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ABSTRACT 

The first part of the paper is devoted to the obtain- 
Ing of convergent power series solutions and the determina- 
tion of certain properties of these solutions. In particu- 
lar, properties are discussed relative to the number of ze- 
ros of. a solution and the distances between successive ze- 
ros. The relationships of orthogonality of two different 
solutions are shown. Since it is difficult to vrite down a 
general term for the power series, the equation is trans- 
foried into one which gives rise to a series with simpler 
coefficients. In addition, the relation of the Weber equa- 
tion to (1) is shovm. 

Beginning with Chapter VII the discussion centers on 
solutions of (1) asymptotic ink. The theorem of Trjitzin- 
s,çy :is apilied to show the asimptotic character of the 
formal solutions. In Chapter VIII the solutions asymptot- 
ic in the parameter are obtained by applying the method and 
existence theorem given by Birkhoff. In both cases, solu- 
tians are obtained which are best suited for calculation. 

The last Chapter deals with the behavior of the coef- 
ficients of a solution due to Stokes' phenomenon. In the 
case of solutions aspiptobic in 'i,explicit formulas are 
given for the calculation of the coefficients. 
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A STUDY OF TEE DIFFERENTIAL EQJJATION 

o 
c:1 

I. IbTiODUC ILION 

This paper is s stu.dr of tine differential equation 
:7 

(1) LÇ+ 

The first part of the paper is devoted to the ob- 

taining of convergent power series solutions and the de- 

termination of certain properties of these solutions. 

In particular, properties are discussed relative to the 

number of zeros of a solution and the distsnces between 

successive zeros. The relationships of orthogonality 

of two different solutions are shown. Since it is diffi- 

cult to write down a general term for the power series, 

the equation is transformed into one which gives rise to 

a series with simpler coefficients. In addition, the re- 

lation of the Weber equation to (1) is shown. 

Beginning with Chapter VII the discussion centers on 

solutions of (1) asymptotic in and particular stress 

is given to obtaining real solutions for practical comp- 

utation. The theorem of Trjitzinsky is applied to show 

the asmptotic character of the formal solutions. 

In Chapter VIII the solutions asymptotic in the par- 

ameter m are obtained by applying the method and. exist- 

ence theorem given by Birkhoff. Here again solutions are 

obtained which are best suited for calculation. 
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In Chapter IX the behavior of the coefficients of a 

solution due to Stokes' phenomena is discussed. In the 

case of solutions asymptotic in hi , explicit formulas 

are iven for calculation of the coefficients. 
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II. EXISTFICE OF A SOLUTION OF 

(1) + (+ f) i = 

Consider the general homogeneous linear differential 

equation of the second order 
ft f 

(l-a) W p," P2'' 

in which the coefficients p, and are regular through- 

out the finite plane. Eere '.) is a function of the com- 

plex variable . It is shown by a general existence 

theorem* that (l-a) admits one and only one analytic sol- 

ution of form 

w i'0 -t-$, ti+ ..... 
which with its first derivative takes on assigned values 

at o . This solution is valid over the entire finite 

plane. 

Equation (1) satisfies the conditions necessary in 

the type form (l-a). Therefore we may assert (1) has a 

solution of the forni 

w C0i- C,. C- ..... 
We shall next dterriine thi coefficients of this series. 

*Pierpont, James, Functions of a Complex Variable, p. 

459, Gum and Co., 1914 



Then 

III. TETE SOLUTIOI OF (1) BY iEAIS OF A POWER SERIES. 

Assume the solution 

w=C0tC,tC,,2 * 

3çaz 

-- C- 'ÇA.... -1)C1 
2 

If we substitute the foregoing expressions in (1) we have 

(C6+2C# ..... 

+(i)(ii)C ..... 
Next, the coefficients are equated to zero, ard this 
gives 

cow, 
cz z! 
C3: -C,b 

3! 

C. 
-mC C. 

¿-t2 

The last formula gives each coefficient in terms of 

the two preceding ones where C0 and C , are two arbitra- 

ry constants. Several of these coefficients have been 

computed and are given below. /-2\ C:c.-;i) o 

/m2-5\ i-) 

cg 

C 
' =(T7 Je 
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When these values for the coefficients are substibu- 

ted in the assumed power series solution, we have as the 

most general solution for finite values of 
k)z A.J 

-f- CJ 
o i where i 

w ) ___ ______ 
/ 4vi -t- 

O 

s- J 'o 

-. (LA1 /O %1 -+ ¿4L4w) 4 - 
/0/ 

7 4 
2 

+ 

f s 3 'I 

/1, ) +..---. - 



IV. PROPERTIES OF SOLUTIOIS OF (1) FOR REAL Z)C 

1. A solution of (1) has an infinite number of 

zeros. 

Proof: 

We shall consider the equation 

(2) 
0 

which has a solution 9% Csin (-&), where may 

be given any value. Since (1) has a solution which has a 

zero, let us choose at this value of r 

Now we multiply (1) by j ard (2) byy and subtract 

(2) from (i.). The result gives us 

9y'-.yj7"4. 
[(,*i'J-rJyf0 

Choose so that the expression in brackets is positive. 

Furthermore, pick the solution 9 such that '( & )y(a_. 

When the last equation is integrated between the limits 

and r , there results the expression 

vy'-yy:r# 
f((/?lZ)/7Jyjdx = o. 

Assume 9 vanishes again first after & b 
; 
then this 

equation will be 

_yyJf1f(i21yj o. 

The signs of all tifle terms in the equation will be posi- 

tive. The situation is not possible. If y vanishes 

first, we have 
6 2 2 

yy ]#f[(øv)-n Jyjd 
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Here the signs are opposite, and the relation could be 

satisfied. Since (2) has an infinite number of zeros, 

the process might be continued an infinite number of 

times, thus showing (1) has an infinite nuiiber of zeros. 

2. The squares of the amplitudes between successive 

zeros of a solution of (1) are aiwsys decreasing. 

Proof: 

Lety be a solution of (1) and form the equation 

w = yv'+,1 

Then , i / 
-= 2. y y ± J -Y--i - ____ 

2 
F / =2j 

;;+ [y"+(w+)y} _-Y 
= :?:_$ y 

' 

2. (w4') 

When 2' 
is positive is always negative, and 'J is 

a decreasing function. Lety, , ¿=1,2,3, ----- , represent 

the amplitudes of the intervals, and let represent 

slopes at The slopes at i2. will be zero, and we have 

z 2. 'J:ti w etc. 
I Ji i 2. 

Since W decreas j > e t c 

and the proof is complete. 

3. The interrals between successive zeros of a solu- 

tion of (1) are continually decreasing. 

Proof: 



Assume a solution of equation (i) has successive 

zeros at and In (i) make the substitution 

TTon this new ec'atinn will become 
J2 

which, since J !J,a , may be viritten 

(1-b) Ç. + 
Equation (l-b) has a solution y which will have a zero 

at a-when the corresponding solution y of (1) has a zero 

at J We seek to show that j will vanish st before y 

Let us multiply (1) b ,9 and (l-b) bvj and sub- 

tract, The result gives us 

yN- jg"-f V-(' -'i) j yy -o. 
When we integrate this equation between the limits and 

3 we obtain the eouation 

+j_ 
As before in this process, if does not vanish before $ 

at the signs of the terms do not make the equation ros- 

sible. Ify does vanish before , the equation could be 

satisfied. Thus the interval a.. is shorter than 

which indicates that the next interval between theczeros 

of a solution j is shorter than the one before it. The 

process may be continued throughout all the intervals to 

show that they are continua].1r decreasing. 

4. If corresponding to two different values of 

there are two solutionsj andy of (1) both equal to 

zero at and , then 
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:i o 

From this it is seen that C at )Q when 
¿ 1,2,3, ----- . When tK., and 

From these resu] ts we sketch t3 
Y 

t 

- - 

We may no write 
a z 

L2 ()y = o 
¿ I 

(5) 

y Z Z 

6' 
L; -f (i-'.)y7 - 

O 

J 

Let us now multiply (5) b y ncl (6) by y and subtract 

(6) from (5). IÍ we. integrate the resulting equation be- 

twe en the limi ts O and we ob tain 
)1j/F 

' (K z Z I IiJzdt::O, - . -yjyx :10i0 
The first term of the last equation wil] be zero at these 

limits, and we have, 
X 2 Z 

t(& 
i T 

whe re 

y K) y(,K) J 
2 X, 
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V. SOLUTIONS OF TRANSFORID EUATION 

It is important for some purposes to obtain conver- 

gent solutions of (1) for which the general term can ex- 

plicitly be written. Since it is difficult to write a 

general term for the power series solutions obtained in 

the previous section it is desirable to transform the e- 

quation into one which will give rise to simpler series 

coefficients. 

Let a 

w= e y 
/ z 

I 
= e 

22. 
e 

With this transformation (1) becomes 

(7) v 4 v ' czK42 +)v0. 
Now to remove the term L4/} L 

?JE t*c 

For the equation (7) now becomes 
I, 

V -(-t-w)y 
We now assume a power series solution as before and have 

ç- 
v= / 

I ô 

I: 
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'I 
V 

Z 

Nhen these values are substituted in () there results 

2 
7-2 J- ç- r 

J>Z + (iv1)L ' 
Jz ..r, 

By collecting the coefficients of and equating t.o zero 

we have the recurrence formula 

_p.n-i (z-3) 
= 2 

- 

Since a., and are arbitrary constants we form now 

the two power series solutions which converge for all 

a1 // - -F 
Cw+z) (iv+.5j) + 

/ z. 

(w+ z)Cvtcj) (vvt1'h -3]Z )2v1 

J 2M'. 

- 

(-iY' (iwt3i)(wrt. 
(2r+1) 

The most general solution is now written 

\,a0v, a(V 
Two independent solutioìs of (1) may now be written 

2 

14» (t-t ) 

(8) 3 

u e. ) 

By a well known theorem on homogeneous linear differen- 

tial equations there exist solutions of (1) ), ( ) and 

Wz ( : ), real for real such that 
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w, (o) -_,' 

h./, '(o) a 

o 

/ 

Upon differentiation of equations (8) we find that 

Thus it is evident that and Li are identical with W, 

and "I , and, in spite of the complex apDearance, they give 

real values for real values of The general solution of 

(1) is 

au& 



VI. THE RELATION BETWEEN OUR EQUATION AND 

THE WEBER EQUATION 

In (1) make the substitution 

= L 

V 

We have now the equation 
2. U(±L )'/= 

1 where - - . This is the well known 1eber e- 

quation whose solutions are the Weber-Hermite parabolic 

cylinder functions.* It is obvious that real values for 

parameter (except rno ) and independent variable ïn our 

equation correspond to imaginary values in the Weber e- 

quation. 

*WEittaker and Watson, iviodern Analysis, Cambridge 
University Press, 1933, p.347 16.5 
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VII. THE SOLUTIONS OF (1) ASYMPTOTIC IN IE 

C OMPLEX VARIABLE 

A. Introduction 

It is often desirable to have solutions of equations 

such as (1) which are practical to use for large numeri- 

cal values of the independent variable. In order to em- 

phasize that the Independent variable is now complex we 

denote it by the letter . It is shown by Fabry* that 

for (i) there exists a full set** of formal solutions. 

These solutions have been proved to be asymptotic under 

certain restrictions.*** The formal solutions are of the 

C () 4 
form 3 e ¿42 

where Q. ( - ) is a polynomial of form 

Q() ¿ 

s1(.)=/:;I_'+ Lf...., 

and4 Is a constant. 

In general the series 'J ( ) do not terminate and 

do not converge. Trjitzinsky**** has shown that these 

formal solutions are asymptotic expansions of true solu- 

tions and has determned their validity. 
*MSE. Fabry, These, University of Paris, 1685 
**Ijere "full set" means two formal solutions such that 

the Wronkian formed from their formal derivatives does not 
vanish. 

***'V.J. Trjitzinsky, Acta Mathematics, vol.62: 1-2 
1933, pp.167-226 

****W.J. Trjitzinsky, lac. cit.. 
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We shall proceed by assuming the above solutions and 

determining their unknown coefficients. Then the exist- 

ence of true solutions asymptotic to the formal solutions 

and the regions in which the asymptotic developments are 

valid will be considered. 

B. The formal series solutions of (1) in descending pow- 

ers of. 

Assume a solution 
-t P() 

5(a) e vL) 
(9) 

- e (zj* ..... 

where/s , r- ,v , a.., ------------------- are constants 
to be determined. We shall find first the particular sol- 

utions for which a .,, 
,4 - ra ç 

C ¿ ' 
J-J. 

Dïfferentiating, we get 

4,,7 4Ò".* Z +e 7 ('-;)Z 
.7 

i,- iZr Ç z-j z-7-' 
e L ( + - e L t -j)a. 

.7 7 7' 

-3- 

E-II, /3;+)' 2-r 
C (v- v)e ¿ . + . ) 

o- 
4-J 4.-J-I 

i- e ¿ L 2(3 (4. i) a -J)z J 
.7 



m

t>± +r*

+e Z- L^-J) U-/-/J <%*" J

T- e

7= o

The above values may be substituted in (l) and we have

(10)

Equating the coefficients of Q £ to zero we

find
K, = yV + Z

K, = a- -/

.♦mi __/,

-«-These are corresponding notations, that is, when
/% 9 +1 , yv= + 2ii -J~ etc..



To determine the coefficients, , ci ,a-3, -, the most 

efficient procedure is to derive a recurrence formula. 
P(s) '-' 

This is done below. If the coefficient of e in 

(10) is equated to zero, we have 

Ì3a (,-*,) 
.2. a,ì' (iv-de) + i o. 

Solving this equation fora-,we have 
- - - .zi (2,V_i#/)+Pn 

which gives an expression for the value of each coeffi- 

cient in terms of a preceding one. 

When the values of 4' and ¡9 are substituted in (9) 

the equation may further be reduced to 

(fl) a1 
± 2it 

Since we have shown ô it follows that all 
with odd subscripts will be zero, since for these by (1l) 

will always appear as a factor in the recurrence formula. 

The coefficients ç, a.1 ----, may now be calculated. 

A few of these are given below: 

2 

'i 

-3Z 

ä 

±3S41i 
(12) 

. ............................. 
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I' - ±ni[t(2_4)iJ[±(z1-8)2J.. 4i 

\1vhen the values of these coefficients are substitu- 

ted back in (9) there results the following expression 

for S 
Z 

r 
Q, z 

(/#-+.t+ ..-«), J /2 

where the value of is given by the formu1 (12) for 

For J, , the upper sign of the symbol ( ± ) is 

to be used in both (12) and (13), and for J Z , the 

lower sign. Since the above gives two distinct formal 

solutions we may write them as 
.* . 

S,: ..... ) 
14 P.iL j ¿z 

( 14) 
2 

- 

-!L, 
= e : 

If and w are real it is desirable to change the 

form of these expressions as follows: For real 

arge = IT1 Ko±f ±2 ..... 
, ) ) I 

Now . ±jL +JI ±jk1 r 
.j 

e =e1e 
) 

i r' è 

taraL ±j(+1oaII) 
=e e 

. ? pi 
tz(--+T mii) .L 

Ce II 
I- 
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It is possible to separate the real and imaginary parts of 

the last expression by writing 
i.LJ. 

e Ctieos)t(--4-. 1oIî]4 ¿ 

2 

The equations (14) may now be written for real v and. Z as 

S 
sIol)] [v] 

r ¡' (f 
L-ai Leo 

+Tk11)] [V()] 

where the constant factor introduced by the multivalued- 

ness of log has been dropped. 

By a linear combination of and we may obtain 

formal solutions free from 2 Thus if we denote by 

the leading term of , (set 1E / ) 

s 
SS 

" 
t -%f 's-r 

(15) 
-s - 

z 
ii 

When all the terms of V. ( -) are considered these corn- 

binations will still be free from ¿ . We then call Ç, and 

e-,- the complete formal solutions defined analogously to 

(15) 

Let r 

? L-r- 
jocJal 
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We then get the following: 

C r_____________ -I 

II (os p+L' Sirt 

-4sinp 
C_,:: 

For most practical purposes when and w are real these 

last formulas are better suited for computation since they 

involve only real quantities. The most general formal sol- 

ubjon for real - and vn cen hence be written 

() C, C-, (z) -+ C GL. 
C. Existence and validity of asymptotic solutions. 

Consider the formal solutions just derived 

s e ;z-'( ...... 

S 2. 
z 2. 

= 
2 (1* ..... ) 

j2L -f wi_j_ where Q: - , 
:i: ' 

and - 

2. 

In order to apply the theory of Trjitzinsky it is nec- 

essary to consider regions R. * bounded by Q-curves which 
¿ 

are defined as follows: 

Q-curve is one on which 

c' [Q(:)J 20 
where Q - ¿,.7 / 2, ¡ 

and Li) represents the real part of (*-). 

Trjitzinsky, bc. cit., p.171 2 



Now 

Let 

then 

jz 

Finally I Qi 

GLJ cr2J 

4 

#1(: 

- y 
- Zi 

oe {ìJ-z'xy 
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We must now consider along what curves the equation 

O is satisfied. These are obviously the axes 'Q 
and y o . These are hence our Q-curves, and they divide 

the -plane into four reFions K. as shown in the dia- 

gram. They are closed along the Q-curves but open at 

X 

Trjitzinsky states further** that we must take into 

account the possibility of a repion R. where one of the 

differences Q ( ) - Q7( ) has a non negative real 

part and is such th:t for some 0 

[Qiy (t)) 
(16) t e ,- ° 

as along both boundsries of K. 

*The . heie is, of course, not to be confused with the 
. of equation (1). 

**Trjitzinsky, bc. cit., p.180 
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We note that in every one of the four regions 

bounded by our Q-curves there will be at least one differ- 

ence Q1 -Qy wbic has a non negative rea1 part. In fact, 

for the entire plane we have the following: In both R, 

and R.3 is negative and[Qz,] is positive. In 

both R and R , is positive aridCQj is negative. 

Specifically then, we must consider the possibility 

of relation (16) for 

in and R.3 

- in R.and R4, 

and henceforth in referring back to the relation (16) it 

will be understood that in any region we are consider- 

ing it only for the mentioned above. 

In the regions 
, 

R3 the left member of (16) is 

(16-a) iI e ' 

and in the regions R., , R4it is 
/3 

(16-b) lI e 

Evidently these expressions approach zero along both 

bourdaries of their respective regions, 1C0 ory= o 

When this happens along both boundaries of it is 

necessary to subdivide into two subregions R. , 

each with one boundary in common with R and another 

boundary dividinR fromR and interior to j such that 

along it all the left members of (16) increase indefinite- 

ly for every ( > O. 
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Take the 45 lines for such boundaries interior to 

We have the following, configuration: 

A1 
»4. 

/ 

\ 
X '' 

/ s' 

s' 

4," "Aq 

Along the new boundaries OA, consider the appro- 

priate left members of (16). From (16-a) and (16-b) we 

see these are in every case 
.,4 2IyI 

i e 
Along the new bounderies this becomes 

-4 
I e . 

Now along any of these lines IM e increases indef- 

-, 
initely since in the limit is negligible compared 

Iz, I 

to . Since the conditions are satisfied along these 

boundaries we now have the regions tZ divided into subre- 

gions as shown in the diagram. ¿ 1,2,3,4, J 1,2, 

I 

,A. 

\ZS fi,' 

\ / I' 

Rs' // \ 

/ 
/?3e R,, 

/ 

113 
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Frani the fundamental existence theorem given by 

Trjitzinsky we may now state the following: 

In any region i = l,2,5,4, J 1,2, true solu- 

tions.tJ, ,JJ2. of the equation (1) exist such that 

%%f ''1.S 
¡7 ii y 

¿J2 2) ¿f2. a 

for all values of - in R1. . here indicates the series 

obtained by formally differentiating the series 

*Trjitzinsky, lac. cit., p.208 7 
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VIII. THE SOLUTIONS OF (1) ASYMPTOTIC IN THE 

P AR AME TER 

A. Introduction 

In a paper by Birkhoff* the asymptotic character of 

tl-ie solutions of 

I ___ + 
2 

( f) C___ .. 
-1 

(' o 

is discussed for large values of . The coefficients 

Z.. ( ,, ) are assumed to be analytic in the complex 

parameter,/ at,/7. o and to have derivatives of all ord- 

ers in the real variable in some interva1 

The equation (1) may be put into this type form by 

letting vYt . It then appears as 

(i') #z{/ ) o- 

For (it) the characteristic equation** defined in 

the paper becomes 
Q 1=0 

This equstion has the roots -i and ¿ which will be denot- 

ed by Q, and . It is convenient to postpone the dec- 

ision as to which Is 0<, and which is oÇ until later.*** 

Formal solutions of the form 
- -7 (r7) 

; e ';Lkir)P j i=z1 
*Transactions American Mathematical Society, vol.9, 

1908, T2l9-232 
**Trans. . Math. Soc., vol.9, 1908, p.220, equation 

4 0 

***Considered in part C, viii 



27 

are then shown to exist. 

B. The f ormsi solutions. 

To determine the (4,.( ï ) of (17) we assume that Ó2 

is a solution of (1'). Then 

cÇ: 
i1O JQ 

I, 

= e 
f4? 

7,iu,; (/* -J #1 

Jç, 

_J* 2 

/o 
e'141° 

1 :0 

When these values are substituted back in (li) we obtain 

the equation 

T Ç- -3tl 2Ç 
(18) e u1) L u1)f + L J = 

7=0 

('Q(.( 
,I. 

We now collect the coefficients of e Z in (18) 

for each 1<. 

t__110 ('.) o 

By integration 

1_1i0 ') C 

This constant C may be taken as 1 since it is arbitrary. 

The next equation becomes 
f, F 

L-ha + - 1. = 

where it is understood that the 's are functions ofi. 



r 

Since u. = O u. - i there results 
¿o 

Z - or 

Zf 2o( 

We take the constant of integration involved in the de- 

termination of u , , so that u (0) Ö. If we 

used any functions of,,- (,/ ), as constants of in- 

tegration we could obtain other asymptotic series which 

are less convenient. Likewise the process may be repeat- 

ed for other coefficients, but it is simpler to develop 

a recurrence formula. We have 
f 2 

-- + ,. u 
Z 

From this jr (u-Ft. )&:t, -I iv- 

or 
-X ìt Íu+ ' 

020&. 
i Ujg 

L 

By use of this formula a number of the coefficients have 

been obtained explicitly and are given below. 

/ 

3 

(19) '-4. 

2o( 3 

I lj 
uiz 

3 

-2) ?C-# /5 /z 
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4 j g #2 

(t-) r ___ ____ i 
L c 

s 3 7 II u1.,) -p-- 

3 /156 "/7ZIo 2.9i 

When these coefficients are substituted back in (17) 

z we have 

ó e 71J 
5. I ¿?,,( '21 ..... J. L-- «z 

The derivative series ' are of importance, and they 

may be expressed upon differentiation of 6. as follows: 
f 

6 = e ( 2± -- \ 
2 

a 

(47,)z(1+; .- . 1 
'a 

It is possible to make linear combinations of the 

formal solutions just obtained sueb that the new form will 

be real for real and '% . In the original equation (1) 

we must consider two oases. When .-, is real and posiLive 

// will be real, and we have 

w t:cosìz _ ¿ SiflÍQf.] [' uiJ (4)/::'l Jo I 

w2 : [cos,, 'i6 t ¿ sinfl] [ tA 
The following combinations 2ive the desired result. 

H: sin cos#o,j. 
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2'.*/5 
Z3,'3 

¿ - 
(20) 

H ;_Ws:: -t- - COS/.oI - _j;:P jfl1Q 

COS/07C+.] 

It is seen that in the solutions (20) the signs al- 

ternate in pairs, thus 

(20-a) 
H, 

H = 
z CO5f 

The coefficient of or -1,,..r - is the same as 

the term , except for the possible factor of (-1), of 

(19) with oÇ. replaced by unity. The ( ± ) signs can then 

be inserted from (20-a). Since these coefficients are ob- 

tamed from the recurrence formula we may write as many 

terms of (20) as needed. 

When is real and negative ç may be taken in the 

form (pl j , and the original formal solutions will be 

real for real vi and 

In this case we have 

's 
= e Zf+3*3[2l4Lt4 3) /.5_ /Z 

I 

C 
tel ((j+z4 -J.i;' {2ì 1- 1....). /- Iz_ 



C. Existence and validity of asymptotic solutions. 

For confined to the real axis we shall define the 

region S of the1 plane as one in which the indices i and 

2 may be so arranged that 

fora in 3 . Here fAA] represents the real part of 

the complex number..t 

Let -i and Q( ¿ . The corresponding re- 

gion S will then be one such that 

[(i 

Since1' is a complex parameter let 

f'- (+ ì71y 

where1r ande are real. We have 

or 

o. 

Thus the 5 corresponding to the above values of o( is 

the lower halt' of the complex ¡' plane. 

Now if we let 0< i and o = - ? and proceed similar- 

ly to determine the corresponding region .5 we find that 

this is the upper half of thee piane. 

It is now possible to define the region of the 

piane as that in which 

'b 
< 

, - , ,_ ,. . 
i ir arge (f;',.. 

,) -- 
-O 1 2 
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Let Xbe confined to a finite portion of the realaXis in- 

cluding the point ' O as interior point. Define this 

by _b= b . It is now possible to state the 

Theorern*- For , on ( -j , ) and. in there ex- 

ist true solutions, f. 
2 r 1,2, of the differential e- 

quation (1') such that 
o-r.' 

= 

/ F 

i'yi ( (4;((, ) e 

where 
-T 

= e L 
and theE s are bounded functions for 1age values of 

in and on the interval (-J,, j, ). 

*Birkhoff, bc. cit., p. 2e5, 22b 
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IX. ASYMPTOTIC CONNECTIONS 

A. Relations of coefficïents for solutions asymptotic ini. 

The formal solutions of form 

= e 
are not in general sinple valued due to the factor 

Anir true solution J is single valued since it is a linear 

combination of the single valued functions isJ, and vsJ dis- 

cussed in Chapter II. 

In order to consider the formal solutions, ,S. ( - ), 

as single valued we study them on the Riemann surface on 

which arg -- is single valued. This will consist of an in- 

finite number of sheets with branch point at the origin. 

The regions of validity are extended so that a diagram like 

that of page 24 is now visualized on each sheet of the Rie- 

mann surface. There will then be infinitely many regions 

R. numbered as follows 
. 1< .t:T 

R.1 (-')2 arg = 

t':; O, :t l,t2, - -ri- Íz (i-t)- arg.. 

First let us fix a particular solution f by means of 

boundary conditions. This is then a linear combination of 

any pair of true solutions,1, , and1W 

(21) w. C . W 
¿J ' ¿J. 

+ C zT Z 
. 
3. 2. 

From the fundamental theorem of jitzinsky we may also 

write W4SZ.lCIS,+jICLS 
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in 
¿7 1 

,7= 1,2, z O, i1,r2,± 3,..... 

Now the value of the formal solution 5. in eheet i 

of thé Riemann surface will not be the same as the value 

in sheet 2. Since W is single valued, it is therefore 

evident that the coefficients, C , must change some- 

where in sheet 1, and this fact is known as the Stokes' 

phenomenon. 

To study the changes in the coefficients we shall 

note what happens as * is taken across the boundaries OA,.: 

arg (k.- ) , 
&- O,± i,i 2,. ..., and theX andY 

axes. 

At this point it is convenient to define the follow- 

ing nomenclature: We shall say the formal solution c is 

"dominant" over the formal solution S,. , in the region 

if 
z 

CQJ in interior of R. 

We may without any resulting confusion apply the word. 

to the corresponding exponential factors in the 

sequel. From the relationships 

c{Ql sin2- -c[Q,}, 

where 8 arg we see that, in the regions 

3, is dominant if ¿ is even, 

dominant if ¿ is odd. 

Vve now proceed to study the behavior of the coeffi- 

cients,C , as a curve DA is crossed: 



On 
(-)T 

K. Z II 
(&i )-wi 

ii1e ' 

2 

Thus . ¿KI«l) (-i) 

Q 

In the limit Kodd inteey, e - o 
Qa. 

e C is dominant over . Likewise on OAK, 
a2. 

even integer, e is dominant over e 

Since the regions . 
are closed along their bound- 

aries, we may assert both the relations 

w ,C, S, -i-S C S 

w ,. C, S1 C S , 

along OA,, the common boundary of and R.. , . From 

the definition of an asymptotic expansion it follows that 

,,C, e' Cc ()J 
(23) 

,C, 

where all the - )- O as alongC)/, ,. 

Dividing both sides of (23) by e - and taking the lim- 

it as o° onOP, we have finally 

(Fc2. = 



$6 

Thus the coefficient of the dominant solution S1does not 

change in R,., . This proof may be extended to show that the 

coefficIent of the dominant solution does not change on any 

curve s 

If the coefficient of the dominant solution is equal 

to zero in. R. equation (23) becomes 

C e)) ,C, ( 

where the )( - )-' O as -I -along O. 
Dividing both sides bye and taking the limit as*-o- 

on we have 
IIC'1 /2, 

which shows that the coefficient of'the sub-dominant sol- 

ution does not change on 01A,. This result may be extend- 

ed, and we may say that in any region where the co- 

efficient of the dominant solution is equal to zero, the 

coefficient of the sub-dominant solution does not change 

on the curve 

We shall now determine whether or not the coeffIcIents 

C,_,charige on the boundaries of R.. . Consider the diagram 

ij 
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Here it will be necessary to discuss only the case when 

is taken across OYsince the behavior on the other axes 

is similar. We write 

+ C 5 n 
iz a i 

- z' c, s, + c s 

In other notation we have: 

(24) tj= 

(25) w 
where all s - O as -b 

+ C e 

I-, a2. 4 f 

on the line arg - 

On the boundaryO"( we may equate the two solutions 

(24) and (25) above since it is common to both andR 

also on this boundary LQ.,] '_EQ2] by the definition of 

a Q-curve. When we do this the result gives us the equa- 

tion 

(2e) fLCI ' 
e 

,v,t 

- 
z, 

¿t (J -\)) - - e 
Next, let us substitute the values of , and 4 

Here 4Lj 
I 

: (L 21 _4-A_ - 

= t 

Since is complex we n*y write 

-V--4 
I 

= -1-y -f- z rn, 
Now 

-I," 4ZPn . 

y $;= (lorIi+z 



.- 
-r1ogJ_ m% arg ¿(mioci _ wy arg) 

-e e 
OnÖ 

_wy1o(l ¿ w1og 
(27) K e 

-mY.-im arg. 
sincee Is a constant, K different 

from zero. 

When the value of " as given in (27) is substi- 

tuted in (26), that equation becomes 

(28) 
K e 

-i1og i' ¿(Pv%log I2i P az)[,:LC, 
f/-t-IZ)\,!()J 

,c,(if.t2A,(]+ Ç,*,., C))=a. 

The limit of equation (28) as ->v ive 

um r -v9.ogII i - 

(29) t-( Ke e 
where 

'.2. .. Z, i 

13 /2 - 

Now we desire to show that A=ß O. Consider Case 

I in which O. If rfl<. 0, (29) becomes In effect 

k.. oA -'- B = o. 

ThereforeA O and hence G O. If vv,> O, we have in 

effect 
K..O"+ 13=o, 

or O, and substituting this back in (29) we have also 

A o. 

In Case II, rrt>. O. Equation (29) becomes 

11m ã( loggaI-s.?) A8J°. 
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Now let us assume A= O, hen B O. If $ O, we have 

lin ¿(w loIzJ+.Z) 
I - 

but this equation is absurd since the left side represents 

a vector whose argument is increasing indefinitely. 

Thus it is shown thatA O and 3= o in each case 

and this gives 

c C 

r: 

on the Q-curve y . This same process may be aprlied to 

any Q-curve, and it ives the result that the coefficients 

do not change when - is taken across these boundaries. 

Let us now write the asymptotic solution simply 

k' -' -- CL S2 

We have just shown that as is taken around the origin 

neither coefficient can change on a Q-curve. Furthermore, 

the coefficient of the dominant solution will not change 

on any of the boundariesÖA. The coefficient of the sub- 

dominant solution may change on these boundaries unless 

the coefficient of the dominant solution is equal to zero, 

in which case it will not change. 

-In order to throw more light on the situation we en- 

close the Q-curves of our Riemann surface in small sectors 

or D-regions which may be defined as follows: 

(arg-?kh>O, 
Sheet i will then appear as in the figure where the D- 

regions are the shaded areas. 
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Y 

Aa ,A1 
t 

\ y' / ¡ / 

/ 
, '43 1< 

Let that part of the region R1. exclusive of the D-. 

regions be càlled the restricted region . Now it can 

be shown that in any restricted region jQ, tJ has the a- 

symptotic development 

where is the solution dominant in,andC o. 

Likewise if the coefficient of the dominant solution is 

equal to zero in we will have 

where 43 is the sub-dominant solution. 

It will here be noted that the location of curves 

where the sub-dominant coefficient changes is to a certain 

extent arbitrary. Any curve extending to owould evi- 

dently do equally well. 

On the Q-curve the two formal solutions become of e- 

qual importance and hence in a D-region it is necessary 

that we retain both terms, 

w ,- Q1 S'C S2 in D 

wiaereC, is the same as in the adjacent region in which 

SI is dominant and C±5 the same as in the adjacent 
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region in which 2 is dominant. 

If both coefficients C, and Ç should equal zero in 
1. 

: 

we have the trivial case 

w o. 
Sunmiarizing this analysis we have found the following 

situation: If we write simply 

AJ-'.' CIS4+ÇSL 
where '/ is any solution fixed by boundary conditions, then 

the only possible change of the constants,C is that C- can 

change on the lines which bisect the second and fourth 

quadrants, and C can change on the lines which bisect the 

first and third.* A constant can change on these lines 

only when the other constant is non-zero. If by some pro- 

cess like contour integration or the saddle point method 

certain minimum information could be found, this together 

with our anslysis of the change of the coefficients would 

unravel the complete story of the asymptotic form of the 

solution ''J over the whole -plane. The minimum informa- 

tian just mentioned is a know1edge of the leading term of 

the asymptotic expansion of the solution W on each of 

the lines OA , O, t 1, ± 2 , . . . . , and furthermore 

t} . is is known except for a constant factor. 

B. Connections for solutions asymptotic in the parameter rn. 
*The reader will recall that the location of these 

lines was somewhat arbitrary when we made the subdivisions 
of the regions R. to satisfy the requirements of Trjitzin- 
sky's existence theorem. Any curves extending to in the 

respective quadrants would do equally well, providing on 
the curve arg-1I'h-> O, that is, the subdividing 
curve has a different limiting direction from the bound- 

ing Q-curve. 
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From the general existence theorem of page 3,Z one 

would suppose that the coefficients of a general solution 

C, 1y. 

would depend upon 1' , and that these coefficients might 

change due to Stokes' phenomenon whent is taken into a 

different region 5'r It is desired to find the conriec- 

tion of these coefficients in the different regions, and 

if n terms are needed in the expansion we shall now show 

how to calculate the coefficients C (,t' 
) for the solu- 

tions 'øI« ( .% ,j ), K 1,2, principal* at the origin so 

that the asymptotic form of these solutions is known ex- 

plicitly to n terms. We indicate these solutions in the 

form 

(',y') = T C,(& e U,r() 
(3-r. ,QT j 

(30) I-fl-, 
CKZ e0(2'1L tA(() îz(,1 

J, 

where the 1sare bounded functions forp sufficiently 

large in S and 1G on (-ib , b ). The coefficients will 

be found in the form 

+ - - - - + 
C 

-r (#0) Ç + 
/ 

orr times this expression, where the C t ar'e determined 

explicitly and (," ) is bounded forp sufficiently large, 

This form, however, is sufficient since the may be 

*The solutions w and ti principal at the origin are 
such that : (o) o 

w11(o)ao 
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e 

absorbed in the of (30). 

Let n be one of the numbers 0,1,2,..... . However, 

after lt Is chosen it remains fixed In all further calcu- 

lations. Now by t..i2 ( ' , '' ) we shall denote the n-el terms 

= e 7 

From the general existence theorem of pae 3 we may now 

write the following: 
o(. 1'« - 

e ¡ (içe) - 
(31) 

/ e'E ('") 
= 

&- 

Here the E are bounded functions for1- in SD and on 

( -b , $ ). We may now write the principal solutions and 

thelr derivatives as follows: 

C 
(32) I 

I TC,fryI'?C(e)Ç, 
where 

(33) 

i(o)=J, )J/,J -o If 

By making use of (32) we write (33) in the following man- 

ner, remembering that tA (0) = 1 for all n, and ¿l,2: 

( 34) J (e) J ( i 
+ C ( E o p 2 ' T I -1-I J P I( Z 

oca r (e)u ,)+_L 
Jr 
+ 1C E (o 

1 
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Equation (34) gives us a system which may be solved for 

the C 's providing the characteristic determinant does 

not equal zero. In tbls case 

E6) : - LA1 (o ,o) * -;;-;. 
Here L4 (o,,' ) rÁ , , and oÇ- o O. Thus - O, and 

for,' sufficiently large, we may write the solutions for 

Ç,and These become the following: 

c'1 i(u2'(oP)+ 

(35) 

. 1C1Ço) OL 'C' 
I- 

¿::: 

At this point it will be noted from the series for 

and Ó. of Chapter VIII that (O, ,o ) is of the form 

= .i dAV 

and ) is of the forni 

¿ 

Thus the C 's of ($5) will take the forni 

(36) C('')..-. 
+, 

( ( -1- - -t-.. . + + rl 
or times such an expression, where the E- ts are bounded 

for large values of," . Now (36) by mere "long division" 

may be written in the form 

E - co+f, -7; ?' 
) 
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/ 
or times such an expression, where E is bounded, and 

the CtS are known explicitly. This is the procedure for 

calculation we set out to establish. 

Fronì the equation defining a region on page 3/ we 

may now take 7'O,2,4,..... as indicating the regions in 

which i and -j . Likewise ?. odd integer when 

o(--jando< . 

Now if the forms wand of (32) are calculated 

fore in a einiteS1 , say S0 , the resulting expressions 

are exactly the same for all regions since we have the 

following results: 

('y')] .+, C 

î C £u(x,t')\z '+I ClU 
' 

1U'(1(-'), 

D C. 1u:c;, Cgg Tfi(A1(1,Í7)], 

where the brackets denote that the remainder terms are o- 

mitted. 

Hence it is no longer necessary to affix the sub- 

script in the asymptotic formulas. We shall take.i 

and - in all Sr since it is shown there is no 

Stokes' phenomenon. 

The four còefficients of (35) have been calculated 
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for n4, and these are given below 

(' =1 \JII 1- + ;i 
(ti - / L Q -4- -a- 2 s 77) 

C -_L 7-..L -j---- 
a, 2 

4 * & fi.' I, 

2. f ,° L (_4. taj-), 

where the s are bounded functions f or on (-1 , 

The principal solutions (32) may now be expressed 

for n= 4 as follows: 

r,,".i.. 6 

w, L 3 J ) 
z 

+ 

I t z 
If.-:' j-- +(I L I 

/ 
z 

4L ¡ /2- - 

i 

+ () fo 'rJ 

Pi.% 2 s- 

e I - ,(?1 

t&I2 ;- L:t 3J4''1 

&j2I' _!_;7] -fa. 
J 

Ê3(içe) a 

7/ 
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