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ERROR BOUNDS FOR ITERATIVE SOLUTIONS OF 
FREDHOLM INTEGRAL EQUATIONS 

INTRODUCTION 

Many dU'.fel'Gntial equations o£ Importance in mathe­

matical physics. together with their boundary conditions, 

may b& reformulated in terms or a single linear integral 

equation of Fredholm type and second ld.nd, 

(l. l) y(s) = x(a) - :>.J!(s,t)x(t)dt, a. < s < b, 

whe;re x(s) 1s the un1mown. function, 7(s) and K(a,t) are 

known functions which satis.fy conditions to be set f'orth 

later, and 'A is a parameter (12, PP• 514-52.3). •.r.r..e solu­

tion ot the integral equation (l.l) in. these eases, if 

it can be obtained, gives at once the solution of the 

.-boundary value problem" associated with the given dif­

ferential equation, and t hus the use o:f integral equations 

affords, at least 1n theory. a method ot great convenience 

.for dealing with physical problema. 

Unfortunately, Fredholm's general theorem concerning 

the existence and multiplicity of solutions x(s) of (1,1) 

does not give a practical method .for computing x(s) except 

in special oases (7, PP• 365-390). For p~act1ca.l purposes, 

however, a satisfactory approximation to x(s) may be of 

great value. r.!an:y methods have been developed tor finding 

approximate solutions ot (1.1) (5, PP• 12-122). The methods 

considered here will be iterative methods; that is, 

http:satis.fy
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procedures which determine a sequence or functions x0(s) 

x (s), ••• ,x (s}, ••• such that x (s} converges uniformly to
1 n n 

x(s) on the interval a~ s ~ b with increasing n, and. in 

general, xn(s) is computed from the known ·values of x0(s), 

••• ,x (s).
n•1 
Most iterative processes appear as modifications of 

the method due to Netll'l1Ann (6, PP• 119-120), whioh converges 

provided that I)I < c, where c is a constant depending on. 

K(s,t). As most equations ot the type {l.l) which are of 

importance in physics have a unique solution x{s) except 

for a countable set of values of ~. the usefulness or the 

Neumann process is somewhat limited {6, PP• 107•li2). In 

the consideration or a physical problem involving the load• 

ing of an elastic beam, Wiarda obtained an integral equation 

of the type (1.1) withl)l~ OJ in order to deal with this 

problem, an iterative method was devised which converges 

provided that AK(s,t) 5 o, a~ s,t ~ b (15, PP• 119-la8). 

The iterative process devised by Wiarda was further gener~ 

alized by Bllokner (4, PP• 197-206} and \'a.gner (14, pp. 23• 

30) to obtain iterative processes which converge under 

still less restrictive assumptions. More recently; sackner 

has stated a process which converges in the physically 

important case that K(s,t) is symmetric; that is, 

K(s,t~ = K(t,s), a~ a,t ~b, and that a unique solution 

ot (1.1) exists, (5, pp. 68-71). 

A somewhat different approach to the solution of (1.1) 



by 1t.e3:'ation has been taken by Samuelson (13 , PP• 276-286) J 
' 

if (1 . 1) has a unique solution x(s)._ tb.en there exists a 

function G(s.tJ ) ) such that 

(1. 2) lt(s) = y(s) + ~(s,tJ).)y(t)dt, a ::; s ::; b . 

In case tnat • sufficiently good approximation J(sttl ~) to 

G(s,tJ ~) i$ known, it is possib1~ to obtain an iterative 

process which converges to the solution or (1.1).. The idea 

behind all of these iterative processes is the sameJ the 

use or the ·result. of substituting an approximation to x(s) 

into (l . l) to improve the approximation further• and thua 

a unified treatment of these various methods will be made, 

from which eutticient conditions for their convergence will 

be obtained. 

For a given iterative process to be useful for practi­

cal computation~ it 1s necess~ to know more than tha~ the 

process converges; i:f xn(s) denotes the :function obtaine4 

as the result o£ n steps of the given iterative process, 

it is necessary to know to \Vhat d·egl'ee of accuracy (in 

some sense) that x (s) approximates x(s) on the interval 
I\ 

a ~ s ~ b. Explicit relations for est~matins the accuracy 

of the Neum.ann process have been given by Lonseth (11,. PP• 

353-358); similar er~or bounds will be supplied here tor 

some or the more general methods cited. These results are 

believed to be new and to make possible the practical appli• 

cation of a wider variety of iterative processes to the 
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solution ot the equation (1 . 1) . 

T'he 1terat.tve processes considered fQll.ow a set pro­

ced'U'e to obtain succes_sive approximati-ons to ;x:( s) • and 

thus they are read!ly daptable tor use by high-speed com• 

put1ng machines . As the use of such machines . generally 

involves the employment of sOlile method of approx1ma.te inte• 

gration. an additional error 1$ introduced into the itera~ 

tive process. The error bounds g1.van will be extended to 

include the use of methods or approximate integration, 

http:approx1ma.te
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PRELIMINARY DEFINITIONS AND RESULTS 

The formulation and proofs of the results in this 

paper1 and, in particular~ t he precise definition of the 

''degree of accuracyn with which a function ~ (s) napprox.i­

mates" a function x(s) on the interval a < s < b will be 

made to depend on the theory of normcd linear vector spaces, 

and of certain types of operators in t hese spaces. Only a 

brief outline of the essential part of the theory will be 

given, and many results will be stated ithout proof. 

Proofs, further elaborations of the theory, and additional 

references will be found in the works cited. 

Consider these~ (C) of all functions x = x(s) whi~h 

are real, single-..valued, and continuous on the interval 

a < s ~ b. As a consequence of the ordinary properties of 

these functions, if x is an element of (C), and Q is any 

real number, then Qx is also an element of (C); if x and 

yare any two elements of (C), so is their~ x + y and 

product 'rl• The functions z(s) = 0 and u(s) = 1, a < s < b , 

are tho elements of (0) such that, for all x in (C), 

x + z = x and xu = x; z and u will be denoted by 0 and 1, 

respectively. The operations of addition and multiplica­

tion obey all of t he ordinary aleebraic rules. Another 

type of multiplication, the inner Eroduct (x,y) of two 

elements x andy of {C), which is def ined to be t he real 

number 
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/ 

(2.1) (x1:1) = J~(s)y(s)ds
a . 

is connnutative. and is distributive over addition. 

If with every element x of (C) there is associated a 

finite , non-negative real number ll x ll. called the norm of 

x, which satisfies the following conditions: 

( l ) II X II > 0 if X -:/: 0' II 0 II =0, 

(2) llexll= le l•llxll for any ~eal number e., 
(3) llx + Yll < llxll+ II YII for all x,y in (C) , 

the set (C) forms what is known as a normed linear voctor 

space (2, p . 33) . There are many possible ways to define 

llxll, for example , as 

(2. 2 ) II xII = max lx ( s ) I on a ~ s ~ b, 

or, as the square of every element of (C) is integrable• as 

(2 . 3) llx ll =(J?<sl~ l/2 =..j (x,x), 

{ 10 ,. pp. 206-207) • For any real number p "> 1, a definition 

of II x U satisfying (1) , (2) , and ( 3) 1 s 

(9 , pp . 134-150) . The practical importance of the abstract 

idea of the norm of a function is that it makes possible 

the precise definition of the error involved in the approx­

imation of a function x(s) by a function Xn(s) as the 

non-negative real number ll x • ~II· 
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The error estimates given will thus be estimates of 

the size of the norm llx- xnll· These results will be valid 

for any definition of the norm satisfying the given con­

ditions. so the computer may choose the one which will give 

meaningful results for his particular problem. For example. 

the norm as defined by (2. 2) will give the maximum value 

of the "point-wise" error lx(s) - ~(s) l on the interval 

a ~ s ~ b• while the norm as defined by (2. 3) ill give the 

"global" or 11 least-squares" error of the approximation x (s)
n 

to x(s) on the same interval. If, for all definitions of 

the norm, llx - xJI--t- 0 as n _,. oo 1 the use of the norm (2 . 2) 

shows that the functions ~(s) converge uniformly to the 

.function x ( s) on the interval a S s ~ b as n _,. oo .. 

A transformation T which carries each element x of 

{C) into an element y of (C) 1 in symbols, T.x = y 1 is said 

to be in (C) . Tis . said to be additive if T(x + y) = Tx + Ty 

for all x,y in (C), and to be continuous if llx- X ~~~ 0 
n 

as n -+ oo implies that II Tx - Tx~l~ 0 as n ~oo. A continuous 

and additive T is called linear, and the non-negative real 

numbers 

(2. 5) (T) = l . u.b. (IITxll/llx ll), ll xll #- O, 

and 

(2 . 6} m(T} = g . l . b . ( I{Txll/llx ll >. ll xll # O, 

exist for a linear T {J, p . 54) . r (T} and m(T) are called 

the Upper bound and lower bound of T, respectively. From 

their de.f1n1t1ona, 
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(2 . 7) m(T) IIx ll ~ II Tx ll~ M(T) IIx ll 

ror all x in (C) . A linear T is also homogeneous, (3, P• 

36), so ror any roal number e, 
(2. 8) M(GT) = IGIM(T) . 

The transformation I such that Ix = x tor all x in {C) 

is defined to be the identitz transformation in {C). From 

(2 .5> and {2. 6), 

(2. 9) m{I) = M{I) = 1 . 

The ~ T1 + T2 of two linear transformations T1 and T2 in 

(C) is defined to be the transformation T such that 

Tx = T x + T x for all x in (C), and is written T = T + T • 
1 2 1 2 

The product T T of two linear transformations T and T in1 2 1 2 
{C) is defined to be the transformation T such that 

Tx = T (T2x) tor all x in (C), and is written T = T T •1 1 2
Furthermore , 

{2. 10) M(T + T ) ~ M(T ) + (T ),
1 2 1 2 

(2 . 11) M(T T ) $ M(T ) (T )
1 2 1 2 

for all linear transformations T ,T in (C) (10, P• 194) . 1 2 
The inverse of the transformation T in (C) is defined 

to be the trans.formation T-1 such that T-lT = TT-l = I if 

such exists . The inverse of a linear transformation T, 

if it exists , is likewise linear, and if also m(T) > 0, then 

{2. 12) 

(10, p . 194) . The~ power ~ of a linear transformation 

T in (C) is defined to be til = TTn-l for all positive inte­

gers n, with TO = I by definition. Addition of linear 



- - -

9 

transt'ormations is associative and commutative; multiplica­

tion 1s associative and distributive over addition, but i .s 

not commutative in general , although multiplication ot' 

po ers ot' the same linear transformation is commutative 

(10. p. 194) • 

A linear transformation T in (C) is said to be 

completelz continuous if ( [x - Xn] 1 y) ~ 0 as n -+ oo !'or 

all y in (C) implies that II Tx -T~II~O as n _,.oo (1, pp . 2•3). 

A transformation in (C) is sometimes referred to as an 

operator in (C). In what follows, all operators considered 

are completely continuous linear transformations in (C), 

unless the contrary is explicitly stated. 

It' Q is an operator in (C), the transformation (I - Q) 

has the unique inverse 

-l OQ j(2.13) (I- Q) =~ Q ' 

provided that M(Q) < l (10; PP • 194·195). Thus 
• 

(2. 14) 1- (Q) < m(I-Q) < M(I• Q) < l + M{Q) 

from (2.10), (2.11), and (2.12). An operator Q in (C) is 

said to be positive det'in1te if {Qx,x) > 0 for all x ~ 0 

in (C) 1 and to be positive ~-definite if (Qx,x) > 0 

for all x in (0). The sum and product or t o positive 

(semi-)definite operators in (C) is likewise positive 

(semi-)det'inite, and if Q is positive definite, 

(2.15) ll x + Qx II > Hxll 
for all x # 0 in (C), while if Q is positive semi~det'inite, 
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(2.16) ll x + O.X II ~ ll xll 
for all :x in (C). 

If for some operator K in (C) there exists a number .A 

such that for· some x :/: 0 in (C), ~ Kx = x, ) is said to be a 

characteristic value of K, and x is called a characteristic 

function belonging 12 ~· If the function K(s,t} is real, 

single-valued, and continuous on tbe square a ~ s,t ~ b, 

the linear integral operator K defined by 

(2 . 17) Kx = f!<s,t)x(t)dt, a < s < b, 

for all x in (C) satisfies the conditions of l~nearity and 

complete continuity imposed on operators in {C), as the 

consequence of well-known theorems concerning Riemann inte­

grals (16, pp. 126-154) . The function K(s ,t} is called the 

kernel of the linear integral operator K. The sum 'K = IS_+ K
2 

of two linear intogral operators K ,K2 with kernels K1(s,t)1
and K (s,t), respectively, is a linear integral operator

2 
with the kernel 

(2 . 18) 

and the product K = K K of two linear integral operators1 2 
is a linear integral operator with the kernel 

(2.19) K(a, t) = 1 (a ,r)K2 (r, t)dr, a < s,.t < b,J!
where K1(s,t) and K (s ,t) are the kernels of K and K

2
,2 1 

respectively (5, p . 3). 
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A GENERAL ITERATIVE METHOD 

The integral equation (l. l) may be put in the tor.m 

(J . l) y = X - ~K%, 

where it is assumed that y is 1n (C) and K is a linear 

integral operator in ( C}. Fredholm• .s .general theorem 

(7 • pp • .365-390) guarantees the existence or a unique 

solution x in (C) ~r (.3.1)~ provided that ) is not a char­

acteristic value of K- in particular, x = 0 1£ y = o. In 

what follows, it will be assumed that y ~ 0 and ~ is not 

a characteristic value of K, unless the contrary is explicit­

ly stated. 

All iterative processes considered are or the form 

(.3.2) ~ = ~-l - P(I - ~K)~-l + Py, 

where P is an operator 1n (C) . To solve (.3.1) by the iter­

ative process (3. 2), an initial function x0 in (C) is cho­

sen, and repeated applications of (.3.2) result in a sequence 

ot functions x1,x2, ••• ,xn•••• in (C). If' tor some x0 in 

(C), ll x- xnll -:+ 0 as n ~oo, the given iterative process 

is said to be convergent . If the process converges for 

all x0 in (C), it is defined to be totally convergent, 

a definition originating with Hans Baekner (5, p. 68). 

For convenience of notation, take, 

(.3 • .3) Q = P(I - f K), 

so Q is also an operator in (c). 



Convergence Theorem: The iterative process detin.ed by 

(3 . 2) is totally convergent, provided that (I - Q} <: l~ 

which is al ays the case if Q is positive definite and 

M(Q) < l. 
Proof: From (3.2), 

(3.4) X .. Xn =X • Xn-1 + P(I - _AK)Xzt-1 - Py 

=X - ~,;.l + ~-l - Q,x 

=(I - Q) (x - xn-l}, 

as y = (I .. .A K)x, and thus Py = Qx~ By induction on n, 

tor all positive integers n, and thus from (2 . 7) and (2.11), 

llx - Xn ll < Mn(I - Q) ll x - :xol l, 

from Which it follows that M(I - Q.) < 1 implies that 

llx - Xn II -+ 0 as n -+ <>". Thi a proV'es the first part of the 

theorem. For (Q) < 1, by (2.13), 

00 

{3 . 7) (I - Q) -1 =frd. QJ . 

It Q is positive definite, from (2. 6) and (2.15) , 

(3.8) 0 < p = m(Q,) < 1, 

provided that M(Q) < 1, and from (2.15) and (3.7), 

(3. 9) - m[(I - Qf1 
] > 1/{1 - p>• 

Therefore, from (2 . 12), 

(3 .10) r (I - Q) :$ 1 - f < l, 
which completes the proof of the theorem. 

General expressions for error estimates for the 

http:detin.ed
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process (.3 . 2) will be obtained on the assumption that the 

conditions for total convergence are satisfied. First. 

for Q positive definite and M(Q) < 1. from (.3.6) and (3.10), 

{.3 . 11) 

an error estimate which is useful if a bound is known for 

the value of ll x • 11. In case that nothing is known con­x0
cerning the size of !lx .. x0ll , error estimates may be derived 

in the .following .fashion: From (3 . 2), 

(3. 12) X • X l = Q(x • X 1 ),n n- n• 
whieh implies that 

(,3. 13) llx - x ,II > u llx - x 11. n n.•.&.;- 1 n - 1 
From (3. 4) and (,3. 10), 

{J. J.4) llx - Xn, ll ::: (1 - r> llx - Xn-1 11 , 
and thus 

From (3. 11) and (3. 13), if k is a positive integer, 

(3 . 16) 

If the choice x0 = ~ is made, from (3 . 2), 

(3. 17) - y = PAKy,x1 
and thus from (3. 16), 

all of the above inequalities holding for all positive 



integers n, 

Now, if M(I - Q) < l, from (2. 4), 

(,3 . 19) }.l = m(Q) ,? 1 - M(I - Q) > O, 

and thus in all or the inequalities given, p may be re­

placed by 1 - M(I - Q) by (3.6) and (3 . 19), as (3 . 19) 

states that 

(3 . 20) l/p ~ 1/ (l - M(I - Q)] 1 

I 

provided that M(I - Q) < l. 
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EXPLICIT ERROR BOUNDS 

The results found tor the iterative process (3 . 2) 

were derived without actually specifying the operator 

P ~ This operator will now ba specified to obtain explicit 

error bounds for iterative processes ot practical 1mpor­

tance•. 

The Neumann process 

is t otally convergent , provided that M(AK) < 1. This 

process is (3. 2) with P = I , and thus Q = (I - ~K) . As 

(I - Q) = ~K, it follows that M(~ K) < l implies M(I•Q) < 1, 

and the total convergence of the Neumann process is thus 

a cons•quenoe of the Convergence Theorem. Error bounds 

for the Neumann process are obtained from t he general 

expressions by substituting 1 - M(AK) for P• which is 

valid by (3.19) and (). 20) . From (3 . 11) 1 

(4. 2) llx ... Jtnll s; Mn(AK) ll x .. :xoll ; 
from (.3 . 15), 

(4.3) llx - Xnll < M() K) II Xn ... Xn-1Jl ; 
- 1 • M0 K ) . 

from (3 . 16}, for an:r positive integer k , 

(4.4> llx - x kll <:: ' Mk{) K) llx - x II # 
n + - l - M (~K) n . n-1 

and from (). 18), as M(P) = M(I) =1. for x = y,
0 
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------------- --- --~---

the above inequalities holding for all positive integers n . 

The v1arda ~rocoss 

is totall}t convergent, provided that - ).K is positive semi­

defin1te and G i .s a real number such that 

(4. 7) 0 < ~ < l/(1 + M(?. K)) • 

The process (4. 6) is (.). 2) with P =GI 1 and thus Q = 9(!-) K) . 

If -AK is positive semi- definite., Q is positive definite, 

and the condition <4.7) insures ;that M(Q) < 1; the total 

convergence of the Wiarda process thus follows .from the 

Convergence Theorem. From (2.16) 1 

f = m(Q) =m [e(I • ?.K)] ~ e 

for ... AK positive semi- definite , and as 0 < Q < 1, 

1 - ·fl s 1 .... e. 
Error boundS for the W1arda process , therefore, may be 

obtained by substituting those values into the general 

expressions . From (,3 . 11) , 

(4.10) ll x- xn ll ~ (l- e)nllx ... x0 11 ; 

from (3. 15) , 

t:rom (.3. 16) , tor any pe>sit1ve integer k , 
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and from (3 . 18) , a.s (P) = (ei) = e, for x0 = y, 

<4.13) llx - Xn ll S. (1 - e)llt4(:>.K) IIy ll, 

the above inequalities holding for all positive integers n. 

"An iterative process due to Buckner, 

where 

v = (1 - e)x + e~Kxn + ey,
n-1 n•1 - 1 

is totally convergent , provided that Q satisfies (4. 7) 

and the kernel K(s,t) or K is symmetric . From <4·14> and 

<4.15) ' 
(4. 16) x =x - e2 (I - ) K )l x + ~ {I .. AK) y,

n n-1 n•1 

so the iterative proce.ss defined by (4. 1.4) and (4. 15) is 

(3. 2) with P = e2(I - ).K), Q = ~(I - AK)2. If the kernel 

K(a,t) of K is symmetric, direct calculation from (2. 1) 

verities that 

for all x in (C), and thus 

(4. 18) ( [ I-AK] 2x , x) = (x,x} - 2() Kx,x) + ( ~2K2x,x) 

- (x, x} - 2().Kx,x) + ( AKx, AKx) 

- ( [I-AK] x, [I- AK]x), 

which, for all x ~ 0 in {C) is the integral of' the square 

of a function which is not identically zero over the range 

ot integration, and thus is positive . The operator (I-:>.K)2 

is therefore positive definite, from which it follows that 

Q is positive definite, and the condition (4. 7) insures 

that M(Q.) < 1. The total convergence of the process 

http:proce.ss
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defined by (4.14) and (4 •. 1.5) thus follows from the Conver­

genc.e Theorem. 

It is known that all of the characteristic values of 

a linear integral operator K with a symmetric kernel are 

real (6, pp . 107·112), and that every such operator has 

at least one characteristic value (15, PP• 79·84). If K 

has only one characteristic value A*, then 

(4.19) 

while if AL and AR are two characteristic values of K such 

that AL < .A < '-R' and there are no characteristic values 

of K lying between ).L and .AR, then 

(4. 20) p =m[(I -~)2] = lllin [(l - . ~~~L)2, (1 - ~~~R)2].. 

(5, PP• 10-11 and ·6, PP • 112-113). Thus 

(4.21) r = m(Q) =e2p. 
and explicit error bounds for the process defined by 

(4.14> and (4.1.5) may be obtained by substituting this 

value into the general expressions. From (3.11}, 

(.4.22) 

from (3.1.5}, 

(4.23) Jlx • x,ll ~ (1 ~~p) ll><n - Xn-lill 

. from (,3.16) • for any positive integer k, 

Ux • "ntk ll 5. (1 ~~p)kll >t, • "n-1lll 

and from ().18) , as M ( P) = [e2 (I - ').K) ] :;: G, :ror x0 =y, 
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11x ~ Xuil .!> (l • :e>nM( >.K) \1 ,- 11, 

the above inequalities holding tor all positive integers n. 

In the more general iterative processes suggested by 

ftBUckner, P~ and hence Q., has the .form of a polynomial in 

K (5, pp . 68·71); that is, an operator obtained from I and 

K by a finit·e number of add.itions, multiplications, and 

multiplications by constants . Any iterative process ob• 

taifled in this fashion 1s totally convergent , provided 

that Q satisfies the conditions of the Convergence Theorem. 

Th.e characteristic values or Q may be obtained in terms 

of the characteristic values of K ($, pp. 10•11} , from 

which 11 =m(Q) can be obtained by use of the maximum...min1• 

mum properties or the oharacter1stie values ot Q (6, PP• 

112•113) • and th\18 explicit evaluations of the general 

error bO\tll.ds may be made. 

Samuelson (13, PP• 278•279) takes P = (I + J), where 

J is an approximation to the resolvent opex-at~t- G which 

gives the solution of (3. 1) as 

(4. 26) X = (I + G)y. 

For P = (I + G), from (3. 2} 1 

~ = • (I + G) (I • ~K) :x:0 + (I + G)y , x0 

and thus x1 = x for all x0 in (C), as {I + G) is the in­

verse ot (I • :XK) , the exact solution of (3. 1) being ob­

tained in one step. In case that some eXpression tor G 

http:bO\tll.ds


20 

is known,. the Samuelson process 

Xn, = ~...1 ... (1 + J) (I • ) K)Xil ..l + (I + J)y 

otters the possibility of attaining a satisfactory approxi­

mation to x 1n a small number of steps.. The process defined 

by (4.28 ) is totally .convergent, provided that 

(4.29) M ~G • J) < l/[ l + M ( ~K ) J, 

as 

Q = {I + J)(I • ~K) 

= [ (I + G) • (G ... J)] (I - ).K) 

= I - (G - J) (I - .A K), 

and thus (I - Q) = (G ... J) (I .. ~K), and M(I • Q) < l by 

(4.29); therefore~ the total convergence or t he process 

defined by (4.28) is a consequence of the Convergence 

Theorem. As 
' 

1 > 9 =M(G ... J) [ 1 + M('-K) ] > (I ... Q),-
the quantity 1 - G may be substituted ror }1 in the general 

expressions, by (3,19) and (3 •. 20), to obtain explicit 

error. bounds for the Samuelson process. From (3.11) 1 

<4-.32) 

.from ( 3.-15), 

fraln (3.,16)• tor any positive 1nt~ger k, 

(4,34) llx - Xn +ltll S. 
1 

Qk 
... GIIXn - Xn-1 11 ; 

and from (3.18), as M(P) = M(I + J) S l + M(J), tor Xo = y, 
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<4.35) 

the above inequalities holding for all positive integers n. 

Estimates for M(G - J) for a certain method of obtaining 

J from a known expression for G have been given (10, pp. 

207-208). 

Wagner (J.4, PP• 23-24) considers the process (3.2) 

with 

(4.36) P= e ~ - :lJ!<s,t)d' -\, 

0 < ~ < 1, so that 

Q = Q(I ... AKl, 
(I - ~K)u 

where u = u(a) = 11 a < s < b. I£ K(s,t) is such that 

r(e) = 1 - .:~J!<s,t)dl; f o, a ~ s ~ b, 

then, as f{s) is continuous, t(s) ~ 0 or f(s) < o, 
a < s < b, and thus Q is positive definite . If 

(4.39) p= min lf(s) l, a~ s ~ b, 

K(s,t) satisfies {4.38), and G is chosen so that 

0 < 9 < ,S/[1 + M(AK)] , 

then (Q) < 1, and the total convergence of the agner 

process 

<4-41) 
is assured by the Convergence Theorem. As 
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1 > p = m(Q) ~ e;/[1 + M(AK)] = P• 
this value may therefore be substituted into the general 

expressions to obtain explicit error bounds tor the agner 

process. From (3.11), 

(4.43) llx- xnll ~ (1 .. p)lljjx- x011: 

from (3.15); 

(4.44> 

from (3.16)* for any positive integer k* 

(4.4$) llx - ~+k II~ (l - e>kll~ - ~-111;
p 

and from (3.18), as t&(P) = M(GI/t) ~ e/)11', for x0 = y, 

(4.46) llx - x.,- II < (1 
- p)nQM(AK) ll y ll, 

--u - pfl 

the above inequalities holding for all positive integer.s n. 
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PRACTICAL APPLICATION OF ITERATIVE PROCESSES 

As the results given to this point were obtained on 

the assumption thAt all integrations were carried out 

exactly, some modification or them is necessary to make 

allowance for the use or some method or appl•oximate inte• 

gration in the actual computation. The process or approx­

imate integration can be thought of as resulting in the 

replacement or xn by ~, so that 

(5. 1) llx - XiJ II S llx - xnll + llxn ... x11 II, 
. where 11 x - x·!~ II is a measure or the error or the appro.x1­n n 

mate integration. From (3.$), 

n 
(5. 2) llx - X1i II ~ llx - xnll + ~ Mj ( I-Q.) llxn- j - x~- j II• 

By (3 . 10), M(I - Q) may be replaced by (1 - p) in (5.2) 

to obtain the equivalent expression 

. .n 
(5 . 3) llx - X~ II s llx .. xn ll + ~ (1 - r> j ll ~... j - x~- j II· 

As 0 < (1 - p) < 1 , 

hence, tor 

t = (:) II Xn - ~ ~~ ~ 

(5. 6) llx - xii ll < 11 x - Xn 11 + tfr, 
where the estimate tor ll x ... xn II is obtained from the 

http:appro.x1


explicit error bounds for the iterative process used. 

Meat o£ the error bounds stated involve the number 

M ( ~K). which is rarely known exactly. For a given choice 

of the derin1t1on of the norm, however, i .t is usually 

possible to obtain a satisfactory estimate for M() K). 

For example, for the norm as defined by (2.2) 1 

(11, p . 357) . In order to make use of the error bounds 

for the iterative process defined by <4•l4> and (4. 15), the 

computer must know the values ot ).L and -"n• or at least 

values 2_, -,:', such that ?tL ~ 2. < ~< ~ ~ ~R· Methods for 

obta11Ung '). and ~ are know (.5, PP• 50-55 and 17, pp . 15-38),-
and thus it is possible to obtain a lower bound for ?• 

Generally speaking, the iterative processes considered 

are rather slowly convergent, which may be of little con• 

sequence if the computation is carried out by machine. 

However, methods for accelerating t he convergence ·Of !tor• 

ative processes have been given by Lonseth (11, PP• 354-35.5) 
and Samuelson (13, PP• 279-281); these methods may prove 

valuable in case that they materially shorten the computa• 

tion, even thou.gh they obtain more rapid convergence at 

the cost or an increase in complexity, 



llUMERICAL EXAJIPLE 

In order to illustrate the aotua~ application of some 

of the iterative processes and error bounds given, an 

approximate solution of the integral equation 

s2 =x(s) - ~Jg<s.t)x(t)dt, 0 $ a $ 1, , 

where 

(6. 2) K(s~t) = s(l • t), 0 s s s t ~ 1, 

=t(l • s)J 0 s t s s S 1, 

. will be sought for values -1, -10,. 25 of ).. For each value 

o£ /. considered,. it is desired to find an approximation 

x (s) to the solution x( s) of {6. 1) ,such that. !'or the norm n 
as ·defined by (2• .3),. 

(6. 3) llx .. Xnll < o.ol. 
The characteristic values of K are known to be ~ = n2n2, 

(n = 1,2,. • • • ),, and thus M(K) = l/1l2 (8, p . 8 and 6, pp . 

112....114); no use of the exact solution of (6. 1) 1111 be 

made . 

For :X= •l,. M( ~ K) =l/1T2 < 1, and thus the Neumann 

process may be used. As no approximation to x{s) is assumed 

to be known, take 

(6. 4) x0 ( s) = s2, o s s s 1. 
Here lls2 11 1/J.$. In order to estimate the value or n 

for which (6. 3) will hold, (4.5) is used, n being taken 
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to be the smallest positivo integer for whieh 

{6 . 5) llx - Xnll ~ (l/n2 )n~ 1/[ (l - 1/rr2 >-B ] <0.01. 

The solution or the inequality (6. 5) for n yields · n > 1,-
and thus 

{6. 6) 

is a satisfactory approximation to x(s) on 0 ~ s ~ 1. 

14'or ~ = ..10, M( ~ K) = 10/TT 2 > 1, so that the conclition 

for the convergence of the Neumann process is no longer 

satisfied; however, -~K is positive semi-definite, and 

thus the Wiarda process may be used. Take · 

and x 0 (s) = s2; hence (1 - e) = 0 . 50350 1 and (4.13) will 

be used to obtain an estimate for n .. The solution of the 

inequality 

(6 . 8) llx - xn ll S.. (10) (O . !)OJ50)D/(-rr 2 -/5) < 0.01 

for n gives n . ~ 6. From (4. 6), 

(6 . 9) ~ (s) = a2 - (0,.4J..375)s(l-s.3), 

and as 

(6. 10) 

from (4. 11), 

(.6. 11) 

The next application of (4. 6) gives 

(6.12) x2 (s) = a2 + (0. 342J8)s(l•s2) • (0.62207)a(l•s3) 

- (0 . 06848)s(l-s5), 

and thus from (4. 11), 
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(6. 13) 

as 

(6 . 14) 

The third step of the process gives 

x (s) = s2 + (0 . 46050)s(l-s2) • (0. 72696)s(l•s3)
3 

+ {0.08500}s(l-s4} • (O. l3542)s(l-s5) 

- (0 . 00607)s(l-s1), 

with 

(6. 16) 

by (6. 13) and (4.12). so x (s) is the desirod approximation.
3

In practice. error bounds of the same type as (3. 11) 1 

(3. 16) . and () . 18) seem to exhibit a considerable degree 

of "pessimism", so that the "step•wise" error bounds such 

as (3. 15) are of perhaps greater practicality, even with 

regard to the additiona! labor of calculating llxn - xn-111 

at each step. In the example just given, a satisfactory 

approximation to x(s) was obtained in ~lf the number of 

steps predicted by the use of an error bound of the type 

{). 18) . 

For ;>. = 25. M('- K) = 25/rr2 >1, and the Neumann pro­

cess fails to converge in this case; also 

(6 . 17) 

so that -~K is not positive semi• detin1te , and the Wiarda 

process also fails to converge . However, as K{s , t) is 
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symmetric • and TT 2 < ~ < 4n~ 1 the process defined by <4•14) 

and (4. 15) is applicable . Choose 

(6. 18) 9 =.. 0. 28304 < 1/ [l • + 25/,.2] ; 

from (4. 20), 

(6. 19) p = (l - 25/4~>2 =0. 13450. 
For x0(s) =s2, the number of stops necessary may be esti~ 

mated from (4. 25} , n being taken to bo the smallest positive 

integer satisf'ying 

(6. 20} 1/x - xnll ~ (2 . 5330J)(0. 98922)n/(0. 085l3} < O. Ol, 

which is n = 727. TPe actual computation in this case will 

be very lab~rious to carry out without the use of a comput­

ing tDa:Chine . .Ho ever, as 

(6.21) Ksj = s(l- sJ+l)/ [{j +l)(j+2)] 

for all non-negative integers j, the 11 programm1ng" of the 

computation for a high-speed computing machine in this 

case is relatively simple, provided that x (s) is taken
0 

to be a polynomial in s . 
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