

AN ABSTRACT OF THE THESIS OF

Saeed Khorram for the degree of Master of Science in Computer Science presented on

March 18, 2020.

Title: Toward Disentangling the Activations of the Deep Networks via Low-dimensional

Embedding and Non-negative Factorization

Abstract approved:

Fuxin Li

In this thesis, we introduce a novel Explanation Neural Network (XNN) to explain the

predictions made by a deep network. The XNN works by embedding a high-dimensional

activation vector of a deep network layer non-linearly into a low-dimensional explanation

space while retaining faithfulness i.e., the original deep learning predictions can be

constructed from the few concepts extracted by our explanation network. We then

visualize such concepts for humans to learn about the high-level concepts that deep

learning is using to make decisions. We propose an algorithm called Sparse Reconstruction

Autoencoder (SRAE) for learning the embedding to the explanation space. SRAE aims

to reconstruct only parts of the original feature space while retaining faithfulness. A

pull-away term is applied to SRAE to make the explanation space more orthogonal.

A visualization system is then introduced for human understanding of the features in

the explanation space. The proposed method is applied to explain CNN models in

image classification tasks. We conducted a human study, which shows that the proposed

approach outperforms a saliency map baseline, and improves human performance on a

difficult classification task. Also, several novel metrics are introduced to evaluate the

performance of explanations quantitatively without human involvement.

Further, we propose DeepFacto where a factorization layer similar to non-negative matrix

factorization (NMF) is added to the intermediate layer of the network and showcase its

capabilities in supervised feature disentangling. Jointly training an NMF decomposition

with deep learning is highly non-convex and cannot be addressed by the conventional

backpropagation and SGD algorithms. To address this obstacle, we also introduce a

novel training scheme for training DNNs using ADMM called Stochastic Block ADMM

which allows for simultaneous leaning of non-differentiable decompositions. Stochastic

Block ADMM works by separating neural network variables into blocks, and utilizing

auxiliary variables to connect these blocks while optimizing with stochastic gradient

descent. Moreover, we provide a convergence proof for our proposed method and justify

its capabilities through experiments in supervised learning and DeepFacto settings.

c©Copyright by Saeed Khorram
March 18, 2020

All Rights Reserved

Toward Disentangling the Activations of the Deep Networks via
Low-dimensional Embedding and Non-negative Factorization

by

Saeed Khorram

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented March 18, 2020

Commencement June 2020

Master of Science thesis of Saeed Khorram presented on March 18, 2020.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Saeed Khorram, Author

ACKNOWLEDGEMENTS

I would like to sincerely thank my parents and my sister for their unconditional support

and love. I would also like to thank my advisor, Fuxin Li, for his constructive mentoring

during my presence at Oregon State University. Futher, I would like to thank Zhongang

Qi and Xiao Fu for the joint discussions and collaborations. At the end, I would like to

thank my friends, and those who were by side on this journey.

”What you seek is seeking you.” — Rumi

TABLE OF CONTENTS
Page

1 Introduction 1

2 Background and Related Works 4

2.1 Training Deep Neural Networks . 4

2.1.1 Gradient Descent and BackPropagation 5

2.1.2 Training DNNs as Constrained Optimization Problem 6

2.2 Alternating Direction Method of Multipliers 7

2.3 Non-negative Matrix Factorization . 9

2.4 Interpretability in Deep Neural Networks 12

3 Embedding Deep Networks into Visual Explanations 16

3.1 Introduction . 16

3.2 XNN: eXplanation Neural Network . 18

3.2.1 The Explanation Network . 18

3.2.2 Embedding to the Explanation Space 20

3.2.3 Implementation Details . 21

3.2.4 Visualizing the Explanation Space 24

3.3 Experiments and Results . 24

3.3.1 Human Evaluation . 24

3.3.2 Quantitative Evaluation Metrics 29

3.3.3 Quantitative Results . 34

3.3.4 XNN on convolutional layers . 39

3.4 Summary . 42

4 Stochastic Block ADMM for Training Deep Networks 43

4.1 Introduction . 43

4.2 Stochastic Block ADMM . 45

4.2.1 Training DNN using ADMM . 45

4.2.2 Stochastic Block-ADMM . 47

4.2.3 Discussions on Convergence Properties 50

4.3 Deepfacto: End-to-End Factorization of the DNN Activations 54

4.4 Experiments and Results . 55

4.4.1 Setup . 55

4.4.2 Supervised Deep Network Training 56

TABLE OF CONTENTS (Continued)
Page

4.4.3 Weakly Supervised Training . 61

4.5 Summary . 64

5 Conclusion 66

Bibliography 67

Appendices 81

A XNN . 82

B DeepFacto . 89

LIST OF FIGURES
Figure Page

2.1 Comparison of the decomposition from PCA (top) and NMF (button) with

rank r = 16. It can be observed that NMF basis vectors are more local and

intuitive to humans while PCA basis vectors are similar to distorted whole

images. In PCA, the positive (blue) and negative (red) values cancel out

each other which is counter-intuitive while in NMF, the additive nature of

the decomposition leads to an interpretable and sparse representation —

only a few of the basis vectors are contributing (blue) and the rest have

near zero contribution (white). 10

2.2 Saliency maps generated from Excitation BP [122] corresponding to indi-

vidual predictions of the CNN classifier. 13

3.1 Examples of explanations that our approach can generate: the left figure

shows that there are two key features (two with highest contribution value

indicated on top of each heatmap) to predict European goldfinch: golden

feather and red forehead; the right figure shows that there are two key

features to predict green tailed towhee: green feather and red crown. Note

that our approach generates the visualizations for human to deduct those

feature maps, without requiring any textual annotation to train. 17

3.2 (a) Conceptually, the explanation network (XNN) is a mimic network

with a small bottleneck layer so that the original deep learning prediction

ŷ can be reproduced from this low-dimensional space. An explanation

network can be attached to any layer in the prediction deep network

(DNN). The output of the DNN can be faithfully recovered from this

low-dimensional explanation space, which represents high-level features

that are interpretable to humans. (b) Illustration of the SRAE used for

the explanation network. Both the prediction and sparse reconstruction

are generated from the explanation space. Also, the pull-away term helps

the explanation space to be orthogonal; (c) The log penalty function

log(1 + q · r2) when q = 1; (d) The log penalty function log(1 + q · r2) when

q = 10. 22

3.3 Boxplot of clustering purity with respect to the original CNN prediction

obtained from the human evaluation for NoVis, 1-Heatmap, and the XNN

on the (a) CEL dataset and (b) CUB dataset. 25

LIST OF FIGURES (Continued)
Figure Page

3.4 Participants’ confidence level in different stages that their answers would

correctly group all the sample images for the (a) CEL dataset (b) CUB

dataset. (c) Participants’ answers to the question that how do they

evaluate the performance of the 2 different AI agents helping them on

grouping images, 1-Heatmap as the baseline (in green color) and XNN as

our approach (in red). 26

3.5 Snaps from different stages of our designed human interface. (a) NoVis

stage with CEL images (back) and ExcitationBP stage with CUB images

(front). In the ExcitaitonBP stage, users could either hover over the

sample images to see the ExcitationBP generated heatmaps or toggle

on/off heatmaps for all images at once using a button in the interface (b)

the XNN stage with another batch of CEL (back) images where the users

could toggle through all the visualizations from x-features 1-7. In this snap,

Heatmap 3 is toggled on. The value on top of each heatmap indicates the

normalized contribution of that x-feature to the final prediction (positive

values in red and negative values in blue). Also, users could select images

by clicking on them (the ones with blue banner on top) and compare their

heatmaps from all x-features in one place (front). Here, Heatmaps (H)

1-5&7 are toggled on and Heatmap (H) 6 is toggled off. 28

3.6 A simple example generated by the explanation module. The first line

shows the original image, the part labels of the image in the ground

truth, and the Voronoi diagram of the image; the second line shows the

visualization results for the 5 neurons in the x-layer sorted by the weights

(viEi, i = 1, 2, . . . , 5) for the final prediction. 31

3.7 (a) Pixel-level probability Sn,mip,jp ; (b) Voronoi-based probability Sn,mp for

the example image in Figure 3.6. 32

3.8 Comparison of heatmaps on the original output ŷ (baseline: 1-Heatmap)

and on x-features (our approach XNN) for CUB. The weight above the

feature is viEi, the product of the weight of the x-feature in the approxi-

mation of ŷ(k) timed by the activation of the x-feature, which shows the

contribution of the x-feature to the final prediction. 37

3.9 Comparison of heatmaps on the original output ŷ (baseline: 1-Heatmap)

and on x-features (our approach XNN) for Kitchen and Bedroom examples

from Places dataset. 38

LIST OF FIGURES (Continued)
Figure Page

3.10 The visualizations of the x-features for some positive examples when

explaining the category of 4. 40

3.11 The visualizations of the x-features for some negative examples when

explaining the category of 4. 41

4.1 a) General Architecture for training DNNs proposed in Stochastic Block-ADMM.

b) A few differential layers selected from a parent network are stacked inside a

block. The parameters Θt are updated by SGD in a forward-backward pass. . . 47

4.2 General architecture for Deepfacto: an NMF module with rank r is added

in the middle of two arbitrary blocks. Note, only St is passed to the next

blocks. 55

4.3 Test set accuracy on MNIST using network with 3 fully-connected layers:

784− 128− 128− 10. Final test accuracies: ”Stochastic Block ADMM”:

97.53%, ”Standard ADMM”: 95.02%, ”Zeng et al.”: 83.28% , ”Taylor et

al.”:87.52%, ”SGD”: 95.29%. (Best viewed in color) 57

4.4 Test accuracies from deep architectures on MNIST. Block-ADMM demon-

strates stable convergence and obtains final test accuracy of 94.43% (10

layers), and 91.75% (20 layers) respectively, while SGD and Adam (10

layers) fail due to vanishing gradients (Best viewed in color) 59

4.5 Test set accuracy on CIFAR-10 dataset. Final accuracy ”Block ADMM”:

89.66%, ”Gotmare et al.”:87.12%, ”SGD”: 92.70%. (Best viewed in color.) 60

4.6 Test set accuracy v.s. training wall clock time comparison of different alter-

nating optimization methods for training DNNs on MNIST dataset. Our

method (blue) shows superior performance while presenting comparable

convergence speed against [118] (green). 62

LIST OF TABLES
Table Page

3.1 The average faithfulness, orthogonality, and locality of different approaches

over all the 200 categories of the CUB dataset. The column Z represents

the average locality computed over all the dimensions of Z, the 4, 096-

dimensional first fully-connected layer of the deep network. This is obtained

by separately running ExcitationBP on each dimension of Z and evaluating

the resulting heatmaps. 1-Heatmap refers to the heatmap from ŷ. 34

3.2 The average faithfulness, orthogonality, and locality of different approaches

for 10 categories of the Places dataset. 36

3.3 The faithfulness for the fully convolutional XNN on different convolutional

blocks for the CUB dataset. 39

4.1 Average prediction accuracy on 40 attributes from LFWA dataset. Weakly-

supervised methods train the network without access to attribute labels.

Final classification then comes from a linear SVM on their latent represen-

tations. 64

4.2 Prediction accuracy (%) of individual attributes in LFWA dataset. Deep-

Facto with other weakly-supervised and supervised baselines. 65

LIST OF ALGORITHMS
Algorithm Page

1 ADMM for DNN Training . 46

2 Stochastic Block-ADMM . 49

3 The metric based on Voronoi diagram . 83

LIST OF APPENDIX FIGURES
Figure Page

A.1 The x-features for male and female downy woodpeckers. 85

A.2 (a) Good examples learned by SRAE, the number of the x-feature is

3, where the 3 neurons are orthogonal to each other; (b) Degenerated

examples learned by NN, the number of the x-feature is 3, where the first

two neurons are very similar, and there is only one positive neuron. 86

A.3 Comparison of heatmaps on the original output ŷ (baseline: 1-Heatmap)

and on x-features (our approach XNN) for Places. 88

B.1 Test accuracy comparison of Stochastic Block ADMM and dlADMM [105]

on Fashion-MNIST dataset using a network with 3 fully-connected layers:

784− 1000− 1000− 10. Final test accuracy: ”Stochastic Block ADMM”:

90.39%, ”Wang et al.”:84.67% (averaged over 5 runs). 90

B.2 Heat map visualizations from three different dimensions of the score matrix

S (rows) trained by DeepFacto-32 over different samples (columns) in

LFWA dataset. These dimensions can capture interpretable representations

over different faces identities: eyes (top), forehead (middle), and nose

(bottom). 91

LIST OF APPENDIX TABLES
Table Page

A.1 The average faithfulness for Lasso with different α for 30 randomly selected

categories of the CUB dataset. 84

A.2 The average classification accuracy for images masked by our method

(XNN) and the baseline (1-Heatmap) with the same number of kept pixels

on 30 randomly selected categories of the CUB dataset. 85

A.3 The average faithfulness for Lasso with different α on 10 categories of the

Places dataset. 87

Chapter 1: Introduction

In the past couple of years, deep neural networks (DNNs) have shown impressive perfor-

mance in many domains such as computer vision [40, 80, 39]. On the whole, they process

data by cascading information through multiple non-linear mappings. This gives them

the high capacity to capture complex structures in the data. Yet, this comes at the cost of

obstructed interpretability as the decision making process of the DNNs is still a black-box

to human understanding. Interpretability is a crucial part of advancing the artificial

intelligence (AI) systems, and lack of interpretability hinders the efforts to trust, refine, or

learn from them [21]. There typically exists a trade-off between the interpretability and

the performance of these systems. Classical machine learning methods such as rule-based

methods [100], despite having relatively weak performance, are highly interpretable. On

the other end of the spectrum, deep learning methods suffer from lack of interpretability

while even outperforming humans in certain domains [89].

Further, adversarial examples [96, 35] have shown that the decision making of the

DNNs is indeed very fragile — by only adding a small amount of intended perturbations to

their input, they can be readily fooled. This suggests that solely relying on the confidence

of the DNNs predictions, that may have been backed up with high performance on

benchmarks, is not wise. This clearly shows the need for explanations in decisions of

the DNNs, especially in the domains that they are constantly making critical decisions

such as in self-driving cars, medical diagnosis, etc. Simply put, in order to establish trust,

human needs to understand how deep learning makes decisions. Such understanding

can help the human to gain additional insights into human-machine interactions — for

humans to enhance the current algorithms and to potentially learn from them in tasks

they show superior performance.

Interpretable AI, also knows as explainable AI (XAI), is the line of research that

attempts to mitigate the lack of interpretability in the AI systems, particularly in deep

learning. In the recent years, different directions have been taken toward interpretability

in DNNs such as visualizing particular filters in the convolutional neural networks (CNNs)

[91, 117], aligning the individual activation units in the CNNs with a set of (human-

2

labeled) semantic concepts [5], generating attention maps that backtrack a decision to

its relevant areas in the input [85, 77, 122]. These methods are often nice and quite

informative, but they work on individual images and do not provide high-level concepts

that can be broadly applicable to many images simultaneously, nor can we believe they

are complete explanations of deep learning predictions.

It is believed that by going deeper in the layers of the neural networks, increasing levels

of abstraction are learned, and oftentimes they are aligned with human-interpretable

concepts [132, 33]. However, there is no explicit mechanism in the training of the DNNs

to enforce the learning of semantic parts. Typically these semantic parts are found using

a rigorous exploration of the roles of individual units inside the DNNs [5]. In this thesis,

unlike the aforementioned methods, we propose methods to limit the capacity of the

DNNs to only a few neurons, hoping to encourage (partial) disentanglement in their

latent space. We investigate our hypothesis using two different approaches.

In our first approach (chapter 3), we embed the high-dimensional activation space of

the DNNs into a low-dimensional explanation space while retaining the faithfulness to

the original network, meaning the prediction of the original (to-be-explained) network

is faithfully approximated from the few concepts in the embedded space. Further, we

encourage the low-dimensional space to have the following properties: locality, that the

concepts are relatively spatially-localized in images so that humans can understand them,

and orthogonality, that the concepts themselves are as independent of each other as

possible. It should be noted, this is a post-hoc explanation method, meaning it would

explain the predictions of the networks which are already trained.

In our second approach (chapter 4), we design a method to learn a factorized activation

space in an end-to-end manner for the goal of feature disentanglement. Non-negative

Matrix Factorization (NMF) has been able to generate sparse and interpretable represen-

tation due to the non-negative constraints over the factorization matrices [61]. Supporting

the belief that DNNs would learn semantic part-of-object filters during training [33, 5],

we develop a method to train the DNNs while having NMF over their activations in

an end-to-end manner. Jointly training an NMF decomposition with deep learning is

highly non-convex and cannot be addressed by the conventional backpropagation and

SGD algorithms. To address this obstacle, we also introduce a novel training scheme for

training DNNs using ADMM which allows for simultaneous leaning of a non-differentiable

decomposition.

3

The rest of the thesis is organized as the following. In chapter 2, we will review the

common training schemes for training the DNNs and will go over the ADMM algorithm for

solving constrained optimization problems. In addition, we introduce favorable properties

of the NMF and the previous related work in using NMF toward interpretability. Finally,

we give a short introduction to interpretability in deep neural network and how it is

related to our work. Chapter 3 and chapter 4 will cover our two approaches that have

been introduced above. Lastly, chapter 5 concludes this thesis and provides a summary

of the contributions along with the direction for future works.

4

Chapter 2: Background and Related Works

2.1 Training Deep Neural Networks

Consider a simple binary classification problem given input x and label y ∈ {0, 1} using

logistic regression, a special case of a neural network (NN) with single neuron, Sigmoid

activation function, and binary cross-entropy (BCE) loss,

ŷ = σ(xTW + b); σ(x) =
1

1 + e−x
(2.1)

loss(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ)

In the above formulation of logistic regression using a simple NN rises the question

”How are the parameters of the NN, θ = {W, b}, being learnt?” The objective of the

classification task is to minimize the loss with respect to the θ. However, no analytical

solution can be derived to determine θ in the problem 2.1. This is almost always the case

for optimizing the problems formulated by NNs.

Instead, the current approaches use Maximum Likelihood Estimation (MLE) to

learn the parameters of the network. MLE estimate the parameters by maximizing the

log-likelihood of the data under the proposed statistical model (NN). In other words,

MLE selects the parameter values that make the observed data most probable. This is

equivalent to finding the parameters that minimize a given loss function. The best set

of parameters that minimize the loss is taken as the maximum likelihood estimate. For

problem 2.1, we have the following MLE,

5

θ1 = arg max
θ

p(y|X, θ) = pmodel(y|X) (2.2)

= arg max
θ

N∏
i=1

pmodel(yi|xi)

= arg max
θ

N∑
i=1

log pmodel(yi|xi)

= arg max
θ

Ex,y∼pdata log pmodel(y|x)

= arg min
θ
−Ex,y∼pdata log pmodel(y|x)

= arg min
θ

Loss(θ)

where N is the number of data points, Ex,y∼pdata is the expectation over the input data,

and Loss(θ) is the empirical risk or also called loss function. The loss function derived in

2.2 is commonly referred to as Negative Log-Likelihood. The objective of the training in

NNs is to minimize the loss, i.e., maximize the log-likelihood.

2.1.1 Gradient Descent and BackPropagation

The minimization problem in 2.2 generally does not have a closed-form solution. To

determine the parameters of the model (NN) that lead to the minimum loss value, the

first-order iterative optimization method, Gradient Descent (GD), and its variants are

typically used. Note, this is under the assumption that all the components of the model

are (piece-wise) differentiable. The gradient of the loss function at a given point, guides

to the direction in which the parameters should be updated to further decrease the loss

value.

GD can lead to the global optimum if the optimization objective is convex. However,

NNs generally have highly non-convex (and non-smooth) parameter space and there is

no guarantee that GD finds the global optimum. This hurdle is more severe in DNNs as

the complexity of the parameter space increases. By carefully taking small-enough steps,

GD can theoretically lead the optimization into a local optimum which can be far away

from the global minimum of the loss function.

6

In practice, Stochastic Gradient Descent (SGD) and its variants such as Adam [54] are

used widely used. These methods enable efficient training on large data sets wherein each

iteration of the gradient descent update, only a fraction of the data called a mini-batch is

used. This only gives only an approximation of the gradient. The inherent gradient noise

introduced by mini-batch sampling seems to help the optimization in avoiding narrow

local optima [51].

To efficiently update the parameters of the NN, Backpropagation (BP) [83] algorithm

is commonly used to train the feed-forward networks. Backpropagation, instead of

calculating the gradient of the loss function (output layer) with respect to each parameter

in the network, computes the gradients one layer at a time in a backward fashion. Using

the chain rule, all the parameters in the network can be efficiently updated in one

backward path. After one backpropagation of the error from the last layer to the input

layer, one can do a forward-pass in the network to calculate the new value of the loss

function and evaluate the performance. The backward and forward steps are repeated

until the optimization reaches to the (sub-)optimal minimum.

2.1.2 Training DNNs as Constrained Optimization Problem

As stated in section 2.1.1, SGD and its adaptive learning rate variants e.g., Adam

are commonly used to optimize a deep neural network (DNN) by the backpropagation

algorithm. Although these approaches have been the most successful, there are drawbacks

related to SGD training in DNNs [98], such as vanishing gradients in deep layers, a

significant memory footprint for storing the gradients, difficulty to parallelize across layers

because backpropagation has to be done sequentially, and inability to extend to problems

where non-differentiable layers exist.

A recent line of research has focused on training DNNs using optimization techniques

that decompose the training into smaller sub-problems, including Block Coordinate

Descent (BCD) and ADMM, which we will elaborate more on in section 2.2. On the BCD

algorithms, [10] was the earliest to propose training a DNN in a distributed setting by

formulating it as a constrained optimization problem. Further, [118, 127, 3, 38] lifted the

non-convex activations (e.g. ReLU) and formulating the DNN training as a multi-convex

problem and solved it using BCD. [113] proposed simultaneous clustering of the latent

space in an auto-encoder and used alternating SGD for training.

7

On the other hand, [98] proposed a batch gradient-free algorithm for training neural

networks using a variant of ADMM. However, due to the closed-form update of all the

parameters, the proposed method has limitations (e.g. only capable of using simple losses

such as Hinge loss and MSE), and cannot be further extended into more complex problems

and larger datasets. [128] proposed an ADMM scheme for training deep networks while

the parameter updates were using SGD which allowed for more complex problems such

as binary hashing.

More close to our work, [36] split DNNs into blocks and trained them separately by

introducing gluing variables. This is very close to ADMM, but it did not use the dual

variables common in ADMM and did not present a convergence proof for their method.

Recently, [105, 119] has provided convergence analysis of ADMM in deep learning by

linearly approximating the non-linear constraints in the DNN training problem. However,

their work did not address stochastic gradients as in our work.

2.2 Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers (ADMM) is a class of algorithms for solving

constrained optimization problems that gained considerable popularity after [7]. ADMM

brings the superior convergence properties of the method of multipliers and the decom-

posability of the dual ascent method together. To solve a separable optimization problem

of the form,

minimize
x,z

f(x) + g(z) (2.3)

subject to Ax+Bz = c

ADMM, firstly, forms the augmented Lagrangian,

L(x, z,y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22 (2.4)

where y is the dual variable (Lagrange multiplier) and ρ > 0 is called the penalty

parameter. Advantaging the decomposability introduced in the optimization problem 2.3,

8

ADMM breaks the augmented Lagrangian into smaller sub-problems by updating the

variables in an alternating manner, i.e. at each iteration, the augmented Lagrangian is

optimized with respect to only one variable while keeping the other variables fixed at

their most recent updated value,

xk+1 := arg min
x

L(x, zk,yk) (2.5)

zk+1 := arg min
z

L(xk+1, z,yk)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c)

The dual variable update uses a step size equal to the augmented Lagrangian parameter

ρ. Throughout this thesis, for more convenience, we are using the scaled-form of the

ADMM, which can be simply derived by combining the linear and quadratic terms in the

augmented Lagrangian and scaling the dual variable u = (1/ρ)y,

L(x, z,y) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ u‖22 −

ρ

2
‖u‖22 (2.6)

where u is the scaled dual variable. This simplifies the ADMM updates to the following.

xk+1 := arg min
x

(
f(x) +

ρ

2
‖Ax+Bzk − c+ uk‖22

)
(2.7)

zk+1 := arg min
z

(
g(z) +

ρ

2
‖Axk+1 +Bz − c+ uk‖22

)
uk+1 := uk +Axk+1 +Bzk+1 − c

ADMM is a powerful optimization method that has shown promise in solving com-

plicated optimization problems, especially in large-scale and data-distributed machine

learning applications [98]. As mentioned above, the power of ADMM comes from its

decomposition of the augmented Lagrangian into simpler loosely-coupled sub-problems

which enables it to solve each sub-problem in an efficient and potentially parallel manner.

In the recent years, stochastic and online versions of the ADMM have been proposed

[72, 104, 131]. However, due to large variance of stochastic gradients, slower convergence

9

rate of O(1√
T

) compared with O(1
T) for original ADMM on convex problems has been

shown. Moreover, ADMM extensions for a certain family of non-convex problems have

been recently proposed [106, 44]. However, DNNs generally do not fall into this family of

problems.

That being said, ADMM has been proposed for solving different optimization problems

related to deep learning literature. [52, 115] used ADMM for model compression and

parameter pruning in deep networks. [71] developed an iterative algorithm using ADMM

to enforce constraints on the latent space for inference. [94] proposed a deep network for

MRI image reconstruction using ADMM fashion for optimization. Further, there have

been attempts to train deep neural networks using ADMM which will be more elaborated

on in section 2.1.2.

2.3 Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) [61] is a powerful data analysis tool by di-

mension reduction. NMF linearly approximate a given matrix X ∈ RD×N (containing N

samples with input dimensionality D) using low rank matrices namely, the basis matrix

M ∈ RD×r and the score matrix S ∈ Rr×N ,

NMF(X, r) = minimize
M ,S

1

2
‖X −MS‖2F (2.8)

subject to Mij ≥ 0, Sij ≥ 0 ∀i, j

where r is the decomposition rank and usually r � min(D,N).

Unlike methods such as Principle Component Analysis (PCA) [49], by directly impos-

ing non-negativity constraints over the factors in NMF, the latent representation inherits

an interpretable decomposition in an unsupervised manner. In other words, NMF does

not allow cancellation of the features by subtraction and data is decomposed only by

additive components which implicitly results into a meaningful and sparse (part-based)

representation [61, 66].

10

PCA

NMF

×

×

=

=

 Original	Image

Figure 2.1: Comparison of the decomposition from PCA (top) and NMF (button) with

rank r = 16. It can be observed that NMF basis vectors are more local and intuitive

to humans while PCA basis vectors are similar to distorted whole images. In PCA, the

positive (blue) and negative (red) values cancel out each other which is counter-intuitive

while in NMF, the additive nature of the decomposition leads to an interpretable and

sparse representation — only a few of the basis vectors are contributing (blue) and the

rest have near zero contribution (white).

11

In Figure 2.1, a sample image from MNIST dataset is factorized using PCA and

NMF with rank 16. The basis vectors of PCA and NMF are already trained over the

(60,000) training samples of MNSIT. As mentioned above, the NMF has more localized

and intuitive basis vectors (part-of-object features) and only a few of the basis vectors

are positively contributing to the reconstruction: sparse representation. On the other

hand, the PCA basis vectors more resemble distorted whole image representations and

negative (red) and positive (blue) values cancel out each other in the decomposition

which is counter intuitive for human understanding. For the same reason, PCA does not

show sparsity properties.

Another favorable property of NMF that contributes to its abstract latent represen-

tation is the low(er) rank of factorized matrices — r � min(D,N) limits the capacity

of the feature representations. Evidently, the new factorized matrices usually also need

much lower memory space to store.

NMF has shown promise in various domains including spectral data analysis, text

mining, speech processing, data clustering, etc. [107, 86, 111, 37, 75, 27]. Further, it has

been shown that variants of NMF are roughly equivalent to k-means clustering algorithm

[20] and in a sense, by normalizing each column of the score matrix, it can be interpreted

as a posterior cluster membership probabilities — soft clustering. Subsequently, build

upon these properties, nested and deep models of NMF have been introduced in the

literature where the score matrix form one NMF is the input to the next. The nested

low-dimensional representations of these deep models have shown to capture hierarchical

structures in the data [116, 99, 26, 60].

More recently, the desirable properties of NMF mentioned earlier motivated researches

to incorporate it into the DNN architectures. [121] used a DNN to non-linearly transform

the data prior to applying the NMF, [14, 48, 102] used extracted features from NMF as

input to the DNNs, and [92, 22, 43] used neural networks to perform the (non-negative)

matrix factorization.

One needs to keep in mind that a prerequisite for NMF is the input data needs to

be also non-negative. This is commonly true for most of the natural data such as text,

images, and speech. Respectfully, due to the extensive use of non-negative activation

functions in the DNN structures such as ReLU, Sigmoid, SoftPlus, etc. NMF analysis

can be readily extended to the activation space of the DNNs. [16] applied NMF over

convolutional activations which have shown interpretable and coherent behavior over

12

image parts. However, in their work, NMF was applied post-hoc over pre-trained CNN

activations. There is no guarantee that the disentanglement is faithful to the underlying

mechanism of the DNN. To the best of our knowledge, NMF layers jointly trained with a

deep neural network have not been studied in the past.

2.4 Interpretability in Deep Neural Networks

The development of novel algorithms along with advances in computational hardware has

enabled designing deep and complex deep neural networks. On the whole, the notable

advantage of the DNNs comes from cascading information through multiple non-linear

mappings. This gives them the high capacity to capture complex structures in the data

which has resulted in unparalleled performance in many domains such as computer vision

[40, 45]. Yet, this comes at the cost of obstructed interpretability as understanding the

decision making of the DNNs, involving millions of parameters, is very hard to interpret

by humans.

Interpretability is a crucial part of advancing the artificial intelligence (AI) systems,

and lack of interpretability hinders the efforts to trust, refine, or learn from them [21].

There typically exists a trade-off between the interpretability and the performance of

these systems. Classical machine learning methods such as rule-based methods [100],

despite having relatively weak performance, are highly interpretable. On the other end

of the spectrum, deep learning methods suffer from lack of interpretability while even

outperforming humans in certain domains [89].

The explanation for the black-box models has become a significant need in many

real applications. In the medical domain, several approaches were proposed to utilize

interpretable models to explain the predictions for individual patients in a concise way

[11, 63, 101]. In Natural Language Processing, [59] proposes an interactive system which

builds a cycle of explanations from the learning system to the user, and then back to the

system.

In computer vision, which is most related to the designed experiments in this thesis,

several approaches have been taken to make deep networks more interpretable to humans

including associating the images with captions/descriptions [55, 56, 65, 50, 41], visualizing

individual convolutional filters in the network [117, 5], and heatmaps (saliency maps)

that indicate important regions in the original input space [91, 8, 133, 122, 85, 53, 12].

13

Figure 2.2: Saliency maps generated from Excitation BP [122] corresponding to individual
predictions of the CNN classifier.

Saliency maps are roughly the most widely-used method for explaining deep networks,

particularly over convolutional neural networks (CNNs) in that they preserve the spatial

information as going forward in the network. This makes them more intuitive by

backtracking the output of the network to the original input (image), unlike in (fully-

connected networks. Figure 2.2 shows an example of using saliency maps to explain the

prediction of the deep networks.

There are two main approaches to generate saliency maps: first, One-step backpropa-

gation methods that use the gradient to visualize the explanation. This makes them fast

to compute. However, these methods suffer from disadvantages such as being independent

of the network weights and performing (partial) image recovery (Guided BackProp [93]),

visualizing a diffuse heatmap that is not in-line with human interpretability (Integrated

Gradient [95]), and the fact that they only reflect infinitesimal changes in the output

which for deep networks (that are highly non-linear functions) this is not necessarily

reflective of large enough changes to alter their final prediction. Second, perturbation-

based (masking) methods that perturb parts of the input to observe which parts are

most important in regard to preserving the network’s output. This makes them more

intuitive to humans, nevertheless, the optimization problem to find the mask is highly

memory/time consuming (Mask [17]).

[73] and [85] propose to explain via visual question answering which utilized both

natural language descriptions and heatmaps. [82] proposes an explanation technique that

tries to explain a single prediction of general models and select several representative

predictions to provide a global view of the model. [69] and [24] propose a unified

14

approach and a streaming algorithm, respectively, to interpreting model predictions.

Image captioning approaches [55, 56, 65, 50, 41] need to be trained on human-generated

sentences, hence they would not work in any domain where human is not an expert in.

Our approach in chapter 3 does not require any natural language descriptions.

Visualizing individual neurons/filters were important for human intuition about CNNs

[132, 117, 47]. [5] went to great lengths in visualizing thousands of neurons and asking

humans to name each of them. However, it is difficult for such efforts to provide a concise

yet complete representation. [1] analyzed the number of filters required to generate

good performance on the PASCAL VOC dataset and the conclusion is that each class

would need at least dozens of filters. [13] learns a decision tree on top of the deep

networks as an attempt for an explainable model. And similar to us, [135] proposed a

framework to decompose the activation feature vector of a network into several semantic

concepts. These 2 approaches train on an existing vocabulary of attributes, which are

not able to achieve very high faithfulness. We adopt the heatmap approach in [122], but

visualize explanation features instead of directly visualizing classification results. With

this approach, we can generate high-level concepts that are broadly applicable to multiple

images in the same category.

There has been a focus on detecting parts using deep neural networks without part

annotations, usually in fine-grained classification. [90] and [110] use combinations of

convolutional filters to generate part proposals that improve prediction performance.

[32] and [120, 126, 125] use various approaches to detect parts. Our focus is different in

that we focus on explaining a trained deep model instead of trying to enhance it, and

explanations may not necessarily be parts that are usually expressed in terms of bounding

boxes as in those approaches. [33] conducted comprehensive experiments on whether

semantic parts naturally emerge from convolutional filters. They explored combinations

of filters using a genetic algorithm but only combine an average of 5 filters, hence they

did not have the dramatic dimensionality reduction effect as in our work.

[129] train a hybrid CNN-LSTM model featuring diversified attention models jointly

and generate diverse attention maps similar to ours in the middle of the network, but it

cannot be utilized to explain an already-trained DNN because of the joint training that

is needed, and there was no attempt in quantitatively evaluating the explanations.

Model compression for deep learning was proposed in [4], where a shallow model is

used to mimic the output of a deep network. Most model compression works were used

15

for speeding up inference [15, 79] instead of explanation. [70, 108] are sparse feature

selection methods. Both use L1 regularization (in [70], from different layers) to select

nodes from the DNN. XNN (chapter 3) is instead feature extraction. None of [70, 108]

can utilize very few (3-7) extracted features as XNN to be faithful to the original CNN

both kept up to 10-15% of the original features (about 28 (MNIST) to 248 (ImageNet)).

Its hard to visualize these features to humans for the user study we did. Hence, we

believe XNN is significantly better than these 2 in conciseness. [124] requires user-defined

templates as concepts and retraining of CNN. XNN doesnt need pre-defined templates

nor retraining of the CNN.

The main difference between XNN and [64, 2] is that they need to train new networks,

while XNN explains an already-trained network. Hence the results in [64] and [2] are

mostly on simpler datasets. [64] proposes a prototype-based network that can explain

its predictions. The limitation of this approach is that first, it needs to train a new

prototype-based network to solve the classification problem; second, the prototype needs

to be found from the dataset, thus, the dataset cannot be too complex. The authors only

did experiments on simple datasets such as MNIST, 3D-car models, and Fashion MNIST.

Similar limitations also exist in [2]. [2] proposes a self-explaining network that consists of

a concept encoder, an input-dependent parametrizer, and an aggregation function. It also

needs to train a new network to solve the classification and can only be applied to some

simple datasets. The above two methods cannot achieve either good classification results

or good explanation performance on the complex datasets. Our approach focuses on

explaining the existing trained models without changing the models original classification

results. Hence, our approach can be applied to more complex datasets and models. After

the publication of an earlier version of XNN [78], [97] proposed an approach for explaining

complex models but is more suitable for neural nets trained on tabular data. It cannot

be applied to complex image datasets.

16

Chapter 3: Embedding Deep Networks into Visual Explanations

3.1 Introduction

Deep learning has made significant strides in recent years, surpassing human performance

in many tasks, such as image classification [58, 40], go-playing [88], and classification

of medical images [25]. However, the usage of deep learning in real applications still

must overcome a trust barrier. Imagine scenarios with a doctor facing a deep learning

prediction: this CT image indicates malignant cancer, or a pilot facing a prediction:

make an emergency landing immediately. These predictions may be backed up with a

claimed high accuracy on benchmarks, but it is human nature not to trust them unless

we are convinced that they are reasonable for each individual case. The lack of trust is

worsened because of known cases where adversarial examples can fool deep learning to

output wrong answers [96, 35]. In order to establish trust, human needs to understand

how deep learning makes decisions. Such understanding could also help the human to

gain additional insights into new problems, potentially improve deep learning algorithms,

and improve human-machine collaboration.

Dictionaries often contain explanations of a concept in the form “A is something

because of B, C, and D”, e.g. this is a bird because it has feathers, wings and a beak.

This type of explanation has two properties. Firstly, it is concise – there are not a

hundred reasons that add up to explain that A is something. Secondly, it relies on B, C,

and D, which are also high-level concepts. Both are often at odds with deep learning

predictions, which are combinations of outputs from thousands of neurons in dozens

of layers. Approaches have been proposed to visualize each of the filters [117] and for

humans to name them [5], but it is difficult for these approaches to obtain a concise

representation. On the other hand, many other approaches generate attention maps that

backtrack a decision to its relevant areas in the original image [91, 8, 133, 122, 85]. These

are often nice and quite informative, but they work on individual images and do not

provide high-level concepts that can be broadly applicable to many images simultaneously,

nor can we believe they are complete explanations of deep learning predictions.

17

In this chapter, we make an attempt to reconcile these explanation approaches by

extracting several high-level concepts from deep networks to aid human understanding

(Figure 3.1). Our model attaches a separate explanation network to a layer in the deep

network to reduce the network to a few human-understandable concepts, from where one

can generate predictions similar to the original deep network (Figure 3.2(a)). We focus

on making those concepts to have several properties: faithfulness, that the deep learning

predictions can be faithfully approximated from those few concepts; locality, that the

concepts are relatively spatially localized in images so that human can understand them;

and orthogonality, that the concepts themselves are as independent from each other as

possible.

Figure 3.1: Examples of explanations that our approach can generate: the left figure
shows that there are two key features (two with highest contribution value indicated on
top of each heatmap) to predict European goldfinch: golden feather and red forehead; the
right figure shows that there are two key features to predict green tailed towhee: green
feather and red crown. Note that our approach generates the visualizations for human to
deduct those feature maps, without requiring any textual annotation to train.

Our model does NOT train from ground truth concepts defined by human, either

defined by labels, attributes, or text. It directly infers concepts from the learning

network. The reason we deliberately choose not to use human concepts is to adapt to

future situations where the deep network may perform a task in a domain in which

human does not have expert knowledge. In such cases, explanation methods based on

human knowledge would fail, while ours can still work. We evaluate our approach by 1)

Human evaluation, where humans are presented different explanations to check which one

improves their categorization capabilities. 2) Metric-based evaluation, where we define

18

quantitative metrics for the aforementioned desired properties of an explanation network

and evaluate them on two different datasets — a fine-grained bird classification and a

scene recognition datasets which both have rich ground truth annotations allowing us to

compute the introduced metrics.

Although the experiments in the chapter focus on convolutional neural networks

(CNN) applied to images, the explanation framework we develop is general and applicable

to other types of deep networks as well. We believe this is one of the first steps towards

general explainable deep learning that can advance human knowledge and enhance future

collaboration between humans and machines.

Our contributions in this chapter are as follows:

• We propose a novel explanation network to form a low-dimensional explainable

concept space from deep networks. A sparse reconstruction autoencoder with a

pull-away term is proposed to make the explanation network faithful and orthogonal

as defined previously.

• We present a visualization paradigm for human understanding of the concept space.

• We present a user study that shows our explanations can improve human perfor-

mance on difficult tasks.

• We propose automatic quantitative metrics to evaluate the performance of an

explanation algorithm for faithfulness, locality and orthogonality. Experimental

results show that the proposed explanation methods provide insights to how the

deep network models work.

3.2 XNN: eXplanation Neural Network

3.2.1 The Explanation Network

Given a deep learning network (DNN) as a prediction model, we propose to learn an

extra Explanation Neural Network (XNN) (Figure 3.2(a)), which can be attached to any

intermediate layer of the DNN. The XNN attempts to learn an embedding that lowers the

dimensionality of the intermediate layer of the DNN, and then directly learns a mapping

from the embedding space that mimics the output of the original DNN model. We denote

19

the input feature space of the XNN as Z(x; W), where x are the input features and

W are the parameters (from all layers) of the original DNN model, respectively, and Z

represents the output of a particular intermediate layer of the DNN. The XNN is used

to embed Z to an explanation space, denoted as Eθ(Z), where θ represents parameters

of the embedding that needs to be learned. As a shorthand, we will also refer to the

explanation space as an x-layer, and each dimension in the x-layer an x-feature. Note that

in the explanation, we do not attempt to change the parameters W of the original DNN

model. The explanation network can in principle be attached to any intermediate layer

of the DNN, although the closer to the prediction, the higher level the concepts are and

it becomes easier to mimic the prediction of the DNN with a low-dimensional embedding.

We believe that for the explanation network to be understandable, it needs to

generate a few concepts that preserve the original prediction results ŷ, i.e., we would need

a low-dimensional feature embedding to be faithful to the DNN. We propose to obtain

faithfulness by explaining binary classification or classification with a few outputs. An

explanation to classification with hundreds of classes can be decomposed into explaining

smaller tasks such as those. For a prediction ŷ with lower dimensionality than the

explanation space, we can definitely assume that the explanation network could remain

faithful to the prediction, since a naive case would be to use ŷ as the explanation, which

is perfectly faithful but not interpretable. Hence, the low-dimensional embedding E can

also be thought of as expanding ŷ to a few more dimensions, therefore enriching the

explanations.

In this chapter, we focus on attaching our proposed XNN to fully-connected layers,

although some experiments attaching XNN to convolutional layers will also be shown.

The concepts generated in these layers are rather high-level, and our conceptual goal is

to visualize those concepts and to make humans learn them: human has an excellent

deep neural network in the brain for learning and generalizing perceptual concepts. We

would like to show humans examples from a small number of perceptual concepts from

the explanation space, so that people can utilize their own perceptual neural network for

learning and naming those. Our primary tool for this display is heatmaps (e.g. Figure

3.1) highlighting a specific region in the image, similar as those used in attention models

in prior work. Our work will provide several different and largely orthogonal concepts,

visualized by heatmaps, for improving the understanding of the predictions from a DNN.

The two main topics in the explanation network are the embedding algorithm and the

20

visualization of the explanations, which will be discussed in the next three subsections.

3.2.2 Embedding to the Explanation Space

First of all, explanation space optimization attempts to be faithful to the prediction of

the original DNN:

LFS = min
θ,v

1

M

M∑
i=1

L
(
f
(
Eθ(Z(i)); v

)
, ŷ(i)

)
(3.1)

where Z(i) = Z(x(i); W) is the output of an intermediate layer in DNN for instance x(i);

parameter θ is used to form the explanation space Eθ(Z(i)); parameter v is used to build

a predictor f(E; v) from the x-features to mimic ŷ(i), ŷ(i) is the output of the original

DNN model as well as the explanation target for instance x(i), we usually use the DNN

output in layers before the softmax layer to prevent interactions with predictions on other

categories; M is the number of training examples; L is a loss function, usually a regression

loss such as squared loss or log loss. However, as we argued in Sec. 3.2.1, this formulation

might be almost degenerate if ŷ(i) can be used as the explanation variable. Hence,

additional terms need to be added to prevent degeneracy and improve interpretability.

We claim that low-dimensional embeddings are more effective when they reconstruct

the original high-dimensional feature space better. The degenerate solution ŷ is usually

not good in reconstructing the high-dimensional deep feature space. By jointly optimizing

on the faithfulness and reconstruction loss, we hope to explain the prediction ŷ in

several aspects, and these individual aspects may reconstruct Z better. Thus, adding

reconstruction loss L
(

E−1
θ̃

(
Eθ(Z(i))

)
,Z(i)

)
to optimization (3.1) will prevent degeneracy

and improve locality. Here E−1

θ̃
is a mapping that maps from the explanation space

E back to Z, θ̃ is the parameter for this mapping. However, when the weight of the

reconstruction loss is large in the optimization, features irrelevant to the prediction target

may also be reconstructed.

To avoid this, we propose to enhance the objective by adding a sparsity term which

reconstructs some dimensions of the original features Z, but not all of them. By

attempting to reconstruct some dimensions of Z with only a few embeddings, and to

mimic the original predictions ŷ with the same embeddings, the maximal amount of

diverse information that is relevant to ŷ in Z needs to be packed in the low-dimensional

21

space. Packing redundant information in correlated dimensions would be harmful for

reconstruction, and reconstructing irrelevant features would harm the ability to recover

ŷ. By introducing a sparse penalty, we define the sparse reconstruction loss as:

LSR = Sparsity(Q); Qk =
1

M

M∑
i=1

L
(
E−1

θ̃

(
Eθ(Z(i))

)
k
, Z

(i)
k

)
(3.2)

where Qk, Z
(i)
k , and E−1

θ̃

(
Eθ(Z(i))

)
k

are the k-th dimension of Q, Z(i), and E−1

θ̃

(
Eθ(Z(i))

)
,

respectively. In the optimization, Qk measures the capability of reconstructing the k-th

dimension in the space of Z. The sparsity term will be detailed in Sec. 3.2.3.

Finally, to make the x-features in the explanation space more orthogonal to each

other, an orthogonality loss can also be added to the optimization. Here we utilize the

pull-away term (PT) [130] that has been successfully applied in generative adversarial

networks:

LPT =
1

n(n− 1)

n∑
l=1

∑
l′ 6=l

(ET
l El′

‖El‖ ‖El′‖

)2
(3.3)

where n is the number of x-features, El = Eθ(Z)l represents the vector for the l-th

x-feature over the training set Z. We define the final optimization problem as:

LSRAE = LFS + LSR + LPT (3.4)

where SRAE (Sparse Reconstruction Autoencoder) is our proposed model which handles

the faithfulness, locality, and orthogonality objectives. SRAE is a neural network hence

can be seamlessly combined with the prediction DNN, making the following visualization

process (introduced in Sec. 3.2.4) simple.

3.2.3 Implementation Details

Our aim is at reconstructing some specific features which focus on the prediction target

instead of reconstructing the whole feature space. Various sparsity functions can be used

here such as the L1 penalty function, epsilon-L1 penalty function [62], etc. We choose

the log penalty log(1 + q · r2) [62] (Figure 3.2(c-d)). Here we use r2 = Qk, the average

22

(a) (b)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(c)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

(d)

Figure 3.2: (a) Conceptually, the explanation network (XNN) is a mimic network with a
small bottleneck layer so that the original deep learning prediction ŷ can be reproduced
from this low-dimensional space. An explanation network can be attached to any layer in
the prediction deep network (DNN). The output of the DNN can be faithfully recovered
from this low-dimensional explanation space, which represents high-level features that are
interpretable to humans. (b) Illustration of the SRAE used for the explanation network.
Both the prediction and sparse reconstruction are generated from the explanation space.
Also, the pull-away term helps the explanation space to be orthogonal; (c) The log penalty
function log(1 + q · r2) when q = 1; (d) The log penalty function log(1 + q · r2) when
q = 10.

23

squared reconstruction error on the k-th dimension over the whole training set:

Sparsity(Q) =
1

Sz

Sz∑
k=1

log(1 + q ·Qk),

Qk =
1

M

M∑
i=1

∥∥∥E−1
θ̃

(
Eθ(Z(i))

)
k
− Z(i)

k

∥∥∥2 (3.5)

where q > 0 is a sparsity parameter (Figure 3.2(c-d)), Sz is the dimensionality of the

feature space Z. Note that SRAE is different from conventional sparse autoencoders in

which the autoencoder activations in the hidden layers are constrained to be sparse. In

SRAE, the sparsity constraint is on the amount of input dimensions to be reconstructed.

The log penalty (Figure 3.2(c-d)) is a robust loss function, in the sense that large r

increases the loss function sublinearly (less than an L1 penalty |r| where the increase

is linear). Some dimensions of Z can afford to have no reconstruction at all (large r)

without suffering too much loss. Hence this loss function achieves the goal that only some

of the input dimensions are selectively reconstructed, instead of all of them. The exact

dimensions that are reconstructed are chosen automatically by the learning procedure

itself.

The illustration of the proposed SRAE used for the explanation network is shown

in Figure 3.2(b). The encoding layer in SRAE forms the explanation space E (Figure

3.2(b)). The pull-away term can be applied directly to the encoding layer of SRAE. Using

the least squares loss again for faithfulness, the optimization of the SRAE in equation

(3.4) can be re-written as follows:

min
θ,θ̃,v

1

M

M∑
i=1

∥∥∥v>Eθ(Z(i))− ŷ(i)
∥∥∥2 + β · 1

Sz

Sz∑
k=1

log(1 + q ·Qk)

+ η · 1

n(n− 1)

n∑
l=1

∑
l′ 6=l

(ET
l El′

‖El‖ ‖El′‖

)2
(3.6)

where the 3 terms are faithfulness, sparse reconstruction and orthogonality terms, re-

spectively. β is the parameter for the sparse reconstruction; η is the parameter for the

orthogonality term. The prediction result v>Eθ(Z(i)) of SRAE is denoted as ȳ
(i)
j .

With a trained XNN we would obtain an explanation embedding Eθ(Z) and a linear

24

predictor v>E so that the output of the network can be explained with a weighted sum

of x-features Eθ(Z) with the weight vT indicating the contribution of each individual

x-feature to the final prediction. In conjunction with the visualization paradigm in the

next subsection, this facilitates a better understanding of the black-box DNN model.

3.2.4 Visualizing the Explanation Space

The goal in the visualization of low-dimensional explanation features is to bridge the

communication gap between human and machine, and enable human to name concepts

learned by the explanation network and be able to construct sentences with those named

concepts in the future. Nevertheless, in this chapter, we only focus on visualizing the

concepts. We utilize ExcitationBP [122] to compute the contrastive marginal winning

probability (c-MWP) from each neuron in x-layer to the pixels in the original image, then

generate the heatmaps using c-MWP normalized on each neuron for each image. The

reason for choosing this algorithm over competitors such as Grad-CAM [85] or RISE [76]

is that this algorithm gives more detailed predictions while those others are quite blurry

and hard for humans to interpret. Figure 3.1 shows some examples of the visualization

results of these concepts learned by the proposed explanation network. The number above

each heatmap represents the contribution of this x-feature to the final prediction. For

instance, The left example in Figure 3.1 shows that there are two key features to predict

European goldfinch: x-feature #1 (contribution: 63.1030) and x-feature #2 (contribution:

15.1854) where x-feature #1 is much more important than x-feature #2 based on their

contribution to the final prediction. Note that our approach generates the visualizations

for human to deduct those features, without requiring any textual annotation to train.

For the case of Figure 3.1, humans can study the visualizations and then name x-features

#1 and #2 as golden feather and red forehead, respectively.

3.3 Experiments and Results

3.3.1 Human Evaluation

To investigate the effectiveness of the proposed XNN with SRAE, we designed a user

study where participants were asked to cluster images that are normally difficult to

25

discern by untrained humans. The goal was to inspect whether the XNN can provide

interpretable visualizations to non-experts so they can differentiate between unlabeled

samples about which they do not have prior knowledge. We compare XNN against

2 baselines, one without any visualization (NoVis), and one with a single heatmap

derived from the original output ŷ (1-Heatmap). For fairness, the same heatmap

approach, ExcitationBP [122] is used throughout the study. This approach is chosen

since it obtains detailed heatmaps, rather than some other performant approaches which

are more blurry [85].

We selected 4 categories of image samples from 2 different datasets where the distinc-

tion among the categories is not obvious to non-experts: first, 4 categories of visually

alike seagulls (California Gull, Herring Gull, Slaty-backed Gull, and Western Gull) were

selected from the CUB-200-2011 dataset [103], referred to as “CUB” in the rest of the

chapter. Second, we also selected 4 categories of breast cancer cells (Actinedge, Hemi-

spherebleb, Lamellipodia, and Smalbleb) from microscopic images [23], referred to as

“CEL”. For each dataset, 200 images were selected where each category contained 50

images.

(a) (b)

Figure 3.3: Boxplot of clustering purity with respect to the original CNN prediction
obtained from the human evaluation for NoVis, 1-Heatmap, and the XNN on the (a)
CEL dataset and (b) CUB dataset.

The evaluation interface comprises of 3 main stages: NoVis (No Visualization) where

the participants were not provided with any visual explanation and they were asked

26

(a)

(b)

(c)

Figure 3.4: Participants’ confidence level in different stages that their answers would
correctly group all the sample images for the (a) CEL dataset (b) CUB dataset. (c)
Participants’ answers to the question that how do they evaluate the performance of the
2 different AI agents helping them on grouping images, 1-Heatmap as the baseline (in
green color) and XNN as our approach (in red).

27

to cluster images only based on their own beliefs of the differences and/or similarities

among the samples. 1-Heatmap is the baseline where the participants were provided

with heatmaps derived from the original output ŷ using ExcitationBP to assist them on

clustering. They were told that the AI agent utilizes these heatmaps to distinguish one

sample from another. XNN refers to our method where for each sample image users

were provided with different heatmaps generated by ExcitationBP corresponding to each

x-feature to help them on decision making. They were told that a contribution of all

the different heatmaps was used by the AI agent when trying to identify sample images.

Snaps of our user interface at the aforementioned stages can be found in Figure 3.5.

For each stage, users were shown 2 batches containing 10 sample images, one from the

CUB dataset and the other one from the CEL dataset. To reduce randomicity, 5 sets of

10 images are drawn randomly at first, and the batch shown to the users were randomly

selected from these 5 sets. In addition, the order whether XNN or 1-Heatmap was shown

first is random, the order whether CEL or CUB is shown first is also random, but the

dataset would always be alternated. For instance, one possible order for the stages and the

samples shown can be as following: (NoVis-CEL, NoVis-CUB, XNN-CEL, XNN-CUB,

1-Heatmap-CEL, 1-Heatmap-CUB). Hence, the users had to alternate between the 2

datasets to reduce memorizations of the previous visualizations they have seen on a

dataset. For both datasets, the visualizations shown in the XNN stage were generated

from the 7 x-features that were obtained from embedding the high-dimensional feature

space using our proposed model formulated in section 3.2.

Human study results from 30 participants are shown in Figure 3.3. We measured

purity of user clusterings with respect to the original predictions of the network in

each stage. For the CUB dataset, XNN achieved purity of 72% while NoVis and

1-Heatmap achieved 56% and 62% , respectively. For the CEL dataset, mean purity of

75%, 69.6%, and 79% was obtained for NoVis, 1-Heatmap, and XNN, respectively

(Fig. 3.3(a)). The difference of the results between the XNN and 1-Heatmap was

statistically significant for both datasets, which means XNN helps human understand

more on these difficult classification tasks than just seeing one heatmap. The results show

that humans are better in classifying the CEL dataset even if no visualization is shown,

but struggles significantly to distinguish the 4 types of seagulls in the CUB dataset. XNN

significantly improved their performance in CUB by pointing out the exact features that

are salient to separate the birds which are otherwise very similar. In CEL, 1-Heatmap

28

(a)

(b)

Figure 3.5: Snaps from different stages of our designed human interface. (a) NoVis
stage with CEL images (back) and ExcitationBP stage with CUB images (front). In
the ExcitaitonBP stage, users could either hover over the sample images to see the
ExcitationBP generated heatmaps or toggle on/off heatmaps for all images at once using
a button in the interface (b) the XNN stage with another batch of CEL (back) images
where the users could toggle through all the visualizations from x-features 1-7. In this
snap, Heatmap 3 is toggled on. The value on top of each heatmap indicates the normalized
contribution of that x-feature to the final prediction (positive values in red and negative
values in blue). Also, users could select images by clicking on them (the ones with blue
banner on top) and compare their heatmaps from all x-features in one place (front). Here,
Heatmaps (H) 1-5&7 are toggled on and Heatmap (H) 6 is toggled off.

29

seems to have even hurt human performance a bit.

During the human study, the participants were also asked the question ”What is

your confidence level that the answers you picked will group all the samples correctly?”

with Likert scale answers: (’Zero’, ’Very Low’, ’Low’, ’Mediocre’, ’High’, ’Very High’,

’100%’). The obtained results are illustrated in Figure 3.4. It can be seen that the users’

confidence level in the validity of their answers is in accordance with the actual clustering

results that were obtained. For the CEL dataset, participants’ confidence in the XNN

stage was marginally higher than the 1-Heatmap stage (p-value: 0.083). However, for the

CUB dataset, the difference of the visualization approaches is not noticeable yet both of

them seem to elevate the confidence level of the participants compared to no visualization

approach.

At the end of the study, we handed out printed questions to the participants and

asked them to rate the performance of the 2 different AI agents (visualization methods)

that were assisting them during the study, the EcxitaitonBP on the class (baseline) and

x-features (our approach) in distinguishing images from each other. The users could rate

the performance in a Likert scale with the options: (’Very Good’, ’Good’, ’Slightly Good’,

’Neutral or N/A’, ’Slightly Poor’, ’Poor’, ’Very Poor’). The obtained results are depicted

in Figure 3.4(c). This shows that humans tend to significantly prefer the performance of

our approach over the baseline (p-value: 0.0049).

3.3.2 Quantitative Evaluation Metrics

We believe that evaluating explanations objectively without a human study is also

important, because simple parameter variations can easily generate thousands of different

explanations, vastly outpacing the speed of human studies. In this chapter, we make an

attempt to define some quantitative metrics without human evaluation. We utilize the

CUB-200-2011 dataset [103] and Places365 dataset [134] in our quantitative experiments.

The former dataset is a fine-grained classification task with 200 categories of birds. From

a network trained on all the 200 categories, we attempt to explain the logits (before the

softmax layer) of each category separately with one XNN per category. This dataset

is chosen because in addition to category labels and bounding boxes surrounding each

object, it also has part labels denoted as one pixel per part for each object as additional

ground truth. One can argue that the majority of bird classifications are based on

30

specific, discriminative parts of the bird, which can be confirmed from encyclopedias and

expert annotations [81]. The latter dataset (Places) is a task for scene understanding and

recognition, where we selected 10 room categories from the ADE20K dataset [136]. This

dataset is chosen because besides the scene labels, there also exist segmentation labels as

additional ground truth for some images in some categories.

For the CUB-200-2011 dataset, the fine-tuned VGG19 model [90] is used as the

prediction DNN to be explained. For the Places365 dataset, the fine-tuned VGG16

model [134] is used as the prediction DNN to be explained. The explanation network is

a 3-middle-layer SRAE with 800, 100, n hidden units in each layer, respectively, where

n represents the number of x-features. For CUB, we trained an explanation network

on each of the 200 bird categories. For each category, we utilized 50 positive examples

and 8, 000 negative examples as the training data; the remaining positive examples

(8 − 10) and 2, 000 negative examples as the testing data. In the training process, we

enhance the weights of the positive examples to avoid imbalance. n is set to 5, as

our experiments showed that more x-features do not improve performance and create

x-features which have 0 weight in viEi, indicating that one one-against-all classifier of

one bird may not depend on many high-level visual features. For Places, we trained

an explanation network on each of the 10 scene categories which are different kinds of

rooms and have enough images with object labels in ADE20K to evaluate, including

bathroom, bedroom, conference room, dining room, home office, hotel room, kitchen, living

room, office, and waiting room. For each category, we utilized 4, 000 positive examples

and 20, 000 negative examples as the training data; about 1, 000 positive examples and

4, 000 negative examples as the testing data. n is also set to 5 for Places. We compared

the proposed SRAE with a fully-connected neural network (NN), a conventional stacked

autoencoder with faithfulness loss and traditional reconstruction loss (SAE), a classic

autoencoder with only traditional reconstruction loss and without faithfulness loss (CAE),

a feature selection model (Lasso) on Z, as well as directly performing ExcitationBP on

the classification output ŷ (1-Heatmap). The baseline neural network methods (NN

and SAE) can also perform a faithful dimensionality reduction and are the most closely

related to our approach. Lasso represents a feature selection approach which selects

several most useful dimensions directly from Z and tries to mimic the network decision

as a linear combination of these features. All the learning-based approaches (SRAE, NN,

SAE, CAE, and Lasso) were tuned to the optimal parameters by cross-validation on the

31

training set.

Figure 3.6: A simple example generated by the explanation module. The first line shows
the original image, the part labels of the image in the ground truth, and the Voronoi
diagram of the image; the second line shows the visualization results for the 5 neurons in
the x-layer sorted by the weights (viEi, i = 1, 2, . . . , 5) for the final prediction.

Given image Im, for each neuron n in the x-layer and each pixel (i, j) in Im, we

denote Sn,mi,j , P (Pixelmi,j |Neuronn) =
Cn,m

i,j∑
(i,j)∈I C

n,m
i,j

, where Cn,mi,j is the c-MWP generated

by ExcitationBP for pixel (i, j) in Im with neuron n in x-layer, (i, j) is the coordinate of

the pixel. For the CUB dataset, the given part label (p = 1, ..., 15) of each image is just

one pixel in the middle of the part, and there is no extra information about the shape and

the size of the part regions. For the p-th part label of image Im, we denote (ip, jp) as its

pixel location. The pixel level probability is defined as Sn,mip,jp = P (Pixelmip,jp |Neuronn).

Figure 3.7(a) shows the probability Sn,mip,jp for each neuron (n = 1, . . . , 5) at the pixel

locations of the part labels (p = 1, . . . , 15) for the example image shown in Figure 3.6.

From Figure 3.7(a) we observe that the probability Sn,mip,jp is reasonable when capturing

small parts like beak, but is not on larger parts like wing, for the part label is just one

pixel in the middle of the wing, while the x-features mainly focus on the edges (Fig. 3.6

shows a simple example).

Thus, we utilize the Voronoi diagram to partition the bounding box into 15 re-

gions in which the nearest neighbor part annotation in each region would be the same,

32

1
ba

ck
2

be
ak

3
be

lly
4

br
ea

st
5

cr
ow

n
6

fo
re

he
ad

7
le

ft
ey

e
8

le
ft

le
g

9
le

ft
win

g
10

 n
ap

e
11

 ri
gh

t e
ye

12
 ri

gh
t l

eg
13

 ri
gh

t w
in

g
14

 ta
il

15
 th

ro
at

0

0.2

0.4

0.6

0.8

1

1.2
10-3

Neuron 5
Neuron 2
Neuron 1
Neuron 4
Neuron 3

(a)

1
ba

ck
2

be
ak

3
be

lly
4

br
ea

st
5

cr
ow

n
6

fo
re

he
ad

7
le

ft
ey

e
8

le
ft

le
g

9
le

ft
win

g
10

 n
ap

e
11

 ri
gh

t e
ye

12
 ri

gh
t l

eg
13

 ri
gh

t w
in

g
14

 ta
il

15
 th

ro
at

0

0.1

0.2

0.3

0.4

0.5

Neuron 5
Neuron 2
Neuron 1
Neuron 4
Neuron 3

(b)

Figure 3.7: (a) Pixel-level probability Sn,mip,jp ; (b) Voronoi-based probability Sn,mp for the
example image in Figure 3.6.

and then compute the Voronoi-based probability Sn,mp , P (Partmp |Neuronn) =∑
(i,j)∈Im P (Partmp |Pixelmi,j)P (Pixelmi,j |Neuronn). The Voronoi diagram is used instead

of a segmentation because firstly we do not have segmentation ground truth and do not

wish to include additional errors from an arbitrary segmentation algorithm, and secondly,

because some of the heatmap activations fall slightly outside the object and we still want

to capture those. However, the larger parts such as wing and tail always obtain much

higher scores than the smaller parts such as beak and eye do; and there are also many

33

background pixels far from the center contained in the Voronoi diagram. To solve these

issues, we introduce the inverse distance as a factor when computing the Voronoi-based

probability Sn,mp in Algorithm 1 in the supplementary material, trying to keep the

balance between the large part region and the small part region.

Figure 3.7(b) shows the probability Sn,mp for each neuron and each part label for the

same example image in Figure 3.6. From Figure 3.7(b) one can also see evidence that the

probabilities on wing and tail of some neurons are higher, indicating the metric based on

the Voronoi diagram enhances the evaluation on these larger parts. For all the c-MWP

outside of the ground truth bounding box, we introduce a 16-th part called context,

which indicates that the x-feature is using the context to classify rather than the object

features. For the Places dataset, since we have the exact object regions for different

object labels of each image, we compute the probability Sn,mp , P (Objectmp |Neuronn) =∑
(i,j)∈Objectmp

P (Pixelmi,j |Neuronn). For each x-feature n we have a histogram Sn whose

element is S̄np = 1
M

∑
m S

n,m
p .

We propose several metrics to evaluate the performance of the explanation network

without a human. This includes:

1. Faithfulness: We introduce a regression metric and a classification metric for

faithfulness. (a) Freg = 1
M

∑
m L(ȳ(m) − ŷ(m)) = 1

M

∑
m |ȳ(m) − ŷ(m)|, the mean

absolute loss between ŷ(m) and its approximation ȳ(m); (b) We replace ŷ(m) with

ȳ(m) in the original multi-class prediction vector ŷ(m) before softmax and check

whether the classification result changes. We denote cr as the number of examples

whose classification results remain the same, then Fcls = cr
M .

2. Orthogonality: In order to measure whether different attention maps fall on the

same region, we directly treat attention maps of different x-features as different

vectors and compute their covariance matrix. We denote C as the covariance matrix

among x-features aggregated over the dataset. Then P = diag(C)−1/2Cdiag(C)−1/2

is the matrix of correlation coefficients. The orthogonality between neurons in the

x-layer is defined as: (a) O1 = ||P||F −
√
n, where || · ||F is the Frobenius norm for

matrix; (b) O2 = −logdet(P), where logdet is the logarithm of determinant of a

matrix. Both O1 and O2 obtain the optimum at 0, when P is a unit matrix.

3. Locality: In order to measure locality, we propose a metric which associates x-

features with various parts (CUB) or objects (Places), and measures how well they

34

associate with these parts or objects. The locality for each x-feature is defined as

the entropy: Hn = −
∑

p

(
S̄n
p∑

p S̄
n
p
· log(

S̄n
p∑

p S̄
n
p

)
)

. Locality is roughly measuring the

log of the number of parts or objects captured by each x-feature.

Note that the current locality metric would not accurately represent features that do not

represent a single part or object, it merely reflects our current best efforts in quantitatively

measuring different explanations and especially only applicable on these limited datasets

where the classification may likely to be explained by parts. Even on these datasets, we

suffer from many annotated parts/objects being spatially close and semantically similar.

For example, in CUB, there are 6 parts located on the small region of the head of each

bird, saliency maps usually tend to capture all these parts together hence it is very

difficult to obtain a smaller number of parts on each x-feature. In places, there are a

total of 173 object categories with e.g. around 15 different categories for various objects

on a bed. Hence the locality should be interpreted more in a relative sense to compare

different approaches, the absolute number of parts captured is not exactly indicative of

the performance of the approach.

3.3.3 Quantitative Results

Table 3.1: The average faithfulness, orthogonality, and locality of different approaches
over all the 200 categories of the CUB dataset. The column Z represents the average
locality computed over all the dimensions of Z, the 4, 096-dimensional first fully-connected
layer of the deep network. This is obtained by separately running ExcitationBP on each
dimension of Z and evaluating the resulting heatmaps. 1-Heatmap refers to the heatmap
from ŷ.

Method SRAE NN SAE Lasso CAE Z 1-Heatmap

Freg Train 0.081 0.070 0.097 3.579 4.151 — —
Test 0.166 0.130 0.198 3.793 4.002 — —

Fcls Train 99.9% 100% 99.9% 73.1% 65.3% — —
Test 99.9% 100% 99.9% 71.5% 69.3% — —

O1 0.655 0.976 0.879 1.2052 0.630 — —

O2 2.431 4.911 3.506 3.985 2.388 — —

Locality 1.971 2.436 2.200 2.108 2.123 1.969 2.566

35

The experiment setup for both the following sections is explained in the supplementary

material. We compare among the proposed SRAE with plain NN (no reconstruction), SAE

(a normal sparse autoencoder with no sparse reconstruction term), CAE (no faithfulness)

and LASSO (only feature selection from Z), as well as locality of the baseline 1-Heatmap.

3.3.3.1 Results on CUB

In Table 3.1, we summarize the results for different explanation embedding approaches

with different parameters for all the 200 categories of the CUB dataset. Results show that

we can achieve excellent faithfulness to the predictions when using SRAE, NN, and SAE.

The Freg in both training and testing are less than 0.2. Since ŷ before softmax usually has

a range in [0, 50] and especially large in the positive examples, we consider the regression

loss to be small. The classification faithfulness Fcls is even better, as only 1− 2 examples

out of all the categories we tested have switched labels after replacing the original ŷ with

the approximation from the x-features. This shows the major advantage of the XNN

approach in that it indeed very faithfully explained the deep network. From Table 3.1

we observe that the faithfulness for Lasso are all very bad with different parameters,

indicating that it is almost impossible for the feature selection method to select few

X-features form Z directly to make the prediction faithful.

In terms of orthogonality and locality, our algorithm showed significant improvements

over NN, SAE, and Lasso (α = 2.5 in Table 3.1). The orthogonality of CAE is better

than that of the proposed SRAE, which is reasonable because the features in E(Z) are

definitely more orthogonal when there is only reconstruction loss in the optimization and

no attempt to achieve faithfulness. The locality of CAE is slightly worse than SRAE, but

the most important problem is that it is very difficult for CAE to achieve faithfulness to

the original predictions because of the lack of the faithfulness loss in the optimization.

Besides, the locality of SRAE improves significantly over the ones from 1-Heatmap,

indicating that we are capable of separating information that come from different parts.

The average locality of the x-features generated by SRAE is almost matching the average

locality of features in Z. This means we are close to the limit of part separation on this

layer: many of the features on the Z layer already represent multiple parts.

We also show some qualitative examples between heatmaps on output ŷ (1-Heatmap)

and on x-features (XNN) from different categories in Figure 3.8. The weight above the

36

feature is viEi, the product of the weight of the x-feature in the approximation of ŷ(k)

timed by the activation of the x-feature, which shows the contribution of the x-feature

to the final prediction. One can see x-features nicely separate different discriminative

aspects of the bird while 1-Heatmap sometimes focuses only on one part and miss others,

and sometimes produces a heatmap that incorporates many parts simultaneously. Also,

each x-feature seems distinct enough as a concept.

3.3.3.2 Results on Places

Table 3.2: The average faithfulness, orthogonality, and locality of different approaches
for 10 categories of the Places dataset.

Method SRAE NN SAE Lasso CAE 1-Heatmap

Freg Train 0.5527 0.3346 1.4768 4.0726 4.3579 —

Test 1.0260 0.8736 1.5505 4.3366 4.6553 —

Fcls Train 97.22% 97.17% 94.59% 90.19% 90.11% —

Test 94.79% 94.86% 93.29% 88.55% 88.42% —

O1 0.2252 0.3472 0.4578 0.4729 0.2741 —

O2 0.5617 0.8852 1.0799 0.9194 0.5945 —

Locality 2.7208 2.7756 2.7819 2.7282 2.7627 2.7591

In Table 3.2, we summarize the results for different explanation embedding approaches

with different parameters for 10 categories of the Places dataset, including all the categories

that represent a room and have enough images with object labels in ADE20K. The results

on the Places dataset in Table 3.2 show that our proposed method SRAE works well

in explaining the scene recognition results for the Places dataset. The locality of the

proposed method on Places is not as low as that on CUB, because in Places there are

hundreds of different objects labels contained in ADE20K.

Figure 3.9 shows some qualitative examples between heatmaps on output ŷ (1-

Heatmap) and on x-features (XNN) for the Places dataset. The weight above the feature

is viEi, the product of the weight of the x-feature in the approximation of ŷ timed by

the activation of the x-feature, which shows the contribution of the x-feature to the final

37

Figure 3.8: Comparison of heatmaps on the original output ŷ (baseline: 1-Heatmap)
and on x-features (our approach XNN) for CUB. The weight above the feature is viEi,
the product of the weight of the x-feature in the approximation of ŷ(k) timed by the
activation of the x-feature, which shows the contribution of the x-feature to the final
prediction.

prediction.

From Figure 3.9 we observe that each x-feature seems distinct enough as either a

specific or a general concept. For example, when predicting the category of kitchen,

38

Figure 3.9: Comparison of heatmaps on the original output ŷ (baseline: 1-Heatmap)
and on x-features (our approach XNN) for Kitchen and Bedroom examples from Places
dataset.

x-feature #1 captures cupboards and kitchenware, and x-feature #2 always focuses on

lamps; while 1-Heatmap focuses on different objects in different images. When predicting

the category of bedroom, x-feature #1 always captures bed, and x-feature #2 focuses on

a general concept of rectangles; while 1-Heatmap still focuses on mixed concepts. The

x-features surprised us as authors in both categories. In bedroom we expected bed, but

did not expect that the rectangular corners in picture frames and window frames would

help the classification. In the kitchen, we expected the stove being a feature, but did not

expect that the CNN was actually using lighting as a feature. These surprises showed the

additional insights human can gain of deep networks by running XNN instead of training

on known concepts from language. More qualitive examples on the Places dataset can be

found in the supplementary material.

From the results on both CUB and Places, we believe that the x-features learned

by our proposed model indeed provide concise conceptual explanations on the decisions

made by CNN algorithms.

39

3.3.4 XNN on convolutional layers

Table 3.3: The faithfulness for the fully convolutional XNN on different convolutional
blocks for the CUB dataset.

Method pool1 pool2 pool3 pool4 pool5

Freg
Train 2.627 3.530 4.067 2.605 2.766

Test 10.883 9.164 8.938 5.849 3.954

We also performed experiments on convolutional layers to evaluate the performance

of a fully convolutional XNN on the CUB dataset and the MNIST dataset. For CUB,

the fine-tuned VGG19 model is used as the original prediction model. The explanation

XNN is attached on different convolutional blocks (from pooling layer 1 to pooling layer

5), which contains 3 encode convolutional layers, 3 decode convolutional layers, and a

fully connected layer. For MNIST, the original prediction model is a simple 2 layers CNN

whose accuracy is 98.70% on testing set of MNIST. The explanation XNN is attached on

the last pooling layer of the prediction model, which contains an encode convolutional

layer, a decode convolutional layer, a maxpooling layer, and a fully connected layer. For

the convolutional layers in XNN, the filter size is 1× 1. The number of the x-features is 5.

Table 3.3 shows the faithfulness Freg for the convolutional XNNs from pooling layer 1

to pooling layer 5 on the CUB dataset. From Table 3.3 we observe that the faithfulness

of the convolutional layers is always significantly worse than that of the fully connected

layer. The closer it gets to the fully connected layers, the better the faithfulness is. And

it is more likely to be overfitting for the bottom convolutional layers. Hence, we conclude

that it is difficult to only utilize the features from the convolutional layers to build a fully

convolutional XNN which is faithful to the prediction of the original DNN. Without the

faithfulness, XNN is no longer an explanation of the original DNN.

On MNIST, for training set, Freg = 1.1952; for testing set, Freg = 2.0422 for the

convolutional XNN on the last pooling layer. The faithfulness on MNIST is a little better

than that on CUB, because the prediction model on MNIST is much simpler than that

on CUB. Figure 3.10-3.11 shows some experimental results for the fully convolutional

XNN on the MNIST dataset. Although the faithfulness on MNIST is still not as good as

that of the fully connected XNN, we can find some interesting results from the x-features

40

of the fully convolutional XNN. Figure 3.10 shows the visualizations of the x-features for

some positive examples when explaining the category of number 4; Figure 3.11 shows the

visualizations of the x-features for some negative examples. From Figure 3.10 we can see

that the most important feature for identifying number 4 is two vertical lines (X3); and

the second important feature is one horizontal line in the middle (X5). From Figure 3.11

we can see that the most irrelevant features for category 4 are horizontal lines on the top

and on the bottom.

Figure 3.10: The visualizations of the x-features for some positive examples when
explaining the category of 4.

41

Figure 3.11: The visualizations of the x-features for some negative examples when
explaining the category of 4.

42

3.4 Summary

In this chapter, we proposed an explanation network, that can be attached to any layer

in a deep network to compress the layer into several concepts that can approximate an

N -dimensional prediction output from the network. A sparse reconstruction autoencoder

(SRAE) is proposed to avoid degeneracy and improve orthogonality. A human evaluation

is conducted to investigate the performance of our approach against a baseline. We also

proposed automatic evaluation metrics to evaluate the explanations on a fine-grained bird

classification dataset and a scene recognition dataset. Quantitative and qualitative results

show that the network can be extremely faithful to the original prediction network, and can

indeed extract high-level concepts from a CNN that make sense to human, and different

from existing concepts. We performed experiments training XNN on convolutional layers,

which indicated some difficulty in faithfully explaining the DNN prediction from early

convolutional layers.

43

Chapter 4: Stochastic Block ADMM for Training Deep Networks

4.1 Introduction

Deep Neural Networks (DNNs) are highly non-convex functions with ill-conditioned

Hessians and are believed to have multiple local minima and saddle points. This makes

training them very challenging [18]. Optimization methods for training DNNs have

been an active line of research; commonly, Stochastic Gradient Descent (SGD) and its

adaptive learning rate variants e.g., Adam [54] are used to optimize the DNNs by the

back-propagation algorithm. Although these approaches have been the most successful,

there are drawbacks related to SGD training in DNNs [98], such as vanishing gradients

in deep layers, a significant memory footprint for storing the gradients, and difficulty to

parallelize across layers because backpropagation has to be done sequentially.

Alternating Direction Method of Multipliers (ADMM) is an approach that decouples

optimization variables and optimize the augmented Lagrangian in a primal-dual scheme.

It is known to be a simple yet powerful algorithm to solve convex problems with linear

convergence in a distributed and parallel manner [7]. It also has shown promise in solving

certain families of non-convex problems [106, 44].

Recently, optimization of the neural networks with such alternating direction tech-

niques has gained rising attention [118, 119, 127, 38, 3, 31] which would potentially

avoid the disadvantages of the SGD and introduce beneficial properties such as fast(er)

convergence, ease of parallelization and distributed training, and being able to enforce

additional constraints on the DNN parameter tensors.

Despite their advantages, there are several reasons ADMM-like methods are not

widely used in DNN training. The performance of these methods is usually not as good

as SGD, the algorithms are usually batch mode which directly restricts the amount of

trainable parameters and training data, updates are in closed-from which prohibits the

use of complicated architectures while being memory intensive, etc. Work of [98] is of

this kind which, despite the parallelization capabilities introduced by ADMM, the size

of the training data is linearly limited by the number of cores. [36] proposed to split

44

DNN into blocks using gluing variables similar to ADMM, but they did not utilize dual

variables as in ADMM.

In this chapter, we propose stochastic block ADMM which addresses many of the

aforementioned issues. Stochastic block ADMM separates DNN parameters into many

blocks, and uses stochastic gradients to update each block. We provide a convergence

proof for the proposed approach, and verify its performance on several deep learning

benchmarks.

An ADMM formulation of deep learning also allows us to add additional constraints

to the learning problem in a heterogeneous setting where back propagation cannot be

applied. In this chapter, we explore adding non-negative factorization of the intermediate

layers for the goal of feature disentanglement. Non-negative Matrix Factorization (NMF)

has been able to generate sparse and interpretable representation due to the non-negative

constraints over the factorization matrices [61]. [16] proposed applying NMF over different

activations of CNN for object localization. This would support the belief that the CNNs

would learn semantic part-of-object filters during training [34, 5]. Jointly training an

NMF decomposition with deep learning is highly non-convex and cannot be addressed by

the conventional backpropagation and SGD algorithms. We show results training these

networks via ADMM and their performance on a supervised feature disentanglement

benchmark.

In summary, this chapter makes the following contributions:

• We propose stochastic block ADMM for training deep networks. Experiments show

our algorithm outperforms previous attempts of using ADMM in deep network

training.

• We prove the local convergence of the proposed stochastic block ADMM algorithm.

• We propose DeepFacto, which jointly trains a non-negative matrix factorization

layer with a deep network using ADMM, and show its capability in supervised

feature disentanglement.

45

4.2 Stochastic Block ADMM

4.2.1 Training DNN using ADMM

Alternating Direction Method of Multipliers (ADMM) [30, 7] is a class of optimization

methods belonging to operator splitting techniques which borrows benefits from both dual

decomposition and augmented Lagrangian methods for constrained optimization. To

show the potentials of standard ADMM, we first revisit a general formulation of ADMM

in DNN training, similar to those used in prior work, then we propose our stochastic

block ADMM in the next subsection.

To formulate training an L-layer DNN in a general supervised setting, we would have

the following non-convex constrained optimization problem [118]:

minimize
W,A,Z

J (Y ,ZL) +

L∑
`=1

λ`r`(W`) (4.1)

subject to A` − φ` (Z`) = 0, ` = 1, . . . , L− 1

subject to Z` −W`A`−1 = 0, ` = 1, . . . , L

where J is the main objective (e.g., cross-entropy, mean-squared-error loss functions)

that needs to be minimized. The subscript ` denotes the `-th layer in the network. The

optimization variables are W = {W`}L`=1, A = {A`}L−1
`=1 , and Z = {Z`}L`=1 where W`,

Z`, A`, and φ`(.) are the weight matrix, output matrix, activation matrix, and the

activation function (e.g., ReLU) at the `-th layer, respectively. Note that A0 = X where

X = {x1, . . . ,xN} ∈ RM×N is the input data matrix containing N samples with input

dimensionality M ; Y = {y1, . . . ,yN} ∈ RC×N is the target matrix pair comprised of N

one-hot vector label of dimension C, representing number of prediction classes. Also, r(.)

is the regularization term with (e.g., Frobenius norm ‖.‖2F) corresponding penalty weight

λ`. Note that the regularization term can be simply ignored by setting λ` to zero. In

this formulation, the intercept in each layer is ignored for simplicity as it can be simply

be added by slightly modifying the W` and the input to each layer. The formulation in

Eq. (4.1) breaks the the conventional multi-layer backpropagation optimization of DNNs

into simpler sub-problems that can be solved efficiently (e.g. reducing to least-squares

46

Algorithm 1 ADMM for DNN Training

Input: data X, labels Y
Params: β` > 0, γ` > 0, λ` > 0
Initialize: {W 0

` }L`=1, {U0
` }L`=1, {V 0

` }
L−1
`=1 , {Z

0
` }L`=1, {A0

`}
L−1
`=1 k ← 0

repeat
for ` = 1 to L do
W k+1

` ← arg min {P`(.) + λ`r`(W
k
`)}

end for
for ` = 1 to L− 1 do
Zk+1
` ← arg min {P`(.) +Q`(.)}

Ak+1
` ← arg min {P`+1(.) +Q`(.)}

end for
Zk+1
L ← arg min {J

(
Y ,Zk

L

)
+ PL(.)}

for ` = 1 to L− 1 do
Uk+1
` ← Uk

` +Zk+1
` −W k+1

` Ak+1
`−1

V k+1
` ← V k

` +Ak+1
` − φ`(Zk+1

`)
end for
Uk+1
L ← Uk

L +Zk+1
L −W k+1

L Ak+1
L−1

until some stopping criterion is reached.

problem). This also facilitates training in a distributed manner – as the layers of the

DNN are decoupled and the variables can be updated in parallel across layers (W`) and

data points (W`,Z`,A`).

To enforce the constraints in problem (4.1) and solve the optimization using ADMM,

we would have the following augmented Lagrangian problem:

minimize
W,A,Z

J (Y ,ZL) +
L∑
`=1

λ`r`(W`) (4.2)

+

L∑
`=1

β`
2
‖Z` −W`A`−1 +U`‖2F

+
L−1∑
`=1

γ`
2
‖A` − φ`(Z`) + V`‖2F

where β`, γ` > 0 are the step sizes, U` and V` are the (scaled) dual variables [7] for the

47

�1

�0 ��−2 ��−1 ���1

�����1 ������−1 ������

��−1 ��
��������	����

�������	����

(a)

���� ;�� Θ�

(b)

Figure 4.1: a) General Architecture for training DNNs proposed in Stochastic Block-ADMM. b)
A few differential layers selected from a parent network are stacked inside a block. The parameters
Θt are updated by SGD in a forward-backward pass.

equality constraint at the layer `. Algorithm 1 shows a standard ADMM scheme for

optimizing eq. (4.2). Note, the parameters are updated in a closed-form as analytical

solution can be simply derived. For simplicity of the equations, we denote P`(.) =
β`
2 ‖Z` −W`A`−1 +U`‖2F and Q`(.) = γ`

2 ‖A` −φ`(Z`) + V`‖2F . This algorithm is similar

to [98, 105] with the difference that all the equality constraints in problem (4.1) are

enforced using multipliers, while previous work only enforced the constraints on the last

layer L while other constraints were only loosely enforced using quadratic penalty.

While the standard ADMM Algorithm 1 has potentials in training (simple) DNNs

[98], there exists hurdles that confines extending ADMM to more complex problems —

the global convergence proof of the ADMM [19] assumes that J is deterministic and

the global solution is calculated at each iteration of the cyclic parameter updates. This

makes standard ADMM computationally expensive thus impractical for training of many

large-scale optimization problems. Specifically, for deep learning, this would impose a

severe restriction on training set size when limited computational resources are available.

In addition, since the variable updates in standard ADMM are analytically driven, the

extent of its applications is limit to trivial tasks [98], making it incompetent to perform

on par with the recent complex architectures introduced in deep learning (e.g. [40]).

4.2.2 Stochastic Block-ADMM

In this section, we introduce a novel variant of ADMM for training DNNs, the stochastic

Block-ADMM. We first split the conventional multi-layer network architectures into

arbitrary number of blocks, each containing only a part of the network. To make each

block’s parameters independent from its neighbors, decoupling variables {Zt, t = 1, . . . , T}

48

are introduced as shown in Fig. 4.1(a). These variables pass the information forward

and backward in the architecture to train blocks in a cyclic manner until consensus is

reached. Each blockt consists of one or multiple differentiable layers (e.g., convolutional

layers, activation layers, etc.) that are detached from the rest of the network via coupling

variables. Denote the set of all learnable parameters of each blockt as Θt. As an example,

a blockt wrapping multiple layers can be seen in Figure 4.1(b). Our formulation is:

minimize
Θ,Z

J (Y ,ZT) (4.3)

subject to Zt = blockΘt(Zt−1), Z0 = X

where Θ = {Θt}Tt=1and Z = {Zt}Tt=1. J is the desired cost to be minimized, and T is

the total number of blocks.

To train this new approach of training of DNNs, similar to problem (4.2), we would

have the following augmented Lagrangian minimization problem to enforce the equality

constraints needed for training,

min
Θ,Z
J (Y ,ZT) +

T∑
t=1

βt
2
‖Zt − blockΘt(Zt−1) +Ut‖2F

subject to Z0 = X (4.4)

where βt and Ut are the (scaled) step size and the Lagrange multiplier corresponding to

the t-th Block, respectively. Our proposed Stochastic Block-ADMM method for training

problem (4.4) is presented in Algorithm 2. In Stochastic Block-ADMM, parameters of

the t-th block, Θt are updated using the Stochastic Gradient Descent optimizer or its

adaptive learning rate variants (e.g. Adam [54]). We have found Adam to consistently

outperform other counterparts, particularly in updating the decoupling variables Zt. ζt

and ηt show the learning rate in each update step for Zt and Θt, respectively. Similar to

training conventional neural networks, each block is updated by first going in a forward

pass through the block and update the parameters using back-propagation. Update

of the block parameters Θt is done using mini-batches of data. The same goes for the

decoupling variables Zt. Note, in each cycle of the parameter update in Algorithm 2, all

49

Algorithm 2 Stochastic Block-ADMM

Input: data X, labels Y
Params: βt > 0, ζt > 0, ηt > 0
Define: T (Zt,Zt−1,Ut,Θt) = βt

2 ‖Zt − blockΘt(Zt−1) +Ut‖2F
Initialize: {Θ0

t }Tt=1, {U0
t }Tt=1, k ← 0

Initialize: {Zt}Tt=1 in a forward pass.
repeat
Zk+1
L ← Zk

L − ζL∇Zk
L
(J
(
Yi,Z

k
L

)
+T (Zk

L,Z
k
L−1,U

k
L,Θ

k
L))

for t = L− 1 to 1 do
Zk+1
t ← Zk

t − ζt∇Zk
t
(T (Zk

t ,Z
k
t−1,U

k
t ,Θ

k
t)

+T (Zk
t+1,Z

k
t ,U

k
t+1,Θ

k
t+1))

end for
for t = 1 to L do

Θt
k+1 ← Θt

k − ηt∇ΘtT (Zk+1
t,i ,Zk+1

t−1,i,U
k
t,i,Θ

k
t),

draw i ⊂ {1, . . . , N}
Uk+1
t ← Uk

t +Zk
t − blockk+1

Θt
(Zk+1

t−1)
end for

until some stopping criterion is reached.

the samples of Z are updated, while this is not necessary for Θt. In addition, due to local

update of the parameters at each iteration, one can perform each update in Algorithm 2

multiple times. However, we found one step update to be sufficient in our experiments.

In Algorithm 2, we take the reverse order for updating the decoupling variables Zt,

which we have empirically found more efficient, as analogous to backpropagation where

gradient flows backwards as well.

Similar to [118], our method can readily mitigate the long-known vanishing gradient

problem by splitting a conventional DNN into arbitrary sized blocks. Note that during

testing time, one could follow eq. (4.4) to solve an optimization problem. But in practice,

it suffices to use a straight-through estimator by removing the decoupling variables and

simply pass the output of each layer to the next, equivalent of doing a forward pass in a

conventional DNN. We have taken this approach in our experiments as the error induced

by ignoring the decoupling variables is negligible. It should be noted that update step for

Z` is dependent on the adjacent blocks, hence can only be parallelized across the data

points. However, fixing Z, all the block parameters Θt are independent of each other,

50

hence can be updated in parallel across blocks as well as data points.

4.2.3 Discussions on Convergence Properties

Let us consider the following shorthand representation of the deep network training

problem:

minimize
Z,Θ

f(Z) (4.5)

subject to h(Z,Θ) = 0.

where Z and Θ are as defined in Sec. 4.2.2, and f(·) represents the training objective,

and h(·) represents the layer coupling equalities as in eq. (4.3). We also assume that both

f(·) and h(·) are differentiable functions. Note that both f and h can be non-convex.

Let us consider the following augmented Lagrangian:

Lρk(Z,Θ,λ) = f(Z) + 〈λ, h(Z,Θ)〉+
1

2ρk
‖h(Z,Θ)‖22,

where λ collects all the dual variables U1, . . . ,UT that correspond to different layers.

The standard primal-dual updates can be summarized as follows:

(Zk+1,Θk+1)← arg min
Z,Θ
Lρk(Z,Θ,λk), (4.6a)

λk+1 ← λk +
1

ρk
h(Zk+1,Θk+1), (4.6b)

In our case, since the subproblem in eq. (4.6a) is nonconvex, exactly minimizing this

function may not be possible. In the previous section, the primal update is carried out

by stochastic optimization w.r.t. Z and Θ in an alternating fashion—which is a com-

putationally lightweight algorithm that converges to a stationary point of Lρk(Z,Θ,λk)

under certain conditions [6, 112]. The convergence of this type of primal-dual algorithm

with inexact stochastic solution for the primal problem is unclear. In this work, we offer

convergence support for our designed deep network training algorithm. Our idea follows

51

recent work in [87] that handles deterministic primal problems under nonconvex equality

constraints.

To be specific, we employ the trick in [87] for adaptively adjusting the parameter ρk.

We assume that ρk is adjusted by

ρk+1 ←

ρk, ‖h(Zk,Θk)‖ ≤ ηk,

cρk, 0 < c < 1, o.w.
(4.7)

where ηk for k = 1, 2, . . . is a pre-specified sequence that bounds the equality-enforcing

error.

Our analysis shows the following convergence result:

Proposition 1 Assume h(Z,Θ) = 0 satisfies the Robinson’s condition. Also assume

for each update in eq. (4.6a), the subproblem solution solved by stochastic alternating

optimization satisfies

E
[∥∥∥G(xk)

∥∥∥2
]
≤ εk, V

[
G(xk)

]
≤ σ2

k, (4.8)

where x = (Z,Θ) is a vector that collects all the optimization variables and G(xk) collects

the stochastic gradients that we used for updating (Z,Θ). Assume that the stochastic

gradient for the primal update is unbiased, i.e.,

E[G(xk)] = ∇Lρk(xk), ∀k. (4.9)

Then, every limit point of the solution sequence produced by the algorithm in eq. (4.6)

converges to a KKT point of the problem in eq. (4.5), if ηk → 0, σ2
k → 0 and εk → 0.

Proof: We follow the steps in the proof for similar problems in [28] and [87] with

deterministic primal updates. Proper modifications are made to cover the stochastic

primal update in our proof.

Note that we have

∇Lρk(Xk) = ∇f(Xk) +∇h(Xk)Tµk,

52

where

µk = (1/ρk)h(Xk) + λk.

Our first step is to show that {µk} is a convergent sequence. To see this, we define

µ̄k =
µk

‖µk‖
.

Since µ̄k is bounded, it converges to a limit point µ̄. Also let x? be a limit point of xk.

Because we have assumed that

εk → 0, σ2
k → 0,

it means that the mean and variance of the stochastic gradient of our primal update goes

to zero. Since our stochastic gradient is unbiased, we have

G(Xk)→ ∇Lρk(X?).

This also means that we must have G(xk)→ 0 and

∇Lρk(xk)→ 0.

Hence, the following holds when k →∞:

∇Lρk(X?) = ∇f(X?) +∇h(X?)Tµ∞ = 0, (4.10)

Suppose µk is unbounded. By dividing eq. (4.10) by the above ‖µk‖ and considering

k →∞, we must have

∇h(X?)T µ̄ = 0, ∀X. (4.11)

The term ∇f(X?)/‖µ‖ is zero since we assumed µ̄ is unbounded. Since h(X) = 0

satisfies the Robinson’s condition, then, for any w, there exists β > 0 and x such that

w = β∇h(X?)(X −X?).

This together with eq. (4.11) says that µ̄ = 0. This contradicts to the fact ‖µ̄‖ = 1.

53

Hence, {µk} must be a bounded sequence and thus admits a limit point. Denote µ? as

this limit point, and take limit of both sides of eq. (4.10). We have:

∇f(X?) +∇h(X?)Tµ? = 0, ∀X. (4.12)

In addition, since

ρk(µ
k − λk) = h(Xk)

with ρk → 0 or µk − λk → 0 (per our updating rule and ηk → 0), the constraints will be

enforced in the limit. �

Proposition 1 asserts that the algorithm converges to a KKT point under some

conditions. There are, however, a few caveats. First, the condition that εk and σ2
k

converging to zero along the iterations is nontrivial to satisfy. The condition εk → 0

means that the primal problem needs to be solved more and more accurately when k grows,

in terms of approaching the stationary point of the subproblem using block stochastic

gradient. This can be achieved via gradually increasing the number of iterations for the

primal updates. Note that stochastic block gradient can provably attain E[‖G(Xk)‖2] ≤
εk; see [112]. The condition σ2

k → 0 means that the variance of the stochastic gradient

needs to shrink when k increases. This can be achieved by increasing the batch size

when k grows; see discussions in [112]. Hence, to satisfy both conditions in theory, the

complexity for carrying out each iteration k may grow—which is not desired. Nonetheless,

our empirical experience shows that using a fixed number of iterations for stochastic

primal optimization and a fixed batch size in general does not hurt convergence. We

hypothesize that the momentum may play an important role in increasing the effective

batch size since with momentum gradients from previous batches are remembered and

utilized in the subsequent steps. We leave further analysis with momentum to future

research.

Second, the unbiasedness of the primal stochastic gradient [cf. eq. (4.9)] is not always

easy to establish under block coordinate descent settings [112]. Nonetheless, this can be

fixed via a simple randomization strategy among the blocks [29].

The third challenge is that the hyperparameter c and the sequence {ηk} are not

necessarily easy to select in some cases [87, 28]. These parameters control how quickly one

should adjust the update settings to accommodate the current iteration, which varies from

case to case. However, interestingly, we find that these hyperparameters are relatively

54

easy to tune in our case. In particular, our extensive experiments show that fixed ρk and

ηk work reasonably well for our deep learning problems.

The slightly stringent conditions in Proposition 1 and the relatively ‘benign’ conver-

gence behavior observed in practice pose a gap between theory and practice—and an

interesting direction for future research.

4.3 Deepfacto: End-to-End Factorization of the DNN Activations

To show the power and flexibility of our proposed method in training heterogeneous

networks, we will investigate the well established dimension reduction method, None-

negative Matrix Factorization (NMF), over the activations of the DNN in an end-to-end

training scheme. NMF has shown to learn disentangled representation over the data

[61, 16] and with that we aim to learn disentangled features in a deep network.

Figure 4.2 shows an NMF module with rank r incorporated between two arbitrary

neighboring blocks. The output from the blockt is factorized into Mt and St, namely,

the basis and score matrices. In this configuration, only the score matrix St is passed

to the next blocks. The score matrix is low-rank, sparse and nonnegative hence can

possibly represent features that are more disentangled than the original network. However,

integrating such optimization problem nested in the deep neural network architecture is

not trivial as conventional back-propagation would not be applicable in this heterogeneous

problem with no gradient path from St to Zt. We extend the ADMM framework (4.4)

into having nonnegative factorization constraints over its activations and formulate the

following optimization problem:

min
Θ,Z,S,M

J (Y ,ZT)

+
T∑

k=1,k 6=t+1

βk
2
‖Zk − blockk(Zk−1) +Uk‖2F

+
βt+1

2
‖Zt+1 − blockt+1(St) +Ut+1‖2F

+
γt
2
‖Zt −MtSt + Vt‖2F

∀i, jM`,ij ≥ 0, S`,ij ≥ 0 (4.13)

55

��−1

���� ;�� Θ�

�� �
�

�� ��
≈

×
��

, > 0�� ��

���� ;��+1 Θ�+1

��+1

NMF ����� ;��,� ��

Figure 4.2: General architecture for Deepfacto: an NMF module with rank r is added in
the middle of two arbitrary blocks. Note, only St is passed to the next blocks.

where γt is the step-size and Vt is the corresponding multipliers to enforce the matrix

factorization equality Zt = MtSt. The NMF module adds a nonconvex term to the

optimization. However, in the alternating optimization scheme, while keeping either Mt

or St constant, solving for the other term would reduce to a normal convex least-squares

problem. The rest of the updates are the same as in section 4.2.2. Note that, trivially to

not change the input dimension of the next block after the NMF module, one can simply

add an affine layer to increase the dimensions without changing the formulation.

At testing time, one only needs to perform a nonnegative projection since the basis

matrix M will be given, which can be solved using a convex solver such as LBFGS.

Note that for simplicity, we only formulated adding one NMF module in the middle of

the blocks. This can be simply extended to as many NMF modules as needed in the

architecture.

4.4 Experiments and Results

4.4.1 Setup

Our implementation uses the PyTorch framework [74]. All the experiments are run on a

machine with a single NVIDIA GeForce RTX 2080 Ti GPU. The results presented for

each of the following experiments are selected from their best performance after grid

search over the hyper-parameters, both for our method and the baselines. Note, in the

following Figures (4.3, 4.4, 4.5), each line shows average test set accuracy over five runs

with different initialization. The shaded area corresponds to ±1 standard deviation.

56

4.4.2 Supervised Deep Network Training

In this section, we present the experiment results from training conventional neural

networks as a constrained optimization problem in a supervised setting. The results from

the proposed methods in section 4.2.2 are compared with baselines including training a

conventional neural network in an end-to-end setting using SGD, ADMM formulation

in [98], and training the neural networks by BCD in [118]. Further, we evaluate the

Stochastic Block-ADMM algorithm proposed in section 4.2.2 and have compared the

result on ResNet-18 [40].

4.4.2.1 MNIST

For the first part of the experiments in the supervised setting, MNIST dataset of

handwritten digits [114], is used. Throughout the experiments, 60,000 samples are used

during training and the test time performance using the remaining 10,000 samples are

reported in Figure 4.3. The architecture of the shallow network used for the experiments

incorporates three fully-connected layers with 128-neuron hidden layers (784 − 128 −
128− 10) and ReLU nonlinearity. In order to make a fair comparison with [98] which

can only work with Mean Squared Error (MSE), we utilize MSE as the training objective

(J) while the more common Cross-Entropy (CE) can effortlessly be adapted to our

Block-ADMM architecture (e.g. Sec. 4.4.2.2). For training the standard ADMM and [98],

all the parameters are initialized by sampling from the uniform distribution x ∼ U(0, 1)

and down scaled by a factor of 0.0001. we set βl = γl = 10 for all of the layers. Note

that Algorithm 1 can be converted to the the method in [98] by setting dual variables

∀` 6= L U` = 0; and discarding their updates. To regularize the weights, Wl during

the training, l2 norm (weight decay) is used with λ` = 5 × 10−5. We observed that

the regularization term significantly improves the optimization behavior and without it,

the training was not stable. In addition, for conventional neural network training using

back-propagation in Fig. 4.3, SGD with learning rate of 0.005 is used.

For the training of Stochastic Block-ADMM presented in Algorithm 2, the shallow

architecture is split into 3 one-layer blocks. For each blocks βt = 1 is set, the weights are

initialized using normal distribution, dual variables Ut are initialized using a uniform

distribution, and auxiliary variables Zt are initialized in a forward pass through the

57

network. During training, a mini-batch size of 128 is chosen, and both of sub-problem

updates for blockΘt and Zt are performed using Adam. Figure 4.3 shows that Block-

ADMM outperforms the baselines by reaching 97.09% average test accuracy. Note

accuracy for all methods is lower than normal because of the MSE loss function used that

is not the best choice for classification but chosen for comparison with previous ADMM

methods.

To further analyze robustness of stochastic Block-ADMM against vanishing gradients,

we run the previous experiments on an unconventional architecture with 10 fully-connected

Figure 4.3: Test set accuracy on MNIST using network with 3 fully-connected layers:
784 − 128 − 128 − 10. Final test accuracies: ”Stochastic Block ADMM”: 97.53%,
”Standard ADMM”: 95.02%, ”Zeng et al.”: 83.28% , ”Taylor et al.”:87.52%, ”SGD”:
95.29%. (Best viewed in color)

58

layers. Note that normally this will not be adopted because of the severe overfitting

and gradient vanishing problems, but here we utilized this setting to test our resistance

to these problems. Figure 4.4 illustrates the experiment results. Block-ADMM reaches

average final test accuracy of 94.43% while SGD and ADAM reache 10.28% and 58%,

respectively. As it can be seen in Figure 4.4, we also compared our method with the

recent work of [118]. We observed their BCD formulation1 to be unstable, sensitive to

network architectures, and eventually, not converging after 300 epochs. Although we still

exhibited some overfitting, we can see our approach is significantly better in handling of

the vanishing gradient problem. We even tested our performance with 20 fully-connected

layers. Results show that although there is slightly more overfitting, our algorithm can

still find a reasonable solution (Fig. 4.4), showing its potential in helping with training

scenarios with vanishing gradients.

4.4.2.2 CIFAR-10

To test the performance of Block-ADMM in a more complex supervised setting than the

previous baselines of ADMM, we trained Resnet-18 [40] on the CIFAR10 dataset [57].

We used 50,000 samples for training and the remaining 10,000 for evaluation. It is critical

to validate Block-ADMM in settings where deep and modern architectures such as deep

residual networks, convolutional layers, cross-entropy loss function, etc., are used. To

have a fair comparison, we followed the configuration suggested in [36] by converting

Resnet-18 network into two blocks (T = 2), with the splitting point located at the end

of conv3 x layer. We used the Adam optimizer to update both the blocks and the

decoupling variables with the learning rates of ηt = 0.005 and ζt = 0.5. We noted since

the auxiliary variables Zt are not ”shared parameters” across data samples, they usually

require a higher learning rate in Algorithm 2. We also found the step size βt = 1 sufficient

to enforce the block’s coupling. Figure. 4.5 shows the results from our method compared

with two baselines: [36], and conventional end-to-end neural network training using

back-propagation. Our algorithm consistently outperformed [36] however cannot match

the conventional SGD results. There are several factors that we hypothesize that might

have contributed to the performance difference: 1) in a ResNet the residual structure

already partially solved the vanishing gradient problem, hence SGD/Adam performs

1code taken from: https://github.com/timlautk/BCD-for-DNNs-PyTorch

https://github.com/timlautk/BCD-for-DNNs-PyTorch

59

Figure 4.4: Test accuracies from deep architectures on MNIST. Block-ADMM demon-
strates stable convergence and obtains final test accuracy of 94.43% (10 layers), and
91.75% (20 layers) respectively, while SGD and Adam (10 layers) fail due to vanishing
gradients (Best viewed in color)

significantly better than a fully-connected version; 2) The common data augmentation in

CIFAR will end up sending a different training example to the optimization algorithm at

each iteration, which does not seem to affect SGD but seem to affect ADMM convergence

somewhat; 3) we noticed decreasing the learning rate for Θt updates does not impact the

performance as it does for an end-to-end back-propagation using SGD. Still, we obtained

the best performance of ADMM-type methods on both MNIST and CIFAR datasets,

showing the promise of our approach.

60

Figure 4.5: Test set accuracy on CIFAR-10 dataset. Final accuracy ”Block ADMM”:
89.66%, ”Gotmare et al.”:87.12%, ”SGD”: 92.70%. (Best viewed in color.)

4.4.2.3 Wall Clock Time Comparison

In this section, we setup a experiment to further analyse the efficiency of Stochastic Block

ADMM and compare its training wall clock time against other baselines: [36, 118] (BCD),

and [105] (ADMM). For this purpose, we follow the similar settings as in section 4.1 for a

supervised Deep Neural Network (DNN) training over MNIST dataset. Figure 4.6 shows

the test set accuracy v.s. the training wall clock time from different methods. All the

experiments are run on a machine with a single NVIDIA GeForce RTX 2080 Ti GPU.

61

The methods are implemented in PyTorch framework – except for dlADMM [105] that is

implemented2 in ”cupy”, a NumPy-compatible matrix library accelerated by CUDA. [36]

and Stochastic Block ADMM are trained with a mini-batch size of 128 and [118, 105]

are trained in a batch setting. Note that in Figure 4.6, the time recorded merely shows

the training time and excludes the time taken for initialization, data loading, etc. It

can be observed that [36] and dlADMM are showing much slower convergence behaviors

than Stochastic Block ADMM. We speculate that enforcing all the constraints by dual

variables along with the efficient and cheap mini-batch updates in our method highly

contributes to the convergence speed as well as its performance superiority over the other

methods, including [118].

4.4.3 Weakly Supervised Training

4.4.3.1 Factorizing the activations

With the assumption that the observations are formed by a linear combination of few

basis vectors, one can approximate a given matrix X ∈ Rm×n into a basis matrix

M ∈ Rm×r and an score matrix S ∈ Rr×n such that X ≈MS where r is the (reduced)

rank of the factorized matrices – commonly r � min(m,n). Methods such as NMF

would restrict the entries of M and S to be non-negative (∀i, j Mij ≥ 0, Sij ≥ 0)

which forces the decomposition to be only additive. This has been shown to result in a

parts-based representation that is intuitively more close to human perception. It is also

worth mentioning that obviously, the matrix X needs to be positive (∀i, j Xij ≥ 0). For

non-negative factorization on the activations of the DNNS, due to the common use of

activation functions such as ReLU, this would not impose any constraints in most of the

problems.

Activations of the CNN networks are generally Tensors of the shape Z` ∈ R(N,C,H,W)

which namely represent the batch size of the input, the number of the channels, the

height of each channel, and the corresponding width. To adapt such tensors for the

NMF problem, we reshape the tensor into the matrix Z` ∈ RC×(N∗H∗W) by stacking it

over its channels while flattening the other dimensions. This way, the channels would

be embedded into a pre-defined small dimension r while keeping each sample and pixels

2code taken from https://github.com/xianggebenben/dlADMM

https://github.com/xianggebenben/dlADMM

62

Figure 4.6: Test set accuracy v.s. training wall clock time comparison of different
alternating optimization methods for training DNNs on MNIST dataset. Our method
(blue) shows superior performance while presenting comparable convergence speed against
[118] (green).

information.

4.4.3.2 LFWA

To further show that Block-ADMM can be adapted to complex settings, we evaluate

our proposed method in a weakly-supervised problem where we used DeepFacto 4.3 to

learn a non-negative factorized representation of the DNN activations while training

63

end-to-end on the LFWA dataset [46]. Next, similar to [67], linear SVMs are used over

the factorized space to predict face attributes. The reason for this setup is to examine

whether the network can extract a disentangled representation that linearly corresponds

to human-marked attributes that the network does not have prior knowledge of. We used

the Inception-Resnet architecture from [84], pre-trained on the VGGFace-2 [9] dataset

as the back-bone. For the weakly-supervised problem of attribute classification using

DeepFacto, we attached the DeepFacto module to the last convolutional layer of the

Inception-Resnet-V1 architecture followed by a ReLU. This layer has 1792 channels and,

for a given input of the size 160 × 160 pixels (the original input size from the LFWA

dataset), the height and the width are both equal to 3. To incorporate an NMF, we follow

the same approach as in Figure 4.2 where the pretrained DNN is the first block, and we

add a simple fully-connected layer over the score matrix St to train a face-verification

network with a triplet loss [42]. The choice of a simple fully-connected layer is two-folded.

First, to lift the dimensions of the embedding needed for training, particularly when St is

low rank. Second, the embedding would be only a linear combination of the score matrix

St, directly guiding it using the supervised signal coming from the Triplet Loss. We

conjecture the score matrix St will be guided to learn an interpretable factorization due

to the nonnegativity constraint [16]. Note that the latest activation in the network that

is followed by a ReLU is selected from the Resnet-Inception network. This is due to the

nonnegative constraint in the NMF, i.e. the input to the NMF should be also positive.

To have a warm start for an end-to-end training of DeepFacto, we first pre-train the

NMF module having the Inception-Resnet block freezed. Then, we fine-tune the block

parameters as well as the NMF module in an alternating fashion, similar to Algorithm

2. Note, the rank of the NMF in DeepFacto is a hyperparameter and we selected three

different values (r = 4, 32, 256) in the experiments. The final r = 256 is also the latent

space dimensionality in [67]. Table. 4.1 illustrates average prediction accuracy over

LFWA attributes 3 from DeepFacto and other supervised and weakly supervised baselines.

This validates that DeepFacto has learned a meaningful representation of the attributes

by unsupervised factorization of the activations. More details about the experiments are

presented in the supplementary material.

Table 4.2 shows the prediction accuracy of each attribute in LFWA dataset and

compares DeepFacto with different ranks (r = 4, 32, 256) against other supervised and

3The common 40 attributes with Celeb-A dataset [68]

64

Table 4.1: Average prediction accuracy on 40 attributes from LFWA dataset. Weakly-
supervised methods train the network without access to attribute labels. Final classifica-
tion then comes from a linear SVM on their latent representations.

LFWA Accuracy

[123] (supervised) 81.00%
[68] (supervised) 84.00%
[67] (weakly-supervised) 83.16%
Deepfacto - rank 4 (weakly-supervised) 74.80%
Deepfacto - rank 32 (weakly-supervised) 81.39%
Deepfacto - rank 256 (weakly-supervised) 87.03%

weakly-supervised baselines. It can be noted that our method can generate highly

informative representation of the LFWA attributes without accessing their labels. This

supports our conjecture that DeepFacto, by non-negatively factorizing the activations of

the DNNs in and end-to-end training, can lead to an interpretable decomposition of the

DNN activations.

4.5 Summary

In this chapter, we proposed stochastic Block-ADMM as an approach to train deep

networks. Through updates with stochastic gradients, we improve over the performance

of previous attempts using ADMM to train neural networks. Although the performance

of ADMM is still not up to par with SGD/Adam in residual networks, we have shown

improvements over them in training deep networks without residual connections. We also

propose DeepFacto which jointly trains an NMF layer within a deep network and show

encouraging results on a supervised disentanglement benchmark.

65

Table 4.2: Prediction accuracy (%) of individual attributes in LFWA dataset. DeepFacto
with other weakly-supervised and supervised baselines.

Attributes DeepFacto [68] [67] [123]
(Weakly-Supervised) (Weakly-Supervised) (Supervised) (Supervised)

r =256 32 4

5 o Clock Shadow 83.3 80.0 68.7 78.8 84 84
Arched Eyebrows 86.6 83.9 79.2 78.1 82 79
Attractive 84.3 79.8 73.3 79.2 83 81
Bags Under Eyes 83.9 72.5 64.5 83.1 83 80
Bald 94.3 93.3 89.3 84.8 88 84
Bangs 93.2 88.4 84.4 86.5 88 84
Big Lips 83.2 77.0 71.9 75.2 75 73
Big Nose’ 80.1 68.7 61.4 81.3 81 79
Black Hair 92.7 91.4 87.4 87.4 90 87
Blond Hair 97.9 97.3 93.2 94.2 97 94
Blurry 90.4 90.5 86.5 78.4 74 74
Brown Hair 78.4 74.4 70.2 72.9 77 74
Bushy Eyebrows 84.0 78.6 63.4 83.0 82 79
Chubby 80.5 75.2 71.1 74.6 73 69
Double Chin 86.0 77.9 72.3 80.2 78 75
Eyeglasses 94.3 89.6 84.8 89.5 95 89
Goatee 89.1 85.4 80.0 78.6 78 75
Gray Hair 91.9 90 85.6 86.9 84 81
Heavy Makeup 96.3 91.5 87.4 94.5 95 93
High Cheekbones 90.4 79.0 72.1 88.8 88 86
Male 81.3 76.6 70.5 94.3 94 92
Mouth Slightly Open 85.4 78.0 73.3 81.7 82 78
Mustache 96.6 93.2 91.3 83.3 92 87
Narrow Eyes 78.3 69.3 58.4 77.5 81 73
No Beard 79.5 73.0 65.5 77.7 79 75
Oval Face 80.6 73.2 66.1 78.7 74 72
Pale Skin 75.1 66.7 60.6 89.8 84 84
Pointy Nose’ 81.6 73.7 62.2 79.8 80 76
Receding Hairline 84.0 80.9 73.8 88.0 85 84
Rosy Cheeks 87.3 87.4 83.4 79.9 78 73
Sideburns 85.4 81.5 75.8 80.5 77 76
Smiling 92.6 78.7 69.8 92.2 91 89
Straight Hair 82.8 77.0 72.1 73.6 76 73
Wavy Hair 80.4 77.0 68.3 81.7 76 75
Wearing Earrings 95.4 91.6 87.1 89.7 94 92
Wearing Hat 93.0 90.2 87.0 80.5 88 82
Wearing Lipstick 95.8 92.8 89.0 91.4 95 93
Wearing Necklace 93.0 89.8 85.1 84.0 88 86
Wearing Necktie 79.8 75.2 70.6 78.7 79 79
Young 91.0 88.4 84.4 79.2 86 82

Average 87.0 81.4 74.8 83.1 84 81

66

Chapter 5: Conclusion

In this thesis, we have taken attempts to (partially) disentangle the high-dimensional

activation space of the deep networks into low-dimensional representations that favorable

constraints are enforced on. In chapter 3 we proposed a novel explanation network,

that can be attached to any layer in a deep network to embed the layer into several

concepts that can approximate a N -dimensional prediction output from the network.

A sparse reconstruction autoencoder (SRAE) is proposed to avoid degeneracy and

improve orthogonality. Through the XNN framework, faithfulness, that the deep learning

predictions can be faithfully approximated from those few concepts; locality, that the

concepts are relatively spatially localized in images so that human can understand

them; and orthogonality, that the concepts themselves are as independent of each

other as possible were imposed over the embedded space. We evaluated our method

through extensive qualitative and quantitative experiments. Human evaluation was

conducted to investigate the performance of our approach against a baseline. We also

proposed automatic evaluation metrics to evaluate the explanations on a fine-grained bird

classification dataset (CUB-200-2011) and a scene recognition dataset (Places365). Our

quantitative and qualitative results show that the network can be extremely faithful to

the original prediction network, and can indeed extract high-level concepts from a CNN

that is meaningful to human, and different from existing concepts. We also performed

experiments training XNN on convolutional layers, which indicated some difficulty in

faithfully explaining the DNN prediction from early convolutional layers. The future

steps to broaden the scope of chapter 3 would to extend XNN to explain other types of

neural networks, such as recurrent networks and convolutional-recurrent ones.

Furthermore, in chapter 4, we proposed a novel method to learn a factorized activation

space of the deep networks while training in an end-to-end fashion. This enabled us to

train the deep networks while explicitly encouraging (partial) disentanglement over their

activations space. To that end, we presented DeepFacto which jointly trains an NMF

layer within a deep network. We evaluated DeepFacto in a weakly-supervised setting on

a face verification network. While there was no supervision over the attribute labels of

67

the training samples, using linear SVMs on the factorized space learned from our method

has shown superior performance against supervised and weakly-supervised baselines in

attribute prediction. Since jointly training an NMF decomposition with deep learning is

highly non-convex and cannot be addressed by the conventional backpropagation and

SGD algorithms, we proposed Stochastic Block ADMM as a novel approach to training

deep networks with non-differentiable layers. We evaluated Stochastic Block ADMM

through experiments in a supervised setting on MNIST and CIFAR-10 datasets. Also,

we have shown that the Stochastic Block ADMM method can mitigate the long-known

problem of gradient vanishing and get to a reasonably good performance while methods

such as SGD and Adam fail. Through updates with stochastic gradients, we improve over

the performance of previous attempts using ADMM to train neural networks. We also

have shown that Stochastic Block ADMM can show comparable results in training more

sophisticated networks such as ResNet-18. Although the performance of ADMM is still

not up to par with SGD/Adam in residual networks, we have shown improvements over

them in training deep networks without residual connections. We believe the preliminary

results presented in this work set up future work that further explores different aspects

of utilizing ADMM in deep network training, including parallelization, stability and data

augmentation.
—————————————————————————————

68

Bibliography

[1] Pulkit Agrawal, Ross Girshick, and Jitendra Malik. Analyzing the performance
of multilayer neural networks for object recognition. In European Conference on
Computer Vision, pages 329–344. Springer, 2014.

[2] David Alvarez-Melis and Tommi S. Jaakkola. Towards robust interpretability with
self-explaining neural networks. In NIPS, pages 7786–7795, 2018.

[3] Armin Askari, Geoffrey Negiar, Rajiv Sambharya, and Laurent El Ghaoui. Lifted
neural networks. arXiv preprint arXiv:1805.01532, 2018.

[4] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances
in Neural Information Processing Systems, 2014.

[5] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network
dissection: Quantifying interpretability of deep visual representations. In IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[6] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the
trade, pages 421–436. Springer, 2012.

[7] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122,
2011.

[8] Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei Wang,
Yongzhen Huang, Liang Wang, Chang Huang, Wei Xu, et al. Look and think
twice: Capturing top-down visual attention with feedback convolutional neural
networks. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2956–2964, 2015.

[9] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2: A dataset for
recognising faces across pose and age. In International Conference on Automatic
Face and Gesture Recognition, 2018.

[10] Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply
nested systems. In Artificial Intelligence and Statistics, pages 10–19, 2014.

69

[11] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie
Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital
30-day readmission. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 1721–1730,
2015.

[12] Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N. Bala-
subramanian. Grad-cam++: Generalized gradient-based visual explanations for
deep convolutional networks. CoRR, abs/1710.11063, 2017.

[13] Zhengping Che, Sanjay Purushotham, Robinder Khemani, and Yan Liu. Inter-
pretable deep models for icu outcome prediction. In American Medical Informatics
Association Annual Symposium, 2016.

[14] Hongling Chen, Mingyan Gao, Ying Zhang, Wenbin Liang, and Xianchun Zou.
Attention-based multi-nmf deep neural network with multimodality data for breast
cancer prognosis model. BioMed Research International, 2019, 2019.

[15] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen.
Compressing neural networks with the hashing trick. In International Conference
on Machine Learning, pages 2285–2294, 2015.

[16] Edo Collins, Radhakrishna Achanta, and Sabine Susstrunk. Deep feature factoriza-
tion for concept discovery. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 336–352, 2018.

[17] Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers.
In Advances in Neural Information Processing Systems, pages 6967–6976, 2017.

[18] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya
Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization. In Advances in neural information
processing systems, pages 2933–2941, 2014.

[19] Wei Deng and Wotao Yin. On the global and linear convergence of the generalized
alternating direction method of multipliers. Journal of Scientific Computing,
66(3):889–916, 2016.

[20] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of nonnegative
matrix factorization and spectral clustering. In Proceedings of the 2005 SIAM
international conference on data mining, pages 606–610. SIAM, 2005.

[21] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

70

[22] Gintare Karolina Dziugaite and Daniel M Roy. Neural network matrix factorization.
arXiv preprint arXiv:1511.06443, 2015.

[23] Christopher Z Eddy, Xinyao Wang, Fuxin Li, and Bo Sun. The morphodynamics
of 3d migrating cancer cells. arXiv preprint arXiv:1807.10822, 2018.

[24] Ethan Elenberg, Alexandros G Dimakis, Moran Feldman, and Amin Karbasi.
Streaming weak submodularity: Interpreting neural networks on the fly. In Advances
in Neural Information Processing Systems, pages 4044–4054, 2017.

[25] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter,
Helen M. Blau, and Sebastian Thrun. Dermatologist-level classification of skin
cancer with deep neural networks. Nature, 542:115–118, 2017.

[26] Jennifer Flenner and Blake Hunter. A deep non-negative matrix factorization neural
network.

[27] Xiao Fu, Kejun Huang, Nicholas D Sidiropoulos, and Wing-Kin Ma. Nonnegative
matrix factorization for signal and data analytics: Identifiability, algorithms, and
applications. arXiv preprint arXiv:1803.01257, 2018.

[28] Xiao Fu, Kejun Huang, Nicholas D Sidiropoulos, Qingjiang Shi, and Mingyi Hong.
Anchor-free correlated topic modeling. IEEE transactions on pattern analysis and
machine intelligence, 41(5):1056–1071, 2018.

[29] Xiao Fu, Shahana Ibrahim, Hoi-To Wai, Cheng Gao, and Kejun Huang. Block-
randomized stochastic proximal gradient for low-rank tensor factorization. arXiv
preprint arXiv:1901.05529, 2019.

[30] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of non
linear variational problems via finite element approximation.

[31] Leila Ghorbanzadeh, Ahmad Esmaili Torshabi, Jamshid Soltani Nabipour, and
Moslem Ahmadi Arbatan. Development of a synthetic adaptive neuro-fuzzy pre-
diction model for tumor motion tracking in external radiotherapy by evaluating
various data clustering algorithms. Technology in cancer research & treatment,
15(2):334–347, 2016.

[32] Georgia Gkioxari, Ross Girshick, and Jitendra Malik. Actions and attributes from
wholes and parts. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2470–2478, 2015.

[33] Abel Gonzalez-Garcia, Davide Modolo, and Vittorio Ferrari. Do semantic parts
emerge in convolutional neural networks? arXiv preprint arXiv:1607.03738, 2016.

71

[34] Abel Gonzalez-Garcia, Davide Modolo, and Vittorio Ferrari. Do semantic parts
emerge in convolutional neural networks? International Journal of Computer
Vision, 126(5):476–494, 2018.

[35] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[36] Akhilesh Gotmare, Valentin Thomas, Johanni Brea, and Martin Jaggi. Decoupling
backpropagation using constrained optimization methods. 2018.

[37] Emad M Grais and Hakan Erdogan. Single channel speech music separation using
nonnegative matrix factorization and spectral masks. In 2011 17th International
Conference on Digital Signal Processing (DSP), pages 1–6. IEEE, 2011.

[38] Fangda Gu, Armin Askari, and Laurent El Ghaoui. Fenchel lifted networks: A
lagrange relaxation of neural network training. arXiv preprint arXiv:1811.08039,
2018.

[39] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[41] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
and Trevor Darrell. Generating visual explanations. In European Conference on
Computer Vision, 2016.

[42] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In Interna-
tional Workshop on Similarity-Based Pattern Recognition, pages 84–92.

[43] Ehsan Hosseini-Asl, Jacek M Zurada, and Olfa Nasraoui. Deep learning of part-based
representation of data using sparse autoencoders with nonnegativity constraints.
IEEE transactions on neural networks and learning systems, 27(12):2486–2498,
2015.

[44] Feihu Huang and Songcan Chen. Mini-batch stochastic admms for nonconvex
nonsmooth optimization. arXiv preprint arXiv:1802.03284, 2018.

[45] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4700–4708, 2017.

72

[46] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled
faces in the wild: A database for studying face recognition in unconstrained
environments. Technical Report 07-49, University of Massachusetts, Amherst,
October 2007.

[47] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn:
Deep learning on spatio-temporal graphs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5308–5317, 2016.

[48] Hangyan Jiang and Zexi Jin. Deep Convolutional NMF Net. PhD thesis, 2018.

[49] Ian T Jolliffe. Principal components in regression analysis. In Principal component
analysis, pages 129–155. Springer, 1986.

[50] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating
image descriptions. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[51] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization
gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[52] Farkhondeh Kiaee, Christian Gagné, and Mahdieh Abbasi. Alternating direction
method of multipliers for sparse convolutional neural networks. arXiv preprint
arXiv:1611.01590, 2016.

[53] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T
Schutt, Sven Dahne, Dumitru Erhan, and Been Kim. The (un)reliability of saliency
methods. arXiv preprint arXiv:1711.00867v1, 2017.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[55] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. Multimodal neural
language models. In Icml, volume 14, pages 595–603, 2014.

[56] Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fidler. What
are you talking about? text-to-image coreference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3558–3565, 2014.

[57] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute
for advanced research).

73

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[59] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. Principles
of explanatory debugging to personalize interactive machine learning. In Proceedings
of the 20th International Conference on Intelligent User Interfaces, pages 126–137.
ACM, 2015.

[60] Jonathan Le Roux, John R Hershey, and Felix Weninger. Deep nmf for speech
separation. In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 66–70. IEEE, 2015.

[61] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788, 1999.

[62] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. Efficient sparse coding
algorithms. Advances in neural information processing systems, 19:801, 2007.

[63] Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan.
Interpretable classifiers using rules and bayesian analysis: Building a better stroke
prediction model. The Annals of Applied Statistics, 9:1350–1371, 2015.

[64] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based
reasoning through prototypes: A neural network that explains its predictions. In
AAAI, pages 3530–3537, 2018.

[65] Dahua Lin, Sanja Fidler, Chen Kong, and Raquel Urtasun. Visual semantic
search: Retrieving videos via complex textual queries. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2657–2664, 2014.

[66] Haifeng Liu, Zhaohui Wu, Xuelong Li, Deng Cai, and Thomas S Huang. Constrained
nonnegative matrix factorization for image representation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(7):1299–1311, 2011.

[67] Yu Liu, Fangyin Wei, Jing Shao, Lu Sheng, Junjie Yan, and Xiaogang Wang.
Exploring disentangled feature representation beyond face identification. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2080–2089, 2018.

[68] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of the IEEE international conference on
computer vision, pages 3730–3738, 2015.

74

[69] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems, pages 4765–
4774, 2017.

[70] José Oramas M., Kaili Wang, and Tinne Tuytelaars. Visual explanation by inter-
pretation: Improving visual feedback capabilities of deep neural networks. CoRR,
abs/1712.06302, 2017.

[71] Calvin Murdock, MingFang Chang, and Simon Lucey. Deep component analysis via
alternating direction neural networks. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 820–836, 2018.

[72] Hua Ouyang, Niao He, Long Tran, and Alexander Gray. Stochastic alternating
direction method of multipliers. In International Conference on Machine Learning,
pages 80–88, 2013.

[73] Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Bernt Schiele, Trevor Darrell,
and Marcus Rohrbach. Attentive explanations: Justifying decisions and pointing
to the evidence. arXiv Preprint:1612.04757, 2016.

[74] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

[75] V Paul Pauca, Jon Piper, and Robert J Plemmons. Nonnegative matrix factorization
for spectral data analysis. Linear algebra and its applications, 416(1):29–47, 2006.

[76] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for
explanation of black-box models. In Proceedings of the British Machine Vision
Conference (BMVC), 2018.

[77] Zhongang Qi, Saeed Khorram, and Fuxin Li. Visualizing deep networks by optimiz-
ing with integrated gradients.

[78] Zhongang Qi and Fuxin Li. Learning explainable embeddings for deep networks.
In NIPS 2017 workshop: Interpreting, Explaining and Visualizing Deep Learning -
now what?, 2017.

[79] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In European
Conference on Computer Vision, pages 525–542. Springer, 2016.

[80] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

75

[81] Scott Reed, Zeynep Akata, Bernt Schiele, and Honglak Lee. Learning deep repre-
sentations of fine-grained visual descriptions. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[82] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust
you?: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1135–1144. ACM, 2016.

[83] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. nature, 323(6088):533–536, 1986.

[84] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 815–823, 2015.

[85] Ramprasaath R Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael
Cogswell, Devi Parikh, and Dhruv Batra. Grad-cam: Why did you say that?
visual explanations from deep networks via gradient-based localization. arXiv
preprint arXiv:1610.02391, 2016.

[86] Farial Shahnaz, Michael W Berry, V Paul Pauca, and Robert J Plemmons. Docu-
ment clustering using nonnegative matrix factorization. Information Processing &
Management, 42(2):373–386, 2006.

[87] Qingjiang Shi, Mingyi Hong, Xiao Fu, and Tsung-Hui Chang. Penalty dual
decomposition method for nonsmooth nonconvex optimization. arXiv preprint
arXiv:1712.04767, 2017.

[88] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach adn Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks
and tree search. Nature, 529:484–489, 2016.

[89] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354–359,
2017.

[90] Marcel Simon and Erik Rodner. Neural activation constellations: Unsupervised
part model discovery with convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1143–1151, 2015.

76

[91] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In ICLR
Workshop, 2014.

[92] Paris Smaragdis and Shrikant Venkataramani. A neural network alternative to
non-negative audio models. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 86–90. IEEE, 2017.

[93] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806,
2014.

[94] Jian Sun, Huibin Li, Zongben Xu, et al. Deep admm-net for compressive sensing
mri. In Advances in neural information processing systems, pages 10–18, 2016.

[95] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for
deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3319–3328. JMLR. org, 2017.

[96] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[97] S. Tan, R. Caruana, G. Hooker, P. Koch, and A. Gordo. Learning Global Additive
Explanations for Neural Nets Using Model Distillation. arXiv e-prints, January
2018.

[98] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom
Goldstein. Training neural networks without gradients: A scalable admm approach.
In International conference on machine learning, pages 2722–2731, 2016.

[99] George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, and Bjoern Schuller.
A deep semi-nmf model for learning hidden representations. In International
Conference on Machine Learning, pages 1692–1700, 2014.

[100] Ryan J Urbanowicz and Jason H Moore. Learning classifier systems: a complete
introduction, review, and roadmap. Journal of Artificial Evolution and Applications,
2009, 2009.

[101] Berk Ustun and Cynthia Rudin. Supersparse linear integer models for optimized
medical scoring systems. Machine Learning, 102(3):349–391, 2016.

[102] Thanh T Vu, Benjamin Bigot, and Eng Siong Chng. Combining non-negative matrix
factorization and deep neural networks for speech enhancement and automatic

77

speech recognition. In 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 499–503. IEEE, 2016.

[103] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd
birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of
Technology, 2011.

[104] Huahua Wang and Arindam Banerjee. Online alternating direction method (longer
version). arXiv preprint arXiv:1306.3721, 2013.

[105] Junxiang Wang, Fuxun Yu, Xiang Chen, and Liang Zhao. Admm for efficient
deep learning with global convergence. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 111–119,
2019.

[106] Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex
nonsmooth optimization. Journal of Scientific Computing, 78(1):29–63, 2019.

[107] Yu-Xiong Wang and Yu-Jin Zhang. Nonnegative matrix factorization: A comprehen-
sive review. IEEE Transactions on Knowledge and Data Engineering, 25(6):1336–
1353, 2012.

[108] Yulong Wang, Hang Su, Bo Zhang, and Xiaolin Hu. Interpret neural networks
by identifying critical data routing paths. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[109] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017.

[110] Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng
Zhang. The application of two-level attention models in deep convolutional neural
network for fine-grained image classification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 842–850, 2015.

[111] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative
matrix factorization. In Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, pages 267–273.
ACM, 2003.

[112] Yangyang Xu and Wotao Yin. Block stochastic gradient iteration for convex and
nonconvex optimization. SIAM Journal on Optimization, 25(3):1686–1716, 2015.

[113] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards k-means-
friendly spaces: Simultaneous deep learning and clustering. In Proceedings of the

78

34th International Conference on Machine Learning-Volume 70, pages 3861–3870.
JMLR. org, 2017.

[114] Christopher J.C. Burges Yann LeCun, Corinna Cortes. THE MNIST DATABASE
of handwritten digits.

[115] Shaokai Ye, Tianyun Zhang, Kaiqi Zhang, Jiayu Li, Kaidi Xu, Yunfei Yang, Fuxun
Yu, Jian Tang, Makan Fardad, Sijia Liu, et al. Progressive weight pruning of deep
neural networks using admm. arXiv preprint arXiv:1810.07378, 2018.

[116] Jinshi Yu, Guoxu Zhou, Andrzej Cichocki, and Shengli Xie. Learning the hierarchical
parts of objects by deep non-smooth nonnegative matrix factorization. IEEE Access,
6:58096–58105, 2018.

[117] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pages 818–833. Springer,
2014.

[118] Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, and Yuan Yao. Global convergence of
block coordinate descent in deep learning. In International Conference on Machine
Learning, pages 7313–7323, 2019.

[119] Jinshan Zeng, Shao-Bo Lin, and Yuan Yao. A convergence analysis of nonlinearly
constrained admm in deep learning. arXiv preprint arXiv:1902.02060, 2019.

[120] Han Zhang, Tao Xu, Mohamed Elhoseiny, Xiaolei Huang, Shaoting Zhang, Ahmed
Elgammal, and Dimitris Metaxas. Spda-cnn: Unifying semantic part detection and
abstraction for fine-grained recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1143–1152, 2016.

[121] Hui Zhang, Huaping Liu, Rui Song, and Fuchun Sun. Nonlinear non-negative
matrix factorization using deep learning. In 2016 International Joint Conference
on Neural Networks (IJCNN), pages 477–482. IEEE, 2016.

[122] Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff.
Top-down neural attention by excitation backprop. In European Conference on
Computer Vision, pages 543–559. Springer, 2016.

[123] Ning Zhang, Manohar Paluri, Marc’Aurelio Ranzato, Trevor Darrell, and Lubomir
Bourdev. Panda: Pose aligned networks for deep attribute modeling. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1637–1644,
2014.

79

[124] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional
neural networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8827–8836, 2018.

[125] Xiaopeng Zhang, Hongkai Xiong, Wengang Zhou, Weiyao Lin, and Qi Tian. Picking
deep filter responses for fine-grained image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1134–1142, 2016.

[126] Yu Zhang, Xiu-Shen Wei, Jianxin Wu, Jianfei Cai, Jiangbo Lu, Viet-Anh Nguyen,
and Minh N Do. Weakly supervised fine-grained categorization with part-based
image representation. IEEE Transactions on Image Processing, 25(4):1713–1725,
2016.

[127] Ziming Zhang and Matthew Brand. Convergent block coordinate descent for training
tikhonov regularized deep neural networks. In Advances in Neural Information
Processing Systems, pages 1721–1730, 2017.

[128] Ziming Zhang, Yuting Chen, and Venkatesh Saligrama. Efficient training of very
deep neural networks for supervised hashing. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1487–1495, 2016.

[129] Bo Zhao, Xiao Wu, Jiashi Feng, Qiang Peng, and Shuicheng Yan. Diversified visual
attention networks for fine-grained object classification. IEEE Transactions on
Multimedia, to appear, 2017.

[130] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative ad-
versarial network. In Proceedings of the International Conference on Learning
Representations, 2017.

[131] Wenliang Zhong and James Kwok. Fast stochastic alternating direction method of
multipliers. In International Conference on Machine Learning, pages 46–54, 2014.

[132] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Object detectors emerge in deep scene cnns. In ICLR, 2015.

[133] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2921–2929, 2016.

[134] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Places: A 10 million image database for scene recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

80

[135] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis
decomposition for visual explanation.

[136] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. Scene parsing through ade20k dataset. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

81

APPENDICES

82

Appendix A: XNN

I. Human Evaluation

1. Comments from participants

In the printed questions that the participants took, they were also asked to optionally

elaborate on their thoughts regarding the 2 AI agents (visualization approaches) and

the overall course of the study. A few interesting comments would be referred in the

following. One of the points that we noticed is that the participants found the overall task

of grouping the given images difficult, especially in case of the seagulls in the CUB dataset.

They were asked the question of how difficult they are finding the task of grouping images.

From the answers scaled from 0 to 7, the mean value of 3.83 was obtained for the difficulty

of grouping given images. As we indented to have a challenging task for non experts, the

users elaborated this on their answers: {Not many differences between the categories!},
{Many of the images looked very similar, so it would be hard to parse which picture went

to which group}, {There was a lot of similarities throughout many of the images.}, etc.

Further, the overall performance of the participants was weaker in grouping the seagull

images and this was noticed in the comments of the participants as well: {I found it very

difficult to distinguish the seagulls but I found it less difficult to group the cells.}, {Bird

images were harder [to group] than cell images.}, {Some cells had dendritic outgrowths

that made them obvious but seagulls looked very similar.}, etc. This gives the intuition

that since it was more plausible for the participants to find distinct features among the

cell samples, they performed fairly as good as our approach in grouping the images even

with no visualization. However, in the task of grouping the seagull images, as the samples

were quite similar with no easy-to-find distinctive features, both the visualization methods

helped the performance.

83

Algorithm 3 The metric based on Voronoi diagram

for each Neuron n of X layer in image Im do
for each Part p with its Voronoi graph Gp do

for each Pixel (i, j) ∈ Gp do
Compute the distance between (i, j) and part label (ip, jp): dijp =(
(i− ip)2 + (j − jp)2

) 1
2

end for
Normalize the distance dijp into [0, 1], obtain the normalized distance d̄ijp
for each Pixel (i, j) /∈ Gp do
d̄ijp = 1

end for
P (Partmp |Pixelmi,j) = 1− d̄ijp
Compute the probability Sn,mp , P (Partmp |Neuronn) =∑

(i,j)∈Im P (Partmp |Pixelmi,j)P (Pixelmi,j |Neuronn) =
∑

(i,j)∈Im(1− d̄ijp)Sn,mi,j .
end for

end for

2. Participants’ statistics

In the beginning of the study, the participants were asked to select their answers for

general questions about their gender, age, their background in Computer Science, etc.

and We will represent the recorded statistics from our 30 participants in the following.

Age of the participants (in years): {‘18-30’: 76.7%, ‘31-40’: 16.7%, ‘41-50’: 3.3%, and

‘51-60’: 3.3%}, Gender of the participants: {‘Female’: 43.3%, ‘Male’: 53.3%, and ‘Trans

Male’: 3.3%}, Background (taken courses) of the participants in Computer Science: {‘No

course’: 36.7%, ‘1 course’: 36.7%, and ’4 courses or more’: 26.7%}, Background of the

participants in Artificial Intelligence: {‘No course’: 76.7%, ‘1 course’: 3.3%, ‘2 courses’:

6.7%, ‘3 courses’: 3.3%, and ‘4 courses or more’: 10%}.

II. Results on the CUB dataset

1. Voronoi-based probability

In Algorithm 3 we introduce the inverse distance as a factor when computing the Voronoi-

based probability Sn,mp , trying to keep the balance between the large part region and

the small part region.

84

Table A.1: The average faithfulness for Lasso with different α for 30 randomly selected
categories of the CUB dataset.

Lasso α 2.5 1.5 0.5 0.1

Numx 8 21 68 232

Freg Training 3.80 3.06 1.86 1.00

Testing 3.70 2.99 1.84 1.03

2. The faithfulness for Lasso

We summarize the faithfulness for Lasso using different parameter settings for 30 randomly

selected categories of the CUB dataset in Table A.1, where α is the parameter that

multiplies the L1 term in Lasso, Numx is the average number of the selected features

for the 30 categories. From Table A.1 we observe that the faithfulness values for Lasso

with different parameters are poor, indicating that it is almost impossible for the feature

selection method to select few X-features directly from Z to make a faithful prediction.

3. Masking the image with generated heatmaps

To further examine whether our proposed approach offers a complete explanation of the

decision made by the CNN, we attempted to do classification just using the regions that

are presented in the heatmaps, similar to [33]. First, we only keep top n pixels that have

the highest response in the heatmap, and the rest of the pixels are painted as black (we

keep the highlighted regions while masking the background, which is different from [33]

where the highlighted regions are removed). Then, an inpainting algorithm is applied

to recover the masked images, and finally, we utilize the prediction CNN to classify the

recovered images and test the classification accuracy. Table A.2 shows results for the

masking, inpainting, and classification task on 30 randomly selected categories of the

CUB dataset. The results show that our method is slightly better than the baseline

1-Heatmap. But we would like to note that the capability of our method to generate

separate concepts is non-existent in 1-Heatmap, which merges all concepts into a single

heatmap.

85

Table A.2: The average classification accuracy for images masked by our method (XNN)
and the baseline (1-Heatmap) with the same number of kept pixels on 30 randomly
selected categories of the CUB dataset.

Original image Pixels kept Mask by x-features Mask by 1-Heatmap

Classification

Accuracy
0.8798

300 0.6767 0.6713

500 0.7456 0.7381

1000 0.8297 0.8264

(a) Male downy woodpeckers

(b) Female downy woodpeckers

Figure A.1: The x-features for male and female downy woodpeckers.

4. Examples of degeneration

Figure A.2 shows some examples to illustrate the degeneration issue. Our propose method

SRAE can avoid degeneration, and make the prediction model explainable.

86

(a) (b)

Figure A.2: (a) Good examples learned by SRAE, the number of the x-feature is 3, where
the 3 neurons are orthogonal to each other; (b) Degenerated examples learned by NN,
the number of the x-feature is 3, where the first two neurons are very similar, and there
is only one positive neuron.

5. An interesting failure case

Figure A.1 shows the x-features for male and female birds of downy woodpecker, respec-

tively. The difference between the male and female birds of downy woodpecker is that the

male birds have a red spot on the head while the female birds do not. Hence, for male birds

Neuron 1 in the explanation space captures the red spot; while for female birds Neuron

1 captures the stripes on the head and the body. Neuron 2 in the explanation space

captures the strips on the body for both male and female birds of downy woodpecker. The

results indicate that the x-features in the explanation space truly justify the classification

decisions by capturing the key features of the birds, and the proposed model generates

visualizations which are explainable to human. However, the orthogonality and locality

on the female birds suffer, probably because the most indicative feature (Neuron 1) was

only available in the males, hence the algorithm went on to pick some other features into

Neuron 1 as well. Neuron 2 was, however, consistent in both the male and the female

birds.

87

Table A.3: The average faithfulness for Lasso with different α on 10 categories of the
Places dataset.

Lasso α 15 10 5 2.5 1 0.1

Numx 5 11 31 69 283 1782

Freg Train 4.0726 3.8078 3.3673 3.0566 2.2385 1.1677

Test 4.3366 4.0214 3.5281 3.1655 2.3382 1.3131

III. Results on the Places dataset

1. The faithfulness for Lasso

For the Places dataset, we summarize the faithfulness for Lasso using different parameter

settings for 10 categories in Table A.3, where α is the parameter that multiplies the L1

term in Lasso, Numx is the average number of the selected features for the 10 categories.

From Table A.3, we observe that the faithfulness values for Lasso with small Numx are

all very poor for different parameters, indicating that it is almost impossible for the

feature selection method to select few x-features from Z directly to make the prediction

faithful on the Places dataset.

2. More qualitative examples between heatmaps on the original

output ŷ (baseline: 1-Heatmap) and on x-features (our approach

XNN).

Despite the hundreds of object labels, the x-features generated by the explanation module

truly capture meaningful and consistent visual concepts on Places. Figure A.3 shows

more qualitative examples between heatmaps on ŷ (baseline: 1-Heatmap) and on x-

features (our approach XNN) for the Places dataset. One can see that the x-features

capture several specific or general concepts, like faucet & toilet, PC monitor, etc. The

visualization of the baseline 1-Heatmap falls on different objects in different images, while

the visualizations of x-features are more consistently focusing on the same concepts in

the images. From the results on both CUB and Places, we believe that the x-features

learned by our proposed model indeed provide concise conceptual explanations of the

88

Figure A.3: Comparison of heatmaps on the original output ŷ (baseline: 1-Heatmap) and
on x-features (our approach XNN) for Places.

decisions made by CNN algorithms.

89

Appendix B: DeepFacto

B. Classification on Fashion-Mnist

To compare our method with dlADMM [105], we evaluated the performance of our method

on the Fashion-MNIST dataset [109] with 60,000 training samples and 10,000 testing

samples. We followed the settings in [105] by having 2 hidden layers with 1000 neurons

each, and Cross-Entropy loss at the final layer. Also, the batch size is set to 128, βt = 1,

and the updates for Zt and Θt (eq. 6a) are performed 3 times at each epoch. Figure

B.1 shows the test set accuracy results over 200 epochs of training. It can be noticed

that Stochastic Block ADMM is converging at lower epochs and reaching a higher test

accuracy while performing efficient mini-batch updates. Further, in section C., it will be

demonstrated that Stochastic Block ADMM converges drastically faster than dlADMM

on wall clock time.

Heat maps

To further investigate the interpretability of the factorized representations learned from

DeepFacto, similar to [16], one can visualize the score matrix S. Each dimension of the

score matrix S can be reshaped back to the original activation size and be up-sampled to

the size of the input using bi-linear interpolation. In Figure B.2, the score matrix learned

form the DeepFacto with r = 32 (average attribute prediction of 81.4%) is used where

three different heat maps (out of 32) are depicted over different samples from LFWA

dataset. We have found r = 4 to be very low to represent interpretable heat maps for the

attributes and r = 256 to contain redundant heat maps. It can be seen, that the heat

maps can show local and persistent attention over different face identities: eyes, forehead,

nose, etc.

90

Figure B.1: Test accuracy comparison of Stochastic Block ADMM and dlADMM [105] on
Fashion-MNIST dataset using a network with 3 fully-connected layers: 784−1000−1000−
10. Final test accuracy: ”Stochastic Block ADMM”: 90.39%, ”Wang et al.”:84.67%
(averaged over 5 runs).

91

Figure B.2: Heat map visualizations from three different dimensions of the score matrix
S (rows) trained by DeepFacto-32 over different samples (columns) in LFWA dataset.
These dimensions can capture interpretable representations over different faces identities:
eyes (top), forehead (middle), and nose (bottom).

	Introduction
	Background and Related Works
	Training Deep Neural Networks
	Gradient Descent and BackPropagation
	Training DNNs as Constrained Optimization Problem

	Alternating Direction Method of Multipliers
	Non-negative Matrix Factorization
	Interpretability in Deep Neural Networks

	Embedding Deep Networks into Visual Explanations
	Introduction
	XNN: eXplanation Neural Network
	The Explanation Network
	Embedding to the Explanation Space
	Implementation Details
	Visualizing the Explanation Space

	Experiments and Results
	Human Evaluation
	Quantitative Evaluation Metrics
	Quantitative Results
	XNN on convolutional layers

	Summary

	Stochastic Block ADMM for Training Deep Networks
	Introduction
	Stochastic Block ADMM
	Training DNN using ADMM
	Stochastic Block-ADMM
	Discussions on Convergence Properties

	Deepfacto: End-to-End Factorization of the DNN Activations
	Experiments and Results
	Setup
	Supervised Deep Network Training
	Weakly Supervised Training

	Summary

	Conclusion
	Bibliography
	Appendices
	XNN
	DeepFacto

