
AN ABSRACT OF THE THESIS OF

Suchithra Narayanan for the degree of Doctor of Philosophy in Civil Engineering
presented on April 2. 1999. Title: Experimental Analysis of a Nonlinear Moored
Structure.

Abstract approved:
Solomon C.S. Yim, Ph.D.

Complex nonlinear and chaotic responses have been observed and demonstrated

in various compliant ocean systems characterized by a nonlinear mooring restoring force

and a coupled fluid-structure interaction exciting force. Such floating structures and

compliant systems have caused considerable concerns for the designer because the

dynamics are inherently nonlinear in nature. An experimental mooring system with two

configurations is chosen for this study. The first configuration, a single-degree-of-

freedom (SDOF) (horizontal or surge motion only), consists of a sphere moored by linear

elastic wires, with vertical displacement restricted by a horizontal rigid rod passing

through its center. In the second configuration, corresponding to the multi-degree-of-

freedom (MDOF) case (both horizontal and vertical (heave) motions), the restraining rod

is removed, thus allowing motion in the vertical direction. Both configurations exhibit

nonlinear behavior due to geometric (large mooring line angles) and complex

hydrodynamic excitations.

Three alternative multiple-input/single-output models -- nonlinear-structure

linearly-damped (NSLD) model, nonlinear-structure coupled hydrodynamically-damped

(NSCHD) model, and nonlinear-structure nonlinearly-damped (NSND) model --

distinguished by the different inputs and outputs used are derived for the SDOF system
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and a Reverse Multiple-Input/Single-Output (R-MI/SO) technique is adapted to

determine the most suitable analytical model. The NSND model developed and validated

for the SDOF configuration is extended to the MDOF system and it is found that the

identified system parameters simulate a response that matches the experimental data.

A sensitivity analysis reveals that the effects of system parameters on the

responses become more significant with an increase in wave excitation amplitude. For

the SDOF system, the identified nonlinear structural damping coefficient varies among

the tests whereas all the other system parameters remain relatively constant. With the rod

restricting the vertical motion of the sphere, the horizontal motion amplitude for the

SDOF system is smaller than that of the corresponding MDOF system without vertical

constraint.

Applying the R-MI/SO technique with the inertia coefficient, Cm varying within a

wide range shows that the identified natural frequency remains constant, but other system

parameters increase with increasing Cm. Also, the subharmonic response decreases with

increasing values of the inertia coefficient. Since inertia effects dominate the total forces,

the response is found to be insensitive to the hydrodynamic drag coefficient, Ca.
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EXPERIMENTAL ANALYSIS OF A NONLINEAR MOORED STRUCTURE

1. INTRODUCTION

1.1 Background

The highly nonlinear responses of compliant ocean structures characterized by a

large-geometry restoring force and a coupled fluid-structure interaction excitation (for

example data collection buoys, ships, barges, semi-submersibles, and tension-leg platforms)

are of great interest to ocean engineers and naval architects. An understanding of the

nonlinear responses including coexisting periodic (primary, subharmonic and

superharmonic resonance) and aperiodic (quasi-periodic and chaotic) phenomena is essential

to ensure sound engineering design and safe operation of these structures. To analyze these

nonlinear phenomena, deterministic analysis theories and numerical prediction techniques

have been developed for single-point mooring systems (Thompson et al 1984, Gottlieb et al

1992), ships (Bishop and Virgin 1988), and multi-point mooring systems (Bernitsas and

Chung 1990, Gottlieb and Yim 1992, 1993). Stochastic extensions of these analysis

techniques have also been developed by Lin and Yim (1996a & b, 1997) to provide

guidelines for interpreting field and experimental observations where randomness cannot be

neglected.

To calibrate the prediction capability of these techniques, a number of experiments

have been conducted (Thompson and Stewart 1987, Isaacson and Phadke 1994, Lin and

Yim 1998, Lin et al 1998). In order to compare analytical predictions to experimental

results, the system parameters employed in the analytical techniques need to be identified.
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Because the system is nonlinear, conventional system identification techniques based on

linear system theory (Bendat and Piersol 1993) are not applicable.

In 1988, Rice and Fitzpatrick proposed a spectral approach to the identification of

single-degree-of-freedom (SDOF) systems under random excitations, incorporating the

effects of stiffness and damping nonlinearities. Applicability of the method was illustrated

using numerically simulated random inputs (Rice and Fitzpatrick 1988). The method

performs the nonlinear operations in the time domain and the linear operations in the

frequency domain. This approach was later validated by Esmonde et al (1990) by modeling

and identifying the dynamic parameters associated with a highly nonlinear experimental

system using measured data.

Over the past decade, Bendat has independently developed a Reverse Multiple-

Input/Single-Output (R-MUSO) technique to determine amplitude and frequency dependent

properties of various nonlinear systems, including the Duffing and Van der Pol types,

subjected to broad band excitation inputs (Bendat et al 1992). Numerically simulated

random excitations were used to verify the technique.

For ocean engineering applications of Bendat's MI/S0 methods, both Direct and

Reverse methods have been applied to identify nonlinear system response properties of a

naval frigate and a barge using measured field data (Bendat 1998). In demonstrating the

applicability of the techniques, since the hydrodynamic force on the moving body excited by

the waves was not directly measured, linear equivalent wave input was used as an

approximation.

However, in general, the nonlinear wave forces on an offshore structure are evaluated

using the Morison formulation, Froude-Krylov theory or diffraction theory depending on the
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relative length scales of the waves and the structure. The Morison equation is applied when

the wavelength is large with respect to the longitudinal dimension and the wave height is a

small fraction of the wavelength (Sarpkaya and Isaacson 1981).

An experiment has been performed at the 0. H. Hinsdale Wave Laboratory at

Oregon State University (OSU) on a multi-point moored submerged sphere subject to wave

excitations (Lin et al 1998). In this study, the wave input and the system responses

measured during the test are employed for parameter identification. Three mathematical

models nonlinear-structure linearly-damped (NSLD) model, nonlinear-structure coupled

hydrodynamically-damped (NSCHD) model, and nonlinear-structure nonlinearly-damped

(NSND) model are derived to depict the physics of the fluid-structure interaction of the

SDOF, symmetric spherical mooring system submerged in ocean waves. A detailed study is

conducted on the different reverse dynamic models to arrive at the most physically

representative model for the ocean mooring system considered. Using the identified

properties from each model, numerical predictions of the dynamic response from each

model are compared with the experimental results in both time and frequency domains to

select the most suitable model for the system. The R-MI/S0 technique is also used to

evaluate the effects of variations in hydrodynamic coefficients on the system parameters and

the associated system responses.

Parameter identification of MDOF systems has been of great interest in the last

several years. Modal superposition and spectral techniques based on the assumption of

orthogonality of the normal modes of the system and the subsequent decoupling of the

equations using modal vectors are widely used for the analysis and identification of general

MDOF systems (Edwins 1984). However, as pointed out by Rice and Fitzpatrick (1991),
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these techniques are limited to linear systems only and not applicable when the systems

have significant modal coupling due to damping and/or nonlinearity.

The nonlinear identification technique based on the inversion approach of spectral

analysis for SDOF systems discussed earlier (Rice and Fitzpatrick 1988) was extended to

the identification of nonlinear parameters of MDOF systems (Rice and Fitzpatrick 1991).

Bendat et al (1992) independently developed the Reverse Multiple-Input/Single-Output (R-

MUSO) technique and applied it to several MDOF systems incorporating nonlinear damping

as well as nonlinear stiffness (see also Bendat and Piersol (1993)).

Additional experiments have been conducted at the 0. H. Hinsdale Wave

Laboratory at Oregon State University (OSU) on a multi-point moored submerged sphere

with the MDOF configuration subject to wave excitations. In this study, the nonlinear-

structure nonlinearly-damped (NSND) model developed and validated for the SDOF

constrained experimental system is extended to the MDOF system.

The NSND model requires the knowledge of inertia and drag coefficients, Cm and Cd

respectively for the evaluation of hydrodynamic force on the sphere. A vast library of

experimental data on hydrodynamic coefficients for cylinders as a function of the Keulegan-

Carpenter number (KC), the Reynolds number (Re) and the roughness parameters is

available from laboratory and field tests. The real fluid effects, proximity of boundaries,

fluid particle excursion lengths, surface roughness, vortex shedding, non-harmonic motions,

etc. tend to modify the forces on the cylinder thus yielding non-constant values for the

hydrodynamic coefficients. Theoretical studies of unsteady motions involving a sphere in a

real fluid have so far been restricted to small Reynolds numbers(Wang 1965; Hjelmfelt et al

1967). The Cm for fixed spheres was found to vary between 1.43 and 1.73 within the range
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of 0.2 5_ KC 5 3.2 (Harleman and Shapiro 1958). For a pilot study in the ocean on wave-

induced forces on a fixed sphere with the inertia forces dominating the total force and Re

ranging from 105 to 5 x 105, Grace and Zee (1977) found the average inertia coefficient to be

1.21 and the Ca to be 0.4. With the coefficients dependent on KC and Re, reasonable

estimates of the hydrodynamic coefficients for a sphere are within the following bounds, 0.1

5_ Ca 5_ 1.0 and 1.0 5_ Cm 1.5 (Grace and Casino 1969; Grace and Zee 1978).

Using the measured wave excitation and response data together with the identified

system parameters, a detailed study is conducted on the response behavior of both the

MDOF and the SDOF systems. The study includes a sensitivity analysis on system

parameters, and the effect of hydrodynamic coefficients on the response. Based on the

individual response behavior and the R-MI/SO technique application, a comparative

analysis between the two systems is performed.

1.2 Thesis Outline

An experiment was conducted at the 0. H. Hinsdale Wave Laboratory at OSU on a

multi-point moored submerged sphere (Yim et al 1993). A single-degree-of-freedom

(SDOF) and a multi-degree-of-freedom (MDOF) configuration were tested and the

measured input and output data are used for the parameter identification and analysis of the

system. The thesis is organized in four parts.

Chapter 2 discusses three alternate multiple-input/single-output (MI/SO) models for the

SDOF system and using the Reverse MI/SO (R-MI/S0) technique, the most suitable model

is selected. The effects of hydrodynamic inertia and drag coefficients on the nonlinear

response are evaluated with the aid of R-Mi/S0 technique.
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Chapter 3 extends the nonlinear-structure nonlinearly-damped (NSND) model

developed and validated for the SDOF system to MDOF system. The MDOF tests that

yield subharmonic responses are used for the application of R-MI/SO technique. Using the

identified parameters, a sensitivity analysis is performed to determine the effects of system

parameters on the identified response. The effects ofKeulegan-Carpenter number (KC) and

Reynolds number (Re) on the hydrodynamic coefficients are evaluated. A similar analysis

is conducted on the SDOF system using the identified system parameters. The subharmonic

surge response of both systems is compared inthe latter part of the chapter.

Additional tests on the MDOF system that yield superharmonic surge and heave

responses are analyzed in Chapter 4. The procedures developed in Chapter 3 for the MDOF

system are applied and the results are compared with the MDOF tests yielding subharmonic

response.

Chapter 5 summarizes the observations from the parameter identification and analysis of

SDOF and MDOF systems.



7

2. SDOF MODELING AND SYSTEM IDENTIFICATION

2.1 SDOF System Considered

The experimental model consists of a submerged moored neutrally buoyant sphere

excited by regular and random waves. Springs are attached to the sphere to provide the

restoring force with one series at an angle of 60° (four-point system) and another at 90° (two-

point system). Although the mooring lines are linearly elastic, depending on the mooring

angles, the restoring force may be nonlinear with stiffness nonlinearity varying from a

strongly nonlinear two-point system to an almost linear four-point system (Gottlieb and Yim

1992). To examine the nonlinear effects, the tests with the strongest nonlinear geometric

configuration subjected to periodic wave excitation with band-limited white noise are

considered in this study (Yim et al 1993).

Two configurations of the system are tested. The first is that of a single-degree-of-

freedom (SDOF) system with the sphere restricted to move only in the surge direction by

passing a rigid steel rod through the center of the sphere. The second is a multi-degree-of-

freedom (MDOF) system with both surge and heave (rod removed). The focus of this

chapter is on the modeling and parameter identification of the SDOF system. Plan and

profile views of this setup are given in Fig.2.1.

2.2 Governing Equations of Motion

The equations of motion for the SDOF moored structural system subject to periodic

waves perturbed with white noise excitation are derived in this section.
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The excitation force takes into account both nonlinear drag and inertia effects on a

submerged symmetric small body using the Morison equation (Sarpkaya and Isaacson

1981). Through an appropriate transformation, the randomness in the wave field is

incorporated into the hydrodynamic forcing terms. By considering surge as the generalized

displacement coordinate, the governing equation of motion for the SDOF mooring system

can be written as

mR(t) + Csk(t) + R(x(t)) = f (t) (2.1)

where m = mass of the sphere, go = hydrodynamic force acting on the sphere, Cs = linear

structural damping coefficient, R(x(t)) = nonlinear restoring force, x(t),*(t),R(t) are the

system response, velocity and acceleration respectively. In the SDOF model, due to the

presence of a rod passing through the center (used to prevent vertical (heave) and side

(sway) motions, Fig.2.1), the structural damping mechanism also include atime dependent

Coulomb friction component originating from the (time varying) lift force and combined

drag/lift moment. As a first approximation, it is assumed here that the structural damping

can be lumped to an equivalent linear structural-damping coefficient Cs. The nonlinear

restoring force and excitation force are described in the following subsections.

2.2.1 Restoring Force

The restoring force includes an elastic force due to the mooring lines and a vertical force due

to hydrostatic buoyancy. Since the sphere used for the experiment was neutrally buoyant,

the forcing caused by hydrostatic buoyancy is neglected (Yim et al 1993). The resulting

inline force R(x(t)) may be derived from a potential function V(x(t)) which describes the

pretensioned geometrical configuration of a symmetric small body (Gottlieb and Yim 1992).



wx(0)=K([11(x(0)-1c12 +[12(x(0-1cl2)

10

(2.2a)

where K = spring constant, = initial spring length, and 11 and 12 = spring lengths. With the

mooring angles attached at 90°, the spring lengths 11 and 12 can be expressed as

11,2 =1 = Vd2 + X(02
(2.2b)

where d = distance of the center of the sphere from the wall (Fig.2.1). Knowing that

R(x(t)) = N(x(0), the restoring force R(x(t)) in the surge direction is derived as given
dx

below:

R(x(t)) = 4Kx (t)(1
(2.3a)

The restoring force can be approximated by a high order polynomial obtained through a

least square approximation. Polynomials of various orders have been employed and an

optimum fit within the experimental range is identified. The selected polynomial is

expressed as

111(x(0):4 aix(t)-1-a2x(02 + a3x(t)3
(2.3b)

For the experimental model, a comparison of the approximate restoring force (R'(x(t)) in

Eq.2.3a) with the geometric model restoring force (R(x(t)) in Eq.2.3b) is given in Fig.2.2a.

It can be observed that R'(x(t)) matches very well with R(x(t)). A normalized (relative) error

measure,
IR(x(0) R' (x(t))I

, between the geometric model and approximate restoring
IR(x(0)1

force functions is given in Fig.2.2b. The error is found to be negligible (between 0.1 and

1%).
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Fig.2.2 Comparison between the actual and approximate restoring force functions: a)
force, b) relative error
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2.2.2 Excitation Force

Using linear wave theory as described in Chakrabarti (1987), the horizontal water

particle velocity is given by

cosh ks
u(t) = coa

sinh(kh)
cos(kx(t) cot)

(2.4a)

where u = water particle velocity in surge direction, a = dominant wave amplitude, w =

angular velocity, k = wave number, h = water depth and s = distance of the instantaneous

center of the sphere from the bottom.

The excitation waves can be considered as a randomly perturbed regular wave field.

With wave displacement, TKO, measured, Eq.(2.4a) can be approximated by

sib(
ks
ch)

u(t) =
sinh

(2.4b)

It is assumed that the random perturbations in the excitation are included in1(t), given by

11(t) = a cos(kx(t) cot + 4)) + (t)

where t(t) is a zero-mean delta-correlated white noise.

The horizontal water particle acceleration can also be approximated as

cosh ks
= r1(t)

sinh(kh)

(2.4c)

(2.5)

where a (t) is the water particle acceleration in surge direction.The system diagram for the

calculation of water particle velocity and acceleration from the experimental wave input is

given in Fig.2.3a.

When a rigid body is free to move in waves, an independent flow-fields (IFF) model

is used as an alternating form for Morison equation (Chakrabarti 1987). A linear
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superposition of two independent flow fields separating the wave motion and the structure

motion is used and given by

f(t) = pVC..1(t)- pVCak(t) + 2 ApCdu(t)lu(t)l-PiApCdik(t)1*(01

where

'ItV = D3

6

702

4

(2.6)

(2.7a)

(2.7b)

p = mass density, D = diameter of sphere, Ca = added mass coefficient, Cl --- nonlinear

structural damping coefficient, Cm = hydrodynamic inertia coefficient and Ca =

hydrodynamic drag coefficient. The values of Cm and Ca may be obtained from wave

experiments while the coefficients Ca and Cd' are derived from oscillating sphere in

otherwise calm water. Also

u D u( 'I'
C.,Cd = f

)
Rep = ` ,KCF = -1)

u D

(R e_ N =- k'D k°T°= )
u

,KCN =
D

(2.8a)

(2.8b)

where uo, xo = amplitudes of the water particle and structure velocity, respectively, T and To

= periods of oscillation of water particle and structure, respectively (they are often equal), u

= viscosity of the fluid, Re = Reynolds number, KC = Keulegan-Carpenter number. Note

that suffix 'F' refers to far field and suffix 'N' to near field as defined in Chakrabarti(1987).

The schematic diagram of the SDOF system using the 1FF model as a form of

Morison force is given in Fig.2.3b, which delineates Eqs.(2.1 and 2.6).
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A relative velocity (RV) model can also be used as an alternative form for Morison

equation to express the forces on the sphere which are given by

f(t) = pVCmii(t) ma5(t) + ApCd (u(t) k(t))1u(t) i(01
(2.9)

In this case Cm and Cd are given by

Cm,Cd
v mD v

r
0 )

= f(112F =
(2.10)

where vm = amplitude of v the relative velocity and Tr = combined period of vr. The

schematic diagram of the SDOF system with the RV model representing Eqs.(2.1 and 2.9) is

given in Fig.2.3c.

Laya et al (1984) discussed the region of applicability of the RV and 1FF models in

terms of reduced velocity, VR, defined by

u T
= °

D

(2.11)

It is observed that for low KC and high VR, as in the case of the experimental system

considered, the IFF model is more applicable. Due to the lack of a comprehensive

experimental study on the determination of the appropriate forms of the Morison equation

(which itself is empirical) for different combinations of parameters and experimental

settings, it has been difficult to assess the appropriateness of the various forms of the

Morison hydrodynamic force expression. However, the R-MI/SO technique can be used as

a tool to find the appropriate form of the equation best suitable for the experimental system

under consideration.
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-........--01. Linear wave theory ,-----ppp.

(a)

Approximation u,ti (a)

Fig.2.3 Schematic diagram of the SDOF system: a) system diagram for the calculation of wave velocity and acceleration, b)

RV model, c) IFF model
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2.3 R-MI/S0 Technique Modeling

The R-MI/SO technique can be applied to most nonlinear systems subjected to

random excitation irrespective of the nature of the distribution, e.g., Gaussian or non-

Gaussian (Bendat et al 1992). The relative contribution of linear and nonlinear system

properties, whether or not the system properties are frequency dependent, and how the

cumulative coherence functions are improved by adding nonlinear terms, can be determined

using this technique. For the application of the R-MUSO technique, three models that are

distinguished by the different inputs and outputs used, are derived and discussed below.

2.3.1 Nonlinear-Structure Linearly Damped Model

Rewriting the Eqs.(2.1,2.3 and 2.9) for the RV model, the nonlinear equation for the

nonlinear-structure linearly-damped (NSLD) model is

+ )ii(t) + Cai(t)+ aix(t) + a2x2(t)+ a3x 3 (t) = fa (t) (2.12a)

where

1 0
6

2 TE 3 .

fa (t) 2 PCd 4(u(t) i(t))1u(t) i(t)1+ p D Cinu(t)
(2.12b)

The nonlinear relative motion coupled damping is treated implicitly in the excitation force.

Values of the inertia and drag coefficients are assumed in order to evaluate the force fa given

by Eq.(2.12b), which is treated as the model input and the system response as the model

output. Fourier transforming both sides of Eq.(2.12a) gives the frequency domain relation

(a + j(27rf)C (2xf ) 2 On + Ma ))X(f) + A2 (f )X2 (f) + A3 (f)X3 (f) = Fa (f ) (2.13)

where
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Fa (f) = .3[fa (0]

X2(f) = z[x2(t)]

X3 (f ) = 31x3(01

A2 (f) = a2

A3 (f) = a3

(2.14a)

(2.14b)

(2.14c)

(2.14d)

(2.14e)

In the absence of nonlinear terms x2(t) and x3(t), 11(f) represents the frequency response

function of an ideal constant parameter linear system that relates the displacement output

x(t) to the force input t(t) given by

II(f) XV)
(f)Fa

[al + j(27cf)Cs (2nf )2 (m + ma )]-1

= al [1 (f/fn )2+ 2c s (f/fa

where the natural frequency fn and damping ratio C,s are defined, respectively, by

1 a1
fn

n 21t \1(11+111a)

Ss
2Va1(m +ma)

(2.15)

(2.16a)

C s (2.16b)

When the nonlinear term is present, H(1) relates the displacement output x(t) to an effective

force t(t) given by

fe fa (t) a2X2 (0 a3x3(t) (2.17)

The single-input/single-output nonlinear forward model with feedback Eq.(2.13) is

delineated in Fig.2.4a. Identification of this system requires a time-consuming iterative

approach because of the presence of the feed back terms, a2x2 and a3x3. Because the forward

way of analysis is difficult, an alternative reverse dynamic viewpoint is considered (Bendat
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et al 1992). To apply the R-MUSO technique, the input/output roles are mathematically

interchanged. This reverse dynamic system can be viewed as a three-input/single-output

nonlinear model without a feedback term as shown in Fig.2.4b.

The associated Fourier transform relation is given by

Fa (f) = (f)Xi (f ) + A2 (f)X2 (f) + A3 (f)X3 (f) (2.18a)

where

(f) = *(t)1 (2.19a)

AO, is defined as the linear impedance function which is given by

A1(f)= [H(f)]-1 = al (1 (f/fa )2 + 2 jCs (f/fa
(2.19b)

The system gain and phase factors ofEq.(2.19b) are given by

tAi (f)1= al (f/fn )2y±(2csoyfnvi

4)(f) = tan-11 2Cs 17%1
Ll (f/fa

(2.20a)

(2.20b)

The minimum gain factor occurs at the resonance frequency, fr, of the system. By

maximizing Eq.(2.19b), it can be shown that for structures having damping ratio Cs 0.5,

(Clough and Penzien 1993), resonance frequency is given by

fr = fa
(2.20c)

Hence the minimum value of gain factor that occurs at resonance is given by

IA1(fr)I = [2cs Cs 2

(2.20d)
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Fig.2.4 The nonlinear-structure linearly-damped (NSLD) model: a) with feedback, b)
without feedback
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For lightly damped systems, the resonance frequency, fr and the minimum value of the gain

factor can be approximated (Bendat et a/1992) by

fr fn (fr )1 P. 2aiCs (2.20d)

The physical parameters of the mooring system can therefore be estimated as follows

al A1(0) (2.21a)

ma (2.21b)
Ca =

(2.21c)
Cs = 2Cs11(ai(m + ma)) IA10.01

X2(f), X3(f), A2(f) and A3(f) are given by Eq.(2.14). Reverse dynamic inputs x(t), x2(t) and

X
3(t) are usually correlated. Procedures to replace the correlated inputs with a new set of

uncorrelated inputs are applied to convert the nonlinear model to an equivalent three-

input/single-output linear model (Bendat et al 1992). The resulting impedance functions

A1(f), A2(f) and A3(f) yield all the system properties.

2.3.2 Nonlinear-Structure Coupled Hydrodynamic Damped Model

In the nonlinear-structure coupled hydrodynamic-damped (NSCHD) model, the

nonlinear relative motion coupled damping is treated explicitly and the R-MI/S0 technique

is applied to identify the damping coefficient Cd along with other linear and nonlinear

coefficients. The nonlinear equation representing NSCHD model is given by

(2.22a)
(In + ma *0) + Csic(t) + aix(0+ ai x2 (t) + a3x3(t) Cm (u(t) *4111(0 *(t)i = fb (t)

where



fb (t) = P

23

(2.22b)

The corresponding single-input/single-output nonlinear forward NSCBD model with

feedback is shown in Fig.2.5a.

The nonlinear forward model is converted to a reverse dynamic model by applying

the R-MI/S0 procedures. The corresponding reverse dynamic NSCHD model without

feedback is given in Fig.2.5b. The associated Fourier transform relation can bewritten as

A1( f) X1( f)+ A2 (f)X2(f) +A3(f)X3(f) +A4(f)X4(f) = Fb (f)

where

X4(f) = !SW *(t))1u(t) 54011

A4 (f) = 1pCd
1tD2

2 .4

F2 (f) "= *2 (t)]

(2.23a)

(2.23b)

(2.23 c)

(2.23d)

The frequency response functions AA (described by Eqs.2.19-21), A2(f) (Eq.2.14d) and

A3(f) (Eq.2.14c), identify all the system properties and A4(f) (Eq.2.23c) gives the

hydrodynamic coefficient, Ca.

2.3.3 Nonlinear-Structure Nonlinear6i-Damped Model

The nonlinear equation of motion for the nonlinear-structure nonlinearly-damped (NSND)

model is given by

D2
(m+ ma + Csi(t) + a ix(t) + a2x2 (t) +a3x3 (t)+ pCd (t) I i(t) I = f4 (t)

where, f4(0 =
6

+ pCd ---u(Olu(01

(2.24a)

(2.24b)
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Fig.2.5 The nonlinear-structure coupled hydrodynamically-damped (NSCHD) model: a)
with feedback, b) without feedback
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The corresponding single-input/single-output nonlinear forward model with

feedback is shown in Fig.2.6a. The nonlinear forward model is converted to reverse

dynamic model by applying the R-MI/SO procedures. The corresponding reverse dynamic

four-input/single-output nonlinear model without feedback is given in Fig.2.6b. The

associated Fourier transform relation can be written as

(f)Xi(f) + A2(f ) X2 (f ) + A3 Os )X3(f ) + A4' (f )X4' (f) = F4 (f ) (2.25a)

where

X4 (f) = Z0(01*(011 (225b)

A4 (f) = 1 pCd.
102

2

F4 (f) = z4f4(t)J

(2.25c)

(2.25d)

Using the frequency response functions A1(f) (Eqs.2.19-21), A2(f) (Eq.2.14d), A3(f)

(Eq.2.14e) and A4'(f) (Eq.2.25c), the system properties are identified.

2.4 Comparisons of Alternative System Models

The reverse nonlinear system identification methods discussed in the above sections

have been applied to the SDOF ocean mooring system. Eight tests were conducted on the

sphere with periodic plus white noise excitations (Yim et al 1993). The wave velocity and

acceleration are numerically evaluated using a central-difference method (Gerald and

Wheatley 1989). The sampling interval used in the experiment was 0.0625 second (16 Hz),

which yields a Nyquist frequency of 8 Hz. The total number of samples of the excitation

and response time histories for spectral simulations is 8192 (512 seconds), with sub-record

lengths of 1024 for the Fourier transforms (64 seconds).
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Fig.2.6 The nonlinear-structure nonlinearly-damped (NSND) model a) with feedback b)
without feedback
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A typical segment of the time series and the spectra (of the entire record) for an

experimental data set of wave and response are given in Fig.2.7. The wave and response

spectral densities, Stri and S. respectively, are plotted against frequency, f, in Fig.2.7 b and

d. It can be observed from Fig.2.7d that the dominant response of the sphere is

subharmonic.

Different formulations of the system model are applied for all the data sets and

compared. A summary of the three mathematical models, NSLD, NSCHD and NSND

models, are given below:

NSLD MODEL

+ ma )340 + Cst(t)+aix(t)+a2x2(t)+a3x3(t) = fa (t)

7ED 2 7E 3
w h e r e , f a (t) =

2
P C d

4
(u(t) X(0)Iu(t) p

6
D Cmd(t)

NSCHD MODEL

(m+ma)5E(t)+Csi(0+ aix(t) + aix2(t)+ a3x3 (t) Cm (u(t) ic(tlu(t) *(t)I = fb (t)

I
Where, fb (t) =

It 3
Cmil(t); Cm. 2 PCd

02

NSND MODEL

2
+ ma ),i(t)+ Csi(t)+ aix(t) + a2x2(t) + a3x3(t) + pCd n

D (t) I i(t) = fc (t)

2
7Efc (t) = p D 3

Cmii(t) + pCd u(Olu(t)1

The comparative results presented for the data given in Fig.2.7 are discussed in detail below.

It can be observed from the figure that the excitation and response spectral energy
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bandwidths lie between 0.1-0.55 Hz and this interval is chosen as the frequency range for

subsequent comparisons.

2.4.1 Coherence Function Analysis

The linear, nonlinear and cumulative coherence estimates with the uncorrelated inputs and

the associated uncorrelated outputs of the three nonlinear (NSLD, NSCHD and NSND)

models are plotted as a function of frequency in Fig.2.8. For all three models, the nonlinear

contribution is significant between f = 0.1 and 0.3 Hz where the subharmonic response

energy is observed (Fig.2.7d). The system behavior is almost linear beyond 0.3 Hz as

shown in Fig.2.8. Among the nonlinear coherence estimates, contribution from square term

(i.e., x2) is the most significant especially near the natural frequency of the system (f.=0.23

Hz). According to Gottlieb (1991), the restoring force function for an axis-symmetric body

behaves in an anti-symmetric manner and can be represented by a polynomial with odd

functions only. In contrary, the coherence diagram shows that the even (square) term (x2) is

present and its contribution is more than that of the odd (cubic) term (x3). This is because

the sphere response, especially the nonlinear subharmonic component, is not symmetrical

with respect to the static equilibrium position. Comparing Figs.2.7c and 2.8, it can be

observed that the contribution of the square term is predominant in the area of subharmonic

region. The goodness-of-fit of the chosen model is thus always decided by the coherence

functions that provide an absolute measure of how well each term of the model fits the data

at specific frequencies of interest. The coherence of the relative damping term (Fig.2.8b)

and the nonlinear structural damping term (Fig.2.8c), in the range of 5-10 % have improved

the respective cumulative coherence estimates.
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2.4.2 Spectral Density Analysis

It is difficult to assess and select the most suitable model for the experimental

system based on the coherence estimates. Using the identified parameters, the response is

evaluated for each model by solving the respective ordinary differential equations,

(Eqs.2.12, 2.22 and 2.24) using a fourth-order Runge-Kutta method (Gerald and Wheatley

1989). The predicted responses from the various models are compared with the

experimental response in the frequency domain as shown in Fig.2.9. The primary resonance

region for the NSCHD model is close to that of the measured response, but the NSLD model

has a higher primary energy level. The NSLD model does not generate a matching

nonlinear response. Similarly, the subharmonic response simulated by the NSCHD model is

not comparable with the actual measured response. Thus, the above mentioned models are

not suitable for the experimental system considered. However, the response simulated by the

NSND model matches well with the experimental response both in the primary as well as

the subharmonic resonance regions. Hence, this model can represent the experimental

system well and a comparison of time series and spectra between the identified response

using NSND model and the experimental response is given in Fig.2.10.
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2.5 System Parameter Identification

2.5.1 Impedance Function Analysis

The linear and nonlinear impedance functions, both magnitude and phase as a

function of frequency are given in Fig.2.11a-f. The magnitude of the linear impedance

function gives all the linear system parameters such as the stiffness coefficient (ai), damping

coefficient (Cs), mass (M), added mass coefficient (Ca) and natural frequency (f.) by using

Eqs.2.19-21. The phase for the linear impedance function changes from nearly 0° to 180° at

the natural frequency as shown in Fig.2.11b. The nonlinear impedance functions AO

(Eq.23), A3(f) (Eq.24), A4V) (Eq.51) give the nonlinear stiffness coefficients, a2 and a3 and

nonlinear structural damping coefficient Ca' respectively. Fig.2.11c and e give the

magnitude of the nonlinear stiffness coefficients normalized with the average value plotted

as a function of the frequency, f It can be observed from Figs.2.11d and 11f that the phase

angles for A2(f) and A3(f) shift between -180° and 180°, indicating a negative sign for the

identified coefficients, a2 and a3. The magnitude and phase diagrams for Ca' are given in

Fig2.11g and h. It can be observed from the phase angle diagram that the damping term,

which is proportion to response velocity, is 90° out of phase with the measured displacement

as expected.
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2.5,2EifeckLotem Response
The NSND model requires the knowledge of Ca and Cm for the evaluation of

hydrodynamic force on the sphere. As mentioned earlier, the effect of Cm and Cd on the

nonlinear response has not been studied before according to the author's knowledge.

In order to understand the system's behavior, Cm is altered within the range of 1-1.5

and the R-MI/SO technique is then applied. The identified properties are tabulated for

different Cm in Table 2.1a. From the table, magnitudes of Ca al, a2, a3, cs and C.

increase with increasing Cm. The natural frequency identified is constant for all the cases.

The responses simulated using the parameters are compared with the measured response in

Fig.2.12a. The primary resonance energy of all the predicted responses is practically

constant and agrees favorably with that of the measured response. Note that the

subhannonic energy of the predicted response decreases with increasing values of inertia

coefficient and Cm= 1.3 matches well with the experimental response.

Ca is varied between 0.2-1.0 and the properties are identified as given in Table 2.1b.

The parameters remain consistent for different Ca. The responses simulated using the

parameters are compared with the measured response in Fig.2.12b and it can be observed

that the response does not change significantly with the variation in Cd. Based on the water

depth to wavelength (h/L) and diameter to wave height (D/H) ratios (Nath and Harleman

1970), the inertia effects dominate the total forces and the response is found to be insensitive

to changes in Cd.
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a)

b)

Cm C. Ca al

lb/ft

a2

lb/ft2

a3

lb/ft3

Cd' C, fn

1.10 0.11 1.00 8.11 3.51 5.82 0.18 0.021 0.237

1.20 0.21 1.00 8.51 3.82 5.91 0.18 0.033 0.237

1.30 0.32 1.00 8.91 4.53 6.55 0.18 0.032 0.237

1.40 0.42 1.00 10.31 4.91 7.55 0.19 0.033 0.237

1.50 0.51 1.00 11.14 5.16 8.26 0.19 0.035 0.237

Cd Cm Cd al.

lb/ft

a2

lb/ft2

a3

lb/ft3

Ca fn

0.20 1.30 0.30 8.90 4.50 6.20 0.18 0.021 0.237

0.50 1.30 0.30 9.01 4.69 6.41 0.18 0.033 0.237

0.80 1.30 0.30 8.91 4.68 1 6.41 0.19 0.032 0.237

1.00 1.30 0.30 8.91 4.69 6.50 0.19 0.035 0.237

Table 2.1: Identified system parameters using NSND model by varying hydrodynamic
coefficients: a) Cm, b) Cd (English units)
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b)

Cm C. Ca al

N/m

a2

N/m2

a3

N/m3

Cd fn

1.10 0.11 1.0 119.1 167.4 911.3 0.18 0.021 0.237

1.20 0.21 1.0 122.4 180.3 924.1 0.18 0.033 0.237

1.30 0.32 1.0 132.0 215.7 1020.7 0.18 0.032 0.237

1.40 0.42 1.0 151.3 235.1 1175.3 0.19 0.033 0.237

1.50 0.51 1.0 161.0 244.7 1284.8 0.19 0.035 0.237

Cd Cm Cd a1

N/m

a2

N/m2

a3

N/m3

Cd c., fn

0.20 1.30 0.30 128.8 215.7 972.4 0.18 0.021 0.237

0.50 1.30 0.30 128.8 219.0 988.6 0.18 0.033 0.237

0.80 1.30 0.30 132.0 219.0 1004.7 0.19 0.032 0.237

1.00 1.30 0.30 132.0 219.0 1004.7 0.19 0.035 0.237

1.0 1.3 0.3 132.0 222.2 1020.7 0.19 0.035 0.237

Table 2.1: Identified system parameters using NSND model by varying hydrodynamic
coefficients: a) Cm, b) Cd (SI units)
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(a)

Fig.2.12 Comparison of identified response using NSND model with the measured
response by varying hydrodynamic coefficients: a) Cm, b) Ca
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3. MDOF EXTENSION AND COMPARISONS

3.1 MDOF System Considered

The MDOF experimental model consists of a submerged moored neutrally buoyant

sphere excited by periodic waves with white noise perturbations. Springs were used to

support the sphere and provide a restoring force. The string pots were attached to measure

the sphere movement. The restoring force is geometrically nonlinear with the springs

attached at an angle of 90°. The configuration of the model is given in Fig.3.1. Pitch

motion is observed to be negligible compared to surge and heave motions (Yim et al 1993).

With the knowledge of string pot measurements and the distances between the sphere and

the respective string pots, the readings are converted to surge and heave by two-dimensional

geometrical transformations (Lin 1994).

3.2 Governing Equations of Motions

The equations of motion for the SDOF moored structural systems (Chapter 2) subject

to periodic wave excitation with white noise perturbations are extended to the MDOF surge-

heave model. By considering surge (xi) and heave (x3) as the generalized displacement

coordinates, assuming that structural damping can be lumped into an equivalent linear

structural damping coefficient Csi and Cs3, and the nonlinear restoring force represented by

Ri(xi,x3,t) and R3(xi,x3,t), the governing equation of motion for the above mooring system

can be written as

mki Cs151 + (x (t), x3 (t)) = f1(t) (3.1a)
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(a)

waves

z

h
lir

sphere

(b)

Fig.3.1 MDOF experimental set up: a) plan, b) profile view
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(3.1b)

where m = mass of the sphere, fi(t), f3(t) = excitation force in surge and heave directions

respectively and *1(t), *3(4311(0, 313 (t) = sphere velocity and acceleration in surge and

heave directions, respectively. Because of symmetry, there is no coupling between the

inertia forces. Hence the off-diagonal mass terms (m13 and m31) are zero.

The MDOF mooring restoring forces are derived from the potential function which

describes the pretensioned geometrical configuration of a symmetric small body (Gottlieb

and Yim 1992) and the resulting coupled expressions in surge and heave are given below:

R./ (xi (0, x3 (t)) = 4Kx (0(1 1-c)

(
R3 (X1 (t), x3 = 4Kx3 (t) 1 -11

(3.2a)

(3.2b)

where 1= Vd2 x/ (02 + x3 (t) 2 instantaneous spring length, lc = initial spring length, K

= spring constant, and d = distance of the center of the sphere from the wall.

The restoring forces in surge and heave direction are approximated by selected third

order polynomials obtained using a least-square approximation given by

R1(x1(t), x3 (0) = a ix/ (t) + a 2X12 (t) + a3x/
3 (t) + (0X32 (t) (3.3a)

R3 (Xi (0, X3 (0) = b 1x 3 (t) + b 3x 33 (t) + C21X12 (0X3
(3.3b)

Note that a square term in the surge direction is included due to its biased (mean offset)

response. The comparisons of the polynomials (Eq.3.3) with the geometric model restoring

forces (Eq.3.2) are given in Figs.3.2a and b.
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a)

Fig.3.2 Comparison between the actual and approximate restoring force functions: a)
surge, b) heave
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b)

Fig.3.2 Continued
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Fig.3.3 Relative error between the actual and approximate restoring force functions: a)
surge, b) heave
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IRux 1211,3 xl
The relative error ( ) between the geometric model and approximate errors

are given in Figs.3.3a and b. The normalized errors in both surge and heave directions

behave in a similar manner and varies between 0 to 10 %. However, the error in absolute

magnitude of the restoring forces at low displacement is mostly insignificant compared to

the other terms (i.e., inertia, damping and wave excitation forces) in the dynamic equation of

motion (Eq.3.1).

Following the results of R-MI/S0 technique application on SDOF system (Chapter 2),

an Independent Flow Fields (MT) model is used to represent the hydrodynamic excitation

force on the MDOF model.

They are given by

f1 (t) = pb'Cmul (t) ma (t) + 2 Ap Cdul (01111(01 2 APCd1 x1(t)IX1(t))

f3 (t) = pVCinfl 3 (t) Ma + 2 Ap Cd U3 (01113 -122 Ap C d; (015C3 (01

where

V = D3
6

A =
7c1:)2

4

rc
Ma =

6
D3

Ca

(3.4a)

(3.4b)

(3.5a)

(3.5b)

(3.5c)

p = mass density, D = diameter of sphere, C. = added mass coefficient, Cd = nonlinear

structural damping coefficient, Cm = hydrodynamic inertia coefficient and Cd

hydrodynamic drag coefficient. For the sphere (which has a constant projected area) used in
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this experimental study, the coefficients are taken as the same in both the surge and heave

directions and they are given by

(
u

u D u
°
I'

Cm,Cd =f ReF = ''--,KCF =
)

D

Ca , Cdo = f(ReN = -21" , KCN = 11°Dri°

(3.6a)

(3.6b)

where ug X = amplitudes of the water particle and structure velocity, respectively, T and

T. = periods of oscillation of water particle and structure (often equal), u = viscosity of the

fluid, Re = Reynolds number, KC = Keulegan-Carpenter number, suffix 'F' refers to far

field and suffix 'N' to near field.

Using linear wave theory (Chakrabarti 1987), the deterministic water particle

velocities can be written as

ui (t) = a
cosh k(x 3 (0

COSOOCi COO
sinh( kh)

u3 (t) = co a
sinh(kh)

sinh k(x3(t) + s)
sin(loci (t) cot)

(3.7a)

(3.7b)

where u1(t), u3 (t) are water particle velocity in surge and heave directions respectively, co =

angular velocity, a = wave amplitude, k = wave number, h = water depth and s = distance of

the instantaneous center of the sphere from the bottom.

The wave excitation containing a periodic component with white noise perturbations

may be considered as a randomly perturbed regular wave field. With wave displacement

given by 1(t), measured for the experiment considered, Eqs.(3.7a,b) can be approximated by

ui(t) =
cosh k(x3(t) + s) i(t)co

sinh(kh)

(3.8a)



sinh k(x3(t) + s
)u3 (t) = rt. 4)

sinh( kh)

(3.8b)

It is assumed that the random perturbations in the excitation are included in TKO, given by

1(t) = a cosOoti(t) tot + 4)+ (t) (3.9a)

Where t(t) is a zero-mean delta-correlated white noise.

The horizontal and vertical, water particle acceleration can also be approximated as

cosh ko (x3 +S
1110) = )7)(t)

sinh(koh)

.
(t) =

sinh k
°

(x3 (t) + s)
1..(t)u3

sinh( k h)

(3.9c)

(3.9d)
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where u, (t) and u3 (t) are the water particle acceleration in surge and heave directions,

respectively. The schematic diagram for the MDOF system using IFF model as the

alternative form of Morison Equation for representing force is dilineated in Figs.3.4a-c.

3.3 Nonlinear-Structure Nonlinearly-Damped Model

Based on R-MI/SO results of the SDOF system, the nonlinear-structure nonlinearly-

damped (NSND) surge-heave model is selected and extended to the MDOF experimental

system. The mathematical formulation of the NSND model and the application of R-MUSO

technique (Bendat et al 1992) to change the dynamic roles of inputs and outputs has been

described in detail for the SDOF system (Chapter 2). In this study, the methodology is

extended to MDOF system and the detailed formulation of the model is given in Appendix

A. The schematic diagram for the NSND model before and after application of R-MI/SO

technique is given in Fig3.5a-b.
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3.4 MDOF System Parameter Identification

By assuming Cm and Ca based on the results on SDOF system (Chapter 2), the

hydrodynamic force is evaluated using Eq.3.4. The R-MI/SO technique is applied on the

NSND model and the system parameters are identified for the experimental data. Using the

identified parameters, surge and heave responses are simulated using Eqs.3.1, 3 and 4. A

typical example of comparison between the identified and experimental data in the time and

frequency domain is given in Fig.3.6. The heave and surge response spectral densities,

normalized with the variance of corresponding wave data, given by S. are plotted against

frequency, f in Fig.3.6b and d. It can be observed that the simulated responses are

comparable to the corresponding experimental responses in both surge and heave directions.

3.5 MDOF System Response Behavior

3.5.1 Time Series and Spectra

Three tests, ML1, ML2 and MH conducted on the sphere with the same wave period

and varying wave heights with white noise as the wave excitation yield subharmonic

response (Yim et a/ 1993). All the tests have the same wave period (T = 2.21 seconds), but

they vary in wave heights. The data sets are labeled and grouped according to the variation

in wave amplitude. The symbol 'M' stands for multi-degree-of-freedom, 'L' and H'

represent low and high wave amplitude excitation, respectively. The wave velocity and

acceleration are evaluated using the central difference method (Gerald and Wheatley 1989).

The sampling interval used in the experiment is 0.0625 second, which yields a Nyquist

frequency of 8 Hz.
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Fig.3.6 Comparison between identified and experimental response: a) (first) heave time
series, b) (second) heave spectra, c) (third) surge time series, d) (fourth) surge spectra
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The total number of samples of the excitation and response time histories for spectral

simulations is 8192 (512 seconds), with sub-record lengths of 1024 and 50 % overlapping

for the Fourier transforms.

A typical segment of the time series and the spectra of the entire record of wave and

responses (surge and heave) for the data sets are given in Figs.3.7-8. The mean spectra, ML

for ML1 and ML2 are also shown in Figs.3.7b, d and f. The input wave characteristics

including wave height (H), Keulegan-Carpenter number (KCF), Reynolds number (ReF), Cm

and Ca are given in Table 3.1a. The identified system parameters, a1, a2, a3, b1, b3, C12, on,

CI, C3, Ca1,3 and fn1,3 using the R-MI/SO technique are shown in Table 3.1b.

3.5.2 Sensitivity Analysis

As observed in Section 3.4, the parameters identified by R-MI/SO technique generate

a response comparable with the experimental daa. In order to obtain an optimal range of

system parameters, a sensitivity analysis is conducted. Each system parameter identified

using the technique is varied for a range in specific increments while keeping all the other

identified parameters constant (Table 3.1b) and the surge and heave responses are simulated

for each variation by solving Eqs.3.1, 3 and 4. The results are compared against each other

in both time and frequency domains. The optimal range and most suitable value of system

parameters are tabulated in Table 3.2. The table shows that the best value for the system

parameters remain the same for all the data, but MH has a restricted range compared to ML1

and ML2. For large values of system parameters, numerical instability is observed for MH

using the experimental sampling time interval of 0.0625 seconds, while solving the ordinary

differential equations, Eqs.3.1, 3 and 4.
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Fig.3.7 MDOF experimental data, ML1 and ML2: a) wave time series, b) wave spectra,
c) heave time series, d) heave spectra, e) surge time series, f) surge spectra
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a)

Data H (ft) KCF ReF Cm Cd

ML1 0.97 0.95 9.57e4 1.3 0.1- 0.9 (0.5)

ML2 0.77 0.76 7.70e4 1.3 0.1-0.9 (0.5)

ML3 1.57 1.54 1.57e5 1.2 0.1-0.9 (0.5)

b)

Data al a2 a3 b1 b3 C12 C21 Cd1; c1,3 fia,3

lb/ft lb/ft2 lb/ft3 lb/ft lb/ft3 lb/ft3 lb/ft3 % (Hz)

ML1 12.0 8.5 6.2 12.4 8.1 10.0 11.5 1.2 2.5 0.28

ML2 12.0 8.2 6.5 12.2 7.5 14.5 18.0 0.9 3.1 0.28

MH 12.5 7.2 6.1 12.0 5.1 12.2 12.5 0.5 3.2 0.29

Table 3.1 Characteristics of the MDOF subharmonic data: wave, b) identified system
parameters (English units)
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a)

Data H (in) KCF ReF Cm Ca

ML1 0.29 0.95 9.57e4 1.3 0.1- 0.9 (0.5)

ML2 0.23 0.76 7.70e4 1.3 0.1-0.9 (0.5)

ML3 0.47 1.54 1.57e5 1.2 0.1-0.9 (0.5)

b)

Data al a2 a3 b1 b3 C12 C21 Cd1,3' C1,3 fn1,3

Win Nim2 N/m3 Wm islim3 N/m3 N/m3 % (Hz)

ML1 173.9 405.7 972.4 180.3 1271.9 1568.1 1806.4 1.2 2.5 0.28

ML2 173.9 405.7 1020.7 177.1 1178.5 2273.3 2823.9 0.9 3.1 0.28

MIT 180.3 344.5 956.3 173.9 801.8 1912.7 1961.0 0.5 3.2 0.29

Table 3.1 Characteristics of the MDOF subharmonic data: wave, b) identified system
parameters (SI units)
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Data ML1 ML2 MET

al (1b/ft) 10.8-13.2 (12.0) 10.7-13.5 (12.1) 10.8-13.2 (12.0)

a2 (1b/f12) 5.5-8.5 (7.0) 5.4-8.7 (7.1) 6.8-7.0 (6.9)

a3(1bA13) 1.1-11.1 (6.1) 1.0-11.0 (6.0) 5.5-6.5 (6.0)

b1 (1b/ft) 10.8-13.2 (12.0) 10.8-14.2 (12.0) 11.5-12.5 (12.0)

b3(1b/ft3) 1.0-8.0 (4.5) 1.0-8.0 (4.5) 4.4-5.0 (4.6)

o12(1b/ft3) 1.0-23.0 (12.0) 1.0-23.0 (12.0) 12.0-12.8 (12.4)

c21 (1b/ft3) 1.0-23.0 (12.0) 1.0-23.0 (12.0) 12.0-12.7 (12.4)

Cdl,3' 0.30-0.65 (0.43) 0.30-0.65 (0.43) 0.43-0.47 (0.45)

C1,3 ( Y0) 1.0-4.0 (3.0) 1.0-4.0 (3.0) 2.8-3.2 (3.0)

fn1,3 (Hz) 0.28 0.28 0.29

Table 3.2 Identified system parameters from the sensitivity analysis of the MDOF
subharmonic data (English units)
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Data ML1 ML2 MH

al (N/m) 157.8-193.2 (173.9) 154.6-196.4 (177.1) 157.8-189.9 (173.9)

a2(N/m2) 264.0-405.7 (334.9) 8-12.8 (10.5) 328.4-334.9 (328.4)

a3(N/m3) 157.8-1725.9 (940.2) 4.9-53.6 (29.2) 1806.4-1961.0 (1883.7)

b1(N/m) 157.8-189.0 (173.9) 4.9-6.4 (5.4) 167.4-183.5 (173.9)

b3(N/m3) 157.8-1255.8 (705.2) 4.9-39 (21.8) 689.1-785.7 (721.3)

c12(N/m3) 157.8-3606.4 (1883.7) 4.9-112 (58.5) 1883.7-2009.3 (1944.9)

cal (N/m3) 157.8-3606.4 (1883.7) 4.9-112 (58.5) 1883.7-1993.2 (1944.9)

Cd1,3. 0.30-0.65 (0.43) 0.30-0.65 (0.43) 0.43-0.47 (0.45)

CO (%) 1.0-4.0 (3.0) 1.0-4.0 (3.0) 2.8-3.2 (3.0)

fi1,3 (Hz) 0.28 0.28 0.29

Table 3.2 Identified system parameters from the sensitivity analysis of the MDOF
subharmonic data (SI units)
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By reducing the time step by one-fourth and interpolating the experimental wave

data at the intermediate points, the numerical solution is found to be sufficiently accurate.

The corresponding computer programs are attached in Appendix C.

The observations from the sensitivity analysis are summarized through spectral

diagrams in the following paragraphs. Since the data sets ML1 and ML2 exhibit similar

behavior, the mean of the resulting spectra for each variation is obtained and used for the

comparison. Individual variations for ML1 and ML2 are given in Appendix B.

The effects of varying ai on heave and surge responses for ML and MH are

presented in Fig.3.9. The spectral density normalized with the variance of the corresponding

wave data (S..) is plotted against frequency for al from 4 to 15 lb /ft (58.0 to 217.4 N/m)or

aln (the ratio of instantaneous value of al to the best value of al as given in Table 3.2) from

0.33 to 1.25. The heave response does not change significantly for ML, whereas in the

secondary resonance region, response increases with the increase in al for MH. From the

surge response behavior, it can be observed from Fig.3.9b and d that there is a slight

increase in the primary resonance energy as ai increases. The subharmonic resonance

region shifts towards the right as ai increases.

When a2 is increased from 0 to 10 lb/ft2 (0 to 476.6 N/m2) or a2n from 0 to 1.25, the

response in the secondary resonance region for heave and surge increases slightly for ML as

given in Fig.3.10a and b. The effects are more pronounced for MH (Fig.3.10b and d). The

primary resonance region is not affected by changing a2. Fig.3.11 shows that increasing a3

increases from 0 to 10 lb/ft3 (0 to 1568.1 N/m3) or a3n from 0 to 2.5, decreases the

subharmonic response and the variation is more prominent for MH.
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The effects of varying b1 from 8 to 16 lb/ft (116.0 to 231.8 N/m) on the heave and surge

responses for ML and MH are demonstrated in Fig.3.12. The surge response appears

unaffected for ML, whereas the response in the secondary resonance region decreases with

increasing al for MH.

For the heave response, it can be observed from Fig.3.12b and d that the response in

the primary resonance region increases and the subharmonic resonance region shift towards

the right with increases in al. When b3 is increased from 0 to 1.4 lb /ft3 (0 to 219.6 N/m3), the

response in the secondary resonance region in heave and surge increases for ML and MR as

given in Fig.3.13, where the effects are more pronounced for MH.

From Figs.3.14 and 15, it can be observed that by varying the coupled restoring

force coefficient c12 and on, there is no significant effect on ML. For MH as shown in

Figs.3.14-15 c and d, the response in the primary resonance region is not affected, but the

secondary subharmonic response increases with increase in the coefficients.

By varying the linear structural damping coefficients CI and c3 from 0 to 0.1, the

subharmonic response decreases with increasing damping and the primary resonance region

is not affected as demonstrated in Fig.3.17 and the effects are more noticeable for MH. A

similar trend of decreasing subharmonic response with the increase in coefficients can be

observed for Cal: and Cd3' as shown in Fig.3.18 and 19.

3.5.3 Effects of KC and Re on Hydrodynamic Coefficients

From the optimal range and the most suitable value of KCF, ReF, Cm and Ca tabulated

in Table 3.1a, it can be observed that the inertia coefficient Cm decreases with increasing

KCF and ReF, but varying Ca has no effect on the response.
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Fig.3.13 Effect of b3 on MDOF system behavior: a) (first) MLH, b) (second) MLS,
(third) MHH, d) (fourth) MHS



79

experimental

- - cl2n4

1.E+02

1.E +00

1.E-02

1.E+02

1.E+00

rn

1.E-02

cl2n
cl2n 4.17

- - cl2n41.33

cl2n433

1

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

experimental

- c12n=1

Frequency (Hz)

c12n=0 - c12n=0.33

c12n=1.17 cln =1.33

Fig.3.14 Effect of c12 on MDOF system behavior: a) (first) MLH, b) (second) MLS, c)
(third) MHH, d) (fourth) MHS



80

experimental

- - - c21n=1
c21n=0

c21n=1.33

c21n=0.45

c21n=1.67

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Frequency (Hz)

experimental

- - - c21n=1
c21n=0 - c21n=0.45

c21n=1.33 c21n=1.67

Fig.3.15 Effect of cal on MDOF system behavior: a) (first) MLH, b) (second) MLS, c)
(third) MHH, d) (fourth) MHS



81

1.E+02

a)

1.E+00

r/S`

1.E-02

experimental

- - - C1=0.03

1.E+02

1.E+00

1.E-02

C1=0

C1=0.05

C1=0.01

C1=0.1

/1111441/4-4k /\ \

1.E+02

a)

1.E+00

vIR

1.E-02

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

experimental

- - - C1=0.03

Frequency (Hz)

C1=0

C1=0.05

C1=0.01

C1=0.1

Fig.3.16 Effect of CI on MDOF system behavior: a) (first) MLH, b) (second) MBH,
(third) MLS, d) (fourth) MHS



82

experimental

- - - C3=0.03
C3=0

C3=0.05

C3=0.01

C3=0.1

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

experimental

- - - C3=0.03

Frequency (Hz)

C3=0 C3=0.01

C3=0.05 C3=0.1

Fig.3.17 Effect of c3 on MDOF system behavior: a) (first) MLH, b) (second) MHH, c)
(third) MLS, d) (fourth) MHS



1.E+02

1.E+00
x

1.E-02

83

experimental

- - - Cdl' =0.45
Cdr=0
Cd l'=0.7

Cd11=0.2

CdP=1

1.E-02

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Frequency (Hz)

experimental

- Cdr=0.45
Cd11=0 Cdl' =0.2

Cd l' =0.7 Cd l' =1

Fig.3.18 Effect of Cal on MDOF system behavior: a) (first) MLH, b) (second) MHH, c)
(third) MLS ,d) (fourth) MHS



84

experimental

- - - Cd3'=0.45
Cd3'=0

Cd3'=0.7

Cd3'=0.2

Cd3'=1

1.E+02

8
1.E+00

1.E-02

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

experimental

- - - Cd3' =0.45

Frequency (Hz)

Cd3'=0 Cd3' =0.2

Cd3'=0.7 Cd3'=1

Fig.3.19 Effect of Cd3' on MDOF system behavior: a) (first) MLH, b) (second) MHH, c)
(third) MLS, d) (fourth) MHS



85

3.6 SDOF System Response Behavior

3.6.1 Time Series and Spectra

Eight tests were performed on the SDOF configuration using periodic excitation with

white noise perturbations (Yim et al 1993). Each of the tests displayed a certain degree of

subharmonics in the sphere movement. The data sets SL1, SL2, SM1, SM2, SM3, SH1,

SH2 and SH3 are grouped according to wave excitation amplitudes, where 'S' stands for

single-degree-freedom, and V, 'M and 'H' represents low, medium and high wave

amplitudes, respectively. The wave time series (a typical segment) and spectra, response

time series (a typical segment) and spectra for all the data sets grouped are given in

Figs.3.20-22. The mean spectra for the three groups, SL, SM and SH are also shown in the

figures and are considered to be representative of each group.

All the experimental data have wave period, T = 2 seconds and they vary in their

wave heights and noise/signal ratio. The input wave characteristics such as wave height (H),

Cm, Cd, Keulegan Carpenter number (KCF ) and Reynolds number (ReF) are shown in the

Table 3.3a. The system parameters, al, a2, a3, CI and Ca identified using the R-MI/SO

technique are given in Table 3.3b.

3.6.2 Sensitivity Analysis

A sensitivity analysis is performed to determine the optimal range of the system

parameters. Each parameter is varied in specific increments while keeping all the other

identified parameters constant (Table 3.3b) and the surge and heave responses are simulated

for each variation by solving Eqs.3.1, 3 and 4. The simulated responses using the identified

parameters are compared against each other in both the time and frequency domains.
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Data H (ft) Cm Cd KCF ReF

SL1 0.57 1.4 0.1- 0.9 (0.5) 0.56 5.7045

SL2 0.8 1.4 0.1-0.9 (0.5) 0.79 7.80E4

SM1 1.2 1.3 0.1-0.9 (0.5) 1.18 1.20E5

SM2 1.2 1.3 0.1- 0.9 (0.5) 1.18 1.20E5

SM3 1.6 1.3 0.1-0.9 (0.5) 1.57 1.60E5

SH1 2.2 1.1 0.1-0.9 (0.5) 2.16 2.20E5

SH2 2.2 1.1 0.1-0.9 (0.5) 2.18 2.22E5

SH3 2.2 1.1 0.1-0.9 (0.5) 2.20 2.30E5

Data ai (lb/ft) a2(1b/ft2) a3(1b/ft3) Cal CI (%) fn1 (Hz)

SL1 8.8 6.6 4.6 2.5 3.5 0.22

SL2 8.7 5.9 5.2 3.5 3.4 0.23

SM1 8.8 5.5 5.5 3.0 3.0 0.23

SM2 9.0 5.4 4.9 1.5 2.9 0.24

SM3 8.7 4.3 4.5 1.0 2.8 0.23

SH1 8.8 4.5 4.4 0.8 3.0 0.23

SH2 8.9 4.4 4.4 0.2 3.2 0.23

SH3 8.6 4.0 4.0 0.3 3.1 0.22

Table 3.3 Characteristics of the SDOF subhannonic data: wave, b) identified system
parameters (English units)
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Data H (m) Ca, Cd KCF ReF

SL1 0.17 1.4 0.1- 0.9 (0.5) 0.56 5.7045

SL2 0.24 1.4 0.1-0.9 (0.5) 0.79 7.80E4

SM1 0.35 1.3 0.1-0.9 (0.5) 1.18 1.20E5

SM2 0.36 1.3 0.1- 0.9 (0.5) 1.18 1.20E5

SM3 0.49 1.3 0.1-0.9 (0.5) 1.57 1.60E5

SH1 0.66 1.1 0.1-0.9 (0.5) 2.16 2.20E5

SH2 0.66 1.1 0.1-0.9 (0.5) 2.18 2.22E5

SH3 0.67 1.1 0.1-0.9 (0.5) 2.20 2.30E5

Data ai (N/m) a2(N/m2) a3(N/m3) Cal' CI (%) fni (Hz)

SL1 128.8 315.6 721.3 2.5 3.5 0.22

SL2 125.6 280.1 814.7 3.5 3.4 0.23

SM1 128.8 260.8 863.0 3.0 3.0 0.23

SM2 132.0 257.6 769.6 1.5 2.9 0.24

SM3 125.6 206.1 689.1 1.0 2.8 0.23

SH1 128.8 209.3 689.1 0.8 3.0 0.23

SH2 128.8 209.3 689.1 0.2 3.2 0.23

SH3 125.6 190.0 627.9 0.3 3.1 0.22

Table 3.3 Characteristics of the SDOF subharmonic data: wave, b) identified system
parameters (SI units)
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From the sensitivity analysis, the optimal range and the most suitable value of the system

parameters are obtained and tabulated in Table 3.4. Since the data sets belong to L, M and

H groups exhibit similar behavior, the mean of the resulting spectra for each variation is

discussed in the following paragraphs. Individual variations of the spectral diagrams for the

tests are given in Appendix B.

The effect of varying linear stiffness coefficient, ai on SL, SM and SH are

demonstrated in Fig.3.23. The spectral density normalized with the variance of

experimental wave data (S,,) is plotted against frequency for al from 4 to 14 lb/ft (58.0 to

202.9 N/m) or aln (the ratio of instantaneous value of ai to the best value of ai as given in

Table 3.4) from 0.5 to 1.6. It can be observed that there is a slight increase in the primary

resonance response as al increases. The subharmonic resonance region shifts towards the

right with increasing al. The trend can be observed more clearly (from SL to SH) as the

wave amplitude increases. When a2 is increased from 0 to 10 lb/ft2 (0 to 476.6 N/m2), there

is no significant change on the data group SL as shown in Fig.3.24a. But the response in the

secondary resonance region increases from a2n = 0 to 2.5 for SM and SH, and the effects are

more pronounced for the latter. Response in the primary resonance region is affected with

changing a2. Fig.3.25 shows that varying a3 from 0 to 10 lb/ft3 (0 to 1568.1 N/m3) or a3n

from 0 to 2.5, affects only the response in the secondary resonance region, which decreases

as a3 increases and the variation is most noticeable for MH. With regards to varying the

linear structural damping coefficient C1= 0 to 0.1, the response in the subharmonic region

decreases with increasing damping and the primary resonance region remains unaffected as

demonstrated in Fig.3.26.
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Data al (lb /ft) a2 (lb /ft2) a3 (lb /ft3) Cdl, CI (%) fnl (Hz)

SL1 8.4-9.2 (8.8) 1.0-8.0 (4.5) 1.0-9.0 (5.0) 1.5-2.5 (2.0) 1.0-4.0 (3.0) 0.23

SL2 8.3-9.0 (8.7) 1.0-8.0 (4.5) 1.0-9.0 (5.0) 1.5-2.5 (2.0) 1.0-4.0 (3.0) 0.23

SM1 8.4-9.2 (8.8) 1.0-8.0 (4.5) 1.0-8.0 (4.5) 1.5-2.5 (2.0) 1.5-4.0 (3.3) 0.23

SM2 8.4-9.3 (8.9) 3.0-6.0 (4.5) 3.0-6.0 (4.5) 0.3-0.7 (0.5) 2.0-4.0 (3.0) 0.24

SM3 8.5-9.3 (8.8) 3.0-6.0 (4.5) 3.0-6.0 (4.5) 0.3-0.7 (0.5) 2.0-4.0 (3.0) 0.23

SH1 8.4-9.6 (9.0) 3.5-6.0 (4.7) 3.5-6.0 (4.7) 0.1-0.2 (0.15) 2.5-4.0 (3.3) 0.23

SH2 8.4-9.3 (8.9) 4.0-5.0 (4.5) 4.0-5.0 (4.5) 0.1-0.2 (0.15) 2.0-4.0 (3.0) 0.23

SH3 8.4-9.4 (9.0) 4.2-5.0 (4.6) 4.2-5.0 (4.6) 0.1-0.2 (0.15) 2.0-4.0 (3.0) 0.22

Table 3.4 Identified system parameters from the sensitivity analysis of the SDOF
subharmonic data (English units)
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Data al (N/m) a2(N/m2) a3(N/m3) Cd1' CI ( %) fni

(Hz)

SL1 122.4-32.0 48.3-378.0 157.8-1410.4 1.5-2.5 1.0-4.0 (3.0) 0.23

(128.8) (215.7) (772.8) (2.0)

SL2 119.1-132.0 48.3-380.0 157.8-1410.4 1.5-2.5 1.0-4.0 (3.0) 0.23

(125.6) (215.7) (772.8) (2.0)

SM1 122.4-132.0 48.3-380.0 157.8-1255.8 1.5-2.5 1.5-4.0 (3.3) 0.23

(128.8) (215.7) (708.4) (2.0)

SM2 122.4-135.2 141.7-286.6 470.1-933.8 0.3-0.7 2.0-4.0 (3.0) 0.24

(128.8) (215.7) (708.4) (0.5)

SM3 122.4-135.2 141.7-286.6 470.1-933.8 0.3-0.7 2.0-4.0 (3.0) 0.23

(125.6) (215.7) (708.4) (0.5)

SH1 122.4-138.5 167.4-286.6 550.6-933.8 0.1-0.2 2.5-4.0 (3.3) 0.23

(132.0) (225.4) (740.6) (0.15)

SH2 122.4-135.2 190.0-238.3 627.9-772.8 0.1-0.2 2.0-4.0 (3.0) 0.23

(128.8) (215.7) (708.4) (0.15)

SH3 122.4-135.2 199.6-238.3 660.1-772.8 0.1-0.2 2.0-4.0 (3.0) 0.22

(132.0) (219.0) (708.4) (0.15)

Table 3.4 Identified system parameters from the sensitivity analysis of the SDOF
subharmonic data (SI units)
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The effects of varying Cal on the identified response from Fig.3.27 shows that the secondary

resonance region generally decreases with increasing Cal . However the optimum range that

identify response comparable to the experimental response differs for the data groups SL,

SM and SH. The most suitable value goes as high as 2 for ML and it decreases to 0.5 for

SM and 0.15 for SH. This apparent behavior is probably caused by the inability of the

model to approximate accurately the actual nonlinear behavior of the complex damping

mechanism of the SDOF configuration. In the physical system, with the rod passing

through the center of the sphere, the Coulomb frictional component, which is proportional to

the magnitude of the normal reaction force between the sphere and the supporting rod.

Because the sphere is neutrally buoyant, this normal force is proportional to the magnitude

of the oscillatory vertical force. The nonlinear effects become more prominent for responses

at lower wave amplitudes because of the stop-and-go (sticky motion) behavior due to static

friction of the sphere become relatively more significant, thus affecting the prediction

capability.

3.6.3 Effects of KC and Re on Hydrodynamic Coefficients

It can be observed from the optimal range and the most suitable value of KCF, ReF, Cm

and Ca for the SDOF experimental data tabulated in Table 3.3a that the inertia coefficient

Cm decreases with the increase in KCF and ReF. Cm varies between 1.4-1.1 for 1.34 x 105

ReF 5.21 x 105 and 1.19 KCF 4. The response is insensitive to Ca and it has a wide

range as shown in Table 3.3 a.
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3.7 Comparison of MDOF and SDOF System Behaviors

The surge response behavior of MDOF and SDOF systems described in Sections 3.5

and 6 are compared in this section. Specifically, comparisons of the wave excitation and

surge response time series, R-MI/SO technique application, identified parameters, results for

the sensitivity analysis on surge system parameters, and the effect of hydrodynamic

coefficients between SDOF and MDOF are presented and discussed in this section.

3.7.1 Time Series, Phase Diagrams and Wave Spectra

From the Table 3.1a and 3a, it can be found that the wave excitation characteristics

of MH and SM3 closely matches each other, and hence suitable for comparisons. The time

series and spectra of the input and output of these two tests are presented in Fig.3.28 and the

phase diagrams in Fig.3.29. It can be observed from the wave spectra in Fig.3.28 that the

wave amplitude matches closely, however, there is a slight difference in the wave period.

Comparing surge response time series and spectra from Fig.3.28c and d, the SM3 response

amplitude is smaller in magnitude than MH. This can be attributed to the friction between

the rod and the sphere that might have reduced the sphere movement for the SDOF system.

The phase diagrams given in Fig.3.29 exhibit a similar behavior between SDOF and MDOF

surge data with stable equilibrium point at (0,0).

3.7.2 Reverse Multiple Input /Single -Output (R- MI/SO) Technique Application

The R-MI/SO technique is applied to identify the linear and nonlinear parameters of

both the SDOF and MDOF systems.
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Several alternative MUSO models have been derived for the SDOF system based on the

how each term in the equation is treated either as a mathematical input or output and also

depending upon the equation used to represent the hydrodynamic force (Chapter 2). The

NSND model has been found to be the most appropriate representation of the SDOF

experimental system and has been extended to MDOF system in this chapter. Both models

identify system parameters that generate a matching response with that of the experimental

data. The formulation of the computational technique is straightforward, simple and

efficient. The standard multiple-input/single-output procedures are incorporated in

MATLAB 5.2 (MathWorks, Inc.) and once the program developed for SDOF model, it can

easily be extended to systems with arbitrary degrees of freedom.

3.7.3 Identified System Parameters

By equating the heave response, x3 = 0, the governing equations (Eqs.3.1-9) given

for the surge-heave model is reduced to surge motion only and the identified parameters in

surge for SDOF and MDOF system tabulated in Table 3.1b and 2b are compared. In

general, it can be observed that the parameters of the MDOF system are larger in magnitude

compared to those of the SDOF system. The average natural frequency of the system, fnl

identified using the MDOF data is 0.28 Hz and that of the SDOF system is 0.23 Hz. The

nonlinear structural damping coefficient, Cdi., varies among the three groups of SDOF data,

SL, SM and SII and as mentioned in Section 3.7.2, this could be due to the presence of rod

in the SDOF system, which affects the "Coulomb" type damping not included in the

modeling.
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3.7.4 Sensitivity Analysis

Based on the sensitivity analysis presented in Section 3.6.2 and 3.7.2, it can be

observed that varying the surge system parameters (al, a2, a3, CI and Ca') have similar

effects on the SDOF and MDOF systems. Similar to the MDOF tests where there are two

categories of data (depending on low or high wave excitation amplitude) which exhibit

similar behaviors within each category, the SDOF tests are grouped into three categories.

However, there are more experimental tests for the SDOF system available to confirm the

surge response behavior.

3.7.5 Effects of KC and Re on Hydrodynamic Coefficients

Application of the R-MI/SO technique on SDOF and MDOF, NSND models require

the knowledge of Ca and Cm for the evaluation of hydrodynamic force on the sphere.

Dependence of the inertia coefficient, Cm on Reynolds number (ReF) and Keulegan-

Carpenter number (KCF) for the MDOF and SDOF systems are demonstrated in Fig.3.30.

Both systems display a similar trend with Cm decreasing with the increase in ReF and KCF

and vary between 1.4-1.1 for 1.34 x 105 5 ReF 5.21 x 105 and 1.19 KCF 4. Wave tank

tests on a vertical cylinder (Chakrabarti 1987) shows that Cm decreases from 2.4 to 2 with

the increase of KCF from 1 to 6 and also decreases with increase in ReF and the above results

for sphere also show the same pattern with the lower range of magnitude. From numerical

simulations, it is found that the predicted response is insensitive to variations in Ca within

the range of 0.1 to 1.1.
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Based on the water depth to wavelength (h/L) and diameter to wave height (D/H) ratios

(Nath and Harleman 1970), the inertia effects dominate the total forces for both MDOF and

SDOF systems. Hence it is not possible to accurately determine the exact value of Cd.
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4. MDOF SUPERHARMONIC RESPONSE BEHAVIOR

4.1 Introduction

In addition to the tests that yield subharmonic responses, superharmonic responses are

also observed for the MDOF system (Yim et al 1993). The system formulation, parameter

identification and response analysis and sensitivity studies are identical as described in

Chapter 3. The results are demonstrated and discussed in this Chapter. Comparisons ofthe

response with those corresponding to the MDOF subharmonic responses are presented.

4.2 MDOF System Superharmonic Response Behavior

4.2.1 Time Series and Spectra

Two tests, MSP1 and MSP2 conducted on the sphere using periodic wave excitation

with white noise perturbations yield superharmonic response. The wave period for both

tests is T = 8.4 seconds. The data sets are labeled and grouped according to wave

amplitude. The wave velocity and acceleration are evaluated using the central difference

method (Gerald and Wheatley 1989). The sampling interval used in the experiment is

0.0625 second, which yields a Nyquist frequency of 8 Hz. The total number of samples of

the excitation and response time histories for spectral simulations is 8192 (512 seconds),

with sub record lengths of 1024 for the Fourier transforms (64 seconds).

A typical segment of the time series and the spectra of the entire record ofwave and

responses (surge and heave) for the data sets are given in Figs.4.1-2.
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The input wave characteristics such as wave height (H), Keulegan-Carpenter number (KCF)

and Reynolds number (ReF) and the identified system parameters, al, a2, a3, b1, b3, C12, C21,

Cl, C3, Cell' and Cd3' using the R-MI/S0 technique are shown in Table 4.1.

4.2.2 Sensitivity Analysis

A sensitivity analysis is conducted to determine an optimal range of system

parameters. Each parameter is varied in specific increments while keeping all the other

identified properties constant (Table 4.1) and the surge and heave responses are simulated

for each variation. The results are compared against each other in both time and frequency

domains. The optimal range and most suitable value of system parameters are tabulated in

Table 4.2 and they remain consistent for both tests. The observations are summarized

through spectral diagrams in the following paragraphs.

The effects of varying al on heave and surge responses for MSP1 and MSP2 are

presented in Fig.4.3. The spectral density normalized with the variance of measured wave

data (S.) is plotted against frequency for al from 4 to 15 lb/ft (58.0 to 217.4 N/m) or aln

(the ratio of instantaneous value of al to the best value of al as given in Table 4.1) from 0.33

to 1.25. The heave response appears unaffected for both tests. For the surge response

behavior (Fig.4.3b and d), the primary response decreases with increasing al. The energy of

the superharmonic response increases slightly with increasing al.

When a2 is increased from 0 to 10 lb/ft2 (0 to 476.6 N/m2) or a2n=0 to 1.25, the

response in the secondary resonance (superharmonic) region for heave decreases slightly for

MSP1 and MSP2 as given in Fig.4.4a and c. The primary resonance region does not appear

to be affected by variations in az.
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Data H (ft) KCF ReF Cm Cd

MSP1 0.26 0.81 2.75e4 0.4 0.1- 0.9 (0.5)

MSP2 0.27 0.90 3.1e4 0.4 0.1-0.9 (0.5)

Data al a2 a3 b1 b3 C12 Cal Cd1,3. C1,3 fn1,3

lb/ft lb/ft2 lb/ft3 lb/ft lb/ft3 lb/ft3 lb/ft3 % (Hz)

MSP1 12.0 8.5 6.2 12.4 8.1 10.0 11.5 1.2 2.5 0.28

MSP2 12.0 8.2 6.5 12.2 7.5 14.5 18.0 0.9 3.1 0.28

Table 4.1 Characteristics of the MDOF superharmonic data: wave, b) identified system
parameters (English units)

Data H (m) KCF ReF Cm Cd

MSP1 0.87 0.81 2.75e4 0.4 0.1- 0.9 (0.5)

MSP2 0.9 0.90 3.1e4 0.4 0.1-0.9 (0.5)

Data ai a2 a3 b1 b3 C12 C21 Cd1,3 C1,3 fn1,3

N/m N/m2 N/m3 N/m N/m3 N/m3 N/m3 % (Hz)

MSP1 173.9 405.7 972.4 180.3 1271.9 1568.1 1806.4 1.2 2.5 0.28

MSP2 173.9 405.7 1020.7 177.1 1178.5 2273.3 2823.9 0.9 3.1 0.28

Table 4.1 Characteristics of the MDOF superharmonic data: wave, b) identified system
parameters (SI units)
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Data MSP1 MSP2

al (1b/ft) 10.8-13.2 (12.0) 10.7-13.5 (12.1)

a2(1b/fr2) 5.5-8.5 (7.0) 5.5-8.5 (7.0)

a3(1b/ft3) 1.0-11.0 (6.0) 1.0-11.0 (6.0)

b1 (1b/ft) 10.8-13.2 (12.0) 10.8-14.2 (12.0)

b3 (1b/ft3) 1.0-8.0 (4.5) 1.0-8.0 (4.5)

ci2(lbgt3) 1.0-23.0 (12.0) 1.0-23.0 (12.0)

021(lb/ft) 1.0-23.0 (12.0) 1.0-23.0 (12.0)

Cd1,3' 0.3-0.7 (0.4) 0.3-0.7 (0.4)

c1,3 (oA 1.0-4.0 (3.0) 1.0-4.0 (3.0)

Table 4.2 Identified system parameters from the sensitivity analysis of the MDOF
superharmonic data (English units)

Data MSP1 MSP2

al (N/m) 157.8-193.2 (173.9) 154.6-196.4 (177.1)

a2 (N/m2) 264.0-405.7 (334.9) 257.6-412.2 (338.1)

a3(N/m3) 157.8-1725.9 (940.2) 157.8-1725.9 (940.2)

b1(N/m) 157.8-190.0 (173.9) 157.8-206.1 (173.9)

b3(N/m3) 157.8-1255.8 (705.2) 157.8-1255.8 (705.2)

012 (N/m3) 157.8-3606.4 (1883.7) 157.8-3606.4 (1883.7)

021(1\111113) 157.8-3606.4 (1883.7) 157.8-3606.4 (1883.7)

Table 4.2 Identified system parameters from the sensitivity analysis of the MDOF
superharmonic data (SI units)
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The effects of varying a3 on the identified responses as given in Fig.4.5 show that only the

response in the secondary resonance region is influenced, which increases with a3 (from 0 to

10 lb/ft3 (0 to 1568.1 N/m3)or a3n from 0 to 2.5).

The effect of varying b1 from 8 to 16 lb/ft (115.9 to 231.9 N/m) on the heave and

surge responses for MSP1 and MSP2 are demonstrated in Fig.4.6. The surge response does

not change significantly for either test. For the heave response, it can be observed from

Fig.4.6b and d that the primary and the superharmonic resonance energy decreases with

increasing b1. When b3 is varied from 0 to 1.4 lb/ft3 (0 to 219.6 N/m3), the heave and surge

responses for either test are not affected as shown in Fig.4.7.

From Figs.4.8 and 9, it can be observed that by varying the coupled restoring force

coefficients, c12 and on, there is no significant influence on the identified responses of

MSP1 and MSP2. By varying the linear structural damping coefficients, CI and C3, from 0 to

0.1, the superharmonic response decreases with increasing damping values and the primary

resonance region does not appear to be affected as demonstrated in Fig.4.10 and 11. A

similar trend of decreasing superharmonic response with increasing nonlinear damping

coefficients can be observed for Cal. and Cd3. as shown in Fig.4.12 and 13.

4.2.3 Comparison with MDOF Subharmonic Response

Comparing the sensitivity analysis results between tests that yield subharmonic and

superharmonic response, it can be observed that varying system parameters have opposite

effect. For ML1, ML2 and MR (tests that yield subharmonic responses), increasing al has

an effect of increasing the primary and decreasing the subharmonic surge response. But the

primary response decreases and subharmonic response increases for MSP1 and MSP2.
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When the stiffness parameter in heave, b1 is increased, the effects are similar for heave as

observed for the surge response when al is increased.

Since MSP1 and MSP2 are subjected to low wave excitation amplitude similar to

ML1 and ML2, the effects of varying nonlinear parameters on the response are not

significant. When the linear (CI and C3) and nonlinear (Ca' and Ca) damping parameters are

increased, the nonlinear response in the secondary resonance region decreases for all the five

tests.
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5. CONCLUSIONS

5.1 Summary

The multi-point moored experimental structure considered is formulated as a single-

degree-of-freedom (SDOF) surge and a multi-degree-of-freedom (MDOF) surge-heave,

submerged, hydrodynamically damped and excited nonlinear oscillator. The elastic

mooring cables are taut and the resulting restoring force is geometrically nonlinear and is

approximated by high order polynomials using least square method.

Three alternate multiple-input/single-output models are examined to determine the

most appropriate representation for the SDOF configuration. The Reverse Multiple-

Input/Single-Output (R-MI/SO) technique is adapted to identify the linear and nonlinear

system parameters and thereby the surge response. The identified responses are compared

with the corresponding measured data in time and frequency domain to select model that

predict the most comparable response.

The nonlinear-structure nonlinearly damped (NSND) model developed and

validated for the SDOF configuration is then extended to the MDOF system. Using the

identified parameters, a sensitivity analysis is performed on both SDOF and MDOF systems

and the effect of system parameters on the response is evaluated. The dependency of the

hydrodynamic coefficients on Keulegan-Carpenter (KC) and Reynolds (Re) numbers are

also demonstrated. The surge response behavior of both systems are then analyzed and

compared.
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A similar study of parameter identification and analysis is accomplished using

MDOF tests that yield superharmonic response. Using the sensitivity analysis results, the

subharmonic and superharmonic response behaviors of the MDOF system are compared.

5.2 Concluding Remarks

Parameter identification and the analysis of SDOF and MDOF systems are performed

and the salient features are summarized below:

Among the three models developed in this study nonlinear-structure linearly-damped

(NSLD) model, nonlinear-structure coupled hydrodynamically-damped (NSCHD)

model, and nonlinear-structure nonlinearly-damped (NSND) model subject to the

application of the reverse multi-input/single-output (R-MI/SO) technique, the NSND

model is determined to be the most suitable analytical model for the experimental

system. The NSLD and NSCHD models incorporate relative motion hydrodynamic

damping and the system properties identified do not simulate a comparable response

with the measured response. With the low Keulegen-Carpenter number and high

reduced velocity, the NSND model based on independent flow fields force, is found to

be more appropriate for the experimental system.

Even though the NSCHD model has the capability of identifying drag coefficient, all the

predicted parameters are lower in magnitude than that of the actual system parameters

identified by NSND model. By treating the drag force as mathematical output along

with the system response, the input total force becomes smaller in magnitude and that

causes error in identifying the parameters and thereby the system response.
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With the aid of individual coherence functions, it is observed that the quadratic

restoring-force polynomial term contributes the most among the nonlinear coherence

estimates of the NSND model.

The NSND model requires the knowledge of the hydrodynamic coefficients, Cd and Cm,

for the evaluation of hydrodynamic force on the sphere. The R-MI/SO technique is

employed to evaluate the effect of coefficients on the SDOF system response. The

results of the R-MI/S0 application on the NSND model with C. varying within a wide

range show that the identified natural frequency remains constant, but the linear and

nonlinear parameters tend to increase with the increase in Cm. When compared in the

frequency domain, the subharmonic energy of the simulated response decreases with

increasing values of inertia coefficient and the primary resonance region practically

remains constant. For the range of wave heights, wave length, and the structural

dimension considered, the inertia force dominates, and variations in the drag coefficient,

Cd, does not appear to have significant effect on the identified response.

NSND models developed for both SDOF and MDOF systems, when subjected to R-

MI/SO technique, identify system parameters that simulate a response that matches with

the experimental data. The formulation of the computational technique is

straightforward, simple and efficient. The standard multiple-input/single-output

procedures once developed for SDOF model can easily be extended to systems with

higher degrees of freedom.

A comparison between the MDOF and SDOF surge response time series and spectra

show that the response amplitude is comparatively smaller for the SDOF system. This

could be due to the restricted movement of SDOF system by the rod passing through the
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center of the sphere. The identified surge parameters for the MDOF system in general

are larger in magnitude compared to the SDOF parameters.

The sensitivity analysis of the MDOF system reveals that the effects on the responses

become more significant with increasing wave excitation amplitude. The optimum

value of system parameters is practically identical for the tests subject to low and high

amplitude excitation, but the latter has a restricted range that identifies response

matching the experimental response. Increasing linear surge stiffness parameter al has

an effect of increasing the primary response and shifting the subharmonic region

towards the right for the surge whereas the heave response in the subharmonic resonance

region also increases. When the stiffness parameter in heave, b1 is increased, the heave

response is more influenced as expected with the increase in primary response and a

right shift of the secondary resonance region. A slight decrease in the surge response is

also observed. It is observed that the primary response is not significantly influenced by

variations of nonlinear parameters within the range considered. Increasing nonlinear

stiffness parameters a2 and b3 increases surge and heave subharmonic responses whereas

when a3 has an opposite effect. The subharmonic responses increase with the increase in

coupled parameters, c12 and C21 and decrease with the linear (CI and c3) and nonlinear

(Cm' and Ca) damping parameters.

SDOF surge response also demonstrates a similar trend as observed for the MDOF

system when the surge parameters including al, a2, a3, CI and Cal are varied. Three

groups are established among the tests depending on low, medium or high wave

excitation amplitude based on the response behavior. The response variation gets more

significant with the increase in wave amplitude.
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For the SDOF system, the optimal value and range of nonlinear structural damping

coefficient varies among the tests. This apparent behavior is probably caused by the

inability of the model to approximate accurately the actual nonlinear behavior of the

complex damping mechanism of the SDOF configuration as the Coulomb frictional

component is not included in the mathematical model. The nonlinear effects seem to

become more prominent at the lower wave amplitudes, resulting in high values with the

errors lumped in the coefficient, Cal'. With the rod removed for the MDOF

configuration, such behavior is not observed.

For the experimental data considered for both configurations, C. varies between 1.1-1.3

for 5.3 x 105_ ReF 5_ 7 x 105 and 4.7 KCF 6.2 and 1.3-1.5 for 1.3 x 105 ReF 3.7 x

105 and 1.2 KCF 3.3. In general, C. increases with the decrease in Reynolds number

and Keulegen-Carpenter number. This behavior is consistent with that of cylinders

observed in the literature. Since the experimental wave characteristics fall within the

inertia regime, it is not possible to accurately evaluate the drag coefficients. Indeed, the

response is observed to be insensitive to variations in Ca.

Comparing the sensitivity analysis results between tests that yield subharmonic and

superharmonic response, it is observed that increasing the linear stiffness coefficient, ai

has an effect of increasing the primary and decreasing the subharmonic surge response,

however it has an opposite outcome on the superharmonic response. When the stiffness

parameter in heave, b1 is increased, the effects are similar for heave as observed for the

surge response when al is increased. When the linear (CI and c3) and nonlinear (Cal and

Cd3) damping parameters are increased, the nonlinear response in the secondary

resonance region decreases for all the MDOF tests.
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5.3 Future Research

Parameter identification and the response behavior of SDOF and MDOF systems are

presented in this study. Using the R-MI/S0 technique, it is found that NSND model, which

incorporates independent flow fields force is the most appropriate model for the mooring

system. This model requires the knowledge of hydrodynamic inertia and drag coefficients

and an iterative procedure is used to determine the coefficients. With the wave

characteristics lie in the inertia dominated region, it has been observed that varying the

inertia coefficients within a small range changes the output response. For the future

experiments, the hydrodynamic force acting on the sphere needs to be measured thus

avoiding the iterative steps to evaluate the coefficients. Then, based on the wave, sphere

response and the force measured, the hydrodynamic coefficients can be determined using R-

MI/SO technique. Also more experiments need to be conducted in the drag dominated

region to examine the influence of drag coefficient on the nonlinear response.

More experiments on SDOF and MDOF systems with similar input characteristics

need to be conducted for better comparisons. During the experiment, the MDOF system

configuration failed when subjected to large amplitude waves. An alternative setup needs to

be designed that permits larger excursion. More experimental studies with a wider range of

wave excitation amplitude are needed to better understand the MDOF system behavior and

compare with that of SDOF system. For the SDOF constrained system, the nonlinear

structural damping coefficient, Ccll , varies among the tests. This apparent behavior is

probably caused by the inability of the model to replicate the actual nonlinear behavior of

the complex damping mechanism of the SDOF configuration as the Coulomb frictional
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component is not included in the mathematical model. For the future studies, the model

should be refined to incorporate the Coulomb damping component.
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A. FORMULATION OF THE NSND MODEL FOR THE MDOF SYSTEM

The R-MI/S0 technique can be applied to most nonlinear systems subject to random

excitation irrespective of the nature of the distribution (e.g., Gaussian or non-Gaussian

(Bendat 1998)). The relative contribution of the linear and nonlinear system properties,

whether or not the system properties are frequency dependent and how the cumulative

coherence functions are improved by adding nonlinear terms can be determined using this

technique.

The nonlinear equation for the MDOF NSLD model is

( m+ ma)Xl( t)+ CS1X 1( t)+ alxl( t)+ a2x12(t) +a3x13(t) +a4x32(t)xl(t)
210

+ pC dl 711 (Oki (01 fla (t)
4

( m+ ma)313( t)+ Cs3x3( t) +b1X3(t) +b2X33(t) +b3X12(t)x3(t)
702

+ pC d3 X3 (Oli3 (01 = f3a (t)

where

702 TE

fla(t)s
2

PCd ui Oui + p
6

D3Cmiii(t)

702 It 3
f3a (t) =

2
pCd u 3 013 (01 p D Cm11 3 (t)

(Ala)

(Alb)

(A/a)

(A.2b)

Values of the inertia and drag coefficients are assumed in order to evaluate the force fia(t)

and f3a(t) given by Eqs.(A.2a and b), which are treated as the model input and the system

responses, xi and x3, are treated as the model outputs.

Fourier transforming both sides of Eqs.(A. 1 a, b) gives the frequency domain relation



(al + j(27cf)Csi (2nf)2(m +ma))x11 (f)+Al2(f)X12(f) +A13(f)X13(f)

+ A14 (f)X14 (f) + A15 (f)X15 = Fla (f)

(b1 + j(27rf)Cs3 (27cf ) 2 (n1 + ))x31(f) + A32 (f)X32 (f) + A33 (f )X33 (f)

+ A34 (f )X34 (f) = (f)

where

Fla (f) = 3fria (0], F3a (f) = *31a (t)]

Xi (f) = 3[Xi (t)], X31 (f) = ZLx3 OA

X12 = ZEX12 (01

X13 (f) 4)43 (0] X32 (f) = 3[X 33 (t)]

X14 (f) = 3[X 32 (*CI (t)} X33 (f) = 4C12 (t)x3 (0]

X15 = )110).4 (01, X35 (t) = x3 (01313 (01

Al2(f) = a2

A13(f) =a3 Aaz (f) b2

A14 (f) = a4 , A33 (f) = 133

1 702 , 7TD 2

2
A15 (f) = pC dl , A34 (f) = pC d3
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(A.3a)

(A3b)

(A.4)

(A.5)

(A6)

(A3)

(A8)

(A.9)

(A10)

(A.11)

(A.12)

(A.13)

In the absence of nonlinear terms, H11(f) and H31(f) represent the frequency response

functions of an ideal constant parameter linear systems that relates the displacement outputs,

xl(t) and x3(t), to the corresponding force inputs, fia(t) and WO, respectively. They are

given by
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H11(f) = X11(f) [al + j(2nf)Cs1 (27rf)2(n1 ma),I
(A.14a)

Fin (f)

= al [1 (f /fn1)2 + (fifnl

H31 (f) = XF333a ((ff.; [bi + j(27Cf)Cs3 (27rf )2 Orn + ma
1-1 (A.14b)

= bi [1 (f/fn3 + (f/f,3 )]-1

where the natural frequencies, LI, f, and the damping ratios, Csi, C3, are defined by

1 al 1 b1 (A.15)
fnl .11(m + ma ) fn3 24(II1 + Ma )

Csi
Cst

2.v +ma) , Cs3 =
2.11)1(m +ma)

C s3 (A.16)

When the nonlinear terms are present, H11(f) and H31(f) relates the displacement outputs to

corresponding effective forces, fie(t) and f3e(t), by

fie (t) = fia a 2x12 a3x13 a 4 x32 (t)xi a s*i (t)ii WI

fne = fma (t) b 2)(13 (t) b 3)(12 (t)x 3 b4ic3(t)I (t)I

(A.17)

(A.18)

Identification of this system requires a time-consuming iterative approach because of the

presence of the nonlinear feed back terms. Because the forward way of analysis is difficult,

an alternative reverse dynamic viewpoint is considered (Bendat 1998). To apply the R-

MI/SO technique, the input/output roles are mathematically interchanged.

The associated Fourier transform relation is given by

Fla (f) = A11 (f )X1I (f) ± Al2 (f ) X12 (f) ± A13 (f )X13 (f) + A14 (f )X14 (f) (A.19a)

+ A15 (f )X15 (f)

F3a (f) -= A31 (f)X3i (f) + A32 (f)X32 (f) + A33 (f PC 33 (f) + A34 (f)X34 (f)

A11(f) and A31(f) is defined as the linear impedance functions which is given by

(A.19b)



A11(f) = [Hii(f)ti = a frifni +2.ics1(f /fn1))

A31 (f) = [H31(01-1 = b1(1(f/fn3)2 -1-2.1cs3(fifn3))

The system gain and phase factors of Eqs.(A.20a,b) are given by

IA-110'A = al [11(1 (f/fni )2)2 + (2Ca (f/fni ))2

IA31 = 1)1[11(1 (f/fn3 )2 )2 ±(2cs3ogn3»2]

01(f) = tan-1 2cs1 f/fni 1,
03 (f) = tan

f/fn3
_1 (f/fni 1 (f/fn3
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(A.20a)

(A2%)

(A.21 a)

(A.21b)

(A.21 c)

The minimum gain factor occurs at the resonance frequencies, fa and fr3, of the system. By

determining the maxima of Eqs.(A.21a,b), it can be shown that for structures having

damping ratio C.
0.5, (Clough and Penzien 1993), resonance frequencies are given by

frl = fnl 1 -2 s12 fr3 = fn311 s32

The minimum values of the gain factors that occur at resonance are given by

al [2Ca Ca2

IA13 (43 )1 = b [2cs3 C s32

(A.22)

(A/3)

(A.24)

For lightly damped systems, the resonance frequencies and the minimum values of the gain

factors can be approximated (Bendat 1998) by

frl fnl fr3 4"" fn3 lAll(frl )1 2a1Cs1 IA31(43 )1 r4,- 2b1Cs3 (A.25)

The physical parameters of the mooring system can therefore be estimated as follows



a1 A11(0) b1 A31(0)

1n
p

=
(c/6aD3 )

Cs1 = + ma )) IA110'111)1

27cfni

Co - 2Cs3 ± )) IA31 (fn3

27rfn3
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(A.26)

(A.27)

(A28a)

(A.28b)

The reverse dynamic inputs may be correlated. Procedures to replace the correlated inputs

with a new set of uncorrelated inputs are applied to convert the nonlinear model to an

equivalent three-input/single-output linear model (Bendat 1998). The resulting impedance

functions yield all the system properties given by Eqs.(A.10-A.13 and A.26-A.28).
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APPENDIX B



B. SENSITIVITY ANALYSIS OF MDOF AND SDOF SYSTEMS
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C. PROGRAM LISTING

%systemid.m The program that does the parameter identification of the Nonlinear

%Structure Non linearly-Damped (NSND) model using the Reverse multiple-input/single-

%output (R-1411/S0) technique.

%This program loads the wave force and surge response files, calls 'misocin.m' to do the

spectral analysis and that lead to another file, 'misoain' to do the R-MUSO application. The

results are finally plotted using plotin.m.

clear

load el4surforifm.dat %load the surge force and response

load el4heaforifm.dat %load the heave force and response

N=8192; %total number of points

dtJ.0625; %time interval

Z1=e14surforifm(1,1000:N+999);

Z1=Z1-mean(Z1);

X1=-el4heaforifm(1,1000:N+999);

X1=Xl-mean(X1);

X2=X1.^3;

%X3=X3-mean(X3);

X3=Z1.^2.*Xl;

%X5=X5-mean(X5);

X4=e14heaforifm(2,1000:N+999);

X4=X4-mean(X4);
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Y=e14heaforifm(3,1000:N+999);

Y=Y-mean(Y);

clear el2surforifm.dat

clear el2heaforifm.dat

misocin

plotin
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% misocin.m

nwin=1024;nov=512;

% note that the names of the variables may be changed by editing this routine

% to accommodate the data names for your particular data set

fmax=1/(2*dt);

df=2*fmax/(nwin);

frq=[0:dffinax];

nf=(nwin+2)/2;

p=spectrum(Y,nwin,nov)/nf;

YY=p(:,1);

XX11=zeros(size(YY));

XX12=XX11;

XX13=XX11;

XX14=XX11;

XX21=XX11;

XX22=XX11;

XX23=XX11;

XX24=XX11;

XX31=XX11;

XX32=XX11;

XX33=30C11;

)0C34=XX11;

XX41=XX11;
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XX42=XX11;

XX43=XX11;

XX44=XX11;

YX1=XX11;

YX2=XX11;

YX3=XX11;

YX4=XX11;

HYX1I=XX11;

HYX2I=XX11;

HYX3I=XX11;

HYX4I=XX11;

COH1=XX11;

COH2=)0(11;

COH3=XX11;

COH4=)0C11;

for i=1:4;

sti=rp=spectrum(X' num2str(i) ',Y,nwin,nov)/nf;'],eval(str);

str--PYX num2str(i) '= p(:,3);');eval(str);

for j=1:4;

str=rp=spectrum(X' num2str(i) ',X num2str(j) ',nwin,nov)/nf;'];eval(str);

str=rXX num2str(j) num2str(i) '= p(:,3);levagstr);

end;

misoain;
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% plotin.m

close

subplot(111)

COH5OHl+COH2+COH3-1-COH4;

plot(frq',COH4)

hold;

plot(frq',COH3)

plot(frq',COH2);

plot(frq',COH5);

title('Cumulative Coherence,4 input surge motion')

set(gca,'Ylim',[0. 1]);

set(gca,'Xlim',[0.1 0.6]);

a =[frq' COHI COH2 COH3 COH4 COH5];

clear a

pause

subplot(211),semilogy(frcf,abs(HYX11),'*cfrq1,abs(HYX1I));

set(gca,'Xlim',[0.1 .6]);

%set(gca,'Ylim',[0.01 100]);

ylabel('Abs(A1) ft')

xlabel('Hz')

clear a

a=[frq' abs(HYX1I) (180/pi*angle(HYX1I)));

%save linhea.dat a -ascii
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title('Linear Impedance,4inp')

subplot(212),plot(frq,180/pi*angle(HYX11),""frq,180/pi*angle(HYX11))

set(gca,'Xlim',[0.1 .6]);

%set(gca,'Ylim',[-200 200]);

xlabel(Hz')

ylabel('Angle(Al) Degree')

title(Phase)

pause

clear a

a=[frq' abs(HYX2I) (180/pi*angle(HYX21))];

%save b2heain.dat a -ascii

subplot(211),semilogy(frq,abs(HYX21),'*',frq,abs(HYX21));

set(gca,'Xline,[0.1 .6]);

set(gca,'Yline,[ 1 e-5 1 e5]);

title(Magnitude of A2(0)

subplot(212),plot(frq,180/pi*angle(HYX21),4",frq,180/pi*angle(HYX21))

title(lahase )

seggca,'Xlims,[0.1 .6]);

xlabel('Hz)

ylabel('Angle(Al) rad')

%title('Frequency Response: Imag(Al(f)))

pause
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subplot(211),semilogy(frq,abs(HYX31),'*',frq,abs(HYX31));

set(gca,'Xlim',[0.1 .6]);

set(gca,'Ylime,[1e-5 1 e5]);

title('Magnitude of A3(f))

subplot(212),plot(frq,180/pi*angle(HYX31),'*',frq,180/pi*angle(HYX31))

title(Phase )

set(gca,'Xlim',[0.1 .6]);

xlabel('Hz)

ylabel('Angle(Al) Degree')

clear a

a=[frq' abs(HYX3I) (180/pi*angle(HYX3I))];

%save bx2z1sur.dat a -ascii

pause

subplot(211),semilogy(frq,abs(HYX41),'*cfrq,abs(HYX41));

set(gca,'Xlinf,[0.1 .6]);

set(gca,'Ylim',[1 e-5 1 e5]);

titleNagnitude of A4(f))

subplot(212),plot(frq,180/pi*angle(HYX41),'*',frq,180/pi*angle(HYX41))

title(Phase )

set(gca,'Xlim',[0.1 .6]);

xlabel('Hz)

ylabel('Angle(A1) Degree')
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clear a

a=[frq' abs(HYX4I) (180/pi*angle(HYX41))];

%save bxxhea.dat a -ascii
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% misocin.m

for i=1:nf

gYrYY(i,1);

gxx(1,130C11(i, 1);

gxx(1,231X12(i, 1);

poc(1,3)=XX13(i,1);

gxx(1,4XX14(i,1);

gxx(2,1)=XX21(i,1);

gxx(2,2)=XX22(i, 1);

Epoc(2,30C23 (i, 1);

gxx(2,4XX24(i, 1);

gxx(3,1)=XX31(i, 1);

gxx(3,2)=XX32(i, 1);

gxx(3,3)=30C33 (i, 1);

poc(3,4)=XX34(i, 1);

gxx(4,1XX41(i, 1);

gxx(4,2)0(42(i, 1);

poc(4,3)=XX43(i, 1);

gxx(4,4XX44(i, 1);

gyx(1,1)=YX1(i,1);

gyx(1,2)=YX2(i,1);

gyx(1,3)=YX3(i,1);

gyx(1,4YX4(i,1);
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Izx=chol(gxx);

gzz=diag(diag(lzx));gzz---gzz*gzz;

Izx=inv(diag(diag(lzx)))*Izx;

ba=axt;

gyz=gyx*inv(LTx);

hyz=gyz*inv(gzz);

hyx=hyz*inv(ba);

COH1(i)=abs(gyz(1,1))^2/(gzz(1,1)*gyy);

COH2(i)=abs(gyz(1,2))^2/(gzz(2,2)*gyy);

COH3(i)--.--abs(gyz(1,3))^2/(gzz(3,3)*gyy);

COH4(i)=abs(gyz(1,4))^2/(gzz(4,4)*gyy);

HYX1I(i)=hyx(1,1);

HYX2I(i)=hyx(1,2);

HYX3I(i)=hyx(1,3);

HYX4I(i)=hyx(1,4);

end;
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% numresp.m

% The fourth order Runga kutta method to solve a second order ode

% This program uses the R-MI/S0 output system parameters and generates response

%clear;flops(0);

load el2wave.dat;

el2wave=e12wave-mean(el2wave);

n1=5000;

%n1=22000;

eta=e12wave(3000:(n1+2999),1);

n=length(eta);

xl=zeros(1,n);x3-=x1;;h=0.0625;

t1=[0:h:(n-1)*11];

xxl=[0 0 0 0];

kl1=[0 0 0 0];k21=k11;k31=k11;k41=k11;

for i=2:n-1

xxl=xx1+(1/6)*(k11+2*k21+2*k31+k41);

xl(i)=xxl(:,1);%displ

x3(i)=xxl(:,2);%disp3

yl(i)="a1(:,3);%vell

y3(i-xxl(:,4);%vel3

etad=(eta(i+1)-eta(i-1))/(2*h);

etadd=(eta(i+1)-2*eta(i)+eta(i-1))/h^2;

[k11]=h*funcresp(t1(0,xxl,eta(i),etad,etadd);
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[k21]=h*funcresp(tl(i)+h/2,xxl+k11*(1/2),eta(i),etad,etadd);

[k31]=h*funcresp(t1(i)+h/2,xxl+k21*(1/2),eta(i),etad,etadd);

[k41]=h*fimcresp(t1(i)+h,xxl+k31,eta(i),etad,etadd);

end

save numrespl.dat xl -ascii

save numresp3.dat x3 -ascii

%funcresp.m

% This is the function to solve two second order odes using Runga kutta method.

% The main program is numresp.m

function[value]= numresp(t,x,eta,etad,etadd)

cd=.5;

cd1.45;cd3=.45;

cal=.3;ca30.3;

cml=l+cal;cm3=1+ca3;

zeta10.03;zeta3=.03;

sb=1.5;rho=1.94;

mal=pi/6*sbA3*rho*cal;

ma3=pi/6*sbA3*rho*ca3;

m1=3.29+mal;

m3=3.29+ma3;

T=2.21;% From the wave spectra info, excecuting numspec.m

%T=6.4;

w=2*pi/T;a.76/2;% wave height=sqrt(spectra max)
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k=.256;

h1=9;

s1=sb/2;db=(69.75-9)/12;s=(s1 +db);

IC=20 ;1c=2.73 ;d=3.98;

rho=1.94;ap1=pi*sbA2/4;ap3=pi*sbA2/4;V=pi/6*sb^3;

u1=w*cosh(k*(s+x(:,2)))/sinh(k*hl)* eta;

u3=sinh(k*(s+x(:,2)))/sinh(k*hl) *etad;

uld=w*cosh(k*(s+x(:,2)))/sinh(k*h1)*etad;

u3d=sinh(k*(s+x(:,2)))/sinh(lech1)*etadd;

Fx1=rho/2*cd*ap1*(ul) *abs(u1)+rho*V*cml*uld;

Fx3=(rho/2*cd*ap1*(u3)*abs(u3)+rho*V*cm3*u3d);

al=14;b1=18;

a2=7;a3=6;a4=12;b2=5;b3=9;cs1=2*zetal*sqrt(al*m1);% best nonlinear for e12

%a2=7

cs3=2*zeta3*sqrt(bl*m3);

value(1)=x(3);

value(2)=x(4);

value(3)=1/m1*(-csl*x(3)-al*x(1)-a2*x(1)^2-a3*x(1)^3+a4*x(2)^2*x(1)-

pi*sbA2/4*0.5*1.94*cdl*x(3)*abs(x(3))+Fx1);

value(4)=1/m3*(-cs3*x(4)-b1 *x(2)-b2*x(2)^2+b3*x(1)^2*x(2)-

pi*sbA2/4*0.5*1.94*cd3*x(4)*abs(x(4))+Fx3);
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%wavemod.m

% This is the program which generates the experimental wave at every half interval,

load el2wave.dat

n=length(el2wave);

eta=e12wave(1:n,1);

for i=1:n-1;

y(i)=-(- eta(i)+eta(i +1))/2;

end

for i=1:(n-1)

x(2*i-1)=eta(i);

x(2*i)y(i);

end

x1=-xl;

save model2wave.dat xl ascii

%wavemodre.m

% This program takes the wavemod.m output and generates output at every 114th interval

clear

load model2wave.dat

n=length(model2wave);

eta=model2wave(1: n, 1);

for i=1:n-1;

y(i)=(eta(i)+eta(i+1))/2;

end
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for i=1:(n-1)

x(2*i-1)=eta(i);

x(2*i)=y(i);

end

xl-=x';

save fmodel2wave.dat xl -ascii

%respcon.m

load modnumrespl.dat

load modnumresp3.dat

resp1=-modnumresp1(1,1:22000);

resp3=modnumresp3(1,1:22000);

n= length(resp 1);

for i=1:n/2

res11(i)=resp1(2*i-1);

res33(i)=resp3(2*i-1);

end

for i=1:n/4

res1(i)=res11(2*i-1);

res3(ires33(2*i-1);

end

save numrespl .dat resl -ascii

save numresp3.dat res3 ascii




