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GENERALIZED POWERS
CHAPTER 1  PRELIMINARY DEVELOPMENT

1.1, Introduction. It is well known [2, p.111] that if b is a prime,

then the number of subgroups of order b® in an elementary Abelian

g1 L4

group of order bE is | l E_=t
. izl
i=0 b7 =1

paper we shall generalize this result and then use the generalization

if g > 0 and is 1 if g=0, In this

to obtain “generalized powers.® Although some of the basic properties
of ordinary powers hold for ®"generalized powers', many curious-looking

properties arise,

1.2. Notations and conventions. Unless otherwise indicated we will

let a, by, t, x;, y represent complex numbers; g, h represent integers;
¢y ds i, s ky; gy r represent non-negative integers; and n represent
a natural number,

The following conventions will be adopted:

(1.2,1) (&) =13
t
(1.2.2) MERT
(1.2.3) if x §0, x° = e¥ 108X

where the logarithm has its principal value [3, p.420];

(1.2.1) 0% =0 1f R(t) =0

where R(t) is the real part of t;

(1.2.5) 0% = 1;

exmas

and otherwise Ot does not exist.,



By use of the above conventions we now let
(1.2.6) H £(i) = o™
i=g

when f(i) is a function of ij

3
(1.2.7) the superscript factorial of ;‘2 = [f'j & = ;ﬂ; £+ when fi is a
' = :

function of the superscript i

’ =1 tei
(1.2,8) Lt a) = alT 5—:-——1-:1 if the product exists®;
- i=o0 al+ -1
and
t R t
162,9 N(b) =1im L o
( ) (b) Lin g(al)

We note that the conventions regarding o® provide that LZ(a) is
continiious at a = 0 if Nz(o) exists, and that otherwise L;(O) is

non-existent,

1.3, Some properties of Nz(b)g The following five theorems follow

——

directly from the above definitions,

THEOREM 1.3.1. If a" # 1 when n < max (é, ke g),
L
["-11e ] [Ly(a) &
faf1le [aBale  [18(a)le [L{78(a)]e

%@)u if 0 5 g < ke

ngc(a) =0, if g <0 or g >ko
THEOREM 1.3.2. 'No(b) = 1.

THEOREM 1.3.3. N'_(b) = 0.

¥ The product fails to exist if and only if g » O and either (1) a™=1
when g2n or (2) a =0 when both g > 1 +R(t) and g #1 +t,



THEOREM 1.3.L. Nﬁ(b) = 1

oo ok
THEOREM 1.3.5. L

(b) =0
The following theorem is a direct consequence of the theory of

elementary Abelian groups [2, p. 111],

THEOREM 1.,3.6. If b is a prime, N’Z(b) is the number of elementary

Abelian groups of order b€ in an elementary Abelian group of order bk.
By (1.2.8), L;.‘(a:) is defined for all j,t except when a = 0, and

when a is a root of unity., We next investigate the existence of Nt(b)

J

when b = O and when b is a root of unity.

THEOREM 1.3.7. Ng’(O) exists for all j only if t is a non-negative

integer,

PROOF, If t is not a non-negative integer and j > |1+R(t)], then N;(O)

does not exist., The theorem follows, ‘ |
The next theorem follows directly from (1.2.9).

THEOREM 1.3.8. Nj(0) =1 1£0.s] sk |

THEOREM 1.3.9., If b has period p #1, and j > p, then N;(b) exists

only if t is an integer, f

-1 .
PROCF, If j = p, N;;’(b) can exist only if JIT (bt_l- 1) = 0., If b has

1=0

t-1

period p #1, b "= 1 = 0 implies t-i = hp. Since i,h,p are all

integers, t must be an integer,

THEOREM 1.3.10. If b has period p, Ngl(b) exists. Explicitly,
h ho
1

10 01 b) = N b

(1.3.1) e (o) e

whengspg1 *+ 8 h ==ph1 +h2, and0_<_g2, h2<p.

PROOF, Since p is a positive integer 85 823 h1, h2 can be found as



specified by means of the Division Algorithm. If g <0, (1.3.1)

follows from (1.2,9), (1.2.1), (1.2.2). If g >0, (1.3.1) follows by
h

(1.2.9), the theory of limits and 1'Hospital's rule. Since Ngg(b)

exists when g, <p, by (1.2,9), the theorem follows.

Some interesting-looking Pascal-type triangles are a consequence
of the above theorem, One of these triangles is exhibited in the
Appendix,

The following theorem is a direct consequence 61‘ Theorems 1.3.3,
1.3.5, 1.3.8, 1.3.10.

THEOREM 1,3.11. Nl;(b) exists for all b,

The next theorem follows directly from 1l'Hospital's rule.

THEOREM 1.3.12. NZ(U - (z),

The above two theorems lead us into an investigation of
combinatorial-~like properties of Nl; (b) and some of their direct
consequences,

L
THEOREM 1.3.13. N{(b) = NS _(b).

PROOF, Since O < g <k if and only if O < k~-g <k, the theorem follows
from Theorems 1.,3.1, 1.3.11.

We next establish some recursive relations, ‘
THEORPM 1,3.14. If a” #1 when n < g, and if a £ O when both

g2 1+R(t) and g #1+t; then

PPN t+1 -1t teg+l_t

(1.3.2) Lg (a) Lg(a)‘ +a Lg_1 (a)‘.

PROOF., If g <0, (1.3.,2) follows from Theorems 1.3.2, 1.3.3. If

g >0, (1.3.2) is an identity by (1.2.8) and the hypothesis.



The following theorem is a direct consequence of the theory of

limits and Theorems 1.3.11, 1.3.1k.
THEORRM 1.3.15, N (b) = Ni(b) + BEXINS (b)) if g < ksl

THEOREM 1.3.16. If a4 1 when n < g, and a # O when either g <0 or
both g > 1 +R(t) and g # 1+t; then

(1.3.3) Ltg+1 (a) = af LZ(a) + L;:-‘l (a).

PROOF, If g <0, (1.3.3) follows from Theorems 1.3.2, 1.3.3. If
g >0, (1,3.2) is an identity by (1.2.8) and the hypothesis.
The following theorem is a direct consequence of the theory of

limits and Theorems 1.3.11, 1,3.16,
THEOREM 1,3.17. N5 (b) = b7 Wy(6) + My, ().

We next use the above theorems to establish some special

properties of Nlj((b) and N}n(b),

THEOREM 1.3.18., If 0 <= j <k, ng(b) is a polynomial in b of degree
j(k-3j) with positive integral coefficients and leading coefficient
equal to one,

PROOF. The theorem holds when j = O or k (by Theorems 1.3.2, 1.3.4).
If we assume inductively that the theorem holds for N;l]{-‘l (b) and Nl;(ﬁ),

the theorem follows by Theorem 1.3.17 and finite inductién.

r .
The polynomial z f(i)xl will be called coefficient symmetric if

1=0 .

f(r-i) = £(i) for all i, and coefficient anti-symmetric if f(r-i)=-f(i)

for all i,
THEOREM 1.3.19. If 0 < j <k, Nlaf(b) is a coefficient symmetric

polynomial,



PROOF, Since N;( (b) is a polynomial in b of degree j(k-j)

(vy .Theorem 1.3.18), and
(1.3.4) Ng(b) - pd(k=3) NljF (%)

is an identity by Theorems 1.3.1, 1.3.11; the theorem follows by

elementary algebra,

As a direct consequence of Theorem 1.3.18 we have
THEOREM 1,3.20, If b is a non-negative integer, Nl:;(b) is a positive
integer when 0 £ j < k.
THEOREM 1,3.21. Nl;(»l) is a non-negative integer.

FROOF N 1] w2 2 2k, +k
OOF. By (1.3.1), j(~1) = 3, sz(-1) where J = 2J, +J,, k= 2k, +k,,
k

and O < ;]2, k2 < 2, Since( j1 is a non-negative integer,
1

NO(-1) = N)(-1) = N)(-1) =1, and N(«1) = 0 (by Theorems 1.3.2, 1.3.L,
1:3.5), the theorem follows.

THEOREM 1.,3,22, If b > -1, Nlj‘(b) >0 when 0 <J <k.

PROOF. If b = 1, the theorem is an immediate consequence of Theorem

1.3.12, In all other cases the theorem follows from (1.2.9).
3 .

THEOREM 1.3.23. N"j'n(b) = (=1)9 b"nj""Z ’Nrs+j“1 (b) if b £ 0.
: 3 "nj"(j) n+je1
PROOF., Since L‘:'jn(a) = (-3 a 2 ij“’

a root of unity, the theorem follows by the theory of limits and

(a) when a # 0 and a is not

Theorem 1.3,10.



CHAPTER 2 GENERALIZED POWERS OF THE FORM c%b)

2,1. An extension of the binomial theorem. We note that the NZ(b)
possess various binomial coefficient type properties (e.g. Theorems

1.3.13, 1.3.17). If we also note that the number of subsets of k‘

eléments = Ng(T) = (1+1)* (by Theorem 1.3.12) and when b is a

j=o

prime the number of subgroups in an elementary Abelian group of order
k Nk .
b = gé; j(b) (by Theorem 1.3.6), then it does not seem unreasonable
=0

‘to introduce a symbol such as (14—1)%b) to represent the latter sum,
At is an extension of this concept which leads to our development of
"generalized powers,™

Our objective is to create and investigate generalized powers of

the form x?%) with medial x, exponent t, base b which have the property
-indicated in the above paragraph. In order to embark upon this
”expedition wé will establish generalized powers with both medials and

‘exponents restricted to non-negative integers by means of

(20101) O?b): 1,
Il
(2,192) O(b) = O,
and
e k
Tk i
(2.1.3) (1)) = 250 ey

If we let ¢ = 0 in (2.1.3) and apply (2.1.1), (2.1.2), and
‘Theorem 1.3.2; we have
THEOREM 2.1.1. 11(‘b) - 1.

If we now let ¢=1 in (2,1.3) and apply the above theorem we have



k £
THEOREM 2.1.2. 2., = > N.(b).
(b) 55

The above theorem together with Theorem 1.3.6 yields
THEOREM 2.1.3. If b is a prime, 2%b) represents the number of
subgroups in an elementary Abelian group of order bk.

By use of (2.1.3) we could now recursively find 3%b)’ h%b)’ etc,
However, since we have found this process to be tedious and the
results to be uninteresting, we shall not proceed in this direction.
Instead, we shall investigate some general properties of the
generalized powers which have been defined.,

THEOREM 2.1.4. If b is a non-negative integer, n%b) is a positive
integer.

PROOF . 1%b) = 1 by Theorem 2.1.1., If we assume inductively that n?b)
' is a positive integer, and let c=n in (2.1.3), the theorem follows by
Theorem 1,3.20 and finite induction.

THEOREM 2.1.5, If =1 <b <1, then n%b) > 0,

PROOF., 1%b) = 1 by Theorem 2,1.1, If we assume inductively that

n?b) >0, and let c=n in (2.1,3), the theorem follows by Theorems

1.3.21, 1.3.22, and finite induction,
THEOREM 2.1.6.% ¢9 | = 1.
(b)

PROOF., Since (c+1)?b) = c?b) [by (2.1.3) and Theorem 1.3.2] and
O?b) =1 [by (2,1.1)], the theorem follows by finite induction.
THEOREM 2.1.7." c}b) = C,

PROOF. Since o}b)a 0 [by (2.1.2)], and (c+1)}b)= c}b)+1 [by (2.1.3)

and Theorems 1.3.2, 2.1.6, 1.3.4], the theorem follows by finite

¥ Theorem 3.1.3 validates this theorem when c¢ is a complex variable.



induction.

As may be suspected from Theorems 1.3.12, 2.1.2, we have

THEOREM 2.1.8.% c%1) = o,

PROOF. 0%1) = 0¥ by (1.2.5), (2.1.1), (2.1.2). If we assume

inductively that 0?1) = cj, then (2.1.3), Theorem 1,3.12, and the
: , k - k k
binomial theorem yield (0*1)(1) = > (j) cj = (c+#1)"., The theorem
now follbws by finite induction.
THEOREM 2.1.9.%  (c+d) () = ZEE Nk(b) o534y

PROOF, In order to establlsh this theorem by finite induction we will
show that it holds for d=0, and for d +1 whenever it holds for d.
If d=0, the theorem is a direct consequence of (2.1.1), (2,1.2),

and Theorem 1.3.2.

By (3.1.10), (2.1.3), the inductive assumption on d, and a

rearrangement of terms [L, p. 245] we have

#

k :
(2.1.0)  [e+ (s 1)]f, [(c»rd)»a»“l]lzb)m zﬁ(b) (s )Py

L}

ZEE = Nk<b) wd(o) of;§ afyy.

g=0 J=g
If we now let h = k=3 + g, (2.1 L) becomes

k
(2.1.5) e+ (d+ D]y = g% h‘«-g 2 () Nh(b) (o) o)

After a rearrangement of terms [L, p. 245] and application of

(2.1.3), (2.1.5) reduces to

* Theorem 3.1.3 validates this theorem when ¢ and d are complex
variables.
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@1.6) [ov (@ DTe = = ) M) 5 a8
o = R A OB O
K

k . h
a4+ 1) .
"2 ) oy @+ o)

The theorem now follows by finite induction.
Since the above theorem reduces o the binomisal theorem when b = 1

(by Theorems 1.3.12, 2,1.8) it is an extended binomial theorem,

2.2, Some laws of exponents. After observing the various ordinary-

looking properties of generalized powers in the last section, one may
suspect that the ordinary laws of exponents will also be inherited. In
this section we shall establish some laws of exponents by restricting
the base to a root of unity.

THEOREM 202910% If b has period p, then

gqp+r o 4..F
(2.2.1) ©p) = © C(p)°

PROOF. We will consider two cases: (1) r <=p and (2} r is any
non-negative integer,

Tn order to establish Case {1) by finite induction we note that
(2.2,1) holds for c=0 [by {1.2.5); {2.1.1), (2.1,2)] and proceed to

show that (2.2.1) holds for {(c+ 1) whenever it helds for c.

By (2.1.3), (C**QD(b) “’Egi ng#r(b} C?b)s and
by (1.3.1), ng""r(m (g) N’ (m where j=hp +1i and i, r < p.

Thus when r < p we have

] q r .
(c&»?)?@?é LS :Ez (QJ Nf(b) chp%l by Theorem 1.3.5.
h e

O

Theorem 3.1.3 validates this thecrem when ¢ is a complex variable.



1

If we now use the inductive assumption on ¢, the latter equation

| q “r |
s - 4 h i
beeomes (c+1)?§)r = Z) (g) c oj%\, N?{(b) c:(Lb) = (c+‘!)q¢(,c+1)“t(°b)

by (2,1.3) and the binomial theorem. Case (1) now follows by finite
induction, |

To establish Case () we let r=jp+i with i <p., We thus

.Ob'baj'.n qu+r = (q+j)p+i = q+jo i = q jo i = qo r
® = %) T ey T OO y)) T e

by Case (1) and elementary algebra, The theorem follows.,

THEOREM 2,2.2.% If b has period ps then |

24242 P el

( ° ) C(b) C

PROOF, If we let r =0 in (2,8,1), the theorem follows by Theorem
201 °6°

THEOREM 2,2.3.% If b has period p, then

T "
(2.2.3) cc(]f)) "Clp) T c?g)rye
(202-h) (cq)?g) = (qu)%b) = C?i?s
(2.2.5) (cd)%g) = c‘gg).dc(lg),

PROOF, c?f);r = cqocl(’b) = c‘(?g)ocfb) by (2.2.1), (2.2.2);

(VTP = (T

]

P - (cqr)l()b) = c?;l))g and

#

- q4 . .9,49 - ,q9pP '
(cd)?:g) (ed) cied c?g) d(b) by (2,2.,2)‘ and elementary algebra,

2.3. Base zero., Since Ng(b) reduces to a simple formula when b is a
root of unity and when b=0, and since cl(cb) has some interesting
properties when b is a root of unity, we are now prompted to inves-

tigate el({ The following theorem establishes a formula for computing

0)°

% Theorem 3,1.3 validates this theorem when ¢ and d are complex
variables.
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generalized powers with base zero,

c+k

THEOREM 2.3.1.% (c+1)lzo) - | HE.

PROOF, If c¢=0, the theorem follows by Theorem 2.1.1. If we assume

inductively that the theorem holds for c, then
k : h : h k+1
_ = c+ L [c+k+ )
2oy = = (ee0g) - = [37) - 775
h=o0 h=o

by (2.1.,3), Theorem 1.3.8, and elementary alpgebra. The theorem follows
by finite induction,

The above theorem yields some interesting consequences, For

example,

'(2.3.1) (c4—1)¥0) = (k4—1)%o),
(2.3.2) (e)50y = (-1)°,

and .

(2.3.3) (-c)%o) =0 when k > cj

where the last two formulas require the use of Theorem 3.7.3.

* Theorem 3.1.3 validates this theorem when c is a complex variable,
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CHAPTER 3 GENERALIZED POWERS OF THE FORM xl((b)

3.1. Arbitrary complex medials. The following two theorems lead us to

a natural definition for x%b).

THEOREM 3.1.1. If ¢ and k are positive integers,

c-1 k-1
: K h
Q . k-‘l
PROOF. Since (j+1)(y)~ 31((1)) - Nllfl(b) j(b) [by (2.1.3) and Theorem
c-1
1.30)4], and C( ) 2 [(j+1)(b)-j(b)], (3 1 1) follows.,
J=0

THEOREM 3,1.2. If c and k are non—negative integers, then
(3:1:2) (b) 2 P (b) c

where Pg(b) is a polynomial in b with rational coefficients when

0 <j sk Pg(b) = 1 and Po(b) = O,

PROOF, Since c? ) = 1 [by Theorem 2.1.6] and O? =0 [by (2.1.2)],

b b)
Pg(b) = 1, Pg(b) = 0, and the theorem holds for k=0 and c¢=0 [by
(1.2.5)]. To complete the proof we must show that the theorem»hqlds
when ¢ is a positive integer. To accomplish this by finite induction
we will establish that the theorem holds for k + 1 whenever it holds for
0, 1, = * *, k,

By use of Theorem 3.1.1, the inductive hypothesis, and some

rearrangement of terms [k, p. 245], we have

c-1 h c-1
(3.1.3) cl((,;;=2 N+ (b)EE P2 (b) 3 aEENk” (b)Ph(b)lJEO jl]

c-1

We next let £i = §§5 jl. It follows from elementary algebra that
=0
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£ is a polynomial in ¢ of degree i+ 1 with rational coefficients £t

-

when 0 <« j £i+1, and fg = O, Thus we have

. i+l
(3010h) fl = 2 fl cj.
g=1 7

After applying (3.1.4) and rearranging the terms [L, p. 245]

again, (3.1.3) becomes

k+1 k %k ]
(3.1.5) iy = = [ = =5 ) fﬂ oJ

j=1. | i=j=1 h=i B
‘We can now observe that the expression within the brackets of
(3.1.5) is a polynomial in b with rational coefficients: when
0 < j <k+ since each Nl}i” (b) P}.i(b) is a polynomial in b with rational
coefficients (by Theorem 1,3.18 and the inductive assumption), and the

£l are rational. Since Pn(b) = 0, we have Pk+1(
j‘ > [o)

b) = 0, Thus (3.1.2)
follows from (3.1.5) and finite induction if we let PJ (b) equal the
expression within the brackets of (3.1.5) when O < j < k+1., The proof

is now complete,

k
If0<jx<k, Pj b) is the polynoml.al‘ in b which has been ’
established in the above theorem. _We thus have
(30106) . Pg(b) = 1,
(3.1.7) Po(b) =0,
and
Gy - = Nk e
.1.8 = f hen O k.
3 ) P.(b) 1aj-1 = (b) P, (b) when 0 < j <

- By virtue of (3.1.2) we can now let

K
K K
(3.1.9) X(p) = §§§.Pj(b) x.

The following two identities are direct consequences of (3.1.9)

(3.1.10) [Geay) + 2155y = [x+ ret) 1y
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and
(3.1.11) (x+y)}({b) = (y+x)l((b).

Since most of our formulas for generalized powers have been
established by finite induction on the medial, the following theorem
serves well in its role of validating these formulas when the integral
medials are replaced by complex medials,

THEOREM 3.1.3. Let E be an equation in which each member is a poly-
nomial (with complex coefficients) in generalized powers with non-
negative integral exponents, and such that each variable medial is a
polynomial (with complex coefficients) in its “component" variables,
If E contains a fixed number of variable medials, and if E holds when
each variable medial component is restricted to an infinite subset of
the integers, then E is an identity when each variable medial component
is converted to a complex variable,

PROOF, If in E we express each generalized power with a variable
medial in polynomial form [by use of (3.1.9)], we obtain an identity
by [5, p.66]. Since this identity holds when each variable medial

component is converted to a complex variable, the theorem follows by

(3.1.9).

3.2, Negative medials. The next theorem serves as a lemma for its

successor, which in turn serves as a lemma in establishing a formula

s

J

K

R C NP P

THEORRY 3.2.1. = (-1)3 »'%' W) = 0.
j=o

PROOF, If n=1, the theorem is immediate. If we assume inductively

that the theorem holds for n, then by some rearrangement of terms and
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Theorems 1.3.15, 1.3.5, 1,3.3 we have

n+l

J
E(M 2 )Ng”<b>

n (g) n n+1 (j) 14
e S 2R ¢ S (c1)d B2 g 4 (0)
j=o J 5=1 J=

n+? Jf?
= bt S (-3 b( 2) N?m?(b),

e A
“Yuros
(%) :

If we now let h = j-1, the last expression reduces to zero by the
inductive assumption. Thus the theorem holds for n+ 1 whenever it
holds for n, and the proof by finite induction 1s complete.

k2]
THEOREM 3.2.2, (miﬁ(b) -1¥ v
PROOF, If k=0, the theorem follows by Theorem 2.1.6. If we assume

inductively that the theorem holds for O, 1,  * <, k we have

k i ( j )
kel o kel , 5 ka1
(3.2.1) 0= (1= 1>(b> (b) (-9 v'°" 4 (1))

ko
O\

Kt 1 (3) <51)

- Zii A ONEER:

. (=1)%g§ - (=1

by (2.1.2), the extended binomial theorem, and Theorems 2.1.1; 1o3ele

If we now apply Theorem 3,2.1, (3.2.1) reduces to
(k+1}

(3.2.2) 00+ (= m)(b> - (=1)

Since (3.2.2) now validates the theorem for k+ 1, the proof by
finite induction is complete.

THEOREM 3,2.3. (ax)fb\ - (-1 if b £ 0.

k
X
1)

PROOF. We first establish the theorem for x=c, If c¢=0, the theorem
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follows directly from (2.1.1), (2.1.2), and Theorem 2,1,6. If we
assume inductively that the theorem holds for ¢, we have

kK + rn . w e K
(mo-1)Fyy = 2 NE(B) (1)5) (=) = (1)) 2 Nals) o (1}
b

)

by (3.1.11), the extended binomial theorem, Theorem 3.2.2, (1.3.k),

( 1)(b) (c+1) if b # 0,

(2,1.3). The theorem now follows for x=c¢ by finite induction, and

an application of Theorem 3.1.3 completes the proof,

Plg(b)°

exhibit the results obtained for k = 2, 3, L.

3.3

By means of Theorem 3.1.1 we can find Plg(b)‘, We now

(3.3.1) (b) = [N (b) ]& =+ ;(lmb)

o--

(3.3.2) x[py = 35_3_[1\1 (0)1& + X2 (1-D)W (b) + x(1-b)° [ (b) Je.,
T 3

(3.3.3) =y = 0E®) e + PODE B (b)
LT i

W)
om

+ x2(1~b)2(1+b2) (‘]‘1*‘39b+‘!1b2) + x(1-b)3[N?(b) &,
LT L

We will next consider some properties of Plg(b) when b is a root
of wunity,

THEOREM 3.3.1. Let P;(b) =Owhenh <0 or h >r. If b has period p,

0<r <p, and O <q+h <pg+r; then Pzigr(b) = P;(b).

PROOF. If we set k=pqg+ r and apply (2.2.1) we obtain cl({b)= cqecl(’b)

k . r

which in turn yields >, Pg(b) d == P;(b) ¢35 we now let
J=o -

j=q +h, the latter equation reduces to

k._
ZE; g+h
h==q h=o
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Since this equation is an identity in ¢, the theorem follows.

By use of Theorem 2.1.8 we find
(3.3.4) P§(1) =059 when0<j<k
and by Theorem 3,.,3.1, we have
(3.3.5) P§q+r(~1) = Olqﬂ""jl when 0 £ j <2q+ and 0 <r <2,

We next consider P?(O).
THEOREM 3,3.2. PI';.:(O_) >0 when 0 < j <k.

PROOF, By (3.1.2) and Theorem 2.3.1 we have
k
k k J ¢ +k=1
o) = = P3(0) ¢ = ( -
J=0
Thus k! PIS(O) is the sum of all products with (k-j) different factors

which are formed from the first (k-1) natural numbers., Since there are

(11:;) of these products, the theorem follows,

The above theorem establishes the fact that the constant term in
the polynomial expansion of Plj{(b) is positive when O < j <k, This
fact, together with the following theorem, will be used to establish

the degree of P (b) when 0 < j <k,

THEOREM 3.3.3. P(b) (-1)3% v H k(l) if b £ 0,

PROOF. By (30109) and Theorems 3.2.3, 3.2.2 we have

Kl x
2 5 (b)(-x)J = (0 = (DF 2l = 7i(5)
if b £ 0, Since this is an identity in x, the theorem follows by
equating the coefficients of x9. |
The above two theorems together with Theorem 3.1.2 yield
THEOREM 3.3.4. P?(b) is a polynomial in b with rational coefficients

and is of degree K when 0 « j <k, It is coefficient symmetric if
2 J =
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j+k is even, and is coefficient anti-symmetric if j+ k is odd.

We now establish some additional properties of P?(b).
THEOREM 3.3.5. = P,(b) =1,

PROOF, If we let c=1 in (3.1.2), the theorem follows by Theorem 2,.1.1

THEOREM 3,3.6. If O < j <k, then
. k . k .
(3.3.6) = [JJFi) = = xeri).
. 1=j . izj J
PROOF., By use of (3.1.2) and (2.1.3) we obtain the following two

expressions for (c+1)k which we equate,
(b) 4

k K, i k i i :
(3.3.7) = P e+ ) = = Ni(b) = Pi(b)ed,
1.=0 1=0 J=0

!

By use of the binomial theorem and a rearrangement of terms

(L, p. 2451, (3.3.7) becomes
k
)P (b)cd 'Z 2 Nk(b)P (b)ed,

j=o i=j

(3.3.8)

-o i=j ‘

Since (3.3.8) is an identity in c, (3.3.6) follows.

If we let j take on the values k-1, k=2, « « ¢, 1, O succes-
ively, we can use (3.3.6) to find P?(b) after we have P?(b) for i < k=1,
These P;(b) can be found by a similar process since we know Pg(b) =

[ty (3.1.6)]. We now use this procedure to establish

THEOREM 3.3.7. Plli(b) = %{T[Nﬁ‘(b) J&.
PROOF, If k=0, the theorem follows by (3.1.6). If k >0 and j=k- 1,

then (3,3.6) reduces to Pi(b) = %Nf(b)Pi:}(b) by Theorem 1.3.13. The

theorem now follows by recursion and the fact that Pg(b) =1,
[ ]
THEOREM 3»308. If k > 1, then

(3.3.9) Py 1(0) = Lip [§](1-2) [ ()17 P Ca).
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PROOF. If k=1, (3.3.9) follows from (3.1.7). .E& uée'of (3.3.6) with
j=k-2, and Theorem 3.3.7, we find that (3. 3 9) holdé for P (b)
whenever it holds for Pi:;(b). The theorem now follows by finite
induction, |

We conclude this section with some conjectureé.

CONJECTURE 3.3.1. Plf(b) - (1-b)k"1 [Nﬁ"" (b)]& when k = 1.

CONJECTURE 3.3.2. If 0.<j =< ky X(b) contains (1..1))k J as a factor.

CONJECTURE 3.3.3. ?Pk(b) - 0 implies |b] =1 when 0 < § <k
CONJECTURE 3.3.4., P (b) >0 when -1 <b <1 and 0 < j <k,
CONJECTURE 3.3.5. If x > O, then x(b) > 0 when -1 <bs1.

" We note that the last conjecture follows from (3.1.9), (3.3.4),
(3.3.5), (3.1.6), (3.1.7), and Conjecture 3.3.4; and that Conjecture
3.3.4 follows from Theorem 3.3.2, continuity (by Theorem 3.1.2) and

Conjecture 3.3.3. Conjécture 3.3.3 has been verified for k < 5,

3.k Q?(x). In this section we investigate another approach for

finding a simple formula for x%b),'and again we are unsuccessful, By
use of (3.3.1), (3.3.2), (3.3.3) we can express x%b) in powers of b

when k=2, 3, 4. We now exhibit these results.

(3.L.1) <y =v(3) + 57
e I rR e
B3 xpyy = f) ¢ b(x+1, (52.6)

% 3(X51)x‘ 2(x+1)(5 6) + 3b‘x+2) . (X£3).

The next theorem follows directly from (3.1.9) and Theorems 3.1.2,
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3.3.7. (1;)
THEOREM 3.k.1. XIZb) = 2 Qli(x)bi where QI;(X) is a polynomial in x of
i=o

degree k with rational coefficients,

k k . . R
If0o<ix ( 2.], Q.(x) is the polynomial in x which has been
established in the above theorem, The following theorem is now an
immediate consequence of Theorem 3.2.2.
THEOREM 3.4.2. Qli{(x) has x+1 as a factor when i # (1;).
Since O%b) and 11&)) are both independent of b [by (2.1.1), (2.1.2),
and Theorem 2.1.1] we have
THEOREM 3.L.3. Q?(x) has x(x-1) as a factor when 140, and x as a
factor when k£ 0.
By virtue of Theorem 2.3.1 we have
k X+k=1
THEOREM 3.h.b. Qo(x) = [ 7).
If we let b=1 in the equation of Theorem 3.4.1 and apply
Theorem 2,1.8 we obtain
H
2 k k
THEOREM 3.L.5. = Q;(x) =x".
i=o
We now.egstablish two additional properties of le(x).

';‘HEORM_f.h.é. Q(klg,_i(X) = (-1)lei{(-=x) when 0 <i < (l’;)'

PROOF, By Theorems 3.4.1, 3.2.3 we have
5 H
(2j k i k k 2 k, (119
l -
when b# O.‘ If we now let i= (1;)__ j in thg' last expression of (B,b.h),

that equation reduces to
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(%) - {5
(3.4.5) = Q (=x)pt = (- iii Q

i=o 1 i=o (k’-l(X)b

by use of Theorem 3.2.2. Since (3.4.5) is an identity in b (when
bﬁ(D, the theorem follows by equating the coefficients of bi.
By use of Theorems 3.4.4, 3.4.6, and elementary algebra we obtain

THEOREM 3..L.7. QTk (x) = (ﬁ).

5]

We conclude this section with the following conjectures:

CONJECTURE 3.L.1. Q?(x) - (k~1)(x+k‘2].

g~ L)

We note that Theorem 3.4.6 establishes the equivalence of the

CONJECTURE 3.4.2.

above two conjectures.
CONJECTURE 3.4.3. If k > 1, then x%b) is indépendent of b only if
x=0or x=1,

This last conjecture follows from Theorem 3.4.7 and
Conjecture 3.4.1, since x(x~1) would tﬁen be the greatest common

H

A1l of the above.conjectures have been verified for k < 6.

factor of Q (x) and Q1(x)

3.5, x?]). Our purpose in investigating generalized powers with
exponent 2 at this time ié to indicate some reasons why any attempt to
further extend the properties of ordinary powers may well prove to be
fruitless, .

A1l theorems of this section are consequences of (3.3.1) and
(3.3.3).
THEOREM 3.5.1. Xop\ ='XbyeXp  implies x(x-1)(b=1) =

(b) = *(b) "*(b) 1)
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THEOREM 3.5.2. (xy)%b) = x%b) .y%b) implies ;qr(x~1)(y-1)(b2-.1) = 0,
THEOREM 3.5.3. (x2)%b) = x)(*b) implies x(x=1) (b°=1) =

2
THEOREM 3.5.h. If b £ -1, (b+1 = 1.
(b)
b-1)?
THEOREM 3.5.5. If b £ -1, T = 0,
= (b)

The above theorem, which reveals that X%b) = 0 does not imply x=0
when b2;4 1, can be extended (by use of Theorems 2,1.6, 2.1.7, 2.2.1,
3.3.7, 3.3.8). For if k » 2, there exists an x# 0 such that x(b) =0
[except when b has period p and k = 0 or 1(mod p)]. Thus when b2 £1
there exists a k > 2 and an x# 0 such that x%b) = 0,

We conclude this section with two additional properties of x(b)

THEOREM 3.5. For every real x#0, 1 there exists a real b such that

PROOF ., x2 <O when (1) 0 <x <1 and b > 1+X, or (2) x(x-u‘t) > 0 and
(b) T-x
b <l:-_J_C_.
Tex

THEOREM 3.5.7. For every real b # 1, there exists a real x such that
5

X(b) <0,

"~ PROCF. x%b) <0 when (1) x(b+1) <0 and x > b+:’ or (2) x(b+1) >0

'andx<3?——- or (3) b =-1and x <0,

’]’
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CHAPTER , GENERALIZED POWERS OF THE FORM x%b)

4.1, Arbitrary complex exponents. Thus far we have considered only

generalized powers with non-negative integral exponents., With a view
to eliminating this restriction we will let

(ho1.1) E(b,t,x) = ;SS Ng(b)x?b).

j=0
Since E{b,t,x) = (?+x)?b) when t is a non-negative integer (by the
extended binomial theorem and Theorems 2.1.1, 1.3.5), it is now
reasonable to let
(La1.2) (1fx)Eb: = E(b,t,x)
when E(b,t,x) is convergent,

We have not been able to establish a general theorem on the
existence of (1+x)%b) when t is not a non-negative integer. Existence
theorems for (1+x)%b) have been found when b=1, b=0, b is a root of
unity, x=0, x=~1, x=1, We shall now explore these cases,

We first note that E(1,t,x) is the binomial series for (1+x)% (by

Theorems 1.3.12, 2.1.8). Therefore E(b,t,x) is an extended binomial

series, and the theory of the binomial series [3, p. L26] yields
THEOREM L.1.1. If t is not a non-negative integer, then (1+x)%1)=(1ﬁxf
in the following three cases: (1) for all t when |x| <1, (2) for |
R(t) > 0 when |x| =1, (3) for =1 <R(t) <O when ]x] =1 but x££ -13
and otherwise (1+x)%1) fails to exist. |

We note that (1.2.3) and (1.2.4) validate the above theorem.

By virtue of (L4.1.2) and Theorem 1.3.7, generalized powers with
base zero are defined only when the exponent is a non-negative integer,

By virtue of (L4.1.2) and Theorem 1.3.9, a generalized power whoge base
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is a root of unity different from 1 is defined cnly when the exponent
is an integer,

4.2, Some further laws of exponents. We shall now extend the exponent

laws of Section 2.2 to generalized powers with integral exponents.
THEOREM 4.2.1. Let b have period p. Then

(Le2.1) (14x) ()78 = (142 P (1420 {5

when |x| <1, and the left member of (L.2.1) does not exist for any
other x when the exponent is negative.

PROOF., In order to establish (L4.2.1) we will consider two cases:

(1) 0 < g <p and (2) g is any integer. The proof of Case (1) consists

of showing that the coefficient of x?%?i in each member of (4.2.1) is

-n
J
found by use of (1.3.1). The coefficient in the right member is found

equal to ( )Ng(b) when i <p. The coefficient in the left member is
by expanding each factor and then using the distributive law and
(2.2,1). Thus Case (1) follows.

To establish Case (2) we let g= pher with O <r <p. We then have

(1+x)zg§*g a»(1+x)§;?*h)p*r = (1*x)2§;h.(1+x)?b)

= (1&x)&n(1*x}h(1¢x)?b) = (fo)”n(1+x)%b)
by Case (1), elementary algebra, and (2.2.1) for h > 0. The theorem
now follows since the series for (1+x)™ " converges if and only if
x| <1,
If we let n = g = 1 in (L.2.1), Theorem 2.1.7 yields
THEOREM }.2.2., Let b have period p. Then (w@};ﬁ’ = 1 when |x] <1,
and (1+x)};§ does not exist for any other x when p # 1.

The above theorem reveals that the exponent 1-p behaves like the



26
exponent zero when b has period p and |x| < 1.
The following theorem follows directly from (4.2.1) with g=0 and
Theorems 2.1.6, L.1.1.
THEOREM 4.2.3. If b has period p, (1+x)2§§ = (14x)™™ if and only if
le <1,
THEOREM L.2.4. If b has period ps the following laws of exponents hold

if and only if ]x] and ]y] are both less than one.

(4.2.2) (1) (8- (1) fy = (1) T8,
(4.2.3) [0 ™1R) = [T, = (190 5P,
and

(ha2.1) [(1a) () 1Y = (a0 Y- (1) (55

PROOF, This proof is similar to that of Theorem 2¢2.3., Thus (4.2.2)
follows from Theorems 4.2.1, 4.2.3; and both (4.2.3) and (L.2.4) follow

from Theorem 4.2.3 and elementary algebra.

Le3. 1?]]. The two theorems of this section completely characterize
1t

(b)*
THEOREM L.3.1. 1%b) fails to exist if and only if (1) b = 0 and t is
not a non-negative integer, or (2) b is a root of unity different from
1 and t is not an integer,

PROOF. If (1) or (2) occurs, 1% cannot exist [by (L4.1.2) and

b)
Theorems 1.3.7, 1.3.9]. Conversely, if both (1) and (2) do not occur,
then Ng(b) exists for all j [by (1.2.9) and Theorem 1.3.10] and thus
1?b) exists by virtue of (L.1.2), (2.1.1), (2.1.2),

THEOREM 4.3.2., If E(b,t,0) converges, T%b) =1, |

PROOF, The convergence of E(b,t,0) implies the existence of N;(b) for
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all j [by (4.1.1)], which in turn yields 1’2b) <1 by (La1.2), (2.1.1),

(2.1.2), and Theorem 1.3.2].

L. Some results on O?b). In this section we will establish a

formula for Ozg)

THEOREM L.L.1. If |b| > 1, then o?

when |b] > 1.
b) exists for all t.
PROOF. If t is a non-negative integer, the theorem follows from

(2.1.1) and (2.1.2). If t is not a non-negative integer, the theorem

follows from Theorem 3.,2.2 and the ratio~test.
THEOREM L.L.2. O(p, = 2 b"JnNn“j Yoy if |b] > 1.

PROOF. Since E(b,~n,~1) reduces to the above series by (4.1.1) and
Theorems 1.3.,23, 3.2.2;5 the theorem follows by Theorem L.4.1 and
(La1.2),

We note that the series in the above theorem diverges when
|p] <1,

THEOREM 4.L.3. ozg) ﬁ— (1-b73 if |v] > 1.

PROOF, If n=1, the theorem follows from Theorem L.4.2 and elementary
algebra, We assume inductively that the theorem holds for n and wish
to show that
-(n+1) _ ~(n+1)4=1
olol 0 07 1[1- .

By Theorems L.4.2, 1.3.17 (letting k=n+ j- 1) we have

(h2) oG 2 = IRy
“O

= 2 b"anNn+3“1 (b) + E b“’J(n“>N““3“‘1 (b) .

J=0
By further application of Theorem L.4.2, and Theorem 1.,3.3,

(Lohe2) reduces to
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-( +1) - -J(n+1). n+ 1
(Lok.3) (b? - o(fg) . J% p-d(n Nn J

If we now let j=i+1 and again apply Theorem L.4.2, we find that

the second expression in the right member of (L.4.3) reduces to
(hbh) om0l >[ = i) Nn+i(b)} 1) g 1),
i=0

Combining (4.4.3) and (L4.L.4) we obtain

-( +1) - =( +1) ~( +1)
(b4.5) % % P o)

The desired result (4.4.1) now follows, and the proof by finite

induction is complete.

L4L.5. Some results on Z%b). By use of Theorem 2.1.1 and the ratio test

we have
THEOREM 4.5.1. When t is not a non-negative integer, Z%b) exists if

|b] > 1 and does not exist if |b| <1.

41
THEOREM L4.5.2. '('11)) E (-1)3” (2 if |p] > 1.

PROOF, Since E(b,-1,1) reduces to the above series (by Theorems 1.3.23

1.3.4, 2.1.1), the theorem follows by Theorem 4.5.1 and (4.1.2).

THEOREM 4.5.3. If b >1, then 2"(‘:}> >2=1; and if b < -1, then
-1 -1,

PROOF, Since the series of Theorem L4.5.2 is absolutely convergent and

alternating, the theorem follows by grouping the terms in pairs,
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CHAPTER 5 SOME APPLICATIONS

5.1. Generalized elementary Abelian groups. In this and the following

twé sections we shall collect the applications indicated above,
establish some new ones, and make conjectures regarding others.

In Theorem 1.3.6 we noted that when b is a prime NZ(b) is the
number of subgroups of order b€ in an elementary Abelian group of
order bk° This fact and our development in Chapter 2 led us to
Theorem 2.1.3 which established that 2%b) represents the number of
subgroups in an elementary Abelian group of order bk when b is a prime.

We will now define a generalized elementary Abelian group, which

will be called a G(b,k), as a closed system (i.e., a groupoid (1, p.1]
with respect to each defined operation) which contains N?(b) subsystems
of type G(b,3j) when O < j{f k. Thus 2?b) is the number of subsystems
in a G(b,k) (by Theorem 2.1.2).

The following three theorems are direct consequences of
Theorems 1.3.6, 1.3.8; 1.3.12 respectively,
THEOREM 5.1.1. If b is a prime, an elementary Abelian group of order
¥ is a G(b,k).
THEOREM 5.1.2. A single element is a G(O,k).
THEOREM 5.1.3. A set of k distinct elements is a G(1,k).

We do not know whether any other G(b,k) =xists.

5.2. Formulas for §E§ j?b)’ If c?b) is known in closed form for

2 <n <k, then % jl(lb) can be found for 0 <h < k-1 by successive

use of (3.1.1). By assuming closed forms for c%b) and c%b) we now
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illustrate the procedure for k=3, Since
o -]

(5.2.1) c%b> N {v) f§3 3(b> + Ny (b) °}b>
gl
by (3.1.1), and :2% J(b) = ¢ (by Theorem 2.1.6), we can solve (5.2.1)

c=1
for :ES J(b) If we repeat the process for c%}) we have

(59202) C(b) = B(b) é 3<b~\'ﬁ N (b> ﬁ D(b\{f N (b) i J(b)

Ce
by (3.1.1). We can now solve (5.2.2) for ;é% j%b)°

In contrast to the above, the following theorem yields direct

c=1
methods for finding C(b)9 P (3;3 and :2% j%b)°
X
THEOREM 5.2.1. c%b) = & (bﬂ( )where gK (b)= oX and R (b) is the

k- 1)

: [gl ; :
.1 terms of the form T?:N J4 0 (p) ([3] represents a

[5-1]
non-negative integer, [0l= O, {n]ﬁ k, [3-1] < [3D.

sum of all (

PROOF, To establish this theorem by finite inductior we will show
that it holds for k«0, and for k+1 whenever it holds for 0,1,°° k.
If k=0, the theorsm follows from Theorem 2.1.6. By (3.1.1), the

inductive assumption, and elementary algebra we have

(5.2.3) %g; - = NkTI(b/EE% ey * kfﬁ(b>%§§ = Bim(d)
:§3 Nk+1(b):§; R, (%,%E% (3) f%i Nk+1(b):§5 R (b) )

J= 1

If we rearrange terms [L, p.2L5] and let j=i+1, (5.2.3) becomes

(5.2.L)  cfpy = ;% [ﬁ ’}_ (b) Ni”(b)](g)e

HJP
We now let S(j,k,b) represent the expression within the brackets

e Sy 1y > 1 R (b) s

of (5.2.4). If 3=1, S(j,k,b)= N '{b)=R
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=
) terms of the form TW N[l] (b) (where [0]= O,
=1 [i-1]

{j=1]a hy, [i-1] < [i]), and the number of terms in S(j,k,b) is

h=1

the sum of all 522

(h”‘ «[5)) + Thus S(3,k,0)= RE*(0) and the proof by finite
hzj 1 j=2 ="’ J

induction is complete.

By use of the above theorem and (5.2.3) we have

0”1 h h h s}
THEOREM 5.2.2, =, I(p)™ = Ri(b>(i#1’°
jao i=0 c=1

We note that the above theorem yields a formula for :E; 3
J=o

h
(by Theorem 2,1.8).

5.3. Probability. A real valued function f(j) with domaln{o 1,°°°,k}

is a probability function if f£(j) > O for all j, and :Ei £(3) = 1,
j=0

As a direct consequence of Theorems 1.3.21, 1.3.22, 2.1.2 we have
THEOREM 5.3.1. f(j) = [ (b)] Nk(b} is a probability function if
b > -1,

We conclude with two conjectures,

CONJECTURE 5.3.1, £(j) = N?(b) xkgg (1wx)€b) is a probability
function if 0 <x <1 and -1 <b <1,

We note that the above conjecture, which reduces to the binomial
distribution if b = 1 (by Theorems 1.3.12, 2.1.8), follows from the
extended binomial theorem, Theorems 2,1.1, 1.3.21, 1.3.22, and
Conjecture 3.3.5.

CONJECTURE 5.3.2. £(3) a:Pﬁ(b) is a probability furction if -1 <b<1,

The above conjecture follows from Theorem 3.3.5, (3.3.4), (3.3.5)

(3.146), (3e1.7); and Conjecture 3.3.l.
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