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ERROR BOUNDS FOR ITERATIVE SOLUTIONS OF
PREDHOLM INTEGRAL EQUATIONS

INTRODUCTION

Many differential equations of importance in mathe-
matical physics, together with their boundary conditions,
may be refornmlated in terms of a single linear Ilntegral
equation of Fredholm type and second kind,

: b
(1.1) y(s) =x(s) - &IK(a,t)x(t)dt, a<ssb
a

where x(s) is the unknown funetion, y(s) and K(s,t) are
known functions which satisfy conditions to be set forth
later, and ) is a parameter (12, pp. 514=523). 'The solu=-
tion of the integral equation (1.l1l) in these cases, if
it can be obtained, gives at once the solution of the
"boundary value problem" associated with the given dif-
ferential equation, and thus the use of integral equations
affords, at least in theory, a method of great convenience
for dealing with physical problems.

Unfortunately, Fredholm's general theorem concerning
the existence and multiplicity of solutions x(s) of (1l.l)
does not give a practical method for computing x(s) except
in special cases (7, pp. 365=390)., For practical purposes,
however, a satisfactory approximation to x(s) may be of
great value. Many methods have been developed for finding
approximate solutions of (l.l) (5, pp. 12-122), The methods
considered here will be iterative methods; that is,
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procedures which determine a sequence of functions xots)‘
xl(a),....xn(a),... such that xn(s) converges uniformly to
x(s) on the interval a < s < b with increasing n, and, in
general, xn(s) is computed from the known values of xO(s).
censx ,(8)s

Most iterative processes appear as modifications of
the method due to Neumann (6, pp. 119-120), which converges
provided that |21 < ¢, where ¢ is a constant depending on
K(s,t). As most equations of the type (l.l) which are of
importance in physics have a unique solution x(s) except
for a countable set of values of A, the usefulness of the
Neumann process 1s somewhat limited (6, pp. 107-112), 1In
the consideration of a physical problem involving the load-
ing of an elastic beam, Wiarda obtained an integral equation
of the type (1.1) with|)|> ¢; in order to deal with this
problem, an iterative method was devised which converges
provided that 2K(s,t) < 0, a <s,t <b (15, pp. 119-128).
The iterative process devised by Wiarda was further genere
alized by Bliekmer (l, ppe. 197-206) and wagner (ll, pp. 23
30) to obtain iterative processes which converge under
still less restrictive assumptions. More recently, Bllclmer
has stated a process whic.h converges in the physically
1mp?rtant case that X(s,t) 1s symmetric; that is,
K(s,t) = K(t,8), a < 8,t <b, and that a unique solution
of (1.1) exists, (5, pp. 68<71). _

A somewhat different approach to the solution of (1,1)
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by iteration has been taken by Samuelson (13, pp. 276-286);
if (1.1) has a unique solution x(s), then there exlists a
function G(s,t3)) such that

(1.2) x(s) = y(s) +j§(a,t)))¥(t)dt, a<s=hn
e

In case that a sufficiently good approximation J(s,t3)) to
G(s,t32) 1s kmown, it 1s possible to obtain an iterative
process which converges to the solution of (1l.1). The idea
behind all of these iterative processes is the samej the
use of the result of substituting an approximation to x(s)
into (1l.1) to improve the approximation further, and thus

a unified treatment of these various methods will be made,
from which sufficient conditions for thelr convergence will
be obtained.

For a given iterative process to be useful for practi-
cal computation, it is necessary to know more than that the
process converges; if xn(s) denotes the functlion obtained
as the result of n steps of the given iterative process,
i1t 1s necessary to know to what degree of accuracy (in
some sense) that xn(s) approximates x(s) on the interval
a <8< b. Explicit relations for estimating the accuracy
of the Neumann process have been given by Lonseth (11, pp.
353-358); similar error bounds will be supplied here for
some of the more general methods ecited, These results are
believed to be new and to make possible the practical appli=

cation of a wider variety of iterative processes to the



solution of the equation (1l.1).

The iterative processes considered follow a set pro-
cedure to obtain successive approximations to x(s), and
thus they are readily adaptable for use by high-speed come
puting machines. As the use of such machines generally
involve_a the employment of some method of approximate intee
gration, an additional error 1s introduced intec the itera-
tive process. The error bounds given will be extended to
ineclude the use of methods of approximate integration.
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PRELIMINARY DEFINITIONS AND RESULTS

The formulation and proofs of the results in this
paper, and, in particular, the precise definition of the
"degree of accuracy" with which a function :h(’) "approxi-
mates" a function x(s) on the interval a < s < b wlll be
made to depend on the theory of normed linear vector spaces,
and of certain types of operators in these spaces. Only a
brief outline of the essential pért of the theory will be
given, and many results will be stated without proof.
Proofs, further elaborations of the theory, and additional
references will be found in the works cited.

Consider the set (C) of all functions x = x(s) which
are real, single-valued, and continuous on the interval
a< s < b, As a consequence of the ordlnary properties of
these functions, if x is an element of (C), and @ is any
real number, then €x is also an element of (C); if x and
¥y are any two elements of (C), so is their sum x + y and
product xy. The functions z(s)=0 and u(s)=1, a<s <b,
are the elements of (C) such that, for all x in (C),

X +2=xand xu =x; z and u will be denoted by O and 1,
respectively. The operations of addition and rmltiplica-
tion obey all of the ordinary algebraic rules. Another
type of multiplication, the inner product (x,y) of two

elements x and y of (C), which is defined to be the real
number
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(2.1) (x,5) = Jx(s)y(a)da
S .

is commtative, and is distributive over addition,

If with every element x of (C) there is associated a
finite, non-negative real number |x||, called the norm of
X, which satisfies the following conditions:

(1) Ixll >0 ir x# 0, loll=o,

(2) llex||= le|*||x|l for any real number o,

(3) Ix +yll<lxll+|lyll for all x,y in (C),

the set (C) forms what is known as a normed linear vector

space (2, ps 33). There are many possible ways to define
[x||s, for example, as
(2.2) x|l = max|x(s)] on a < s < b,

or, as the square of every element of (C) is integrable, as

b
(2.3) ||x||=(J12(8)d!) 1/2 = A/ (x,x),
a

(10, ppe 206=207). For any real number v =1, a definition
of ||x|| satisfying (1), (2), and (3) is

(244) ]Ix\|=(ﬁ§(s)| Paz) /p,

(95 ppe 134-150). The practical importance of the abstract
idea of the norm of a function is that 1t makes possible
the precise definition of the error involved in the approx=-
imation of a function x(s) by a funetion xn(s) as the

non-negative real number [x - x |.



The error estimates given will thus be estimates of
the size of the norm ||x = xh"' These results will be valid
for any definition of the norm satisfying the given con=-
ditions, so the computer may choose the one which will give
meaningful results for his particular problem. For example,
the norm as defined by (2.2) will give the maximum value
of the "point-wise" error |x(s) = xn(a)l on the interval
a< 8< b, while the norm as defined by (2.3) will give the
"global" or "least-squares" error of the approximation xn(a)
to x(s) on the same interval. If, for all definitions of
the norm, ||x - xJI—rO as n—> %, the use of the norm (2.2)
shows that the functions In(l) converge uniformly to the
function x(s) on the interval a< s < b as n—>w,

A transformation T which carries each element x of
(C) into an element y of (C), in symbols, Tx = y, is said
to be in (C)e« T is sald to be additive if T(x+y)=Tx+Ty
for all x,y in (C), and to be continuous if ||x = ;Jl—% 0
as n—>o implies that |[Tx = TxJl-> 0 as n >», A continuous
and additive T 1s called linear, and the non-negative real

numbers

(2.5) M(T) = Lowsbe(li2x))/[x]D), [Ix]l # 0,
and

(2.6) m(T) = goloba (l[2xl/[Ix[D), [Ix|| # 0,

exist for a linear T (3, pe« 54)« M(T) and m(T) are called
the upper bound and lower bound of T, respectively, From
their definitions,



(2.7) m(T) x|l < |ITx || < M(T)|Ix]]

for all x in (C). A linear T is also homogeneous, (3, pe
36), so for any real number 8,

(2.8) M(er) = |e|u(T).

The transformation I such that Ix=x for all x in (C)
is defined to be the identity transformation in (C). From
(2.5) and (2.6),

(2.9) m(I)= M(I) = 1.

The sum T, + T, of two linear transformations T, and T, in
(C) is defined to be the transformation T such that

T = 'I'lx + sz for all x in (C), and is written T= T_ + T_s

1 2
The product T1T2 of two linear transformations T, and T_. in

(C) 1s defined to be the transformation T such tll;at :

™™ = Tl('rzx) for all x in (C), and 1s written T = Tl'rz.

Furthermore,

(2.10) M(Ty+ T,) < M(Ty) + M(T,),

(2.11) M(T,T,) < M(T,)N(T,)

for all linear transformations '1'1,'1'2 in (C) (10, pe 194).
The inverse of the transformation T in (C) is defined

to be the transformation T~ such that T-lr=77-l=1 ir

such exists. The inverse of a linear transformation T,

if it exists, is likewise linear, and if also m(T)>0, then

(2.12) m(T)u(r"t) = 1,

(10, p. 194). The nth power T® of a linear transformation

T in (C) is defined to be T2 =T1T"1 for all positive inte-

gers n, with TO = I by definition. Addition of linear
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transformations is associative and commutative; multiplica-
tion 1s associative and distributive over addition, but is
not commutative in general, although multiplication of
powers of the same linear transformation is commutative
(10, pe. 194).

A linear transformation T in (C) is said to be
completely continuous if ([x - x,1,y) > 0 as n->o for
all y in (C) implies that ||Tx -Tx,[l+0 as n—>(1, pp. 2-3).
A transformation in (C) is sometimes referred to as an
operator in (C). In what follows, all operators considered
are completely continuous linear transformations in (C),
unless the contrary 1s explicltly stated.

If Q is an operator in (C), the transformation (I - Q)
has the unique inverse

(2413) 3 % QJ,

provided that M(Q) < 1 (10, ppe 194~195). Thus

(2.14) 1 - H(Q) < m(I-Q) < M(I-Q) <1+ u(Q)

from (2.10), (2.11), and (2.12). An operator Q in (C) is
said to be positive definite if (Qx,x) > 0 for all x # 0
in (C), and to be positive semi-definite if (Qx,x) => 0

for all x in (C). The sum and product of two positive
(semi-)definite operators in (C) is likewise positive
(semi~)definite, and if Q is positive definite,

(2.15) lx + qxll > |||

for all x # 0 in (C), while if Q is positive semi-definite,
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(2.16) Ix + ox|| 2 lIx[l
for all x in (C).
If for some operator K in (C) there exists a number A
such that for some x# 0 in (C), AEKx = x, ) 1s sald to be a
characteristic value of K, and x is called a characteristic

function belonging to A. If the function K(s,t) is real,
single-valued, and continuous on the square a < s,t < b,

the linear integral operator K defined by

b
(217) Ke = JK(a,t)x(t)d‘a, a<s<b,
A

for all x in (C) satisfies the conditions of linearity and
complete continulty imposed on operators in (C), as the
consequence of well-known theorems concerning Rlemann inte-
grals (16, pp. 126-15L). The function K(s,t) is called the
kernel of the linear integral operator K. The sum K=K1+K2
of two linear integral operators KK, with kernels Klta,t)
and Ka(a,t), respectively, is a linear integral operator »
with the kermel

(2.18) K(s,t) = Ll[a,t) +K2(a,t),

and the product K = K1K2 of two linear integral operators
is a linear integral operator with the kernel

b
(2.19) K(s,t) = JKl(a,r)Ka(r,t)dr, a < 8,t <b,
a

where Kl(a.t) and B:zta,t) are the kernels of K, and Ka.

respectively (5, p. 3).



A GENERAL ITERATIVE METHOD

The integral equation (1l.l) may be put in the form
(3.1) y = x - )Kx,
where 1t is assumed that y is in (C) and K is a linear
integral operator in (C). Fredholm's general theorem
(75 ppe 365=390) guarantees the existence of a unique
solution x in (C) of (3.1), provided that X is not a char-
acteristic value of K, in particular, x=0if y =0, In
what follows, it will be assumed that y # 0 and ) 1s not
a characteristic value of K, unless the contrary is explicit-
ly stated.

All iterative processes considered are of the form
(3.2) X, = Xp.q = P(I =2K)x, 1 + Py,
where P is an operator in (C). To solve (3.1) by the iter-
ative process (3.2), an initial funection X in (¢) is cho=-
sen, and repeated applications of (3.2) result in a sequence
of functions XysXoseeesX geee in (C)s If for some x5 in
(C)s lIx = x|l >0 as n—+°, the given iterative process
is sald to be convergent. If the process converges for
all x, in (C), it is defined to be totally convergent,
a definition originating with Hans Blclmer (5, p. 68),
For convenience of notation, take
(3¢3) Q = P(I = )K),

so Q is also an operator in (C).
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Convergence Theorem: The iterative process defined by

(3.2) is totally convergent, provided that M(I - Q) <1,

which is always the case if Q 1s positive definite and

M(Q) <1.

Proof: From (3.2),

(3s44) X =Xg= X = Xy7 + P(I = JK)x, 4 =Py
SETERO TR e
=(I=Qx=x_,)

as y = (I = AK)x, and thus Py = Qx. By induction on n,

(3.5) x = x, =(I=Q)x =~ xy)
for all positive integers n, and thus from (2.7) and (2.,11),
(346) lx = x,ll <M1 = Q)lIx - xll,

from which it follows that M(I - Q) < 1 implies that
lx = x Il >0 as n—°, This proves the first part of the
theorem. For M(Q) <1, by (2.13),

(3.7) (1 - =1 = % ad.

If Q is positive definite, from (2.6) .and (2.15),
(3.8) 0<p=m(Q) <1,

provided that M(Q) < 1, and from (2.15) and (3.7),
(349) m[(x - @71 2 /0 - p
Therefore, from (2.12),

(3.10) M(I - Q) <1~ <1,

which completes the proof of the theorem,

General expressions for error estimates for the
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process (3.2) will be obtained on the assumption that the
conditions for total convergence are satisfied. First,
for Q positive definite and M(Q) < 1, from (3.6) and (3.10),
(3.11) = = x I < (1« p)Rllx = xll,
an error estimate which 1s useful if a bound is lnown for

the value of ||x = x In case that nothing is known cone-

Il «
0
cerning the size of ||x = xoﬂ, error estimates may be derived

in the following fashion: From (3.2),

(3.12) X, =X, =Qx-x .),
which implies that

(3413) =, = = i 2plx ==l
From (3.4) and (3.10),

(3¢14) Ilx = x,ll S (1 = plllx = x,_41l,
and thus

(3.15) Iz - xgll < 2By - wngll-

From (3.11) and (3.13), if k is a positive integer,
k
(3.16) Ix = xp ]l < -‘L;ﬂ Ixg = xpylle

If the choice X, =7 1s made, from (3.2),
(3.17) X, = ¥ = PAKy,
and thus from (3.16),

(3.18) Ix = x || < -(-E%E).nM(P)M(AK)(Iy I,

~ all of the above inequalities holding for all positive



integers n,
Now, if M(I = Q) <1, from (2.4),
(3.19) p=m(Q) >1 - MI=-Q)>0,
and thus in all of the inequalities given, B may be re-
placed by 1 = M(I = Q) by (3.6) and (3.19), as (3.19)
states that ,
(3.20) 1/p<t/R - u(z - Q)],
provided that M(I - Q) <1,



EXPLICIT ERROR BOUNDS

The results found for the iterative process (3.2)
were derived without actually specifying the operator
P. This operator will now be specified to obtain explicit
error bounds for iterative processes of practical impor-
tance.

The Neumann process
(4.1) X,= ¥+ x4
is totally convergent, provided that M(AK) <1l. This
process 1s (3.2) with P= I, and thus Q = (I « AK). As
(I = Q)= 2K, it follows that M(AK) < 1 implies M(I-Q) <1,
and the total convergence of the Neumann process is thus
a consequence of the Convergence Theorem, Error bounds
for the Neumann process are obtained from the general
expressions by substltuting 1 - M(AK) for p, which is
valid by (3.19) and (3.20). From (3.11),

(4e2) Iz = x|l < ¥OR)Ix - x|l
from (3.15),
(4e3) - x| < _MOK) o o
N Ix = x,ll £ YTy | %0 = xn-as
from (3.16), for any positive integer k,
k
(lel) = = Ryl € TERELx, - 5y 1

and from (3.,18), as M(P) = M(I) = 1, for Xy = T»
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+1
. " < X70K) v
(4.5) ||= x““"l-umx) v

the above inequalities holding for all positive integers n.
The Wiarda process

(46) X, = (1 = 8)x,7 + 8AKx,_y + €y

is totally convergent, provided that -)K 1s positive semi-

definite and € is a real number such that

(4e7) 0 <o <1/[1+ M(OK)].

The process (4.6) is (3.2) with P = €I, and thus Q=6(I=)K).

If «)K is positive semi-definite, Q is positive definite,

and the condition (4.7) insures that M(Q) < 1; the total

convergence of the Wiarda process thus follows from the

Convergence Theorem., From (2.16),

(4.8) p=mnQ) = m[e(I - 2K)] >
for «2K positive semi-definite, and as 0 < @ <1,
(&.9) 1""’.151-90

Error bounds for the Wiarda process, therefore, may be
obtalned by substituting these values into the general

expressions. From (3.1ll1),

(410) % = x || < (1= @8)%x - x,ll;
from (3.15)0
(4a11) e = xoll < 22y = zpoalls

from (3.16), for any positive integer k,

‘ - o)k
(h.12) I = Epdl = 22y = 2ol
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and from (3.18), as M(P) = M(6I) = &, for x, = ¥,
(4.13) Ix = x Il < (1 = &) u(K)llyll,
the above inequalities holding for all positive integers n.
An 1terative process due to Blickner,

(h-lm) xﬂ = (1 + G)Vn_l - Oi\Kvn_l - 93"
where
(4.15) Vo, =(1- 8)x . + @iEx, _, + €y,

is totally convergent, provided that & satisfies (4.7)

and the kernel K(s,t) of K is symmetric. From (4.14) and
(4+15),

(4416) x, = x _, - €(I = XK)Px _, + 63(I - AK)y,
so the iterative process defined by (4.ll) and (4.15) is
(3.2) with P = @2(I = AK), Q = €2(I = AK)2, If the kernel
K(s,t) of K is symmetric, direct calculation from (2.1)
verifies that

(4a17) (22K2x,x) = (AKx,AKx)
for all x in (C), and thus
(418) ([1-2K)2x,x) = (x,x) - 2(2Kx,x) + (22K2x,x)

= (x,x) = 2(DKx,x) + (AKx,AKx)

= ( [X=2K]x, [I-2K]x),
which, for all x # 0 in (C) is the integral of the square
of a function which is not identically zero over the range
of integration, and thus is positive. The operator (I-AK)2
is therefore positive definite, from which it follows that
Q 1s positive definite, and the condition (4.7) insures
that M(Q) < 1. The total convergence of the process
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defined by (L4.l4) and (4.15) thus follows from the Conver=-
gence Theorem.

It is known that all of the characteristic values of
a2 linear integral operator K with a symmetric kernel are
real (6, pp. 107-112), and that every such operator has
at least one characteristic value (15, pp. 79-84). If K
has only one characteristic wvalue ) i#, then
(419) m[(I =2K)2]=p = (1= Hqx)2,
while if QI. and :\R are two characteristic values of K such
that :'\L < A <9\R, and there are no characteristic values
of K lying between ﬁL and }\R. then

(4+20) p =n[(I -a)2] =min(1 - ¥ap)3,(1 - ¥a,)2],
(S, ppe 10«11 and 6, pp. 112-113). Thus
(4e21) p = n(Q) = 6%p,

and explicit error bounds for the process defined by
(4s1)) and (4.15) may be obtained by substituting this
value into the general expressions. From (3,11),
(4o22) lx = x4l < (1 = 6%p)%|x = xoll3

from (3.15),

(4e23) lIx = xpll g L2 = :2 Ljxn = xpaalls

from (3.16), for any positive integer k,

> 4 k
(he24) Ix = =00l < {3 07";29) %, = %o 1013

and from (3.18), as M(P) = u[63(I - 2K)] <6, for x5=7,
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(11025) = = xll < a0yl

(1 - &%p)
ep

the above inequalities holding for all positive integers n.
In the more general iterative processes suggested by

Bﬁckner. P, and hence Q, has the form of a polynomial in

K (5, pp. 68-71); that is, an operator obtained from I and

K by a finite number of additions, multiplications, and
miltiplications by constants. Any iterative process ob-
tained in this fashion is totally convergent, provided
that Q satisfies the conditions of the Gonvergenno Theoren,
The characteristic values of Q may be obtained in terms
of the characteristic values of K (5, pp. 10-11l), from
which p = m(Q) can be obtained by use of the maximumeminie
mum properties of the characteristic values of Q (6, pp.
112-113), and thus explicit evaluations of the general
error bounds may be made.

Samuelson (13, ppe 278«279) takes P = (I + J), where
J is an approximation to the resolvent operator G which
gives the solution of (3.1) as

(1]-.26) X = (I -+ G)Yo
For P = (I + G), from (3.2)’
(4+27) Xy = X9 = (I+G)(I=2K)xy+ (I+0)y,

and thus x, = x for all xj in (C), as (I + G) is the in-
verse of (I = 2K), the exact solution of (3.1) being ob-

tained in one step. In case that some expression for G
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is kmown, the Samuelson process
(4428) X, =Xpq = (I +JINI =2K)x, 4 +(I+ 3y
offers the possibility of attaining a satisfactory appro:if
mation to x in a small number of steps., The process defined
by (4.28) is totally convergent, provided that

(429) MG - J) <1/[1+ M(XK)],
as
(4+30) Q = (I +J)(I =« 2K)

=1+ @) - (¢ = 3N -2K)

=I = (G = J)(I - AK),
and thus (I = Q) = (G = J)(I = 2K), and M(I = Q) <1 by
(4+29); therefore, the total convergence of the process
defined by (4.28) i1s a consequence of the Convergence
Theorem, As I _ ‘
(4e31) 1>0=uG- J)[1+ MDK)] >NI ~Q),
the quantity 1 - & may be substituted for P in the general
expressions, by (3.19) and (3.20), to obtain explicit

error bounds for the Samuelson process, From (3.1l),

(1e32) = = x Il < %iix = xylls
from (3015).
(4e33) I = xyll < +Elly = Hpaalls

from (3.16), for any positive integer k,

oK

(e 3L) I= = Znol £ +—l%n = Zn-1lls

and from (3.18), as M(P) = M(I + J) < 1+M(J), for X5 = ¥»
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(4+35) I = xyll < L=+ w@]uOK5I,

the above inequalities holding for all positive integers n.
Estimates for M(G - J) for a certain method of obtalning
J from a known expression for G have been given (10, pp.
207-208).

Wagner (1, pp. 23«2l) considers the process (3.2)

with
b -1
(4+36) P= 9(1 - 2 K(B.t)dia I,
a
0< 8< 1, so that
(4+37) Q= 8(I = 2K)
(I = 2K)u

where u = u(s) = 1, a< 8 < b, If K(s,t) is such that
b

(4+38) f(s)=1- )JK(s.tldt #0,a<8<b,
a

then, as f(s) is continuous, £(s) > 0 or f(s) < 0,
a <8< Db, and thus Q 1s positive definite., If

(4+39) g =min|f(s)|, a< s < b,

K(s,t) satisfies (4.38), and & is chosen so that
(4e40) 0< 8 <¢/[1+uAK)],

then M(Q) < 1, and the total convergence of the Wagner
process

(Leli1) X, = Xy - (8/£)(I = 2K)x,_, + (8/f)y

is assured by the Convergence Theorem. As
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(Lely2) 1> p=mn(Q) > ed/[1+ MOK)] = p,
this value may therefore be substituted into the general
expressions to obtain explicit error bounds for the Wagner

process. From (3.11),

(hels3) Ix = xpll < (1= p)Yx = xol3
from (3-1§Ti
(o) = =zl < 1—;4‘3![% - %3
from (3.16), for any positive integer k,
(1 - p)k
(4e145) = = xppll < -—P-E—Hﬁ = Xpalls
and from (3.18), as M(P) = N(61/f) ¢ &/#, for x,= 7y,
' (1 -p)2
(Lelt6) Ix - x, [ & --f;,_—onux)llyllo

the above inequalities holding for all positive integers n.
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PRACTICAL APPLICATION OF ITERATIVE PROCESSES

As the results glven to this point were obtained on
the assumption that all integrations were carried out
exactly, some modification of them is necessary to make
allowance for the use of some method of approximate inte-
gration in the actual computation. The process of approx-
imate integration can be thought of as resulting in the
replacement of X, by X, S0 that
(5.1) |= = xg[l < ||x = x|l + ||xn - xﬁll.
where "xn - xgllia a measure of the error of the approxi-
mate integration. From (3.5),

n
(52) |Ix = xg|| < |Ix = xn|| +§ HJ(I-Q)"ln_j “ xg-J"'

By (3.10), M(I -« Q) may be replaced by (1 = p) in (5.2)
to obtain the equivalent expression

n
(5:3) Ix = x|l < llx = = |l + ‘Fd (1 = p)x, = =gl

AEO<(1-}1)<1.

(Sels) % (1-}1)1<g 1=l =17,

hence, for

(5-5) E= . ’
?3“5 x|l

(546) I= = xgll< Ix = x, 1+ &/,

where the estimate for |x - x |l 1s obtained from the


http:appro.x1

explicit error bounds for the iterative process used.
Most of the error bounds stated involve the number

M(2K), which is rarely known exactly. For a given choice

of the definition of the norm, however, it is usually

possible to obtain a satisfactory estimate for M(DK).

For example, for the norm as defined by (2.2),

b
(57) MONK) < InlmxIaIK(s,t)ldt, P

and for the norm as defined by (2.3),
b (b

(58) M(OK) < |g|(J J Ka(s,t)dadt)l/z.
a’a

(11, pe 357)e In order to make use of the error bounds
for the iterative process defined by (L4.l4) and (4.15), the
computer must know the values of )L and.}R, or at least
values 2, X, such that QL <A<a<?y < Ag Methods for
obtaining ) and X are known (5, pp. 50-55 and 17, pp. 15-38),
and thus it 1s possible to obtain a lower bound for Pe
Generally speaking, the lterative processes considered
are rather slowly convergent, which may be of little cone
sequence if the computation is carried out by machine.
However, methods for accelerating the convergence of iter-
ative processes have been given by Lonseth (11, pp. 354-355)
and Samuelson (13, pp. 279-281); these methods may prove
valuable in case that they materially shorten the computa-
tion, even though they obtain more rapid convergence at

the cost of an increase in complexity,
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NUMERICAL EXAMPLE

In order to illustrate the actual application of some
of the iterative processes and error bounds given, an

approximate solution of the integral equation

1
(6+1) 52 = x(s) - ;\jg(a.t)x(t)dt, 0gsgl,
where
(6.2) K(syst) =8(l ~-t), 0<8<ct<l,

=t(l=s8),0<t<s<1,

~will be sought for values -1, <10, 25 of A\, For each value
of ) considered, it 1s desired to find an approximation
xn(s) to the solution x(s) of (6.1) such that, for the norm
as defined by (2.3),

(6.3) Ix = x,l <0.01.

The characteristic values of K are known to be A, = n°r2,
(n =1,2,40.), and thus M(K) = 1/1° (8, p. 8 and 6, pp.
112-11l;); no use of the exact solution of (6.1) will be
made.

Por 2= <1, M(AK) = 1/‘!1‘2 <1, and thus the Neumann
process may be used. As no approximation to x(s) is assumed
to be known, take
(6.4) x,(s) = 82, 05 s < 1,

Here |82 || = 1A/5. 1In order to estimate the value of n
for which (6,3) will hold, (4.5) is used, n being taken
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to be the smallest positive integer for which

(6.5)  |Ix = xgl< (1/A2)™L/[(1 - 1/72)yB] <0.0L.

The solution of the inequality (6.5) for n ylelds n > 1,
and thus

(6.6) x,(8) = 82 -« 8(1 - 83)/12

is a satisfactory approximation to x(s) on 0 < s < 1.

For A= =10, M()K) = 10/72 > 1, so that the condition
for the convergence of the Neumann process is no longer
satisfied; however, «)K is positive semi-definite, and
thus the Wiarda process may be used. Take
(67) 8 = 0.49650 < 1/(1 + 10/x2),
and x,(s) = s%; hence (1 - @) = 0.50350, and (4.13) will
be used to obtain an estimate for n. The solution of the
inequality
(6:8) |lx = x_|| < (10)(0.50350)%/(n2{3) < 0,01
for n gives n > 6, From (4.6),

(649) x,(s) = 82 = (0.41375)s(1-83),
and as

(6410) =y = xoll = 0413792,

from (4.11),

(6411) [|x - x.lll < 0.1,

The next application of (4.6) gives

(6s12)  x5(s) = 82 + (0.34238)8(1-82) = (0.62207)8(1~s3)
- (0.06848)s(1-8%),

and thus from (4.11),
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(6413) Ix = x,|l < 0.0116,
as
(6.14) llx?_ - x, |l = 0,01140.
The third step of the process gives
(6.15) x3(a) = 82 4+ (0,46050)8(1=82) = (0,72696)s(1=s3)
+ (0,08500)s(1-s4) = (0.13542)s(1-85)
- (0,00607)s(1-s7),

with
(6416) | = x3|| < 0,006
by (6.13) and (4.12), so x3(s) is the desired approximation.
In practice, error bounds of the same type as (3.11l),
(3.16), and (3.18) seem to exhibit a considerable degree
of "pessimism", so that the "step-wise" error bounds such
as (3.15) are of perhaps greater practicality, even with
regard to the additional labor of calculating ||xn - xn_l"
at each step. In the example just given, a satisfactory
approximation to x(s) was obtained in half the number of
steps predicted by the use of an error bound of the type
(3.18).

For )= 25, M(AK) = 25/12 > 1, and the Neumann pro=-
cess fails to converge in this case; also
(6.17) (=2Ks,s) = -(25/6)[}2(1-32)& = =5/9 < 0,
so that «)K 1s not positive semledefinite, and the Wiarda

process also falls to converge. However, as K(s,t) is
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gymmetric, and @< A< Ln2, the process defined by (L.1l)
and (4.15) is applicable. Choose '

(6418) e = 0.28304 < 1/[1 + 25/+2];
from (4.20),
(6419) p = (1 = 25/4x2)2 = 0.13450.

For xo(a) = 82, the number of steps necessary may be esti-
mated from (4.25), n being taken to be the smallest positive
integer satisfying

(6420) |[Ix = x,|| < (2453303)(0.98922)2/(0,08513) < 0,01,
which is n = 727 The actual computation in this case will
be very laborious to carry out without the use of a compute
ing machine. However, as

(6+21) ksd = s(1 - 83*1)/[(341) (3+2)]

for all non-negative integers j, the "programming" of the
computation for a high-speed computing machine in this

case is relatively simple, provided that xo(l) is taken

to be a polynomial in s,
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