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SOME RECENT DEVELOPMENTS IN THE THEORY OF SIGNIFICANT
FIGURES AND THEIR APPLICATIONS TO CHEMICAL

INSTRUMENTATION

INTRODUCTION

Significant figures have long been a delinquent stepchild of the
physical sciences. Not only is there a paucity of literature on the
subject, but the results of an informal survey of the Chemistry
Department faculty at Oregon State University indicates a polarization
of views on the proper use of significant figures. Thus significant
figures have been elevated to the status of a sacred cow. As with
most sacred cows, there is a consensus on the sacredness, but the
nature of the cow is not clear. We need a more cogent theory of
significant figures.

If the components of a calculation are represented by stand-alone
significant figures (measurement-based quantities, for which the
uncertainties are not given directly, and must be inferred from the
number of significant figures used to represent them), then we should
be able to represent the result of the calculation in the same way. We
will see that the Root Rule (described herein), unlike previous
significant figure rules, successfully integrates common arithmetic
operations with propagation-of-uncertainty analysis, thereby providing
a sensible and unambiguous criterion for deciding how many digits
should be used to represent the result of any calculation in the
physical sciences.

However the utility of the theory is limited by the number system
being used. Because of our ten fingers, the estimated uncertainty of a
quantity represented by stand-alone significant figures can be resolved
only within a ten-fold range. Would some other number system be
better?

If we ignore the fact that binary numbers take up so much space, we
might do well to adapt the theory of significant figures to the base
two number system. Then the uncertainty of a quantity represented by
stand-alone significant figures could be pinned down within a two-fold
range. Fortunately it is possible to construct a nomenclature which
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incorporates this virtue of binary into the base ten number system, a
completely new application of significant figure theory.

In this new approach, two number systems are combined in order to
incorporate two types of informationa measurement and its
uncertaintyinto a single number. The result is a format, which looks
and reads like ordinary base 10, and which gives the same information
about uncertainty as binary. This type of nomenclature is called
Decimal Coded Binaries (DCB).

One possible application of DCB would be in the reporting of tables
of measurement data. If a table has a DCB format, then reporting the
uncertainty of a measurement along with the measurement itself will
be economical, and will not decrease the readability of the table.

However DCB may have a larger impact in the area of data
compression and transmission. Using DCB, a collection of measurement
data can be stored more compactly in memory devices, and can be
telecommunicated with greater efficiency, than would be the case if
each measurement and its uncertainty were treated as two separate
numbers.

There is a second data compression technique, called Linear Code,
which is very simple. Linear Code serves primarily as a auxiliary
technique, which helps to clarify DCB and its advantages. Moreover
Linear Code can be hybridized with DCB. Therefore Linear Code is
included as a section in the chapter on DCB.

The bulk of this thesis (which uses the optional publication format)
consists of two papers on stand-alone significant figures and on DCB
(with Linear Code). The first has been accepted for publication in the
Journal of College Science Teaching. The second has been submitted
for publication to Analytical Chemistry. The thesis also contains some
material (like Eight Code), which has not been submitted for
publication.

Just as DCB combines two number systems (2 and 10) in order to
compress a measurement and its uncertainty into a single number, a
third techniqueEight Codeaccomplishes the same objective, using
three number systems (2, 4, and 10). At one point in our investigation,
Eight Code was a competitor of DCB. However mature consideration
showed that Eight Code is a prototype for a more sophisticated
approach (combining N number systems), which is beyond the scope of
the present research. Here we will consider only data compression
techniques which can be programmed into an HPISC scientific
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calculator. Listings of these programs are also included. All three
techniques are original.

DCB has commercial implications. If DCB becomes generally
accepted, then scientific calculators will have to be redesigned to
accomodate DCB coding and decoding routines, as well as DCB
arithmetic, which will draw upon the Root Rule concept. Moreover
computer languages used in scientific work may need a new type of
declaration for DCB variables, in addition to the usual integer and
floating point variables.
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PART I: MULTIPLICATION AND DIVISION

Introduction.

"Why it's perfectly obvious!" "It's just a matter of common sense."
These are typical responses to the question of how many significant
figures should be used to express the result of a calculation in the
physical sciences. In an attempt to measure the ubiquity of such
common sense, we conducted an informal survey of the Chemistry
Department faculty at Oregon State University. Each participant was
given a questionaire, which asked him or her to write the following
product with the proper number of significant figures:

1.43 * 4.098 = 5.86014

Only one fifth of the respondents answered correctly.
In all fairness, we must add that one third of the respondents had

reasonable complaints about ambiguity in the question. Even so, our
questionaire indicated that "significant figure" is similar to
"democracy", in the sense that both concepts mean different things to
different people.

This type of question, and the confusion it engenders, is the raison,
d'etre for this paper. Some scientists would like to pontificate
stand-alone significant figures out of existence. Yet significant
figures are mentioned in the first chapter of many general chemistry
and general physics texts, and are often a sub-problem in undergraduate
lab reports (and in the real world). Since stand-alone significant
figures are a fact of life, it would behoove us to treat them
systematically.

It has been said that a teacher should be like an iceberg, in the
sense that 90% of the essence is beneath the surface. In accordance
with this philosophy, we are attempting a two-fold education project.
First we seek to give the teacher a solid understanding of the theory of
significant figures, with special emphasis on calculations in which the
component uncertainties are not given directly. This will be the main
thrust of Part I, whose cornerstone is the Root Rule for
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multiplication and division calculations, having a single identifiable
least precise factor.

Moreover we have distilled some teachable significant figure
algorithms (both of which are based upon the Root Rule), which should
be appropriate for college-level courses in chemistry and physics. For
teachers, the most pertinent results are the Three Rule and the
1-5 Rule in Part 1, which also contains a section on "Significant
Figures and Science Education".

We are not attempting to usurp the role of rigorous uncertainty
analysis; rather our topic is a specialized area within this broader
field. The basic idea of this paper is that the number of significant
figures used to express the product or quotient of a physical science
calculation should reflect the fact that the percent uncertainty of the
result will be approximately equal to percent uncertainty of the least
precise factor.

Part 1 is addressed largely to college science educators seeking
useful and teachable knowledge to impart to their students. Part 11 is
more comprehensive, and uses more complicated procedures (all of
which can be written into computer programs). It is of interest to the
scientific generalist within each of us (and to the manufacturers of
computers, scientific instruments, and calculators).

A survey of the literature on significant figures suggests that
Newton's giants are relatively few in number, and that they have rather
narrow shoulders. This gives us the opportunity to explore more than
the unusual amount of virgin territory in this paper.
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What is Uncertainty?

Uncertainty is a key concept in the theory of significant figures.
There are two main reasons why we might feel uncertain about a
reported measurement which we encounter in the literature.

1) Systematic error (sometimes called determinate error). Skoog
and West' have delineated the following three categories of
systematic error;
(a) personal error (such as a number bias on the part of the

experimenter)
(b) instrumental error
(c) method error

2) Random error (also known as indeterminate error or
imprecision). If the random error is large then the meaurement is
not very reproducible.

Now that we have mentioned some of the sources of measurement
uncertainty, we need to define the term. For the sake of simplicity,
we will consider only two of the more popular definitions of
uncertainty.

A. Uncertainty is the absolute limit of error. This definition is easy
to understand, and is the raw material for the worst case method2
of uncertainty analysis. Definition A has the advantage of taking
both random and systematic errors into account.

However this definition has very limited utility in the real world.
The absolute limits of error are often unknown and/or unknowable.
Moreover if the random errors are normally distributed, as we so
often assume, then the absolute limits of error don't even exist!

B. Uncertainty is the sample standard error of the mean (s/jI) for a
series of measurements, or the population standard deviation (a) for
a single measurement. Unlike A above, this definition applies to the
real world, since the standard error of the mean can be calculated
quite readily. The standard error definition is especially useful
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when the systematic error is thought to be negligible in comparison
with the random error. However the standard error of the mean
says nothing about systematic error.

In the remainder of Part I, we will use Definition B for two reasons.
First, the standard error of the mean is the more sensible definition.
Secondly, we will introduce some vest-pocket algorithms (like the
1-5 Rule) which are not always appropriate for the absolute limit of
error definition of uncertainty.

In Part II, we will extend our approach to include significant figure
determinations for functions of n variables. In the more general case,
the equation for propagation of uncertainty will depend upon the
definition of uncertainty. We will favor the standard error of the mean
definition.

We have already mentioned that the percent uncertainty implied by
the number of significant figures used to represent the product or
quotient of a physical science calculation should be in the same
ballpark as that of the least precise factor. In the next two sections
we will develop some concepts, which will enable us to see why the
traditional approach to significant figures does not fully come to grips
with this important idea.
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The Meaning of Significant Figures

There is a consensus among physical scientists that the reporting of
a measurement should include at least the following two components;

1) the measurement itself
2) an estimate of the measurement's uncertainty.

Sometimes the estimated uncertainty is given indirectly in terms of
the number of significant figures in a measurement-based quantity. In
the following discussion, "±" will denote the uncertainty.

There seem to be four main schools of thought about the meaning of
significant figures. The Conservatives insist that the last significant
figure must be known with certainty. For example, a measured value of
1.43 is understood to mean 1.43 ± 0.005 at the worst. In essence, the
Conservative is saying, 1 want information I can trust."

The Mainstreamers believe that there can be appreciable uncertainty
only in the last significant digit, but there is disagreement about how
much uncertainty is allowed in the last digit (±1, ±2, ±3, etc.).

The Liberals feel that there can be appreciable uncertainty in the
last two significant digits. The liberal is saying, "1 want the maximum
amount of useful information."

The central concepts of this paper will be illustrated using the
Mainstream approach. However little generality would be lost if the
Liberal approach were used instead. We should mention one final
school of thought about significant figures.

The Independents are of the opinion that significant figures should
never be used by themselves to indicate an estimated uncertainty.
However there is a major problem with the Independent position.
Organic chemists do not always report ± values for percent yields.
Physicists and analytical chemists do sometimes omit uncertainties
from data tables. In the real world, stand-alone significant figures are
often used to indicate (in a round-about way) the uncertainty of
measurement-based quantities. However this usage has not been very
systematic.

In some instances it is reasonable to allow stand-alone significant
figures to supplant directly reported uncertainties. In data tables
reported uncertainties take up extra space, and can decrease
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readability. Moreover, if a chemical analysis is performed on only two
or three samples drawn from a large population, then the direct
reporting of the uncertainty may be slightly presumptuous.

When the uncertainties of the components in a calculation are
available, it is a relatively simple matter to assign what one considers
to be the correct number of significant figures. Significant figures are
fuzziest when they stand alone, when t values are not available. In
this paper, we are mainly concerned with these fuzzy significant
figures. Another important source of significant figure fuzziness is
politics.

Influential laymen may insist on knowing the results of scientific
measurements in very simple terms. This can result in politically
motivated biases and double standards with respect to significant
figures. The number of significant figures assigned to a quantity may
depend on its intended use. If a result will be used by decision-makers
who will not understand its uncertainty, or while understanding, will
ignore it for political reasons, while blaming the writer for any
unfortunate consequence, then it is better to round, such that the last
reported digit can be rigorously defended. If the decision-maker needs
the most detailed information and understands its limitations, then
uncertainty in the last two digits may be justified.

Sometimes a writer's intention is simply to give the reader a
general feeling for the magnitude of a quantity. Often two or three
significant figures are sufficient for this purpose, even though four
might be scientifically justifiable. In the remainder of this paper, we
will try to ignore such political considerations.

There is an obvious lack of consensus on the meaning of stand-alone
significant figures. However we will formulate valid significant figure
rules which are relatively independent of ± conventions.

We will tentatively assume, without loss of generality, that the
final significant digit in an inexact number (i.e. a measured value) can
readily be one higher or one lower than face value. For example, "7.2"
is understood to mean "7.2 ± 0.1". The "0.1" is the implied
uncertainty. The implied relative uncertainty is 0.1/7.2 = 1/72.

It would be nice if the number of significant figures in a product (or
quotent) could be adjusted such that the implied relative uncertainties
of the product and of the least precise factor are equal. However this
is usually impossible to do. In the general case, one of two things is
done:
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1) Make a seat-of-the-pants judgment.
2) Apply a significant figure algorithm.

Of course no significant figure algorithm can exist in a vacuum. It
must be consistent with propagation-of-uncertainty analysis. In our
earlier example

1.43 * 4.098 = 5.86014

"1.43" has a larger implied relative uncertainty than "4.098 ". Thus
"1.43* is the least precise factor. In general the least precise
factor is the factor with the least number of significant figures.

Exact numbers, which come from definitions and from ordinary
counting, have infinitely many significant figures. For example in the
kinetic energy formula,

E = 0.5 mv2

the "0.5" can never be the least precise factor.
If two factors have the same number of significant figures, then the

least precise factor is the one whose mantissa* is the smaller of the
two. However in this case, we should bear in mind that both factors
will contribute an appreciable amount of uncertainty.

As a first approximation, we can usually ignore the uncertainty
contribution made by the other factor. In this case, it is intuitively
obvious that the relative uncertainty of the product should approximate
the relative uncertainty of the least precise factor. This fact is the
basis for the significant figure algorithms of Part I.

"For example in 3.45X10-2 the "3.45" is the mantissa.
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The Simple Rule

The Textbook Rule for significant figures in multiplication and
division, usually given in physics and chemistry texts is similar to the
following:

The number of significant figures used to express a
product or quotient should not exceed that of the least
precise factor.

However this begs the question. The rule which is actually
taught is usually similar to the following Simple Rule.

The number of significant figures in a product or quotient
is equal to that of the least precise factor.

(Note that the Conservative approach is the tacit frame of reference
for the first Textbook Rule, while the second Simple Rule is consistent
with both the mainstream and Liberal aproaches.)

The Simple Rule carries with it four implicit assumptions;

1) A single least precise factor exists.
2) The ± value is not known, but the same ± convention applies in

determining the uncertainty of each factor. (For instance the 1.43
and 4.098 in our example can have uncertainties of 0.01 and 0.001
respectively, or 0.02 and 0.002, but not 0.01 and 0.002.) Thus the
least precise factor can be readily identified.

3) The least precise factor is the only significant source of
uncertainty in the product.

4) The ± convention is not smaller than about ±1. (See Part 11)

We will see that even when these criteria are met, the Simple
Rule frequently gives absurd results.

Pinkerton and Gleit3 have taken a more sophisticated approach.
They argue that the number of significant figures in a quantity is
logarithmically related to the reciprocal of its relative uncertainty.
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Although this helps to clarify the concept of significant figures, it has
little to say about the practical problem at hand.

In the next section we will carry this concept to its logical
conclusion, by introducing the Root Rule for significant figures in
multiplication and division, which is the basis for the methods used in
the General Chemistry program at Oregon State University.

The Root Rule

A significant figure algorithm should be unbiased. If the algorithm
has an optimistic bias, then the accuracy of one's measurements is
exaggerated. A pessimistic bias means that information is being
thrown away unnecessarily. The Simple Rule, as applied to the
Mainstream and Liberal approaches, is essentially unbiased when it is
used correctly. However it has boundary condition problems, which we
will illustrate using the following 1-9 Paradox. Consider the
division calculation;

1.01/1.020 = 0.990196

According to the Simple Rule, the quotient should be written as 0.990
(three significant figures). The implied relative uncertainty of this
number is calculated as follows;

0.001/0.990 = 1/990 = 0.1Z

The implied relative uncertainty of the least precise factor is;

0.01/1.01 = 1/101 = 1%

The two implied relative uncertainties differ by nearly an order of
magnitude (a factor of ten). A more sensible answer would be 0.99,
since the implied relative uncertainties of both quotient and least
precise factor would be about 1%. Now we will develope the
conceptual framework for an algorithm which does not lead to such
absurdities.
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Let P be the implied relative uncertainty of the product (or
quotient), which has been tentatively rounded according to the Simple
Rule, and let L be that of least precise factor. By adjusting the number
of significant figures used to express the product (or quotient), we can
manipulate P, such that P is as close (in a logarithmic sense) to L as
possible. But how close is possible in the general case? According to
the Simple Rule, it is always possible to adjust P, such that

0.1 < P/L < 10

If the product (or quotient) is rounded to one less digit than this, then
the implied relative uncertainties will be L and 10 P. Usually either
P/L or 10 P/L will be nearer to one. In the borderline case,

and solving for P/L yields

P L

L 1013

P/L =

When the product (or quotient) is given one more significant figure
than the Simple Rule would suggest, the two implied relative
uncertainties will be L and 0.1 P. Now there is the possibility of a
second type of borderline case in which

P L

= 10

L 0.1 P

This then is the framework mentioned above for the result, which is
discussed below as the LPF Root Rule (LPF = least precise factor).
Our two borderline cases lead us to the following rule for significant
figures in multiplication and division.
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The LPF Root Rule;
If the uncertainties are not given, and if

1 P< < ji5
IT) L

then the product (or quotient) has been rounded to the correct
number of significant figures. (The same four restrictions,
which apply to the Simple Rule, also apply to the LPF Root Rule.)

The Simple Rule allows an implied relative uncertainty discrepancy
of nearly an order of magnitude in either direction. The LPF Root Rule
says that this is too much, that the discrepancy should be no more than
half an order of magnitude.

We will return to our original example in order to illustrate the LPF
Root Rule. We will also show that the LPF Root Rule is quite general,
and is relatively independent of ± convention (provided that it is not
too small).

1.43 N 4.098 = 5.86014

First we will use the ±1 convention.
The implied relative uncertainty of 1.43 is 0.01/1.43 = 1/143.
The implied relative uncertainty of 5.9 is 0.01/5.9 = 1/59.
1/59= 1/143= 143/69 = 2.42 < ITTI
Therefore the product has been correctly rounded to 5.9.

Note that the implied relative uncertainties of least precise factor and
product differ by log 2.42 = 0.38 of an order of magnitude. It is the
best we can do in this example, as we will see in the next paragraph.

Suppose that the product had been rounded to 5.86 (three significant
figures) instead. The implied relative uncertainty of 5.86 is 0.01/5.86
= 1/586. The new implied relative uncertainty ratio would be

1/143: 1/586 = 586/143 = 4.1

and the implied relative uncertainties of least precise factor and
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product would differ by log 4.1 = 0.61 of an order of magnitude (as
compared with 0.38 of an order of magnitude for two significant
figures). Thus "5.9" is the lesser of two evils.

This result is not affected if some other ± convention is used
instead of ±1. To demonstrate this, we will apply a ±2 convention.
The implied relative uncertainty of 1.43 is 0.02/1.43 = 2/143.
The implied relative uncertainty of 5.9 is 0.02/5.9 = 2/59.
2/59 + 2/143 = 143/59 = 2.42 < ITC
Therefore our approach really is "without loss of generality". This
makes the LPF Root Rule relatively independent of ± convention,
provided that all of the inexact numbers used in the original
calculation follow the same ± convention. There is no a priori way to
know that this will be true, but it is the only assumption we can make
if the uncertainties are not given directly. We leave it as an exercise
for the reader to show that the LPF Root Rule leads to the correct
number of significant figures in the 1-9 Paradox (1.01/1.020 =
0.990196).

The LPF Root Rule says that in most cases we can (and should)
adjust the number of significant figures in the product or quotient such
that uncertainty in the final digit of the product or quotient is 0.3162
to 3.162 times the uncertainty of the final digit of the least precise
factoreven though we do not know what this latter uncertainty is!

In terms of the Pinkerton-Gleit definition of significant figures, the
LPF Root Rule says that a product or quotient has been rounded
correctly if it is within ±0.5 significant figures of the least precise
factor, i.e. if

1 1

log log
IRU (LPF) IRU (result)

< 0.5

where MU represents "the implied relative uncertainty of", and LPF

represents "the least precise factor".
Sometimes either rule may seem either too optimistic or too

pessimistic to an outside omniscient observer. However the Root Rule
is a reasonable and unambiguous method for significant figure
determinations, when the component uncertainties are not known.



17

Another limitation of the LPF Root Rule will be illustrated with the
following example;

2 X 4.4 = 8.8 which rounds to 9

The least precise factor 121'has only one significant figure. According
to the LPF Root Rule, the number of significant figures in the product
should be one less than this, or zero, which is absurd. The best we can
do is to round the product to 9.

One-significant-figure-quantities can be quagmires of uncertainty,
especially in subtraction calculations, involving two nearly equal
quantities, each having appreciable uncertainty. In such cases ±
conventions have little meaning.

The LPF Root Rule for significant figures is a right-brain approach,
which may not be suited to left-brain people. Therefore we will give
some equivalent formulations and approximations to the Root Rule. The
casual reader should choose the most comfortable of these new rules,
rather than trying to master and to remember all of them. (We
recommend either the 1-5 Rule or the Three rule, given in the next two
sections.) For the benefit of computer programmers, the LPF Root Rule
may be expressed by the following LPF Root Rule Algorithm;

1) Express all numbers in scientific notation. For example, 0.0345 is
3.45X10-2 in scientific notation. The 3.45 shall be called the
mantissa.

2) Find the least precise factor.
A. The least precise factor is the factor with the least number of

significant figures.
B. If two factors have the same number of significant figures, then

the least precise factor is the one whose mantissa is the
smaller of the two. (Strictly speaking, neither the Simple Rule
nor the LPF Root Rule applies in Case B, since the least precise
factor does mot contribute essentially all of the uncertainty. If
we want to avoid introducing an optimistic bias into our
results, then we must use the methods of Part IL)

C. Obviously an exact number cannot be the least precise factor
because an exact number has infinite precision.

3. Compare the mantissas of the answer and of the least precise
factor.
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A. Divide the larger mantissa by the smaller mantissa.
B. If this quotient is less than iTri, then the answer will have the

same number of significant figures as the least precise factor.
C. If the quotient is 10 or more, then adjust the number of

significant figures in the answer mantissa, such that the
smaller mantissa has one more significant figure than the larger
mantissa. (Do not give the answer mantissa less than one
significant figure.)

It can be shown that the LPF Root Rule over-rides the Simple Rule
about 25% of the time in two-factor multiplication and division
calculations. This means that when the component uncertainties of a
multiplication or division calculation are not known, the Simple Rule
can be expected to give unreasonable results (as in the 1-9 Paradox)
about one fourth of the time. (See Appendix.)

The LPF Root Rule and the above algorithm are too complicated for
most general chemistry students. In the next section, we will derive a
simplified procedure.
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The 1-5 2-8 Rules

The purpose of this section is to develop the 1-5 2-8 Rules, two
'quick and dirty' rules of thumb for the LPF Root Rule. In particular,
the 1-5 Rule is easy to apply, easy to remember, and very useful. But
first we must introduce an intermediate result, which follows from the
LPF Root Rule. The starting point for the 1-5 2-8 Rules is the
following 1-7 Rule.

The Simple Rule does not apply when the least precise factor
begins with a "1", and the product or quotient begins with "7",
"8", or "9" (or vice versa). In this case, the quantity beginning
with "1" should have one more significant figure than the other
quantity. As a mnemonic, we can say, "One gets one more."
(Remember that a quantity cannot have less than one significant
figure.)

The 1-7 Rule is justified as follows:
1) For the borderline case in which the 1-7 Rule barely over-rides the

Simple Rule, the mantissas of the two numbers wil be 1.999 and
7.00.

2) 7.00/1.9999 = 3.5 > ,/711-

3) Therefore by the Root Rule, the correct number of significant
figures has been assigned.

We have seen that the 1-7 Rule is always correct when it
supersedes the Simple Rule. However it doesn't supersede often
enough. The 1-7 Rule lacks comprehensiveness. In the next few
paragraphs, we will argue that the following procedure would be better
than the 1-7 Rule.
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The 1-5 2-8 Rules;
A. If the least precise factor begins with a "1" and the product or

quotient begins with "5", "6", "7", '8", or "9" (or vice versa) then
give the quantity beginning with "1" one more significant figure than
the othere quantity. (Mnemonic: one gets one more.)

B. If the least precise factor begins with a "2" and the product or
quotient begins with "8" or "9" (or vice versa) then give the quantity
beginning with "2" one more significant figure than the other
quantity.

C. If neither A nor B applies then use the Simple Rule.
D. The product or quotient must have at least one significant figure.

For purposes of the 1-5 2-8 Rules, the first digit of a quantity is never
zero. For example, the number 0.05916 is said to begin with a "5".

The original 1-7 Rule has annexed four new combinations; "1-5",
"1-6", "2-8", and "2-9". Unlike the original 1-7 Rule, the 1-5, 2-8
Rules sometimes supersede the Simple Rule when they shouldn't.
However they are in closer agreement with the Root Rule. Let's see
why this is so.

Let the critical numbers of a multiplication (or division)
calculation be defined as the mantissas of the least precise factor and
of the product or quotient. In order to illustrate our approach, we'll
look at the marginally useful 1-5 combination. The lower critical
number begins with a "1", and the higher with a "5". If the lower
critical number is less than

5/1-11-3 = 1.581

then the 1-5 Rule will agree with the LPF Root Rule. We will
illustrate this point with two borderline cases. In the following
example;

1.58 * 3.165 = 5.0007

the two critical numbers are 1.58 and 5.0007. Since they differ by a
factor of 3.165, which is barely greater than cfb-, the LPF Root Rule
and the 1-5 Rule barely agree that the product should be rounded to
5.0. In the following example, the two rules will barely disagree:
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1.59 * 3.145 = 5.00055

(Use a similar line of reasoning.)
The 1-5 Rule and the LPF Root Rule sometimes agree when the lower

critical number is greater than 1.581, but less than

5.999/ 10 = 1.897

as shown by the following example;

1.89 * 3.174 = 5.99886

in which both rules agree on "6.0".
Thus we would expect the 1-5 combination to conform to the LPF

Root Rule in more than 58% (because of the "58" in our magic number,
1.581) of all possible cases for a given number of significant figures.

Now here is the other side of the coin. Suppose that we had used
the 1-7 Rule. Since the 1-7 Rule does not cover the 1-5 combination,
the Simple Rule would apply. Loosely interpreted, the above argument
says that this would be wrong more than 58% of the time. Similar
arguments can be constructed for the 1-6, 2-8, and 2-9 combinations.

If one had to choose the single most important thing to remember
from this paper, then either the 1-5 Rule or the Three Rule (given in
the next section) would be that choice. The 1-5 Rule is nice in the
following ways;

(a) It is easy to apply and to remember.
(b) It rectifies the most blatant absurdities of the Simple Rule.
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The Three Rule

The pedagogical weakness of the 1-5 Rule is that it is a magic
formula; it gives no insight into the concept of keeping track of
uncertainties in a calculation. For this reason we have developed the
Three Rule, which places greater emphasis on propagation of
uncertainty than either the Root Rule (on which it is based) or the 1-5
Rule.

The Three Rule;
A. Locate the least precise factor. Calculate its relative uncertainty

using the ±1 convention.
B. Convert the product or quotient to scientific notation, and multiply

its mantissa by the relative uncertainty. This is the uncertainty of
the product mantissa.

C. Note the position (relative to the decimal point) of the first (non-
zero) digit in the uncertainty of the product mantissa. Tentatively
assume that the last significant digit of the product mantissa will
be in the same position.

D. Note the value of the first (non-zero) digit in the uncertainty of the
product mantissa. if it is 1" or "2", everything is OK. Otherwise if
it is "3" or more, then round off one more digit. (The rounded
product or quotient must have at least one significant figure.)

As an example, let's use the Three Rule to round the product in our
original problem;

1.43 * 4.098 = 5.86014

A. The least precise factor is 1.43. It's implied relative uncertainty
is 0.01/1.43 = 1/143

B. Uncertainty of the product mantissa = (1/143)* 5.86014 = 0.04098
C. The uncertainty is in the hundredth's place of the product mantissa.
D. The number in the hundredths' place (4) is not 1 or 2. Therefore we

can only write the product mantissa with one significant digit after
the decimal point. When properly rounded, the product is 5.9.
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The Three Rule is slightly pessimistic, which allows for a significant
contribution of uncertainty from factors other than the least precise
factor. Unlike the 1-5 Rule, the Three Rule helps the user to develop
the knack for keeping track of uncertainties in a calculation. The
Three Rule is more comprehensive, but less facile than the 1-5 Rule.

Significant Figures and Science Education

Since 1981, the rudiments of significant figure theory have been
taught in Chem. 104 at Oregon State University. Chem. 104, 105, 106
is the lower track General Chemistry sequence (for students whose
high school backgrounds are weak in terms of chemistry and
mathematics). Both the 1-5 Rule and the Root Rule Algorithm have
been used at different times.

The Root Rule Algorithm took too much time to teach, and most
students simply memorized the algorithm, without grasping the
underlying concept. However the 1-5 Rule is quite teachable.

Chem. 104 students also learn that an exact number can never be a
least precise factor, because an exact number has infinite precision.
From our experience at Oregon State University, we feel that both the
1-5 Rule and the exact number convention are worthwhile and realistic
learning objectives for lower division college science courses.

It may also be a good idea to remind students not to throw away
information in the middle of a multi-step calculation, by overzealous
rounding. Even if one is pressed for time, he or she should always
retain at least two more significant figures in an intermediate result
than in the least precise factor.

Unlike the 1-5 Rule, the Three Rule demands that students develop a
certain level of mathematical maturity. This means that the Three
Rule should have greater educational value than the 1-5 Rule, but that
it may be less teachable. Therefore the Three Rule may be appropriate
for more advanced courses, like physical chemistry.

The Three Rule may be more teachable than the Root Rule Algorithm
because its syntax is simpler, because the magic number is simpler,
and because its logic is more obvious. However the Three Rule has not
yet been tested in the college science classroom.
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Part 1 Summary and Conclusions

Since significant figure rules depend on propagation of uncertainty,
we must define what we mean by *uncertainty*. The most reasonable
approach is to define uncertainty as the standard error of the mean.

We have presented several new rules for significant figures, in the
attempt to avoid the Scylla of invalid generalization (the Simple
Rule) and the Charybdis of ambiguity (the Textbook Rule). The basis
for all of the new procedures is the Root Rule. The Root Rule
Algorithm is a computer's eye view of significant figures, which
allows the neophyte the opportunity to gain practice in applying the
LPF Root Rule correctly, in order to master the underlying concept.
This algorithm is the mathematical equivalent of training wheels on a
bicycle. The 1-7 Rule is a preliminary result applied in developing
the 1-5 Rule, and is not useful out of this context. Although the 1-5
Rule (the 'quick and dirty' approach) and the Three Rule (which places
the most emphasis on propagation of uncertainty) follow from the Root
Rule, they are easier to use and may have greater educational value
than the parent rule.

The fundamental idea behind any valid significant figure rule is that
the percent uncertainty of the product (or quotient) will approximate
that of the least precise factor in a calculation. Therefore the number
of significant figures used to express the product must imply an
uncertainty, which is as close as possible to that implied by the least
precise factor.

Algorithms based upon the Root Rule are an alternative to the
oversimplified significant figure rule, generally taught in freshman
chemistry and physics. The disadvantage of the Root Rule Algorithm is
its complexity. The Three Rule is simpler than the Root Rule, and it
offers greater insight into the mechanics of propagation of uncertainty.
However it has not been tested in the college science classroom.

The 1-5 Rule is more facile than the Three Rule. Since the 1-5 Rule
has a simpler syntax and is easier to memorize than the Three Rule, it
may also be more teachable. However the Three Rule is more
comprehensive. Moreover the Three Rule has greater heuristic value.
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Experience has shown that it is practical to teach the 1-5 Rule in
General Chemistry courses. Perhaps the Three Rule would be more
appropriate for courses at a higher level (eg. physical chemistry).
Table 1 summarizes the relative merits of the Simple Rule and the
three major new rules for significant figures in multiplication and
division calculations.

Table 1. A Comparison of the Significant Figure Rules.

Root Rule
Three Rule
1-5 Rule
Simple Rule

Correct Easy to apply, Facilitates
and to remember, understanding
comprehensive and to teach of underlying

principle

MNM94 N *MN

*Of* ** ****
NW Nit* NW

N ***Of N

In Part 11, we will see that it is possible to articulate a more
comprehensive rule, which will integrate significant figure theory with
simple propagation of uncertainty for the general case of functions of n
real variables, each of which contributes appreciable uncertainty.
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PART II; SIGNIFICANT FIGURES AND SIMPLE
UNCERTAINTY PROPAGATION THEORY

The Extended Root Rule

In Part I, we considered the LPF Root Rule as a refinement of the
Simple Rule for significant figures. Both rules are quite limited in
scope. They apply only to multiplication and division calculations in
which

(a) a single least precise factor (LPF) exists and can be identified
(b) the least precise factor contributes essentially all of the

uncertainty to a product or quotient
(c) the standard error of the mean definition of uncertainty is used.

It would be desirable to have a more comprehensive significant figure
rule.

In the general case, it is necessary to arrive at an estimated
relative uncertainty of the calculated result, before assigning
significant figures. Unless political considerations dictate otherwise,
one may use the following rule.

The Extended Root Rule;
When the result of a calculation is properly rounded, its
estimated relative uncertainty to implied relative uncertainty
ratio must be between 1/IT0 -and riti (except when this would
mandate a result with less than one significant figure).

The estimated relative uncertainty can be calculated using two
different propagation-of-uncertainty formulas, one for each of the two
definitions of uncertainty (from Part 1). Equation 11.1 is for the
absolute limit of error type of uncertainty. Equation 11.2 is for the
standard error of the mean type of uncertainty (which we will
emphasize).
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At- 1 n df
ERU = = + RUM (11.1)Axi

f f i=1 dxi

LS 1 n df 2 1/2

ERU = = E (11.2)

f 1:1 dxi

where the xi in 11.2 are the measured values of n mutually independent
quantities, the Axi are the absolute values of the implied uncertainties
of the xi, f is a function of the xi, Al is the absolute value of the
uncertainty of f, and AM is the absolute value of the estimated
relative uncertainty. RUM is the maximum relative uncertainty of the
method. In a purely theoretical examplesuch as the area of a perfect
rectanglewe may not need to concern ourselves with this. However
in some practical applicationslike real gas behaviorthe calculation
method is an approximation, and is itself a source of error. Since the
standard error of the mean is really a standard deviation, Equation 11.2
boils down to additivity of variance. in using both equations we must
assume that the Axi are all reasonably small (which is not always true,
especially for xi which have only one significant figure).

If the components of a physical calculation are represented by
stand-alone significant figures, then the Extended Root Rule and
Equation 11.2 will allow us to express the result in the same way.
Moreover the uncertainties of any of the calculation's components and
of the calculation's result can always be pinned down within a ten-fold
range.

A consequence of the Extended Root Rule and of Equation 11.2, is that
at least one significant digit will be lost for homogeneous addition
calculations in which 10 or more quantities are summed. Consider the
following addition calculation:
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12.3
57.1
11.3
17.1

92.3
29.3
13.7
41.4
34.7
53.5

362.7

Since we are adding 10 quantities, all of which have appreciable
uncertainty in the tenths' place (hence the homogeneity), the sum
should be rounded to 363. Here we are assuming that the uncertainty
in the tenths' place is the same for each quantity. If we insist on
using the absolute limit of error type of uncertainty with homogeneous
addition, then we will lose a significant figure when there are four or
more terms!

As another example, let's suppose that x = 1.111 and that
f(x) = log (x) = 0.045714. By Equation 11.2,

df Ax log e 0.001 * log e
= Ax

f dx f x log x 1.111 * 0.045714
= 0.00855

Therefore when correctly rounded, the logarithm is 0.046, since

0.001/0.0457

0.00855
= 2.56 < fir)

Note that two significant figures were lost.
As another example, let's apply the Extended Root Rule to a gas

chromatography calculation. The affinity of a particular compound for
a given stationary phase is commonly expressed in terms of the
retention index I which can be calculated as follows (writing inN
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instead of the conventional base 10 log for mathematical simplicity,
since it makes no difference in the resulting value of I);

In x In t6
1 = 200 * ;600

In t8 In t6

where t6 and t8 are the sorbed times of n-hexane and n-octane, which
happen to precede and to follow the sample peak, whose sorbed time is
x. The numerical values of t6, x, and t8 are 10.5, 18.8, and 53.0,
respectively. The units are "mm of chart paper. Converting these
units to units of seconds or minutes will not affect the value of I.

In 18.8 In 10.5
1 = 200 * + 600 = 671.95946

In 53 In 10.5

di [(In t8 In6) (In x In t6)1 * ( -lits)
= 200 *

dt6 ( In t8 In t6)2

200 * (In x In t8) 200 * (In 18.8 In 53)
= -7.532

t6 (In t8 In t6)2 10.5 * (In 53 In 10.5)2

di 200 200

dx x * (In t8 In t6) 18.8 * (In 53 In 10.5)
6.571

dl -200 * (In x In t6) -200 * (In 18.8 In 10.5)
= = -0.839

t8 t8 * (In t8 In t6) 53 * (In 53 In 10.5)

Without loss of generality., we will use a ±1 convention for all of
the above variables. (A different ± convention would not have a great
effect on the significant figure determination.)
Thus At& = Ax = At8 = 0.1 By Equation 11.2,
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AC At
_ 7..__.*

f f

1 dl di 2 di 2 1/2

Ldt6 dx dte

0.1 * [(-7.532)2 + 6.5712 + (-0.839)211/2
..: = 0.001493

671.96

This is the estimated relative uncertainty. The next step is concerned
with the implied relative uncertainty. We need to determine the
number of significant figures necessary to minimize the discrepancy
between the values of the implied relative uncertainty and of the
estimated relative uncertainty (ERU). It turns out that the properly
rounded answer is 672 (three significant figures). The implied relative
uncertainty (MU) of 672 is 1/672 = 0.001488. Then

ERU 0.001493
= = 1.04 < i/To-

1RU 0.001488

and the Extended Root Rule is satisfied.
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More Boundary Conditions

In Part I we showed that the LPF Root Rule was relatively
independent of ± convention. The same applies to the Extended Root
Rule. The purpose of this rather arcane section is to deal with those
few cases where we do have to worry about the ± convention. Our
frame of reference will be the standard error of the mean definition of
uncertainty.

The Extended Root Rule applies when not all of the numerical values
of the uncertainties (MO are available. If the numerical values for all
of the Axi are given, then what is the point in being limited to stand-
alone significant figures? As in Part I, we assume that the same ±
(hindsight) convention applies for estimating the unknown uncertainties
of the N. We are free to choose any reasonable ± convention. Usually a
±1 convention is easiest to work with. For ordinary significant figure
determinations, our results are not usually affected by this choice.
However the ± convention is relevant for mixed significant figure
determinations, in which somebut not allof the components'
estimated uncertainties are available.

Thus far, we have approached significant figures from a hindsight
perspective. The experimenter deposits information about estimated
uncertainty within the number of significant figures of a measurement-
based quantity. Then we see the number, and interpret it in hindsight,
inferring some uncertainty not specified by the experimenter. In the
multiplication and division calculations of Part I, our task has been to
transfer this inferred uncertainty from the least precise factor (LPF)

to the product or quotient.
Now we will ask a new kind of question. What is the most

reasonable hindsight (±) convention? Our answer will depend upon
which rounding convention we choose, that is how much uncertainty is
allowed in the last significant digit of the data being manipulated.

We will choose the most generous rounding convention allowed by he

Mainstream approach. The maximum uncertainty we will allow on the
last significant digit of a measurement-based quantity is ±5. Consider

the following example;

9.23 ± 0.06
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The absolute value of the uncertainty (6) on the tentative last
significant digit (on the "31 is greater than 5. Therefore the "3"
should be rounded off, leaving only two significant figures.

9.23 0.06 -0 9.2

If an experimenter follows the custom that estimated uncertainties
greater than ±5 on any digit will be eliminated by rounding off that
digit, then we may infer that the last reported digit has an estimated
uncertainty no greater than ±5, and no less than ±0.5. (Obviously the
upper uncertainty limit does not always apply to the anomalous one-
significant-figure-quantities.) We have no way of knowing from the
reported datum what the estimated uncertainty really was, except that
it was between these limits. Since the limits are an order of
magnitude apart, we will argue from the same logic that led to the
Root Rule, that the best guess of the estimated uncertainty on the last
digit will be half an order of magnitude into the range, or
±5/116= ±1.58.

Now we'll take an indirct route back to the hindsight conventions
we have just described. We will use the following borderline case of
the LPF Root Rule to pin down some uncertainties:

22.207/2.65 = 8.38

Our argument will hinge upon the common-sense notion that if a
calculation is borderline with respect to the LPF Root Rule, then it
should also be borderline with respect to the most reasonable hindsight
convention. Let A and B be the expected* uncertainties on the last
digit of the least precise factor, and of the tentative last significant
digit of the quotient, respectively. Then

A B
=

2.65 8.38

8.38 B

B=*A:rAillY AN
2.65 /TO

*In this argument, we are not using "expected" in its mathematical
sense; here "expected" refers to the median, rather than the mean.
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Notice that in this borderline case the least precise factor and quotient
mantissas differ by a factor of approximately %/TO. Since this is near
the maximum allowed by the LPF Root Rule, it suggests that the
uncertainty on the tentative last significant digit of the quotient has
been stretched to the allowable maximum. Thus we would expect the
uncertainty on the final N8" (in the quantity "8.38") to be approximately
±5. (We would not expect this uncertainty to be ±6 or ±4, because then
the quotient would definitelu have two significant figures, or three
significant figures, respectively.) Thus

A = 5/%/1-0 = 1.58

For our ±0.5 to ±5 rounding convention, the most reasonable
hindsight convention is approximately ±1.58. Note that 1.58 is the
geometric mean of 0.5 and 5. In general, the hindsight convention
value is approximately equal to the geometric mean of the rounding
convent ion limits.

In a mixed significant figure determination, where only some of the
components' estimated uncertainties are known, the ideal procedure
should be as follows;

1) Apply the hindsight (±) convention value to the last significant digit
of any calculation component, whose estimated uncertainty is not
known.

2) Plug these values, together with the given estimated uncertainties,
into Equation 11.2.

3) Then proceed as before, using the Extended Root Rule.

In the absence of standardized rounding and hindsight conventions,
this variation on our basic theme is not yet possible. However the
hindsight convention concept has broader implications. In this
discussion, we have ignored the effect of rounding error, a situation
which we now will remedy.

The reporting of a measurement-based quantity involves the
following three types of error:

1) Random error.
2) Systematic error.
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3) Rounding error. An example of a pure rounding error is that which
arises when Tr is rounded to 3.14 (or to 3.141592654 for that
matter). The very fact of rounding introduces an error, and
sometimes this must be taken into consideration. Rounding error
must be distinguished from measurement error, which includes
(1) and (2) above.

According to Sheppard4, the variance of a rounded variable equals
the variance of the unrounded variable plus R2/3, where ±R are the
rounding error limits. Recall that the ±1.58 hindsight convention
(associated with the ±5 rounding convention) refers to measurement
uncertainty only. The corresponding total uncertainty hindsight
convention would be estimated as follows (remembering that 1.58 is
an approximation of 5/11-0= %/);

±12.5 + 0.52/3 = ±1.61

which is not very far from ±1.58.
At this point, we have three choices. First we could amend (and

complicate) the Root Rule in order to take rounding error into account.
Secondly we could continue to ignore the effect of rounding error.
Lastly, we could retain the Root Rule, and multiply the right hand side
of Equation 11.2 by a correction factor. In this case, the correction
factor would be calculated as follows:

+ 1/121/2
F1.58

2.5

1/2

30
= 1.0165

It must be understood that the rounding error correction factor is a
function of the hindsight convention (for measurement uncertainty).
For example, if our hindsight convention is ±1 (which goes along with
±1/ITIS to is/RT rounding convention limits), then this correction
factor would be calculated as follows;

F1 =

+ 12/12 1/2

12 12

= 1.0408
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Our main purpose in exhuming rounding error is to show that it is
relatively inconsequential for ordinary significant figure
determinations involving the standard error of the mean type of
uncertainty. However rounding uncertainty would be relatively
important for mixed determinations in which any of the uncertainties
given are substantially less than the ±1.58 hindsight convention would
suggest. Since the above correction factor (F) increases as the
hindsight (±) convention decreases, rounding uncertainty must be taken
into account if the absolute value of the hindsight convention is
substantially less than unity.

For significant figure determinations which use the absolute limit
of error type of uncertainty, the total uncertainty hindsight convention
is

±(I.58 + 0.5) =12.08

Therefore the LPF Root Rule would have a decidedly optimistic bias if
the absolute limit of error type cf uncertainty was employed, unless
the Liberal approach was used also. (See Part 1.)

In this section, we have seen how the concept of rounding
convention leads to that of hindsight convention, which should be taken
into account during mixed significant figure determinations. We also
considered rounding error, and its effects on the total uncertainty
hindsight convention vis-a-vis the absolute limit of error and standard
error of the mean definitions of uncertainty (See Part I). All of these
considerations underscore the importance of establishing a
standardized rounding convention.
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Part II Summary and Conclusion

We have seen that the Root Rule is a rational basis for significant
figure determinations. The Extended Root Rule says that we must
compare the estimated relative uncertainty and implied relative
uncertainty for the rounded numerical result R of a chemical or
physical calculation. The estimated relative uncertainty and implied
relative uncertainty of R must be in the same ballpark, i.e. within half
an order of magnitude of each other. if they are, then R has been
rounded to the correct number of significant figures.

In Part II, we saw that the value of the estimated relative
uncertainty we obtain depends on which definition of uncertainty we
use. This needs to be standardized.

In Part I, we considered only the special case where the estimated
relative uncertainty of a product or quotient is approximately equal to
the implied relative uncertainty of the least precise factor for a
multiplication or division calculation, in which the standard error of
the mean definition of uncertainty is used. This leads to the LPF Root
Rule (and to the handy 1-5 Rule). Thus the LPF Root Rule of Part I is a
special case of the Extended Root Rule.

All of these procedures can be incorporated into computer programs.
Some calculators (eg. the Hewlett-Packard 15C) allow the user to
choose in advance the number of significant figures which will appear
in the display. Perhaps scientific calculators of the future will have
the capability of doing significant figure determinations. This raises
the possibility of eliminating extraneous-digit noise from modern
electronic calculators (and from freshman chemistry lab reports).
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APPENDIX

First we will show that the LPF Root Rule and the Simple Rule give
different results more than 18% of the time in two-factor
multiplication calculations. We will make the following assumptions;

(a) All (base 10) mantissas are equally likely.
(b) The two factors do not have the same number of significant

figures.

This second assumption is reasonable. if both factors have the
same number of significant figures, then it is not true that the LPF
contributes essentially all of the uncertainty. Therefore by hypothesis,
neither the Simple Rule nor the LPF Root Rule should be used. Moreover
we will ignore the problems created by the anomalous one-significant-
f igure-quantities.

Let M1 and M2 be the smaller and larger mantissas of the two
factors. The LPF can override the Simple Rule only when the following
conditions are both met;

1) M1 < %Fri
2) M2 > ifr)

Suppose that Conditions 1 and 2 are true. Then we have the
following cases and subcases to consider:

1. The product mantissa is less than ITii.
11. The product mantissa is greater than Nfld.
A. The LPF mantissa is less than tro".
B. The LPF mantissa is greater than /115.

There will be an override (of the Simple Rule) if and only if either 1B
or HA is true. In Equations A.1-3, we will assume that Conditions 1
and 2 (above) are true. Therefore the probabilities (represented by P)
in these equations are conditional. By Conditions 1 and 2,

P(1A) = P(IB) and P(IIA) = P(116) (A.1-2)
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Therefore P(IB) + P(IIA) = P(IA) + P(IIB) (A.3)

Thus the conditional probability (P1) of an override, given (1) and (2),
is exactly 0.5.

The probability that Conditions 1 and 2 are both true is given by the
following:

si 11 3 1 1 0 1 0

P2= 2

10- 1 10- 1

Therefore the unconditional override probability is given by the
fol lowing:

(A.4)

lib" 1 10 fid.
P = Pi P2 = 0.5 2 = 18.3% (A.5)

9 9

In division calculations, the LPF Root Rule will override the Simple
Rule nearly 30% of the time. Here, we need to consider the following
cases and subcases:

l' The least precise factor is in the numerator.
A' The quotient mantissa (Q) is less than the least precise factor

mantissa (L).
B' Q > L
II' The least precise factor is in the denominator.

Case IA' Suppose that the least precise factor is in the numerator. Let
M be the mantissa of the most precise factor. Let P(IA') be the
probability of a IA' division override. Override will occur if and only
if /15< M < L. Therefore

ITU 2 1-115-112
KM') = 0.5 = 5

1 9 i
(A.6)

Case IB' Override will occur if and only if L < M < /WI Therefore



TO- li 2
POB1 = 0.5

10 1

TT- 12
P(1') = P(IX) + P(113') = 5.5

9

Case 11' is somewhat more complicated. Let x be the denominator
mantissa . We must consider the following four subcases:

1) 1 <x < 10-25
2) 10.25 <x< ,fro
3) ,,fIT < x < 10.75
4) 10-75<x < io

Let Pi' be the probability that subcase i applies. The Fr are
calculated as follows;

10.25 1

Pi' = = 0.08647549
10 -1

sr1-0-- 10.25
P2" = = 0.1537775833

10 -1

10.75 %rib
15-3' = = 0.2734595102

10 1

10 1075

P4=
10 -1
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(A.7)

(A.8)

(k9)

(A.10)

(A.11)

= 0.4862874164 (A.12)
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Let 131' be the conditional probability that there will be an override,
given that subcase i applies.

In subcase 1, override will not occur if and only if the numerator
mantissa is between x and x2,,n0 . If x is fixed, then

x2,f10 x
1 Pilx) (A.13)

10 -1

The subcase 1 frequency function is as follows:

fi(x) = 1/(10.25 1) (A.14)

Therefore the average (expected) value P1' of 131-(x) is calculated as
follows;

lo.25 10.25 x
P1' = 1 J P 1"(x)f i(x)dx = f dx

1 1 9 (10-25 1)

= 0.458581526

The subcase 2 calculations are as follows:

x x2/1TT
P2"(x) =

10 1

1

f2(x) =
TIT- 10.25

(A.15)

(A.16-17)

10 /To X X2/4"-ti
P2' = J P2(x) I 2(x) dx = f dx

10.25 10.25 9 (ITT; -1025)

= 0.05445476057 (A.18)

The subcase 3 calculations are as follows;
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x2/fir) x 1

f3(x) (A.19-20)
10- 1 10.75- II0-

10'75 10'75 X2/ 10 X

P3' = J P3'(x) f3 dx = J dx

ib s/To- 9 (10-75 fro"-)

= 0.206723907

The subcase 4 calculations are as follows:

x x2/VrT000

P4"(x) =

(A.21)

1

f4(x) = (A.22-23)
10- 1 10- 10.75

10 10 x x2/ 1000

P4 = J P4 (X) f4(x) dx = 1 J dx

10.75 10.75 g

= 0.3520532293 (A.24)

The override probability (given that the least precise factor is in the
denominator) is calculated as follows;

4
P'01) = E P-i' P1' = 0.2760191157

i=1

If we assume that the least precise factor will end up in the
numerator as often as in the denominator, then the unconditional
override probability (P') for division calculations is given by the
fol lowing;

(A.25)

P'= 0.5 [P-(1) + P'001= 29.7% (A.26)
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If we assume that division and multiplication are equally frequent,
then the overall override probability would be about 24%, since 24% is

the average of 18.3% (for multiplication) and 29.7% (for division).
In the above arguments, we have assumed that the mantissa

frequency function f is a constant (1/9 in the unrestricted case). A
more realistic approach would set f = c/x, where x is the mantissa, and

c is a constant (c = 1/In 10 in the unrestricted case). A similar
argument, using this second assumption leads to the result that

P = P"(1) =13111) = 25% exactly (A.27)

Thus the Simple Rule not only breaks down, but it does so with

embarrassing frequency.
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ABSTRACT

The theoretical and applied aspects of Decimal Coded Binaries, a
new method for compacting scientific data into a tabular format, are
explored. This technique efficiently combines a measurement and its
uncertainty into a single easy-to-read quantity. DCB compares
favorably with a pedestrian reference technique for accomplishing the
same end (and with ordinary stand-alone significant figures). The DCB
algorithm has been programmed into a hand-held scientific calculator,
and into a simple microcomputer which is used as an interface with
chemical instruments commonly utilized in quantitative analysis.

INTRODUCTION

Suppose that you are giving complicated street directions, and that
the other person's attention seems to be flagging. Unconsciously you
may raise the pitch of your voice for the last word of a sentence.
("And then you turn left.") A casual eavesdropper will understand the
"turn left", but may jump to the conclusion that you are asking a
question, when in fact your tone of voice is a polite way of saying,
"Listen to me!" Of course, the intonation change in the word "left" will
require a little extra time because the vowel is drawn out slightly, but
less time than it would take to say, "Listen to me!" Thus the use of
inflection can enhance the efficiency of communication. In the above
parable the way we end the "turn left" sentence has an indirect
meaning, above and beyond the meaning of the words themselves.

We will describe a new method for compressing scientific data
Decimal Coded Binaries, or DCB, and an auxiliary technique, Linear Code.
Like the sentence in the parable, a quantity which has been coded by
either technique will have both a direct and an indirect meaning.

The direct meaning is the number itself, which is approximately
equal to the value of the measurement. The "indirect meaning" is the
information about the measurement's uncertainty, which we will infer
from the last digit of a Linear Coded quantity, and from the last
several binary digits of a DCB quantity.



45

Like the sentence in the parable, DCB is efficient. DCB requires
appreciably less space on paper or in memory devices, and less time
for telecommunicating than would be required to write, store, or
transmit the value of the measurement and its uncertainty separately.
Both techniques are user-friendly in the sense that it is easy to
program coding and decoding routines into ordinary microcomputers and
HP15C calculators. Before we describe these coding techniques, we
will discuss the reporting of measurement-based data.

There is a consensus among physical scientists that when a
measurement is reported, some indication of its trustworthiness should
also be given. There are two widely-used methods for expressing the
trustworthiness of a measurement.

In the direct approach, the experimenter gives a full accounting of
the measurement and its limitations. He or she will report how
reproducible the results are and also discuss what is known or
surmised about the systematic error. NBS Handbook 915 gives a very
comprehensive treatment of the direct approach. However this
scientific prescription for description is honored more in the breach
than in the observance.

Sometimes it is impractical to be this explicit, especially in data
tables. When brevity and readability are the chief concerns, stand-
alone significant figures are often used instead of the direct approach,
but there are serious problems associated with this usage of
significant figures.

Significant figures are a sacred cow in the sense that most
scientists can agree about the sacredness, but few can agree on the
nature of the cow! Almost every physical scientist has a strong
opinion about significant figures, and regards his or her interpretation
as being obviously correct. However there are truly fundamental
differences of interpretation to be found in the literature.

The current NBS usage6 of stand-alone significant figures is quite
narrow. There is an upper bound on the maximum relative uncertainty
allowed on the last reported digit of a measured quantity, but there is
no lower bound. Here the last reported (significant) digit must be
known with certainty; i.e. the estimated uncertainty on the last
reported digit must not exceed ±0.5. (We will attempt to define
uncertainty shortly.) In an extreme case, a mass measurement of
123.4 mg, with an estimated uncertainty of 0.6 mg, would have to be
reported as 1.2x101 mg since the third digit could be N3N or 114N.
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In the following example, we will consider the question: What is the
proper number of significant figures that should be used to write the
atomic weight of aluminum, according to the NBS?

The atomic weight of aluminum is

(a) 27, correct to two significant figures.
(b) 27.0, correct to three significant figures.
(c) 26.98, correct to four significant figures.

According to the NBS, all of the above are syntactically correct.
Therefore there is no unique, answer to the question we have just
posed. In the NBS Weltanschauung, significant figures are not supposed
to give very much information about the uncertainty of a measurement.

Skoog and West? take a broader approach, in which stand-alone
significant figures are used to give more information about the
estimated uncertainty. Here the estimated uncertainty on the last
significant (reported) digit must be between ±0.5 and ±5. Using this
±0.5 to ±5 rounding convention, the mass measurement example would
be rounded to 123 mg. The "3" in "123" has meaning even though it is
not known with certainty.

In this general approach, the reader of the data can infer that the
estimated uncertainty must be within a particular ten-fold range
(which is not to be confused with a confidence interval). This is not
true for the narrow NBS approach.

A second problem is that there is a lack of consensus on the
meaning of uncertainty. Let's review some fundamentals.

There are two sources of measurement error; random error
(sometimes called imprecision) and systematic error (sometimes
called determinate error). Random error occurs when repeated
measurements of the same thing yield somewhat different values. The
smaller the random error, the greater the precision. A measurement
will be relatively accurate if both random and systematic errors are
small.

Skoog and West have suggested that systematic (determinate) errors
may be classified with respect to their sources and their effects.
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"It is not possible to list all conceivable sources of
determinate error; we can, however, recognize that they
have their origin in the personal errors of the
experimenter, the instrumental errors of his measuring
devices, the errors that repose in the method of analysis he
employs, or any combination of these. "8

"Determinate errors generally fall into either of two
categories, constant or proportional. The magnitude of a
constant error is independent of the size of the quantity
measured. On the other hand, proportional errors depend in
absolute magnitude upon, and increase or decrease in
proportion to, the size of the sample taken for analysis. "9

We will add a third classification scheme. All systematic errors
come under one of the following two categories;

1) suspected systematic errors
2) those we are completely unaware of, i.e. lurking systematic errors.

By definition, lurking systematic errors cannot be compensated for,
or taken into account.

Uncertainty is a key concept in this discussion. Both random error
and systematic error can undermine our sense of certainty in a
measurement, but what does uncertainty really mean? Unfortunately, a
direct answer to such a philosophical question is beyond the scope of
this paper. However we can approach the question in a pragmatic
fashion. What kind of uncertainty is most useful to us? We will
compare four types (definitions) of uncertainty.

1) The first type of uncertainty is the absolute limit of error in a
measurement. The advantages of using this kind of uncertainty are
that both random error and suspected systematic error are included,
and that the simple worst case methodm of error analysis can be
used to trace the propagation of uncertainty in a calculation. By
definition, lurking systematic error cannot be taken into account;
hence the "absolute limit of error" of a measurement is unknown and
unknowable. Moreover if the random error is normally distributed,
as we so often assume, then these limits don't even exist, since the
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Gaussian frequency function will yield a non-zero probability
density for any real value of the random variable. In an extreme
case, this means that there is a non-zero (albeit very small)
probability that any truly normal random variable will be 10 million
standard deviations away from the mean of the distribution.

2) The second type of uncertainty we will consider is the maximum
suspected systematic error. Unlike (1) above, this kind of
uncertainty could apply to the real world. If the suspected
systematic error is large, relative to the imprecision, then the
reader of the data would like to know about it. However it would be
difficult to reduce even the suspected systematic error to a single
number. If the suspected systematic error is mentioned at all when
a measurement is reported, the experimenter will usually attempt is
to discuss it thoroughly. The next two classes of uncertainty are
functions of the imprecision.

3) Our index of uncertainty could be one half of a 95% confidence
interval, the half-span. However there are two limitations:
(a) Systematic error cannot be taken into account, since this kind

of uncertainty applies only to random error.
(b) Confidence intervals do not lend themselves to propagation-of-

uncertainty analysis. (See Appendix.)

4) The standard error of the mean is a better way of expressing the
uncertainty stemming from imprecision. This definition, like the
preceding one, applies only to random error, and not to systematic
error. However propagation-of-uncertainty analysis is relatively
simple under this definition (unlike Definition 3); it applies to the
real world (unlike Definition 1); and the standard error of the mean
can be written quite compactly (unlike a suspected systematic
error, which may require several paragraphs of explanation and
caveats).

Our primary objective in developing these data compression
techniques is to provide a compact format, which will enable the
experimenter to report a measurement, together with an index of its
trustworthiness. If neither the random error nor the suspected
systematic error are negligible, then both types of error limit the
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trustworthiness of the measurement. A satisfactory definition of
uncertainty must make sense and it should take both types of error into
account.

None of the above definitions are fully adequate, although (4) is the
most reasonable, and it is this standard error of the mean definition
that we will emphasize. We will denote this type of uncertainty by
Urn, an abbreviation for the estimated uncertainty of the
measurement.

Now that we have exhausted uncertainty definitions, we must
consider one final problem with stand-alone significant figures, as
they are ordinarily used. Even with the general approach of Skoog and
West (which we will use in modified form), the estimated uncertainty
on the last significant digit of a measurement-based quantity can be
anywhere within a ten-fold range (because of the base ten number
system). In the next two sections, we will describe two types of data
compression techniques, which address this problem. In order to make
Decimal Coded Binaries (DCB) more understandable, we will develop an
auxiliary technique in the next section. DCB will be introduced in the
section after that.
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LINEAR CODE

Now we will return to the linguistic parable introduced in the
previous section, where we had briefly discussed inflection, a
commonly-used speech compression technique. Clearly this is not the
only way to condense communications. The obvious approach is first to
use abbreviations whenever possible, then to eliminate the non-
essential words (eg. articles), then finally to delete the periods at the
ends of sentences and the spaces between words. We will contemplate
how such a sequence of compaction steps could apply to quantitative
data. Then we will see how Linear Code puts this Western Union
approach into practice.

As a first step, we could decide how many digits to report for a
measured value. (How many significant figures does the quantity
have?) Then we would round off the number accordingly.

Secondly, we could use a one-digit code to indicate the imprecision
on the last reported digit of the measured value. This uncertainty

code would give the reader of the data the upper and lower bounds for
the estimated standard error of the mean.

The last steps in this pedestrian data compaction technique would
be to condense the format for reporting the uncertainty code. Instead
of writing "standard error of the mean = " or "±", we could simply leave
a space between the measured value and the uncertainty. Finally we
could delete even the above space, by tacking the uncertainty code onto
the end of the mantissa of the number representing the measured
value. (Suppose that a number expressed in scientific notation is
3.16X10-2. The "3.16" is called the mantissa.)

Now let's talk about the actual technique. The following two steps
summarize the procedure for expressing a measurement in Linear Code:

1. Round the value of the measurement-based quantity to the correct
number of significant figures, using scientific notation if necessary.

2. Insert a digit after the last significant figure. This extra digit is
the uncertainty code, and it has nothing to do with the
measurement's value.
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Table II illustrates the uncertainty code concept, as tentatively
applied to the ±0.5 to ±5 rounding convention of the previous
sect ion.

Table II Relationship Between Uncertainty Code and
Estimated Measurement Uncertainty with the
±0.5 to ±5 Rounding Convention.

Uncertainty Code

i 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1

.5 .63 .79 1 1.3 1 6 2 2 5 3 2 4 5

Estimated measurement uncertainty

Note that Table 1 uses a semilogarithmic scale for the bottom row.
This allows the estimated measurement uncertainty to be pinned down
within a 100.1-fold range. For instance, if the uncertainty code is 4,
then the estimated measurement uncertainty on the last significant
digit would be between 1.3 and 1.6. As an example, the Linear-Coded
quantity "59.4 ppm" translates into plain English as "59 ppm, with an
estimated measurement uncertainty between 1.3 ppm and 1.6 ppm".
(This is not the same as a confidence interval.) However there is a fly
in the ointment.

Thus far, we have only considered uncertainties which come from
measurement errors; rounding errors also need to be taken into
account. An example of a pure rounding error is that which arises
when Tr is rounded to 3.14 (or to 3.14159265 for that matter).
According to Sheppard '1, the total standard deviation sT of a
reported measurement can be calculated as follows;

sT = (s2+ R2/3)R2/3)"2 0

where s is the standard deviation of the measurement, and R is the
maximum possible rounding error (which is ±0.5 on the last significant
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digit). Now we will introduce the concepts of rounding ratio and
estimated total uncertainty UT.

rounding ratio = Um/R (2)

UT (Un2+ R2/3)1/2
(3)

where Um is the estimated measurement uncertainty, as defined in the
previous section. Note that Equations 1 and 3 are isomorphic.

Eisenhart12 recommends that a quantity be rounded such that the
rounding ratio is at least two. This suggestion can be appreciated with
the help of the concept of the % inflation (of uncertainty).

% inflation = 100(UT Um)/Um (4)

The minimum estimated measurement uncertainty (Urn) we have been
allowing on the last reported digit is ±0.5. By Equations 3 and 4, this
would result in a 15% inflation; i.e. the total estimated uncertainty
would be 15% more than the estimated measurement uncertainty. This
would be very frustrating for the poor experimenter who has been so
diligent in controlling temperature, pressure, humidity, and other
extraneous variables, only to have a rounding convention inflate his or
her imprecision by 15%! Table III summarizes the relationship between
estimated measurement uncertainty (Urn), rounding ratio, and inflation.

Table Ill Relationship Between Estimated
Measurement Uncertainty,
Rounding Ratio, and Inflation

Urn 0.5 1 2 3 5
Rounding ratio 1 2 4 6 10

% inflation 15.47 4.08 1.04 0.46 0.17

Table IV shows the relationship between uncertainty code and
estimated total uncertainty (UT) with our current rounding convention
(±0.5 to ±5).
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Table IV Relationship Between Uncertainty Code and
Estimated Total Uncertainty with the ±0.5 to ±5
Rounding Convention.

Uncertainty code

l 0 l 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1

.58 .69 .84 1 1.3 1 6 2 2 5 3 2 4 5

Estimated total uncertainty

Now compare Tables 1 and III. Note the difference between Urn and
UT in the lower uncertainty codes. Our task would be simplified
greatly if this discrepancy were minimized. We could accomplish this
by changing the rounding convention.

For purposes of Linear Code, we will adopt the convention that the
estimated measurement uncertainty (Urn) on the last significant digit
will be between ±2 and ±20, in order to have a reasonably small
inflation. The minimum rounding ratio allowed by this rounding
convention is calculated as follows;

min. rounding ratio = 2/0.5 = 4

According to Table III, this corresponds to an inflation of1.04%,
which is tolerable, even by Swiss standards. Thus Table II is merely a
trial balloon for a widely-used rounding convention. For the actual
application of linear coding (with the ±2 to ±20 convention), Table V
must be used.
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Table V Relationship Between Uncertainty Code and
Estimated Measurement Uncertainty for the
±2 to +20 Rounding Convention.

Uncertainty code

1 0 1 1 1 2 1 3 1 4 1 5 1 6 J 7 1 8 1 9 1

2 25 32 4 5 6.3 8 10 12.6 15.9 20

Estimated measurement uncertainty

If we mistake a Linear Coded quantity for an ordinary base 10
number, then we lose out on the uncertainty. But the value of the
measurement does not suffer appreciably from the misinterpretation.
In the worst case scenario, the misinterpretation error on the last
reported digit is 9, as compared with the measurement uncertainty on
the last reported digit which is at least 159. Therefore the maximum
misinterpretation error is

9/159 -A. 5.7%

of the uncertainty. So Linear Code is very forgiving to the reader of a
data table, who has never heard of Linear Code, and mistakes it for
ordinary base 10 notation.

Economy is the primary rationale for using any kind of data
compaction technique (or even stand-alone significant figures) in lieu
of directly reported uncertainties. Therefore it would be prudent to
calculate the cost of Linear Code relative to the ordinary (stand-alone)
usage of significant figures.

There are two cost components, the first of which is the one extra
digit for the uncertainty code. Therefore Cost 1 = 1 digit. The second
component is equal to the probability that a quantity, which has been
tentatively rounded in accordance with the ±0.5 to ±5 convention, will
need an extra digit in order to satisfy the new ±2 to ±20 convention.
This may be calculated as follows:
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Cost 2 = log (2/0.5) = 0.602 digits

Now we will calculate the total relative cost of linear coding.

Total cost = Cost 1 + Cost 2 = 1 + 0.602 = 1.602 digits

Thus Linear Code is more expensive than stand-alone significant
figures. However Linear Code gives much more information about the
estimated measurement uncertainty of an experimental parameter.
Moreover Linear Code is a very understandable method. Eventually we
will see that it is mainly useful as a reference technique. In the next
section, we will introduce a data compaction method, which is more
efficient than linear code. We will see that this technique also has
convenient human engineering features.

DECIMAL CODED BINARIES

We will return once again to our linguist parable. We saw that the
essence of "Listen to me!" is found in the altered tone of voice, rather
than the words themselves. When we combined the meanings of the
actual street directions and this auxiliary sentence in a compact form,
all we did was to add an upscale glissando to the end of the otherwise
monotonic "Then-you-turn-left" in order to create the desired effect
(lifting the other person out of his or her lethargy). In this example,
the key to efficient data compaction is the ending of the sentence.

As we mentioned earlier, there is a striking parallel between the
linguistic parable and our data compression techniques. In the Linear
Coding technique of the previous section, we focused on the base 10
endings of numbers, which is a reasonable approach. However a number
can have more than one kind of ending.

The fact that we usually write in base 10 does not prevent a base
10 number from having a base n ending. For example, if we divide the
base 10 number 249 by 10, the remainder is 9 (the base 10 ending).
However this fact does not prevent us from considering the base 7
ending (remainder), which is 4.
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In this section, we will explore a more efficient data compression
technique, DCB, or Decimal Coded Binaries (which are not the same
as the binary coded decimals of computer science). As the name
suggests, DCB hybridizes the base 10 and base 2 number systems. We
will see that DCB quantities can be thought of as base 10 numbers with
base 2 endings.

In the ordinary. significant figure theory of the binary number
system, the minimum estimated measurement uncertainty (Urn) allowed
on the last reported digit is ±0.5, as in base 10, but the maximum Urn
on the last reported digit is ±1. However we will use a ±2 to ±4
rounding convention in order to guarantee that the rounding ratio is
always at least 4, thereby minimizing the rounding error. (The
minimum rounding ratio for all of our data compression techniques is
4.) Therefore after we round off a binary number (using the ±2 to ±4
convention), it will have uncertainty on the last three significant
binary digits.

In some ways, binary significant figures are nicer than base 10
significant figures. In binary, the estimated measurement uncertainty
on the last reported digit is limited to a ±41±2 = 2-fold range, as
compared with a ten-fold range for base 10. The major disadvantage
of binary numbers is that they require too much space to write out.
For example, "512" in base 10 is "1 000 000 000" in binary. However
it is possible to combine the virtues of the base 10 and binary number
systems, and have the best of both worlds.

Basically, the DCB algorithm converts an integerized* base 10
quantity into binary, rounds to the correct number of binary digits, and
then converts back to base 10. We can represent this concept as "2-R-
10" in symbolic shorthand. However there is one difficulty with this
oversimplified picture, which we will illustrate in the next paragraph.

Suppose that the value of a measurement is 302 mg, and that only
two significant figures can be justified, which means that we must
round to 300 mg. How is a third party to know which, if any of the

'For now, our explanation of integerization will be slightly
oversimplified. The number 0.0345 is 3.45x10-2 in scientific notation.
Remember that we are calling the "3.45" the mantissa_ The
integerized mantissa is 345, and the integerized form of the
original number is 345x10".
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terminal zeros in "300" are significant figures? This is the terminal
zero problem.

There are two ordinary ways to deal with this situation. First we
could express the quantity as "3.0x102 mg", using scientific notation.
Alternatively we could write "0.30 gm. Neither approach will solve the
terminal zero problem for DCB. Instead we will use a binary marker
as an uncertainty location bit. The full-fledged algorithm for
converting base 10 data to DCB notation is as follows;

1) Integerization.. Let M and Um represent the absolute value of the
mean of a series of measurements, and its standard error,
respectively.
(a) If Urn of 11 is less than 4, then multiply both M and Urn by 10.

Repeat as needed, until the Urn becomes > 4.
(b) Set a counter variable J (which is initially zero) equal to the

number of times (a) is repeated.
(c) and (d) These steps (to be given later) are used only with a DCB

variation called Scientific DCB.

2) Convert the integerized (base 10) M to binary.

3) Round the result of Step 2 such that the adjusted Urn on the last
significant binary digit is between 2 and 4. Be sure to remember
the position of the last significant binary digit!

The fifth step will be to convert back to base 10, but there is one
hurdle to clear first. Suppose that the result of Step 2 is
11011000 in binary (216 in base 10). How is a third party to know
which binary digit is the last significant figure? It could be the
right-most "1" or it could be any of the three final zeros. We have
come back to the terminal zero problem, which we will solve by
flagging the location of the final significant binary digit.

4) Flagging. Put a "1" immediately after the last significant binary
digit, and keep it there.
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This means that the right-most "1" has absolutely nothing to do
with the actual value of the number, and is merely a marker, which
says that there is uncertainty on the next three binary digits to the
left.

5) Convert the result of Step 4 to base 10. (This will always be an
integer.) The marker is now a part of the new base 10 number.

6) Bookkeeping. Take the result of Step 5 and move the decimal point
J places to the left (or -J places to the right). Do not discard or
add any terminal zeros when moving the decimal point. If
necessary, express in a scientific-like notation. If the
measurement's sign is negative, then remember to put a (-) sign in
front of the DCB quantity.

This completes the procedure for translating the results from a set
of scientific measurements (i.e. the mean value and its uncertainty)
into DCB notation. We may summarize the complete DCB coding
procedure as
"Int-2-R-F-10-13". A listing of the programs for coding and decoding
DCB on the HP15C calculator may be obtained by writing to the authors.

There is one important boundary condition for DCB. This notation
can only be used to represent a quantity, whose standard error of the
mean is less than the absolute value of the mean. Now we will give
some examples.

Our first example will serve two purposes. First we will get some
practice in decoding DCB (i.e. translating DCB into prose). Secondly we
will gain some insight into the importance of terminal zeros.

Example 1
Let A = 2.3 and B = 2.30, both in DCB notation. Is A equivalent to B?
Working backwards, we will translate A into prose.
Obviously J =1, and the Step 5 result is 23 (in base 10).
The Step 4 result is 10111 (in binary).
The marker in p101 1 1" is in the ones' place. This means two things.
(a) There is uncertainty in the twos', fours', and eights' places; i.e.

that the adjusted Urn is between ±4 and ±8.
(b) The Step 3 result (rounded binary quantity without marker) is

10110.
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We do not know the value of the Step 2 result (except that it is
between binary 10101.1 and binary 10110.1 ), because a little
information was lost in rounding. So we will use the rounded value,
10110.
The Step 1 result is 22 in base 10.
Since J =1, we divide both "22" and the adjusted Urn by 101 in order to
arrive at the prose equivalent of A, which is "2.2, with an estimated
measurement uncertainty between 0.4 and 0.8". (Note that "between
0.4 and 0.8" is not a confidence interval.)
Similarly, it can be shown that B has a prose equivalent of "2.28, with
an estimated measurement uncertainty between 0.08 and 0.16".
Therefore A is not equivalent to B. This is why we must be so careful
with terminal zeros when we are using DCB.

If one is doing arithmetic on DCB numbers, then each quantity should
be decomposed into its actual value and uncertainty. Thus there are
four distinct operations to perform;

1) the decomposition (decoding)
2) the calculation itself
3) a propagation-of-uncertainty analysis
4) combining (coding) the results of (2) and (3) into a single DCB

quantity.

Since a DCB quantity looks like an ordinary base 10 number, it is
possible to confuse the two. If one is constructing a table of
scientific data, using DCB notation, then it would be best to state this
explicitly at the outset.

If the person reading such a table is not familiar with DCB, and
mistakes a DCB quantity for an ordinary number, then he or she loses
out on the information about the uncertainty. However the value of the
measurement does not suffer much, as we will see in the next example.

Example 2.
Suppose that the mean value of a series of measurements is 35.20 mV,
and that the systematic error is assumed to be negligible in
comparison with the standard error of the mean, which is 0.71 mV.
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la) Urn = 0.71 < 4. Therefore the adjusted mean is 352, and the
adjusted Urn is 7.1.

1b) J= 1
2) The (base 10) number 352, expressed in binary is 101100000.
3) This is rounded to the correct number of binary digits already.
4) The last significant binary digit is the second "0" from the right, in

the twos' place. Therefore we will replace the right-most "0" with
a "1" (the marker). The result is 101100001.

5) Converting the result of (4) back to base 10 gives 353.
6) Moving the decimal point J (=1) places to the left yields 35.3 mV,

in DCB notation.

Comparing this result with the original base 10 quantity, we see that
the two numbers (35.2 and 35.3) are quite close. In general, their
difference will be no greater than Um/4; i.e. the penalty is small when
one mistakes DCB for prosaic notation. Thus DCB is very forgiving (but
not as forgiving as Linear Code).

For many data tablessuch as reduction potentialswhere most of
the values are in the same ballpark, DCB notation will be adequate.
However it would be rather cumbersome to use DCB per se in tables of
equilibrium constants. For data tables, which would ordinarily require
scientific notation, there is an alternative, Scientific DCB (SDCB).
This is very similar to DCB, but is a scientific-like notation. In
Scientific DCB, the following additions are made to the DCB procedure.

Scientific DCB Addenda;
1c) If Um > 40 then divide the base 10 quantity (and Um) by 10

Repeat as needed.
1d) Let J = -1 multiplied by the number of times lc is repeated (if la

does not apply).

In the next several paragraphs, we will discuss the comparative
economics of Scientific DCB. We are considering Scientific DCB rather
than DCB, because DCB, like unscientific notation, can be rather
wasteful. (Imagine having to write the Avogadro constant that way!)
Going back to Example 2, the original base 10 quantity in ordinary
scientific notation, used in conjunction with ordinary stand-alone
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significant figures, would be expressed as 3.5X101 mV, which requires
one less digit than Scientific DCB notation (3.53X101 my).

Scientific DCB and scientific notation (used in conjunction with
ordinary stand-alone significant figures) will have the same digital
cost only when Urn on the last significant base 10 digit is between 4
and 5. The probability of this being the case is

log (5/4) = 0.09691

Therefore the absolute cost of Scientific DCB is

1 0.09691 = 0.90309 digits

Obviously Scientific DCB is cheaper than Linear Code, whose cost is
1.60206 digits, but linear code gives more information about Urn. In
linear code, Um can be pinned down within a 100.1 = 1.26-fold range, as
compared with a two-fold range at worst for Scientific DCB. (If the
binary marker of an SDCB quantity is in the fours' place, then the
estimated uncertainty is pinned down within a 40/32 = 1.25-fold
range.)

However we can construct Extended DCB (a modification of
Scientific DCB), which will allow us to make a fair comparison
between the two methods of data compression. In order to
demonstrate that SDCB is a more efficient technique than Linear Code,
we will show that Extended DCB gives more information about the
estimated uncertainty, and is cheaper than Linear Code. Since complete
mastery of Extended DCB is not necessary for the reader who wants a
general understanding of DCB, we will give only a brief outline of
Extended DCB.

Modifications to SDCB Procedure for Extended DCB .

A. Change the magic numbers in Step 1 of the SDCB procedure from 4
and 40 to 16 and 160.

B. Reserve the last two binary digits in the Step 4 result for a

quaternary uncertainty code, analogous to the base 10 uncertainty
code used for linear code in the previous section. The result is an
SDCB-Linear Code hybrid, Extended DCB.
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Extended DCB will allow us to pin down Urn within a 2" = 1.19
fold range at worst, an improvement over linear code. The additional
cost of Extended DCB (over Scientific DCB) is

log 4 = 0.60206 digits

Thus the total cost of Extended DCB is

0.90309 + 0.60206 = 1.50515 digits

which is cheaper than Linear Code. We have seen that when Scientific
DCB is linearized, the resulting code is more economical than Linear
Code alone. It would be reasonable to infer that it was the Scientific
DCB component which contributed the increase in cost-effectiveness.
Therefore Scientific DCB is inherently more economical than Linear
Code.

Thus DCB is an efficient and forgiving technique. The essence of
DCB is to combine the compactness of base 10 with the uncertainty
specificity of binary. A mnemonic for the DCB algorithm is "Int-2-R-
F-10-B".

In a later section, we will see that the DCB variations have an
additional virtue, flexibility. We will argue that DCB is a better
overall technique than Linear Code.
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EXPERIMENTAL SECTION

In an attempt to integrate the theory of decimal coded binaries with
the real world, the DCB algorithm was programmmed into an AIM 65
microcomputer, which was interfaced with an Orion 701A !analyzer (pH
meter), via its digital output edge connector. The program, which was
written in (interpreted) BASIC, included a machine language subroutine
for reproducibly recognizing when practical equilibrium would have
been attained, had the apparatus been used with an actual sample
solution.

Measurements of pH were simulated by means of the calibration
knob on the Orion. The uncertainty for a given simulated measurement
was manually entered from the keyboard of the AIM. It would have
been just as easy (albeit much more time-consuming, because of the
practical equilibrium subroutine) to arrange for the program to
calculate the standard error of the mean from a series of
measurements. After taking the data, the program expressed the result
in a DCB format.

Table VI shows the details of the hardware interfacing.



64

Table VI Connections Between the
AIM 65 Microcomputer and
the Orion 701A lonalyzer

AIM 65 ORION 701A

PBO .1

PB1 .2

PB2 .4

PB3 .8
PB4 1

PBS 2

PB6 4

PB7 8
PAO 10

PA I 20
PA2 40
PA3 80
PA4 100

PA5 200
PA6 400
PA7 800
CA I DATA READY
CA2 HOLD

GROUND GROUND
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RESULTS AND DISCUSSION

The entire program was well within the AIM's 4K of memory. About
a minute was required for the recognition of practical equilibrium.
After that, the program took only a few seconds to combine the
simulated mean and simulated standard error of the mean into a DCB
number (in an integerized scientific-like notation), which could be
viewed in the AIM's LED display. This experiment demonstrates that
the computer interfacing requirements of DCB do not pose a major
problem in the implementation of this data compaction technique. Even
if the innards of a given chemical instrument are not readily
accessible, DCB coding and translating routines can readily be
programmed into an HP15C calculator.

SUMMARY AND CONCLUSION

We have introduced two classes of data compression techniques;
Linear Code and Decimal Code Binaries (DCB, Scientific DCB, and
Extended DCB). Either method can provide a readable and economical
format for reporting the two essential components of a scientific
measurementthe measurement itself and an index of its
trustworthiness.

Now we will compare the relative merits of linear code and DCB.
These two methods will be evaluated in terms of the following
criteria;

1) Efficiency
2) Flexibility
3) Forgiveness
4) Simplicity

Using a linguistic parable, we compared linear code with the data
compaction techniques used in an ordinary telegram, while DCB was
compared with the use of vocal inflection, the latter approach being
somewhat more efficient.
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The next example will illustrate the flexibility of DCB.

Example 3. Experimental mean = 123456 bacteria/L. The standard
error of the mean (Urn) is 789 bacteria/L.

Linear code 1.2355X105 bacteria /L
DCB 123520 bacteria/L
Scientific DCB 1.235X 105 bacter ia/L

Example 3 shows that it is sometimes necessary to use a scientif ic-
like notation with linear code. This is because of the terminal zero
problem, which we discussed in an earlier section. In principle, it will
always be possible to express DCB quantities in ordinary unscientific
notation, which is highly readable in data tables. However we have the
option of using Scientific DCB if we want to save space when
constructing tables of widely spaced quantities, like solubility
products.

Both linear code and DCB are forgiving, in the sense that the reader
of scientific data tables does not suffer much if he or she has never
even heard of these coding techniques, since the value of the
measurement-based quantity is distorted very little in the coding
process. Of course the information about the measurement's
uncertainty is available only to those who know that it is there! We
have already pointed out that DCB is more forgiving than linear code.

Conceptual simplicity is the least important of the four criteria.
Since coding and decoding procedures for DCB can be programmed into
an HP15C calculator, the user of the technique need not worry about
the fine details. Since linear code is merely doing the obvious, it is
more understandable than DCB, although DCB programs tend to be short
(about 100 bytes for both coding and decoding in an HP15C calculator).
Table VII graphically summarizes this comparison.
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Table VII A Comparison of DCB with Linear Code.

Efficient Flexible Forgiving Simple

Linear code
DCB variations 3***

**

Table VII shows that DCB is a better method in most respects.
Linear Code serves as a learning tool, as an auxilliary technique, and as
a Brand X or reference method, which highlights the attractive features
of the more sophisticated technique, DCB. In the next several
paragraphs, we will discuss the potential role of DCB in science and
technology.

At present, there is a double standard among scientists about the
reporting of measurement data. On the one hand, we pay lip service to
the idea that we should always include an estimate of the uncertainty,
when we report a measurement. Yet we tend to forget this when we
publish our data in tabular formand for good reason. A data table
would be rather cluttered if we included a detailed error analysis for
each datum.

In some circumstances, the present practice is tolerable. If a
chromatographer is reading a table of GC retention indices, then he or
she will probably have some feeling for the limitations of the
measurements, even if the uncertainties are not stated explicitly.

However an organic chemist may be using these tables to assist in
the identification of a newly synthesized compound. He or she will
want to compare his or her retention index (for a given stationary
phase) with the literature value. The question is "How close is close
enough?" This will not be a problem if the literature value is reported
in a DCB format.

When we put our data into tables, DCB will allow us to practice
what we preach about the reporting of uncertainty. DCB is the middle
ground between stand-alone significant figures and the prosaic
reporting of measurement data. It is very efficient at communicating
the essentials of measurement data. Thus far, we have emphasized the
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saving of ink. However the potential uses of DCB extend far beyond the
printed page.

In the previous section, we argued that the programming and
computer interfacing requirements of DCB are not prohibitive. DCB
could improve the efficiency of scientific data storage in computer
memory (or on a hard disk or on a floppy). Moreover there is no reason
to preclude the use of standard data compression techniques in tandem
with DCB. If DCB promotes more efficient use of computer memory,
then it should also increase the speed of electronic communication.
Let's take an example.

Suppose that NASA sends a probe to Titan (a satellite of Saturn),
and that there are 100 experiments running simultaneously inside the
landing module. It would be important to transmit the data to Earth as
rapidly as possible. DCB (or even Hexadecimal Coded Binaries) could be
an important part of the overall plan to optimize the communication
rate, by combining in one signal both the datum and the value of the
measured noise.

Of course the potential applications of DCB are not limited to the
exploration of outer space. The usefulness of most chemical
instruments with digital readout could be enhanced if DCB was a built-
in feature.

In large projects, technicians are often sent out into the field with
portable chemical instruments. The logging time could be reduced if
the technician wrote a single DCB number into his or her notebook,
rather than having to write both a mean and its standard error.

In this paper we have presented two new techniques for
compressing scientific dataDCB and linear code. The best method,
DCB, does not have a very high level of specificity for the uncertainty.
If more information about uncertainty is required for a given
application, then a tailor-made technique could easily be constructed,
by hybridizing DCB and linear code, as we did with Extended DCB in an
earlier section. Therefore DCB is really an array of techniques.

To summarize, DCB should increase the effectiveness of automated
communicationwritten and electronicamong scientists, especially
across disciplinary boundaries.
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APPENDIX

Both classes of data compaction techniques discussed in this paper
combine a measured quantity and its uncertainty within a single
number. In contrast with ordinary stand-alone significant figures,
these techniques have a high level of specificity for the uncertainty.
It would be of interest to be able to do a simple propagation-of-
uncertainty analysis on a calculation involving quantities which have
been coded by either method.

For example, in the second section we introduce the Linear Coding
technique. If two Linear-Coded quantities are multiplied together, it
would be nice to be able to express the product in Linear Code also.
This will be possible only if we have chosen a definition of
uncertainty, which permits straightforward propagation-of-uncertainty
analysis.

We will argue that propagation of uncertainty is quite simple for
the absolute limit of error and standard error of the mean definitions
of uncertainty, but that there are serious problems with the confidence
interval definition, because the sample size must be taken into
account.

If uncertainty is defined to be the absolute limit of error, then
propagation of uncertainty can be handled by the following equation;

RU = Afif = [E(df/dxj)Axi] if + RUM (A.1)

where RU is the relative uncertainty of f (a function of the xi), Al is
the absolute value of the uncertainty of f, Axi is the absolute value of
the uncertainty of xi, and RUM is the relative uncertainty of the
calculation method. Sometimes the functional relationship f is only
approximate and is itself a source of error. (For example Beer's Law
neglects the effect of stray light.) It is also assumed that f is well
behaved, and that each ex; is small relative to xi.

If uncertainty is defined to be some multiple of the sample standard
error of the mean, then we may use the following equation;

U = ALtf = AfF.[(df/dxi)Axil2)1/2 (A.2)
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where U is the uncertainty, At is the absolute value of the estimated
standard deviation of f, each xi is the mean value of a series of
measurements (of the same parameter), Ax; is the absolute value of
the standard error of the mean of xi, and A is a positive real number.
Thus propagation of uncertainty is very simple for both the absolute
limit of error and standard error of the mean definitions of
uncertainty, because Equations A.I and A.2 are independent of sample
sizes and of the component frequency functions (i.e. it doesn't matter
whether they are Gaussian, Poisson, rectangular, etc.).

If uncertainty is defined to be half the span of a 95% confidence
interval, then the propagation of uncertainty is dependent on the
sample size and frequency function associated with each of the xi. The
implication is that in this case, there is no simple formula for
propagation of uncertainty, which will work for all cases. To prove
this rigorously would be beyond the scope of our present discussion.
However in the next several paragraphs we will explore the obvious
approaches. All of these blind alleys will become "the exceptions
which prove the rule". Let's suppose that

(a) the data points for each of the xi are normally distributed, and
(b) the sample size is known for each of the xi.

Then we may use a t Table to help us calculate each of the standard
errors of the mean (Axi), which we plug into Equation A.2 in order to
find Of. But then how do we calculate the 95% confidence interval for
f? There are two obvious possibilities.

If the Axi(df/dxi) are all equal, and if the sample sizes (of the
calculation's components) are all equal, then the calculation of the
confidence interval will be a radial error problem, which can be solved
using a chi-square technique".

On the other hand, the t Table can be used in this final step only if
we can make the simplifying assumption that essentially all of the
uncertainty is contributed by a single least precise factor, x.
However in this special case, there is no need for a t Table, or for
assumptions (a) or (b). Instead we may use the following equation;

Al = Ax(df/dx) (A.3)
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with Ax and Af representing the half-spans of the 95% confidence
intervals of x and f, respectively.

An even bigger problem is that the sample sizes will not always be
available when we are using other people's data in our calculation.

There is a simple way to obtain a confidence interval for the result
of a calculation, but it will not be the 95% confidence interval. In the
following artificial example we will suppose that the measured base
and height of a rectangle are 987 cm and 654 cm, respectively, that
the 95% confidence interval of each quantity is ±1 cm, and that no
information is available about sample size. The estimated area is

987 * 654 = 645498 cm2

From the definition of the 95% confidence interval, the compound
probability that the base is greater than (987+1) cm, and that the
height is greater than (654+1) cm is

[( 1 0.95)/212 = 6.25X10

which is also equal to the probability that the 95% confidence intervals
fail to bracket both base and height at the low ends. Therefore the
probability P that the true mean area (i.e. the calculated area, based
upon the true mean values of the base and height measurements) is mt
bracketed by the interval

1(654 0(987 1), (654 0(987 1)1 = [643858, 6471401

may be calculated as follows;

P = 2(6.25X10 4) = 1.25X 10 -3

Thus the above interval is the

100 (1 1.25X10-3) = 99.875%

confidence interval for the true mean area of the rectangle. However
we were seeking the 95% confidence interval.
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Again, we have failed to find a general method for obtaining the
95% confidence interval for f, from the 95% confidence intervals of the
xi. If such a method does exist, then it is not obvious. It would be of
theoretical interest to find such a method, or to prove its
nonexistence. However the main point of this discussion is that
propagation of uncertainty in the general case is very simple for the
standard error of the mean and the absolute limit of error definitions
of uncertainty, but it is not straightforward for the confidence interval
definition.
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DCB PROGRAMS FOR THE HP 1 SC SCIENTIFIC CALCULATOR

Since HP15C programming is rather primitive, there are some
limitations, which we must contend with. There are no character
variables, nor is there any string manipulation. In particular, the
calculator cannot recognize a terminal zero in a decimal fraction; i.e.
it cannot distinguish between "1.2" and "1.20". Therefore at times the
directions will tell you to ignore decimal points, to pretend that real
numbers are integers. At other times, the instructions will tell you
how to use your common sense in order to put the decimal point in its
proper place. Since the simplest concepts are often the most difficult
to explain, the directions may seem more complicated than they really
are.

Program for Expressing Measurement Data in a DCB Format

This first program transforms experimental data into DCB notation. We
will give instructions for using the program before listing the program
itself. Suppose that you are taking a series of measurements of the
same thing (eg. the spectrophotometric absorbance of a solution).

A. First key in "f 2" to clear the statistical registers of the calculator.
B. Enter the measurements or their mantissas* into the calculator, as

you would enter ordinary statistical data using the 2+ key after
each entry.

Most of the time you will have the option of entering the
measurements themselves, rather than their mantissas. However if
the numbers are very large (in the neighborhood of 109), then you
may get a spurious result. If you use mantissas (the safest
approach), then you will also get the maximum compression of your
data.

*For example, the mantissa of the Avogadro constant is "6.022".
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Common sense. If you are using the measurement mantissas rather
than the measurements themselves, then all of the measurements,
when expressed in scientific notation, should have the same
exponent. If they do not, then it will be necessary for you to force
them all into the same mold.

The program, which has a bad case of integer obsession, will some-
times ignore the decimal points in nonintegers. Therefore you may
need to do some scaling up or scaling down after the program has
finished running.

C. When all of the measurement data has been entered, then key in "1
C". "C" (which stands for "Coding") is the name of the program.

D. After about 7 seconds, the integerized DCB mantissa (the DCB
mantissa without the decimal, which is understood to be between
the first and second digits) will be displayed.

E. The final DCB quantity is the displayed mantissa, with a decimal
point inserted between the first and second digits, followed by the
exponential part (the X10?).

Do not add or discard any terminal zeros! For example, if the
number in the display is "180", then the DCB mantissa may be
written as "1.80". Do not write "1.8". The DCB quantities "1.80"
and "1.8" have completely different meanings.

F. Write the complete DCB quantity into your lab notebook. If this can
be done without adding any terminal zeros, then you have the option
of using an ordinary unscientific DCB notation. However a
scientific-like notation, which includes both a DCB mantissa and an
exponential part, is always correct.

G. If you are constructing a data table using DCB notation, then you
should state this explicitly in the heading of the table. Then your
readers will not confuse it with ordinary notation, and they will be
able to take full advantage of the information about the
measurement's uncertainty embedded within the DCB quantity.

The algorithm has two boundary conditions. If the absolute value of
mean is much smaller than its standard error, then it will not be
possible to express the result in DCB notation. In particular, the
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program will not handle a zero mean. Secondly, it is not possible to
express an exact number (having zero uncertainty) in DCB notation.

Example. Suppose that the values of three voltage measurements were
0.496 mV, 0.508 mV, and 0.520 mV. These numbers can be entered
into the calculator

(a) without modification
(b) or as 4.96, 5.08, and 5.20 respectively, with X10-1 understood
(c) or as 49.6, 50.8, and 50.2 respectively, with X10-2 understood
(d) or as 496, 508, and 520 respectively, with X10-3 understood.

In each case, the integerized DCB mantissa displayed by the calculator
will be "510" (which is understood to mean 5.10X10-1). The DCB
quantity, which you put into your lab notebook can be written in any of
the following ways:

(a) 0.510 mV
(b) 5.10X10 -1 mV
(c) 51.0X10-2 mV
(d) 510X10-3 mV

There is one main pitfall: Do not discard the terminal zero!
The following is the annotated program:

X register Y register 2 register
Preliminaries

1 f LBL C
2 f FIX 0
3 g TC >1

Handles the boundary condition where Tmight be < 0.
4 ENTER I >I

5 g ABS lil I
6 STO 1

7 ÷ Sign (>;)

8 STO 8
Formatting Wand standard error of the mean.

9 g s s

10 RCL 2 N s
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11 17 1171

12 + Std. error
13 STO 0
14 4 4 Std. error
15 x # y Std. error 4

16 g TEST 9 (x y)
17 GTO 0
18 T 4/std. error
19 g LOG log
20 1 1 log
21 + 1 + log
22 g INT exponent

23 10x factor
24 STO X 1
25 RCL X 0 std. error
Finding Range Index
26 f LBL 0
27 g LOG log std. error
28 2 2 log std. error
29 g LOG log 2 log std. error
30 + base 2 log of std. error
31 g INT Range Index
Rounding
32 1 1 RI

33 Adjusted RI
34 2 2 AR1

35 x ±g AR1 2

36 Yx AR
37 STO I
38 RCL 1 x AR
39 x (72 y AR >7

40 + Shrunk 5i-
41

42 5 .5 Shrunk 7
43 + Intermed
44 g INT RS

45 RCL I AR RS

46 X Rounded
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Binary Marker
47 RCL I AR
48 2 2
49 + Marker
50 + IDCBI
51 RCL 8 Sign (7)
52 X Voila!
53 g RTN

Rounded 7
AR

Rounded 7

I DCB I

HP15C Program for Decoding DCB.

Rounded 7

This second program translates DCB into plain English. Again, we will
give instructions on the use of the program before we actually list it.

A. Key in the integerized DCB mantissa (i.e. the mantissa with the
decimal point omitted, but understood to be between the first and
second digits).

B. Key in "1 D". The "D" is a mnemonic for "Decode", and is the name of
the program.

C. The integerized mantissa of the mean will appear in the display (X
register). The Y register will contain the estimated relative
uncertainty (estimated standard error of the mean divided by the
sample mean).

The resolution of DCB is such that the estimated relative
uncertainty in the Y register will not differ from the calculated
value of the relative uncertainty by more than a factor of If

1.414 (not to be confused with a confidence interval). If you want
to view more than one significant figure of the estimated relative
uncertainty, then you will need to key in "f PREFIX" (or fiddle with
"f FIX" or "f SCI").

The following is the actual program listing:

1 f LBL D
2 g x = 0 Avoiding an
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3 GTO 2 infinite loop.
4 1 CLEAR REG Initialization.
5 ENTER Handles any
6 g ABS DCB quantity
7 + even if
8 STO 8 it is less
9 g LST X than zero.

10 STO 0

11 f LBL 1

12 2 Is the
13 ÷ number
14 f FRAC divisible
15 g TEST 0 by 2?
16 GTO 2 If no, branch down.
17 1 Otherwise
18 STO + 1 increment counter
19 g LSTX and
20 GTO 1 loop back.
21 f LBL 2

22 2 No. of clean
23 RCL 1 divisions by 2 as
24 Yx exponent of 2.
25 STO 1
26 CHS Subtract out the
27 RCL + 0 binary marker.
28 RCL 1 Estimation
29 3 of the
30 2 standard
31 1/x error
32 1)i of the
33 ÷ mean.
34 x y 'mean in X register; estimated standard error in Y reg.
35 ÷ Estimated relative uncertainty (ERU)
36 g LST X 'meant in X register; ERU in Y register
37 RCL 8
38 X Mean in X register; estimated standard error in Y reg.
39 f FIX 0
40 g RTN



79

EIGHT CODE

THEORY

Eight Code is the most complicated and most efficient of the data
compaction methods in this study, although it is less forgiving and less
flexible than DCB. Before giving the Eight Code algorithm, we will
discuss the general principles of this technique. Even these may seem
bewildering at first. However the BASIC coding program occupies
about 1K of memory in an eight bit microcomputer (and about 120 bytes
in an HP15C scientific calculator). Therefore it is possible to make
practical use of the technique, if one has a good understanding of its
purpose.

Eight Code relies heavily on the modulo concept. "Q modulo N"
means: "Divide the quantity Q by N, and take the remainder." As the
name suggests, Eight Code uses "modulo 8".

In Eight Code, mantissa is also an important concept. The
mantissa of the Avogadro constant (6.022X1023 mol-1) is "6.022". At
times, we will find it convenient to think of mantissas as being
integers. For example, the integerized mantissa of the Avogadro
constant is "6022".

As with Linear Code, and especially with DCB, the numerical value
of the coded quantity will be fairly close to that of the actual
experimental result. However no information about the estimated
measurement uncertainty Urn is available unless one knows the coding
method (or has programmed it into his or her scientific calculator). In
order to obtain information about Urn from Eight Code, one must look at
the coded integerized mantissa, modulo 8, which we will call the mod
value.

In Linear Code, the final base 10 digit is the uncertainty code.
Similarly in DCB, the final binary "1" serves as the marker, or
uncertainty location bit. Both the uncertainty code (in Linear Code) and
the marker (in DCB) give information only about the estimated
measurement uncertainty (Urn). The efficiency and complexity of Eight
Code stem from the fact that the mod value has a two-fold purpose; it
gives information about Urn and about the measured quantity.
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There are eight integral mod values, corresponding to four
categories of uncertainty (on the last digit of the coded integerized
mantissa). Class 1, the category of highest uncertainty, corresponds
to a mod value of zero. Class 2, the second-highest uncertainty
category, corresponds to a mod value of 1. Mod values of two and three
correspond to Class 3, the third-highest uncertainty category.
Class 4, the category of lowest uncertainty, corresponds to mod
values 4 through 7.

Notice that it is possible to represent Class 4 (or Class 3) by more
than one mod value. The apparent redundancy of Eight Code allows the
measured quantity itself to have two extra binary digits for Class 4
uncertainties, and one extra for Class 3 uncertainties. The rationale
for doing this is the following general principle;

The smaller the relative uncertainty, the larger the number of
significant figures.

The Eight Code procedure is as follows;

1) Preliminary integerization. (This is exactly the same as Step 1 in
the Scientific DCB procedure given in a previous section.) Let M and
Um represent the absolute value of the mean of a series of
measurements (of the same parameter), and its estimated
measurement uncertainty (standard error of the mean), respectively.
(a) If Urn of M is less than 4, then multiply both M and Urn by 10.

Repeat as needed, until the Urn becomes > 4.
(b) Set a counter variable J (which is initially zero) equal to the

number of times (a) is repeated.
(c) If Urn > 40 then divide the base 10 quantity (and Urn) by 10.

Repeat as needed, until the Urn becomes < 40.
(d) Let J = -1 multiplied by the number of times (c) is repeated if

(a) does not apply.

2) Let AM = 10J times M. Round AM to the nearest multiple of 8. We
will call this result ARM (the Adjusted and Rounded Mantissa).

3) If adjusted Urn > 8 , then go to Step 4. Steps 3 to 5 do
(a) If 2 < AM-ARM then add 7 to ARM. the actual coding.
(b) If 0 < All-ARM < 2 then add 6 to ARM.
(c) If -2 < AM-ARM < 0 then add 5 to ARM.
(d) If AM-ARM < -2 then add 4 to ARM.
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4) If adjusted Urn > 16, then go to Step 5.
(a) If 0 < AM-ARM then add 3 to ARM.
(b) If AM ARM <0 then add 2 to ARM.

5) If 16 < Um < 25.3 then add 1 to ARM.
6) Bookkeeping. Take ARM and move the decimal point J places to the

left (or -J places to the right). Do not discard or add any terminal
zeros when moving the decimal point. If necessary, express in a
scientific-like notation. (This step is esentially the same as in the
DCB variations.)

In the next example, we will work through the Eight Code algorithm,
starting with the mean and standard error of the mean for a series of
hypothetical chemical measurements. We will also see that Eight Code
is not as forgiving as DCB.

Example. Mean = M = 11.3; Urn = 0.5
1) AM = 113; adjusted Urn = 5; J = 1

2) ARM = 112
3) Adjusted Urn < 8. Steps 4 and 5 do not apply.

(a) does not apply
(b) 0 < AM ARM = 113 112 = 1 < 2 Therefore we add 6 to ARM

and obtain 118. Substeps (c) and (d) do not apply.
6) Therefore the experimental result, expressed in Eight Code is 11.8.

If we had used DCB in the above example, instead of Eight Code, then
the coded result would have been "1 1.4 ". The ordinary number "11.4" is
closer to the original measurement. In general, the penalty for not
knowing the code is smaller for DCB, and smallest for Linear Code.

Example. M = 239 mV; Urn = 3 mV
The experimental result expressed in Eight Code is 239.2 mV.
Now we will work backwards; i.e. we will translate from Eight Code
into prose.
The coded integerized mantissa is 2392, and J = 1.
The ordinary number 2392 modulo 8 is zero.
Since the mod value is zero, Steps 3 to 5, which assign mod values 1-
7, and which cover the uncertainty range ±4 through ±25.3, do not
apply.
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This means that the uncertainty on the final "2" (in 239.2) is between
±25.3 and 40, by default.
Therefore the prose value is "239.2, with an estimated measurement
uncertainty between ±2.53 and ±4". (Remember that this is not a
confidence interval.)

As an exercise, it might be helpful to work backwards through the first
example.

We will see that Eight Code is slightly more cost-effective than
Scientific DCB. In comparing the economics of the two techniques, we
will emphasize two elementsdigital cost and uncertainty resolution.

Step 1 is identical for both techniques. This integerization step
determines digital cost. Therefore the digital costs of Eight Code and
Scientific DCB are the same.

The uncertainty resolution of Eight Code is slightly better than that
of Scientific DCB. In Scientific DCB, the estimated measurement
uncertainty (Urn) can be located within a two-fold range, except when
the binary marker is in the eights' place, in which case Urn is pinned
down within a 40/32 = 1.25-fold range.

We could have defined Eight Code such that the specificity for the
uncertainty would be identical to that of Scientific DCB, by changing
the second magic number in Step 5 of the Eight Code procedure from
25.3 to 32. However it is more efficient to have the non-two-fold
range divvied up evenly between two uncertainty categories. (This
results in two 1.58-fold ranges, and two two-fold ranges.) Thus Eight
Code has a slight edge over Scientific DCB, in terms of efficiency.

All things considered, DCB is a better technique than Eight Code.
Eight Code is slightly more efficient, but DCB is more forgiving, more
flexible, and simpler than Eight Code. In hindsight, the real
significance of Eight Code is as a prototype for future techniques,
which are beyond the scope of the present research.
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EXPERIMENTAL AND RESULTS SECTION

The efficacy of Eight Code was tested in an experiment, in which an
AIM 65 microcomputer was interfaced through an in-house, analog-to-
digital converter* to the output of a Perkin-Elmer LC-55 single beam
spectrophotometer. As in the DCB experiment, measurements were
simulated by twiddling the adjustment knobs.

The BASIC interfacing and coding program was well within the AIM's
4K of memory. The interfacing part of the program was a built upon
the skeleton of a program called "DVM", courtesy of Michael Schuyler.
(See the Appendix chapter.)

The BCD (not DCB!) signal from the A-to-D converter was outputted
to the microcomputer. The BASIC program took a series of
measurements, and combined the mean and its standard error into a
single Eight Code quantity. The computation time was only a few
seconds in each case. On the whole, Eight Code and DCB were equally
easy to implement. The experimental results were printed out on
computer tapes, and copies of these tapes are listed in the Appendix
chapter. The Appendix chapter also contains Eight Code programs for
the HP15C scientific calculator.

The analog-to-digital converter was part of an assembly, called an
"AIM box", which was supplied, courtesy of Michael Schuyler.
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QUEST I ONA I RE

OREGON STATE UNIVERSITY

CHEMISTRY DEPARTMENT

CORVALLIS, OREGON

(503) 754-2081

To; Faculty
From; Stephen Hawkes
Subject; Significant Figure Survey

Date; March 7, 1983

To help us with a paper for J. Chem. Educ. would you please circle
what you consider the correct answer to the following question;

Problem; Round the answer to the multiplication
1.43 X 4.098 = 5.86014 to the correct number of significant figures.

(a) 6 (b) 5.9 (c) 5.86

(d) 5.860 (e) 5.8601

(f) The question has no unique answer (Explain);
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EIGHT CODE PROGRAMS FOR THE HP I5C SCIENTIFIC
CALCULATOR

The instructions for using these programs are very similar to those for
the DCB routines, and do not need to be repeated in great detail.

Eight Code Mantissa Translation Program.

1 f LBL D
2 f FIX 0
3 f CLEAR REG

Handling boundary condition where the sign is negative
4 ENTER
5 g ABS
6 ÷
7 STO 3
8 g LST X
9 STO 0 Re-coded mantissa

Calculation raw mod value.
10 8
11 -
12 f FRAC
13 8
14 X
Misc.
15 ST0-0 Roo- rounded value
16 g ABS
17 STO I R14 -mod value

18 GTO I Go to part of program, corresponding to mod value.
Mod value = 0; category of highest uncertainty.
19 f LBL 0
20 6
21 .

22 5
23 STO 1
24 3
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25 STO 2
26 GTO 8
Mod value = 1; second-highest uncertainty category.
27 f LBL 1
28 7
29 .

30 5
31 STO 1
32 1

33 STO 2
34 GTO 8
Mod value = 2
35 f LBL 2
36 2
37 ST0-0
38 GTO 9
Mod value = 3
39 f LBL 3
40 2
41 ST0+0
Third-highest uncertainty category.
42 f LBL 9
43 7
44 STO 1
45 GTO 8
Mod value = 4
46 f LBL 4
47 3
48 ST0-0
49 GTO .0
Mod value = 5
50 f LBL 5
51 1

52 ST0-0
53 GTO .0
Mod value = 6
54 f LBL 6
55 1

56 ST0+0
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57 GTO .0
Mod value = 7
58 f LBL 7
59 3
60 ST0+0
Category of lowest uncertainty.
61 f LBL .0
62 5
63 STO 1
Uncertainty Calculation

X Register Y Register Z Register T Register
64 f LBL 8
65 2 2

66 RCL I R1 2

67 2 2 R1 2
68 ÷ R1/2 2

69 Yx 2R1/2

70 5 5 2R1/2

71 RCL 2 R2 5

72 4 4 R2

73 ÷ R2/4 5

74 yx 5R2/4 2R112

75 X Product
76 RCL 0 171 Unc
77 ÷ Unc/171
78 g LST X 11 Rel unc
79 RCL 3 Sign WI
80 X 7 Rel unc
81 g RTN

2R1/2

5

2R1/2

Unc/W

2131/2

The mean is in the X register, and the estimated relative uncertainty is
in the Y register.
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Eight Code Formatting Program

1 f LBL C N

Preliminaries
2 g 7 7
3 STO 1 Register 1 contains the mean.
4 1 1 >7-

5 STO 1

6 0 0 1 W

7 STO 8
Calculate the standard error of the mean and store in Register 0.

8 g s s

9 RCL 2 N s

10 sicZ //71 s

11 + s/A1-
12 STO 0

If unc < 4 then scale up.
13 4 4 s//171
14 xr2y s//171 4

15 g TEST 9 (x > y)
16 GTO .1
17 + 41-N7s
18 g LOG log 41-NT/s

19 1 1 log 4A-1/s
20 + Sum

21 g INT INT (sum)
22 STO-5 Scale count

23 10x Scale factor
24 STO X 0
25 STO X 1
26 GTO .2

If unc > 40 then scale down.
27 f LBL .1 s/51- 4 0

28 4
29 0 40 s/F1 4

30 g TEST 7 (x>y)
31 GTO .2
32 + s/4051 4 0



33 g LOG log s/40//71 4 0

34 1 1 log s/40,i-N-

35 + Sum
36 g INT INT (Sum)

37 CHS -INT (Sum)

38 STO-8 Scale count

39 10x Scale factor

40 STO X 0

41 STO X 1

Misc.

42 f LBL .2

43 g

44 ENTER

45 g ABS

46 ÷

47 STO I

48 g LST X

49 STO 1 Register 1 contains the mean.

50 RCL 8 Scale count

51 CHS -scale count

52 10x 10-SC

Round to the nearest 8.

53 RCL X 1

54 ENTER

55 ENTER

56 8

57 ÷
58

59 5

60 +

61 g INT

62 8

10-SC )-T

10-SC 7

10-SC

8

10-SC 7/8

.5

Sum

Trunc

8

63 X 8 Trunc

10-SC )1-

10-5C )7

10-5C )7

10-5C )7

10-5C )7

10-5C )7

10-SC 7/8 10-SC

10-SC )T

10-SC )T

Trunc 10-5C )T

10-SC

90

64 STO 9 Register 9 contains the rounded adjusted >T.

How close is the rounding?

65 Difference

66 STO .0 Register .0 contains the rounding loss(+) or gain(-).
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If Urn > 8 then skip ahead to the next higher uncertainty category.
67 RCL 0 Unc Dif
68 8 8 Unc Dif
69 gxy
70 GTO .3

Find correct add-on component (mod value) in the smallest uncertainty
category.

71 RCL .0 Dif 8 Unc Dif
72 2 2 Dif 8 Unc
73 MB A If yes then use (incrementing) Subroutine A.
74 CHS -2 Dif
75 GSB A
76 2 4 -2 Dif
77 ST0+9

If Unc > 16 then jump ahead to next higher uncertainty category.
78 f LBL .3
79 RCL 0 Unc
80 1

81 6 16 Unc
82 gx5_y
83 GTO .4

Find code for the two smallest uncertainty categories.
84 RCL .0 Dif 16

85 0 0 Dif
86 GSB A
87 1

88 ST0+9



Find code for the two largest uncertainty categories.
89
90
91

92
93
94
95
96
97
98
99

100

f LBL .4
2

5

3

RCL 0

GSB A
RCL 8

RCL 9
RCL X I
f FIX 0
g RTN

25.3
Unc 25.3

Subroutine A.
101

102

103

104
105

106
107

f LBL A
g TEST 7
g RTN

1

ST0+9
RI
g RTN

92

Increment add-on counter if x < y.
n (or Unc) Dif (or 25.3)
Is Dif (or 25.3) < n (or Unc)?
If yes, then return to calling program. Otherwise...

The integerized Eight Code mantissa is in the X register, and the ten's
exponent is in the Y register.
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COMPUTER TAPES

Computer tapes for the DCB experiment'are listed below. Included are
1) the experimental results for two runs
2) the BASIC program for interfacing the digital output of an Orion

701A lonalyzer with an AIM 65 microcomputer, and for expressing
the mean and its standard error of a series of pH measurements as a
single DCB-number

3) an assembly language subroutine for reproducibly recognizing when
practical equilibrium has been attained (on the next page).

LT:77

= _

= :=

=oo
21e =

f.E

290
CinTC,

Ile

420 727".=2..

:5
240

7J,==-1-25.4
IN7,-TT

470 7:i=7
+HP
440 .F_-S7,R.DAT

250 := OCTC:0
40 1-..7=7F-17.)
470 FF7,7

2E0
270 --=:=
280 ==.L

blackp
Text Box
Best scan available for p.93-98.  Original is faded.
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_-=
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OFFF
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5§3 GF 26
:==

f-7'7

= JEER

52 .5R ;_TFC
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078= 22 32@ =_="cD
@F)2 3T5 DFFE
OF 3= -,_ 252 +30
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075E "": 225 @088
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C2T=Ft= 32 5T® CFFE
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BFBA 32 =--
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07B:- DS 1z2
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e=BE =-3
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The next 1.6 pages are a listing of the BASIC program for
interfacing a Perkin-Elmer LC-55 spectrophotometer with an AIM 65
microcomputer, and for expressing the mean and its standard error for
a series of measurements into a single Eight Code number. After that
the results for several runs of the Eight Code experiment are listed.
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