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ABSTRACT

The first part of the paper is devoted to the obtain=-
ing of convergent power series solutions and the determina=-
tion of certain properties of these solutions. In particu=-
lar, properties are discussed relative to the number of ze=-
ros of a solution and the distances between successive ze-
ros. The relationships of orthogonality of two different
solutions are shown. Since it is difficult to write down a
general term for the power series, the equation is trans-
formed into one which gives rise to a series with simpler
coefficients, In addition, the relation of the Weber equa-
tion to (1) is shown.

Beginning with Chapter VII the discussion centers on
solutions of (1) asymptotic in 2., The theorem of Trjitzin-
sky is applied to show the asymptotic character of the
formal solutions. In Chapter VIII the solutions asymptot-
ic in the parameter are obtalned by applying the method and
existence theorem given by Birkhoff. In both cases, solu-
tions are obtained which are best suited for calculation,

The last Chapter deals with the behavior of the coef-
ficients of a solution due to Stokes' phenomenon. In the
case of solutions asymptotic in m explicit formulas are
given for the calculation of the coefficients.
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A STUDY OF THE DIFFERENTIAL EQUATION
d*w

d &2*

I. INTRODUCTION

t(m+Z)w =0

This paper is a study of the differential equation
(1) “—53—:5—",_4- (m+2Dw =20

The first part of the paper is devoted to the ob-
taining of convergent power series solutions and the de-
termination of certain properties of these solutions.

In particular, properties are discussed relative to the
number of zeros of a solution and the distances between
successive zeros. The relationships of orthogenality

of two different solutions are shown. ©Since it is diffi-'
cult to write down a general term for the power series,
the equation is transformed into one which gives rise to
a series with simpler coefficients. In addition, the re-
lation of the Weber equation - to (1) is shown.

Beginning with Chapter VII the discussion centers on
solutions of (1) asymptotic in # , and particular stress
is given to obtaining real solutions for practical comp-
utation. The theorem of Trjitzinsky is applied to show
the asymptotic character of the formal solutions.

In Chapter VIII the solutions asymptotic in the par-
ameter m are obtained by applying the method and exist-
ence theorem given by Birkhoff. Here again solutions are

obtained which are best suited for calculation.
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In Chapter IX the behavior of the coefficients of a
solution due to Stokes! phenomena is discussed. In the
case of solutions asymptotic in m , explicit formulas

are given for calculation of the coefficients.



II. EXISTENCE OF A SOCLUTION OF
(1) wW”+(m+2")w =0

Consider the general homogeneous linear differential
equation of the second order
(1-a) w ”= Rw'* [
in which the coefficients p, and p, are regular through-
out the finite plane. Here w 1is a function of the com-
plex varieble # ., It is shown by a general existence
theorem#* that (l-a) admits one and only one analytic sol-
ution of form

w=5>,+bz 1-J7z£l+_bsis+ ..... ;
which with 1ts first derivative takes on assigned values
at 2 =20. This solution is valid over the entire finite
plane.,

Equation (1) satisfies the conditions necessary in
the type form (l-a). Therefore we may assert (1) hes =
solution of the form

werlix Cog el

We shall next determine the coefficients of this series.

¥Pierpont, James, Functions of a Complex Variable, p.
459, Ginn and Co., 1914




III. TEE SOLUTION OF (1) BY MEANS OF A POWER SERIES.

Assume the solution '
2 2
W= Cofclz- +C&-Z-+ ..... Cz.£.+ ..... "
Then :
2=~/
g C; + Z.C1£-4-3 (;-524- ..... + il # +.. .,

_d__ zC-&-gCi——l—-/Z.CZ.'._z(ZI)Ci 3
=

If we substitute the foregoing expressions in (1) we have
2

(Com+2C )+ ((CotmC)z+ (12C+ m C+C )2+ ..
+(z'+&)(z'+/) C’_.“7Eé+ mCz.£é+ Ql-_z‘lg'i—f-.._,, = o0

BRI

-
1

Next, the coefficients are equated to zero, and this

=y CL' % Cz'—z.
(+2) (2+¢)
The last formula gives each coefficient in terms of

K
|

i+2

the two preceding ones where (:o and
ry constants. ©Several of these coefficients have been

computed and are given below.
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When these values for the coefficients are substitu-

ted in the assumed power series solution, we have as the

most general solution for finlte values of
CW,+CW
where
= = 60
wo= /4 z—+ )z- m__’_‘é_m 444\1

(vn -/00 W|¢-144yn>£ 4 e
/0!

W, = £- %-234- (&"6;74)25; (m%.;‘m),_z7+ m"-é‘?&,ﬂf + 252)2.7

(’Ws~ Lho s 2024 2 .+ .....

T



IV. PROPERTIES OF SOLUTIONS OF (1) FOR REAL 2sX

1. A solution of (1) has an infinite number of
Zeros.
Proof s

We shall consider the equation
(2) yirintyieg

which has a solution e Csin n( X -a), where @& may

be given any value. Since (1) has a solution which has a

v

1

zero, let us choose a at this value of ¥ .

Now we multiply (1) by ¥y and (2) by y and subtract

(2) from (1). The result gives us

tive.

e

Choose M so that the expression in brackets is pos

il )
Furthermore, pick the solution Vv such that VY (a)=V(a).

B

When the last equation is integrated between the limits &

and ¥ , there results the expression
r x 5
—_ ) - P4 L 2 d =0.
W=yl i Retenan dyF da
AS$ume‘9 vanishes again first after a at b ; then this
equation will Dbe :
6 14
- 2 - o
o [[rex9niTygdx=e
a ("
The signs of all the terms in the equation will be posi-
Tive.  The sltuation 1s-not. possiblei  If )/ vanishes

first, we have

5/ Jie [lrssrofyyéu=o



Here the signs are opposite, and the relation could be
satisfied. Since (2) has an infinite number of zeros,
the process might be continued an infinite number of
times, thus showing (1) has an infinite number of zeros.

2. The squares of the amplitudes between successive
zeros of & solution of (1) are always decreasing.
Proof:

Let‘y be a solution ofl(l) and form the equation

2 ’

Then ;

w = z.yy + __;_i—l m+qc)
:“-2%;; [7"+ (wx+¢’)y] “‘(%,\%")‘

# 2

h

)
) )
?\

(V"‘+"1)l '

. : PR ! . g
When X 1s positive w 1s always negative, and W is

a decreasing function. Let‘y , ¢ =1,2,3,---~~ , represent

~,

the amplitudes of the intervals, and let )Q represent

slopes at 762' . The slopes at /)Cz- will be zero, and we have
2 2
i W = etc.
WI yl ) 2 yz

Since W decreases
by 2 2

b/ ->')(1 i etc.,

and the proof is complete.
3. The interwals between successive zeros of a solu=-

tion of (1) are continually decreasing.



\ssume a solution of equation (1) has successive
zeros at & and b . In (1) make the substitution

KXz 2~ a + b . Now this new equation will become
2
%_\1_ ¥ [m+(2+D- a.)]_y o

which, since dx = dz , may be written
24 A
(1-b) ﬁ; + [m+ (2 +:|—-a)]y g

Equation (1-b) has a solution 9 which will have a zero

at & when the corresponding solution y of (1) has a zero

at ‘.') . We seek to show that j will vanish atj) before >l
Let us multiply (1) by y and (1-b) byj and sub-

tract. The result gives us ;
Sy = 9 4 [-(x+D-a) 1 ¥y =

When we integrate thls equatlon between the limits @ and

.JD we obtain the equatlon
Sy lie Sl I (ko) Jyydxes,

As before in this process, ify does not vanish before b
at €ithe signs of the terms do not make the equation pos-
sible. Ifsl does vanish beforei , the equation could be
satisfied. Thus the interval a¢ 1is shorter than ad
which indicates that the next interval between theozeros
of a solution j is shorter than the one before it. The
process may be continued throug ghout all the intervals to
show that they are continually decreasing.

4, 1If corresponding to two different values of
there are two solutionsj’ and)l; of (1) both equal to

zero at & and_b , then
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Consider the equatio

(3) §i ”4.(w\ + o(z)y, =0

2
/

(4) )l;"-l—(w\:'+ q(z)yl =0

=
i

If we multiply (3) by y and (4) by j and subtract there
‘ o 2 5 4

results the egqaution
i q 2 2 2 2
Ay -y 4 (m )y - (Y Ym0,
When we integrate this expression between the limits & and
b we have
/
)5 M P
and Y, are

’]" +(mf—mf)ij.x= °.

a

different solutions with zeros at «

Now if Yy,




S
FProm these sults 5 2
¥
y@t)
t .
v(q
write
Y ¢
(5) v 0 i e
Z
‘y 14
2 z
W L ety oo
o
IC 1S 0O ma 1 1 (l‘\ ) _y.f ar ( \ yl al subtract
(6) from (5). If we integrate the resulting equation be-
tween the limits 0 1 K. we obtai:
JJ, : M, J e - o mrat) | oo
The f of 1 last eguastion 111 be zero at these
14 355

J;K{tz(a;+ a.;) —m}jiy, dt =0

Y (a:K)= y(a,K)=0, AT,
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It is important for some purposes to obtain conver-

gent solutions of (1) for which the general term can ex-

plicitly be written. Since it is difficult to write a

general term for the power series solutions obtained in

the previous section it is desirable to transform the e-
quation into one which will give rise to simpler series

coefficients.

Let 2

ke'y 1
\NI: c ; (V'+ Z|(24’)
2
KZ P 2R
ar e - [v +2KZv '+ Vv (zl(+4K.Z )],
With this transformation (1) becomes
Vi / 2 -2 ¢ X
A v+4,sz+(zK+4iKz—+M+i-)V:o.
Now to remove the term [4 K.z+/] 2% we take

4K+
Ko 2

the equation (7) now becomes

(o)

N‘r\,, b

o
o
3
X
n
N)

vt 2zizv +(E+m)y -,

We now assume a power series solution as before and have



o0
174 J-2
M- s ; T T d =
g
When these values are substituted i (3) there results

Z_ T(7-1) a 2 & +ZZZ_ A& +(z+m)Z Q-

T2
By collecting the coefficients of 2%% ang equating to zero

we have the recurrence formuls

i (2R=3)

. — Bk, Vo L I S RS ~ e Nl o N A e et
Since @ and @ are arbltrary constants we Iform now

. SN i sl e s T - G : . PV
the two power series solutions which converge I1or C b

. 2
i - mt2 (m+2) (m+53)
Vv=a, \/ E"@—z + oy A

(;/)n (m+) (87 ) ... . (W\tL‘/'V\-3]L)£2n+.....

2nl

vV = a, 2 - mg:rﬂ;z.‘;.r. (M+3i3_|(thi)£s;........

2

e e B Gt ) s o e [0 ){""4.....}
@n+0)!

The most general solution is now written

m

Two independent solutions of (1) may now be written

U
G @t Crrdtm . ..)
iz 3
s z
i'a CeF (el E e S0y
By a well known theorem on homogeneous linear differen-

tial equations there exist solutions of (1) W

w, (2 ), real for real Z such that
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WI (0)=I W‘(o) =0

\\/' (0):0 W"(o): /
Upon differentiation of equations (8) we find that

u, (0):/ : \4‘ (0):0

H"(o):a H; (o) = ¢,
Thus it is evident that {4, and U, are identical with w,
and W, , and, in spite of the complex appearance, they give

real values for real values of # . The general solution of

)18
\l\/:' a‘éul-'.a'iul
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VI. THE RELATION BETWEEN OUR EQUATION AND
THE WEBER EQUATION

In (1) make the substitution

.
NS e A

el VZz Ay
" We have now the equation

w”+(n+-,E—{F)w= 0
where n = Q%i -“f . This i1s the well known Weber e-
quation whose solutions are the Weber-Hermite parabolic
cylinder functions.¥* It is obvious that real values for
parémeter (except m=0) and independent variable in our

equation correspond to imeginary values in the Weber e-

guation.

%Whittaker and Watson, Modern Analysis, Cambridge
University Press, 1933, p.347 § 16.5
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VII. THE SOLUTIONS OF (1) ASYMPTOTIC IN THE

COMPLEX VARIABLE

A. Introduction

It is often desirable to have solutions of equations
such as (1) which are practical to use for large numeri-
cal values of the independent variable. In order to em-
phasize that the independent variable is now complex we
denote it by the letter Z . It is shown by Fabry#* that
for (1) there exists a full set##% of formal solutions.
These solutions have been proved to be asymptotic under

certain restrictions.##% The formal solutions are of the

£ @) 2, ‘
ke Se-"' S R k) =42

where Cké (2% ) is a polynomial of form

Q@ - 04*52+/? et

v () = A, +A"

&ndA,z. is a constant.

In general the series V; (% ) do not terminate and
do not converge. Trjitzinsky##¥% has shown that these
formal solutions are asymptotic expansions of true solu-

tions and has determined their validity.

#.E. Fabry, Thése, University of Paris, 1885

%xHere "full set" means two formal solutions such that
the Wrongkian formed from thelr formal derivatives does not
vanish.

##xW,J., Trjitzinsky, Acta hathematica v0l.62: 1=2
1933, pp 167-226

#%%%xW,J. Trjitzinsky, loc. cit..




proceed by assuming the above solutions and

. ' "

determining their unknown coefficlent

mptotic to the formal solutions
and the regions in which the asymptotic developments are
valid will be considered.

B. The formal series solutions of (1) in descending pow-

ers of 2,

| .
65
G
=
@
)
O
}_
o
v
(®)

where /S , 3=, A, &, , &, 5 Ayy==""y Xy, == are constants

19 1

to be determined. We shall find first the particular sol-

utions for which & =/,
Wl 4 o
».llt@ A;‘f ra e
) = e 2 @, 2
J=o

Differentiating, we get
_ i Ly

A2+ ra AT BReTR -7

Stzy= 282+ ¥)e az +€ _(2)az

T o J =

%l

o0
ﬂ2‘+ y2 A~T+! R =j r> 2% ¢ A-T=r
o, (zﬂa;z tayz +€ ;,._(4-:).«’,;

720

2+y2 ~T#s AT

" V] 2
5(2-) =(2/2+ )€ (2622  +a rz )

J 2o

A -~J-/

o
ﬁi'-‘ra’zZ 1-J
+e £ [252 (2-741) 2 + 2 y(r-7)2



%
Pz tr2

+e [ Castdfrir-) Gas 3

JT=o0
o

PTGl ) T

T=o

S '(Z) = s [_Z. (43" a 2 'm+4ﬁra.z- J’:,- y&fﬁ”’))
= R ~T-2
+ ] () (17-1) 2, 2
+ ) 2/, (ure)Z 4 qurle-2)2"""]
Tce

+; [24 A(e-7)2" Yra,y(r-1)2 caaid

PBEuTE

m+2?) S@)= e [Z (maz" )+Z.W- ey

The above values may be substituted in (1) and we have

Pce) 2 At2 z At -
e {(4/3+,>£ P @G hora)z™, [48%

2

(10)
N
+40ra, + zﬂ(/b+/)+.zﬂ4+m+a.zli‘+ ..... }=o,
Pl
Equating the coefficients of ; z to zero we
find .0
K= ~+2 ﬂ-?rzz‘
K = A+1 R s .
Sl
Kz ‘. A #e g T
% o' Ok~ a, =0

#These are corresponding

notations, that is,
i Z L et 3 & ete
N = +% Su=+ M6 L
BT (T

when

17
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To determine the coefficlentsa,, @, ,4,,----~ , the most

efficient procedure is to derive a recurrence formula.

P n-K
This is done below., If the coefficient of € 2 in

(10) is equated to zero, we have
28, (n-K+1) + (n-Kk#r1) (n-Kt2) @,

+t2a A(r-€)+ mZ, =0,

Solving this equation fora, we have

= ~(A-K i) —Kr 2D i K>
St 272 (2= 2L+ d+m o2

which gives an expression for the value of each coeffi-

cient in terms of a preceding one.
When the values of 4 and /2 are substituted in (9)

the equation may further be reduced to

O e e L e el Y
A 4 ZICi K-2

Since we have shown & =¢ it follows that all @ 's
with odd subscripts will be zero, since for these by (llﬁ%
will always appear as a factor in the recurrence formula,
The coefficients @ ,,a,,,,~---, may now be calculated.

A few of these are given below:

2 - Z2(3mi-3)(Fmi-r)

2 * 42
7 R ’f‘ (t'“i‘7)(tm2'—6')(tmi—~3)(tm.2—c)
4 32
I e 2 . . . .
a = P Eme-0n) Cani-d)Emi-1)Emi-5) Eme-3) (Eml -1
A - D(EmL-1)
T 3842

® & 2 5 ® 5 2 5 8 2 8 0 0 * B P O S s s e s e 6 NS e e e e



P ¥ (E i = [an-1]) (i -Lan -3]) - .- Emi-1)

" * 2ni [£(2n-4)i] Rzn-6)]-- - 24i

When the values of these coefficients are substitu-
ted back in (9) there results the following expression

for S gl iYs

2

tiz tmi _y
20 ok Ay %y,
sy Ymre s LOS T e T

where the value of &,, is given by the formula (12) for
a4, . For r=,, the upper sign of the symbol ( * ) is
to be used in both (12) and (13), and for J =2 , the
lower sign. Since the above gives two distinct formal
solutions we may write them as

S = ei;iliﬂ;.—{ (/+f%+%+--'-')
(14)

‘;— = 2 a’z .-
Sz et B - B

If 2 and m are real it is desirable to change the
form of these expressions as follows: For £ real
arg 2 = nTR K= %ij)tz’“.”

Now

L S ok tEEOV el e 4
€t GURE _

» £+ L 3 ; i) Farqz L
i(+% TmloglB) Em targ farqZ 3

e Iy 1ze )
T arq 2 ti(é:.‘,mlo IE') _}. -‘l_ccsi

S

3 C ti(5+2 Joqi2) .

A h 1Z]
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It is possible to separate the real and imaginary parts of

the last expression by writing
Tia> teal_ )

e ol :Clzlji{cos[t(—f;+-’f 1or3|&l)]+iSln[i'(%n%LogIZ‘l)]}

s 1 2 2
=Cy {Cos(é—i-—yfloslzl)i Zsim(E + 10 log |z\)} :
The equations (14) may now be written for real w and Z as

S = ix? [eos(E+ 2 Toglz)r i sin (Br 5 logia) ] [vs]

‘

51 = l—zli [eos (§+”~Q loﬂ 12| ) ~ 23in (33;4"-‘;'1 log lil)] [_v,‘ (i)} 3

where the constent factor introduced by the multivalued-
ness of log Z has been dropped.

By a linear combination of 3, and ‘Sz we may obtain

P

formal solutions free from ¢ . Thus if we denote by 5,.

the leading term of Ss , (set v, =/ E
G = .;t_s-&_
~

! f

12) > {COs (*{ +].,-,3 12| %)J ;

(15)

A

C; 5 éi;fgi lZl.i {3M\Cé:+']°g|2,2})}'

2

When all the terms of Vi(-éd are considered these com-
binations will still be free from ¢ . We then call c;.and
(}; the complete formal solutions defined analogously to
(15) .
Let

P [£ 4 loqlal™ ]



il
We then get the following:

(e <cos P+[£L§m_p;:‘;‘?m_€a§_2_+iﬂn-?]+..,.}

o

For most practic purposes when Z and m are real these
last formulas are better suited for computation since they
involve only real quantities. The most general formal sol-
ution for real % and m can hence be written
Citay « C Gl G (),
C. Existence and validity of asymptotic solutions.
Consider the formal solutions just derived

R 2
O e S 2

S % Ql(a) 4,
R el Y

- 2.3
P 1z" -22 m
where Q= == = = be s NS R G i
e S Qe s AERC e
In order to apply the theory of Trjitzinsky it is nec-
essary to consider regions RT % bounded by Q-curves which

are defined as follows:

A Q-curve is one on which

(23 [G;LT<£)_]J=O
Q-Q,, 7= 42 24T

where

Q;
amioeﬂf(z)l%presents the real part
TrjitaInsky, loc. cit., p.171 § 2




22

Now % [Qm] 2 K [z'éz]

. +
Let 2= oA + z.y )

then Z= A - yl+ 21 g
28 z'(qc‘*r)f.)-zch
Finally K (Q.l= -& [Qu] = R [2'*1] AT

We must now consider along what curves the equation
2¢y= 0 is satisfied. These are obviously the axes X =0
and y=o. These are hence our Q-curves, and they divide
the #Z -plane into four regions Ki as shown in the dia-

gram., They are closed along i;'he Q-curves but open at == ,

23 El

W

Ry Ry

Trjitzinsky states further## that we must take into
account the possibility of a region Rz- where one of the
differences Qz- (2 ) —QI(i'- ) has a non negative real
part and is such that for some 3 > ©

-3 Ry (2]
(16) Bl e R

8s # —>eo along both boundaries of K. .

#The £ here is, of course, not to be confused with the
AL of equation (1).
##Trjitzinsky, loc. cit., p».180
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We note that in every one of the four regions R’i
bounded by our Q-curves there will be at least one differ-
ence Qi ‘Qr which has a non negative real part. In fact,
for the entire plane we have the following: In both R,
and R’3 ,%[Qa] is negative andf[@z,] is positive. In
voth R, anda R, , KIQ,, ) is positive and @[Q] is negative.,
Specificelly then, we must consider the possibility

of relation (16) for

RlQ,] = 2»y inR, ena K
@[Q’l]

and henceforth in referring back to the relation (16) it

-2y 1in R_zand R4,

will be understood that in any region we are consider-

ing it only for the Qu— mentioned above.

In the regions R, § Rs the left member of (16) is
(16-8) 'Z.'-/Se 2%y :
and in the regiomns R,_ ’ R,; it is
(16-D) P st oy
Evidently these expressions approach zero along both
boundaries of their respective regions, X =o0 or y=0 .
When this happens along both boundaries of Ri it is
necessary to subdivide Rz' into two subregions R’i’ s R’z‘ g
each with one boundary in common with Rz- and another
boundary dividing Rz-l from Ri ”and interior to Rz- such that

elong it all the left members of (16) increase indefinite-

1y for every/Z >o0.



o)
Take the 45

lines for such boundaries interior

24

maﬂ

We have the following configuration:

Along the new boundaries (>/\i’ consider the appro-

priate left members of (16).

see these are in every case
-3 2ixyl

1 Z|

Along the new
-/ 1z?
E -

Now along any of

initely since

these lines 1z

. |
in the 1limit |Z]

From (16-a) and (16-b) we

boundaries this becomes

73 lila

(s increases indef=-

is negligible compared

12 2
to € . Since the conditions are satisfied along these
boundaries we now have the regions Qi divided into subre-
gions R}, as shown in the diagram. ¢= 1,2,3,4, J= 1,2,
b 5
A o
\\ Ell Ell //
N v
\
X ’?‘g N, o// R"
R s Ryz
\
z W
/// RM En \\
A3 \Ay
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From the fundamental existence theorem given by
Trjitzinsky* we may now state the following:

In any region Q Z‘= 1,2,;5,4, J= 1,2, trne ‘8olu=

I
tionsb\d W, of the equation (1) exist such that

! R ) -LJ- 2
' ’
iJ"M’ o s‘ ) 57“/! jene 5:
' '
n
U“’z 5‘- ) iJ’w‘- iyt Sz

for all values of 2 in R.i,. . Here Sl- indicates the series

obtained by formally differentiating the series 5," .

¥Trjitzinsky, loc. cit.; p.208 § 7
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VIII. THE SOLUTIONS OF (1) ASYMPTOTIC IN THE

PARAMETER

A.Introduction
In a paper by Birkhoff# the asymptotic character of

the solutions of

jj F OB E 4P, (wia«» %% ez

is discussed for large values of 2 . The coefficients
d—-( ,/9 ) are assumed to be analytic in the complex
parameteq/o aE/O_ oo and to have derivatives of all ord-
ers in the real veriable L in some 1nter'valaa x= .b .
The equation (1) may be put into this type form by
letting vn==/7z ot G Theln appears as
(119 w'+ 2 {/+ }w g
For (1') the characteristic equation#¥ defined in

the paper becomes 2
A =0

This equation has the roots -¢ and ¢ which will be denot-
ed by 0‘ and 4% . It is convenient to postpone the dec-
ision as to which is o( and which is 0‘ until later,

Formal solu*ions of the form

(17) 7 = (Lu (¢)f } VLN

T =20

¥Transactions American Mathematical Society, vol.9,
1908, pp.cl9-232
##Trans. Am. Math. Soc., vol.9, 1908, p.220, equation

##%Considered in part C, § VIII
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~3

are then shown to exist.
B. The formal solutiomns.
To determine the qﬁ( X ) of (17) we assume that 6

is a solution of (1'). Then
s . =2
! Py ¥ -V o X «J
G- e 2 T M AN T
" M’, ) ” N =0 i
6@.: E jczilxq(%nvﬂf;¢&i”25jLﬁj(&g/g J+
FED) J=e
% =0 e
J=o ”‘l (r/ﬂ /’
/A -J+2
p’@: é Z“l"/ )

207" zw

When these values are substituted back in (1') we obtain

the eduofion

(18) Qd =T+ 2 S8
Z u,,(on)p +z,o« / u,,(i)ﬁ +/;c Uy? =0
k14 X £ A /’0(1x K
We now collect the coefficients of 7~ in (18)

for each K :
ul‘o ( IK') = O ~

By integration

() = C
This constant (: mey be taken as 1 since it is arbitrary.
The next equation become

/4 / 2

Wip & LcAgthy + Ay =9

where it is understood that the W 's are functions of o
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Since o e 0O and U, = 1 there results
’ 2.
,?,o(i ui, = —AL 3 or
o 3
s P (el G
N 2% ; 6Ky

We take the constant of integration invo]ved in the de=-
termination of u,, , J >o , 80 that u,, (0) = P 5 50 W0
used any functions of ,» s Frgokr?. )5 as constents of ‘lne
tegration we could obtain other asymptotic series which
are less convenient. Likewise the process may be repeat-

ed for other coefficients, but it is simpler to develop

a recurrence formula. We have
] n 2

_Zo(z.ul"‘“ * uz‘.( + A Ui Wit
From this
| oy 2

or

1]

TR -
Ui, ke ;i_[uu*'j'xﬂﬁkd¢] :

By use of this formula a number of the coefficlents have

been obtained explicitly and are given below.

uio =
' / 3
(19) Bl i e x
; 2. 3

)
Vs
£35S
Nz

~
—
R
v
5
SNEN
LA

uz':z.

L
h
!
%
i
AV
=
p
_
2
~ |60
5
~
-
) VTR
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/ 4 y d 48 ,(12
el ratd ol /9o HA i, S
g <2°‘;> [ e g oy
v 5
e M+z7o;¢+ 27724 4 A \
15 Zo( /855 14725480 29768

When these coefficients are substituted back in (17)
3 = o
P % _L_GL)+.L )[ﬁf <
63 = /"Zbgﬂ 3 204/ 7=y

@0‘#) [Zaﬂii +/f:+""'},

/
The derivative series C? are of importance, and they

we have

may be expressed upon differentiation of Ca as follows
/
¢

70K A x*
6:-=€ {o</"+(‘z'" g)*z‘xﬂ E—"'?c
a2 PRt S L T SR I
() (#+75 52% >4(2".'”>('2"2¢4ﬁ— -J’:”)-r... .

It is possible to make linear combinations of the

formal solutions just obtained such that the new form will
be real for real m and &4 . In the original equation (1)
we must consider two cases. When m 1is real and positive

ﬂ will be real, and we have

W = [COSﬂ/L - Sinﬂ’x'] [Z_a Uiy (")/)-I} ,

W, = [oosp& +¢ Sil’l/"’)‘] [i. ey (")/O-SJ

The following combinations give the desired result.
(3

3
% R

H = W+ W= COSP”"-L—/-’ sinpyl - = cos ronf .
’ 2 '—'—-—’W.
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84 &t
2A+ /5 /(62 o4
+ sin 2% + .« ]
2%p° o s
(20) h
W, W x> 3 X
~ s LR adr —_— '- s, # = 3
= .}?.__ = z[ulupd il cos o __Z;;J_;L&. sinq
$a" 0yt
2+ /5 /
- s 6z cos/a¢_p....1
AN '

It is seen that in the solutions (20) the signs al-

ternate in pairs, thus
(20-2) H = St
++"‘++""+ ’

H
2 sinex cos cd

The coefficient of ‘/_,':r or T is the same as

1]

the term U, , except for the possible factor of (-1), of
(19) Witﬁlﬁ& replaced by unity. The (¥ ) signs can then
be inserted from (20-a). Since these coefficients are ob=-
tained from the recurrence formula we may write as many
terms of (20) as needed.

When m 1is real and negative ( may be taken in the

form |p} ¢ , and the original formal solutions will be

real for real m and 4 .

In this case we have

A T e

/

)
h
Q)
3
,x
X
By
Trise——
o |R
! + e
RN
"G,
+n
Y
~..__'.‘
N
'b
‘—"I

)

2”“'7? 162 - ]+ }
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C. Existence and validity of asymptotic solutions.

For x confined to the real axis we shall define the
region S of the p plane as one in which the indices 1 and
2 may be so arranged that

R [por] = R [ #]
for @2 in S + . Here ﬂ[,q] represents the real part of
the complex number <44 .

Let X, = - and &_= ¢ . The corresponding re-

gion S will then be one such that
R[rbin) |2 R [r ()],
Since P 1s a complex parameter let

P ﬁx-lr ny

where and are real. We have
il

R [ip4p,] = RLis,-pl

=3
) or

Thus the -5 corresponding to the above values of oK 1is
the lower half of the complex plane.

Now if we let o(' = 2 and oi: -¢ and proceed similar-
ly to determine the corresponding region 5 , we find that
this is the upper half of the plane. -

It is now possible to define the region S,', of the

plane as that in which

-

& <
ke arg(.v:(f,\.,.,)-n- 5 PO, T T8, v o



(¥}

2
Let X be confined to a finite peortion of the realszaxis in-
cluding the point A« =o as interior point. Define this
< <
by b= = b . It is now possible to state the
Theorem#t- Fora on (-d ,$ ) and o in 51-. there ex-
ist true solutions, ?ji ; 2 = 1,2, of the differential e-

guation (1') such that
k. Px rs-m

Y (GRr) = upR)te l Eoz‘ :
’ ’ G 1 D SR
Welne)imiigearee” By

where foe B 5
u; (/’: x) = e Zq “r (’X)f’ >

J=o
b
and the E 's are bounded functions for large values of

in S:.l‘ and % on the interval (-$, b ).

¥BiTkhoff, loc. cit., p. 285, 22b
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IX. ASYMPTOTIC CONNECTIONS

A. Relations of coefficients for solutions asymptotic in Z.

The formal solutions of form

ty2% +emal_L
SJ_ (2) = e—gz— : le,(*) |
i |
are not in general single valued due to the factor Z .
Any true solution W is single valued since i1t is a linear
combination of the single valued functions W, and W, dis-
cussed in Chapter II.

In order to consider the formal solutiomns, S, (X
as single valued we study them on the Riemann surface on
which arg #Z is single valued. This will consist of an in-
finite number of sheets with branch point at the origin.
The regions of validity are extended so that a diagram like
that of page 24 is now visualized on each sheet of the Rie-
mann surface. There will then be infinitely many regions
Ri: numbered as follows :
e

RN

I3 §

0

0

arg & (2-2)2
iz 0/ L8

i T Kt gl

%z (i-)L = ergz = (¢-3)z
First let us fix a particular solution w by means of
boundary conditions. This 1s then a linear combination of

any pair of true solutions, .. W, , and . W, :

(21) WA S AW B e

4 e e 3 ’ b g 2
From the fundamental theorem of Trjitzinsky we may also

write WA ,';C,S,'*',';C:.Sz.
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in FZ.

T
’J= 1’2, Z= O, :!.1,-‘:2,.1-3,"--0

Now the value of the formal solution.sf in Bheet 1
of the Riemann surface will not be the same as the value
in sheet 2. Since W is single valued, it is therefore
evident that the coefficients, (: , must change some-
where in sheet 1, and this fact is known as the Stokes!
phenomenon.

To study the changes in the coefficlents we shall
note what happens as % is taken across the boundaries OA :
argZ= (K-32 ):2: w8 v e LGN L 88 T andY
axes.,

At this point it is convenient to define the follow=
ing nomenclature: We shall say the formal solution :& is
"dominant" over the formal solution Ei, , in the region
Ri if
@ [Qo(] = ﬂ[Qﬂ],“,ﬂ:’;Z)diﬂ in interior ofR{.
We may without any resulting confusion spply the word
"dominant" to the corresponding exponential factors in the
sequel. From the reiationships

2
@[Qz] = 2l sin20 =-K [Q,],
where © = arg 2, we see that in the regions

S'is dominant if ¢ is even,

‘éiis dominant if i is odd.

We now proceed to study the behavior of the coeffi-

cients,c , as a curve OA 1is crossed:
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OA (2E=)aT 2
o © z= lzle ’
2 2 ( K-’)TZ
z2 = |2] € )
Kt . 2
= (-1 P 0 A
Thus :
" K41 e 4 2'2
Q, = ‘é"(—/) (Zf)‘: (‘/) Lz——
sgaferl
0 2
R,
In the limit 8s & —> e~ On OAK’ K=o0dd integer, € — O ,
Q Q. Q.
€ 2 s00; G is dominant over € . Likewise on OA,,
Q, Q,

K= even integer, € 1is dominant over €
Since the regions Rﬁ are closed along their bound-

aries, we may assert both the relations
W ot C, S/ x “ Cz. Sz >
W~ Cn Sa o+ C:. Sa. )

along OA),, the common boundary of Qh and R ,a ¢ From

the definition of an asymptotic expansion it follows that

L e%(rm@}r.Ce s /L'{H-, ne|
= ,,LC, ea',z ¥ {/ £ (z)}+ ¥: Czea;é ’ﬁ{, +,3\,(z)}

. where all the }’K( % )—> 0 as &= —> <= along OA ,.
& iy
Dividing both sides of (23) by € Z * and taking the lim-

(23)

it asZ— o> on OA, we have finally

e e

2 g i
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Thus the coefficient of the dominant solution Sl does not
change in R,. . This proof may be extended to show that the
coefficient of the dominant solution does not change on any
curve OA ,

If the coefficient of the dominant solution is equal
to zero in R' equation (23) becomes -

e (wne) = C e e (it @)

where the )’\_( 2 )—> 0 as l&] —> ®°along OA,.

Q 4,
Dividing both sides by # and teking the limit as &> o

SO T

] 2 ‘

on OA, we have

which shows that the coefficient of’the sub~dominant sol=-
ution does not change on OA,. This result may be extend-
ed, and we may say that in any region Ri’ ‘where the co-
efficient of the dominant solution is equal to zero, the
coefficient of the sub-dominant solution does not change
on the curve OAi'

We shall now determine whether or not the coefficients

C, ,change on the boundaries of R’i . Consider the diagram
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Here it will be necessary to discuss only the case when #
is taken across OY since the behavior on the other axes

igs similar. We write

w,v/zcl S' + i Cz 52 in Q-‘,.’
w/v_z,c.S‘ + ooy C‘;S;_ in Qzl .

In other notation we have:

(24) w=_,C, ezt /+,,m(z)}+uc LeQ’fA‘{/ﬁ)\z(z)) ink..,
B . et {/-I-,_,)\(i-")}-f-uczea:& “{tn @) R,

where all\'\’s —>» 0 as # —>» oo on the line argZ = ——rz':

On the boundary OY we may equate the two solutions
(24) and (25) above since it is common to both Q',_ and R,,. ;
Also on this boundery & [Q,] = &[Q by the definition of
a Q-curve, When we do this the result gives us the equa-

tion

L Ci e G ’*’\'(2>>+ -C. <’ 473\'@))
@, e g {“AT\' (")} ol <H:')\(2>.> :

Next, let us substitute the values of A, and 4 .
<
Here e Lo R m2
Ayt i g )"(’7 ‘z’)
= mt

Since M 1is complex we m#Ety write
A/ "'A = s .
F Tt s e i m, )2

7 "‘md-t-Zm" :

Now

- ,
z ,«um%;

e(logz(-m’*im,x) i e(loglil‘!’i al"gi)(—-m,#—imx)



i -m10g |2| -~ m, argz ej(m‘loglil - myargz) 3

On O
-m,log (2 Em, 1oz |2)
(27) g o € ;
-m"arg;; -im y arg & 4
since € is a constant, K , different

from zero.

2, -2

When the value of & as given in (27) is substi-

tuted in (26), that equation becomes

(28) K e "mylog & ei‘(m,‘log i -i:)[l:.cl {/_'.II‘Y\I (-Z'))

G e ol E O Ko . G ol

The 1limit of equation (28) as Z —=>92 gives us

1im ~mlog (2] 2(m, logzl+=" 4
[ Ke™ e ft A+B1=0

where
A= /zC,-z/C

Ba O

Now we desire to show that A=@ = 0. Consider Case

Ly

G

2/ 2 ~-

I in which my;é ' S - 4 my< 0, (29) becomes in effect

K'r=eA +B=o.
Therefore A= 0 and hence B= 0. If m,> 0, we have in

effect
K-o:A+ B=o,

or B = 0, and substituting this back in (29) we have also
A= 0,
In Case II, My = O. Equation (29) becomes

lim i(vv\ log l£'|+fz) ] -
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Now let us assume A= 0, then B= 0. If A # 0, we have

2
lim J(m log IZ1+2 )
= o Ke ” = —-E-

H

but this equation is absurd since the left side represents
a vector whose argument i1s increasing indefinitely.

Thus it is shown that A= 0 and B= 0 in each case
and this gives

e ik

. 2/ l

u.C;,'= 2 CL a3

on the Q-curve oy . This same process may be applied to
any Q-curve, and it gives the result that the coefficients
do not change when & is taken across these boundaries.

Let us now write the asymptotic solution simply
w C,S,'*'C;S’,_

We have just shown that as 2 is teken around the origin
neither coefficient can change on a Q-curve. Furthermore,
the coefficient of the dominant solution will not change
on any of the boundariesCD/\i. The coefficient of the sub-
dominant solution may change on these boundaries unless
the coefficient of the dominant solution is equal to zero,
in which case it will not change.

In order to throw more light on the situation we en-
close the Q-curves of our Riemann surface in small sectors
or D-regions which may be defined as follows:

[ere 2 f'l”—‘g|<h>o ; gl < T W
Sheet 1 will then appear as in the figure Wheré the D~

regions are the shaded areas.
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Let that part of the region.E;-exclusive of the D-
regions be called the restricted region in . Now it can
be shown that in any restricted region.ﬁli, W has the a-

symptotic development :

where S:,( is the solution dominant in Ri ,and C,( # o.
Likewise if the coefficient of the dominant solution is

equal to zero in Ez,we will have

: “’“’(;934 in Ki

where'Sa is the sub-dominant solution.

It will here be noted that the location of curves
where the sub-dominant coefficient changes is to a certain
extent arbitrary. Any curve Rﬁ-extending to o2 would evi-
dently do equally well,

On the Q-curve the two formal solutions become of e-
gual importance and hence in a D-region i1t is necessary

that we retain both terms,
W s (1‘S:+(;_SL in D

where(:, is the same as in the adjacent region in which

S' is dominant and C—; is the same as in the adjacent
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region in which Sz is dominant.
If both coefficlents cz and cl_should equal zero in

R‘- we have the trivial case
wW-sE 0.
Summarizing this analysis we have found the following

situation: If we write simply
w v (L.S.*‘(;,S;

where W 1is any solution fixed by boundary conditions, then
the only possible change of the constants,c, is that C—. can
change on the lines which bisect the second and fourth
quadrants, and (; can change on the lines which bisect the
first and third.# A constant can change on these lines
only when the other constant is non-zerb. If by some pro-
cess like contour integration or the saddle point method
certain minimum information could be found, this togefher
with our analysis of the change of the coefficients would
unravel the complete story of the asymptotic form of the
solution W over the whole # =plane. The minimum informa-
tion just mentioned is a knowledge of the leading term of
the asymptotic expansion of the solution w on each of
the lines OA,, K= 0,x1,*¥2,...., and furthermore
this is known except for a constant factor.
B. Connections for solutions asymptotic in the parameter m.

¥The reader will recall that the location of these
lines was somewhat arbitrary when we made the subdivisions
of the regions R; to satisfy the requirements of Trjitzin-
sky's existence theorem. Any curves extending to <2 in the
respective quadrants would do equally well, providing on
the curve | arg2-7T1>h> 0, that is, the subdividing

curve has a different limiting direction from the bound-
ing Q-curve.
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From the genéral exlstence theorem of page 32 one
would suppose that the coefficients of a general solution
v=,G@ oyt G eny,

would depend upon T , and that these coefficients might
change due to Stokes'!' phenomenon when (2 is taken into a
different region 57 . It is desired to find the connec-
tion of these coefficients in the different regions, and
if n terms are needed in the expansion we shall now show
how to calculate the coefficients T(: (7 ) for the solu-
tions W, (a ,p ), K=1,2, principal* at the origin so
that the asymptotic form of these solutions is known ex-
plicitly to n terms. We indicate these solutions in the

form ST o 3
w, (%0 = 10 (2De ,-Z_, “_'/J..'g‘_),r T E;’nh(ﬁf')}’
(30) o n-s
L, Px ok
+.C (e 2. 4l TEan(xe)

T =o ~h >

where the £ 's are bounded functions for p sufficiently
large in S'r end X on (-b,3d ). The coefficients will

be found in the form 4 e
e oS -t o )
—_— t =+t 2L+
0 C("’) B LA
/
ory times this expression, where the C 's are determined

explicitly and g (»~ ) is bounded for o sufficiently large,

This form, however, is sufficient since the-%g? may be

#The solutions w and w, principal at the origin are
such that g w (0) =o w, (o) =1
w'(2)=y w,’(e)= 0 .
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\ il %, )
absorbed in the ~h of (30).

Let n be one of the numbers 0,1,2,..... . However,
after it is chosen it remains fixed in all further calcu-
lations. Now by Uy (€, 2 ) we shall denote the n+1 terms

K. Py al u.f (,x)
=e’ Z ;af

J=o .

From the general existence theorem of page 32 we Eay now

write the following:

)

“™E l:m(rx )

ﬂ n+1 >

)]

u.(%e) + c
(31)

&K E o )
Ny = u; (%40 + S ﬂ%‘h % .

Here the E » E are bounded functions for, 1in S,,. and o on
( -b s b ). We may now write the principal solutions and

their K derivatives as follows:

(52) We oCK._CP)¢y,+anz('°)T)’; ;
\,\/K/ = . CK, (/J_)Tj"+ 7 C‘,_(r’){._y;’ K =12
where
(33) Wu(°) i J-u
w ()= o, e Fr e S0 R

By making use of (32) we write (33) in the following man-
ner, remembering that W, = 1 for all n, and 2-1 &3

- <~)<+ . @1 ,,,c“(a{mez;gf)/?

3

o = 2 Col{uo B2 +7C.£f°>{u,’fw>+5;?%ﬁﬂ
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Equation (34) gives us a system which may be solved for
the C 's providing the characteristic determinant A does

not equal zero. In this case

Ec=
A = d, (0/0) U (o, p) + p:'

Here u; (0, ) A P s and X,- & # 0. Thus & # 0, and
for @ sufficiently large, we may write the solutions for

T(;Jand TCZKZ. The;e become the following:

E E
?C-q('o) ” O[K.l {“z/(","’)*.,si—" - k-2 {""T,__;f," ,}

PaN

(35)

el R

. 2
i {/+F"~§’*' "J.}.'(u.'(o,e?)+?%'-7}_
A

At this point it will be noted from the series for

and 6:./ of Chapter VIII that u, (0, 0 ) is of the form
| U(0,0) = A+ -+ BarrBa
and U;(0, 2 ) is of the form

8 B Bn &
Thus the(: 's of (35) will take the form
Al Aﬂ + E
“» r T S n v
(36) ,\C(ﬂ)__ A e i : ”E
p(B +‘—‘f'-" ,::\+,o""")

or » times such an expresslon, where the E 's are bounded
for large values of .2 . Now (36) by mere "long division"
may be written in the form

C,
?C(/’)-‘—‘ Qb7+ S
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or7./? times such an expression, where E is bounded, and
the (:'s are known explicitly. This is the procedure for
calculation we set out to establish.

From the equation defining a region S? on page 3/ we
- may now take 75:0,2,4,..... as 1ndicating the regions in
which &,= ¢ and & =-¢ . Likewise T= odd integer when
X = ad and o{ =z,
. Now if the forms V%‘and Vw; of (32) are calculated
for " 1n a definites} , say S, s the resulting expressions
are exactly the same for all regions ST since we have the

following results:

SV B I |

\.T Cuz f‘uz('x)(’):\" E‘h Cou T U, ('/,ﬂ)} b

[T' cﬁ(l Tu. '(‘{)ﬂizE‘fl C K2 Tt uzl(o(’{’)l)

/

i’a\ WA (";ﬂ)]-‘l;‘ﬂ Co 7‘““,’(7(;”)].

K2 7

where the brackets denote that the remainder terms are o-
mitted.

Hence it is no longer necessary to affix the sub-
secript ® in the asymptotic formulas. We shall taked}:(
and og_=-i' in all ST since it is shown there is no
Stokes! phenomenon.

The four coefficients of (25) have been calculated
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for n=4, and these are given below.

]

/ - SR Tl s Doeir Vi o f_,,
2'7‘_{01"p1+,03+-/o4+/96

+

_o_+,o_+ﬁz>,

C,
C:z F —(_2‘ +/€_+—pa_" PR ok SR
Cz
: /

N

ot i)
& JrE)

22

1¥]
N
T
=
+
R
+
A
+
p
+
°Q '\

where the é 's are bounded functions for o on (-b ’ S I
The principal solutions (32) may now be expressed

for n=4 as

> efz"t [f{/"zz//» [’53—1 (zgf,> [x +,:} (2’;) Lz¢+£—+,‘iz—}}

( [/‘M //¢ j_'f ] [E,(»x,p)
2ép t o Tigasl” L=

ollows:

H

9

+€-ﬂ‘¢[2 {zz/)[ J+(22/’) 4—(22/) [“*7;*/%”

i PR
L. a4 - TE, (%~
12 (Zz/a) [”Z‘* Fdis /744J"‘[ v _] 2

L -% pz’d[,é_{,flgj (5” ) [46 }+(W) [zqcr,{ ,‘Z }

HG)TE % vdm ] a | B2



A
e

+£ bl e
2 [ {/z;/)(/_g')+(2_l/)—”)z["z+%" ]-(2"{;,)3{24#2_‘—2_4_’”
-~ = /62

{( =Bl
) L—-——¢——+ /7/;‘ +/7¢4J4—;2L}—— + Eglxed
Vadd
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