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Chapter 1 – Introduction

1.1 Autonomous Agents and Multiagent Systems

With the growth in complex technologies and the information and sensor networks

of which they subsist, it has become increasingly difficult for humans to perform

tasks that demand a high amount of memory, processing, and time. Tasks such as

large-scale searches, data compilation, and monitoring for long, continuous dura-

tions are all functions an autonomous, computing agent could perform just as well

as a human, and potentially much faster. The purpose of integrating autonomous

agents into systems, no matter how complex or simple, is to relieve humans of

repetitive and time-consuming duties so that their expertise and attention may be

focused elsewhere. Already, autonomous agents aid in several applications such

as email filtration, information routing, and visual effects allowing us many of the

conveniences and pleasures we enjoy today[8, 29, 44].

There exist several research domains in which collectives of these autonomous

agents, or Multiagent Systems (MAS), work in accomplishing tasks of even higher

complexity. In the field of ground traffic, intelligent lane assignment and control

may prove to alleviate congestion during rush hour times, allowing drivers to reach

their destinations with little time lost [14, 5, 15]. Also, traffic in the air may benefit

from the incorporation of a multiagent presence by aiding air traffic controllers
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in monitoring sectors of high congestion; potentially saving the airline industry

billions of dollars each year, and saving passengers hundreds of thousands of hours

that were once lost to delay[46, 48]. Agents may also be given the capacity to

move and alter their environment, as in many disciplines of robot coordination. In

the case of robotic exploration, a team of robots may intelligently gather data in

regions where it would be impossible or unsafe to send humans. Such situations

may include search and rescue in hazardous environments, sample collecting in

areas of high radioactivity, or even the exploration of extraterrestrial planets and

moons. Several instances have shown that teams of robots can collectively observe,

track, and find stationary and moving targets in simulated environments [18, 30,

47, 39, 42].

The field of robot coordination is a multi-faceted domain spanning the full

breadth of research from theoretical simulations to real-life robotic soccer teams[24,

16, 40]. Although all coordination problems deal with creating coherent, adaptive

actions within a collective of autonomous robots, the overall problem objectives can

be quite diverse. Some robotic teams are charged with relocating a large object,

too large to be moved by any one of the team’s members, but not large enough

to resist a cooperative push. Other teams are faced with a large environment,

sparsely populated by points of interest. In this instance, it is more prudent to

adopt a ‘divide and conquer’ approach rather than ‘stick together and push.’ Thus,

the definition of ‘good’ behavior depends upon the robots’ objectives, and their

learning of such behavior depends upon the way in which they are rewarded or

penalized for the actions they choose.
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Despite the differences of objectives and resultant behavior between subdisci-

plines, the underlying algorithms and concepts are quite similar and have been

shown to be applicable in more than one set of circumstances[17, 45]. A clever

algorithm may boast high performance for specific environmental and circumstan-

tial parameters, but if it is not robust to changes in these parameters, slight or

otherwise, then it will have poor chances in real world environments where noise,

sensor failure, and unpredictable conditions are quite prevalent. It is therefore

desirable to create high-performance algorithms that are robust in these ways, and

are executable across several domains without much modification or tuning. For a

more complete exploration into the research of robot coordination and how these

algorithms are employed, consult [31, 41, 16, 30, 54].

Within the field of robot coordination, and the main focus of this paper, is the

pursuit domain. Also known as Predator-Prey and Pursuit-Evasion, the pursuit

discipline of games is a domain introduced by Benda et al. [7] in which the objec-

tive of one group of agents (pursuers or predators) is the capture of another group

(evaders or prey). Due to its extensive use in areas such as defense strategies[10,

13], robotic soccer[50, 23, 40], and dynamic target tracking[52, 33, 20, 19], an ap-

preciable amount of literature has been generated from its research. With various

environments, action-spaces, state representations, and reward schemes, all share

the same goal in maximizing agents’ respective objectives: pursue or evade.
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1.2 State-Space Representation within the Pursuit Domain

Accomplishing successful pursuit algorithms is no trivial task. One challenge with

achieving intelligent decision making in any MAS is extracting the system infor-

mation (environment, agents in proximity, etc.) necessary and translating that

information into a set of numerical values {x0, x1, ..., xn} that computing agents

can process. These values form what is know as an agent’s state s = {x0, x1, ..., xn},

and it represents the agent’s perception of the world. The concept of a state-space

S (of which, every state is a part s ∈ S) is then introduced and it is simply the

collection of all possible ways the world may be oriented to the agent.

A state can also be thought of as the list of inputs an agent can sense (be it

environmental factors, positions/actions of other agents, agent specific information

such as battery life, sensor information, etc.), and it is this information that in-

fluences an agent’s learning and decision-making capabilities. Action-space A (of

which all possible actions are a part a ∈ A) contains the ways in which an agent

can carry out the decisions it has made based on its state (moving to a new posi-

tion, communicate to human or other agents, actuate an appendage, etc.) and it

is through these actions that an agent can interact with the world and experience

new states (s′). Using the information given by the agent’s state, it may learn to

associate certain states with positive outcomes (rewards r), for example: moving

towards the prey when adjacent to it results in capture. Through a heuristic pro-

cess, predatory agents develop the behavior leading to quick, consistent capture.

In fact, current algorithms and reward schemes have proven to be quite good at
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tracking dynamic prey in well-defined environments[26, 40, 55].

The problem, unfortunately, is trying to scale these algorithms to scenarios

where there are larger, more complex environments and more agents present. Due

to inherent “curses of dimensionality” [34] within most state-space representations,

the act of scaling results in drastically increased state-space size which can render

learning unfeasible. It would then be preferable to have an algorithm that can

track a moving target (prey), in addition to being applicable to any environment

with any number of predators or prey involved in the game. A great deal of effort

has been, and is being, put into clever learning and scaling tricks to overcome this

dimensionality problem, but perhaps a simpler solution exists.

Quantitatively defining environmental surroundings (locale), nearby agent pres-

ence, (agents) location (orientation and/or position), and capabilities (possible

actions) are all a part of identifying that agent’s state/action-space. It would

be possible to avoid some dimensionality problems if a state-space representation

contained the previously stated information while remaining independent of the

position and number of agents present. This paper explores a representation that

accomplishes this by condensing an agent’s surroundings into a simple, localized

form. Paired with a basic reinforcement Q-Learner, this Condensed Observation of

Locale and Agents (COLA) will show how minimal state information can lead to

robust, environment- and population-independent solutions to the predator-prey

domain.

A closer look into the pursuit domain can be found in Chapter 2. Here, the

definitions of states, actions, and rewards will be discussed as well as previous



6

approaches in applying them. Also, the 1-step Q-Learning algorithm which all

agent types will utilize will be shown and explained.

The problem setup, dynamics, and simulation are addressed in Chapter 3.

Several state-space representations will be presented along with how they are com-

puted and what they each mean conceptually. Section 3.1 will develop the world

and its dynamics which all agents must obey. The actual simulation of the world

and all agents within in it will be shown in Section 3.3.

Chapter 4 will discuss how the parameters and actions are selected in the Q-

Learning algorithm. Several action selection methods will be presented and com-

pared by performance. The top performers will be chosen for future simulations.

In Chapter 5, we will compare performances of proposed state-space representa-

tions for static and dynamic prey. Certain examples will show why some state-space

representations are inherently ill-suited to several pursuit domain problems.

Many of the dimensionality problems existing the pursuit domain will be brought

to light in Chapter 6. Agents will be placed in larger and more complex worlds

where they need to transfer their learning from smaller worlds in order to remain

competitive. This chapter will reveal the setbacks with state-space explosions and

why they result from the state-spaces they do.

Chapter 7 will introduce real world conditions such as sensor noise and failure,

comparing once again the performance of selected state-space representations. This

chapter will show how sensor accuracy can degrade over distance, and how an

adaptive agent deals with inaccuracies quite admirably. The benefit of learning

is revealed in this chapter, showing that adaptation trumps intuitive policies in
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unpredictable conditions.

Finally, Chapter 8 will revisit and summarize the results found in Chapters 4–7

as well as the contributions and relevancy of this work. In closing, there will be a

brief discussion of ways in which this research may be advanced in the future.
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Chapter 2 – Background

In the field of robot coordination/navigation, it is often the topic of research to

successfully explore an unknown environment. Some cases involve a large team of

robots in a complex world whose objectives are the measurement of specific points

of interest [25]. The robots must either individually or collectively come within

a certain distance of a target in order to accurately measure it. The predator-

prey concept is rather similar, except instead of ‘tracking’ and ‘measuring’ a static

target, it is the agents’ objective to ‘track’ and ‘measure’ a moving target. Using

the vernacular of predator-prey, one could instead say the predators are ‘pursuing’

and ‘capturing’ rather than ‘tracking’ and ‘measuring.’ This process of capture

still requires that the predator-agents come within a certain distance of their prey.

The major difference is that the target in this case is, sometimes, also given an

objective: run away.

While it is the goal of the predators to be where the prey is, it is the goal

of the prey to be where the predators aren’t. It is this aspect that makes the

pursuit domain such a challenge, teams of predators must learn tactics such as

intercepting, flanking, and trapping; simply heading straight towards the prey will

almost always allow it to escape [55]. Likewise, the prey must learn to do more

than elude the closest predator, it must also take into account the other predators

trying to corner it. The craftier the predators become, the craftier the prey must



9

become in order to survive. It is this back-and-forth building of tactics that makes

Predator-Prey solutions such a powerful tool in modern day applications discussed

in [49, 11, 30], it is also the reason why these problems are no trivial task to solve.

2.1 Pursuit Domain Approaches

There are several ways in which pursuit domain research is already being imple-

mented in modern applications. Several institutions use teams of robots to show

how buildings can be explored [19] and targets acquired using predator-prey al-

gorithms [51]. Conceptual models of Pursuit-Evasion scenarios have ranged from

hunting scenarios [37, 1] to a force of police officers searching multiple rooms for

criminals [52]. Even in the Art Gallery Problem [12] where one must find the min-

imum number of guards necessary to keep valuables secured uses predator-prey

methods [36]. Several of these models follow a pure mathematical graph solution

and are quite abstract in concept, while others are modeled in physical simulations,

generating empirical solutions.

A more functional form, one whose dynamics come from electrostatics in physics,

says to treat enemy agents as repelling potential wells and target agents as attract-

ing potential wells. This idea originates from the integration into the environment

of biological pheromones distributed by insects to coordinate swarm behavior[32].

The extension comes in by allowing pheromones of a polar nature, meaning one

type of pheromone is meant to be followed and the other is meant to be avoided.

The electrostatic predator-prey approach modifies this by giving pheromones radi-
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ally propagating intensity, so that the closer an agent finds itself to that pheromone

source, the more it is repelled/attracted. This is a conditioned approach that gives

the state-to-action mapping a mathematical formula to follow. It has the advan-

tage of having quite low computational cost, but the drawback is that it must be

heavily tuned in order to achieve the desired results in agent decisions.

Many approaches to the predator-prey domain use policies as a way to achieve

focused agent behavior [51, 26, 52, 33] where the agents are presented with a series

of if-then statements that define the action to take for whatever state is observed.

This is a solid way of designing agents to do exactly what is wanted of them in

controlled settings. However, this approach does not give agents the capacity to

learn and adapt which, when faced with unforeseen circumstances, places them at

risk for catastrophic failure. For example, an autonomous car that has recently

gotten a flat tire may drive off a cliff because its policy always assumed there would

be four, fully inflated tires. This problem may have been avoided had the car been

given the ability to adapt to its new conditions. It is robust-conscience designs

like this that put adaptive agents at an advantage. With this in mind, our goal

is to create a robust agent that is affected by its interactions so that it can be

introduced to new environments and conditions and still be able to learn useful

behavior. A more exhaustive survey of the applications and environments (both

physical and virtual) in which this research is found is conducted in [11, 49, 41].

Whether a designer opts to integrate a policy or adaptive style into the au-

tonomous agent, the agent’s state must first be defined. Recall from Section 1.2

that a state can be thought of as the agent’s perception of world, or what informa-
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tion that agent has to make decisions. Too much or too little relevant information

can render decision making a difficult, and sometimes impossible, chore. Imagine

eating at a restaurant that had a 2000 page menu containing every dish with every

ingredient imaginable. Patrons would most likely have a difficult time extract-

ing the information they need to order an entrée with which they were content.

The same is true with computing agents, they are not required to know every-

thing about their surroundings, in fact knowing too much can be detrimental to

learning[9]. Likewise, too little information can cause agents to make incorrect as-

sociations which may develop undesirable behavior [55]. For example, say there is

an autonomous agent in charge of making and stocking up ice cubes for refreshing

drinks. If this ‘refriger-agent’ is only able to sense day and night, it would not un-

derstand why on some days there was high demand for ice and for other days there

was almost none. Were the ‘refriger-agent’ equipped with a temperature sensor, it

would correlate high demand to hotter days and thus be able to more efficiently

make and stock ice. If a designer wishes to see efficiently performing autonomous

systems, then agents must be given not only the right information, but the right

amount of information.

As stated in Section 1.2, it can be a challenge to determine what the right

information is and how it is presented to the agent as a state. In predator-prey

scenarios, a popular state definition seems to be that of a global one[9, 38, 21, 40]. A

global state is simply a vector containing every agent’s position in the environment.

For instance, in a discretized n × n gridworld containing N cells, a single agent

would have N possible states. If agents are allowed to occupy the same position at
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the same time, adding one agent to the gridworld makes the orientations increase

to N2 states. This is the “curse of dimensionality”[34] mentioned in Section 1.2,

small increases in population and environment cause exponential increases in the

state-space [3]. One can see that as the size of the gridworld and number of agents

grow, the state-space can become quite unmanageable.

There are many clever ways out there that attempt to control the state-space

size by reducing the field of view so that the state information is more local[55,

20, 19, 33]. Another is choosing a distributed or hierarchal form that reduces the

dimensionality consequences, but does not extinguish them completely [3, 27]. As

long as agent positions are included with the state generation, there will always be

problems with scaling and learning due to the inherent ‘curses of dimensionality.’

The approach taken in this paper is to rethink how predators use their surroundings

and senses to capture their prey.

When observing predator-prey scenarios in real life, a couple things become

rather apparent. Let’s take, for example, a soccer game in which three defenders are

moving in to steal the ball from an opponent. If these players are experienced and

competent defenders, they can achieve strategic positions around their opponent

without the need for communication between themselves, or direction from their

coach. If we were to treat these soccer players as computing agents, we could say

that their state is what and who they see around themselves. Their positioning

strategies are dependent upon their experience (learning), and the relative positions

of their teammates and opponent (state). And based on their surroundings, they

each make a decision of where to go next. What’s more, is that these decisions
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are made quickly, without debate or hesitation. This implies that their actions

are a response to their state, and that response is built by experience. If they

accomplish in stealing the ball, then they are psychologically rewarded for their

efforts. If, however, they fail and the opponent scores, they are psychologically

penalized and will probably try something different next time.

The soccer players behave in such a way that it implies their choices are purely

reactionary, in other words, they see their surroundings and immediately map those

surroundings to a learned action. There is no reason, then, to not believe that a

computing agent can do this also. In situations where other strategies are not

necessary (being near goals, etc.), the soccer players do not care how big of a field

they are on (independent of environment), it does not change their objective of

obtaining the ball nor augment how they are going to accomplish it. They also do

not take into account all of their other teammates and opponents on the field, they

only acknowledge those involved in the play (agent scalability). Already the players

have eliminated two dimensionality problems by localizing their surroundings. A

thorough explanation as to how we will attempt in mimicking this state-space

representation is found in Section 3.2.3.

2.2 Reinforcement Learning

Recall that the soccer players mentioned in Section 2.1, above, do the following

four things when attacking an opponent:

1. s: Evaluation of state
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2. a: Choosing action based on state

3. T (s, s′): Transition to new state

4. r(s, a): Resultant reward or penalty

Where s ∈ S and a ∈ A. The reward function r(s, a) where (r(s, a) ∈ R(S,A))

returns a reward to an agent that has chosen to take action a from state s. This

4-tuple decision framework is known as a Markov Decision Process (MDP) and is

utilized quite extensively in Reinforcement Learning problems[35, 40, 22, 4]. The

significance of this is that the predator-prey domain fits nicely into a Reinforcement

Learning framework [43]. Thus, a basic 1-step Q-Learning algorithm will be chosen

and implemented using several state-representations. Performance will then be

attributed to the selection of state definition rather than how well each learns, as

is done in most research. The basic 1-step Q-Learning algorithm is as follows:

Q(st, at)← Q(st, at) + α[R(st, at) + γmax
a
Q(st+1, at+1)−Q(st, at)] (2.1)

Equation 2.1 is essentially a table that contains an agent’s memory of the values,

both expected and received, for all state-action pairs {S,A} it’s experienced. To

explain how agents ‘learn’ utilizing Equation 2.1, we will look at a brief example

from an agent’s perspective.
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Figure 2.1: Agent in a New Environment - agents choose random actions while they are
inexperienced. Rewards help shape their behavior to make coherent decisions in the future.

(a) An agent is placed inside an environment and is given no directions

or instructions. It will consult its Q-table and find it has no experience

whatsoever, and so will not know what to do.

(b) It will proceed to wander around aimlessly, all the while updating

its Q-table to take note of the states it’s been in, the actions it’s taken,

and the reward it’s received.

(c) Eventually, an action from a specific state leads to a high reward.

The agent will store this knowledge and use it for the next episode.

Over several episodes, the agent will find the state-action pairs that

yield the highest expected rewards, allowing it to quickly find the goal

in subsequent episodes.

In Equation 2.1, the parameters α and γ dictate how an agent learns from past

experience and estimation. A low value for α will mean that the agent does not

rely heavily upon new information and rewards, this will result in slow learning.

If α = 0, no learning occurs at all. A low value of γ will result in the agent
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not looking ahead to see what its expected rewards are from the new state it has

selected. Increasing γ should increase the learning rate and hasten performance

improvement. Refer to Figure 4.1 in Section 4.0.1 to see how different values of α

and γ affect performance.

Though the agent has a method for storing its experience at this point, it still

needs a way to select the best action from its Q-table. Intuitively, one would think

that it is best to choose the action that corresponds to the highest expected reward.

This is known as a greedy approach and is suspectable to settling for less-than-

ideal decision chains because of its tendency towards local optima[2]. The greedy

method can also be thought of as an exploitation of what it has learned to be

rewarding actions. This means that the agent is potentially ignoring a large part

of its state-action pairs, preferring to stay with actions it knows to be good rather

than trying new actions to see if they might be better. Trying new things can be

thought of as exploration, and an ”exploitation/exploration” trade off ensues [28].

A way to break out of exploitive habits and encourage exploring is to occasionally

pick a random action with probability ε, known as an ε− greedy approach.

Yet another way of selecting actions from the Q-table is by applying to each

action probabilities that are proportional to their respective Q-values. The prob-

ability function P(s,a) for selecting a specific action i given the state follows the

softmax selection equation:

P (s, ai) =
eQ(s,ai)∑n
j=1 e

Q(s,aj)
(2.2)
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while episode < episodeMAX

do



Initialize Agent Positions
while t < timeMAX

do



Calculate state st
qt ← Q(st, a) Sample Q table
at ← P (st, a) Select action
Take action at
New state st′
rt ← R(s′) Receive reward
qt ← qt + α(rt + γmaxaQ(s′, a)− qt)
Q(st, at)← qt Update Q-values
if Prey = captured
then End episode

Figure 2.2: Q-Learning Update Process - pseudocode for an episodic learning process.

A comparison of these action-selector methods (greedy ,ε-greedy, and softmax)

and their use in Equation 2.2 is found in Section 4.0.2.

In summary, the way agents utilize the rewards given and adjust their decisions

for future iterations will be determined by their learning algorithms. Using a

Reinforcement Q-Learner, agents will calculate their current state, consult the Q-

values remembered for that state, and select an appropriate action based on that

information. Q-values will then be updated using rewards the agents receive for

taking the chosen action. The flow of this episodic learning iteration may be found

in Figure 2.2.
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Chapter 3 – Setup and Simulation

Because of the mutually exclusive nature of the agent objectives in pursuit-evasion

problems, it would not be entirely useful to assess the system with an overall

performance. Since either the prey is caught or it escapes, only one team of agents

will receive an end reward and so the two objectives cannot both be met; one group

must succeed while the other fails. For the purposes of this research, we will focus

solely on the control of the predator and assess its performance on how quickly

it is able to capture the prey. If the prey will behave in one of two ways: it will

remain stationary, or pick random actions and wander. Either way, it will have no

perception of the world and make no decisions, it will simply act as a target for

the predator to track and capture.

3.1 System Dynamics and Environment

Choosing the environment in which the agents exist determines a considerable

amount regarding the possible forms their action- and state-spaces will take. A

continuous environment, 2D Euclidean e.g., allows agents to have continuous ac-

tions, 2D vector states, etc. Due to the digital nature of computers, world infor-

mation must be discretized to some degree, but one can approximate a continuous

environment by creating a gridworld with small enough cells, similar to what was
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done with UC Berkeley’s BEAR project [51]. One could also discretize a contin-

uous environment into finite areas, like a building being divided into rooms and

hallways [20, 19].

Figure 3.1: Possible Instantiations of the Proposed ‘Gridworld’ - (a) shows a finite gridworld
with boundaries, while (b) removes the boundaries and gives uniform connectivity (creating a
toroidal environment). (c) is still a finite world but has introduced a large degree of asymmetry
into its connectivity.

For this paper, the agents will occupy a world that is discretized similar to

those found in Figure 3.1. In this world, an agent may only occupy one cell at any

given time, and it may not share its cell with any other agent while it is there. The

spatial layout of (x, y) coordinates is convenient for us to understand, connections

between cells are obvious, and we can quickly find paths from one cell to another.

Computing agents, however, are not blessed with this intuition and need the world

and all its properties presented to them in numbers alone, without any inferred
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relationships. Thus, the world will be translated into a list of all the possible cells,

and the cells to which they are connected. The symmetric 10 × 10 environment

shown in Figure 3.2 shows how this translation works.

Node
Action

⇐ ⇑ ⇒ ⇓
1 0 0 2 11
...

...
...

...
...

9 8 0 10 19
10 9 0 0 20
11 0 1 12 21
12 11 2 13 22
...

...
...

...
...

100 99 90 0 0

Figure 3.2: Environment Data Presented to Agents - an array containing all 100 cells in a
10 × 10 gridworld with a list of all connections by action. Note that spatial position is not
conveyed to the agent in this form.

3.2 Defining States

For the simulations in this paper, we will explore numerous 1v1 scenarios in order to

answer the question: which state-space representation offers the highest scalability

and robustness? These competing representations are the popular Position- and

Relative-based state-spaces described in Sections 3.2.1 and 3.2.2 respectively, and

the Condensed Observation of Locale and Agents (COLA) state-space briefly which

will be discussed at length in Section 3.2.3. All representations will have access to

the same environmental and agent information, but they will each interpret that
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Figure 3.3: Example Environment for Position-Based Representation - a static world where
rewards are only dependent on the robot’s location is ideal for a representation that is defined
by its global coordinates.

data differently in defining what their state variables are. And, as stated in Section

2.2, all representations will use the exact same learning algorithm, Equation 2.1,

to show that the way a state is constructed can make a dramatic difference in how

well one performs.

3.2.1 Position State-Space Representation

One of the more well-known and first to be thought of state-space representations

is the Position-Based. This representation uses the environment data provided to

determine its location in the world which it uses for its state. In static environments

where conditions are slow to change, there is little need for anymore than just this

since the outcome of any state-action pair will not change much from the last

several episodes.

Imagine a robotic vacuum that needs to clean a large house, Figure 3.3. There

are several rooms that are dirty and need cleaning, and a few rooms that the robot

is not to enter. The robot will receive a penalty when it enters forbidden areas,
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and rewards when it covers parts of the house that are still dirty. The robot also

needs to recharge every once in awhile and so must learn the locations of power

outlets around its environment. Since this house is unchanging, once the robot

has learned the locations of good areas, bad areas, and power areas, it will be

able to complete its task quite effectively. However, if the homeowners frequently

redecorate and shift heavy furniture around, the robot will have to relearn some

areas because the rewards it is now receiving are different from past experience.

We should subsequently expect that this representation will perform well in static

environments with static goals, but will have trouble in more dynamic situations.

From a gridworld domain, the representation could look something like what

is seen if Figure 3.4. Because this particular representation takes into account its

global position, it will possess pertinent environmental information. However, it

will not be able to account for any sort of dynamic presence, such as environmental

changes or other agents. Mathematically speaking, the state will take the following

form:

sPOS = {X, Y } (3.1)

If an agent finds itself in a rectangular gridworld of dimension m×n, the total

number of positions within that world is therefore m × n = mn ≡ N . As sPOS

is dependent only on its own set of coordinates, the resultant state-space size will

increase proportionally to the total number of nodes in the world N , and therefore

is on the order O(N). Consequently, the number of agents present will not affect
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Figure 3.4: Position-Based Representation in Gridworld - an agent’s state is found by calcu-
lating its location relative to the global coordinate system. It’s state-space size is therefore on
the order of N, the number of locations (nodes or cells) in the world.

the size of the state-space, thus will scale well with agent populations.

3.2.2 Relative State-Space Representation

Some stray away from the global state but still treat relative-agent positions as the

state inputs [55, 20, 19, 33] and this is shown to produce the desired behavior in

discrete worlds. A slight extension of its position-based counterpart, the relative

state-space representation differs by measuring all agent coordinates relative to its

own position. This gives it the advantage of being able to sense the proximity

and direction of other agents, it also puts the state in a localized form that is

independent of global position. The drawback is that it contains no information

about the environment itself and so will not be able to accommodate a world that

is dynamic. In most static environments, however, it should perform rather well.

If an agent with this representation is place in an m×n gridworld, then it will

observe agents that are close (directly adjacent to its cell) to far away (on the other
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Figure 3.5: Relative-Based Representation in Gridworld - an agent’s relative position to all
other agents is the in which this state-spaced is compiled. Unlike a Position-based representation,
the origin is set to its own position and so all global information is lost. The size of the state-
space in this particular case is dependent upon both the size of the world and number of agents,
making it on the order of O(NM ) where M is the number of agents and N is the number of
locations in the world.

side of the grid). In an m× n grid, the distance from one agent to another can be

anywhere between [−(m− 1),+(m− 1)] in one direction and [−(n− 1),+(n− 1)]

in the other. This means that the full interval is:

([−m, . . . ,−1, 0,+1, . . . ,m], [−n, . . . ,−1, 0,+1, . . . , n])

Totaling (2m − 1)(2n − 1) = 4mn − 2n − 2m + 1 states. If N is the number

of cells in the world, this state-space is on the order of O(4N), roughly four times

bigger than the Position-based size. What’s more, is that for every agent added, a

whole new set of states is available, increasing the state-space size to O((4N)M−1)

where M is the total number of agents. In a 10× 10 gridworld with 3 agents, the

state-space will have 160,000 possible states. Adding a single agent increases this

further still, to 64,000,000.

This Relative state-space representation will have more difficulties in scaling

up than a position-based because its size is dependent on both the world and the
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number of agents present. It should, however, be able to track moving targets,

something the position-based representation lacks the information to accomplish.

3.2.3 Condensed Observation of Locale and Agents (COLA)

In Section 2.1, we introduced an example from soccer that led us to some possi-

bilities about predator/prey needing some exploration:

1. Decisions are reactionary - both predators and prey make decisions which

do not require a high amount of processing time, thus choices may not be

actions, but reactions.

2. Little to no communication is required - a group of predators is capable

of coordinating without issuing auditory instructions or orders, using only the

basic visual information available to form strategic positions and approaches.

3. Immediate surroundings are most important - other predators and

prey which are far away may be ignored for most decisions made, meaning

local information is recognized while much of world may be dismissed.

These three things imply that predators may be able to coordinate well with

a simple state-to-action map. With this in mind, our objective will be to create

this simple map using reinforcement learning and a state-space representation that

attempts to estimate surroundings in a simplified form.

The Concensed Observeation of Locale and Agents (COLA) state will be the

estimated predator and prey densities an agent observes around its current posi-
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Figure 3.6: Chessboard with Dark and Light Pawns - pawns are allowed to move one space
to any adjacent square, the objective of the dark pawns is the capture of the light pawns. The
center dark pawn is highlighted to indicate that it is now its turn to calculate its state and choose
an action. The image on the right is of the same board, but from the top view.

tion. Take for example the 8× 8 board in Figure 3.6 with 2 types of pieces, dark

pieces (predators) and light pieces (prey). If we were to look at the board from

the perspective of the highlighted dark pawn, it would look something like what

is shown in Figure 3.7

These pieces have the choice of moving to any adjacent square (either up, down,

left, or right) and these will be referred to as the agents’ options. Each option will

have a value assigned to it equaling the estimated density of agents it observes

following that action path. There are a couple rules that the COLA calculation

follows in order make the representation more realistic:

1. Observation terminates at objects and agents - If an observation path

intersects with something other than an empty node, it will terminate and

return its value to the option with which it is associated.

2. Non-terminating nodes are observed once - Nodes may be observed

by more than one observation path, but once they have been observed, they

may not be observed again for that time step.



27

Figure 3.7: Environment as Viewed by a Predator - a 360◦ view of a predator’s surroundings.
The 0◦ heading is aligned with due west. Note that closer agents appear larger and take up more
field of view.

The first rule mimics line of sight phenomena in that objects cannot be observed

if an obstacle is blocking that path of observation. This is not to say that those

objects are unobservable, it simply means that vision is blocked for that specific

observation path. If, for instance, a mirror were introduced, the object could be

seen down the observation path that travels to the mirror first. The second rule is

meant to prevent unnecessary observation paths like those shown in Figure 3.12(a).

The value for each option is determined by summing the number of agents found

along any observation path originating from one of the agent’s set of actions, or

options. Of course, the farther down a path an agent is, the lower impact it will

have since it is technically farther away. Consequently, for every successive node

the observation path takes, agents found there will have their value divided by a
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Figure 3.8: Actions and Their Associated Subfield of View - an agent’s full field of view may
be divided into its actions (left, up, down, and right).

distance factor, making them less noticeable.

To better explain this concept of condensing agents into option values and using

observation paths to do so, we will explore the state created by the highlighted

pawn in Figure 3.6. To reiterate, Figure 3.7 shows the world from this pawn’s

perspective, giving a 360◦ view of its surroundings. This view can be translated

into agent densities seen at any given heading, with closer agents filling up more

field of view, and farther agents taking up less.

Since the pawn only has four directions down which it can travel, it may be

prudent to turn this 360◦ view, into a four action view. Noting that certain di-

rections are associated with a subrange of the total field of view (for instance, the

Figure 3.9: Agent Densities from an Action-Based Perspective - an agent may now see the
densities of predators and prey down any action.
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Figure 3.10: Condensed Observation of Locale and Agents (COLA) - state representation
showing relative agent densities viewed down actions. This state is scalable in both gridworld
size and number of agents.

action left is associated with the interval [−45◦, 45◦]), we can allocate equal parts

of the pawn’s view to its possible actions. Figure 3.8 shows what range will be

associated with which action. The subsequent view, now oriented by action rather

than degree heading, is what we see in Figure 3.9.

We can now sum the values within each action, for each type of agent (predator

and prey) to give us the surrounding populations. Figure 3.10 shows how this

representation now appears. The calculation of this state is fairly simple and can

be shown using the pawn from Figure 3.6. We can translate the board into a grid of

nodes which are connected to one another by lines. These lines represent vertices

by which agents can travel and are therefore the movements associated with agent

actions.

The world is now in a nodal representation, with agents occupying certain

nodes and capable of traveling to other nodes via vertices, Figure 3.11 shows the

transition to a nodal form. In order to follow the progression of vision, we will
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Figure 3.11: A Visualization of the Cell-to-Node Transition - cells can be treated as nodes,
defined positions in a world, and connected to other nodes by vertices. These vertices are the
actions an agent can take from the node it occupies.

use Figure 3.13. The observing agent will first sample all nodes (primary nodes)

directly connected to its present location. The number of primary nodes determines

how many options the agent has, and so a values will be found for each option

showing what the estimated predator and prey densities are in that direction.

Let us follow the progression that takes this predator to the left. The primary

node is empty and so the agent observes nothing to its immediate left. From there,

all nodes (with the exception of the agent’s current node) connected to this primary

node are sampled. We see a prey agent to the left and so have observed another

player on the board. At this point, the observation path: Left - Left terminates

and returns its observation to the left-option value. This value will simply be a

prey agent divided by how many steps away it is, in this case, 2. The final value

for any option will then be:

Va =
∑ Ai

di
(3.2)
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Figure 3.12: Unallowed Observation Paths - line of sight examples in a gridworld domain.
(a) shows that there is more than one direction from which a node may be observed, only the
shortest path(s) will be acknowledged. Both (b) and (c) show that observation paths may lead
to other agents, but may not pass through them. Observation paths terminate at agents, walls,
and objects.

Where Va is value associated with an action, and the summation is over all

valid paths belonging to that option. Ai denotes the agent type and di is simply

the number of steps away the observed agent is.

Note that the observation paths Left - Up and Left - Down have not terminated

and so continue in their progression. The sampling will continue with the next set

of nodes (tertiary nodes) and the values will propagate back to their respective

option value. If at any point a node is sampled and it contains an agent, that

visibility path terminates and vision cannot extend past that node. Also, if an

empty node was observed at a previous step, it is not allowed to be observed at

a later step. This prevents redundant and infinite observation paths forming like

those shown in Figure 3.12.

Each agent will have two sets of sensors, one set that locates predators and the

other that locates prey. Both sensor sets will respectively create ‘agent awareness’

by generating estimates for the surrounding populations. Once all nodes have been
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Figure 3.13: The Progression of Vision into Surrounding Nodes - observation begins at the
observing agent, extends to all connected nodes, and then progresses to subsequent connections
until the entire world is observed.
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observed, our state looks quite similar to what we proposed in Figure 3.10.

Using this information, the predators should learn that regions of high prey

densities means a reward is waiting in that direction. These density patterns will

be used to find the desirable actions that return large rewards; it is the goal of

this research to show that these state representations can allow agents to perform

quite well in highly dynamic environments.

With this state representation, we have managed to create something that is

scalable with both the number of agents and size of the world. The final goal we

had was to make it localized so that it only focused on its immediate surroundings.

We will therefore bin our state into a discretized form obeying the following:

sCOLA(a)


2, V (a) = Vmax

1, V (a) = Vmin

0, Vmin ≤ V (a) ≤ Vmax

(3.3)

Where V (a) is the value associated with an option and agent type, Vmax is

the maximum value of V , and Vmin is the minimum. We now have a state-

representation that is localized, and scalable in world size and number of agents.

Our state has eight state values applied to it, a set of two (one for each agent type)

for each direction the agent can go. Since each value can be one of the following:

[0, 1, 2], the size of our state is 38 = 6561. This means no matter the world’s size,

shape, connectivity or the number of agents involved, our state space will remain

this size. In the following simulations, we will be running 1v1 scenarios and so
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only half the state will be used (since the predator will observe no other predators

on the board, those inputs will always be zero). This cuts our state space from

6561, to 34 = 81 states.

Upon first inspection, it appears as though we’ve created a manageable state-

space representation that is both localized and scalable. We will test the perfor-

mance of this representation to those discussed in Sections 3.2.1 and 3.2.2. First,

the simulator used needs to be explained.

3.3 Simulator

The simulations will be comprised of episodes, where each episode is another chance

for the predator to catch the prey. At the beginning of an episode, agent locations

will be initialized in the world; at no point may they occupy the same node at

the same time. Depending on the simulation, the prey’s starting location may be

held constant from episode to episode, whereas the predator’s starting location

will always be random. Each agent will calculate their respective states, make a

decision based on their observation, and execute that action. This will be defined

as a time step, and every episode will have 50 time steps (tmax) before a new

episode begins. All agents in the world will move simultaneously, then recalculate

their states, take an action, and repeat till the episode is over or until the prey is

caught.

Rewards: At each time step, the Predator will be penalized minutely for

moving. This causes a lower overall reward the longer it takes to catch the prey,
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Figure 3.14: Simulator Screen for 1 v 1 - simulator screenshot showing a single prey (white)
and a single predator (black).

influencing the predator to catch the prey as quickly as possible. Upon the suc-

cessful capture of the prey, the predator will receive the reward R, 100 points was

used in all simulations.

R : Awarded to the predator upon successful capture of the prey.

− R
tmax

: Penalty for moving.

Collisions & Capture: When agents are adjacent to a wall or environmental

obstacle, they still have the option of moving in that direction. If either the

predator or prey runs into a wall or obstacle, it will remain in its original position

and be penalized the move penalty. If however, the predator and prey run into

each other, this will be defined as the capture. It is as this point the predator

receives the capture reward R and the episode will end.
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Chapter 4 – Q-Learning Parameter and Method Choice

Before the Position-, Relative-, and COLA-based state-space representations are

compared, we will check our learning algorithm, the 1-step Q-Learner from Equa-

tion 2.1. There are two parameters that need to be chosen, α and γ, in addition

to the action selection methods discussed in Section 2.2. To do this, we will run a

simulation of a single predator and prey, measuring the performance for different

values and selection methods until we have found the top performer.

4.0.1 α and γ Selection

The parameter α determines the ratio of kept memory to replaced memory. α

exists on the interval [0, 1], but if it is zero, no reward is saved to the agent’s Q-

table and so no learning occurs. γ also exists on the interval [0, 1] and it sets how

much of the look-ahead estimation is saved to memory.

Q(st, at)⇐ Q(st, at) + α[R(st, at) + γmaxaQ(st+1, at+1)−Q(st, at)]

Knowledge⇐ (1− α)Memory + αReward+ αγ(Estimation)

For these simulations, a predator used the COLA representation and was given

1500 episodes over which to learn the location of a randomly placed target in a

5× 10 gridworld. Figure 4.1 shows the average capture time to which each α− γ

pair converged. Note that as expected, the convergence time for α = 0 is quite
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Figure 4.1: Performance Comparison for α and γ - several values for α and γ were chosen and
their converged capture times are compared. All α − γ pairs converged by episode 500, and so
the above values are averaged over episodes 500–1500.

poor due to no learning. We see that there is a comfortable region for us to select

our two parameters, and so we will choose a pair that holds a low convergence

time and is not close to pairs with drastically greater times. For the remainder of

our simulations, we will use α = 0.4 and γ = 0.5.

4.0.2 Action Selction Methods

We will now determine the primary action selection method that yields the lowest

capture times. As discussed in Section 2.2, our options will be greedy, ε-greedy,
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Figure 4.2: Performance Comparison for Primary Action Selection - from the Q-table, actions
are selected from the values stored for each state using greedy, ε-greedy, and softmax methods.

and softmax. As in the simulation for finding α and γ, a single predator will

do its best to find a randomly placed target. The agent will consult its Q-table

and from those values choose an action by one of our proposed selection methods.

Once again, the predator will have 1500 episodes to optimize its behavior. For

statistical purposes, we will run this simulation 20 times and average the results.

The performance for each method can be found in Figure 4.2. It is apparent that

the softmax action selection method outperforms both the greedy and ε-greedy

methods by an appreciable amount. Therefore, softmax will be used to select

actions from agents’ Q-tables.

From the Q-Learning Equation 2.1, we see that there is a Qmax term which

means the maximum Q-value from the subsequent state is transferred to Q-value

of the present state. This is essentially a greedy selector and we will verify if it
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Converged Capture Time

greedy 5.50
ε-greedy 5.98
softmax 6.06

Figure 4.3: Performance Comparison for Secondary Action Selector - from Equation 2.1, we
compare performance when Qmax is replaced by Qε−max and Qsoftmax.

is indeed the best. Figure 4.3 presents the capture times for a greedy, ε-greedy,

and softmax secondary action selector. Our results show that the three perform

equally with the greedy selector slightly ahead; meaning Qmax is indeed the best

term to use.

These results are supported by Watkins’ introduction and proof for the 1-step

Q-Learning algorithm which uses the Policy Improvement Theorem found in Bell-
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man and Dreyfus (1962). Their theorem states that the best possible performance

is obtained by a policy of selecting a maximum value, all other policies will result

in performance that is less than or equal to this optimum [6, 53].

We have shown that our selection of the parameters α and γ, and the method

by which actions are chosen can have significant effects on how quickly and how

well our agents learn. From these results we have determined that our agents

perform well when our parameters α and γ equal 0.4 and 0.5 respectively, when

our primary action selector follows a softmax probability method, and when our

secondary action selector is kept at a greedy Qmax. We will therefore use these as

our parameters and methods for the remainder of experiments.
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Chapter 5 – Static and Dynamic Prey Results

In this chapter, we will compare the performance for the three state-representations

described in Section 3.2. There are a couple terms which will be used throughout

the results sections and they will be discussed here.

Prey/Target Start Location - refers to the beginning position of the prey/target

at the start of each episode. If the start location is ’fixed ’ then the prey’s loca-

tion remains the same from episode to episode. Otherwise, start location changes

depending upon the change rate.

Static vs. Wander - describes the motion of the prey/target. Static indicates

the prey makes no movement, wander allows it to pick random actions and move

accordingly.

Convergence - when performance stabilizes and does not decline nor improve.

The value of this performance asymptote will be referred to as the converged

Figure 5.1: Convergence Plot - arbitrary data showing convergence to time T with a learning
time of L.
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capture time. (shown as T in Figure 5.1)

Learning Time - the number of episodes required for performance to con-

verge.1(shown as L in Figure 5.1)

5.1 Static Prey Starting Location

The first set of simulations will test how each state-space is equipped in finding a

stationary target in a fixed world. For all episodes, the prey will be assigned to the

same starting location, and throughout the episode, the prey will not be allowed

to move.

Figure 5.2: Stationary Target - the three-state space representations perform equally when
finding and capturing a static target. Performance was averaged over 20 runs.

Figure 5.2 shows that all representations perform equally well, all converging

1For this paper, the learning time will be used to describe things qualitatively, and so does
not need a precise mathematical definition.
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to an average capture time of approximately 5.5 time steps. This was an expected

result as it was stated in Section 3.2 that all representations would handle static

environments/targets without much problem.

Figure 5.3: Wandering Prey with Constant Start Location - the prey picks random actions at
every time step, but begins each episode in the same location.

We will now make the task slightly more challenging by allowing the prey to

wander. Like last time, the prey will have a fixed starting location that remains

the same from episode to episode, but after the episode begins, the prey will pick

random actions to take, making it more difficult to catch. Figure 5.3 shows that the

average capture time does indeed increase across all state-space representations,

but the COLA in particular manages to keep its time 7 time steps below Relative

and 20 time steps below Position. Position, of course, is not well-suited for a

dynamic prey and so it comes as no surprise that it performs the worst of all.
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Relative, however, is capable of tracking a moving target, as is COLA. The only

reason Position as catching the prey at all is that it learns to go to the region

where they prey starts because that is where it was accustomed to receiving the

most reward. The prey does not wander far and so the Position-based predator

randomly runs into the prey at times, it is not tracking the prey at all.

5.2 Dynamic Prey Starting Location

To further push the agents’ capabilities, we will see how they fare when the prey is

not required to have a fixed starting location. All three state-representations will

learn on a stationary target which has a fixed starting location.

Figure 5.4: New Target Location every 500 Episodes - the prey remains fixed for 500 episodes
until it is assigned a new starting location at episode 500 and remains there for the duration of
the simulation.
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After they have been learning for 500 episodes, the prey’s starting location

will be placed somewhere else and held there for the remainder of the simulation.

Figure 5.4 shows that all three state-representations are confused by the prey’s

sudden change and must readjust their behavior. It is not long before they all

learn the prey’s new position and proceed to catch it quickly every time.

Now the prey will change locations every 250 episodes, twice the frequency.

In this case, we see in Figure 5.5 the same result; all three experience a sudden

increase in their capture times but quickly recover. We also see that the Position-

based representation is most affected by the altered conditions, meaning that it is

the least suited for change.

Figure 5.5: New Target Location every 250 Episodes - the prey is assigned a new starting
location every 250 episodes. Agents must relearn their target’s location at every new assignment.

When we increase the frequency even further to a prey location change every
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Figure 5.6: New Target Location every 125 Episodes - the Position based-representation shows
that it is still, significantly affected by the prey’s random changes while the COLA and Relative
representations are becoming less and less affected.

125 episodes, something interesting begins to happen as seen in Figure 5.6. The

Position-based representation continues to be thrown off by the prey’s new location,

but the COLA and Relative representations are thrown off less and less as the

episodes increase. This shows that they are now learning to track a moving target

and are beginning to show that changes in the prey’s location will not disrupt their

performance anymore.

As the frequency of random start locations grows to once every 50 episodes, we

observe in Figure 5.7 that the progression continues. The position-based represen-

tation is now unable to recover and is not performing as well as COLA and Relative.

The latter two have now become quite accustomed to the periodic changes and are
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Figure 5.7: New Target Location every 50 Episodes - target location changes faster than a
Position-based representation is capable of learning, and so results in poor performance. Both
COLA and Relative are affected by subsequent changes less and less as episodes go on.

relatively unaffected by the target’s new locations. Note that the learning time

(the number of episodes required to converge) is consistent for each state-space

representation. No matter the periodicity of the target’s change in start location,

the Position-based representation needs about 100 episodes to achieve convergence.

The COLA- and Relative-based representations, however, require 25–50 episodes

to converge, enabling them to perform their best in, at most, half the time. The

reason we see the Position-based representation do so poorly is that the world is

changing twice as fast as the representation is capable of learning.

Finally, we will randomize the target’s starting location at the beginning of

every episode. Figure 5.8 shows the Position-based representation completely in-
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Figure 5.8: New Target Location every Episode - in a dynamic target environment, the COLA-
and Relative-based representations are able to converge to a low capture time, whereas the
Position-based performance destabilizes completely.

capable of finding the target. Both COLA and Relative, track the target quite well,

achieving the same average capture time of 5.5 time steps as was done in the com-

pletely static case. Note, however, that the learning time drops to roughly 400–500

episodes, meaning that it takes significantly longer (approximately 10 times longer

in this case) for these state-representations to learn a dynamic target than a static

one.

We have seen that the frequency at which the prey changes locations can affect

the learning time and convergence of the predators. Figure 5.9 consolidates this

information, showing the converged capture times as the prey location change rate

increases. COLA and Relative converge to about the same value of 5.5 time steps,
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Figure 5.9: Frequency of Random Prey Start Location - the converged capture times when prey
changes its starting location every 500, 250, 125, 50 and 1 episodes. Only the Position-based
representation is affected.

and this is consistent no matter the periodicity of the prey’s randomized starting

location.

We will take the agents that have learned on prey changing starting locations

every episode and test them on a world in which the prey is no longer forced to

remain stationary. Similar to the simulation conducted in the previous section, Sec-

tion 5, the prey will choose random actions and wander through the environment.

We will compare how well the agents transition from their learning environment

to this new, test environment. In Figure 5.10, all agent performance curves begin

where they left off in Figure 5.8 because that was their training domain. Once

the prey is allowed to wander, the Relative-based representation slightly drops in
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Figure 5.10: Wandering Prey with Random Start Location - the prey is now allowed to wander,
learning on randomly placed prey seems to improve performance over learning on fixed prey.

performance, meaning it is having a more difficult time tracking the prey. The

COLA representation is able to perform somewhat the same with only a minor

increase in capture time, 2–3 time steps.

We can compile the converged capture times into a table to see how much the

times change when conditions are modified. When the prey’s starting location is

fixed, all agent types do well on static prey, when the prey is allowed to wander, the

performance declines for all. The Position-based state-space representation does

not have sufficient information to track dynamic prey and so is not showing low

capture times. Faring much better is the Relative-based representation which still

suffers a drop in performance, but not to the extent of the Position-based. And
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in the lead is the COLA representation, which only increases its capture time by

2 time steps transitioning from a static to wandering prey. Trends are consistent

for when the prey is assigned a random location.

Starting Location Fixed Random

Prey Motion Static Wander Static Wander

Position 5.55±0.6 30.46±4.1 40.79±3.5 36.11±3.9

Relative 5.49±0.6 16.33±2.7 5.35±0.8 16.31±2.6

COLA 5.37±0.6 9.81±1.4 5.69±0.7 7.84±0.9

One thing to point out, though, is when a comparison is made between the

capture times for a wandering prey with fixed starting location and a wandering

prey with random location. The COLA-based representation manages to improve

its capture times by 2 time steps when the start location is random. The reason

for this is that in a more dynamic setting, the agent is exposed to more conditions

and therefore observes more states. This allows the agent to learn more and results

in better performance.
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Chapter 6 – Transfer Learning: Extension to New Environments

When agents are placed in new environments (larger worlds, sparsely connected

worlds, worlds with obstacles, etc.) they must be capable of preserving their per-

formance lest they need to relearn their behavior all over again. Transfer Learning

[43] is the concept of being able to take what was learned in one domain, and

apply it to one that is different. For these simulations, agents will learn in a static

environment where the prey changes starting location every time. After achieving

convergence, they will be placed into a new environment and are charged with

finding the prey.

6.1 Expanded Environment

The first test will be to see how these agents deal with a larger environment.

As previously stated, the agents will learn in the 5 × 10 gridworld and then be

placed in a larger, 30 × 30 world. This new environment now has 18 times more

nodes than the learning environment. Since both the Position- and Relative-based

representations have sizes dependent upon the number of nodes in a gridworld,

their state-space will increase proportionally, and therefore be at least 18 times

larger as well1. The COLA-based representation does not increase in magnitude

1Recall from Section 3.2.2 that the Relative state-space size is on the order of O(4N) and so
will be closer to 72 times larger
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Figure 6.1: Expanding a 5 × 10 Gridworld to 30 × 30 - an increase in gridworld size results
in potentially more states and larger state-spaces. This particular world is now 18 times bigger
than the original 5× 10.

as it is independent of world size.

In Figure 6.2, we see similar initial performance as was observed in Section 5.2.

At episode 500, the world is expanded and the maximum time allowed to agents

is doubled to 100 (tmax = 100). As a result, we witness the immediate decline in

Relative-based performance. This is due to the 18-fold increase in state-space size.

Like usual, the Position-based representation is not much of a contender. It is now

taking them both the full 100 time steps to to end the episode meaning that they are

failing to capture the prey most of the time, while the COLA-based representation

manages to keep below 30 time steps. If the simulation were allowed to continue for

hundreds of episodes, both the COLA- and Relative-based representations would

converge to a new time, the COLA is already at an advantage and would have a
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Figure 6.2: An Expanded Gridworld - this results in an increase in state-space for both the
Position- and Relative-based representations, but not the COLA-based one. Performance is
reflected by this fact.

much faster learning rate. Position will not converge do to this being a dynamic

simulation.

This result shows that the COLA-based representation truly does scale with

world size quite well and should be able to handle any sized environment with little

additional learning.

6.2 Environment with Obstacles

As it was shown in Sections 5.2 and 6.1, the Position-based representation is in-

capable of dealing with dynamic environments and is not much of a contender. It
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Figure 6.3: Simulator Screen with Obstacles - a screenshot showing a single predator (black),
prey (white), and several filled in cells which represent obstacles.

will be excluded from future results as it is more of the same. In its place, we will

introduce a new contestant.

Policy - this agent will use the same COLA state-space representation, but

will not use a learning algorithm to determine its behavior. Instead, it will follow a

hand-coded policy written to achieve the quickest and most efficient capture times.

The COLA representation will now be compared against the Relative represen-

tation and this new Policy agent. For the next simulation, the agents will be placed

within an environment that has obstacles (nodes that are occupied by objects other

than agents). Figure 6.3 shows the simulator layout for this circumstance. Like

before, agents will learn in a static environment with a randomly placed prey. At

episode 1500, 6 obstacles will be randomly placed in the 5× 10 gridworld. Figure

6.4 shows that the hand-coded policy is almost unaffected by the introduction of

this new environment. Both learning agents, however, take a considerable hit in
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Figure 6.4: Introduction of Obstacles into Environment - when the environment contains
obstacles, the Relative-based representation has difficulty in maintaining its lower capture times.

performance, a hit from which the Relative representation cannot recover. Al-

though it takes 3500 episodes, the COLA representation is able to account for the

environment, eventually performing as well as the Policy.

As was the case with the Position-based representation, the Relative-based

representation is unable to compete any further as it has been shown to fail in

transfer learning. And so, only the COLA and Policy agents will remain for the

duration of our simulations.

We will take the previous simulation which introduced an environment with

obstacles, and modify it so that the environment becomes dynamic. The 6 obstacles

will remain in place for 10 episodes, at which point they will pick new random



57

Figure 6.5: Dynamic Environment with Obstacles - 6 obstacles are placed randomly within
the world every 10 episodes, where they remain until new locations are selected. This simulates
a dynamic environment.

locations. This will simulate an every-changing environment to test these agents

in seeing how they perform in a dynamic world.

Figure 6.5 shows that even though the world has become quite dynamic, the

COLA-based representation is still able to track and capture the target. This

time, however, it takes 4500-5500 episodes for it to converge and match the Policy.

At this point, one must ask the question: Why even use a learning agent if a

hand-written policy will always do at least as well or better? The answer to this

question will be found in Chapter 7 as we continue our investigation into the COLA

state-space representation.
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Chapter 7 – Algorithm Robustness

In the real world, no sensor is perfect. And as sensor resolution, precision, and

compactness increase, so does cost. As such, robots must learn to deal with less

than the best and perform well despite their technological disadvantages. All

state-space representations must be generated by data gathered from sensors. The

unfortunate catch with sensors is that they have noise, and can sometimes mal-

function. This results in the robotic agent perceiving a deception of the world

because the information it’s received from its sensors is faulty. Robust algorithms

and state-space representations must be able to account for this otherwise they

will fail along with their sensors.

In this chapter, we will augment the COLA values to simulate noise. Recall

from Section 3.2.3 that the state-space is constructed by measuring the distances

of nearby agents. In practice, however, a series of sensors would conduct the

measurement and from that the state would be calculated. Any error in the sensor

measurements will result in noise and thus affect the perceived state.

7.1 Performance with Sensors of Varying Noise

To see how significantly the perception changes as noise increases, we can con-

duct a simple simulation by measuring several states with noise and without and
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comparing how they match up. A predator agent will be placed inside a 10 × 10

gridworld along with a single prey agent. For every possible instantiation of the

predator’s and prey’s location, we will measure the COLA state using the tech-

nique described in Section 3.2.3. We will then take a new measurement with some

added noise and see if the agent can determine the correct state.

Figure 7.1: Noise Amplitude Effects on Perception Accuracy - perception accuracy degrades
with both noise amplitude and distance from target. Even at σ2 = 1.25 (noiseamp ≈ 100%), we
see the accuracy does not degrade much past 40% for the distances shown.

For the sensor noise, we will use random white noise generated from a Gaussian

distribution:

Snoisy = Spure(1 + noise) (7.1)
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f(x) =
1√

2πσ2
e−

x2

2σ2 (7.2)

Figure 7.1 shows that the perception accuracy is certainly affected by noise,

even at the slightest amount. As noise increases, we see that the accuracy de-

grades as expected. We also observe that the perception accuracy is affected by

the distance; this is a reasonable finding as it makes sense that the farther away

something is, the more difficult it will be to measure it accurately. Although we

have found noise to affect perception quite a bit, it may not have quite as drastic

an effect on performance.

Figure 7.2: Converged Capture Times for Various Noise - the time taken to capture the prey
increases as the noise amplitude increases. For noise levels up to σ2 = 0.5, the COLA agent is
able to keep capture times below 8 time steps.

To test this, the 1v1 scenario will now be conducted with noise. Figure 7.2
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shows that the effects on performance are not as drastic as Figure 7.1 would imply.

Even though there is roughly 50% perception accuracy at σ2 = 0.5, the capture

time associated with that noise level increases by less than 2 time steps. These

results show that a COLA-based state representation is robust to sensor noise.

7.2 Performance with Sensor Failure

Now that we’ve shown that a COLA representation is even capable of handling

sensor noise, we can now see how the Policy and COLA learner fare in a situation

where their sensors are noisy, and one of their sensors fail. When we say “sensor,”

one of the four state values is meant. Essentially, we will modify this value to

simulate a failed sensor.

Figure 7.3: Performance with Broken Sensor - one of the four direction sensors outputs a
constant value within interval of [-0.5, 1.5].
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In this first simulation, one of the four sensors will go dead and output a

constant value no matter what state is observed. At any given moment, a high

agent density would be represented by an observed value of ≈ 1, meaning roughly

100% of that specific field of view is occupied. Likewise, no agents results in a

value of zero. The broken sensor’s value will therefore be chosen from this range,

slightly expanded to [−0.5, 1.5].

Figure 7.3 shows that the Policy and COLA learner both are affected when

their respective sensors break at episode 1000. The Policy is unable to improve

its performance because its behavior is hardwired into it. The COLA learner,

however, is capable of adjusting for its failed sensor and it eventually does better

than the Policy, finally converging to a capture time which is 25% faster than the

Policy.

Now we will see what happens when a sensor malfunctions and outputs a

random number within the sensor range of [−0.5, 1.5]. This simulation differs

in that the unreliable sensor now changes its value every time step, making it

complete noise with no preservation of original signal. Figure 7.2 shows the Policy

is greatly affected by this failure and cannot recover from it. Its capture times

increase to an average value of 31.8 time steps, while the COLA learner is able to

keep its times at around 13.6 time steps, 134% faster than the handwritten Policy.

These examples have shown that adaptive algorithms are quite powerful, be-

ing able to experience unpredictable circumstances and still capable of extracting

necessary information to make useful decisions. Sensor failure and noise are quite

common and severely alter an agent’s evaluation of its state. Given the above re-
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Figure 7.4: Performance with Malfunctioning Sensor - one of the four direction sensors outputs
a random value within interval of [-0.5, 1.5] at every time step.

sults, the difference between a learning agent and a policy agent very well could be

the difference between a successful and failed mission. This final robustness check

for the COLA state-space representation shows that when coupled with a basic

reinforcement learning algorithm, this is potentially a powerful way to perceive

the surroundings in the predator-prey domain.
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Chapter 8 – Discussion

The selection of state information for agents in a learning situation can heavily in-

fluence how efficiently good behavior is obtained. Designers must keep agent states

simple enough to reduce computational time but also deliver enough information

so that agents may make intelligent decisions. The challenge is in identifying what

information is pertinent, and how to represent said information in a numerical

format.

In this paper, we have investigated the preliminary performance of a state

representation that follows an agent’s action-, or vision-, paths. It is a state-

space representation that has used nature as its motivation. In Section 2.1, we

argued that predatory agents make decisions as a reaction to their immediate

surroundings. In Section 3.2.3 we explored this idea and developed our own state-

space representation that accomplishes the following in simulation:

1. Can track a dynamic target

2. Independent of number of agents

3. Independent of world size

4. Transferable to different environment types

5. Robust to noise
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The Condensed Observation of Locale and Agents (COLA) representation ob-

serves the surrounding areas and condenses the agent presence into values that

occur down each of its actions. Through a simple simulation containing one preda-

tor agent and one prey agent, we have shown that a COLA state representation

can continuously track a moving target while a Position- and Relative-state repre-

sentation have a great deal of difficulty with dynamic scenarios (either with prey,

environment, or both). We have also shown that the COLA-representation has the

inherent ability to transfer what it has learned to numerous domains such as larger

gridworlds, dynamic gridworlds, and noisy gridworlds. Finally, in Section 7.2, we

presented two scenarios in which an adaptive algorithm performs over 100% better

than a hand-coded policy privy to the same state information.

The work presented in this paper suggests the COLA Learner is a promising

platform from which to approach these more complex and demanding Predator-

Prey problems. In multi-robot coordination scenarios where environments change

and the number of agents may vary, it is necessary to enable these agents with

enough versatility to remain functional. We have proposed that problems due

to scaling may be better solved by approaching them from a state-representation

rather than learning. This paper has shown that given the same learning algorithm,

performance can be quite different depending upon what information is included

in an agent’s state.

Future work will address scenarios containing multiple predators hunting a

single prey that is capable of evading. It will also introduce the need for allocating

agent rewards to promote coordinated behavior. This work can also be extended
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to the continuous domain with limited observability in which case agents would

have to couple their COLA learning with search and communication algorithms.
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