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ISOCONJUNCTIVITY OF HERMITIAN MATRICES

I. INTRODUCTION

Two nxn complex matrices T and S are said to

be conjunctive if there exists a nonsingular nxn complex

matrix C such that T = CSC, where C* denotes the

conjugate transpose of C. It is well known [5, p. 184]

that if T and S are hermitian, then T and S are

conjunctive if and only if T and S have the same rank

and signature.

In this thesis we consider a property of pairs of

matrices which is a special kind of conjunctivity.

Accordingly we make the following definition.

Definition 1. Two nxn complex matrices T and S are

isoconjunctive if there exists a nonsingular nxn her-

mitian matrix H such that T = HSH.

It is easy to see from Definition 1 that if two

matrices are isoconjunctive, then they will also be

conjunctive. Example 4 below will show that isoconjunc-

tivity is not an equivalence relation (on the set of

nxn complex matrices) since it is not transitive,



whereas conjunctivity is an equivalence relation.

Obviously isoconjunctivity is reflexive and symmetric.

We will be interested in the isoconjunctivity of a pair

of matrices in the case where one of the matrices (and

hence the other) is hetmitian. Before proceeding though,

let us state and prove some of the more obvious conse-

quences of Definition 1, some of which will be useful in

later discussion.

Theorem 1. Let T and S be nxn complex matrices.

Then the following are equivalent:

T and S are isoconjunctive

T(ST)P and S(TS)P are isoconjunctive for

every nonnegative integer p

C*TC and C-1SC*-1 are isoconjunctive for

every nonsingular complex matrix C

there exist nonsingular complex matrices

C and D such that (CD)* = CD, T = CSC,

and T = D*TD.

Proof: We prove a)---b)--.o.c)--0,-a) and a)<=4>d).

a)-.41.b): Assume T = HSH with H = H* nonsingular.

Then b) is true for p = 0. Now let p > 1.

Then

T(ST)P = HSH(ST)P-1SHSH,

and



S(TS)P = S(HSHS)P

= SH(SHSH)P-1SHS

= SH(ST)P-1SHS.

Thus T(ST)P = HS(TS)PH for every nonnegative

integer p.

b) Assume b). Then in particular T = HSH

for some nonsingular H = H*. Let C be an arbi-

trary nxn complex matrix. Then

C*TC = C*HSHC

-1 -
= C*H(CC )S(C* 1C*)HC

-1 -1
= (C*HC)(C SC* )C*HC.

Since (C*HC)* = C*HC (and is nonsingular) and

C is arbitrary this proves c).

c).--->a): Assume c). Take C = I (the nxn

identity matrix). Then c) says T and S are

isoconjunctive, which is what we wanted.

ab-d): Assume a). Then T = HSH for some

nonsingular H = H*. In d) take C = H and

D = I (the nxn identity matrix). Then

(CD)* = CD, T = C*SC, and T = D*TD. Now assume

d). Then

(CD)*S(CD) = D*C*SCD

= D*TD

= T.

3



4

Hence T and S are isoconjunctive. This completes

the proof of the theorem.

It should be noted at this point that the equiva-

lence of a) and d) of Theorem I can be restated in

an alternate manner using the concept of conjunctive

automorphs (see[16]). Utilizing this idea the statement

says that two conjunctive matrices T and S (i.e.

T = C*SC for some nonsingular matrix C) are isoconjunc-

tive if and only if there exists a conjunctive automorph

D of T (i.e. T = D*TD with D nonsingular) such

that CD is hermitian.

The next result addresses itself precisely to the

case which is of primary interest here; namely, when

T and S are both hermitian.

Theorem 2. Let T and S be hermitian matrices which

are isoconjunctive. Then

TS is a square

TS = A2 where A is similar to a real matrix

TS is similar to the square of a real matrix

there. exists a nonsingular hermitian matrix K

such that TS = K-1STK.

Proof: Let T = HSH for some nonsingular H = H*.

Then TS = HSHS = (HS)2 where, by Theorem 2 of [3],
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HS is similar to a real matrix. Thus a) and b) are

proved. Now c) follows from b), and d) may be

observed by using Theorem 2 of [3].

Utilizing Theorem 2 of [3] once more let us note

that if A 7 is a characteristic root of TS (T and

S are hermitian), then 7 is also a characteristic

root of TS with the same multiplicity. Furthermore

the Jordan form of TS has the same number of Jordan

blocks of each order at 7 as at A.

At this point it seems reasonable to show that there

are, in fact, pairs of matrices which are nontrivially

isoconjunctive, and also that isoconjunctivity does not

coincide with conjunctivity. To this end we consider

the following examples.

Example 1. Let T and S be nxn positive definite

(hermitian) matrices. Then T and S are isoconjunc-

tive. To see this we note that T = HSH for some

nonsingular H = H* if and only if

S1/2TS1/2 =
(s1/2Hs1/2)(s1/2Hs1/2)

= KK

for some nonsingular K = K*. (Here S1/2 denotes the

positive definite square root of S.) Since1/2TS1/2

is positive definite we may take K = (S1/2TS1/2)1/2,

the positive definite (hermitian) square root of



and signature zero (and hence they are conjunctive).

Moreover

0 0 0- 0

TS= 1 0 0 0 0 1

0 0 0_, 0 0_,

so TS is the square of a real matrix (see b) of

Theorem Nevertheless T and S not isoconjunc-2). are

2

hence by Theorem 1 T and S are not isoconjunctive.

Example 3. Let

1 -17
T= and S =

-1 0 1

Again it is easy to see that T and S are conjunctive.

We ask if it is possible to find a nonsingular H = H*

6

1/2 1 2
. Thus

Example 2. Let

we may take

000
0

0 0 -1

that T

H =
s-1/2xs/2

, and S=

and S both

-1

0 1 0-

100
0 0

have rank two

T =

It is easy to see

tive. To see this we note that

0 0 0 -1

TST = 0 0 0 I and STS = 0 0 0

000 0 0_,

Thus TST and STS cannot be isoconjunctive, and



such that T = HSH. If we let

FISH =

H =

(IT12
denotes the conjugate of h12') then

h h E
12 11+h11 12 h12h12+h11h22

h22h11+17112H h h +E h
22 12 12 22_

In order that T = HSH, we require (setting

h12 = a + bi, where a and b are real)

h11(2a) = 1' h22
(2a) = 0,

and

2
a + b2 + 2abi +

h11 h22 =
-1.

The first two equations imply h22 = 0 and 2a 0.

Thus the third equation implies b = 0, so that

a2 = -1, which is impossible. Thus T and S are

not isoconjunctive. Notice that in this example TS

is not similar to the square of a real matrix (see c)

of Theorem 1),

7

Example 4. Let

-1 0 1 1 1

T= s= and R=
-1 1 1 0

Then

R =
[1 0 1

and R =
1/2 11 [.1/2

0 -1 0 1 0 1 0



Thus T and S are both isoconjunctive with R. But

Example 3 shows that T and S are not isoconjunctive.

Thus isoconjunctivity cannot be an equivalence relation

on the set of nxn complex matrices.

It is our intention to utilize the equivalence of

a) and c) in Theorem 1 to split our search for

necessary and sufficient conditions for isoconjunctivity

into "simpler" cases. Before we can prove a theorem

which will accomplish this, we will need some further

basic results.

Lemma 1. Let T and S be nxn hermitian matrices

and suppose that, for some nonsingular matrix C,

C*TSC*-1 = ® m.
i=1 1

where M. has no characteristic roots in common with

when i j. Then conformably, we must have

C*TC = GT., and C-ISC*-1 = e S.
i=1 1 i=1 1

Proof: We prove the case where m = 2, the general

result following by induction using the case m = 2.

Thus suppose there exists a nonsingular matrix C such

that

0 -
-1C*TSC* =

1



where Mi and M have no characteristic roots in

common. Notice that C*TSC*-1 = (C*TC)(C-1SC*-1).

where the'blocks are conformable with those of (1.1).

Thus (1.1) gives us

and

Mi = TiSi + T29,

M = T*S + T S
2 2 2 3 3'

T1S2 = -T2S3'

T*S1 = -T3 2
S*

2 '

Calculating we find

M1T2 = (T1 S1 + T S*)T
2 2 2

=TST + T2Sr2

= -T1S2T3 + T2 S*T
2 2

= T2S3T3 + T2 S*T2 2

= T2(S3T3 + Sr2)

= T2M/2c.

Thus by Theorem 46.2 of [10, p.903 we conclude that

T2 = 0 since M1 and have no characteristic

roots in common. Similarly

(1.5)

(by 1.3)

9

Thus let

C*TC = T1
T2

and C-1SC* -1 -S1 S2-

T*
2

T
3

S*
2

S
3

(by 1.5)

(by 1.4)



DIS12c = (Sr2 + S3T3)S

= Sr2q + S3T3S

= S*T S* - S T*S
2 2 2 3 2 1

= S*T S* + S*T S
2 2 2 2 1 1

= S(T + TiSi)

= S*M
2 1'

By the same reasoning as above we conclude that also

S = 0which is what we wanted to show.
2

Lemma 2. Let T and S be nxn hermitian matrices.

Suppose that

T= 0 T. and S= C) S.
1

i=1 i=1 1

so that T S has no characteristic root in commonT.S.

with
T.JS

for i j. If there exists an nxn complex

matrix, C such that T = CSC = CSC*, then, conformably,

we must have

C= C..
1=1 1

Proof: As in Lemma 1 it suffices to prove the result

for the case m = 2. Thus let

C=

10



CSC* =

where T = CSC = CSC* and T1S1 has no characteristic

roots in common with
T2S2°

With the matrices so

partitioned, the equality T = CSC = CSC* implies

r-C11S1C11+CILS2C21 Ct1S1C12+CILS2C22

Ct2S1C11+CLS2C21 Ct2S1C12+CLS,C
zz_

[T1 0 -

0
T2_

and

clisiCti+C S C* C S C* +C S *
2 12 11 1 21 12 2C 22

0 S2_

1C11+C22S2Ct2 C21S21S 1C21+C22S2C22

T1
0

0
T2

From these equalities we garner the following identities:

Tl = CtiSiCil+CLS2C21
= Cl1S1Ctl+Cl2S2C7.2

T2 = Ct2S1C12+q'2S2C22 = S

Ct1S1C12 = -OILS C22

C S C C* .111n. = -C12 22

Using these identities we find

11

be partitioned conformably with

0 -

T= and S =
0

T2_



= -Ct1S1C12S2qc2 + Cn.S2C21S1Cn.

= C.LS2C22S2C12c2 + Cn_S2C21S1CL

= C*1 S2 (C S C*
22 2 22 21

+ C2 S C* )
2

= C* S T21 2 2°

Since T1S1 and
S2T2 have no characteristic roots in

common the preceding equality implies, by Theorem 46.2

of [10, p.90], Cn_ = 0. Thus C21 = 0. Similarly

using the above identities we find

T2S2Ct2 = (Ct2S1C12 + C'hS2C22)S2Cl2

= C*SC SC* +C SC S C*12 1 12 2 12 22 2 22 2 12

= C* S C S C* - *SC SC*12 1 12 2 12 22 2 21 1 11

= Ct2S1C12S2Ct2 + Ct2S1C11S1Ct1

= Ct2S1(C12S2C*2
1 C11S1C1)

= Ct2S1T1.

Again since T2S2 and S1T1 have no characteristic

roots in common, this equation implies Ct2 = 0 so

C1= 0. Thus the proof is complete.

By combining Lemma 1 with c) of Theorem 1, it

is clear that in searching for necessary and sufficient

12

C*121 =C*
1

= C* S
11

S C +C* S
1 11 21

C S C*
1 11 1 21

C )

2 21

+ C* S
21

C*121

C
2 21 21



conditions that two hermitian matrices T and S be

isoconjunctive, we may assume without loss of generality

that

T= e T. and S= e S.
i=1 1 i=1 1

where T S has no characteristic roots in common withi i
T.S.for i j. It is with this idea in mind that we

3

give our next result.

Theorem 3. Let T = T. and S = e S. be nxn
i=1 1 i=1 1

hermitian matrices with the property that TiSi has

no characteristic roots in common with TS if i j.

Then T and S are isoconjunctive if and only if Ti

and S are isoconjunctive for every = 1,...,m.

Proof: If m = 1 the result is obvious. As in Lemma 1

and Lemma 2 we will prove the result for m = 2, the

result following for m > 2 by an easy induction using

the result for m = 2.

Suppose then that there exist nonsingular matrices

= HI and H2 = H such that

TI = H1S1H1 and T2 = H2S2H2.

Let

H1
0

13

0
H2



K=

14

Then H = H* and is nonsingular. Moreover

Si 0
H1

0 H S1H1 0

H2_
0

S2
0

H2_
0

H2S2H2

Ti

0 T

Now suppose there exists a nonsingular K = such

that T = KSK. We partition K conformably with S

and T to write

K11 K12-

K* K
12 22

Since K= K* and
T1 S1

has no characteristic roots

in common with
T2S2 we may apply Lemma 2 to conclude

K12 = 0 and thus K*12 = 0. Since K is nonsingular

and hermitian,
K11

and
K22

are also nonsingular and

hermitian. Further the equality T = KSK now implies

Tl = KI1S1K11 and T2 = K22S K22'

Thus the proof is complete.

In accordance with this result, Chapters II and III

will deal respectively with the investigation of necessary

and sufficient conditions for isoconjunctivity of two

hermitian matrices T and S when TS is nonsingular

and when TS is nilpotent. In Chapter IV we draw these

results together.



THE NONSINGULAR CASE

Before actually getting into the discussion of the

nonsingular case we give a result which will be useful

later in this chapter and also in Chapter IV.

Proposition 1. Let T and S be nxn nonsingular

hermitian matrices. Then the following are equivalent:

there exists a nonsingular complex matrix

C such that T = C*SC = CSC*

there exists a nonsingular complex matrix

-1C such that S-1 + iT = C*(T + iS)C.

Proof: Under the hypothesis there exists a nonsingular

complex matrix C such that S-1 + IT = C*(T-1 + iS)C

if and only if T = C*SC and S-1 = C*T-1C. But this

is equivalent to T = C*SC and T = CSC*.

To deal with the question of the isoconjunctivity

of two nxn hermitian matrices T and S whose product

TS is nonsingular (thus both T and S are nonsingular)

we will rely heavily on the following result which is a

reformulation in matrix terms of results in [11, pp. 242-

2481.

Theorem 4. Let K and H be nxn hermitian matrices

with K nonsingular. Then there exists a nonsingular

15



complex matrix C such that

C*KC = 9
i=1

and

C*HC = 9
1=1

1.

A.

0

0

1

0

1

GE.
j=1 3

1

GE.
j=1 1

a

0

1 a
0

16

(2.2)

wherend
and, j=1,...,q, are respectively the non-real andaj

real characteristic roots of HK-1. The corresponding

direct summands in (2.1) and (2.2) are of equal size,

being determined by the size of the Jordan blocks in the

Jordan canonical form of HK-1. For each real character-

istic root a and each integer r > 0, the number of

I

positive E, premultiplying the rxr summands associated

with a is uniquely determined by H and K (and hence

1

0
0

0

1

, (2.1)
0



soisthenumberofsuchE.which are negative).

The problem of such simultaneous reduction of a pair

of hermitian matrices by a conjunctivity has been the

topic of much research, e.g. [8],[9],[14], and [19]. For

some time it was thought by some writers that a necessary

and sufficient condition that a pair of hermitian matrices

(H11 K1 ) be conjunctive with the pair
(H2 ,K2 )'

where

K1
and

K2
are nonsingular, was that the elementary

divisors of XI - H1K1-1 coincide with those of

-XI - H2K21 , [9]. This is necessary but not sufficient.

Turnbull [19] solved this problem by adding the "signature

test" as did Muth [14] in the analagous real symmetric

problem.

It will be useful later to know just how the E.

(of (2.1) and (2.2)) premultiplying the rxr summands

associated with a single real characteristic root

-1
are determined. To this end let us assume HK has

only a single real characteristic root a. Suppose
_1r r+1

(aI - HK ) and (aI - HK ) have the same null

space. By the Jordan decomposition this null space is

-1HK -invariant and has a HK-1-invariant complement. Thus

the hermitian form

r-1
x*K-1(aI - HK-1) x

restricted to column vectors x in the null space of

(2.3)

17



1 r
(al - HK ) has a uniquely determined signature which

depends only on H and K (and also has a uniquely

determined signature on the complement). Thus the

dimension of a maximal subspace (of the null space of

1 r
(al - HK ) ) on which (2.3) is positive definite and

the dimension of a maximal subspace on which (2.3) is

negative definite are each uniquely determined by H

and K so that the number of positive E. and the

numberofnegative.((2.3) can be normalized) asso-E3

ciated with a particular size block is unique. Notice

-1
iin particular that if HK s similar to a single

Jordan block (rxr with real characteristic root a),

then (2.3) has rank one and hence is semidefinite, so

any column vector x which makes (2.3) non-zero will

determineiftheassociatedEis positive or negative.
3

It should be noted that since the results of Theorem

-14 are based on the. Jordan canonical form of HK which

is unique only up to the ordering of the Jordan blocks,

we cannot expect that the ordering of the direct summands

in (2.1) and (2.2) is unique. Thus we will allow a

permutation of the summands in either (2.1) or (2.2) if

the corresponding summands of the two direct sums are

permuted in exactly the same way. Let us see then how

Theorem 4 applies to our situation.

18



Corollary 1. Let T and S be nxn hermitian matrices

with S nonsingular. Then there exists a nonsingular

complex matrix C such that

1

-1 -1 P
C SC* =

i=1

and

0
1x.

0
1

0

1 a.
3C*TC = 9 1

9 E.;
i=1 1 X j=1 1'

0 i 0
a.

0

0

x.
1

0

_0 qe E.

1 j=13

(2.5)

where E. = ±1, j = q. The Xi (and XI),

i = p, and, j = q, are respectivelyaj

the non-real and real characteristic roots of TS. The

corresponding direct summands in (2.4) and (2.5) are of

equal size, being determined by the size of the Jordan

blocks in the Jordan canonical form of TS. For each

real characteristic root a and each integer r > 0

19

0
(2.4)

0
1

0

0



theriumberofpositive Ej.premultiplying the rxr

summands associated with a is uniquely determined by

T and S (and hence so is the number of suchEj which

are negative).

Proof: If in Theorem 4 we let T = H and S = K, we

have what we want except that in (2.4) we get C-1SC*-1

1c)-.1replaced by CSC. For this choice of C, (C*S-

-CS 'C. Since also (C*S-1C)-1 = C-1 SC-1* , the result

follows.

Notice now that when T and S are nxn nonsingular

hermitian matrices, Corollary I not only accomplishes the

type of "splitting" indicated in Theorem 3 (which does not

require nonsingularity) but also allows us to assume that

T and S have very simple forms. Even so, in this situ-

ation we shall consider three cases:

Case I: TS has only non-real characteristic roots

Case II: TS has only positive-real characteristic

roots

Case III: TS has only negative-real characteristic

roots.

Case I. T and S are nxn nonsingular hermitian

matrices and TS has only non-real characteristic roots

(which occur in conjugate pairs). By Theorem 1 and

20



Corollary 1 we may assume

0 sl
0

16 uS = - - and T=

from Corollary 1. Note that the blocks in each of the

direct summands are square so that each direct summand is

of even order. By Theorem 1 of [7] we see that the signa-

ture of each direct summand in both T and S is zero.

Thus since T and S are direct sums we may conclude

that the signatures of T and S are zero. This allows

us to deduce, since T and S are nonsingular, that T

and S are conjunctive.

The following result will have an immediate applica-

tion to Our current considerations.

Lemma 3. Let

[0. [6.

T=I and S =
L* 0 K 0

where

L= and K =

1

0

0

1

0

i=Jf .1 T

1 A
0

xi

21

,(2.6)
i=1 1

0
0

1.
0

0

0

T. 0

1

where A. and X, i =
±

p, have the obvious meaning
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are both nxn, and X T. Then there exists a nonsingu-

lar hermitian matrix H such that T = HSH. In fact, we

may take

where

i-1

a. = -1/2 ak a.k (i = n-1).
i-

k=1

Proof: Let n > 1 be arbitrary. Let S and H be

defined as above. Since

0 1 0 1 0 B.] 0 BKB1
HSH =

[3* [K 0 [3* 0 = [*KB* 0

and K* = K, it is sufficient to prove that L = BKB.

Define P = BKB. We denote the (i,j) entry of P by

the (i,j) entry of K by kij, and the (i,j)

en.tryofBbyb..By definition
ij

H =

is

and

ao

an-1

a1

a
0

= 1,

0

al

al a0

1nxn,



p. .= b. k b .13 ir rs s3
r=1 s=1

r=1

= b. bir n-r+1,j*
r=1

We note that bij = 0 if n + 1 < i + j . Using this

factill(2.-nwefirld pl.j =0 if n + 1 < i + j < 2n.

Thus we know pij = ,tij if n + 1 < i + j < 2n (tij
is the (i,j) entry of L). So now let 1 < i + j < n + 1.

In this case (2.7) becomes
n+ 1-i

an+1-1-ra r-3. .

r=j

n+1-i-j
.an+l-i-3-ra r.

r=0

b. kir r,n-r+1bn-r+1,j

Using this in (2.8) we see

(2.7)

(2.8)

23

Notice that by definition

a a.k 1-k

0,
-1

X ,

i >....

i =
2

1

k=0 1, i = 0



Thus pij = tij for 1 < + j < n + 1, so that we con-

clude pij = f i, j = n, which is what we

wanted to show.

Theorem 5. Let T and S be nxn (nonsingular) hermitian

matrices. If TS has only non-real characteristic roots,

-then T and S are isoconjunctive.

Proof: By Theorem 1 and Corollary 1 we may assume S and

T are as in (2.6). Lemma 3 shows that the corresponding

direct summands in (2.6) are isoconjunctive. Thus by

Theorem 3 we conclude T and S are isoconjunctive.

Case II: T and S are nxn nonsingular hermitian

matrices and TS has only positive-real characteristic

roots. Again, as in Case I, by Theorem 1 and Corollary 1

we will assume

S = G E.
i=1 1

n + 1 - i - j >2
n+ 1 - i j = 1 .

, n + 1 - - j = 0

.1
ai0

and T = E. (2.9)
i=11 1

0
c.

24

where Ei = ±1, i = q, and ai, i = q are

the characteristic roots of TS as in Corollary 1. Since

1

0

1



S= and T = E

a

be nxn matrices with 7 = a > 0 and E = ±1. Then

there exists a nonsingular hermitian matrix H such that

T = HSH. In fact we may take

T

a

a

.n_i

, . al ao

H=/

0

0

1where
ao

=1, a1 = and
2a

i-1

,a. -1/2
ak a1-k

. (i = 2 ..., n - 1).

k=1

25

here all the
ai

are positive we may again appeal to

Theorem 1 of [7] to see that corresponding direct summands

of S and T in (2.9) have equal signatures (0, if the

summand has even order; 1, if the summand has odd order)

so that T and S have equal signatures. Since T and

S are nonsingular we may conclude that T and S are

conjunctive. The next lemma is like Lemma 3.

Lemma 4. Let

MM.

la
0

0

1
0
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Proof: Let n > 1 be arbitrary and let S and H be

defined as above. Define P = HSH. We denote the (i,j)

entry of P byp. the (i,j) entry of H by h.
ij'

andthe(i,j)entryofSbys.ij.By definition

p. = h. s h jij ik km m
k=1 m=1

= E h.k si k,n-k+1hn-k+1,j
k=1

= EZh.k hi n-k+1,j*
k=1

Since hj . = 0 if n + 1 < i + j < 2n, (2.10) showsi
P.

= 0 if n + 1 < i + j < 2n. Thus p. = t. (the
ij ij

(i,j) entry of T) for n + 1 < i + j < 2n. Now let

1 < i + j < n + 1. Then (2.10) becomes

n+l-i

pij = an+l-i-rar-j
r=j

n+l-i-j

aa.E a.n+l-i-j-r r
r=0

Notice that by definition

a a.k i-k
k=0

-1

(2.10)

(2.11)



Thus pij = tij for 1 <i+j<n+ 1 and hence

pij =t.. for i, j = n, which is what we wanted

to show.

Theorem 6. Let T and S be nxn (nonsingular) hermi--

tian matrices. If TS has only positive-real character-

istic roots, then T and S are isoconjunctive.

Proof: By Theorem 1 and Corollary 1 we may assume S

and T are as in (2.9). By Lemma 4 we know the corres-

ponding direct summands of (2.9) are isoconjunctive. Thus

by Theorem 3 we conclude that T and S are isoconjunctive.

Case III: T and S are nxn nonsingular hermitian

matrices and TS has only negative-real characteristic

roots. From Example 3 we see that we cannot expect

conjunctivity and isoconjunctivity to be equivalent in

this case. Thus our approach here will be different from

that of the previous two cases. We first list a collection

of necessary lemmas.

Lemma 5. Let T and S be nxn hermitian matrices.

Suppose TS is similar to a single Jordan block

27

Using this in (2.11) we see

0 n + 1 - i - j > 2

P. Eaa-1, n + 1 i - j = 1

Ea n+ 1 -i-j= 0



corresponding to a real characteristic root a 0. Then

S-1 + IT is conjunctive with

i 1+ia

where E = ±1, and T-1 + iS is conjunctive with

i 1+ia

0

E sgna

1+ia

where sgn a =
a

Proof: Theorem 4 implies S-1 + iT is conjunctive with

(2.12). Without loss of generality we will assume

-1S + iT equals (2.12). Since TS and ST are similar,

ST is similar to a single Jordan block corresponding to

the characteristic root a. Thus by Theorem 4 there

exists a nonsingular complex matrix C such that

C*(T-1 + iS)C is of the form of (2.13) with E sgn a

replaced by (5 = ±1. By the definition of T and S

v*S(TS - aI)n-1v = E (2.14)

0

(2.12)

(2.13)

28

0

E

0

1+ia



if v* = [0,..., 0, 1]. But also

u*C*S(TS - aI)n-1Cu = u*(C*SC)[(C-1TC*-1)(C*SC) - a ]n-1u

= 6 sgn a

-
if u* = [1a11/2 A

, 0] and C is as designated

above. Since S(TS aI)11-1 has rank one and the signa-

ture of S(TS - aI)n-1 equals the signature of

D*S(TS - aI)n-1D for every nonsingular complex matrix D,

the discussion immediately following Theorem 4 allows us

to conclude that E = 6sgn a. Thus 6 = E.sgn a and

the result is proved.

Lemma 6. Let T and S be nxn hermitian matrices

such that TS has only a single real characteristic root

a 0. If the Jordan form of TS has Jordan blocks of

sizes ml 2.m2 mk > 0, then S-1 + IT is conjunc-

tive with

29

and T-1 + iS is conjunctive with

1+ia

0

(2.15)



. x m., j = 1 k.

Proof: Apply Lemma 5 to the Jordan blocks of TS.

Lemma 7. Let T and S be nxn hermitian matrices

such that TS has only a single negative-real character-

istic root a. If there exists a nonsingular complex

matrix C such that S iT = C*(T-1 + iS)C, then

S71 + iT is conjunctive with

3

where, for j = p, Ej = ±1, and Rj is the

m x m matrix

i 1+ia

0

1+ia

30

i 1+ia

0

sgn a E
j=1 0

['s

(2.16)

1+ia

where Ej = ±1, j = k (equal in (2.15) and (2.16)),

and the All, direct summand in (2.15) and (2.16) is
3

E.
j=1 3

R.
i

0

-R

(2.17)

0



Proof: Note that (2.17) says that the blocks of each

order "pair off" (the number of blocks of a given order

which have E = 1 is equal to the number of blocks of

the same order which have E = -1). Suppose then that

this does not occur; that is, suppose S-1 + iT is

conjunctive with

where for some size summand the number of positive

associated with that size summand does not equal the

number of negative E associated with that same size
3

direct summand. By Lemma 6 T-1 + iS is conjunctive

with

Lemma 8. Let

[Ij

T = E
0 -L

where

Since (2.18) and (2.19) are in canonical form, conjunc-

tivity of (2.18) with (2.19) (and thus of S-1 + iT with

-1
T + iS) requires that (up to permutation of the summands)

(2.18) and (2.19) be equal. But under our assumption this

is impossible. This contradiction proves the lemma.

r
and S=E

-K

(2.18)

31

(2.19)
j=1 3 3



where

1

a0 = 1,
a1 '

= and2a

i-1

a.1 = -1/2 E ak1a.-k' (i=2,..., n-1).

k=1

Proof: Let n > 1 be arbitrary and let H and S be

defined as above. Since

H=
[0 B

13 0

MM.

-LB 0 0 BK-B]I
OBKOOB= -BKB 0

B 0 0

it is sufficient to prove L = -BKB. Define P = -BKB.

32

=11

1 a
0

1

0

L=
1

0

a

and K

0

41=1,

are nxn with a < 0 and E = ±1. Then there exists a

nonsingular hermitian matrix H such that T = HSH. In

fact, we may take

HSH = [



We denote the (i,j) entry of P by pij, the (i,j)

entry of B by b. .1 and the (i,j) entry of K by
13

k13.
By definition

b. k b .

13 ir rs s3
r=1 s=1

k
ir r,n-r+1bn-r+1,j

b. b
ir n-r+1,j

r=1

Now a repeat of the last part of the proof of Lemma 3,

carefully noting the differences in definition, gives the

result. Thus we are equipped to prove the final result

of this chapter.

Theorem 7. Let T and S be nxn hermitian matrices.

Suppose TS has only negative-real characteristic roots.

Then T and S are isoconjunctive if and only if there

exists a nonsingular complex matrix C such that

T = CSC = CSC*.

Proof: If T and S are isoconjunctive then by defini-

tion there exists a nonsingular matrix H =H* such that

T = HSH. Thus T = H*SH = HSH*.

Now suppose there exists a nonsingular complex matrix

C such that T = CSC = CSC*. By Lemma 2 it suffices

33



and

D*S 1D = E.
i=1 1

0

1

a
D*TD = E.

i=1

0

la

-a

where the size of the blocks are as determined in Lemma 7,

and E. =-±1, i = q. By Lemma 8 the (respective)

direct summands in (2.20) and (2.21) are isoconjunctive.

34

to consider the case where TS has only a single negative-

real characteristic root a. Now Proposition 1 and Lemma 7

imply. S-1 + iT is conjunctive with a matrix of the form

of (2.17). Thus there exists a nonsingular complex matrix

D such that

1

1

1

1

1

1

-1
1

0

0

-1
(2.20)

0

(2.21)
-1 -a
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_
Thus by Theorem 3 D*S 1D and D*TD are isoconjunctive.

- -1But (D*S 1D) = D*S 1D. Thus we have (D*S 1D)-1 =

-1 -1
D SD* and D*TD are isoconjunctive, which by Theorem 1

implies T and S are isoconjunctive.

Looking at Theorem 5, Theorem 6, and Theorem 7, we

see that the only time there is any problem in deciding

whether or not two nxn nonsingular hermitian matrices

T and S are isoconjunctive is when TS has negative-

real characteristic roots. If we knew these characteristic

roots we could obtain the Jordan blocks of TS associated

with them and use the method outlined immediately follow-

ing Theorem 4 to determine whether or not we get the

"pairing" indicated in Lemma 6 at each negative-real

characteristic root. Obviously if there were an odd

number of Jordan blocks of a given size associated with

some negative-real' characteristic root a negative answer

could be given immediately. On the other hand it should

not be concluded that T and S are necessarily isocon-

junctive even if the number of Jordan blocks of each size

associated with each negative-real characteristic root

is even.



III. THE NILPOTENT CASE

In this chapter we will have to employ a different

procedure than that of Chapter II. Here we consider the

problem of isoconjunctivity when TS is nilpotent. Since

we want T and S to be isoconjunctive we would be fool-

ish to assume one of the matrices was nonsingular while

the other was (necessarily) singular. Thus the decomposi-

tion afforded in Theorem 4 will not be applicable here.

We do, however, take a hint from Theorem 4 to come up

with a canonical form which looks somewhat like the one

given there and seems to be new.

To obtain the above-mentioned canonical form we will

view the hermitian matrix S as a map from a (n-dimen-

sional) vector space V (the space of nxl column

vectors) into V* (the *-dual) and the matrix T as a

map from V* into V. Thus TS (in left hand notation)

is a map from V into V. Thus no confusion should arise

if we write "S : V V* is hermitian." Since this

viewpoint is seldom used, let us see in more detail how

we Are going to operate in this setting.

If V* is to be called "dual" it should fulfill the

requirement, namely if we operate on a vector in V with

a vector in V* we should obtain a complex number. Thus

if we take V* also to be the space of nxl column

36
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vectors, we define a complex valued function <.,-> which

indicates the action of a vector y E V* on a vector

x c V by

<x,y> = x*y,

where x* is the conjugate transpose of x. If

: V V* is the linear map corresponding to the nxn

matrix S, then S* : V** V*, where S* is the con-

jugate transpose of S. Thus if we identify V** with

we have for x,y V

cy,Sx> = y*Sx = (S*y)*x = <x,S*y>.

Thus our function <.,.> together with a hermitian map

: V -4- V* gives rise naturally to the hermitian form

x*Sx (= <x,Sx>)

and the sesquilinear form

y*Sx (= <y,Sx>)

on V. Thus if we denote by Vi the annihilator of

5, p. 63] (V a subspace of V* if V1 s V, and

o .

V, 1s a subspace of V** = V if
V1

c V*), questions

about subspaces and their annihilators will be discussed

using the above forms.

In connection with the above ideas let us observe

the matrix interpretation of some statements which will

be used often in the sequel. Let S : V V* be linear

with dim V = n. We denote by 77S the null space of S.

If we take V1 to be the subspace of V spanned by the



first k unit column vectors (the rth unit vector has

a 1 in the rth position and zeros elsewhere), the

statement that ??S n1 . 0 means that the first k

columns of S are linearly independent. Similarly the

statement
SV1

Vo says that the leading kxk principal

submatrix of S is zero. Further if we let V = Vi P

V2

where V2 is the subspace spanned by the remaining n-k

unit column vectors, the statement (SV2)° n 1,71 0

indicates that the rows of the kx(n-k) matrix
S12'

where

S11 S12
s=

S21 S22

are linearly independent. Finally the statement SV2 E vi

(where V1 and
V2

are as before) means S12 = 0.

Before proceeding we list some facts which will be

used later. For these considerations we let V be an

n-dimensional vector space and let V* be its *-dual.

Fac-LA. If K : V V* and H : V* V are linear and

U is a subspace of V such that flK(HK)P n u 0 and

(HK)P IU = 0, then dim U = dim HKU = = dim (HK)PU =

dim KU= = dim K(HK)U. Further the subspaces

(HK)1U (i = 0, p) are independent and the subspaces

K(HK)1U (i = 0, p) are independent.

38

Fact B. If H : V V* is hermitian and U
U2' and



U3
are subspaces of V, then

U2 c (HU1 )°-4=*HU2
U°

(H111)° n u2 - o 13(;_ n Hu2 = 0

(HU1)°
n

u2
= o.,4=>u° n

HU2
= o and

u2
n 7711= o

1

(HU1)° n u2 = 0 and dim U2 > dim U1==U1 n flH = 0

HU cUon u' HU c Uo
'

and U3 c U1 + U21 2 2

HU3
CU.

Fact C. Let V and W be finite-dimensional vector

spaces and let K : V + W be linear. Let U and el

be respectively k-dimensional subspaces of V and W.
^Then (KU)° n U o .#=>-(K*u)o n U = 0.

Now in preparation for the proof of our decomposition

theorem in the nilpotent case we present some preliminary

results, some of which are interesting in their own right.

Lemma 9. Let S : V V* be hermitian. Let
V1

and
V2

be (independent) k-dimensional subspaces of V such that

n
SV1

c Vo and (SV2)0 m V1 = 0. Then there exists a

k-dimensional subspace V3 such that V1 ED V3 = V

SV3 c V(3), and (SV3)° n V1 = 0.

Proof: Let , xkI be a basis for
V2.

Since

(SV2)° n1 0, there exist y yk V1 such

39



where S.. denotes the Kronecker delta. It is easy to
ij

see that {171, yk} is linearly independent and thus

is a basis for V1. Let

zi=x.+Z a. y1 im m (i = l, k), (3.2)

m=1

where for the moment the aij, i, j = 1, ..., k, are

undetermined complex numbers. By (3.1), (3.2), and the

fact that SV CV7 we find

ztSz ()c. /I a. y S (x, + a. y1 j 1 im m jn n
m=1 n=1

plete.

= xtSx +a.. +
1 j "ji

aij. (3.3)

By proper choice (for example: aji = -xtSxj, i <

aji = 0, i > j; and aii + aii = -xtSxi) of the

aij, i, j = 1, k, (3.3) can be made zero for

j = 1, k. Let V3 = span {z1, zk} with such

a proper choice. Then (3.3) is zero for i, j = 1, k,

so SV3 CV°' Since V1V2 cV1 + V3 and dim V3<

dimV, the latter sum must be direct. By (3.2) and the2

fact that Svis V7 we find ytSz. = 6.j = 1, k.1 3 13

Thus we conclude (SV3)o 111 = 0 and the proof is com-

ytSxj = 6ij (i,j = 1, k), (3.1)

40
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S* 0

Av.

where
S0

is kxk and nonsingular.

Lemma 10. Let S : V V* be hermitian. Let
V1, V2'

and V3 be k-dimensional subspaces of V such that

(SV1
)c) n V2 = 0 and

V2
n V3 = 0. Then there exists a

k-dimensional subspace V4 such that V2 V4 = V2 V3

and
SV1

V.

Proof: Let V1 and V3 have respective bases

fx1, xkl and {z1, z}l. Since (SV1)° n v2 = 0,

there exist 171, yk E V2 such that

ytSx. = 6. . (i, j = 1, ..., k). (3.4)
1 3 13

As in Lemma 9, fyl, ..., yid is linearly independent

and thus is a basis for V2. Let

41

The matrix interpretation

V = V, V ) is that if

that S : V V* is represented

where each block is kxk

there exists a basis for

by a matrix of the form

of

there exists

Si

*

[0S
S2

_

1

and S/

V such

fp/Mle

S0

by

Lemma 9 (in the case

a basis for V such

a matrix of the form

is nonsingular, then

that S is represented



wi = zi + aimym (i = 1, k), (3.5)

ro=1

where for the moment the a. ., i, j = 1, k, are
13

arbitrary. By (3.4)

wtSx =
zi

+ 17, a. y
Sxj1 j im m

m=1

ztsx. + a... (3.6)
1 3 13

If we choose a. = -zt
3Sx.,

j = 1, k, (3.6) can
13 1

be made zero for i, j = 1, k. Thus if we let

V4 = span lwl, ..., wk}, the fact that w*Sx = 0 for
j

i, j = 1, ..., k tells us SV1 c V.
°

Since V2
9 V3 c

V2 +- V4 and dim V4 < dim V3' the latter sum must be

direct so that V V3 = V2 . Thus the result is

proved.

The matrix interpretation of Lemma 10 (in the case

V =V1 V2 0V3) is that if there existsabasis for

V such that S : V V* is represented by a matrix of

the form

where each block is kxk and
S4

is nonsingular, then

there exists a basis for V such that S is represented

42



by a matrix of the form

1

g*24

0
5

where again each block is kxk and ki is nonsingular.

Lemma 11. Let S : V -÷ V* and T : V* V be hermitian.

Let
W1 and

T/Ai1
be k-dimensional subspaces of V and

V* respectively such that

((Ts)1w1) n 01 o

T(ST)P-1W1 = 0.

Then there exists a subspace W of V having the pro-

perties of
W1 above and also S(TS)1W c W° (i = 01 ...,

p-2) .

Proof: Let W1 and
W1 be as in the hypothesis. We

assume p > 2. Notice first that by condition a) (and

a standard dimensionality argument) dim ((TS)P-1W1) 1° < n-k.

Thus dim (TS)W1 > k. Since dim W

77(TS)P-1
1

this shows

o
. Also since 7?(ST)P-1 = ((TS)P-'V) c

10

((TS)P-1W11 we conclude by condition a) that

n ??(ST) 0. We apply Lemma 9 with V1 = TW1,

V2 = W1, and the hermitian map S(TS)P-2. To see that

43
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the hypotheses of Lemma 9 are satisfied we note first

that dim Tf/ = dim W = dim W since 0 n ,n(sT)P-1 = o.
If y 6 101 n Wi, then y = Tx where x 6 W* Thus

1

(TS)1y = T(ST)1x. Since x 6 Wi, condition b)

implies 0 = T(ST)P-ix = (TS)1y. Since y 6 Wi and

W n n(rs)P-10, this implies y = 0. Thus T1O n W =
1

0. Therefore T01 and Wi are independent k-dimensional

w wosubspaces. By condition b) we know T(ST)lP-
1

c

Thus using Fact B.1 we find S(TS)
p-2T01 (rwl)o.

Finally since by hypothesis (TS(TS)P-2W1)°11 Wi = 0, we

use Fact B.2 to conclude (S(TS)P-2W1)° n TO1 0. Thus

the hypotheses of Lemma 9 are satisfied so there exists

a subspace W of V such that
2

and

Since

1 W1 = TO 9 w
1 2'

S(TS)p-2w wo
2

(s(Ts)P-2w2) n T1 = o

2
= TW

1 1
and T(ST)P-101 = 0, we

(3.7)

conclude (TS)W2 = (TS)1W1. Thus by condition a)

we conclude ((TS)P-1W2)° n O, 0. Thus W2 has the

desired properties of W and also (3.7) holds. If
1

p = 2, W2 is the desired subspace. If p > 2 we apply

Lemma 9 again but this time with
V1 = TSTWl' V2 = W2'

44
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and the hermitian map S(TS)P-3. The fact that the hypoth-

eses are satisified is confirmed as above. Thus we obtain

a subspace W3 with the property that S(TS)Lj 3c W(3)

and also the properties of W, (in the hypothesis). But

A
also since WC

TSTW13 W2' Fact B.5 implies

S(TS)P-2W3 W°' Thus this crucial property of
W2

is

also possessed by W3. Thus after p-1 repetitions of

this argument we obtain a subspace W such that

S(TS)iW c W° (i = 0, ..., p-2),p

and also having the properties of Wi stated in the

hypothesis. Obviously W is the desired subspace.

Lemma 12. Let S : V V* and T : V* V be hermitian.

Let
W1

and
WI

be k-dimensional subspaces of V and

V* respectively such that

((TS)P-1W1) n 0

T(ST)11 = 0

S(TS)W1 = 0.

Then there exist subspaces W and W of V and V*

respectively having the properties of Wi and Wi above,

and also

a) S(TS)hW CW° (h = 0, p-2)

b) T(ST)1W c 0° (i = 0, p-2)

c) (TS)jW CW° (j = 1, p-2).
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Proof: Let T, S,
W1, and1 be as in the hypothesis.

Let n = dim V = dim V. By Fact C we see that condition

a) implies (ST)P-1W1)° n wl = 0. Hence in our hypotheses

the hypothesis of Lemma 11 is satisfied (for V, V*, W1, Wi,

S, and T, and also for V*, V, 01, 01, T, and S).

Thus we apply Lemma 11 twice (once to replace W1 and

once to replace 01) and thereby may assume
W1

and 01
have also the respective properties of W and of

conclusion a) and conclusion b). Thus all we need to

establish_is that conclusion c) holds after suitable

replacement is made for Or
To do this we appeal to Lemma 10. We begin by

applying Lemma 10 with V1 = SWI, V2 = ST01, V3 = 01,

and the hermitian map T(ST)P-3 (this part of Lemma 12

has no content if p < 2). To see that Lemma 10 is

applicable we note first that by Fact A, Wi and STW,

are independent subspaces (of the same dimension). Since,

as in the proof of Lemma 11, condition a) implies

fl (TS)P-1 n wi . 0, we conclude dim SWI = dim W1 =

dim Wl. Using Fact B.2 we see (Ts)P-101)c) n o

implies (T(ST)P-3(SW1)) n sT1,71 . 0. Thus the hypotheses

of Lemma 10 are satisfied so there exists a subspace W2

such that

= STWi (3.8)



From (3.8) it is obvious that T(ST)12 = 0. By hypoth-

esis T(ST)10 c 0°

and

p-2w o
T(ST)13-3(SW1) = (TS) 2W1 c w

2.

(ST)2
W2

(i = 0, ..., p-2). Since also

(3.9)

T(ST) 13-11/4 . 0, we conclude T(ST) (ST1W ) c W° and

T(ST)i(STW ) C (STW )° for i = 0, p-2. Thus since

STW1 + 01, by Fact B.5 we conclude T(ST)iW2 E

(i=0, p-2). Since (TS)PW, = 0, STW1 c ((TS)P-1W1)°.

Thus
\o

sT01 ((Ts)P-101 ) n [(ST)w1

= (ers)P-1w1)(3 n [sT01

= STW, ((Ts)P-10 ) n21
by hypothesis a), two applications of the modular law,

and (3.8). Therefore we conclude ((TS)P-1W1)n W2 = 0

so W2 has the same necessary properties as Wi and

also (3.9) is true.

If p = 3, Wi and W2 are the desired subspaces.

Otherwise we apply Lemma 10 again, but this time with

V1 = SWI, V2 = (ST)2W2, V3 = W2' and the hermitian map

T(ST)P-4. Thus we obtain a subspace W3 such that

^
(ST) 2W

2
(3.10)
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T(ST)P-4SW = (TS)P-3W c 0
a. 1

Since 03 c ( ..)22,o(TS)P-2,1 c W ant:,

(TS)2W1 ((ST)2's rW2 , we have (TS)P-2W1 c W° n

(ST)202)0 = (W2 (ST)
2

W ) c W The verifications
's 0

that T(ST)
3

P-1W = 0, T(ST)I-W W° (i = 0, ..., p-2),
3

and ((TS)-10 - W1)° n W3 = 0 are similar to those of the

previous step. Thus W3 has the desired properties of

W2' but also (3.11) is true. Therefore applying Lemma 10

p-2 times we finally obtain
0\p-1

with the desired

properties. Obviously W1 and Wp-1 are the desired

subspaces.

Definition 2. If R : V V and W is a subspace of V

we define

;Rw
k=0

i.e.RW is the smallest R-invariant subspace of V

containing W.

Lemma 13. Let T : V* V and S : V V* be hermitian

with (TS)PV = 0. Let dim V = n, and let W be a

subspace of V satisfying

V = 77S(TS)P-1 ED W.
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Then

a) V= -TS ( PSTSW) °

S PSTSW) ° C (PTSW) °

W c g sw
ST

Proof: We will prove only a), c), and e) since b) follows

immediately from a) and the proofs of d) and f) are anal-

ogous to those of c) and e). To see that the sum in a)

is direct, suppose Y C (Tsw) n By the defini-(PSTSW)°*

tionof TSW and the fact that (TS)PV = 0, there exist
P

p-1

x eW such that y=

Y 6 (ST5W)0 we also have

p-1

0 = y*(ST)iSW =

b) V* =
PSTSW (PTSW)°

d)
T(' 111SW) ° C gSTSW) °

f) T2 SW c W.
ST TS

(TS) x.. Since

j=0

x(ST)SW (i = 0, 1, ...).
7

j=0

For i = p-1 this gives

0 = x(ST)SW = xS(TS)P-1S(TS)P-1 eWI

x*S(TS)P-1V.
0

Thus x6S(TS)P-1 = 0 so X0 6 ?S(TS)1. But also

xo 6 W. Therefore by the hypothesis on W, xo = 0.

Similarly one proves x ... = xp-1 = 0. Thus y = 0

(PTSW) n (PsTsw)°so 0. To see that the sum in a) is

all of V we notice that, by Fact A, dim 2TSW
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dim STSW = pk, where k E dim W. Thus dim (;STSW)° =

n-pk. Thus the sum of the dimensions of the summands is

n. Therefore the result follows.

To see that c) holds, let Y 6 (STSW)°° Then by

definition

0 = y*S(TS)iW = (Sy)*(TS)1W (i = 0, 1, ...).

Thus Sy 6
(PTSW) which is what we wanted to show.

The truth of e) is observed by definition. (Notice also

that from c), d), e), and f) we can conclude that the

decompositions a) and b) are respectively TS-invariant

and ST-invariant.)

The matrix interpretation of this lemma will be

useful later. It says that there exists a nonsingular

matrix C (with the first pk columns of C a basis

for ;TS W and the remaining n-pk columns a basis for

(PSTSW)°)
such that C-1TC*-1 = T1 e T2 and C*SC =

S1 ED S2, where the matrices T1 and S1 (both pk x pk)

are matrices of the restriction maps of T and S to

(9sTSW and ;TsW respectively. Similarly T2 and S2

are matrices of the restriction maps of T and S,

respectively, to
(TSW)c) and

(PSTSW)°'

Theorem 8. Let S and T be nxn hermitian matrices

such that (TS) P = 0. Then there exists a nonsingular

complex matrix C such that
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and

and

and

then

C-1TC*
-1

=

IN

k k m
q q q
El_ F p. E 9 G (3.12)

q=1 h=1 "q q i=1 lq q j=1 2c1-1

[P q

CSC = 0 EhEci piq F F2q_i (3.13)
q=1 h=1 i=1 j=1

where
Eq

F
q,

and G are the qxq matrices

1

gt,

,F =

I..

0
0

and for each h, i, q we have Ehq = ±1 and pig = ±1

arranged so that

Elq 2- E2q Ek q

p >p > >
lq .: 2q .:p k q.

The numbers k
q

,

9.q'
and m are uniquely determined by

S and T. In fact if we let

v = nullity (TS)(1,

= nullity S(TS)(1,

p' = nullity T(ST)q,

G =r

0

0

11.

0

1

01
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and

and

mg = pg-1 +p' -v
vq \)(1-1'

k = 2v - q-1 Pirq q

=2v - -p,q q-1 q

for 0 < q < p. If we let

Eq = Ehq
h=1

(3.14)

52

Pq
= Pjql

i=1

then the numbers E and p (and hence the
Ehq

and

pig) are uniquely determined by T and S. In fact if

we let

ar = sig S(TS)r (the signature of S(TS)r),

and

a' = sig T(ST) (the signature of T(ST)r),

then

Ep_i =c - a;_i,

and (3.15)

p . = a' . -CT .

p-1 p-1-1 p-1

for 0 < i < p.

Proof: We consider T : V* V and S : V V. Let

W1 be a subspace of V satisfying



V = 77S(TS)P-1

We let k E dim W,. By Lemma 13

V = PTS1 PSTSW1)°
(3.16)

V* = 2STSW1 (PTSW1)°' (3.17)

Thus there exists a nonsingular matrix Co (with first

kp columns a basis for
PTSW1

and remaining n-pk

columns a basis for cpSTSW)o) such that

CpC0 = S S and C-01TC*-1 = T
1 0 1

where So and To are pk x pk. Since So is the

matrix of the restriction of S to P.TSW1
(in a suitable

-

basis), and dim S (PTSW1) = dim PSTSW1 = kp, by Fact A

and the initial assumption on
W1,

we conclude So is

nonsingular. Since S0(T0S0)P-1 is the matrix of the

restriction of S(TS)P-1 to
PTSW1

and, by our assump-

tion about W1, dim S(TS)P-12TSW1 =
dim S(TS)P-1141 = k,

we conclude
rank S0 (T0 S0

)P-1 = k. Thus since
(T0 S0

)P = 0,

rank (T0S0 )P-1 = k, and
T0 S0

is pk x pk, the Jordan

Decomposition Theorem implies ToSo has Jordan form

consisting of k pxp blocks (with characteristic root

zero). Thus by Corollary 1 there exists a nonsingular

complex matrix C1 such that

C*S0 C1 =
E E

1 h=l h p
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and (3.16)

where Eh =

-1 -1c* -_ -I Ehrp
-

h=1

_1, h = 1, k, El > > Ek, and E

and F are defined as in the hypothesis.

Now consider the (n - pk) x (n - pk) matrices S1

and
T1°

Since rank
S0 (T0 S0

)P-1 = k = rank S(TS)P-1,

we have rank S1(TS1)P-1 = 0 and hence (S11)P = 0.

Thus by the same reasoning as above there exists a non-

singular complex matrix C2 (combining the steps above)

such that

C*S1 C2 =2
p.F

1
1=1

p

54

and (3.17)

1TC T C* =.E
2 12 p

i=1

= rank T1(S1T1)P-1), where T2(S2T2)P-1 = 0. More-

over
S2 (T2 S2

)P-1 = 0 since
S1 (T1 S1

)P-1 = 0. So now

consider. the (n - pk - pk) x (n - pk - pk) matrices

T2 and S2. Let nl E n - pk - pk. If we let V1 be

the space of nl x 1 complex matrices and Vt be its

*-dual, then T2 : V1, and S2 : V1 Vt. Moreover

T )P-1Vt = 0 and
S2 (T2 S2 )P-1V1 = 0.

Now let
W2

and 1;72 be subspaces of V1 and VI respectively such

that



y (TS

Thus

and

V1 = 77(T2S2

and (3.18)

V* = '77(S T
1 2 2

Since
T2

and
S2

are hermitian this implies dim W2 =

dim W2. Suppose y 6 ((T2s2)P-1w2)o n W2. Then 0 =

P-1W2 = y*(T2S2)P-1(W2 '77(T2S2)P-1) = y*(T2S2)13-1V 1'

sp-1
2) y 0 so y (S2T2)1. Since also

/ o
y 6 W2, this implies y = 0. Thus (T2S2)P--W2) n W2 =

0. Hence the hypotheses of Lemma 12 are satisfied, so we

may assume further (by Lemma 12) that

Iw c wo
S (T S p-2),
2 2 2h' 2

(h = 0,

c
w2

and

(i = 0, ..., p-2), (3.19)

(T2 S2 )jW2
W° (j = 1, ..., p-2).

Thus if we let m = dim W2 = dim W2' using (3.19) we can

select a basis {x1, xm1 for W2 and a basis

55

Yid for W2 such that

p-1
yt(T2S2) xj - oij (i, j = 1,

xtS2 (T2 S2
)rx. =

3. 3

yr2(S2T2)ryi =

0

0

(i, j =
r =

(i, j =

1,

0, ...,

1,

m),

m
p-2),

m



yt(T2S2)rxi = 0

Notice t'71

(T S )P-20 T 1/s7
2 2 2' 2 2' T2(S2T2)P-202

are independent and

each has dimension m. That each has dimension m follows

since 7?(T2S2)P-1 n 1/1 = 0 and 77(S2T2)P-1 n W2 0. To

see that the subspace § are independent, let xo,

xp_l E W2 and yo, yp_2 E W. Then

p-1

(T S )ix.
2 2 i

i=0

implies

p-1

(ST
2 2

i=0

the subspaces W , T S,
2 2 2 2'

(i, j =
r=

IPSO,M )
000, p-2

p-2
^

+ Ey72(S2T2)i(S2T2)hW2

j=0

= x11:;-1-h(S2T2P- 102
(h = 0, .., p - 1)-

Thus xp-l-h 6 02n ((
T2 )p-11,4,2

°
= 0 for h = 0, ...,

/

p - 1. Hence x. = 0 for i = 0, .., p - 1. Similarly
1

y. = 0 for j = 0, p - 2. Thus the subspaces are

independent. By the Same type of reasoning the subspaces

S2
T

°
0 (S2 T )13-1W2° S22'... S2(T2S2)P-22' 022 2 2

are independent and each has dimension m. Thus with our

bases for W2 and

ilP-1

r
L)

i
x.

i=0

chosen as above,

p-2

(T (S T )iy.
2 2 2 3

i=0
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and

fp-1i=0

r p-2

respectively, form bases for the

and
^

subspaces 5
vT2S2(W2 91112W2)

From (3.19) it follow that

and

1.`;s m 642
2-9 49 0272) (PT2S2(W2 9 T2W2)))'

=

'

By definition
T2

maps
S2T2(2 9 S2W2) into

T S 2
(vi

2 2
and maps ,9T2s2(W2 ED T2W2)p

Ps T (2 9 S2W2)H
into By an argument like the one

22
establishing c) of LeMma 13 we also find

S2
maps

(s T (142 0 S2W ))°
2 2

into
(

1112S2
(W2 9 T2T'A7 )

and

T2
maps

(pT2S2(la2
T a 0° into

2T2(1'42 9 S2W2))°'

1
1

(2p-1)m-dimensional

(9S2T2(/^q2 9 S W2).

For each vector in our basis for
W2

let
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Xi = span fxil. Simil

each vector
yi

(j = 1, ..., m)

as follows:2T2S T2 j

xj, Ty., T2S2x.,
7 .." (T2S2)P-2T2yj' (T2S2)P-1x..7

For each corresponding j (j = 1, m) we order the

2S Yi 3
basis for

T S2 X. as follows:
22 22

(S
p-1

2T 2 17j, (S2 2)P-25 2x j' '"'
S

S2T2Yj' 2x 3' /73'

Thus there exists a nosingular complex matrix
C3

such

that

C*S C = g G2p-1 e) 533 3 j=1

and (3.22)

C-1T2 C*-1 =
j1 F2p-1 9

T33 3 =

Hence we have obtained

z
D*SD = 4 E E 0 p.F G, S3

h=1 h p .

=11 p Lp
7-1

and

EhlF, p.E e F2p-1
h=1 L- i=1 1 P j=1

for some nonsingular complex matrix D.

Now

therefore

rank (T2S

- -
D1. TD*1 =

rank (F

j=1

Thus

arly we let Yi = span {yi} for

in our basis for W. For each

we Order the basis for T2S2Xj

observe that rank (F2p-1G2p-1)P-1 = 1 and

P-1G2p-1)P-1
m = dim W2

by (3.18) and (3.22) we conclude
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For 0 < r < q,

(F
q
E q)r = r,

(G F
Nr

2q-1 2q-1'

(Fq
[E
q
F q1r) = r + 1,

(E F )r = r,
q q

(E [F E ]r) r,
q q q

-1[G2q-1F2g-1lr) = 2r + 1
(F2g

,

and v(G2q_l[F2q_iG2l_11r) = 2r + 1.

(For r > q the preceding nullities equal the respective

orders.) Thus for 0< j < p

. = (jkq + jZq + jmq
+ (qkq +2q + (2g-l)m

q>j q<j

59

3)P-1 = 0. HenceH_f we consider the (n-pk-p-(2p-1)m)

x (n-pk-pk-(2p-1)m) Matrices T3 and S3 we have

returned to the situation of the first part of the proof

with p replaced by p 1. Consequently after a finite

number of repetitionsiof the above process the required

-1
forms for C*SC and IC

-1 -1 are obtained.

Now it remains tC show that (3.14) and (3.15) hold.

Since the rank and signature of a matrix are preserved by

conjunctivity, and the rank of a matrix is preserved by

similarity, it will be sufficient to prove (3.14) and

(3.15) are true assuming T and S are respectively

equal to (3.12) and (3.13). To do this let us observe

the following (where v(E) will denote the nullity of

the matrix E):



3-1
q>j-1

'-1)k +j2, +(2j-1)m )+ (qk +qk +(2q-1)m )
q q q q q

q<j-1

=
3--1-

(jk(a+(j-1),Q,
q+(2j-1)mq)+

I] (qyqkg+(2q-1)mg),

q>j-1 q<j-1

where we agree kq = 2 =
mq

= 0 if q > p. Using these
q

equations we find that

vj 3-1
=

mq+1
+ kq + + m

= m. + [k. +
3 3

q

60

mq +kq
+ + (m

+q
,

3 q

vi Pj-1 = kj
+ k )

q>j

and

V. - = + (mg +

q>j

From these equations the expressions for k
q

,

2q
and

can easily be obtained.

To confirm (3.15) we use Theorem 1 of [7] to see that

sig F2g_1(G2q_1F2g_1) r = sig G2g_1(F2g_1G2g_1)r = 0

for re q = 0, p. Similarly we find

1 r = q - 2i - 1> 0
sig E (F E )r =q q q

0 otherwise



and

sig F
q q q

where i = 0, 1, ...

that the signature of

sum of the signatures

p-2r-1 = E Ep p-2

al
P-2r-1 = + p

p p-2

ap-2r = E +E
p-1 p°

and

G +Pp-2r p-1 p-3

From these expression

obtained. Thus the p

Theorem 9. Let T

with (TS) P = 0. The

and only if S(TS)'

i = 0, p.

r = q - 2i - 2 > 0

otherwise

Using these facts and the fact

a direct sum of matrices is the

of the direct summands, we obtain

+ + Ep-2r +p
p-1

+ +
Pp-2r+1'

+ Ep-1 + + Ep-2r+1'4- Pp-2r

..+Ep-2r+1 p p-2
+p +p

+...+pp-2r+2'

p-2r+1+Ep+Ep-2+...+E p-2r+2*

the explicit formulas of (3.15) are

oof is complete.

d S be nxn hermitian matrices

T and S are isoconjunctive if

d T(ST)1 are conjunctive for

61

Proof: If T and S are isoconjunctive, Theorem 1

shows S(TS)' and T ST)' are isoconjunctive (and hence

conjunctive) for i = 0, p.

To prove the con erse, by Theorem 1 we may assume T

and S are of the fo m (3.12) and (3.13) respectively.

Since S(TS)P-1 and T(ST)P-1 are conjunctive we conclude



tion conjunctivities)

k

and

T=
q=1 h=1

(in Theorem 8) that il =p'p-1 and thus k
-1 P P

Similarly we conclude kq = 9, q = 1, ..., p - 1. Thuscif

also E
q

=
pq

for all q. Therefore (because of the

ordering) Eig = Pig or every i and q. Further since

EFE =G and EE = E we may assume (after suit-qqqg q q q q

able reordering of the blocks using simultaneous permuta-

q q Eq) . G2q-3=1

atle[2.

q q Fq)
3.=1

2q-1

Since (G E ) and (E F ) are isoconjunctive

(Gq
e Eq = E2q (Eq

F
q )E2q

), and since G2q-1 and

are isoconjunct've (G2q-1 = E2q-1F2q-1E2q-1)
we

F2q-1

conclude by Theorem 4 that T and S are isoconjunctive.

S =
q=1 h=1
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Now that we have

conditions that two n

junctive in both the c

ular and in the case w

it seems reasonable to

obtain a single criter

nately this condition

condition derived in t

only negative-real cha

certain special cases

Theorem 10. Let T

matrices. Suppose non

are negative-real. Th

Proof: Suppose T an

matrices such that TS

where M has only a

roct. or M. has only

characteristic roots

IV, SUMMARY

ound necessary and sufficient

hermitian matrices be isocon-

se where their product is nonsing-

ere their product is nilpotent,

try to put the pieces together to

on in the general case. Unfortu-

an be no better than the irrational

case where the product TS has

acteristic roots. However in

can do better than this.

be nxn nonsingular hermitian

of the characteristic roots of TS

and S are isoconjunctive.

S are nonsingular hermitian

has no negative-real roots. By

the Jordan Decomposition Theorem, there exists a nonsing-

ular matrix C such hat

TSC = M.

i=1 1

single positive-real characteristic

a single pair of conjugate nonreal

M. has no characteristic roots
1
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in common with

we may assume

T= T.

1=1 1

S. i =1,
Theorem 6. Thus the

Theorem 11. Let T

Suppose none of the

negative-real (the r

are isoconjunctive

integer i there ex

such that

T (ST)

(i.e. for every inte

have the same rank a

Proof: If T and

tion there exists a

that T = HSH. Now

take C. = H, i =1

and S = Si
1=1

theorem is proved.

and S be nxn hermitian matrices.

haracteristic roots of TS are

ots may be zero). Then T and S

and only if for every nonnegative

sts a nonsingular complex matrix Ci

= CS(TS)1C.1 1

er i > 0, T(ST)1 and S(TS)1_
d signature).

are isoconjunctive, then by defini-

onsingular hermitian matrix H such

he proof of Theorem 1 shows we may

1,...

where the set of matrices T.S.(i = p) has the

properties given abo for the set of matrices

M,1(i = p). By Theorem 3 T and S are isocon-

junctive if and only if. Ti and S. are isoconjunctive

for i = p. But the isoconjunctivity of T. with

p, h s been established by Theorem 5 and
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j. By Theorem 1 and Lemma 1



Suppose now that for every nonnegative integer i

there exists a nonsingular complex matrix Ci such that

T(ST)I = C*S(TS)IC

Again by the Jordan Decomposition Theorem, Theorem 1, and

Lemma 1 we may assume

T =
T1 2

and S =
S1 2

where T
S1

is nonsingular with no negative-real charac-

teristic roots and
T2S2

is nilpotent (say of degree p).

Since by hypothesis T(ST) P and S(TS)P are conjunctive,

the hermitian matrices
T1(S1T1)9

and S1(T1S1)P
are

conjunctive ((S2T2)P = (T2S2)P = 0). Since T1 and S/

are nonsingular, this implies T1(S1T1)i
and

S1(T1S1)

are conjunctive for i = 0, 1,... . But this, together

with the hypothesis and the fact that T and S are

hermitian, implies T2(S2T2)i and S2(T2S2)i are conjunc-

tive for i = 0, 1,... . Now applying Theorem 9 and

Theorem 10 we deduce that T2 and
S2

are isoconjunctive

and also
T1

and
S1

are isoconjunctive. Thus by

Theorem 3 T and S are isoconjunctive.

Notice that in both Theorem 10 and Theorem 11 we

need to know something about the set of characteristic

roots of TS before the theorems can be used. It should

also be noted that in applying Theorem 11 we need only

calculate the rank and signature of T(ST)i (and S(TS))

for i = k (hopefully k is small) since the
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sequence

{0} c 7/TS c /7(TS)2 c c 7j(TS)m

is eventually stationary. In fact we may take k to be

the smallest integer p such that 77(TS)P = fl(TS)P+1.

Note also that our discussion in no way claims a "workable"

method to construct the hermitian matrix H which imple-

ments the isoconjunctivity of two hermitian matrices.

However given all the characteristic roots of TS we can

calculate the canonical form for (T,S) under contragra-

dient conjunctivity (see Theorem 4 and Theorem 8), the

matrix implementing this contragradient conjunctivity,

and thus the hermitian matrix H displaying the isocon-

junctivity, as was done in the proofs.

To get our next result we need to observe two simple

facts.

Lemma 14. Let T and S be nxn complex matrices. If

there exists a complex matrix C such that T = CSC =

CSC*, then T(ST)i = C*S(TS)iC, i = 0, 1,... .

Proof: By hypothesis

T(ST)1 = C*SC(SC*SC)1

= C*S(CSC*S)iC

= C*S(TS)iC.

Lemma 15. Let T and S be nxn complex matrices such
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that for some nonsingular complex matrix C, T = CSC =

CSC*. Then for every nxn nonsingular complex matrix D

there exists a nonsingular complex matrix B such that

-D*TD = B*(D-1SD*-1)B = B(D 1SD*-1 )B*.

Proof: Let T = CSC = CSC* where C is nonsingular.

Let D by any nxn nonsingular matrix. Then

D*TD = D*C*SCD = D*CSC*D

= (D*C*D)(D-1SD*-1)(D*CD) = (D*CD)(D-1SD*-1)(D*C*D)

- -1= (D*CD)*(D 1SD* )(D*CD) = (D*CD)(D-1SD*-1)(D*CD)*.

Thus take B = D*CD (which is nonsingular) and the proof

is complete.

Theorem 12. Let T and S be nxn hermitian matrices.

Then T and S are isoconjunctive if and only if there

exists a nonsingular complex matrix C such that

T = CSC = CSC*. (4.1)

Proof: Suppose T and S are isoconjunctive. Then

by definition there exists a nonsingular hermitian matrix

H such that T = HSH. Thus in (4.1) take C = H.

Suppose now that there exists a nonsingular matrix C

satisfying (4.1). By the Jordan Decomposition Theorem TS

is similar to a matrix of the form M 9 N where M has

no negative-real characteristic roots and N has only

negative-real characteristic roots. Thus by Theorem 1,

Lemma 2, and Lemma 16 we may assume further that
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tive. By Theorem 7 T2 and S2 are isoconjunctive.

Thus by Theorem 3, T and S are isoconjunctive.

It is well to point out the analogy between Theorem 12

and Theorem 2 of [3]. There Carlson shows that a complex

matrix A is similar to A* (A* = C-1AC for some non-

singular matrix C) if and only if A is hermitian-similar

to A* (A* = K-1AK for some nonsingular K = K*). Since

condition (4.1) can be written

our Theorem 12 (like Carlson's)

and only if there exists a matrix H = H* such that

- -1
H

6., -1
0 0 T H

S 0 0 0

Notice however that our similarities are very special,

namely block diagonal.

T=T1 eT2 and S = S1 0 S2

where
T1S1 has no negative-real characteristic roots

and
T2 S2

has only negative-real characteristic roots.

By Lemma 2 we must have, conformably,

0 C*
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C = C12 (C1
and

C2
nonsingular).

Thus Tl = CIS1C1 = CiSiCt and T2 = Cp2C2= C2S2q.

By Lemma 14 and Theorem 11,
T1

and
S1

are isoconjunc-

-1
T
C-1

1 (4.2)
0 C*

says that (4.2) holds if

0o



and
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Finally, as a consequence of our results and Corol-

lary 8 of [3] we can find necessary and sufficient conditions

on a pair of nxn hermitian matrices T and S such that

there exist a positive definite (hermitian) matrix H such

that T = HSH. Noting that C*HC is positive definite for

every nonsingular matrix C if and only if H is positive

definite, we can use Theorem 1, Lemma 1, and Theorem 3 to

split the problem into the nonsingular and nilpotent parts.

Accordingly we give the next two lemmas.

Lemma 16. Let T and S be nxn nonsingular hermitian

matrices. Then there exists a positive definite matrix H

such that T = HSH if and only if TS is similar to a

diagonal matrix with all positive-real characteristic

roots.

Proof: Let T = HSH with H positive definite. Then

T = HSHS. By Corollary 8 of [3], HS is similar to a

diagonal matrix with all non-zero real characteristic

roots. Thus TS = (HS)2 is similar to a diagonal matrix

with all positive-real characteristic roots.

Now let TS be similar to a diagonal matrix with

all positive-real characteristic roots. By Corollary 1

and our observations previous to this lemma we may assume

T = diag(E]y.1, Eni3n)



S = diag(El, En)

where E. = ±1 (i = 1, ..., n) and 81, ..., 1Sn are the

characteristic roots of TS. Thus if we take

H = diag(47-7, VT;) (which is positive definite) the

result follows.

Lemma 17. Let T and S be nxn hermitian matrices

such that TS is nilpotent. Then T = HSH for some

positive definite matrix H if and only if T = S = 0.

Proof: If T = S = 0 take H = I (the nxn identity

matrix). Now let T = HSH with H positive definite.

By Corollary 8 of [3], TS = HSHS is similar to a diagonal

matrix. Thus since all the characteristic roots of TS

are zero, TS = 0. Since T = H(SHS) and H is nonsing-

ular this implies SHS = 0. Thus in particular s*Hs = 0

for every column s of S. Since H is positive definite

this implies every column of S is zero. Thus S = 0.

But T = HSH so T = 0. Hence the proof is complete.

Theorem 13. Let T and S be nxn hermitian matrices.

Then the following are equivalent

T = HSH for some positive definite H

-1 -1
C TC* = C*SC for some nonsingular complex

matrix C

TS is similar to a diagonal matrix with all

nonnegative-real characteristic roots and
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rank T = rank S = rank TS.

Proof: We prove a)4-_>b) and ak
a)< >b): Since H is positive definite if and only

if H = CC* for some nonsingular matrix C,

T = HSH T = CC*SCC*==-CTC* = CSC. Thus

a) >b).

a). c): Let T = HSH with H positive definite.

By Corollary 8 of [3] TS = HSHS is similar to a

diagonal matrix with nonnegative real characteristic

roots. Since H is nonsingular, rank TS = rank HSHS

= rank SHS. Obviously rank SHS < rank S. But also

SHSx = 0 >x*SHSx 0 (Sx)*H(Sx) = 0. Since H

is positive definite this implies Sx =0. Thus

nullity SHS > nullity S, so rank S > rank SHS.

Therefore rank TS = rank SHS = rank S. Since

T = HSH, rank T = rank S. Thus a) >c). Now let

TS be similar to a diagonal matrix with all nonnega-

tive-real characteristic roots. Assume also rank T =

rank S = rank TS. Thus there exists a nonsingular

complex matrix C such that C-1TSC =

diag(81, ..., 8m, 0, ..., 0), where

8i 0 (i = 1, ..., m). By Lemma 1 we must have

-1 -
C TC*1 = T

T2
and C*SC = SI S2

where
T1
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and S are mxm. Since TiSi = diag(81 8111)



we conclude rank T1 = rank S1 = rank T1 S1 = m.

Since rank C-1TSC = rank T1S1 = m and by hypothesis

rank T = rank S = rank TS, we conclude rank T2 =

rank S2 = rank T2S2 = O. Thus T2 = 52 = 0 so

T2 = IS21 (where I is the (n-m)x(n-m) identity

matrix, which is positive definite). Since T2S2

is diagonal with all positive-real characteristic

roots, Lemma 16 implies there exists a positive defi-

nite matrix K1 such that Tl = K1S1K1' Let

K = K1 I. Then K is positive definite and

T1 T = K(S1 S2)K. Thus

T = C(Ti T2)C*

= CK(S1 9 S2)KC

= CKC*C*-1(S1 S2)C-1CKC*

= (CKC*)S(CKC*).

Since CKC* is positive definite this proves

c)==4a) so the proof is complete.

As a final comment we note that this isoconjunctivity

by positive definite matrices (like isoconjunctivity) is

not an equivalence relation on the set of nxn hermitian

matrices since it is not transitive (although it is obvi-

ously symmetric and reflexive) as the following example

indicates.
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Example 5. Let

T=

Then T and S are not isoconjunctive by a positive

definite matrix since rank T = rank S = 1 while

73

rank TS = 0. However

2 1 2 1 5 2 5 2

R =
1 1 1 1 2 1 2 1

S =
[00 1

and R =
4

2

[
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