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PREFACE

The following sequence of events has prompted the writing

of this thesis: (1) the decision to work for a Ph.D. degree;

(2) Professor R. H. Bruck's advice that I should try to find a topic

of real interest and explore it - even if it is well known - for it

may lead to new results; (3) Professor A. T. Lonseth's seminar on

"Hilbert Space" which introduced an area of real interest to me. It

was the original basis for my notes "Seminar in Vector Spaces" in both

approach and content; and (4) Professor C. C. MacDuffee's inquiry on

whether I had obtained any new results on quaternions in the notes I

had written. Since this topic happened to be the one I particularly

enjoyed, I was encouraged to explore it further when Professor Lonseth

challenged me to write a thesis. It was while investigating the

number of subgroups in a special group, which I used to extend the

algebra of quaternions, that I was led to a concept of generalized

powers.

It is my pleasure to express appreciation to

(1) Professor MacDuffee; (2) Professor Lonseth; (3) Professor Bruck;

and (4) Mrs. Evelyn Ward Bowen, President of the Anderson College

Chapter of Kappa Mu Epsilon and Mathematics Department Assistant,

1960-1962, for typing this paper, drawing the symbols, and her fine

spirit.

Gloria Olive



GENERALIZED POWERS

CHAPTER 1 PRELIMINARY DEVELOPMENT

1010 Introduction. It is well known [2, p.111] that if b is a prime,

then the number of subgroups of order bg in an elementary Abelian
g-1 k_i

group of order bk 5TFbI if g 0 and is 1 if g= O. In this

paper we shall generalize this result and then use the generalization

to obtain ugeneralized powers." Although some of the basic properties

of ordinary powers hold for "'generalized powers", many curious-looking

properties arise.

1.2. Notations and conventions. Unless otherwise indicated we will

let a, b9 t9 x, represent complex numbers; h represent integers;

d, 1, 19 15.., r represent non-negative integers; and n represent

a natural number.

The following conventions will be adopted

where the logarithm has its principal value [39 p.420];

(1.204) Ot = 0 if R(t) > 0

where Eitl is the real part of t;

(1.2.5)

and otherwise 0t does not exist.

tO= /

Ltj ();

if x 09 xt =
et log x



By use of the above conventions we now let

(1.2.6)
1M3

f(i) 0n-1

when f(i) is a function of i;

(1.2.7) the superscript factorial of fi = [filgt 1-1 fi when fi is a
i=1

function of the superscript i;

(1.2.8) L(a)L ka)

1 a-i
if the product exists*;

=o ai+1-1

N (b) = lim Lt(a),
a-)b, g

We note that the conventions regarding 0 provide that Lt(a) is

,

continuous at a = 0 if Nt(0) exists, and that otherwise Lt (0) is

non-existent.

1.1 Some properties of Nt(b). The following five theorems follow

directly from the above definitions.

THEOREM 1.3.1. If an it 1 when n <max (g k- g),

[ak-1]&
[Llic(a)]&

L (a) . if 0 s g s k.
g fag-1]& [ak-g-1184 [Lf(a)]& [4-g(a)]&

kL (a) . 0. if g 0 or g > k.

t
THEOREM 1.3.2. No(b) = 1.

THEOREM 1.33. Nt (b) O.-n

2

* The product fails to exist if and only if g > 0 and either (1) all=

when g > n or (2) a = .0 when both g> 1 4. R(t) and g 1 t.



THEOREM 1.3.4. N(b) = 1

THEOREM 1.3.5. NL(b) = 0

The following theorem is a direct consequence of the theory of

elementary Abelian groups [2, p. 111].

THEOREM 1.3.6. If b is a prime, N1(b) is the number of elementary

Abelian groups of order bg in an elementary Abelian group of order bk

By (1.2.8), Lt(a) is defined for all jst except when a = Os and
0

when a is a root of unity. We next investigate the existence of N(b)

when b = 0 and when b is a root of unity.

THEOREM 1.3.7. N(0) exists for all j only if t is a non-negative

integer.

PROOF. If t is not a non-negative integer and j > 11+R(t)1, then N(0)

does not exist. The theorem follaws.

The next theorem follows directly from (1.2.9).

THEOREM 1.3.8. N(0) = 1 if 0 .c:j k.

THEOREM 1.3.9. If b has period p / 1, and j > p, then N(b) exists

only if t is an integer.
j.-1 + 4

PROOF. If j > p, N(b) can exist only if H (b---- 1) . O. If b has
i=o

period p j 10 bt-i- 1 . 0 implies t-i = hp. Since ilh0p are all

integers, t must be an integer.

THEOREM 1.3.10. If b has period p, N(b) exists. Explicitly,

3

(1.3.1) Nh (b) I 1111 Nh2 (b)

g g1/ g2

when g = pg1 + g20 h = phi + h2, and 0 sg2, h2 A:p.

PROOF. Since p is a positive integer gl g2, h10 h2 can be found as



specified by means of the Division Algorithm. If g 00 (1.3.1)

follows from (1.2.9), (1.2.1), (1.2.2). If g > 00 (1.3.1) follows by
h2,

(1.2.9), the theory of limits and l'Hospital's rule. Since Ng(b)

exists when g2 <:p, by (1.2.9), the theorem follows.

Some interesting-looking Pascal-type triangles are a consequence

of the above theorem. One of these triangles is exhibited in the

Appendix.

The following theorem is a direct consequence of Theorems 1.3.3,

1.3.5, 1.3.8, 1.3.10.

THEOREM 1.3.11. N1(b) exists for all b.

The next theorem follows directly from l'Hospitalts rule.

THEOREM 1.3.12. N (1) =t).

The above two theorems lead us into an investigation of

combinatorial-like properties of N(b) and some of their direct

consequences.

THEOREM 1.3.13, N(b) Nk
g(b).k-

PROOF, Since 0 <g <: k if and only if 0 <: k-g <:k1 the theorem follows

from Theorems 1.3.1, 1.3.11.

US next establish some recursive relations.

THEOREM 1.3.14. If an / 1 when n g, and if a / 0 when both

g > 1 + R(t) and g 1 + t; then

14

(1.3.2) Lt41(a)t-g+1 t= L (a) + a L (a).g-1

PROOF. If g <00 (1.3.2) follows from Theorems 1.3.2, 1.3.3. If

g > 00 (1.3.2) is an identity by (1.2.8) and the hypothesis.



The following theorem is a direct consequence of the theory of

limits and Theorems 1.3.11, 1.3.140

THEOREM 1.3.15.
N b)k+1(krb\ bk-g+lNk

g-1(n)
if g <k+1.g k Ngk

THEOREM 1.3.16. If a 1 when n < g, and a 0 when either g <0 or

both g > 1 + R(t) and g 1 + t; then

(1.3.3)
Lt+1ta\ ag Lt(a) Lt (a\
g k g-1k I°

PROOF. If g <0, (1.3.3) follows from Theorems 1.3.2, 1.3.3. If

g > 0, (1.3.2) is an identity by (1.2.8) and the hypothesis.

The following theorem is a direct consequence of the theory of

limits and Theorems 1.3.11, 1.3.16.

THEOREM 1.3.17. N1(b) = bj +1(b).0-

We next use the above theorems to establish some special

properties of N(b) and NT(b).

THEOREM 1.3.18. If 0 < j N(b) is a polynomial in b of degree

j(k-j) with positive integral coefficients and leading coefficient

equal to one.

PROOF. The theorem holds when j = 0 or k (by Theorems 1.3.2 1.3.4).

If we assume inductively that the theorem holds for (b) and Nk(b),

the theorem follows by Theorem 1.3.17 and finite induction.

The polynomial 7.5, f(i)xi will be called coefficient symmetric if
i=o

f(r-i) = f(i) for all i, and coefficient anti-symmetric if f(r-i)=-f(i)

for all i.

THEOREM 1.3.19, If 0 <j k, N(b) is a coefficient symmetric

polynomial.

5



PROOF. Since N(b) is a polynomial in b of degree j(k-j)

(by Theorem 1.3.18), and

(1.3.4) 11(b) =Nk Pij

is an identity by Theorems 1.3.1, 1.3.11; the theorem follows by

elementary algebra.

As a direct consequence of Theorem 1.3.18 we have

TIMM 1.3.20. If b is a non-negative integer, N(b) is a positive

integer when 0 < j k.

THEOREM 1.3.21. Nk(-1) is a non-negative integer.

PROOF. By (1.3.1), Nk(-1) = ( ki1) N2(-1) where j 2j1 + j2, k= 2k1+ k2,
*-11 -12

ki
and 0 s, j2, k2 2. Since( . a non-negative integer,

to(-1) = No/(-1) = = 1, and N7(-1) = 0 (by Theorems 1.3.2, 1.34/

1 03. 5) the theorem follows.

THEOREM 1.3.22. If b > -1, N(b) > 0 when 0 < j < k.

PROOF. If b 1, the theorem is an immediate consequence of Theorem

1.3.12. In all other cases the theorem follows from (1.2.9).

THEOREM 1.3.23. N(b) = (-1)i b-ni- 1r1(b) if b j O.

(PROOF.Since 1711(a) = (-1)i a-rilj- 2) Ln+i-/ (a) when a /4 0 and a is not

a root of unity, the theorem follows by the theory of limits and

Theorem 1.3.10.

6



(2.1.1)

(2.1.2)

CHAPTER 2 GENERALIZED POWERS OF THE FORM
(b)

2.1. An extension of the binomial theorem. We note that the Nt(b)

possess various binomial coefficient type properties (e.g. Theorems

1.3.13, 1.3.17). If we also note that the number of subsets of k

elements = ri/. (1) = (1+ 1)k (by Theorem 1.3.12) and when b is a
j=o

prime the number of subgroups in an elepentary Abelian group of order

bk Ni(lo) (by Theorem 1.3.6)5 then it does not seem unreasonable
j=o j

to introduce a symbol such as (1 +1)(b) to represent the latter sum,

It is an extension of this concept which leads to our development of

"generalized powers."

Our objective is to create and investigate generalized powers of

the form with medial x5 exponent t, base b which have the property

.indicated in the above paragraph. In order to embark upon this

expedition, we will establish generalized powers with both medials and

exponents restricted to non-negative integers by means of

and

(2.1,3) (c+1)k = 1\ik.(b) ci
(b) J=0 j (b)

If we let c = 0 in (2.1.3) and apply (2.1.1), (2.1.2), and

'Theorem 1.3.2; we have

k
THEOREM 2.1.1. 1(b) - I.

If we now let c=1 in (2.1.3) and apply the above theorem we have

7



k
THEOREM 2.1.2. 2k

(b) j
j=o

The above theorem together with Theorem 1.3.6 yields

THEOREM 2.1.3. If b is a prime, 2(b) represents the number of

subgroups in an elementary Abelian group of order bk.

By use of (2.1.3) we could now recursively find 3(b), 4(b), etc.

However, since we have found this process to be tedious and the

results to be uninteresting, we shall not proceed in this direction.

Instead, we shall investigate some general properties of the

generalized powers which have been defined,

THEOREM 2.1.4. If b is a non-negative integer, rilio) is a positive

integer.

PROOF. 1(b) . 1 by Theorem 2.1.1. If we assume inductively that n(b)

is a positive integer, and let c=n in (2.1.3), the theorem follows by

Theorem 1.3.20 and finite induction.

THEOREM 2.1.5. If -1 <b <1, then n(b) > O.

PROOF. 1(b) = 1 by Theorem 2.1.1. If we assume inductively that

n 0 and let c=n in (2.1.3)9 the theorem follows by Theorems
(b)

1.3.21, 1.3.22, and finite induction.

THEOREM 2.1.0 c4) = 1.

PROOF. Since (c+1)4) = e(b) [by (2.1.3) and Theorem 1.3.2] and

0o
b)

1 [by (2.1.1)], the theorem follows by finite induction.
(

1

THEOREM 2.1.7.* c(b) = c.

PROOF. Since 01(b)= 0 [by (2.1.2)], and (c1-1)1(b)= C(b)+l [by (2.1.3)

and Theorems 1.3.2, 2.1.6, 1.3.4], the theorem follows by finite

*
Theorem 3.1.3 validates this theorem when c is a complex variable.

8



induction.

As may be suspected from Theorems 1.3.12, 2.1.2, we have

THEOREM 2.1.8.* = ck.

PROOF. 01) =
0k

by (1.2,5), (2.1.1), (2.1.2). If we assume
(

inductively that do) = cj, then (2.1,3), Theorem 1.3.12, and the

2E ibinomial theorem yield (c1-1)k(1) () c (c+1)k. The theorem
j=o I°

now follows by finite induction.

, k-j ,j
THEOREM 2.1.9.* kc+d)(b) = N(b) c

j=o

PROOF. In order to establish this theorem by finite induction we will

show that it holds for d= 0, and for d +1 whenever it holds for d.

If d= 0, the theorem is a direct consequence of (2.1.1), (2.1.2),

and Theorem 1.3.2.

BY (3.1.10), (2.1.3), the inductive assumption on d, and a

rearrangement of terms [4, p. 245] we have

(2.1.4) [c (d * 1)3k
(b)

[(c +d)*1b)]k 1\11(b) (c*d)j
( (b)

j=o

k k ,

= N(b) N(b) cj-g dg.
g=o j=g

(b) (b)

If we now let h = k -j g, (2.1.4) becomes

k k

(2.1.5) [el,- (di- 1)]k a-- 217, 2: 41100) Nh(b) c d, \*
k-h g

(b) OD) kb)
g=o h=g

After a rearrangement of terms [4, p. 245] and application of

(2.1.3), (2.1.5) reduces to

Theorem 3.1.3 validates this theorem when c and d are complex
variables.

9



(201.6) [c 4- (di- 1)11(c,10 .

The theorem now follows by finite inductions

Since the above theorem reduces to the binomial theorem when b 1

(by Theorems 1.3.12, 2.1,8) it is an extended binomial theorem.

202, Some laws of e onents. After observing the various ordinary-

looking properties of generalized powers in the last section, one may

suspect that the ordinary laws of exponents will also be inherited. In

this section we shall establish some lams of exponents by restricting

the base to a root of unity.

THEOREM 2.2.1:11 If b has period then

(2.2.1)

By (2.103)3,

by (1.3.1),

Thus when r <p we have

1)qP1'17
Nr ,)

(b) ul '(b)ho 1?O

k ii

N (b) Nh(b)g (b)
h'o go

h

k k
-

N , )

(b)h(b)

c(h)

qp*r
c(b)

FRO0F. We will consider two cases (1) r <p and (2) r is any

non-negative integer.

In order to establish Case (1) by finite induction we note that

(2.201) holds for c0 [by. (1,2.5), (2.1.1)3 (2.1.2)] and proceed to

show that (2.2.1) holds for (c 1)whenever it holds for c.

-frr

(c* 1 )q/D-r,,,, 'r( )

(b)

N1(b) (q) N(h)
h

10

where j hp i and i, r <p

by Theorem 1.3.5.

Theorem 3.1.3 validates this theorem when C is a complex variable.

b).9
and



If we now use the inductive assumption on c the latter equation

r00
'becomes (c+1)4114r = 75; tql ch-7 N(b) cio`i.

(b) fi"-LZ I (b)
= (c+1)q.(c41))

by (2.1.3) and the binomial theorem. Case (1) now follows by finite

induction.

To establish Case CO we let r= jp+i with i e:p. We thus

qp+r

=

e(q+j)p + cq+joci eq(cjoci \ q
c -*cr

c(b) (b) (b) (b) (b)

by Case (1) and elementary algebra. The theorem follows.

THEOREM 2.2.2.* If b has period p, then

(2.2.2)
=C.

PROOF. If we let r = 0 in (24,1), the theorem follows by Theorem

2.1.6.

THEOREM 2.2.3.* If b has period p, then

cn)ocr(b)
c(b)

(223) qp4r. .

(2.2.4) (cq)) = (ccir)160) = q171

(2.2.5) (cd)g) = cF10)0dn).

PROOF. cr. = cq.c.b) = cn)ocr(b) by (2.2.1)0 (2.2.2);

(cyg) (eq)r cqr (Cr))qp(b and

(cd)n) = (cd)cl = cq.dcl = c).1) by (2.2.2) and elementary algebra.

2.3. Base zero. Since N1(b) reduces to a simple formula when b is a

root of unity and when b= 0, and since c(b) has some interesting

properties when b is a root of unity, we are now prompted to inves-

tigate c(). The following theorem establishes a formula for computing

* Theorem 3.1.3 validates this theorem when c and d are complex
variables.

obtain

11



generalized powers with base zero.

THEOREM 2.3.1.*
.1\k fc+kl
"(0) I k I.

PROOF. If c= 0, the theorem follows by Theorem 2.1.1. If we assume

inductively that the theorem holds for cl then

(c+2)) (c+i)h
(0) h.0 (0)

h=o
(c+

(c +k +1k)

12

by (2.1.3), Theorem 1.3.8, and elementary 4gebra. The theorem follows

by finite induction.

The above theorem yields some interesting consequences. For

example,

(2.3.1) (c +1)(0) k + 1 )
(0)

(2.3.2) (-C)70) = (-1)C,

and

/ k
(2.3.3) k-c)(0) = 0 when k c;

where the last two formulas require the use of Theorem 3.1.3.

Theorem 3.1.3 validates this theorem when c is a complex variable.



CHAPTER 3 GENERALIZED POWERS OF THE FORM
x(b)

3.1. Arbitrary complex medials. The following two theorems lead us to

a natural definition for x(b).

THEOREM 3.1.1. If c and k are positive integers,

c-1 k-1(3.1.1)k 75 75 Arktls -h

e(b) "h"' 3(b).0=o h=o

k -1
k k h

PROOF. Since (j+1)(b)- j(b) =2.0N(b) j(b) [by (2.1.3) and Theorem

k c-1 k k1.3.4], and c(b) = 7 [(i 4- 1) (b) - J(b)]., (3.1.1) follows.
' j=o

THEOREM 3.1.2. If c and k are non-negative integers, then

ck '5; pl!(b)
(b) T.78 ' P

where Pk(b) is a polynomial in b with rational coefficients when

0 < j sk. P(b) . 1 and Pic(b) = O.

PROOF. Since e(b) [by Theorem 2.1.6] and 0nb) = 0 [by (2.1.2)],
(

P(b) = 1, P(b) = 0, and the theorem holds for k= 0 and c= 0 [by

(1.2.5)]. To complete the proof we must show that the theorem holds

when c is a positive integer. To accomplish this by finite induction

we will establish that the theorem holds for k+ 1 whenever it holds for

0, 10 s k.

By use of Theorem 3.1.1, the inductive hypothesis, and some

rearrangement of terms [4, p. 245], we have

k c-1 h k k c-1

(3.1.3) ctb+i. N.1;,+1 0)) >: ph(D) 2 2 Nkil (b) p'1(b) 2 e-]
j=oi=o i=oh.i h j =o

0-1

We next let fi = ji. It follows from elementary algebra that
j=0

(3:1;2)

13



14

fi is a polynomial in c of degree i+ 1 with rational coefficients fia"

when 0 <j + 1, and foi = 0. Thus we have

1+1

(3.1.4) fi = fi ci.
j=.1

After applying (3.1.4) and rearranging the terms [41 p. 245]

again, (3.1.3) becomesk+1k k

(3.1.5)
k+1 icA(b) ph(b) fi cj.

c(b) J.1 i=j-1 h=i h

We can now observe that the expression within the brackets of

(3.1.5) is a polynomial in b with rational coefficients,When

0 irj <k+1 since each Nk+1(b) Ph(b) is a polynomial in b with rational

coefficients (by Theorem 1.3.18 and the inductive assumption), and the

k+1i
are rational. Since Po(b) 0, im have Po (b) = 0. Thus (3.1.2)fj

follows from (3.1.5) and finite induction if we let Pk+1(b) equal the

expression within the brackets of (3.1.5) when 0 <j <1.(+1. The proof

is now complete.

If 0 <j Pk(b) is the polynomial in b which has been

established in the above theorem. We thus have

(3.1.6)

(3.1.7)

and
k-1 k

(3.1.8) P,(b) N(b) P(b) fj: when 0 < j
i=j-1 h=1 h 1 j

By virtue of (3.1.2) we can now let

(3.1.9)-(b) P(b) xi.
0.0

The following two identities are direct consequences of (3.1.9)

P6(b) = 1,

It(b) 0,

(3.1.10) [(x+y) + t]4) = Ex+ (y+t)4b)



iS

and

(3.1.11) x )1(-b) = x )1-1D )

Since most of our formulas for generalized powers have been

established by finite induction on the medinl, the following theorem

serves well in its role of validating these formulas when the integral

medials are replaced by complex medials.

THEOREM 3.1.3. Let E be an equation in which each member is a poly-

nomial (with complex coefficients) in generalized powers with non.

negative integral exponents, and such that each variable medial is a

polynomial (with complex coefficients) in its "componento variables.

If E contains a fixed number of variable medials, and if E holds when

each variable medial component is restricted to an infinite subset of

the integers, then E is an identity when each variable medial component

is converted to a complex variable.

PROOF. If in E we express each generalized power with a variable

medial in polynomial form [by use of (3.1.9)], we obtain an identity

by [5 p.66]. Since this identity holds when each variable medial

component is converted to a complex variable, the theorem follows by

(3.1.9).

3.2. Negative medials. The next theorem serves as a lemma for its

successor, which in turn serves as a lemma in establishing a formula

Nk
for (-x)b\.

THEOREM 3.2.1. 2E (-1)° b 2 i4m.n(b) = O.
j=o

PROOF. If n= 12 the theorem is immediate. If we assume inductively

that the theorem holds for n, then by some rearrangement of terms and



Theorems 103.15, 1.3.50 1.3.3 we have

n#1
j (Tn:F (-1)- b 2 a.4-1(b)

j=o
J

n+1
b(2) N(b) (_i)j blI 2 bn+1-j (b)

J` J-1' I
j-1

0-11
n+1

(-1)i-1 131 2/ Nn lbl.

If we now let h = j-19 the last expression reduces to zero by the

inductive assumption- Thus the theorem holds for n+ 1 whenever it

holds for n, and the proof by finite :
1-ictuction is complete

1

THEOREM 3.2.2. (-1)(b) (-1) b(;)

PROOF. If k= 0, the theorem follows by Theorem 2.1.60 If we assume

inductively that the theorem holds for 0, 1, °, k we have

/. N(3.2.1) 0 U(10)
k+1 OD) (-, b(

)k+1(b)

k 1
(kn

Ni+1(b) (-1) ID( + (-1 k+1
jo

by (2.1.2)9 the extended binomial theorem, and Theorems 2.1.19 1.3.4.

If we now apply Theorem 3.2.19 (3.2.1) reduces to

11(+11

k+1 k+1
(3.2.2) 0 0 + (-1)(b) - (-1)

2

Since (3.2.2) now validates the theorem for k+ 1, the proof by

finite induction is complete.

THEOREM 3.2.3(-x)k (-1)k xk
° (b) (b) 11 if b 0°

lb i

PROOF. We first establish the theorem for x co If c= 0, the theorem

16



follows directly from (2.1.1), (2.1.2), and Theorem 2.1.6. If we

assume inductively that the theorem holds for c, we have

k' N(b) r_1\k-h _eh ( )k Nkal
C(i)

(-1)b) (c+1)k ° if 2b 0,
LEI

by (3.1.11)1 the extended binomial theorem, Theorem 3.2.2, (1.3.4)0

(2.1.3). The theorem now follows for x=c by finite induction, and

an application of Theorem 3.1.3 completes the proof.

30.1,1wByrnearisofTheorern3.1.111ecalafiricip. We now

exhibit the results obtained for k = 2, 3, 4.

(3.3.1) x2(b) g[ 4(b)]& + x(1-b).

3(3.3.2) x(b) = 43[N3(b)]& + x2(1...b)4(b) + x(1-b)2 (b)]&c.)3

(3.3.3) x(b) x= 7[4(b)]& ip-b)N11'(D)14(b)4 4

x2(1...b)2(14102)(
11-0-19b4111)2) x(1-10)3[N3(b)]&.

1

We will next consider some properties of Pk(b) when b is a root

of unity.

THEOREM 3.3.1. Let P(b) 0 when h <0 or h r. If b has period p,

0 <r <p, and 0 < q+ h <pq+ r; then P2(b) = Pci(b).

PROOF. If we set IC= pq+ r and apply (2.2.1) we obtain cliD)= cq.croa)

k k
which in turn yields ET P(b) cj I

Pr(b) cc1441. If we now let
j=o

j = q +h, the latter equation reduces to

>--: pKg+h(b) eq+h pr(b) eq+11P(b)
h=-q h=o

17



Since this equation is an identity in c, the theorem follows.

By use of Theorem 2.1.8 we find

(3.3.4) Pk(1) = 0 when 0 <j c: k

and by Theorem 3.3.1, we have

.0,2q+r(_1) 0lq+r-j1
when 0 < j are. and 0 r 2.j

We next consider Pk(0).

THEOREK3,32. P.1(0) > 0 when 0 <j

PROOF. BY (3.1.2) and Theorem 2.3.1 we have

j Ic+k-11
c(0) =

P(o)
c = I .k I°

j=o

Thus k1Pic(0) is the sum of all products with (k-j) different factors

which are formed from the first (k-1) natural numbers. Since there are

ik-11
of these products, the theorem follows.

The above theorem establishes the fact that the constant term in

k
the polynomial expansion of P (b) is positive when 0 j <k. This

fact, together with the following theorem, will be used to establish

THEORDI 3.3.3. P(b) = b( 2 Pi;ilb if b
0

PROOF. By (3.1.9) and Theorems 3.2.3, 3.2.2 we have

P(b)degree of P.( ) when 0 <j < k.
k

p'!(b)(-x
J.0 0

k ) k
1.1)k 10(2 2 pi%Li.J

k -J(b) 3110)

8

if b O. Since this is an identity in x, the theorem follows by

equating the coefficients of xj.

The above two theorems together with Theorem 3.1.2 yield

THEOREM 3.304. Pk(b) is a polynomial in b with rational coefficients

and is of degree (21 when 0 <j <k. It is coefficient symmetric if



j + k is even, and is coefficient anti-symmetric if j + k is odd.

k \

We now establish additional properties
.

)
0

kTHEOREM 3.3.5. P(b) = 1,
j=o 0

PROOF. If we let c=1 in (3.1.2), the theorem follows by Theorem 2.1.1.

THEOREM 3.3.6. If 0 < j <:k, then

(3.3.6) 2i (.ii)P(b) =
0 1 1 j

PROOF. By use of (3.1.2) and (2.1.3) we obtain the following two

expressions for (c+1)113) which we equate.

(3.3.7) Pk(b)*(c + 1)i
1=o

k
(b) 2 pl.;(b)

1=o 1 j=0 0

By use of the binomial theorem and a rearrangement of terms

[4, p. 245], (3.3.7) becomes

k k k k

(3.3.8) 2 2= 2 2 N(b)P(b)c.
j.0 j=o i=j

Since (3.3.8) is an identity in c, (3.3.6) follows.

If we let j take on the values k- 1, k- 21 1, 0 succes-

ivelYowecariuse0.3.0tonmdPi(b)afberwebaveP.(b) for i k-1.
0

These Pi(b) can be found by a similar process since we know P°(b) = 10

(3.1.6)1. We now use this procedure to establish

THEOREM 3.3.7. Pk(b) =
lc: 1

PROOF. If k= 0, the theorem follows by (3.1.6). If k > 0 and j= k-

then (3.3.6) reduces to It(b) = il-(Nlic(b)Pktii(b) by Theorem 1.3.13. The

theorem now follows by recursion and the fact that P(b) = 1.

THEOREM 3.3.8. If k > 1, then

19

(3.3.9)
pk

1(b)k- a 1
)[4(a)riPt(a).
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PROOF. If k=1, (3.3.9) follows from (3.1.7). By use of (3.3.6) with

j=k- 2, and Theorem 3.3.7, we find that (3.3.9) holds for Plicc_1(b)

whenever it holds for Pk-/(b). The theorem now follows by finite
k-2

induction.

We conclude this section with some conjectures.

CONJECTURE 3.3.1.. 4(b) 7 (1-b)k-1 fv.tc- II4 op,
& when Ic'> 1.

4 1

CONJECTURE 3.3,2. If 0 j P(b) contains (1-b)k-J as a factor.

'k
CONJECTURE 3.3.3. (b) = 0 implies Ibl = 1 when 0 <j k.

CONJECTURE 3.3.4. Pk(b) > 0 when -1 b < 1 and 0 j k.

CONJECTURE 3.3.5. If x > 0, then x(b) > 0 when -1 sips%
We note that the last conjecture follows from (3.1.9), (3.3.4),

(3.3.5), (3.1.6), (3.1.7), and Conjecture 3.3.4; and that Conjecture

3.3.4 follows from Theorem 3.3.2, continuity (by Theorem 3.1.2) and

Conjecture 3.3.3. Conjecture 3.3.3 has been verified for k <5.

k,3.4. Qkx). In this section we investigate another approach for

finding a simple formulator x(b), and again we are unsuccessful. By

use of (3.3.1), (3.3.2), (3.3.3) we can express x(b) in powers of b

when k= 2, 3, 4. We now exhibit these results.

(3.4.1)

(3.4.2)

(3.4.3)

x2(b) = brfl lx;1).

x3(b) b3(33).+ 2b ( ) 2b( 3 i 3
3

2 x+1 x+1 x+2

4 ,6rx 51.* 11 hix+ii
x(b) = 14) 3b 1+4. ) 3 I (Sx-6)

The next theorem follows directly from (3.1.9) and Theorems 3.1.2,

iblx.-341)x, b21 )(5x4)
4.3b(x-1:2) (x.3)+4.
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3.3.7.
k

THEOREM .3.4.1.
xkb

= Q (x)b where Q(x) is a polynomial in x of
() iso i

degree k with rational coefficients.

If 0 .111 Q1(x) is the polynomial in x which has been

established in the above theorem. The following theorem is now an

immediate consequence of Theorem 3.2.2.

THEOREM 3.4.2. Q11(x) has x+1 as a factor when i X (1 ).

Since Ow and 1(b) are both independent of b [by (2.1.1), (2.1.2),

and Theorem.2.1.1] we have

THEOREM 3.4.3. 4(x) has x(x-1) as a factor when 140, and x as a

factor when kX0.

By virtue of Theorem 2.3.1 we have

THEOR 3.4.4. Qt(x) = (x+t-11.EM

If we let b= 1 in the equation of Theorem 3.4.1 and apply

Theorem 2.1.8 we obtain

(12)

THEOREM 3.4.5. :% e(x) = xk.
i=o 1

We ncw,c tablish two additional properties of

THE0REM.J1'.4.6. Q = (-1)k4')-x' when 0 <i < (k2).

(21-1

PROOF. By Theorems 3.4.12 3.2.3 we have

(3.4.4) 75, Q(-x)bi = (-x)k (-1)k Qk(x)Rli
i=o 1 (b) NJ.°

when bX0. If we now let i= j in the last expression of (314.4),

that equation reduces to



Ikt 1k
12! 12

(3.4.5) 2 Qk(...x)bi (...i)k 2 Qk
(x)b1

i=o 1 1=0 (1)-i
by use of Theorem 3.2.2. Since (3.4.5) is an identity in b (when

1:4 0), the theorem follows by equating the coefficients of bi.

By use of Theorems 3.4.4, 3.4 .6, and elementary algebra we obtain

i,THEOREM 3.4.7.
QkVflkx)

=
II

We conclude this section with the following conjectures:

CONJECTURE 3,4.1. 4(x) = (k-1)(xt-2).

CONJECTURE 3.4.2. Qk (x) = (k-1)(xn.
ffl.71

We note that Theorem 3.4.6 establishes the equivalence of the

above two conjectures.

CONJECTURE 3.4.3. If k > 10 then xib) is independent of b only if

x=0 or x=1.

This last conjecture follows from Theorem 3.4.7 and

Conjecture 3.4.1, since x(x-1) would then be the greatest common

factor of Qk

1

(x) and Qk1(x).

1 )

All of the above conjectures have been verified for k s6.

23.5. x(b). Our purpose in investigating generalized powers with

exponent 2 at this time is to indicate some reasons why any attempt to

further extend the properties of ordinary powers may well prove to be

fruitless.

All theorems of this section are consequences of (3.3.1) and

(3.3.3),

. 1 1 .
THEOREM 3.5.1. x2(b) x(b)x(b) implies x(x-1)(b-1) = O.

22
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2
The above theorem, which reveals that x(b) = 0 does not imply x= 0

when b 1, can be extended (by use of Theorems 2.1.6, 2.1.7, 2.2.1,

3.3.7, 3.3.8). For if k> 2, there exists an x/ 0 such that xib)

[except when b has period p and k 0 or 1(mod p)]. Thus when b2 / 1

there exists a k > 2 and an x/ 0 such that x(b) = 0.

We conclude this section with two additional properties of x2(b).

THEOREM 3.5.6. For every real x/ 0, 1 there exists 'a real b such that

2x(b) <O
2 1 +x

PROOF. x(b) <0 when (1) 0 <x <1 and b > 71-:-x, or (2) x(x-1) > 0 and

b 1 +x
<1-x"

THEOREM 3.5.7. For every real b 1, there exists a real x such that

2x(b) <0.

PROOF. x2(b) <0 when (1) x(b+1) <0 and x > 11°04 or (2) x(b+1) > 0

b-1

*and x <
or (3) b = -1 and x < 0.

THEOREM 3.5.2.

THEOREM 3.5.3.

THEOREM 3.5.4..

THEOREM 3.5.5.

(b)

(x2)2
b)

If b

If b

-1

-

A.(b).y(b)

x(b)

(1

2
implies .xy(x-1)(y-1)(b2 -1)

24.

implies x(x-1)(b2-1) = 0.

-2
2

(
1.71-)

b- 2
= 0.

177T) (b)

= 0.



(4 .1 .1 )

CHAPTER 4 GENERALIZED POWERS OF THE FORM
x(b)

4.1. Arbitrary complex exponents. Thus far we have considered only

generalized powers with non-negative integral exponents. With a view

to eliminating this restriction we will let

Since E(b,t,x) = (1+x)(b) when t is a non-negative integer (by the

extended binomial theorem and Theorems 2.1.1, 1.3.5), it is now

reasonable to let

().1.2) (1+x)t
b)

= E(b,t,x)
(

when E(bItlx) is convergent.

We have not been able to establish a general theorem on the

existence of (1+x)(b) when t is not a non-negative integer. Existence

theorems for (1+x)(b) have been found when b=1, b= 0, b is a root of

unity, x=0, x= -1, x=1. We shall now explore these cases.

We first note that E(10t1x) is the binomial series for (1+x)t (by

Theorems 1.3.12, 2.1.8). Therefore E(bltx) is an extended binomial

series, and the theory of the binomial series [3, p. 426] yields

THEOREM 4.1.1. If t is not a non-negative integer, then (1+x)t(1)=(1+d'

in the following three cases: (1) for all t when lx1 <1, (2) for

R(t) > 0 when 1x1 = 1 (3) for -1 <R(t) < 0 when 1 1 = 1 but x/ -1;

and otherwise (1+x)1) fails to exist.
(

We note that (1.2.3) and (1.2.4) validate the above theorem.

By virtue of (4.1.2) and Theorem 1.3.7, generalized powers with

base zero are defined only when the exponent is a non-negative integer.

By virtue of (4.1.2) and Theorem 1.3.9, a generalized power whoife base

E(b,t4x) ±"2, N (b)xj
(b)

24
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is a root of unity different from 1 is defined only when the exponent

is an integer.

4.2. Some further laws of moonents. We shall now extend the exponent

laws of Section 2.2 to generalized powers with integral exponents.

THEOREM 4.2.1. Let b have period p. Then

(4.2.1) (1+x)-1-1P÷g (1+x)-ri(1+x)g
(b) (b)

when Ixl <1, and the left member of (4.2.1) does not exist for any

other x when the exponent is negative.

PROOF. In order to establish (4.2.1) we will consider two cases:

(1) 0 < g <p and (2) g is any integer. The proof of Case (1) consists

of showing that the coefficient of xig- in each member of ()4.2.1) is

equal to MN(b) when i <p. The coefficient in the left member is

found by use of (1.3.1). The coefficient in the right member is found

by expanding each factor and then using the distributive law and

(2.2.1). Thus Case (1) follows.

To establish Case (2) we let g ph*r with 0 <r <p. We then have

n+h)p+r
(1+x)-(b)

nP+g (1+x)(-
(b)

(1+x)-07h r.(1+x)(b)

( x)h(1*x)r (1+x)-n(1+x)g
(b) (b)

by Case (1), elementary algebra,. and (2.2.1) for h O. The theorem

now follows since the series for (1* x)-11 converges if and only if

lx1 <1
If we let n g 1 in (4.2.1), Theorem 2.1.7 yields

THEOREM 4.2.2. Let b have period p. Then (1+x)101--, 1 when lx1 <1,

1-p
and (1+x)(b) does not exist for any other x when p X 1.

The above theorem reveals that the exponent 1-p behaves like the

(1+x
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exponent zero when b has period p and Ixf <1.

The following theorem follows directly from (4.2.1) with g= 0 and

Theorems 2.1.6, 4.1.1.

THEOREM 4.2.3. If b has period p, (1+x) = (1+x) and only if
(b)

lx1 <1.

THEOREM 4.2.4. If b has period p, the following laws of exponents hold

if and only if ixi and lyj are both less than one.

(4.2.2) (1+x)-(7.04-xlb) (i+x)-(nb)p+g,

(4.2.3) [(i+x)-n]g) [(1+x)-')b) = (14-x)-011Dfill

and

(4.2.4) [(1+x)(1.fy)V (14-xra(14y)7.

PROOF. This proof is similar to that of Theorem 2.2.3. Thus (4.2.2)

follows from Theorems 4.2.1, 4.2.3; and both (4.2.3) and (4.2.4) follow

from Theorem 4.2.3 and elementary algebra.

4.3. 1t The two theorems of this section completely characterize

1t(b).

THEOREM 4.3.1. 1b) fails to exist if and only if (1) b = 0 and t is
(

not a non-negative integer, or (2) b is a root of unity different from

1 and t is not an integer.

PROOF. If (1) or (2)
occurs/

1t(b) cannot exist [by (4.1.2) and

Theorems 1.3.7, 1.3.91. Conversely, if both (1) and (2) do not occur,

tt
then N.00) exists for all j [by (1.2.9) and Theorem 1.3.101 and thus

1(b) exists by virtue of (4.1.2), (2.1.1), (2.1.2).

THEOREg 4.3.2. If E(b1t10) converges, lt(b)

PROOF. The convergence of E(blt,0) implies the existence of N(b) for
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01 j [by (4.1.1)], which in turn yields 1t(0) = 1 [by (4.1.2), (2.1.1),

(2.1.2), and Theorem 1.3.2].

4.4. Some results on In this section we will establish a

formula for 0-01) when Ibl > 1.

THEOREM 4.4.1. If Ibl > 1, then Otb) exists for all t.

PROOF. If t is a non-negative integer, the theorem follows from

(2.1.1) and (2.1.2). If t is not a non-negative integer, the theorem

follows from Theorem 3.2.2 and the ratio test.

THEOREM 4.4.2. O) b-jne+J-1(b) if Ibl >1.
(b) j=0

PROOF. Since E(b,-n1-1) reduces to the above series by (4.1.1) and

Theorems 1.3.23, 3.2.2; the theorem follows by Theorem 4.4.1 and

(4.1.2).

We note that the series in the above theorem diverges when

Ibl <1.

THEOREM 4.4.3. 07n
-
- (1-b-j)-1 if Ibl > 1.

kb) j=1

PROOF. If n= 1, the theorem follows from Theorem 4.4.2 and elementary

algebra. We assume inductively that the theorem holds for n and wish

to show that

(4.4.1)
,-(n+1) [o-n

][1 b-(11+1)]-1.
'(b) (b)

By Theorems 4.4.2, 1.3.17 (letting k= n+ j- 1) we have

CO

(4.4.2) 0-(1+1)
(

(t)
b-i

i
"j kb)

=o

(b) 2 b-j(n+1 )Nn+j-1 (b).

j=o 3 j=o 3-

By further application of Theorem 4.4.2, and Theorem 1.3.3,

(4.4.2) reduces to



0
-(n+1) b-3h+1)Nn+3-1(t).

j-1(b) = u(b) j=1

If we now let j i+ 1 and again apply Theorem 4.4.2, we find that

the second expression in the right member of ()4.4.3) reduces to

(4.)4 4) b-(n+1)[ b-i(n+1)N1
f b-(n+1).0-0(3r)1+1).

Combining (4.4.3) and (4.4.4) we obtain

(4.4.5)
0-(n+1)0-n t-(n+1)0-(n+1)
(b) (b) (b)

The desired result (4.4.1) now follows, and the proof by finite

induction is complete.

4.5. Some results on (b). By use of Theorem 2.1.1 and the ratio test

we have

THEOREM 4.5.1. When t is not a non-negative integer, 2(t) exists if

lb' 1 and does not exist if Ibl <1.

(j+1
THEOREM 4.5.2. 2-1 . (-1)ib-1 2 ' if lb) > 1.

(b) j,0

PROOF. Since E(b0-111) reduces to the above series (by Theorems 1.3.23,

1.3.41 2.1.1), the theorem follows by Theorem 4.5.1 and (4.1.2).

-1
THEOREM 4.50. If b > 1, then 2(t) >

b- 1
and if b <-1, then

n-1 b- 1<
(b) b

PROOF. Since the series of Theorem 4.5.2 is absolutely convergent and

alternating, the theorem follows by grouping the terms in pairs.

28



5.2. Formulas for

CHAPTER 5 SOME APPLICATIONS

5.1 Generalized elementary Abelian groups. In this and the following

two sections we shall collect the applications indicated above,

establish some new ones, and make conjectures regarding others.

In Theorem 1.3.6 we noted that when b is a prime N(b) is the

number of subgroups of order bg in an elementary Abelian group of

order bk. This fact and our development in Chapter 2 led us to

Theorem 2.1.3 which established that 2(b) represents the number of

subgroups in an elementary Abelian group of order bk when b is a prime.

We will now define a generalized elementary Abelian group, which

will be called a b,k), as a closed system (i.e., a groupoid [1, p.1]

with respect to each defined operation) which contains N(b) subsystems

of type G(b,j) when 0 <j < k. Thus 2110) is the number of subsystems

in a G(b,k) (by Theorem 2.1.2).

The following three theorems are direct consequences of

Theorems 1.3.6, 1.3.8, 1.3.12 respectively.

THEOREM 5.1.1. If b is a prime, an elementary Abelian group of order

bk is a G(blk).

THEOREM 5.1.2. A single element is a G(0,k)0

THEOREM 5.1.3. A set of k distinct elements is a G(11k).

We do not know whether any other G(b,k)

. If c(b) is known in closed form for

(b)
2 <n < k, then can be found for 0 <h <k-1 by successive

2 3
use of (3.1.1). By assuming closed forms for c(b) and c(b) we now

29



illustrate the procedure for k3. Since

(5.2.1)

by (3.1.1), and j4) = c (by Theorem 2.1.6), we can solve (5.2.1)

c-1

for If we repeat the process for c3(t) we have

oo 3
(5.2.2) c3(b) = No(b)

J(b)f 1\1(b) (b)

In contrast to the above, the following theorem yields direct
c-1

,h
P(b)methods for finding c(b), Pkbif9and3(b)°

k

THEOREM 5.2.1. c(b)Mwhere Ri(c)(b),-. Ok and Rn(b) is the

ln-li
N ill represents ajisum of all fk-ilterms of the form (b) (

[j-1]

non-negative integer, [0]-, 0, k, [j-1] <

PROOF. To establish thAr: theorem by finite induction we will show

that it holds for k0, and for k+.1 whenever it holds for

If k-O, the theorem follows from Theorem 2.1.6. BY (3.1.1), the

inductive assumptions and elementary algebra we have

1

c-

k

(5.2.3) c N1(
(b) h

I (b)
(502.4)

ck+1

k
,h kill

Ili(b)(.) )
(b) =o h (

)j-,,o ---cl i i

N1(b) h c-1
,(b)

r,
l R(b) (itci)

h

If we rearrange terms [4, p0245] and let (5.2.3) becomes

(b) N1(b)
j- ( c

N (b)

30

We now let p(j,k,b) represent the expression within the brackets

of (502.4). If j.1, S(jsk )- Nko:'1(b)=, Rr(b). If j > 1, R1(b) is

by (3.1.1). We can now solve (5. ) fo
i(b)°



h-1
j-1 ril

the sum of all ( ) terms of the form -I- N' (b) (where [0].. 0,

iij-2
[i-1]

[j-flu. h, [i-1] < [i]), and the number of terms in S(j9k9b) is

cz7 Ih-11 =I k M OusS,k,b)...R11(b) and the proof by finite
h4-=lti-2/ 1J-1)

induction is complete.

By use of the above theorem and (5.2.3) we have
c-1

THEOREM 5.2 2
Rh

/(b) c

'J(b) Iti+11
c-1
C7- h

We note that the above theorem yields a formula for j

j=o

(by Theorem 2.1.8).

5.3. Probabilitz, A real valued function f(j) with domain091,0-2k)

is a probability function if f(j) > 0 for all j9 and :E f(J) 1.

As a direct consequence of Theorems 1.3.21,9 1.3.229 2.1.2 we have

-1_4(
THEOREM 5.3.1. f(j) [2b)] (b) is a probability function if

b > -1.

We conclude with two conjectures.

CONJECTURE 5.3.1. f(j) N1(b) (1x )b) is a probability

function if 0 <:.x <1 and -1 <b <1.

We note that the above conjecture, which reduces to the binomial

distribution if b 1 (by Theorems 1.3.12, 2.1.8), follows from the

extended binomial theorem, Theorems 2.1.1, 1.3.21, 1.3.229 and

Conjecture 3.3.5.

CONJECTURE 5.3.2.) is a probability fuhction if -1 b

The above conjecture follows ft.= Theorem 3.3.59 (3.3.))9 (3.3.5

(3.1.6)9 (3.1.7), and Conjecture 3.3.4.
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PASCAL-TYPE TRIANGLE FOR Nk (b ) WHEN b HAS PERIOD 4




