d(A)=p"ite-[L:K] for i=1,...,n.

Let I',, be an L-division ring such that

A, ®; Ty €Res,  (B(K)) and ind(I'y)=rg(4,)=p"".

L/K

Let ¥ be the skew field component of A, ®; ', so

deg(4,) - ind(T,) .

An® Ta =M, (¥) with t,= )

Note that ¥ € ResL/K(B(K)) so 7, (V) =1and d (¥) =ind(¥)-[L: K.

For: =1,...,n—1, let T, be the L-division ring such that A, ®, I'; ~ ¥. Say
ind(T';) = p*:. Then for ¢ =1,...,n we have

deg(A,) -ind(T;)
ind(¥) '

A0, T, =M, (¥) with t,=

A p-embedder of A,,..., A, is M,(¥) where t{ = max{¢,,...,%,}, and, as noted

previously, A ,..., A, simultaneously embed into M,(¥), so

4) di (A5 Ap) < d (M(7)).

THEOREM 13. Let the context be as above. Then dy(A;;...; A,) = dp (M, (¥)).

proof: We consider two cases.
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Casel. t=1t,.

In this case d(A;;...;4s) < t, - dp (V) = deg(A,) - ind(T,) - [L : K], and
di (A5 Ay) £ deg(A,) - ind(T,,) - [L : K] since dy(Ay) divides dj (A,;...; Ay),
and d, . (A,) = deg(4,) -ind(T,,) - [L : K].

Case 2. t = t, for some j < n.
In this case we may assume that ¢, < t; so
deg(Ay) - ind(T'y) < deg(4;) - ind(T",)
which yields ind(T',,) < ind(I‘J.) as deg(Aj) < deg(A,). In particular we have
ind(I‘j ®, IY) =ind(T) = p*.

By (4)
die(Ays - An) < dye(M, (9))

= deg(4,) - ind(T',) - [L : K]
=p7it% .[L: K].
We wish to show that equality holds.

Suppose d (A;;...;A,) < pit% . [L: K]. Using Lemma 12 and the fact that
dK(Aj) divides d;.(A;...; Ap) we know

di(Ag;.. 3 Ay) =piitstE L K]
for some k between 0 and u; — s, — 1, inclusive.
Let B/K be central simple such that A ,..., A, each embed into B and
deg(B) =d, (A;...;4,) =pitstr . [L: K]

Let YJ be the centralizer of AJ. in Cy(L) and let Y, be the centralizer of A, in

Cp(L). Then
deg(B) = deg(A;) - deg(Y) - [L : K]

= deg(A,) - deg(Y,) - [L : K]
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or

phithk = deg(Yj) and pTitHHETT™ = deg(Y,).

By Proposition 6
B®KL~A].®LY].~A,,®LYn

SO

An®p A ~ Y, @ Y7
Thus ind(A, ®; A;’.P) = ind(Yj ®; Y7P). But r; STy SO
pTites kT < gtk

and thus

ind(4, ®, A%) = ind(Y, ®, Y?) < p%*F < pt.
But A, ®, A? ~T,; ®, T% so

ind(4, ®, A¥) =ind(l'; ® T7?) =ind(T;) = p*,
a contradiction. n

As noted previously, if A/L embeds into B/K then d,.(A) divides deg(B). We

have an analogous theorem in our situation.

THEOREM 14. Let A ,..., A, be central simple L-algebras with deg(A,) = p"+ for
eachi=1,...,n.If A,,..., A, embed into a central simple B/K, then

d. . (A,;

17

wl .3 An) divides deg(B).

proof: Again we may assume the L algebras are ordered so
deg(4,) < deg(4,) < --- < deg(4y).
Let T',, be an L-division ring such that

A, ®, Ty €Res, , (B(K)) and r.(4,)=ind(T,).

L/K
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Say ind(T',,) = p°. Let ¥ be the skew field component of A, ®; I', and suppose for
i=1,...,n—1,T,is an L-division ring such that A, ®, I'; ~ ¥. Say ind(T';) = p™:.

Let
_ deg(4;) -ind(T)
i ind(P) ’
so for i = 1,...,n we have A. ®, I, &= M, (¥) and by Theorem 13 we know
dp(Ap...5An) = dp (M () where t = max{t,...,%,}.

In particular, if ¢ =¢,, then
dp (A} .5 Ay) =deg(Ay) -ind(Ty) - [L: K] = p™tin L [L: K]
and if ¢t = t for some j < n then

di(Ape 5 AR) = deg(AJ.) . ind(Fj) J[L:K])=p"t% - [L: K]

Suppose A|,...,A, each embed into a central simple K-algebra B = M,(D)

where D is a K-division ring. If
dye(Ayi i Ag) = p¥n - (L5 K]
then the result follows easily as
dy(An) =p™" - [L: K]
and we know d.(A,) divides deg(B).

Suppose d;.(A;...;4,) = pit% . [L: K]. We must show that p"st% - [L: K]

deg(B)

divides deg(B) or, equivalently, that p"it* divides T K]

deg(B)
[L: K]

Suppose p"i t% does not divide . We know dK(Aj) =p"it¥% - [L: K]

divides deg(B), so p”i divides ?;g(IB;? Let v be the greatest integer such that p”i **



deg(B)
[L: K}’

deg(B
say m-pTit? = _eg_(_) where (m,p) =1 and v < u;.

[L: K]

divides
Let Y, be the centralizer of A, in Cy(L) for each : =1,...,n. Then
deg(B) = deg(A,) - deg(Y) - [L : K]

or

m-pTitvT =deg(Y;) for i=1,...n.
Thus m divides deg(Y;) for each 7. Let
m:qil .q;2...q;31
be the prime factorization. So for each : we may write

Y, 2Y; ®L"'®LYin®LYip

1 g,

where Y, ~andY, are central simple L-algebras with
k

deg(Yiqk)quk and deg(l/'l.p)zpri+”—ri for k=1,...,1 and :1=1,...

In particular note that deg(Yjp) = p", and
deg(4,;) - deg(YiP) =p7it’ foreach 1=1,...,n.
Thus the product deg(A4,) - deg(YiP) does not depend on .

We may write

Dqul ®K"'®KDq, ®KDI

where D, and D' are K-division rings with ind(D, ) a power of ¢, and
(ind(D'),q,)=1 for k=1,...,0
By Proposition 6

D®KLNA;'®LYiq1 ®L"'®LYiq, ®LY1.p foreach t=1,...,n.

25
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So
(Dq1 2% L) Qr (Dq, 9% L) S (D’ Ok L)~ Ai 253 Yiql Q- ®p Yiq, 93 Yip

for i = 1,...,n. Equating the g, -regular components of [D ®,. L] in B(L) for each

k=1,...,1, we see that
D’®KLNA1'®LYip foreach 1=1,...,n.

Thus by Proposition 7, A, embeds into M, (D') where

 deg(A,) - deg(¥;,)- [L : K]
YT ind(D')

for 2=1,...,n.

But then w; = w, = -+ = w, since deg(4,) - deg(YiP) is constant for all z. Let w

| be this common value so A, embeds into M,,(D’") and
deg(M,,(D")) = deg(A4,) - deg(Y)) - [L: K] foreach i=1,...,n.

In particular
deg(M,,(D')) = deg(A;) - deg(¥,,) - [L : K]

:prj+v . [L : K]

<p"it% - [L: K]

= dK(A]; Ay,
a contradiction. Thus d,.(A4,;...; A,) divides deg(B). [ |
We are now in a position to compute d;.(4,;;...; An) in the general case.

‘THEOREM 15. Let A,,..., A, be central simple L-algebras and suppose that

Pis--sPm

are primes dividing deg(A, ) for any k = 1,...,n. Suppose

A = ® Qy,
=1
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where (1, is a central simple L-algebra with deg((2,;) a power of p, for each
k=1,...,n and :=1,...,m.

Then
T d (2,5 Q,5.
d(Ayi-.54) = [L: K]- J[ 5 I[L?K]
=1 ’

Q’ni)

=Lem.{d (2,;Q,;.--;Q,)t=1,...,m}.
proof: The second equality follows from Lemma 12 which assures us that
dp(Q,59,5...50 )= p:f -[L: K]
for some ¢,. So

Lem{d ()5 Q-5 Q)i =1,...,m} = [L: K]- [ ok
=1

Qni)

TIALTIRERE
[L: K]

— d, . (Q
=[L:K]-J[] £ (
=1
For i =1,...,m let B, be a central simple K-algebra such that ), . embeds into
B, for each k =1,...,n and
deg(B;) = dy (2,553 20,

and suppose B, = Mui(Di) where D, is a K-division ring. Let Y, ; be the centralizer
of Q,,inCy (L)fori=1,...,mand k=1,...,n. Then

deg(B,) = deg(R,,) - deg(Y,,) - [L : K]

and

Di®KLNQki®LY

w; for 2=1....m and k=1,...,n.
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Let D be the skew field component of @', D;. Then

DRy L~ 0, Y,,)~A4,8, (RY,,) foreach k=1,...,n.

i=1 i=1

Then by Proposition 7, A, embeds into Mtk (D) for each k =1,...,n with

deg(4,) - (TI7; deg(Yy,)) - [+ K]
fe = ind(D)

— (Hz".l—_l deg(L2,,) - deg(Y,”.)) -[L: K]
ind(D) ’

Now

deg(B;) = deg(f2,;) - deg(Y,,)-[L: K] for 2:=1,...,m and k=1,...,n

50
H deg(B;) = H(deg(Qki) -deg(Y,,) [L: K])
and thus - . - .
[L: K] 1=Hl(deg(9k,-) -deg(Y;)) = %}—;—g——,@-
So the product i
[L: K]- [](deg(®,) - deg(¥;,))
is the same foreach k = 1,..., n. B:tl thent, =t, =+-- = t,. Let ¢ be this common

value, so for each k = 1,...,n, A, embeds into M,(D) and

deg(M,(D)) = (H deg(£2;;) - deg(Yki)) -[L: K]

1=1

_ H:r;l deg(B,;)
~ [L: K]m1

_ H:';l dp(y;58;5...52,,)
[L: K]m!

11 k(55582 )
Z[L:I‘]'ZHI [L:K]
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Thus
di(Ag;. .. An) < deg(M,(D))

'Qni)

11’ 21’ c
=[L:K]- H T

=lem{d (Q,5Q;-..592,,) 1 =1,...,m}.

To complete the proof, we need to show that equality holds. Suppose B/K is
central simple such that A ,..., A, embed into B and deg(B) = d(A;;...;An).
Then Qk' embeds into B for £k = 1,...,n and ¢ = 1,...,m, so by Theorem 14

d(Q 58 .) divides deg(B) for s = 1,...,m.. But then

11’
Lem {d (Q,;Q,;...;2 ) t=1,...,m} divides deg(B).

That is deg(M, (D)) divides deg(B) and thus d,.(A;;...; An) = deg(M,(D)). |

We are now in a position to prove our main theorem.

THEOREM A. Let A ,... A, be central simple L-algebras and suppose p,,...,pn,
are primes dividing deg(A4,) for any k = 1,...,n. Suppose 4, = R, Q,, where
2, 1s a central simple L-algebra with deg({2,.) a power of p, for each k =1,...,n
and 1+ = 1,...,m. Let M, (¥,) be a p,-embedder for Q,,,Q,.,...,Q . for each ¢ =
1,...,m and let 4 = ®ﬁ M, (\Il) Then d;(A;;...; An) = dy(A). Moreover
re(A)=1,s0d(A};...;A,) =[L: K] -[[iZ; ¢, - ind(T)).

proof: By Theorem 13 d,.(,59Q,;5...;8,,) = dig(M, (¥,)) where M, (¥,)is a
p;-embedder of Q,.,Q,.,...,Q forz=1,...,m. Also

dpe (M, (T,)) =1, -ind(¥) - [L: K]

by Theorem 8. Let
A= ® Mti(\I’i)'
i=1
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Since (), embeds into Mti(\I!i) fork=1,...,n,Q,, ®, Q,®, - ®,Q,,  embeds
into

Mtl(\Ill) R Mtz(\Ilz) Qp @y M, (V).
That is, A, embeds into A for each k=1,...,n.
Now d,.(A) = deg(A) - r;(A) - [L : K]. But r.(A) = 1 since
A~V Q.- Qp ¥y,
and each ¥, € ResL/K(B(K)). So
dp(A)=[L: K]-deg(A)

=[L:K]- Hdeg(Mti(wi))

= [L: K]-[[¢; - ind(¥,)

™ d (M, (9,))
= [L : K] . H __R__[_L_.*_I{__]__

=1

™A ()
_ 1. K 120 7729 'V e
=[L: K] IJI T K]
=d (A5 Ap)-

We conclude this section with the following corollary which generalizes Theorem

14.

COROLLARY 16. Let A,,..., A, be central simple L-algebras which each embed
into a central simple B/K. Then d,.(4,;...; A,) divides deg(B).

proof: Suppose

A= ® Q
=1
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where (), . is a central simple L-algebra with deg(f,.) a power of p, for each
k=1,...,n and z=1,...,m.

Since each A; embeds into B, we have that (), . embeds into B foreach k = 1,...,n
and ¢ = 1,...,m, so by Theorem 14, d . (£,,;Q,,;;...;9Q,.) divides deg(B) for each
t=1,...,m, and hence L.e.m.{d . (R,59Q,;;...;Q,.) |t =1,...,m} divides deg(B),
that is d.(A,;...; A,) divides deg(B). [ ]
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5. An Example

In this section we define two central simple L-algebras A, and A, and compute
d (A5 A,). We do this by decomposing A, and A, into their p-components and
then determining p-embedders for these components. Then, using Theorem A, we
produce a central simple L-algebra A € ResL/K(B(K)) such that d (A;;4,) =
d;(A) = deg(A) - [L : K].

EXAMPLE 2. Let K = Q and L = Q(\/i), and let p, = 1 (mod 8) and p, =
3 (mod 8) be primes and suppose «, and «, are primes of L extending p,, and 3 is

the prime of L extending p,.

Let A; 2 M,(A,) where A, is the L-division ring such that
. T 1 . 1 .
inve, [A] = oL inve, [A] = 3 1nv/3[A1] =3 and inv,[A]=0

for all other primes p of L. Let A, 2 M,(A,) where A, is the L-division ring such
that

. 1 1 1 .
inve, [A,] = 5 inve, [A,] = 3 1nvﬂ[A2] =3 and inv,[A,] =0

for all other primes p of L. We wish to compute d . (4,; A,). Note that deg(A,) = 60
and deg(A,) = 18 so the primes dividing deg(A,) or deg(A4,) are 2, 3, and 5.

First we decompose A, and A,. We see
A =T,0, T, ®, M(L)

and

A, 20,0, M;(£,)

where T,,T,,Q, and Q, are defined as follows:

. 1 3
invy [T,]= T 1nvﬂ[T2] = -

7 and inv,[T,] =0
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for all other primes p of L,

'r3]=%, and inv,[T,] =0

invy [T,] = inv, [T,] = invﬂ[

for all other primes p of L,

invy [Q,] = inv, [Q,] =

, and inv,[Q,]=0

N[ =

for all other primes p of L, and

. 2 1 )

invy (] = 3 v, [Q] = 3 and inv,[Q,] =0
for all other primes p of L.

We will find
Mtl(\Il]), a 2-embedder of T,,{0,,

Mtz(\Ilz), a 3-embedder of T,, M,(£,),

and

Mta(\Ils), a 5-embedder of M,(L), L.

Then by Theorem A, if
A= Mtl(\I’l) ®p Mt2(\II2) L Mts(\I’s)
we will have d,.(4,; 4,) = d;.(4).

Now let us find Mt1 (¥,). By applying techniques similar to the previous examples
we find 7 (T,) = 4. Since deg(Q,) = 2 < deg(T,) = 4 we begin by finding an
L-division ring I, such that

T,®,T'; € Res (B(K)) and ind (T',) =r (T,)=4.

L/K

For example, let ', be such that

. 1
inv, [I',] = 7 1nvﬂ[
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for all other primes p of L. Then T, ®, I', = M,(¥,) where ¥, is the L-division
ring such that

1
invy [¥,]=inv, [¥,] = i—, inv,[¥,] = 3 and inv,[¥,]=0
for all other primes p of L.
Now let ', be the L-division ring such that Q, ® , T'; ~ ¥, i.e. T, is such that
: : 3 . 1 )
invy, r,]= invy, [I')] = 7 1nvﬂ[1"1] =3 and inv,[[',] =0

for all other primes p of L. Then Q, ®, I', = M,(¥,). So M,(¥,) is a 2-embedder
of T,,Q,.

Next let us find Mtz( ¥, ). Again applying techniques similar to the previous ex-
amples we find . (M;(€,)) = 3. Since deg(Y,) = 3 < deg(M;(£2,)) = 9 we begin
by finding an L-division ring ©, such that

M,(Q,)®,; 0, € ResL/K(B(K)) and ind (0,) = r (M;(2;)) = 3.
For example, let ©, be such that

, nv,[0,] = %, and inv,[0,] =0

Wl N

invo,2 0,] =

for all other primes p of L. Then M3(93)®L®2 = My (¥, ) where ¥, is the L-division
ring with

. . . 2 :
inv,, ¥,] = invg [¥,] = 1nvﬂ[\112] =73 and inv,[¥,] =0
for all other primes p of L. Now let ©, be the L-division ring such that
T,8,0, ~7,,

le. @1 1s such that

inv, [0,] =inv, [0,] = inv,[0,] = %, and inv,[©,] =0
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for all other primes p of L. Then T, ®, O, = M,(¥,), so My(¥,) is a 3-embedder
of T,;,Q,.

Finally we see that M;(L) is a 5-embedder of My(L), L so if
A=M,/(%,)® M (¥,)®, M,(L)
then
dye(Ayi A;) = dye(A)
= deg(M,(¥,) ®, My(¥,) ®; M,(L))-[L: K]
=2°.3%.5.
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6. Remarks on d, (4,;...; Ap)

In the proof of Theorem 13 it was necessary to order the central simple L-algebras
A,..., A, so that
deg(4,) < deg(4,) < --- < deg(A,)

in order to determine the L-division ring I',, with

A, ®,T, €Res,, (B(K)) and r (A,)=ind(T,).

L/K

This in turn allowed us to find the skew field component ¥ of the L-algebra M,(¥)
into which each A; was embeddable with the property that

(A5 Ap) = dy (M,(T)).

Suppose we began by picking an L-algebra A; which does not have maximum degree

and then find an L-division ring 2, such that

A]- ®r Qj € Res (B(K)) and rK(Aj) = ind(Qj).

L/K

If A is the skew field component of A; ®p €, and Q; is the L-division ring with
AR, Q2 ~A for i=1,...,n,

and
_ deg(4;) - ind(Q;)
i ind(A)
then A; ®; Q; & M, (A) for i = 1,...,n. So if t = max{t,,...,t,} each A, is
embeddable into M,(A) and

d(Ay;- .3 An) < dp (M,(M)).

However we do not necessarily have equality in this instance, as the following ex-

ample illustrates.
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EXAMPLE 3. Let K = Q and L = Q(v/2). Let p, and p, be primes with p, =

1 (mod 8) and p, = 3 (mod 8). Suppose @, and a,, are primes of L extending p,

1

and f3 is the prime of L extending p,. Let A, and A, be L-division rings such that
. 1 2 . 2 .
vy, [Al] = -§, vy, [Al] = 5, 1nvﬂ[A1] = §, and 1nvp[A1] =0

for all other primes p of L, and

. 1 . 10 15 .
Inve, [A2] = 2—7, 1nvo,2[A2] = 2—7, 1nvﬂ[A2] = 2—7, and 1nvp[A2] =0

for all other primes p of L. Using techniques similar to those in the previous
examples we find 7;.(A,) = 9 and r(A4,) = 3. Ordering the L algebras by degree,
we begin by finding an L-division ring I', such that

A,®, T, €Res,, (B(K)) and r, (4,)=ind(T,).

L/K

For example, let ', be such that

2
inve [T,] = %, inv,[I,] = 3’ and inv,[I',] =0

for all other primes p of L. Then A, ®, I', = M,(¥) where ¥ is the L-division ring
such that

1
invy [¥] = inv, [¥] = 2—(7), invﬂ[\Il] = -217, and inv,[¥] =0

for all other primes p of L. Then let ', be the L-division ring such that

15

) 7 . 4 )
invy, )= 77 mvaz[l"]] =57 1nvﬂ[1"1] =5

and inv,[['] =0
for all ther primes p of L. So A, ®, T'; = M,(¥). Then by Theorem 13

di(Ay; Ag) = dp(My()) =2-3°.

Now suppose we first find an L-division ring 2, such that

A, 8,9 € ResL/K(B(K)) and rK(Al) =ind(2,) = 9.
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Say Q, is the L-division ring such that

1. 8 :
3’ inv,[€,] = 3 and inv,[Q,] =0

inve, Q)=
for all ther primes p of L. Let A be the skew field component of A, ®, Q,. So
i A]l =i Al = 2 A= J d i Al=0
1nvo,1[ ]_mvaz[ ]—5, 1nvﬂ[ ]—5, and inv,[A] =

for all other primes p of L. Then A, ®; Q, = MQ(A). Now let 2, be the L-division
ring such that

. 5 . 23 . 26
v, [Qz] = — 1nv(,2{92] = 57 1nvﬂ[92] = 57

57 and inv,[Q,] =0

for all other primes p of L. Then A, ®,; Q, = M,,(A). So A, and A, both embed
into Mg, (A), but dp (Mg, (A)) =2-3°% £ d (A5 4,).

As noted at the end of Chapter 1, we will have a much simpler means of computing
dp(A;;...; Ay) provided the degrees of the central simple L-algebras are pairwise

relatively prime, that is,
dp (A 5 A4n) =dp (A, ®L - ®p Ap)-

In order to show that this is the case, we first prove the following lemma.

LEMMA 17. Let L/K be a finite extension of fields and suppose A ,..., A, are
central simple L-algebras with (ind(4,),ind(4,),...,ind(A,)) = 1. Then

rK(Al QL A, Q@ A= rK(Al) . rK(Az)---rK(An).

proof: We prove the lemma by induction on n.

For n = 2 we know r (A,) divides ind(A4,) and r,(A,) divides ind(A4,) by
Proposition 9, and therefore (r,.(4,),r(4,)) =1
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Let X, Y, and Z be L-division rings such that
A, ®, X]e Res; ,  (B(K)), [A,®, Y] € Res; , (B(K)),

(4,8, 4,®, 2] € Res; i (B(K))

and

r(4;) =ind(X), rg(4,)=mnd(Y) and r (4, ®, A,)=ind(Z).

We see [A, ®, 4, ®, X®, Y] =4, ®, X]+[4, ®; Y] € Res, ,,.(B(K)) so

L/K
re(A; ®, A4) <ind(X ®,Y) =ind(X) -ind(Y) = r(4,) - rr(4,)

Also

[Al ®p A, ® Z] € Res B(K))

L/x(
so 7, (A,) divides ind(4, ®, Z) [4, Cor. 10]. But
ind(4, ®, Z) divides ind(4,)-ind(Z)

by Proposition 1,(c), so 7, (A;) divides ind(A,)-ind(Z). But (r(4,),ind(4,)) =1,

s0 7 (A,) divides ind(Z). Similarly, r,.(A,) divides ind(Z). Then, since
(rg(A)r(4;)) =1,

we have rp (A;)-r(A,) divides ind(Z), i.e. 7 (A;) 7 (A,) divides 7 (A, ®; A,).

Sory(A4;) r(4,) <rp (A, ®; 4,), and thus we have equality.

Assume now that the lemma is valid for n — 1 central simple L-algebras. Let

A,,...,An be central simple L-algebras with (ind(A4,),...,ind(A4,)) = 1. Let
A=A1@; QL 4,

By Proposition 1,(d),

ind(4) = J] ind(4;) so (ind(A),ind(4,))= 1.

1=1



40

Then
rK(A1 ®p®p Ap) = re(A®; An)

= TK(A) ’ TK(An)
=ri(A) T4, 1) rr(As)

THEOREM 18. Let L/K be a finite extension of stable fields and suppose 4,, ..., 4,
are central simple L-algebras with (deg(A,),deg(4,),...,deg(A4,)) = 1. Then

dp(Ay;-- 5 An) = dp (A ®p - ®p Ay).

proof: Suppose p,,,Pyas- - -, Py, are the primes dividing deg(4,)fork=1,...,n
k
Write

3

k

Q

1

A

R

k ki

z

where . is a central simple L-algebra with deg(€2,;) a power of p,.. Then by
Theorem 15

d.(Q,;L £2d (Q,5L;... ;L
d(Ag;. . A) = [L: K]- (H I 1£ K] ) (H K 2 ))
™ 4 (Q ;L. .5 L)
(H L K] )

=1

. @) (15 k(@) dj(2,:)
—[L'K]'(H[E:K])'(ET%:KJ (H[L.A])

=1

K] (H deg(€2y;) - ’"K(Qu)> ' (H deg(£2,,) - ’”K(in))

=1

I

: (]j deg(2,,,) - rK(Qni))
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=[L: K] (deg(Al) Ty (4 )) ‘ (deg(Az) : TK(Az)) e (deg(An) : TK(An))
=[L: K}- deg(A4, Q- ®L An)- T'K(A1 Q- Qp An)
= d (A, 8-~ @ 4n).
N
Note that the conclusion of Theorem 18 is not valid if we only require that

(ind(4,),ind(4,)) = 1 rather than the stronger condition (deg(A4,),deg(A4,)) = 1.
We illustrate this with the following example.

EXAMPLE 4. Let K = Q and L = Q(+/2), and suppose
p; = 1(mod 8), p, = 3(mod 8)

and a; and a, are primes of L extending p,, and 4 is the prime of L extending p,.

Let A1 = M2(A1) where Al is such that

inve [A] =inv, [A] = invﬂ[Al] = %, and inv,[A;] =0

for all other primes p of L, and let A, = M,(L). Then A, ®, A, = M,(A)), so
dy(A ®p Ay)=4-d (D) =23

But 4, = A, ®; M,(L) so by Theorem 15

dK(Mz(L)5M2(L)) ) dK(AﬁL) _

d (A A) =[L: K] I K] LK) =22.3.
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