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On Small Heights of Totally p-adic Numbers

1 Introduction

1.1 A Historical Overview

The height (or more formally, the logarithmic Weil height) of a rational number

a
b is

h (a
b
) = log max{∣a∣, ∣b∣},

provided gcd(a, b) = 1. This quantity gives a measure of how arithmetically com-

plicated a rational number is. Rational numbers can be close together on the real

line, and yet have radically different height. For example, h (1
3
) = log 3 ≈ 1.0986 and

h (10001
30000

) = log 30000 ≈ 10.30895.

There are two ways to extend the height function from rational numbers to the

field Q of all algebraic numbers. The first uses the theory of places of number fields,

and is developed in Section 2.2. The second method is better suited to doing explicit

calculations, and will prove useful in Chapters 3 and 4. Each algebraic number α

has a unique irreducible polynomial fα ∈ Z[x] of degree d with roots α1, . . . , αd ∈ C,

leading coefficient a > 0, and fα(α) = 0. Then we define the height of α by

h(α) = 1
d (log a +

d

∑
j=1

log+ ∣αj ∣) ,

where log+ x = max{0, logx}, and e is the base of the logarithm.

The height function has many interesting properties. From the definition above,

we see that if αi and αj are both roots of fα, then h(αi) = h(αj). Additionally,

(a) for all n ∈ Z, h(αn) = ∣n∣h(α),

(b) h(α) = h(α−1),
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(c) h(α) ≥ 0, with equality if and only if α is zero or a root of unity, and

(d) for any A > 0 and B > 0, there are finitely many algebraic numbers α with

deg(fα) ≤ A and h(α) ≤ B; we call this the Northcott property.

The Northcott property allows for the arrangment of all algebraic numbers of

a fixed degree d ≥ 1 in order of nondecreasing height. In 1874, Cantor used this fact

to prove that Q is countable [Can74]. Since the real numbers are uncountable, this

implies the existence of transcendental numbers.

Following Cantor, heights were used to prove many important results in number

theory in the twentieth century. In 1928, Weil used heights in his doctoral dissertation

to prove the Mordell-Weil Theorem, which states that the group of rational points on

an elliptic curve over a number field is finitely generated [WP28]. In 1950, Northcott

proved that for a rational function φ(x) ∈ K(x) over a number field K, the set of

all points in P1(K) that are preperiodic with respect to iteration of the function φ is

finite [Nor50]. In 1922, Mordell conjectured that a curve of genus at least 2 over a

number field K contains only finitely many K-rational points. Faltings used heights

to prove this to be true in 1983 [Fal83].

In addition to the height function being a useful tool, there has been considerable

interest in the study of the height function itself. Lehmer discovered a method to

construct large prime numbers using algebraic numbers with height positive but as

small as possible in terms of the degree. Thus he was led to the following question in

1933. Observe that

h( d
√

2) = 1
d log 2,

so since

lim
d→∞

h( d
√

2) = lim
d→∞

1
d log 2 = 0,

there are algebraic numbers of arbitrarily small, nonzero height. Lehmer searched

for numbers of small, nonzero height, which he used to calculate large primes. The
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question he posed is equivalent to the following: Does there exist an ε > 0 such that

h(α) ≥ ε
d

for all nonzero, non-root of unity, algebraic numbers α of degree d? Lehmer’s poly-

nomial,

f(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1,

has two real roots, one of which falls outside the unit circle, and eight roots on the

unit circle. Let λ > 1 be the largest real root of f(x). Note that

h(λ) = 1
10 logλ ≈ 0.01623576.

Thus, if such an ε exists, it must be the case that ε ≤ logλ. Although Lehmer found

this polynomial and value by hand, no smaller value of dh(α) has been found since,

either by hand or via computer. It is now understood that Lehmer’s question fits into

the larger study of the behavior of small points in height theory.

One avenue of research seeks to give lower bounds on h(α) that depend on the

degree of α. So far, none of these results has quite resolved Lehmer’s question. The

second avenue seeks to provide lower bounds with additional hypotheses on α, and

these results often have the strength h(α) ≥ ε
d or even h(α) ≥ ε. For all of these

results, we assume that α is a nonzero, non-root of unity algebraic number of degree

d.

In 1971, Blanksby and Montgomery [BM71] used Fourier series in several vari-

ables to prove that

h(α) > 1
d log(1 + (52d log(6d))−1).

Seven years later, Stewart [Ste78] used Diophantine approximation to prove that there

is some value C so that

h(α) > 1
d log(1 + C

d log(d)
) .

Although Stewart’s bound was not an improvement on the work of Blanksby and

Montgomery, his method was used one year later by Dobrowolski [Dob79] to obtain
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what is still the best known lower bound on h(α) in terms of d:

h(α) > 1
d log(1 + 1

1200
( log log d

log d
)
3

) .

Although Dobrowolski’s bound is an improvement on previous results, it still does

not answer Lehmer’s question.

With additional hypotheses on α, there is a series of interesting results in the

literature. We say α is totally real (or totally p-adic) if the minimal poynomial fα

of α over Q splits completely over R (or Qp). In 1973, Schinzel used the arithmetic-

geometric mean inequality to prove that if α is totally real, then

h(α) ≥ 1
2 log (1+

√
5

2 )

with equality if α = 1+
√
5

2 [Sch73]. In 1993, Höhn and Skoruppa used an auxiliary

function to provide an alternate proof of Schinzel’s bound [HS93].

The existence of Schinzel’s bound can also be shown via a theorem of Bilu,

which states that given a sequence of distinct algebraic numbers {αk} such that

h(αk) → 0, the algebraic conjugates of αk are equidistributed with respect to the

unique rotation invariant measure supported on the unit circle of C [Bil97]. If such

a sequence were totally real, then equidistribution would be impossible. In principle,

an explicit constant could be obtained by applying a quantitative version of Bilu’s

Theorem due to Petsche [Pet05], but the resulting inequality would be inferior to the

sharp inequality of Schinzel.

An algebraic number α is said to be reciprocal if it is conjugate to (has the same

minimal polynomial as) α−1. In 1951, Breusch [Bre51] used resultants to prove that

if α is not reciprocal, then

h(α) ≥ 0.16517
d .

Breusch’s result went unnoticed for several decades by many number theorists working

on Lehmer’s problem and related questions, until it was rediscovered by Narkiewicz.

In the meantime, Smyth [Smy71] proved in 1971 that if α is not reciprocal, and α0 is
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a root of x3 − x − 1, then

h(α) ≥ 3
dh(α0) ≈ 0.28118

d .

Smyth’s result is sharp, since it is achieved by α0. He used methods from complex

analysis and Fourier analysis.

It is a result of Amoroso and David [AD99] that if Q(α) is Galois over Q, then

there exists an ε > 0 so that

h(α) ≥ ε
d .

Additionally, for each positive integer m there exists a constant εm that depends on

m, such that if the degree of a Galois closure of Q(α) over Q is bounded above by

dm, then

h(α) ≥ εm
d .

In 2000, Amoroso and Dvornicich [AD00] proved that if α is contained within

an abelian extension of Q, then

h(α) ≥ log 5
12 .

It is not yet known if this inequality is sharp. Currently, the lowest known height of

an algebraic number contained within an abelian extension of Q is log 7
12 .

Garza has shown lower bounds on h(α) for three separate conditions on α. If

α has r real conjugates [Gar07], then

h(α) ≥ r
2d log (21−d/r+

√
41−d/r+4
2 ) .

If α is contained within a dihedral extension of Q [Gar08], then

h(α) ≥ 1
2 log 1+

√
5

2 .

If p > d is a prime that ramifies completely in Q(α) [Gar09], then

h(α) ≥ 1
d log(

√
5 − 1).
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In 2010, Garza, Ishak, Mossinghoff, Pinner, and Wiles [GIM+10] proved that if the

minimal polynomial of α has all odd coefficients, then

h(α) ≥ 0.4278
d+1 .

Bombieri and Zannier [BZ01] proved that an analogue to Schinzel’s Theorem

holds in Qp for each prime p, although the analogous best possible lower bound is

unknown. Suppose that S is a nonempty subset of places of Q, and let LS be a

subfield of Q such that for all α ∈ LS, and all p ∈ S, α is totally p-adic (or totally real

if p =∞). If ∞ ∉ S, Bombieri and Zannier showed that

lim inf
α∈LS

h(α) ≥ 1
2 ∑
p∈S

log p
p+1 .

Using potential theory, Petsche and Fili [FP13] improved on this bound in two

ways: first by allowing for the possibilty that S contains the archimedean place ∞,

and second, by improving the constants at the non-archimedean places to:

lim inf
α∈LS

h(α) ≥
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 ∑p∈S

p log p
2(p2−1) if ∞ ∉ S

1
2 ∑p∈S,p∤∞

p log p
2(p2−1) +

7ζ(3)
4π2 if ∞ ∈ S.

In the opposite direction of providing lower bounds on the heights of totally

p-adic and totally real numbers, one might try to construct algebraic numbers with

height as small as possible. There have been some results in this direction. For

example, Petsche [Peta] proved that for odd primes p, there exists some totally p-adic

α ∈ Q of degree d ≤ p − 1, and

0 < h(α) ≤ 1
p−1 log (p+

√
p2+4

2 ) .

Recently, Pottmeyer [Pot18] has improved upon Petsche’s upper bound, and obtained

the existence of totally p-adic α such that

0 < h(α) ≤ log p
p .

In 1980, Smyth created a set of totally real numbers of small height by taking

all preimages of 1 under the map φ(x) = x + 1
x . The heights of the points in this set
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have a limit point ` ≈ 0.27328 [Smy80]. We use an argument inspired by this result

of Smyth to provide an upper bound on the smallest limit point of heights of totally

p-adic numbers of degree d. This result is stated as Theorem 1.5 in the following

section, and proved in Chapter 5.

1.2 Summary of New Results

Recall that an algebraic number α is totally p-adic if the minimal poynomial

fα of α over Q splits completely over Qp. Previous results have investigated what can

be said about small heights of totally p-adic numbers for a fixed prime, and allowing d

to vary. In this paper, we fix the degree d, and let the prime p vary. In particular, we

define τd,p to be the smallest height attained by a totally p-adic, nonzero, non-root of

unity, algebraic number of degree d. We know such a smallest height number exists by

Northcott’s Theorem. For each pair d and p, we will create an irreducible polynomial

of degree d that splits completely over Qp, thus guaranteeing the finiteness of τd,p.

For brevity, we introduce the notation

Tp = {α ∈ Q ∣ h(α) > 0 and α totally p-adic}

for the set of all nonzero, non-root of unity, totally p-adic algebraic numbers.

We begin in Chapter 3 by looking at degree 2 numbers. Since a quadratic

polynomial splits completely over Qp if and only if its discriminant is a square modulo

p, we search for degree 2 numbers of small height. The two smallest nontrivial heights

attained by quadratic numbers are 1
2 log (1+

√
5

2 ) and 1
2 log 2. The first is only attained

by the roots of x2 ± x − 1.
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TABLE 1.1: Discriminants of Quadratic Numbers of Small Height

h(αi) fαi
Discriminant of fαi

1
2 log (1+

√
5

2 ) x2 ± x − 1 5

1
2 log 2 x2 + 2 −2

1
2 log 2 x2 − 2 2

1
2 log 2 x2 + 2x + 2 −1

The Legendre symbol, (ap), detects when a is a square modulo p. It returns 0 if

p ∣ a, 1 if a is a square modulo p, and −1 is a is not a square modulo p. By properties

of the Legendre symbol,

(−1p ) (2
p) = (−2p ) .

For odd p, (−2p ) ≠ 0, and therefore at least one of the symbols has a value of 1.

The associated polynomial splits over Qp, and since x2 ± x − 1 splits if and only if

(5
p) = (p

5
) = 1, we obtain the following theorem:

Theorem 1.1. For any prime p,

τ2,p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 log (1+

√
5

2 ) if p ≡ 1,4 (mod 5)

1
2 log 2 if p ≡ 0,2,3 (mod 5).

One of the goals of this thesis is an attempt to generalize Theorem 1.1 for larger

degrees. Although quadratic reciprocity provides a nice way to prove Theorem 1.1,

in Chapter 3 we shall see that the deeper reason that τ2,p depends only on p (mod 5)

is that all quadratic extensions of Q are abelian.

The subfield of all algebraic numbers contained in an abelian extension of Q is

denoted Qab. Let Tab
p = Tp ∩Qab. We define τ abd,p to be the smallest height of α ∈ Tab

p

of degree d. Note that for all primes p, τ2,p = τ ab2,p. To generalize Theorem 1.1 from

quadratic numbers to arbitrary degree, we look at what can be said about τ abd,p for

d ≥ 3.
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The Kronecker-Weber Theorem states that all abelian extensions of Q are con-

tained within a cyclotomic extension of Q, so we leverage the Galois theory of cyclo-

tomic extensions. For α ∈ Qab, the conductor of the number field K = Q(α) is the

smallest positive integer m such that K is contained in Q(ζm), where ζm is a primitive

mth root of unity. Then (Z/mZ)× is isomorphic to the Galois group of Q(ζm)/Q by

the map [i] → σi, where σi is the element of the Galois group which sends ζm → ζ im.

For α ∈ Q, we define Aα to be the set of all j ∈ Z such that σj(α) = α.

Theorem 1.2. Let d ≥ 2 and let α1, α2, α3, . . . be an enumeration of all elements of

Tab
p of degree d, written in order of nondecreasing height, so that

h(α1) ≤ h(α2) ≤ h(α3) ≤ . . . .

Let mi denote the conductor of Q(αi).

(a) There exists an integer k ≥ 1 such that
k

⋃
i=1

Aαi
contains all primes p not dividing

any of the conductors m1, . . . ,mk.

(b) Let k ≥ 1 be the smallest positive integer satisfying (a), and let

Nd = lcm(m1, . . . ,mk).

Then τ abd,p depends only on p (mod Nd).

Theorem 1.2 provides an alternate proof of the finiteness of τ abd,p. By finding

a k that satisfies the criterion described in Theorem 1.2, we can calculate Nd. For

example, we calculate N3 to be 228979643050431.

Next, we take a closer look at τ3,p. Since not all roots of cubic polynomials

are contained within an abelian extension of Q, we can no longer rely on quadratic

reciprocity, and must turn to other techniques. In particular, we use the method of

Cardano to detect when a polynomial splits over Qp. The first step is to depress

the cubic, so without loss of generality we consider only polynomials of the form

x3 +Ax +B ∈ Q[x]. The conditions that determine if a polynomial splits completely
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over Qp depend whether or not Qp contains a primitive cube root of unity, which

happens exactly when p ≡ 1 (mod 3).

Theorem 1.3. Let p be a prime, with p ≡ 1 (mod 3), f(x) = x3 +Ax+B ∈ Q[x], and

∆ = B2 + 4A3/27. If A = 0, let C = −B, and if A ≠ 0, let C be either square root of ∆

in Qp. Then f splits completely over Qp if and only if

(a) ∆ is a square in Qp, and

(b) −B+C
2 is a cube in Qp.

Theorem 1.4. Let p be a prime, with p ≡ 2 (mod 3), f(x) = x3+Ax+B ∈ Q[x] with

B ≠ 0, ∆ = B2 + 4A3/27, and ζ a primitive cube root of unity. If A = 0, let C = −B,

and if A ≠ 0, let C be either square root of ∆ in Qp. Then f splits completely over

Qp if and only if

(a) ∆ is a square in Qp(ζ) and not a square in Qp, and

(b) −B+C
2 is a cube in Qp(ζ) and not a cube in Qp.

Theorem 1.3 and Theorem 1.4 give rise to algorithms to solve for τ3,p explicitly.

We implement these algorithms in Sage, and obtain the results in Table 1.2, where

fα is an irreducible polynomial with roots of height τ3,p.

TABLE 1.2: Some values of τ3,p

p τ3,p fα

5 0.36620 x3 − 2x2 − x − 3

7 0.12741 x3 − x2 − 1

11 0.23105 x3 − x2 − 2

13 0.093733 x3 − x2 + 1

Continued on next page
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TABLE 1.2 – continued from previous page

p τ3,p fα

17 0.23105 x3 − 2x − 2

19 0.12741 x3 + x + 1

23 0.20313 x3 − x2 + x + 1

29 0.093733 x3 − x − 1

31 0.093733 x3 + x2 − 1

37 0.20313 x3 + x2 + x − 1

41 0.093733 x3 − x − 1

43 0.23105 x3 − 2x + 2

47 0.23105 2x3 − 2x2 + 1

53 0.20313 x3 − x2 − x − 1

59 0.12741 x3 − x2 − 1

Shifting focus, we then look at an upper bound on the smallest limit point of

nontrivial heights of totally p-adic numbers. This work builds on previous results of

Bombieri-Zannier and Fili-Petsche. They have established lower bounds, which are

not sharp, for lim infd→∞ τd,p. We use techniques from arithmetic dynamical systems

to establish an upper bound on lim infd→∞ τd,p. The exact value of lim infd→∞ τd,p is

not known, but we offer the following upper bound, which is approximately twice the

lower bound provided by Fili-Petsche.

Theorem 1.5. For each prime p, there are infinitely many α ∈ Tab
p such that

h(α) ≤ log(p+1)
p−1 . In particular,

lim inf
d→∞

τd,p ≤ log(p+1)
p−1 .

The proof of Theorem 1.5 is inspired by an argument of Smyth, where he used

the preimages of 1 under the map φ(x) = x + 1
x to create an upper bound on the
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smallest limit point of nontrivial heights of totally real numbers. We use instead the

map φp(x) = 1
p(xp − x), and take preimages of 1 to create an infinite set of nontrivial

heights bounded above by log(p+1)
p−1 .

In Chapter 2, we provide background on absolute values, heights, Mahler mea-

sure and Newton polygons. In Chapter 3, we consider heights of totally p-adic num-

bers in abelian extensions of Q, and we prove Theorem 1.2. In Chapter 4, we prove

Theorem 1.3 and Theorem 1.4. In Chapter 5, we use techniques from arithmetic

dynamical systems to establish an upper bound on lim infd→∞ τd,p. The appendices

contain all code used in Sage to compute results of degree 3 algebraic numbers.
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2 Preliminaries

This section contains standard results that are used throughout this paper. We

assume the reader has a background in basic abstract algebra, Galois theory, and the

theory of algebraic number fields. We review the basic definitions of absolute value

and p-adic numbers. The main sources are Heights in Diophantine Geometry by

Enrico Bombieri and Walter Gubler [BG06], Local Fields by J.W.S. Cassels [Cas86],

p-adic Numbers: An Introduction by Fernando Q. Gouvêa [Gou97], and Algebraic

Number Theory Course Notes (Fall 2006) by Matt Baker [Bak06].

2.1 Absolute Values

All results in this section, along with proofs, can be found within p-adic Num-

bers: An Introduction by Fernando Q. Gouvêa in Sections 3.1 and 3.2 [Gou97].

Definition. Let k be a field. An absolute value on k is a function ∣ ⋅ ∣ ∶ k → [0,∞)

that satisfies the following properties for all x, y ∈ k ∶

i) ∣x∣ = 0 if and only if x = 0;

ii) ∣xy∣ = ∣x∣∣y∣;

iii) ∣x + y∣ ≤ ∣x∣ + ∣y∣.

If ∣ ⋅ ∣ further satisfies the strong triangle inequality, ∣x+y∣ ≤ max{∣x∣, ∣y∣} for all x, y ∈ k,

then ∣⋅∣ is a non-archimedean absolute value. If ∣⋅∣ does not satisfy the strong triangle

inequality for all x, y ∈ k, then ∣ ⋅ ∣ is an archimedean absolute value. Two absolute

values, ∣ ⋅ ∣1 and ∣ ⋅ ∣2, are equivalent if there is some θ > 0 such that, for all x ∈ k,

∣x∣1 = ∣x∣θ2. If ∣ ⋅ ∣1 is equivalent to ∣ ⋅ ∣2, we write ∣ ⋅ ∣1 ∼ ∣ ⋅ ∣2.
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Example 1. The trivial absolute value, ∣ ⋅ ∣0 ∶ k → [0,∞) is defined by

∣x∣0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x = 0

1 if x ≠ 0.

Example 2. The standard archimedean absolute value on C, R or Q is given by

∣z∣∞ =
√
zz.

When k = Q, in addition to the standard archimedean absolute value, there are

countably many p-adic absolute values, one for each prime p (up to equivalence).

Definition. Let x ∈ Q, p be a prime, and write x = pk ab , where a, b, k ∈ Z, and p ∤ ab.

Then the p-adic absolute value of x ≠ 0 is

∣x∣p = p−k.

The p-adic absolute value measures the divisibility of p; it is small when the numerator

of x is highly divisible by p, and large when the denominator of x is highly divisible

by p. To illustrate,

lim
n→∞

∣pn∣p = lim
n→∞

p−n = 0.

Proposition 2.1. ∣ ⋅ ∣p is a non-archimedean absolute value on Q.

Proof. The first two axioms follow directly from the definition of ∣ ⋅ ∣p. It remains to

prove that the strong triangle inequality holds. Let x = pk ab and y = p` cd ∈ Q, where

p ∤ abcd. Without loss of generality, suppose that ∣x∣p ≤ ∣y∣p. Thus k ≥ `. It follows

that

∣x + y∣p = ∣pk ab + p
` c
d
∣
p

= ∣p` (pk−l ab +
c
d
)∣
p

= p−` ∣pk−l ab +
c
d
∣
p

= p−` ∣p
k−lad+bc
bd ∣

p
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≤ p−`

= ∣y∣p

= max{∣x∣p, ∣y∣p}.

The next proposition is often referred to as “the case of equality in the strong

triangle inequality.”

Proposition 2.2. Let k be a field, and let ∣ ⋅ ∣ be a non-archimedean absolute value

on k. Let x, y ∈ k with ∣x∣ ≠ ∣y∣. Then ∣x + y∣ = max{∣x∣, ∣y∣}.

Proof. Without loss of generality, suppose ∣x∣ < ∣y∣. By the strong triangle inequality,

∣x + y∣ ≤ max{∣x∣, ∣y∣} = ∣y∣.

Since ∣x∣ < ∣y∣,

∣y∣ = ∣x + y − x∣ ≤ max{∣x + y∣, ∣x∣} = ∣x + y∣. (2.1)

If the last equality in (2.1) did not hold, then we would have ∣y∣ ≤ max{∣x+y∣, ∣x∣} = ∣x∣,

which would contradict ∣x∣ < ∣y∣. Since ∣y∣ ≤ ∣x + y∣ ≤ ∣y∣, ∣x + y∣ = ∣y∣.

Theorem 2.3 (Ostrowski’s Theorem). [Gou97, Theorem 3.1.3] Every non-trivial

absolute value on Q is equivalent to either ∣ ⋅ ∣∞ or ∣ ⋅ ∣p for some prime p.

A place of a number field K is defined to be an equivalence class of nontrivial

absolute values, and we denote by MK the set of places of K. Ostrowski’s Theorem

allows us to write

MQ = {∞,2,3,5,7,11,13,17, . . .},

where ∞ denotes the archimedean place, and abusing notation slightly we use p to

denote both a prime number as well as its corresponding equivalence class of absolute

values on Q. The archimedean place is often refered to as the “place at infinity,”

where the non-archimedean places are considered the “finite places.” The absolute

values on K satisfy a version of Ostrowski’s Theorem. For more details, see [Gou97].
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Given v ∈ MK , we may restrict one of its absolute values to Q, and by Ostrowski’s

Theorem on Q, v must correspond to a place p of Q; in this case we write v ∣ p.

The field of rational numbers is not complete with respect to any of its nontrivial

absolute values. The completion of Q with respect to ∣ ⋅ ∣p is denoted by Qp and is

called the field of p-adic numbers. The absolute value ∣ ⋅ ∣p extends uniquely to an

absolute value on Qp. Just as Q is dense in R, Q is also dense in Qp. Zp is the ring

of p-adic integers and is defined as:

Zp = {x ∈ Qp ∶ ∣x∣p ≤ 1}.

Although Qp is complete, it is not algebraically closed. The algebraic closure of

Qp is Qp, and the completion of Qp is denoted by Cp, which is both complete and

algebraically closed [BGR84].

Example 3. The polynomial x2 − p does not split in Qp, since the p-adic absolute

value of an element in Qp must be equal to pk for k ∈ Z, and ∣√p∣
p
= p−1/2.

Definition. The local degree of a number field K over Q at the place v is dv =

[Kv ∶ Qv], where Kv is the completion of K under ∣ ⋅ ∣v and Qv is the completion of Q

under ∣ ⋅ ∣v. The global degree of K over Q is d = [K ∶ Q].

Example 4. Let K be a number field, and v be the archimedean place. Then Qv = R

and either Kv = C or Kv = R, so dv = 1 or dv = 2.

Theorem 2.4 (Local-Global Degree Formula). [BG06, Corollary 1.3.2] Let L be a

finite extension of a number field K. Then, for v ∈MK ,

[L ∶K] = ∑
w∈ML
w∣v

[Lw ∶Kv].

Definition. Let v be a place of K. If v is archimedean, we will say v ∣∞, and denote

by ∣ ⋅ ∣v the unique absolute value on K such that ∣x∣v = ∣x∣∞ for all x ∈ Q. If v is

non-archimedean with v ∣ p, then ∣ ⋅ ∣v is the unique absolute value on K such that

∣x∣v = ∣x∣p for all x ∈ Q.
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One of the most important results in p-adic analysis is Hensel’s Lemma. The

proof is essentially a p-adic version of Newton’s root-finding method from Calculus.

We include a standard proof of Hensel’s Lemma, this version of which appears in

[Petb]; see also [Con18b] for essentially the same proof but for a stronger version of

the result.

Lemma 2.5 (Hensel’s Lemma). [Con18b, Theorem 1.2] If f(x) ∈ Zp[x] and a ∈ Zp
satisfies

i) f(a) ≡ 0 (mod p), and

ii) f ′(a) /≡ 0 (mod p),

then there is a unique α ∈ Zp such that f(α) = 0 and α ≡ a (mod p).

Proof. Beginning with a, we create a sequence of elements of Zp which converge to

a root α of f , and show that α ≡ a (mod p). To begin, we let a1 = a, and define the

sequence a1, a2, a3, . . . recursively as follows:

ak+1 = ak − f(ak)
f ′(ak)

. (2.2)

We show by induction, that

∣f(ak)∣p ≤ ∣f(a)∣2k−1p , and

∣f ′(ak)∣p = 1
(2.3)

for all choices of k ≥ 1. Notice that (2.3) implies that f ′(ak) is nonzero, and therefore

(2.2) makes sense.

Assume (2.3) holds for a1, a2, . . . , ak. We show that (2.3) holds for ak+1. By

definition of ak and the induction hypothesis,

∣ak+1 − ak∣p = ∣ f(ak)f ′(ak)
∣
p
= ∣f(ak)∣p ≤ ∣f(a)∣2k−1p < 1.

Expanding f about ak, we obtain

f(x) = b0 + b1(x − ak) + ⋅ ⋅ ⋅ + bd(x − ak)d.
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Since Zp is a ring containing ak and the coefficients of f , and since bj are the co-

efficients of f(x + ak), we have that bj ∈ Zp for all j. Additionally, b0 = f(ak) and

b1 = f ′(ak). By (2.2), f(ak) + f ′(ak)(ak+1 − ak) = 0 and thus

f(ak+1) = b0 + b1(ak+1 − ak) + b2(ak+1 − ak)2 + ⋅ ⋅ ⋅ + bd(ak+1 − ak)d

= f(ak) + f ′(ak)(ak+1 − ak) + b2(ak+1 − ak)2 + ⋅ ⋅ ⋅ + bd(ak+1 − ak)d

= b2(ak+1 − ak)2 + ⋅ ⋅ ⋅ + bd(ak+1 − ak)d.

By the strong triangle inequality,

∣f(ak+1)∣p ≤ ∣ak+1 − αk∣2p ≤ (∣f(a)∣2k−1p )2 = ∣f(a)∣2kp .

Further,

f ′(ak+1) = f ′(ak) + 2b2(ak+1 − ak) + ⋅ ⋅ ⋅ + dbd(ak+1 − ak)d−1

and thus by Proposition 2.2, ∣f ′(ak+1)∣p = ∣f ′(ak)∣p = 1. Thus, we have shown that

ak+1 satisfies (2.3), so by induction (2.3) holds for all k ∈ N.

To show that the sequence {ak} converges to some α ∈ Zp, we must first show

that {ak} is a Cauchy sequence in Zp. If k1 ≤ k2 are integers, then

∣ak2 − ak1 ∣p = ∣
k2−1

∑
k=k1

(ak+1 − ak)∣
p

≤ max
k1≤k≤k2−1

∣ak+1 − ak∣p

≤ max
k1≤k≤k2−1

∣f(a)∣2k−1p

= ∣f(a)∣2k1−1p .

Since limk1→∞ ∣f(a)∣2k1−1p = 0, we have that {ak} is a Cauchy sequence. Let α = limak.

Since Zp is complete, α ∈ Zp. By continuity of polynomials,

f(α) = f(limak) = lim f(ak) = 0.
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Lastly, we verify that α ≡ a (mod p):

∣a − α∣p = ∣a1 − ak + ak − α∣p

≤ max{∣a1 − ak∣p, ∣ak − α∣p}

≤ max{∣f(a)∣p, ∣ak − α∣p}

= ∣f(a)∣p < 1

for large enough k.

Example 5. Let f(x) = x2 + x + 2. Since

∣f(1)∣2 = ∣4∣2 = 1
4 , and

∣f ′(1)∣2 = ∣3∣2 = 1,

there exists an α ∈ Z2 such that f(α) = 0, and α ≡ 1 (mod 2). Further, since α is in

the field Q2, both roots of f must be in Q2, and f splits completely over Q2.

Proposition 2.6. Let p be an odd prime. Then Qp contains the (p − 1)st roots of

unity.

Remark. To see that the (p − 1)st roots of unity are the only roots of unity in Qp,

see [Gou97, page 72-73].

Proof. We use Hensel’s Lemma to show that in fact the (p − 1)st roots of unity are

in Qp. Let f(x) = xp−1 − 1, and a ∈ {1,2, . . . , p − 1}. By Fermat’s Little Theorem, we

have that ap−1 ≡ 1 (mod p). In other words, p ∣ ap−1 − 1. Hence

∣f(a)∣p = ∣ap−1 − 1∣p < 1.

Since

∣f ′(a)∣p = ∣(p − 1)ap−2∣p = 1,

Hensel’s Lemma guarantees a unique root of f in Qp congruent to a, for all a ∈

{1,2, . . . , p − 1}. Thus, all p − 1 of the (p − 1)st roots of unity are in Qp.
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2.2 Logarithmic Weil Height

Let a
b ∈ Q be in lowest terms. Recall that the height of a

b is log max{∣a∣, ∣b∣}. To

precisely extend the height function to number fields, we use the machinery of places.

Definition. Let K be a number field containing α, dv = [Kv ∶ Qv], and d = [K ∶ Q].

The logarithmic Weil height of α is defined by the function

h(α) = ∑
v∈MK

log max{1, ∣α∣dv/dv }.

Throughout this paper, h(α) shall be referred to as “the height of α.”

To show that h(α) does not depend on the choice of K, let L be a field extension

of K. For each place v of K, the local-global degree formula for the extension L/K

states that [L ∶ K] = ∑w∣v[Lw ∶ Kw]. The following calculation shows h(α) remains

the same if we view α as an element of K or as an element of L.

∑
w∈ML

log max{1, ∣α∣[Lw ∶Qw]/[L∶Q]
w } = ∑

v∈MK

∑
w∣v

log max{1, ∣α∣[Lw ∶Qw]/[L∶Q]
v }

= ∑
v∈MK

∑
w∣v

[Lw ∶Qw]
[L∶Q] log max{1, ∣α∣v}

= ∑
v∈MK

∑
w∣v

[Lw ∶Kw][Kv ∶Qv]
[L∶K][K ∶Q] log max{1, ∣α∣v}

= ∑
v∈MK

[Kv ∶Qv]
[K ∶Q] ∑

w∣v

[Lw ∶Kw]
[L∶K] log max{1, ∣α∣v}

= ∑
v∈MK

[Kv ∶Qv]
[K ∶Q] log max{1, ∣α∣v}

= ∑
v∈MK

log max{1, ∣α∣[Kv ∶Qv]/[K ∶Q]
v }

Since Q(α) is a subfield of all number fields containing α, the above calculation is

sufficient to show equality for all number fields containing α.

Theorem 2.7 (Northcott’s Theorem). [BG06, Theorem 1.6.8] For each A > 0, B > 0,

the set

{α ∈ Q ∣ [Q(α) ∶ Q] ≤ A and h(α) ≤ B}

is finite.
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Theorem 2.8. Let α be an algebraic number. Then h(α) = 0 if and only if α = 0 or

is a root of unity.

Proof. From the definiton of height, we see that h(0) = 0 and h(1) = 0. Let α be a

root of unity with αm = 1. Then mh(α) = h(αm) = h(1) = 0, and thus h(α) = 0.

Conversely, suppose that h(α) = 0. Then h(αn) = ∣n∣h(α) = 0 for all positive

integers n. Since the sequence α,α2, α3, . . . has bounded height and bounded degree,

by Northcott’s Theorem, the sequence can only contain finitely many values. Thus,

for some m > n, αm = αn. Moreover, 0 = αn(αm−n − 1). Thus α = 0 or is a root of

unity.

2.3 Mahler Measure

The results in this section come from Heights in Diophantine Geometry by

Enrico Bomieri and Walter Gubler [BG06].

Definition. Let f(x) ∈ C[x] be a nonzero polynomial of degree d with roots α1, . . . , αd

(allowing for multiplicity) and leading coefficient a. The Mahler measure of f is

M(f) = ∣a∣ ∏
∣αj ∣≥1

∣αj ∣,

where ∣z∣ =
√
zz.

Definition. The nth cyclotomic polynomial, Φn(x), is the minimal polynomial for a

primitive nth root of unity.

Theorem 2.9. [BG06, Proposition 1.6.6] Let f ∈ Z[x] be the minimal polynomial of

α ≠ 0, and d = deg(f). Then

h(α) = 1
d logM(f).

Theorem 2.10. Let f ∈ Z[x]. Then M(f) = 1 if and only if f(x) = ±xk∏Φn(x), for

some k ∈ N and cyclotomic polynomials Φn.
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Proof. If M(f) = 1, then all irreducible factors of f have Mahler measure 1, so then

Theorem 2.9 implies that all roots are either zero or roots of unity. For the other direc-

tion, it follows directly from the definiton of Mahler measure thatM(±xk∏Φn(x)) = 1

because the leading coefficient is 1 and all roots are inside the closed unit disc.

Definition. Let f ∈ Z[x] with

f(x) =
d

∑
i=0

aix
i.

The length of f is L(f) =
d

∑
i=0

∣ai∣ where ∣ ⋅ ∣ is the archimedean absolute value on Z.

Proposition 2.11. (Height-Length Bound) Let f(x) = adxd + ⋯ + a1x + a0 ∈ C[x],

Then

L(f) ≤ 2dM(f).

Proof. Note that for a nonzero complex number γ, L(γf) = ∣γ∣L(f) and M(γf) =

∣γ∣M(f). Thus, without loss of generality we may asssume that f is monic, and can

be written

f(x) = xd + ad−1xd−1 + ⋅ ⋅ ⋅ + a1x + a0 =
d

∏
i=1

(x − αi).

By the symmetric function theorem, for 0 ≤ i ≤ d − 1, ai is equal to the sum over all

subsets of the roots of f of size d − i, of ± the product of the roots in that subset.

The Mahler measure is the product of all roots with absolute value greater than one.

Thus, each product being summed is bounded above by the Mahler measure M(f),

and there are (d
i
) terms being summed, so we have

L(f) = 1 +
d−1

∑
i=0

∣ai∣

≤
d

∑
i=0

(d
i
)M(f)

= 2dM(f).
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2.4 Newton Polygons

For this section, we rely on Section 6.3 in Local Fields by J.W.S Cassels [Cas86]

and Section 6.4 in p-adic Numbers: An Introduction by Fernando Q. Gouvêa [Gou97].

The Newton polygon of a polynomial f is a geometric object that encodes information

about the placement of the roots of f .

Definition. The p-adic valuation vp ∶ Qp → Z ∪ {+∞} on Qp is defined by

∣x∣p = p−vp(x)

for x ≠ 0, and vp(0) = +∞.

Definition. Let p be a prime, and

f(x) = a0 + a1x + a2x2 +⋯ + adxd ∈ Qp[x].

Consider the set of points {(i, vp(ai)) ∣ 0 ≤ i ≤ d} in R2. The Newton polygon of

f(x) is the lower boundary of the convex hull of this set of points.

Definition. The Newton slopes are the slopes of the line segments of a Newton

polygon. The point (i, v(ai)) is a vertex of the Newton polygon if the slopes of the

line segments change at (i, v(ai)). We then say that i is a break. The length of

a line segment is the length of the projection of the corresponding segment onto the

x-axis.

Definition. A polynomial is pure if its Newton polygon has only one Newton slope.
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Example 6. Figure 2.1 shows the Newton polygon of

f(z) = z7 + 3

16
z6 + 1

32
z5 − 8z4 + 7

16
z3 − 1

12
z + 28 ∈ Q2[z].

There are breaks at i = 1,3,5,6,7 and the Newton slopes are −4,−1,−1
2 ,1,4.

FIGURE 2.1: Newton Polygon of f(z) = z7 + 3
16z

6 + 1
32z

5 − 8z4 + 7
16z

3 − 1
12z + 28.

Theorem 2.12. [Gou97, Theorem 6.4.7] Let f(x) = adxd +⋯ + a1x + 1 ∈ Qp[x]. Let

α1, . . . , αd be the roots of f(x) in Cp, counting multiplicities, so that

f(x) =
d

∏
i=1

(1 − x
αi
) .

Let λi = v(1/αi). Then λ is a slope of the Newton polygon of f(z) with length ` if

precisely ` of the λi are equal to λ. That is, f(x) has exactly ` roots with absolute

value pλ.

Proposition 2.13. [Gou97, Proposition 6.4.2] All irreducible polynomials in Qp[x]

are pure.

Definition. A polynomial f ∈ Qp[x] is of type

(`1,m1 ∶ `2,m2 ∶ ⋯ ∶ `r,mr) (2.4)
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if the segments of the Newton polygon of f are length `i with slope mi, and

m1 <m2 < ⋯ <mr.

Theorem 2.14. [Cas86, Theorem 3.1] Suppose f(x) ∈ Qp[x] is of type

(`1,m1 ∶ `2,m2 ∶ ⋯ ∶ `r,mr) .

Then,

f(x) = g1(x)g2(x)⋯gr(x),

where gi(x) is pure of type (`i,mi).

Remark. Theorem 2.14 implies that if f(x) ∈ Qp[x] is of type

(`1,1 ∶ `2,1 ∶ ⋯ ∶ `r,1) ,

then f splits completely over Qp.
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3 Totally p-adic Numbers with Abelian Galois Group

Definition. Let α ∈ Q. We say that α is abelian if α is contained within an abelian

extension of Q. The subfield of all abelian algebraic numbers is denoted Qab.

For brevity, we will denote the set of all nonzero, non-root of unity, algebraic,

totally p-adic numbers by Tp, and Tab
p = Tp ∩Qab.

Definition. Given a prime p and a positive integer d, we define

τd,p = min{h(α) ∣ α ∈ Tp and deg(α) = d}, and

τ abd,p = min{h(α) ∣ α ∈ Tab
p and deg(α) = d}.

We establish the finiteness of τd,p for all choices of p and d in two ways. First,

Proposition 3.1 uses Newton polygons to create a polynomial of degree d that is

irreducible over Q and splits completely over Qp. Later, Theorem 3.8 will provide an

alternate proof via Galois theory.

Proposition 3.1. Let p be a prime, and d ≥ 2. There exists an α ∈ Tp of degree d.

Proof. Let q be a prime, distinct from p. We will show that the polynomial

f(x) = p(d+1)d/2xd +
d−1

∑
i=0

qpi(i−1)/2xi.

is irreducible over Z and splits completely over Qp. Since p(d+1)d/2 ≠ ±1, f is not

cyclotomic. Thus the roots of f are not roots of unity.

Let ai be the coefficient of xi. For all 0 ≤ i ≤ d − 1, q ∣ ai and q2 ∤ a0. By the

Eisenstein criterion, f is irreducible over Z.

Next we determine the Newton polygon type of f for the prime p. If `i = 1 for

all i, then by Theorem 2.14, f splits completely over Qp. Since vp(ai) = i(i−1)
2 ,

vp(ai+1) − vp(ai) = (i+1)i
2 − i(i−1)

2 = i.

Therefore, f is of type (1,0 ∶ 1,1 ∶ 1,2 ∶ ⋯ ∶ 1, i ∶ ⋯ ∶ 1, d − 1) and splits completely over

Qp.
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3.1 Totally p-adic Numbers of Degree 2

Proposition 3.2. Let f(x) = ax2 + bx + c ∈ Z[x] be irreducible with a ≠ 0, and let

α ∈ Q be a root of f .

(a) If f(x) is equal to ±Φ3(x),±Φ4(x), or ±Φ6(x), then h(α) = 0.

(b) If f(x) = ±(x2 ± x − 1), then h(α) = 1
2 log (1+

√
5

2 ).

(c) If f(x) is not equal to ±Φ3(x),±Φ4(x),±Φ6(x) or ±(x2 ± x − 1), then h(α) ≥
1
2 log 2.

Proof. Let α be a root of unity contained in a number field K. For all v ∈ MK ,

∣α∣v = 1, and thus part (a) holds. Part (b) follows from the quadratic formula and

definition of height.

We now verify part (c). Suppose f(x) = a(x − α)(x − β) is not equal to

±Φ3(x),±Φ4(x),±Φ6(x), or ±(x2 ± x − 1).

If ∣a∣ ≥ 2, then M(f) ≥ 2, and h(α) ≥ 1
2 log 2. Therefore, we may assume a = 1.

We then consider two cases: either the roots of f are real or non-real.

Case 1: Suppose α,β ∈ R are the roots of f , and for sake of contradiction that

0 < h(α) < 1
2 log 2. In terms of Mahler measure, this can be written as 1 <M(f) < 2.

Since f is irreducible, c ≠ 0. Thus

1 ≤ ∣c∣ = ∣αβ∣ ≤ max{1, ∣α∣}max{1, ∣β∣} =M(f) < 2.

Thus c = ±1. Note that α and β are not roots of unity, since we have excluded all

quadratic cyclotomic polynomials. By Kronecker’s Theorem, h(α) > 0. Since ∣αβ∣ = 1,

we know exactly one of the roots must fall outside the unit circle, and the other inside.

Without loss of generality, suppose ∣α∣ < 1 < ∣β∣, so M(f) = ∣β∣. Since f is irreducible

with real roots, b2 − 4ac is a positive non-square in Z.

To show ∣b∣ = 1, we elimiminate ∣b∣ = 0 and ∣b∣ ≥ 2 by contradiction. If b = 0, then

b2 − 4ac = −4c, which is negative when c = 1, and is a square if c = −1. Suppose ∣b∣ ≥ 2.
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Then

M(f) = max{∣−b+
√
b2−4c
2 ∣ , ∣−b−

√
b2−4c
2 ∣} = ∣b∣+

√
b2−4c
2 .

If c = −1, then

M(f) = ∣b∣+
√
b2+4
2 > ∣b∣+∣b∣

2 = ∣b∣ ≥ 2,

which contradicts the assumption that M(f) < 2. If c = 1, b2 − 4ac = b2 − 4, which

cannot be zero by the irreducibilty hypothesis. Hence, ∣b∣ ≥ 3, so

M(f) = ∣b∣+
√
b2−4
2 ≥ ∣b∣+

√
5

2 > 2,

which contradicts the assumption that M(f) < 2. Therefore, ∣b∣ = 1.

Considering all polynomials with ∣a∣ = ∣b∣ = ∣c∣ = 1, we find that ±(x2 ± x − 1) are

the only such polynomials that have real roots.

Case 2: Suppose the roots of f are non-real, say α and α. Since a = 1, αα = c.

Since f is not a cyclotomic polynomial, by Kronecker’s Theorem, ∣α∣ > 1 and ∣α∣ > 1.

Thus ∣c∣ ≥ 2. Therefore h(α) = 1
2 logM(f) = 1

2 ∣c∣ ≥
1
2 log 2.

Remark. Proposition 3.1 implies the smallest nonzero height of a degree 2 algebraic

number is achieved only by the the roots of ±(x2 ± x − 1).

Definition. Let p be an odd prime. The Legendre symbol, for an integer a, is

(a
p
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if p ∤ a and a is a square (mod p),

−1 if a is not a square (mod p), and

0 if p ∣ a.

The law of quadratic reciprocity states that for odd primes p and q,

(p
q
)(q

p
) = (−1)

p−1
2

q−1
2 .

Theorem 3.3. For any prime p,

τ2,p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 log (1+

√
5

2 ) if p ≡ 1,4 (mod 5)

1
2 log 2 if p ≡ 0,2,3 (mod 5).
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Proof. Let p be an odd prime. We consider a few polynomials whose roots have height

1
2 log 2,

g(x) = x2 + 2,

h(x) = x2 − 2, and

k(x) = x2 + 2x + 2.

A quadratic polynomial splits in Qp if and only if its discriminant is a square mod p.

Thus g splits over Qp if and only if (−2p ) = 1, h splits over Qp if and only if (2
p) = 1,

and k splits over Qp if and only if (−1p ) = 1, where (ap) is the Legendre symbol. By

properties of the Legendre symbol,

(−1p ) (2
p) = (−2p ) . (3.1)

Since p is odd, (−2p ) ≠ 0, and therefore at least one of the symbols has a value of 1.

The associated polynomial must split over Qp.

By Proposition 3.1, ±(x2 ± x − 1) are the only irreducible polynomials over Z

with root α such that 0 < h(α) < 1
2 log 2. Thus τ2,p = 1

2 log (1+
√
5

2 ) if one of ±(x2±x−1)

splits over Qp. If not, then τ2,p = 1
2 log 2.

Note that ±(x2±x−1) splits over Qp if and only if its discriminant 5 is a square

in Qp. By quadratic reciprocity, if p ≡ 1,4 (mod 5), then (5
p) = (p

5
) = 1. If p ≡ 2,3

(mod 5), then (5
p) = (p

5
) = −1.

It remains to determine τ2,2 and τ2,5. Since the value group of Qp is pZ, 5 is not

a square in Q5 since ∣
√

5∣5 = 5−1/2. Thus τ2,5 ≠ 1
2 log (1+

√
5

2 ), and τ2,5 = 1
2 log 2.

Note that x2+x+2 splits over Q2 by Hensel’s Lemma, and the roots have height

1
2 log 2. Further, x2 ± x − 1 do not split over Q2 since they do not split over Z2, and

thus τ2,2 = 1
2 log 2.
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3.2 Dependence of τ abd,p on a Congruence Condition

In Section 3.1 we showed that τ2,p depends only on p (mod 5). In this section we

show that for any degree d, τ abd,p depends only on p modulo some integer Nd. Theorem

3.8 verifies the finiteness of τ abd,p for d ≥ 2 and prime p, and since τd,p ≤ τ abd,p, τd,p must

also be finite.

Lemma 3.4. Let G be a finite abelian group of order n. If m ∣ n, then there exists

a subgroup of G of order m.

Proof. We induct on the order of ∣G∣. The case ∣G∣ = 1 is trivial. For nontrivial G,

suppose that the Lemma holds for all groups with smaller order than G. Let m be a

divisor of ∣G∣ and let p be a prime divisor of m. Let α ∈ G of order p. Such an element

exists by Cauchy’s Theorem. Then G/⟨α⟩ has a subgroup H/⟨α⟩ of order m/p, and

H is therefore a subgroup of G of order m.

Lemma 3.5. If H is a subgroup of a finite abelian group G, and ∣H ∣ ∣ m ∣ ∣G∣, then

there exists K ⩽ G such that H ⩽K ⩽ G and ∣K ∣ =m.

Proof. Consider G/H, and note that

m
∣H ∣ ∣

∣G∣
∣H ∣ =∣ G/H ∣ .

By Lemma 3.4, there must exist a subgroup of G/H with order m
∣H ∣ . Call this group

K/H. Then the group K has order m, and H ⩽K ⩽ G.

Example 7. Let d = 2. Note that 3,5 ≡ 1 (mod 2). So n = 15, and

(Z/15Z)× = {1,2,4,7,8,11,13,14}.

Subgroups of (Z/15Z)× of index 2 are

Gα1 = {1,2,4,8},

Gα2 = {1,4,7,13}, and
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Gα3 = {1,4,11,14}.

Note that (Z/15Z)× = Gα1 ∪Gα2 ∪Gα3 . Thus, for all primes p except 3 and 5, [p] ∈

Gα1 ∪Gα2 ∪Gα3 . In this way, we can think of the Gαi
“covering” all but finitely many

primes. We would like to ensure that we can find such a collection of groups for any

degree d.

Lemma 3.6. Let d ≥ 2. There exists an n ∈ N such that (Z/nZ)× is the union of all

subgroups of (Z/nZ)× of index d.

Proof. Let q, r be distinct prime numbers such that q ≡ 1 (mod d) and r ≡ 1 (mod d).

Such primes are guaranteed to exist by Dirichlet’s Theorem on primes in arithmetic

progressions. Let n = qr. By the Chinese Remainder Theorem,

Z/nZ ≅ Z/qZ ×Z/rZ.

Thus

(Z/nZ)× ≅ (Z/qZ)× × (Z/rZ)× ≅ Z/(q − 1)Z ×Z/(r − 1)Z. (3.2)

Let a ∈ (Z/nZ)×. We aim to construct a subgroup of (Z/nZ)× of index d that

contains a. By (3.2), ord(a) ∣ lcm(q − 1, r − 1), where ord(a) is the smallest positive

integer m such that am ≡ 1 (mod n). Since d ∣ q − 1 and d ∣ r − 1,

d ∣ gcd(q − 1, r − 1) = (q−1)(r−1)
lcm(q−1,r−1) .

Therefore, (q−1)(r−1)
d ∈ Z, and we have

ord(a) ∣ (q − 1)(r − 1)
d

∣ (q − 1)(r − 1).

By Lemma 3.5, there is a group G such that ⟨a⟩ ⩽ G ⩽ (Z/nZ)× with ∣G∣ = (q−1)(r−1)
d ,

and thus [(Z/nZ)× ∶ G] = d.

We now reivew the basic Galois theory of cyclotomic extensions. See [DF04,

Chapter 14, Theorem 26] for more details. Let n ≥ 3, and let ζn be a primitive nth
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root of unity. Then (Z/nZ)× ≅ Gal(Q(ζn)/Q) via the isomorphism

(Z/nZ)× → Gal(Q(ζn)/Q)

[i]↦ σi

where σi ∈ Gal(Q(ζn)/Q) characterized by σi(ζn) = ζ in.

Definition. Let d ≥ 1 be an integer, and n be as described in Lemma 3.6. Let

α ∈ Q(ζn), with d = [Q(α) ∶ Q]. We define Gα and Aα as follows:

Gα = {[i] ∈ (Z/nZ)× ∣ σi(α) = α}, and

Aα = {i ∈ Z ∣ [i] ∈ Gα}.

Figure 3.1 shows the Galois correspondence of subfields of Q(ζn) of degree d

with subgroups of (Z/nZ)× of index d.

Q(ζn)

Q(α1) Q(α2) ⋯ Q(αj)

Q

d d

d

1

Gα1 Gα2 ⋯ Gαj

(Z/nZ)×

d d

d

FIGURE 3.1: Galois Correspondence of Q(ζn)/Q with (Z/nZ)×
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The following lemma is well known, but for lack of a convenient reference, we

provide a proof.

Lemma 3.7. Let α ∈ Q(ζn) have minimal polynomial fα ∈ Z[x], and let

Gα = {[i] ∈ (Z/nZ)× ∣ σi(α) = α}.

Thus Gα is the subgroup of (Z/nZ)× corresponding to Gal(Q(ζn)/Q(α)) via the iso-

morphism (Z/nZ)× ≅ Gal(Q(ζn)/Q). Let p ∤ n be a prime. Then fα splits completely

in Qp if and only if [p] ∈ Gα.

Proof. The automorphism σp ∈ Gal(Q(ζn)/Q) satisfies σp(x) ≡ x (mod p) for all

x ∈ Z[ζn] [Bak06, Lemma 4.51]. Since Q(ζn)/Q is an abelian extension, Q(α)/Q is a

Galois extension and therefore σp restricts to an automorphism σp ∈ Gal(Q(α)/Q); the

above congruence implies that σp is the Frobenius element of Gal(Q(α)/Q) associated

to the prime p.

If [p] ∈ Gα, then σp is the identity element of Gal(Q(α)/Q), which implies that

p splits completely in Q(α) [Bak06, Proposition 4.36]; that is pOQ(α) = p1 . . .pd, where

d = [Q(α) ∶ Q]. It follows that each local degree e(pi/p)f(pi/p) = [Q(α)pi ∶ Qp] is

equal to 1 [Bak06, Theorem 5.25], which means that Q(α)pi = Qp for i = 1,2, . . . , d.

In particular, Q(α) ⊆ Qp, and therefore as Q(α)/Q is Galois, all d of the Galois

conjugates of α are in Qp as well. Hence fα(x) splits completely in Qp. The converse

follows from a straightforward reversal of this argument.

Remark. By Lemma 3.7, for each prime p ∤ n, p splits completely in Q(α) if and

only if p ∈ Gα.

Theorem 3.8. Let d ≥ 2 be an integer. Then there exists a constant Cd such that

for each prime p, there exists α ∈ Tab
p of degree d and height h(α) ≤ Cd. In particular,

τ abd,p ≤ Cd for all primes p.
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Proof. Let d ≥ 2 be an integer. For primes q, r ≡ 1 (mod d), we fix n = qr. By Lemma

3.6,

(Z/nZ)× = ⋃
Gi⩽(Z/nZ)×

[(Z/nZ)×∶Gi]=d

Gi.

Let [p] denote the reduction of p (mod n). Let p be a prime with [p] ∈ G1, and

let K1 be the fixed field of the subset of Gal(Q(ζn)/Q) that corresponds to G1. By the

primitive element theorem, there exists some α1 ∈K1 so that Q(α1) =K1. Moreover,

we can choose a primitive element α1 that is not a root of unity. This follows from

the observation that, in the standard proof of the Primitive Element Theorem [Mil17,

Theorem 5.1], any finite separable extension of infinite fields actually has infinitely

many primitive elements, but a number field contains only finitely many roots of

unity.

Let fα1 be the minimal polynomial for α1. By Lemma 3.7, since p splits com-

pletely in K1, α1 is totally p-adic. Let h1 = h(α1). Then τ abd,p ≤ h1. Repeating this

process for all Gi, we obtain a finite list of heights, h1, h2, . . . , hl. Thus, for p ≠ q, r,

τ abd,p ≤ max{h1, h2, . . . , hl}.

We repeat this argument for n′ = q′r′, where q′, r′ ≡ 1 (mod d) and q′ and r′ are

distinct from n and q. Thus we may deduce that τ abd,q and τ abd,r are finite, and that for

all primes p,

τ abd,p ≤ max{h1, h2, . . . , hl, τ abd,q, τ abd,r} = Cd.

Remark. For d ≥ 2 and prime p, Theorem 3.8 implies the finiteness of τd,p since

τd,p ≤ τ abd,p. This provides an alternate proof of Proposition 3.1.

Corollary 3.9. For each d ≥ 2, {τd,p ∣ p is a prime} is bounded.

Proof. Note that τd,p ≤ τ abd,p, since τ abd,p considers only abelian algebraic numbers. Thus,

since {τ abd,p ∣ p is a prime} is bounded, so must {τd,p ∣ p is a prime} be.
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Definition. Let α ∈ Qab and K = Q(α). By the Kronecker-Weber Theorem, K is

contained within a cyclotomic extension of Q. The conductor of K is the smallest

positive integer m for which K is contained within Q(ζm).

Remark. Let α ∈ Qab and m be the conductor of Q(α). Hα and Bα will now play

the roles of Gα and Aα, only now with the modulus being the conductor instead of

the n described in Lemma 3.6. That is,

Hα = {[i] ∈ (Z/mZ)× ∣ σi(α) = α}, and

Bα = {i ∈ Z ∣ [i] ∈Hα}.

Theorem 3.10. Let d ≥ 2 and let α1, α2, . . . be an enumeration of all α ∈ Tab
p of

degree d, written in order of nondecreasing height h(α1) ≤ h(α2) ≤ . . . . Let mi denote

the conductor of Q(αi).

(a) There exists an integer k ≥ 1 such that
k

⋃
i=1

Bαi
contains all primes p not dividing

any of the conductors m1, . . . ,mk.

(b) Let k ≥ 1 be the smallest positive integer satisfying (a), and let

Nd = lcm(m1, . . . ,mk).

Then τ abd,p depends only on p (mod Nd).

Proof. (a) It follows from Northcott’s Theorem that such an enumeration exists and

that h(αi)→∞ as i→∞. By Theorem 3.8 there exists some k ≥ 1 such that

{α1, . . . , αk} = {α ∈ Qab ∣ [Q(α) ∶ Q] = d and h(αi) ≤ Cd}

where Cd is as established in Theorem 3.8. It follows from Theorem 3.8 that
k

⋃
i=1

Bαi

contains all prime numbers not dividing the conductors m1, . . .mk.

(b) Suppose p and p′ are two primes such that p ≡ p′ (mod Nd). Then for each

1 ≤ i ≤ k, we know that p ≡ p′ (mod mi) and so p splits completely in Q(αi) if and
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only if p′ splits completely in Q(αi). Let i0 be the smallest index i for which p splits

completely in Q(αi). Since i0 is also the smallest index for which p′ splits completely

in Q(αi), we have

h(αi0) = τ abd,p = τ abd,p′ .

If p is a prime with p ∣ mi for some 1 ≤ i ≤ k, then p is the only prime in the

congruence class p (mod Nd).
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3.3 Determining N2

As an alternative to Theorem 3.3, we use Theorem 3.10 to determine N2. We

begin by creating a list of degree 2 algebraic numbers with h(α) ≤ 1
2 log 2.

TABLE 3.1: Degree 2 Algebraic Numbers of Small Height

i αi h(αi) mi Bαi
is the union of αi totally p-adic iff

1,2,3,4 ±1±
√
5

2
1
2 log (1+

√
5

2 ) 5 1 (mod 5),4 (mod 5) p ≡ 1,4 (mod 5)

5,6 ±
√

2 1
2 log 2 8 1 (mod 8),7 (mod 8) p ≡ 1,7 (mod 8)

7,8 ±i
√

2 1
2 log 2 8 1 (mod 8),3 (mod 8) p ≡ 1,3 (mod 8)

9,10 ±1 ± i 1
2 log 2 4 1 (mod 4) p ≡ 1 (mod 4), or p = 2

Observe that

10

⋃
i=1

Bαi
= {primes p ∣ p ≡ 1,4 (mod 5), p ≡ 1,3,5,7 (mod 8), or p = 2}

= {all primes}.

Since (Z/8Z)× = {1,3,5,7} and 2 ∈ B1+i, by Theorem 3.10

N2 = lcm(5,8) = 40.

In Theorem 3.3, we found that τ ab2,p depends only on the reduction of p modulo 5,

and yet by applying Theorem 3.10 we obtain N2 = 40. It is worth noting that with

Theorem 3.10, we are not guaranteed to find the smallest such modulus.



38

3.4 Determining N3

We begin by using SAGE [The18] to run the code found in Appendix A, which

creates a list of all irreducible, cubic polynomials in Z[x] with Mahler measure

bounded above by 8.5 and stores the list in ascending order of Mahler measure.

Theorem 3.13 verifies that this list is sufficient to determine N3.

If the determinant of a polynomial of degree n is a perfect square in Q, then

the Galois group of that polynomial is a subgroup of An. The Galois group of a cubic

polynomial fα is either S3 or A3. S3 is not an abliean group. A3 is the cyclic group

of order 3 and is abelian. Thus, the roots of fα in Z[x] are contained in an abelian

extension of Q if and only if the discriminant of fα is a perfect square in Q.

Let K be the number field created by adjoining the roots of fα to Q, ∆ be

the discriminant of K, and let m be the conductor of K. The code in Appendix B

extracts from the list created above all polynomials with abelian roots, calculates ∆,

m, and the cyclic decomposition of (Z/mZ)×. Table 3.2 contains the complete results

of this process. To calculate the conductor, we turn to a special case of the Hasse

Conductor-Discriminant formula, as follows.

Theorem 3.11. [Has30, Theorem 6] Let K be an abelian extension of Q, with

[K ∶ Q] = 3 and discriminant ∆. Let p1, p2, . . . , pn be all the primes (aside from

3) that divide ∆. If 3 divides ∆, then the conductor of K is 9p1p2 . . . pn. If 3 not does

divide ∆, then the conductor of K is p1p2 . . . pn.

TABLE 3.2: Irreducible Cubic Polynomials with Abelian

Galois Group and Mahler Measure ≤ 8.5

h(αi) fαi
∆i mi (Z/miZ)×

0.2698623053 x3 − 2x2 − x + 1 49 7 C6

0.2698623053 x3 − x2 − 2x + 1 49 7 C6

Continued on next page
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TABLE 3.2 – continued from previous page

h(αi) fαi
∆i mi (Z/miZ)×

0.2698623053 x3 + x2 − 2x − 1 49 7 C6

0.2698623053 x3 + 2x2 − x − 1 49 7 C6

0.3525256045 x3 − 3x2 + 1 81 9 C6

0.3525256045 x3 − 3x − 1 81 9 C6

0.3525256045 x3 − 3x + 1 81 9 C6

0.3525256045 x3 + 3x2 − 1 81 9 C6

0.4090481645 x3 − 3x2 + 3 81 9 C6

0.4090481645 x3 + 3x2 − 3 81 9 C6

0.4090481645 3x3 − 3x − 1 81 9 C6

0.4090481645 3x3 − 3x + 1 81 9 C6

0.4316755623 x3 − 4x2 + x + 1 169 13 C12

0.4316755623 x3 − x2 − 4x − 1 169 13 C12

0.4316755623 x3 + x2 − 4x + 1 169 13 C12

0.4316755623 x3 + 4x2 + x − 1 169 13 C12

0.4661498406 x3 − 4x2 + 3x + 1 49 7 C6

0.4661498406 x3 − 3x2 − 4x − 1 49 7 C6

0.4661498406 x3 + 3x2 − 4x + 1 49 7 C6

0.4661498406 x3 + 4x2 + 3x − 1 49 7 C6

0.5009113655 2x3 − 4x2 − 2x + 2 49 7 C6

0.5009113655 2x3 − 2x2 − 4x + 2 49 7 C6

0.5009113655 2x3 + 2x2 − 4x − 2 49 7 C6

0.5009113655 2x3 + 4x2 − 2x − 2 49 7 C6

0.5018786268 x3 − 5x2 + 2x + 1 361 19 C18

0.5018786268 x3 − 2x2 − 5x − 1 361 19 C18

0.5018786268 x3 + 2x2 − 5x + 1 361 19 C18

Continued on next page
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TABLE 3.2 – continued from previous page

h(αi) fαi
∆i mi (Z/miZ)×

0.5018786268 x3 + 5x2 + 2x − 1 361 19 C18

0.5364793041 x3 − 2x2 − 3x + 5 169 13 C12

0.5364793041 x3 + 2x2 − 3x − 5 169 13 C12

0.5364793041 5x3 − 3x2 − 2x + 1 169 13 C12

0.5364793041 5x3 + 3x2 − 2x − 1 169 13 C12

0.5397246107 x3 − 6x2 + 5x − 1 49 7 C6

0.5397246107 x3 − 5x2 + 6x − 1 49 7 C6

0.5397246107 x3 + 5x2 + 6x + 1 49 7 C6

0.5397246107 x3 + 6x2 + 5x + 1 49 7 C6

0.5420244156 2x3 − 5x2 − x + 2 961 31 C30

0.5420244156 2x3 − x2 − 5x + 2 961 31 C30

0.5420244156 2x3 + x2 − 5x − 2 961 31 C30

0.5420244156 2x3 + 5x2 − x − 2 961 31 C30

0.5628405126 x3 − 6x2 + 3x + 1 81 9 C6

0.5628405126 x3 − 3x2 − 6x − 1 81 9 C6

0.5628405126 x3 + 3x2 − 6x + 1 81 9 C6

0.5628405126 x3 + 6x2 + 3x − 1 81 9 C6

0.5835746647 2x3 − 6x2 + 2 81 9 C6

0.5835746647 2x3 − 6x − 2 81 9 C6

0.5835746647 2x3 − 6x + 2 81 9 C6

0.5835746647 2x3 + 6x2 − 2 81 9 C6

0.5988214758 x3 − 6x2 − x + 5 169 13 C12

0.5988214758 x3 + 6x2 − x − 5 169 13 C12

0.5988214758 5x3 − x2 − 6x + 1 169 13 C12

0.5988214758 5x3 + x2 − 6x − 1 169 13 C12

Continued on next page
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TABLE 3.2 – continued from previous page

h(αi) fαi
∆i mi (Z/miZ)×

0.6098176693 3x3 − 5x2 − 4x + 3 3721 61 C60

0.6098176693 3x3 − 4x2 − 5x + 3 3721 61 C60

0.6098176693 3x3 + 4x2 − 5x − 3 3721 61 C60

0.6098176693 3x3 + 5x2 − 4x − 3 3721 61 C60

0.6158739226 x3 − 7x2 + 4x + 1 1369 37 C36

0.6158739226 x3 − 4x2 − 7x − 1 1369 37 C36

0.6158739226 x3 + 4x2 − 7x + 1 1369 37 C36

0.6158739226 x3 + 7x2 + 4x − 1 1369 37 C36

0.6193630725 x3 − 6x2 + 9x − 3 81 9 C6

0.6193630725 x3 + 6x2 + 9x + 3 81 9 C6

0.6193630725 3x3 − 9x2 + 6x − 1 81 9 C6

0.6193630725 3x3 + 9x2 + 6x + 1 81 9 C6

0.6241036381 2x3 − 7x2 + x + 2 1849 43 C42

0.6241036381 2x3 − x2 − 7x − 2 1849 43 C42

0.6241036381 2x3 + x2 − 7x + 2 1849 43 C42

0.6241036381 2x3 + 7x2 + x − 2 1849 43 C42

0.6360664016 3x3 − 6x2 − 3x + 3 49 7 C6

0.6360664016 3x3 − 3x2 − 6x + 3 49 7 C6

0.6360664016 3x3 + 3x2 − 6x − 3 49 7 C6

0.6360664016 3x3 + 6x2 − 3x − 3 49 7 C6

0.6400972247 2x3 − 6x2 + 6 81 9 C6

0.6400972247 2x3 + 6x2 − 6 81 9 C6

0.6400972247 6x3 − 6x − 2 81 9 C6

0.6400972247 6x3 − 6x + 2 81 9 C6

0.6486367163 x3 − x2 − 6x + 7 361 19 C18

Continued on next page
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h(αi) fαi
∆i mi (Z/miZ)×

0.6486367163 x3 + x2 − 6x − 7 361 19 C18

0.6486367163 7x3 − 6x2 − x + 1 361 19 C18

0.6486367163 7x3 + 6x2 − x − 1 361 19 C18

0.6486367163 x3 − 7x − 7 49 7 C6

0.6486367163 x3 − 7x + 7 49 7 C6

0.6486367163 7x3 − 7x2 + 1 49 7 C6

0.6486367163 7x3 + 7x2 − 1 49 7 C6

0.6622071408 x3 − 6x2 − 9x − 3 81 9 C6

0.6622071408 x3 + 6x2 − 9x + 3 81 9 C6

0.6622071408 3x3 − 9x2 + 6x + 1 81 9 C6

0.6622071408 3x3 + 9x2 + 6x − 1 81 9 C6

0.6624373759 x3 − 8x2 + 5x + 1 49 7 C6

0.6624373759 x3 − 5x2 − 8x − 1 49 7 C6

0.6624373759 x3 + 5x2 − 8x + 1 49 7 C6

0.6624373759 x3 + 8x2 + 5x − 1 49 7 C6

0.6627246225 2x3 − 8x2 + 2x + 2 169 13 C12

0.6627246225 2x3 − 2x2 − 8x − 2 169 13 C12

0.6627246225 2x3 + 2x2 − 8x + 2 169 13 C12

0.6627246225 2x3 + 8x2 + 2x − 2 169 13 C12

0.6633392513 3x3 − 7x2 − 2x + 3 4489 67 C66

0.6633392513 3x3 − 2x2 − 7x + 3 4489 67 C66

0.6633392513 3x3 + 2x2 − 7x − 3 4489 67 C66

0.6633392513 3x3 + 7x2 − 2x − 3 4489 67 C66

0.6663004651 2x3 − 7x2 + 3x + 4 961 31 C30

0.6663004651 2x3 + 7x2 + 3x − 4 961 31 C30

Continued on next page
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h(αi) fαi
∆i mi (Z/miZ)×

0.6663004651 4x3 − 3x2 − 7x − 2 961 31 C30

0.6663004651 4x3 + 3x2 − 7x + 2 961 31 C30

0.6696162679 x3 − 7x2 + 7 49 7 C6

0.6696162679 x3 + 7x2 − 7 49 7 C6

0.6696162679 7x3 − 7x − 1 49 7 C6

0.6696162679 7x3 − 7x + 1 49 7 C6

0.6795133581 x3 − 5x2 + 4x + 5 169 13 C12

0.6795133581 x3 + 5x2 + 4x − 5 169 13 C12

0.6795133581 5x3 − 4x2 − 5x − 1 169 13 C12

0.6795133581 5x3 + 4x2 − 5x + 1 169 13 C12

0.6910644552 3x3 − 8x2 − x + 3 5329 73 C72

0.6910644552 3x3 − x2 − 8x + 3 5329 73 C72

0.6910644552 3x3 + x2 − 8x − 3 5329 73 C72

0.6910644552 3x3 + 8x2 − x − 3 5329 73 C72

0.6931471806 x3 − 6x2 + 8 81 9 C6

0.6931471806 x3 + 6x2 − 8 81 9 C6

0.6931471806 x3 − 4x2 − 4x + 8 49 7 C6

0.6931471806 x3 + 4x2 − 4x − 8 49 7 C6

0.6931471806 x3 − 5x2 − 2x + 8 961 31 C30

0.6931471806 x3 + 5x2 − 2x − 8 961 31 C30

0.6931471806 8x3 + 2x2 − 5x − 1 961 31 C30

0.6931471806 8x3 − 2x2 − 5x + 1 961 31 C30

0.6931471806 2x3 − 5x2 − 3x + 8 1849 43 C42

0.6931471806 2x3 + 5x2 − 3x − 8 1849 43 C42

0.6931471806 8x3 − 3x2 − 5x + 2 1849 43 C42

Continued on next page
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h(αi) fαi
∆i mi (Z/miZ)×

0.6931471806 8x3 + 3x2 − 5x − 2 1849 43 C42

0.6931471806 8x3 − 6x − 1 81 9 C6

0.6931471806 8x3 − 6x + 1 81 9 C6

0.6931471806 8x3 − 4x2 − 4x + 1 49 7 C6

0.6931471806 8x3 + 4x2 − 4x − 1 49 7 C6

0.6943241113 x3 − 7x2 + 12x − 5 169 13 C12

0.6943241113 x3 + 7x2 + 12x + 5 169 13 C12

0.6943241113 5x3 − 12x2 + 7x − 1 169 13 C12

0.6943241113 5x3 + 12x2 + 7x + 1 169 13 C12

0.6971989008 2x3 − 8x2 + 6x + 2 49 7 C6

0.6971989008 2x3 − 6x2 − 8x − 2 49 7 C6

0.6971989008 2x3 + 6x2 − 8x + 2 49 7 C6

0.6971989008 2x3 + 8x2 + 6x − 2 49 7 C6

0.6990306738 2x3 − 9x2 + 3x + 2 3969 63 C6 ×C6

0.6990306738 2x3 − 3x2 − 9x − 2 3969 63 C6 ×C6

0.6990306738 2x3 + 3x2 − 9x + 2 3969 63 C6 ×C6

0.6990306738 2x3 + 9x2 + 3x − 2 3969 63 C6 ×C6

0.7037615930 x3 − 9x2 + 6x + 1 3969 63 C6 ×C6

0.7037615930 x3 − 6x2 − 9x − 1 3969 63 C6 ×C6

0.7037615930 x3 + 6x2 − 9x + 1 3969 63 C6 ×C6

0.7037615930 x3 + 9x2 + 6x − 1 3969 63 C6 ×C6

0.7050512090 x3 − 9x2 + 6x − 1 81 9 C6

0.7050512090 x3 − 6x2 + 9x − 1 81 9 C6

0.7050512090 x3 + 6x2 + 9x + 1 81 9 C6

0.7050512090 x3 + 9x2 + 6x + 1 81 9 C6

Continued on next page
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h(αi) fαi
∆i mi (Z/miZ)×

0.7121464707 4x3 − 7x2 − 5x + 4 11881 109 C108

0.7121464707 4x3 − 5x2 − 7x + 4 11881 109 C108

0.7121464707 4x3 + 5x2 − 7x − 4 11881 109 C108

0.7121464707 4x3 + 7x2 − 5x − 4 11881 109 C108
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For each polynomial fαi
in Table 3.2, we run the code contained in Appendix

C to determine the congruence classes modulo mi on a prime p for fαi
to split com-

pletely in Qp. When (Z/mZ)× is cyclic, the congruence classes are the unique index

3 subgroup of (Z/mZ)×. When (Z/mZ)× is not cyclic, there may be more than one

index 3 subgroup.

If (Z/mZ)× is not cyclic, the code checks the first 200 primes to determine if

there is a root in Qp via Hensel’s Lemma. When a root of fα is determined to be in

Qp, we know that for all primes q with q ≡ p (mod m), fα must have a root in Qp, by

Lemma 3.7. We know there are ∣(Z/mZ)×∣
3 congruence classes for which fα has a root

in Qp. Thus, after testing the first 200 primes, the code checks the cardinality of the

set of congruences to ensure all were found. Note that the code only checks for one

root via Hensel’s Lemma. The following Lemma establishes that showing one root is

within Qp is sufficient to guarantee all roots are in Qp.

Lemma 3.12. Let α be an abelian algebraic number of degree 3 with Galois conju-

gates β and γ. If α ∈ Qp for a prime p, then β, γ ∈ Qp as well.

Proof. Since α ∈ Qp, Q(α) ⊂ Qp. As α ∈ K for K abelian, Q(α) is Galois, so

β, γ ∈ Q(α) and thus β, γ ∈ Qp.

For each polynomial fαi
in Table 3.2, Table 3.3 contains the congruence classes

modulo mi for which fαi
will split completely over Qp.



47

TABLE 3.3: Abelian Cubic Polynomials and Congruence

Classes (mod mi) for Splitting over Qp

h(αi) fαi
αi is totally p-adic iff

0.2698623053 x3 − 2x2 − x + 1 p ≡ 1,6 (mod 7)

0.2698623053 x3 − x2 − 2x + 1 p ≡ 1,6 (mod 7)

0.2698623053 x3 + x2 − 2x − 1 p ≡ 1,6 (mod 7)

0.2698623053 x3 + 2x2 − x − 1 p ≡ 1,6 (mod 7)

0.3525256045 x3 − 3x2 + 1 p ≡ 1,8 (mod 9)

0.3525256045 x3 − 3x − 1 p ≡ 1,8 (mod 9)

0.3525256045 x3 − 3x + 1 p ≡ 1,8 (mod 9)

0.3525256045 x3 + 3x2 − 1 p ≡ 1,8 (mod 9)

0.4090481645 x3 − 3x2 + 3 p ≡ 1,8 (mod 9)

0.4090481645 x3 + 3x2 − 3 p ≡ 1,8 (mod 9)

0.4090481645 3x3 − 3x − 1 p ≡ 1,8 (mod 9)

0.4090481645 3x3 − 3x + 1 p ≡ 1,8 (mod 9)

0.4316755623 x3 − 4x2 + x + 1 p ≡ 1,5,8,12 (mod 13)

0.4316755623 x3 − x2 − 4x − 1 p ≡ 1,5,8,12 (mod 13)

0.4316755623 x3 + x2 − 4x + 1 p ≡ 1,5,8,12 (mod 13)

0.4316755623 x3 + 4x2 + x − 1 p ≡ 1,5,8,12 (mod 13)

0.4661498406 x3 − 4x2 + 3x + 1 p ≡ 1,6 (mod 7)

0.4661498406 x3 − 3x2 − 4x − 1 p ≡ 1,6 (mod 7)

0.4661498406 x3 + 3x2 − 4x + 1 p ≡ 1,6 (mod 7)

0.4661498406 x3 + 4x2 + 3x − 1 p ≡ 1,6 (mod 7)

0.5009113655 2x3 − 4x2 − 2x + 2 p ≡ 1,6 (mod 7)

0.5009113655 2x3 − 2x2 − 4x + 2 p ≡ 1,6 (mod 7)

Continued on next page



48
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h(αi) fαi
αi is totally p-adic iff

0.5009113655 2x3 + 2x2 − 4x − 2 p ≡ 1,6 (mod 7)

0.5009113655 2x3 + 4x2 − 2x − 2 p ≡ 1,6 (mod 7)

0.5018786268 x3 − 5x2 + 2x + 1 p ≡ 1,7,8,11,12,18 (mod 19)

0.5018786268 x3 − 2x2 − 5x − 1 p ≡ 1,7,8,11,12,18 (mod 19)

0.5018786268 x3 + 2x2 − 5x + 1 p ≡ 1,7,8,11,12,18 (mod 19)

0.5018786268 x3 + 5x2 + 2x − 1 p ≡ 1,7,8,11,12,18 (mod 19)

0.5364793041 x3 − 2x2 − 3x + 5 p ≡ 1,5,8,12 (mod 13)

0.5364793041 x3 + 2x2 − 3x − 5 p ≡ 1,5,8,12 (mod 13)

0.5364793041 5x3 − 3x2 − 2x + 1 p ≡ 1,5,8,12 (mod 13)

0.5364793041 5x3 + 3x2 − 2x − 1 p ≡ 1,5,8,12 (mod 13)

0.5397246107 x3 − 6x2 + 5x − 1 p ≡ 1,6 (mod 7)

0.5397246107 x3 − 5x2 + 6x − 1 p ≡ 1,6 (mod 7)

0.5397246107 x3 + 5x2 + 6x + 1 p ≡ 1,6 (mod 7)

0.5397246107 x3 + 6x2 + 5x + 1 p ≡ 1,6 (mod 7)

0.5420244156 2x3 − 5x2 − x + 2 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.5420244156 2x3 − x2 − 5x + 2 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.5420244156 2x3 + x2 − 5x − 2 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.5420244156 2x3 + 5x2 − x − 2 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.5628405126 x3 − 6x2 + 3x + 1 p ≡ 1,8 (mod 9)

0.5628405126 x3 − 3x2 − 6x − 1 p ≡ 1,8 (mod 9)

0.5628405126 x3 + 3x2 − 6x + 1 p ≡ 1,8 (mod 9)

0.5628405126 x3 + 6x2 + 3x − 1 p ≡ 1,8 (mod 9)

0.5835746647 2x3 − 6x2 + 2 p ≡ 1,8 (mod 9)

0.5835746647 2x3 − 6x − 2 p ≡ 1,8 (mod 9)

Continued on next page
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h(αi) fαi
αi is totally p-adic iff

0.5835746647 2x3 − 6x + 2 p ≡ 1,8 (mod 9)

0.5835746647 2x3 + 6x2 − 2 p ≡ 1,8 (mod 9)

0.5988214758 x3 − 6x2 − x + 5 p ≡ 1,5,8,12 (mod 13)

0.5988214758 x3 + 6x2 − x − 5 p ≡ 1,5,8,12 (mod 13)

0.5988214758 5x3 − x2 − 6x + 1 p ≡ 1,5,8,12 (mod 13)

0.5988214758 5x3 + x2 − 6x − 1 p ≡ 1,5,8,12 (mod 13)

0.6098176693 3x3 − 5x2 − 4x + 3
p ≡ 1,3,8,9,11,23,27,28,37,41,50,52,53

(mod 61)

0.6098176693 3x3 − 4x2 − 5x + 3
p ≡ 1,3,8,9,11,23,27,28,37,41,50,52,53

(mod 61)

0.6098176693 3x3 + 4x2 − 5x − 3
p ≡ 1,3,8,9,11,23,27,28,37,41,50,52,53

(mod 61)

0.6098176693 3x3 + 5x2 − 4x − 3
p ≡ 1,3,8,9,11,23,27,28,37,41,50,52,53

(mod 61)

0.6158739226 x3 − 7x2 + 4x + 1
p ≡ 1,6,8,10,11,14,23,26,27,29,31,36

(mod 37)

0.6158739226 x3 − 4x2 − 7x − 1
p ≡ 1,6,8,10,11,14,23,26,27,29,31,36

(mod 37)

0.6158739226 x3 + 4x2 − 7x + 1
p ≡ 1,6,8,10,11,14,23,26,27,29,31,36

(mod 37)

0.6158739226 x3 + 7x2 + 4x − 1
p ≡ 1,6,8,10,11,14,23,26,27,29,31,36

(mod 37)

0.6193630725 x3 − 6x2 + 9x − 3 p ≡ 1,8 (mod 9)

0.6193630725 x3 + 6x2 + 9x + 3 p ≡ 1,8 (mod 9)

Continued on next page
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h(αi) fαi
αi is totally p-adic iff

0.6193630725 3x3 − 9x2 + 6x − 1 p ≡ 1,8 (mod 9)

0.6193630725 3x3 + 9x2 + 6x + 1 p ≡ 1,8 (mod 9)

0.6241036381 2x3 − 7x2 + x + 2 p ≡ 1,2,4,8,11,16,21,22,27,39,41 (mod 43)

0.6241036381 2x3 − x2 − 7x − 2 p ≡ 1,2,4,8,11,16,21,22,27,39,41 (mod 43)

0.6241036381 2x3 + x2 − 7x + 2 p ≡ 1,2,4,8,11,16,21,22,27,39,41 (mod 43)

0.6241036381 2x3 + 7x2 + x − 2 p ≡ 1,2,4,8,11,16,21,22,27,39,41 (mod 43)

0.6360664016 3x3 − 6x2 − 3x + 3 p ≡ 1,6 (mod 7)

0.6360664016 3x3 − 3x2 − 6x + 3 p ≡ 1,6 (mod 7)

0.6360664016 3x3 + 3x2 − 6x − 3 p ≡ 1,6 (mod 7)

0.6360664016 3x3 + 6x2 − 3x − 3 p ≡ 1,6 (mod 7)

0.6400972247 2x3 − 6x2 + 6 p ≡ 1,8 (mod 9)

0.6400972247 2x3 + 6x2 − 6 p ≡ 1,8 (mod 9)

0.6400972247 6x3 − 6x − 2 p ≡ 1,8 (mod 9)

0.6400972247 6x3 − 6x + 2 p ≡ 1,8 (mod 9)

0.6486367163 x3 − x2 − 6x + 7 p ≡ 1,7,8,11,12,18 (mod 19)

0.6486367163 x3 + x2 − 6x − 7 p ≡ 1,7,8,11,12,18 (mod 19)

0.6486367163 7x3 − 6x2 − x + 1 p ≡ 1,7,8,11,12,18 (mod 19)

0.6486367163 7x3 + 6x2 − x − 1 p ≡ 1,7,8,11,12,18 (mod 19)

0.6486367163 x3 − 7x − 7 p ≡ 1,6 (mod 7)

0.6486367163 x3 − 7x + 7 p ≡ 1,6 (mod 7)

0.6486367163 7x3 − 7x2 + 1 p ≡ 1,6 (mod 7)

0.6486367163 7x3 + 7x2 − 1 p ≡ 1,6 (mod 7)

0.6622071408 x3 − 6x2 − 9x − 3 p ≡ 1,8 (mod 9)

0.6622071408 x3 + 6x2 − 9x + 3 p ≡ 1,8 (mod 9)

Continued on next page
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h(αi) fαi
αi is totally p-adic iff

0.6622071408 3x3 − 9x2 + 6x + 1 p ≡ 1,8 (mod 9)

0.6622071408 3x3 + 9x2 + 6x − 1 p ≡ 1,8 (mod 9)

0.6624373759 x3 − 8x2 + 5x + 1 p ≡ 1,6 (mod 7)

0.6624373759 x3 − 5x2 − 8x − 1 p ≡ 1,6 (mod 7)

0.6624373759 x3 + 5x2 − 8x + 1 p ≡ 1,6 (mod 7)

0.6624373759 x3 + 8x2 + 5x − 1 p ≡ 1,6 (mod 7)

0.6627246225 2x3 − 8x2 + 2x + 2 p ≡ 1,5,8,12 (mod 13)

0.6627246225 2x3 − 2x2 − 8x − 2 p ≡ 1,5,8,12 (mod 13)

0.6627246225 2x3 + 2x2 − 8x + 2 p ≡ 1,5,8,12 (mod 13)

0.6627246225 2x3 + 8x2 + 2x − 2 p ≡ 1,5,8,12 (mod 13)

0.6633392513 3x3 − 7x2 − 2x + 3
p ≡ 1,3,5,15,22,40,42,43,45,53,59,64

(mod 67)

0.6633392513 3x3 − 2x2 − 7x + 3
p ≡ 1,3,5,15,22,40,42,43,45,53,59,64

(mod 67)

0.6633392513 3x3 + 2x2 − 7x − 3
p ≡ 1,3,5,15,22,40,42,43,45,53,59,64

(mod 67)

0.6633392513 3x3 + 7x2 − 2x − 3
p ≡ 1,3,5,15,22,40,42,43,45,53,59,64

(mod 67)

0.6663004651 2x3 − 7x2 + 3x + 4 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.6663004651 2x3 + 7x2 + 3x − 4 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.6663004651 4x3 − 3x2 − 7x − 2 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.6663004651 4x3 + 3x2 − 7x + 2 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.6696162679 x3 − 7x2 + 7 p ≡ 1,6 (mod 7)

0.6696162679 x3 + 7x2 − 7 p ≡ 1,6 (mod 7)

Continued on next page
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h(αi) fαi
αi is totally p-adic iff

0.6696162679 7x3 − 7x − 1 p ≡ 1,6 (mod 7)

0.6696162679 7x3 − 7x + 1 p ≡ 1,6 (mod 7)

0.6795133581 x3 − 5x2 + 4x + 5 p ≡ 1,5,12 (mod 13)

0.6795133581 x3 + 5x2 + 4x − 5 p ≡ 1,5,12 (mod 13)

0.6795133581 5x3 − 4x2 − 5x − 1 p ≡ 1,5,12 (mod 13)

0.6795133581 5x3 + 4x2 − 5x + 1 p ≡ 1,5,12 (mod 13)

0.6910644552 3x3 − 8x2 − x + 3
p ≡ 1,3,7,8,10,17,21,24,27,30,43,64,65,66

(mod 73)

0.6910644552 3x3 − x2 − 8x + 3
p ≡ 1,3,7,8,10,17,21,24,27,30,43,64,65,66

(mod 73)

0.6910644552 3x3 + x2 − 8x − 3
p ≡ 1,3,7,8,10,17,21,24,27,30,43,64,65,66

(mod 73)

0.6910644552 3x3 + 8x2 − x − 3
p ≡ 1,3,7,8,10,17,21,24,27,30,43,64,65,66

(mod 73)

0.6931471806 x3 − 6x2 + 8 p ≡ 1,8 (mod 9)

0.6931471806 x3 + 6x2 − 8 p ≡ 1,8 (mod 9)

0.6931471806 x3 − 4x2 − 4x + 8 p ≡ 1,6 (mod 7)

0.6931471806 x3 + 4x2 − 4x − 8 p ≡ 1,6 (mod 7)

0.6931471806 x3 − 5x2 − 2x + 8 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.6931471806 x3 + 5x2 − 2x − 8 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.6931471806 8x3 + 2x2 − 5x − 1 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.6931471806 8x3 − 2x2 − 5x + 1 p ≡ 1,2,4,8,15,16,23,27,29,30 (mod 31)

0.6931471806 2x3 − 5x2 − 3x + 8 p ≡ 1,2,4,8,11,16,21,22,27,39,41 (mod 43)

0.6931471806 2x3 + 5x2 − 3x − 8 p ≡ 1,2,4,8,11,16,21,22,27,39,41 (mod 43)

Continued on next page
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h(αi) fαi
αi is totally p-adic iff

0.6931471806 8x3 − 3x2 − 5x + 2 p ≡ 1,2,4,8,11,16,21,22,27,39,41 (mod 43)

0.6931471806 8x3 + 3x2 − 5x − 2 p ≡ 1,2,4,8,11,16,21,22,27,39,41 (mod 43)

0.6931471806 8x3 − 4x2 − 4x + 1 p ≡ 1,6 (mod 7)

0.6931471806 8x3 + 4x2 − 4x − 1 p ≡ 1,6 (mod 7)

0.6931471806 8x3 − 6x − 1 p ≡ 1,8 (mod 9)

0.6931471806 8x3 − 6x + 1 p ≡ 1,8 (mod 9)

0.6943241113 x3 − 7x2 + 12x − 5 p ≡ 1,5,12 (mod 13)

0.6943241113 x3 + 7x2 + 12x + 5 p ≡ 1,5,12 (mod 13)

0.6943241113 5x3 − 12x2 + 7x − 1 p ≡ 1,5,12 (mod 13)

0.6943241113 5x3 + 12x2 + 7x + 1 p ≡ 1,5,12 (mod 13)

0.6971989008 2x3 − 8x2 + 6x + 2 p ≡ 1,6 (mod 7)

0.6971989008 2x3 − 6x2 − 8x − 2 p ≡ 1,6 (mod 7)

0.6971989008 2x3 + 6x2 − 8x + 2 p ≡ 1,6 (mod 7)

0.6971989008 2x3 + 8x2 + 6x − 2 p ≡ 1,6 (mod 7)

0.6990306738 2x3 − 9x2 + 3x + 2
p ≡ 1,2,4,8,16,31,32,47,55,59,61,62

(mod 63)

0.6990306738 2x3 − 3x2 − 9x − 2
p ≡ 1,2,4,8,16,31,32,47,55,59,61,62

(mod 63)

0.6990306738 2x3 + 3x2 − 9x + 2
p ≡ 1,2,4,8,16,31,32,47,55,59,61,62

(mod 63)

0.6990306738 2x3 + 9x2 + 3x − 2
p ≡ 1,2,4,8,16,31,32,47,55,59,61,62

(mod 63)

0.7037615930 x3 − 9x2 + 6x + 1
p ≡ 1,5,8,11,23,25,38,40,52,55,58,62

(mod 63)

Continued on next page
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TABLE 3.3 – continued from previous page

h(αi) fαi
αi is totally p-adic iff

0.7037615930 x3 − 6x2 − 9x − 1
p ≡ 1,5,8,11,23,25,38,40,52,55,58,62

(mod 63)

0.7037615930 x3 + 6x2 − 9x + 1
p ≡ 1,5,8,11,23,25,38,40,52,55,58,62

(mod 63)

0.7037615930 x3 + 9x2 + 6x − 1
p ≡ 1,5,8,11,23,25,38,40,52,55,58,62

(mod 63)
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Theorem 3.13. Let p be a prime. Then τ ab3,p depends only on p (mod 228979643050431).

Proof. This proof is an application of the proof of Theorem 3.10. From Table 3.3 we

determine

τ ab3,3 = 0.609817669, and

τ ab3,7 = 0.501878627,

by finding the first congruence classes that contain 3 and 7. All primes p ≠ 3,7, when

reduced modulo 63, are contained in (Z/63Z)×. Observe that

(Z/63Z)× = {1,2,4,5,8,10,11,13,16,17,19,20,22,23,25,26,29,31,32,34,37,38,40,41,

43,44,46,47,50,52,53,55,58,59,61,62}.

By the first eight lines of Table 3.3, we observe that

τ ab3,p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.269862305 if p ≡ 1,6 (mod 7),

0.352525605 if p ≡ 1,8 (mod 9) and p /≡ 1,6 (mod 7).

Thus

τ ab3,p = 0.269862305 for p ≡ 1,13,20,22,29,34,41,43,47,55,62 (mod 63), and

τ ab3,p = 0.352525605 for p ≡ 17,19,26,37,44,46,53 (mod 63).

It remains to determine τ ab3,p for

p ≡ 2,4,5,11,16,23,25,31,32,38,40,47,52,58,59,61 (mod 63).

Note that each of the above numbers falls into one of the following two sets:

p ≡ 1,2,4,8,16,31,32,47,55,59,61,62 (mod 63)

p ≡ 1,5,8,11,23,25,38,40,52,55,58,62 (mod 63)

Therefore, by the final eight lines of Table 3.3, given any prime p, one of the polyno-

mials in the table must split completely over Qp. By Theorem 3.10,

N3 = lcm(7,9,13,19,31,37,43,61,63,67,73) = 228979643050431.
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4 Totally p-adic Numbers of Degree 3

As we have seen in Section 3.1, τ2,p depends only on p modulo 5. We calculated

this in two ways, one using quadratic reciprocity and the other using the Kronekcer-

Weber Theorem. By the Kronecker-Weber method, we found that τ ab3,p depends only

on p modulo 228979643050431. Determining τ3,p is a more delicate endeavor, since

neither quadratic reciprocity nor the Kronecker-Weber theorem apply to determine

the splitting behavior of primes in nonabelian extensions of Q. In particular, not

all cubic extensions are abelian, and quadratic reciprocity is unavailable. Note that

Proposition 3.1 guarantees finiteness of τd,p for all d ≥ 2 and primes p.

In this section, we develop tools to determine τ3,p for all p ≥ 5. We exclude the

calculations of τ3,2 and τ3,3 since detecting squares and cubes in Q2 and Q3 is a bit

different than it is in Qp for p ≥ 5. However, in principle the ideas outlined here,

suitably modified, could be made to perform these calculations as well.

In Ars Magna, Cardano proves a method to find the roots of a cubic polynomial

f as elements of C [CS68]. This method is an analogue to completing the square for a

quadratic polynomial. We use Cardano’s method to determine if a cubic polynomial

in K[y] splits completely over K, where K is an arbitrary field of characteristic not

equal to 2 or 3. Beginning with an arbitrary cubic polynomial in K[y],

g(y) = ay3 + by2 + cy + d

we divide through by the leading coefficient,

y3 + b
ay

2 + c
ay +

d
a

and then perform a change of variables y = x − b
3 to eliminate the quadratic term.

Thus our polynomial becomes

(x − b
3a
)3 + b

a
(x − b

3a
)2 + c

a
(x − b

3a
) + d

a
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which simplifies to

x3 + (3ac−b2

3a2 )x + 27a2d−9abc+2b3

27a3 .

Setting A = 3ac−b2

3a2 and B = 27a2d−9abc+2b3

27a3 , we have the monic depressed cubic polyno-

mial with coefficients in K,

f(x) = x3 +Ax +B.

Note that since the transformations to depress the cubic are field operations, g splits

over K if and only if f splits over K.

Lemma 4.1 (Cardano). [CS68] Let L be an algebraically closed field of characteristic

not equal to 2 or 3, and let ζ be a primitive cube root of unity in L. Let f(x) =

x3 +Ax +B ∈ L[x], and let ∆ = B2 + 4A3/27. If A = 0, let C = −B, and if A ≠ 0, let C

be either square root of ∆ in L. Let u be a cube root of −B+C
2 and let v = − A

3u . Then

the roots of f are

α1 = u + v

α2 = ζu + ζ2v

α3 = ζ2u + ζv.

Proof. If A = 0, then f(x) = x3 +B and the roots of f are u, ζu, and ζ2u, as desired.

If A ≠ 0, note that 3uv +A = 0, and

u3 + v3 = −B +C
2

− A3

27u3

= −B +C
2

− 2A3

27(−B +C)

= 27(−B +C)2 − 4A3

54(−B +C)

= 27(−B +C)2 − 27(C2 −B2)
54(−B +C)

= (−B +C) − (B +C)
2

= −B.
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Let g(x) = (x − α1)(x − α2)(x − α3). Then

g(x) = x3 − (α1 + α2 + α3)x2 + (α1α2 + α1α3 + α2α3)x − α1α2α3.

Since 1 + ζ + ζ2 = 0, we have the following:

α1 + α2 + α3 = u + v + ζu + ζ2v + ζ2u + ζv

= u(1 + ζ + ζ2) + v(1 + ζ + ζ2)

= 0,

α1α2 + α1α3 + α2α3 = (u + v)(ζu + ζ2v) + (u + v)(ζ2u + ζv) + (ζu + ζ2v)(ζ2u + ζv)

= ζu2 + 3ζvu + 3ζ2vu + ζ2v2 + ζ2u2 + ζv2 + u2 + v2

= (1 + ζ + ζ2)u2 + (3ζ + 3ζ2)uv + (1 + ζ + ζ2)v2

= −3uv

= A,

and

α1α2α3 = (u + v)(ζu + ζ2v)(ζ2u + ζv)

= u3 + ζ2u2v + ζu2v + uv2 + u2v + ζ2uv2 + ζuv2 + v3

= (u3 + v3) + (1 + ζ + ζ2)u2v + (1 + ζ + ζ2)u2v

= −B.

Therefore, f(x) = g(x) and α1, α2, and α3 are the roots of f .

To determine when a cubic polynomial f(x) ∈ Qp[x] splits completely over Qp,

the method will depend on whether Qp contains a primitive cube root of unity, which

happens exactly when p ≡ 1 (mod 3). Thus, we consider two cases: p ≡ 1 (mod 3)

and p ≡ 2 (mod 3).
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4.1 Splitting Condition for p ≡ 1 (mod 3)

Theorem 4.2. Let K be a field of characteristic not equal to 2 or 3, let L be an

algebraic closure of K, and assume that K contains a primitive cube root of unity,

ζ. Let f(x) = x3 +Ax +B ∈ K[x], and ∆ = B2 + 4A3/27. If A = 0, let C = −B, and if

A ≠ 0, let C be either square root of ∆ in L. Then f splits completely over K if and

only if

(a) ∆ is a square in K, and

(b) −B+C
2 is a cube in K.

Proof. Suppose A = 0. Then ∆ = B2 is a square in K, so (a) is true. Additionally,

C = −B and f(x) = x3 +B, which splits completely over K if and only if −B is a cube

in K, which happens exactly when (b) holds.

Now suppose A ≠ 0. Let u be a cube root of −B+C
2 and let v = − A

3u . Let F be a

Galois extension of K containing C and u.

Suppose the conditions (a) and (b) are met. By Lemma 4.1, the roots of f are

α1 = u + v

α2 = ζu + ζ2v

α3 = ζ2u + ζv,

and thus f splits completely over K.

Conversely, suppose that f splits completely over K. Let σ ∈ Gal(F /K). Since

σ fixes α1 and α2,

u + v = σ(u) + σ(v), and ζu + ζ2v = ζσ(u) + ζ2σ(v). (4.1)

Note that ( 1 1
ζ ζ2 ) has a non-zero determinant and thus

⎛
⎜⎜
⎝

1 1

ζ ζ2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

x

y

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

σ(u) + σ(v)

ζσ(u) + ζ2σ(v)

⎞
⎟⎟
⎠

(4.2)
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has a unique solution. By (4.1), x = u, y = v is a solution to (4.2) and x = σ(u), y = σ(v)

is a solution to (4.2) as well. Therefore u = σ(u). By the Galois correspondence, u ∈K,

and thus (b) holds. Thus u3 = −B+C
2 ∈ K. Since C = 2u3 + B, C ∈ K and therefore

∆ = B2 + 4A3/27 = C2 is a square in K, and (a) is true.

Lemma 4.3. Let p be a prime, p ≠ 3, and let a ∈ Zp with ∣a∣p = 1. Then a is a cube

in Qp if and only if a (mod p) is a cube in Zp/pZp.

Proof. Suppose that a is a cube in Zp. Then a is a cube in Zp/pZp by the nature of

quotient rings.

Conversely, suppose a0 is a cube in Z/pZ where a0 = [a], and let b0 ∈ Z/pZ

satisfy b30 ≡ a0 (mod p). Let f(x) = x3 − a. Note that p ∤ 3, b0. By the strong triangle

inequality,

∣f(b0)∣p = ∣b30 − a∣p

= ∣b30 − a0 + a0 − a∣p

≤ max{∣b30 − a0∣p , ∣a0 − a∣p}

≤ 1
p .

Further,

∣f ′(b0)∣p = ∣3b20∣p

= 1.

By Hensel’s Lemma, a is a cube in Qp.

Theorem 4.4. Let p be a prime, with p ≡ 1 (mod 3). Then the following algorithm

yields τ3,p.

(1) Create a list, in ascending order of Mahler measure, of all irreducible, non-

cyclotomic cubic polynomials in Z[x] with Mahler measure bounded above by

8.5. Let f(x) be the first polynomial on the list.
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(2) Convert f(x) into depressed form g(x) = x3 +Ax +B and let ∆ = B2 + 4A3/27.

(3) If ∆ is not a square in Qp, return to step (2) with the next polynomial on the

list.

(4) If A = 0, let C = −B, and otherwise let C be a square root of ∆ in Qp. If −B+C
2

is not a cube in Qp, return to step (2) with the next polynomial on the list.

Otherwise, terminate, τ3,p = 1
3 logM(f).

Proof. Since τ3,p ≤ τ ab3,p, by Proposition 3.13 we know that τ3,p ≤ 0.70376. By Proposi-

tion 2.11, a list of all polynomials with length less than 68 will contain all irreducible,

non-cyclotomic, cubic polynomials with Mahler measure bounded above by 8.5. Any

degree 3 algebraic number of height less than or equal to 0.70376 will be a root of a

polynomial in the list. Thus, this algorithm will always terminate successfully.

Let f be the polynomial being considered. By Theorem 4.2, steps (3), and (4)

will detect exactly when f splits completely over Qp.
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4.2 Splitting Condition for p ≡ 2 (mod 3)

Theorem 4.5. Let K be a field of characteristic not equal to 2 or 3, L be an algebraic

closure of K, ζ be a primitive cube root of unity in L, and assume that ζ ∉ K. Let

f(x) = x3 +Ax +B ∈K[x] with B ≠ 0 and let ∆ = B2 + 4A3/27. If A = 0, let C = −B,

and if A ≠ 0, let C be either square root of ∆ in L. Then f splits completely over K

if and only if

(a) ∆ is a square in K(ζ) and not a square in K, and

(b) −B+C
2 is a cube in K(ζ) and not a cube in K.

Proof. Suppose A = 0. Then ∆ = B2 is a square in K, so (a) is false. Additionally,

C = −B and f(x) = x3 +B, which will never split completely over K since ζ ∉K.

Next, suppose A ≠ 0, let u be a cube root of −B+C
2 and let v = −A

3u . Then the

roots of f are

α1 = u + v

α2 = ζu + ζ2v

α3 = ζ2u + ζv.

We first suppose f splits completely in K. Let L be a Galois extension of K

that contains u and ζ. Let σ ∈ Gal(L/K(ζ)). We want to show that σ must also fix

u. Since we are assuming that f splits completely over K, σ must also fix α1, α2, and

α3,

u + v = σ(u) + σ(v), (4.3)

ζu + ζ2v = ζσ(u) + ζ2σ(v),

ζ2u + ζv = ζ2σ(u) + ζσ(v). (4.4)

By multiplying (4.3) by ζ and subtracting (4.4), we obtain

(ζ − ζ2)u = (ζ − ζ2)σ(u), (4.5)
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so σ(u) = u because ζ ≠ ζ2. Thus, since every σ ∈ Gal(L/K(ζ)) fixes u, it follows from

the Galois correspondence that u ∈ K(ζ). It remains show u ∉ K. Let τ ∈ Gal(L/K)

such that τ permutes ζ and ζ2. We now show that τ does not fix u. Since α1, α2, and

α3 must all be fixed by τ ,

u + v = τ(u) + τ(v),

ζu + ζ2v = ζ2τ(u) + ζτ(v), (4.6)

ζ2u + ζv = ζτ(u) + ζ2τ(v). (4.7)

By multiplying (4.7) by ζ, and subtracting (4.6), we obtain

(1 − ζ)u = (1 − ζ)τ(v) (4.8)

and note that τ(v) = u, so τ does not fix u. Thus u ∉K and (b) holds.

Further, u ∈ K(ζ), so u3 = −B+C
2 ∈ K(ζ), and thus ∆ is a square in K(ζ) since

C ∈ K(ζ). Since K(u) is contained within K(ζ), a quadratic extension of K, and

u ∉ K, [K(u) ∶ K] = 2. For sake of contradiction, suppose ∆ is a square in K. Then

u3 ∈ K, so [K(u) ∶ K] = 3 which is not true. Thus ∆ is not a square in K, and (a)

holds.

Conversely, suppose that (a) and (b) are true. Note that if A = 0, then ∆ is a

square in K, contradicting (a). Thus, A ≠ 0. Let σ denote the non trivial element of

Gal(K(ζ)/K). Since ζ and ζ2 share a degree 2 minimal polynomial, σ must permute

ζ and ζ2.

By (a) and (b), u,u3 ∉ K and u,u3 ∈ K(ζ). Since u3 and v3 are the roots of

r(z) = z2 + Bz − A3

27 , σ(u)3 = σ(u3) = v3. Therefore, either σ(u) = v, σ(u) = ζv, or

σ(u) = ζ2v.

We will now show that σ(u) = v by eliminating the other two options by way

of contradiction. We rely on the fact that elements of the Galois group send roots of

f to roots of f , and that σ2(u) = u. If σ(u) = ζv, then u = ζ2σ(v), and σ(u + v) =

σ(u) + σ(v) = ζv + ζu. Since ζv + ζu is not a root of f , σ(u) ≠ ζv. If σ(u) = ζ2v, then

u = ζσ(v), and σ(u + v) = ζ2u + ζ2v. Since ζ2u + ζ2v is not a root of f , σ(u) ≠ ζ2v.
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Therefore, σ(u) = v and σ(v) = u. Thus

σ(α1) = σ(u + v) = σ(u) + σ(v) = v + u = α1,

σ(α2) = σ(ζu + ζ2v) = σ(ζu) + σ(ζ2v) = ζ2v + ζu = α2,

σ(α3) = σ(ζ2u + ζv) = σ(ζ2u) + σ(ζv) = ζv + ζ2v = α3.

Since σ fixes α1, α2 and α3, by the Galois correspondence, f splits completely in

K.

Let p ≡ 2 (mod 3). The third cyclotomic polynomial, Φ3(x) = x2 + x + 1, has

discriminant −3 and is the minimal polynomial for ζ. Since −3 is not a square in Qp,

Φ3(x) is irreducible over Qp, and thus Qp does not contain a primitive cube root of

unity. There are exactly three quadratic extensions of Qp: Qp(
√
p),Qp(

√
−3), and

Qp(
√
−3p). Let K = Qp(

√
−3) = Qp(ζ), the unique unramified quadratic extension of

Qp. The p-adic absolute value on Qp extends uniquely to Qp(
√
−3) by

∣a + b
√
−3∣p = ∣NK/Qp(a + b

√
−3)∣

1/2

p
= ∣a2 + 3b2∣1/2

p
.

The following three lemmas summarize some basic facts about this field.

Lemma 4.6. Let p ≡ 2 (mod 3), and K = Qp(
√
−3). For x ∈K×, ∣x∣p ∈ pZ.

Proof. Let x = a + b
√
−3, with a, b ∈ Qp and x ≠ 0. Suppose ∣a∣p ≠ ∣b∣p. Then

∣x∣p = ∣a2 + 3b2∣1/2
p

= max{∣a∣p, ∣b∣p} ∈ pZ.

Suppose instead that ∣a∣p = ∣b∣p = p`. Set a0 = p`a and b0 = p`b. Note that since

a0, b0 ∈ Qp, ∣a0∣p, ∣b0∣p ∈ pZ. Note that if ∣a20 + 3b20∣p < 1, then reducing modulo p we

obtain that a20 + 3b30 ≡ 0 (mod p) which is a contradiction since −3 is not a quadratic

residue modulo p. Thus

∣x∣p = ∣a2 + 3b2∣1/2
p

= ∣p−2`(a20 + 3b20)∣
1/2

p
= p`∣a20 + 3b20∣

1/2
p = p` ∈ pZ.

Lemma 4.7. Let p be a prime with p ≡ 2 (mod 3), K = Qp(
√
−3), and C ∈ K. Let

k ∈ N, p ∤ k. Then f(x) = xk −C has a root in K if and only if
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(a) ∣C ∣p = pk` for some l ∈ Z, and

(b) pk`C (mod p) is a kth power in Fp2 = Zp[
√
−3]/p.

Proof. First we assume the existence of r ∈ K so that f(r) = 0, and verify that (a)

and (b) hold. By Lemma 4.6, ∣r∣p = p` for some ` ∈ Z. Since C = rk, (a) is true, as

∣C ∣p = ∣rk∣p = pk`.

Further,

pklC = pklrk = (plr)k

and thus pklC is the kth power of plr (mod p) in Z[
√
−3]/p, so (b) holds.

Conversely, we suppose C ∈ Qp(
√
−3) satisfies conditions (a) and (b), and show

that C is a kth power in K. Replacing C with pklC, without loss of generality we

may assume ∣C ∣p = 1. By condition (b), there exist a ∈ Fp2 such that

C ≡ ak (mod p).

Then

∣f(a)∣p = ∣ak −C ∣
p
≤ 1
p .

Additionally,

∣f ′(a)∣p = ∣kak−1∣
p
= 1.

By Hensel’s Lemma f has a root in K.

Lemma 4.8. Let p be a prime with p ≡ 2 (mod 3), and K = Qp(
√
−3). Let x ∈ Qp

be nonzero and the square of an element in K. Then exactly one of the following two

cases is true:

(a) x = a2 for some a ∈ Qp, or

(b) x = −3b2 for some b ∈ Qp.
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Proof. Suppose x = (a + b
√
−3)2 for a, b ∈ Qp. Then x = a2 − 3b2 + 2ab

√
−3. Since

√
−3 ∉ Qp, ab = 0. If a = 0, then x = −b2 and (b) holds. If b = 0, then x = a2 and (a)

holds.

The previous lemma gives us the machinery to detect and solve for a square

root in K, since x is a square in K and not in Qp if and only if x
−3 = b2 for some b ∈ Qp.

In Appendix A.4, the function IsCubeInK applies this lemma.

Theorem 4.9. Let p be an odd prime, with p ≡ 2 (mod 3). Then the following

algorithm yields τ3,p.

(1) Create a list, in ascending order of Mahler measure, of all irreducible, non-

cyclotomic cubic polynomials in Z[x] with Mahler measure less than 8.5. Let

f(x) be the first polynomial on the list.

(2) Convert f(x) into depressed form g(x) = x3 +Ax +B and let ∆ = B2 + 4A3/27.

(3) If ∆ is a square in Qp or is not a square in Qp(
√
−3), return to step (2) with

the next polynomial on the list.

(4) If A = 0, let C = −B, and otherwise let C be a square root of ∆ in Qp(
√
−3). If

−B+C
2 is not a cube in Qp(

√
−3), return to step (2) with the next polynomial on

the list.

(5) If −B+C
2 is a cube in Qp, return to step (2) with the next polynomial on the list.

Otherwise, terminate, τ3,p = 1
3 logM(f).

Proof. Since τ3,p ≤ τ ab3,p, by Proposition 3.13 we know that τ3,p ≤ 0.70376. By Proposi-

tion 2.11, a list of all polynomials with length less than 68 will contain all irreducible,

non-cyclotomic, cubic polynomials with Mahler measure bounded above by 8.5. Any

degree 3 algebraic number of height less than or equal to 0.70376 will be a root of a

polynomial in the list. Thus, this algorithm will always terminate successfully.

Let f be the polynomial being considered. By Theorem 4.5, steps (3), (4), and

(5) will detect exactly when f splits completely over Qp.
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4.3 Implementing the Algorithms to Determine τ3,p

First, we create a list of all irreducible, non-cyclotomic, cubic polynomials in

Z[x] with Mahler measure less than 8.5. By Theorem 3.13, this list will be sufficient to

determine τ3,p for all primes p. The code to create this list can be found in Appendix

A. The list contains 26,796 polynomials. Using the code in Appendix D to determine

τ3,p for all primes p with 5 ≤ p ≤ 197, we obtain Table 4.1. For each prime p, fα is the

minimal polynomial of α, where h(α) = τ3,p.

TABLE 4.1: Some values of τ3,p

p τ3,p fα

5 0.36620 x3 − 2x2 − x − 3

7 0.12741 x3 − x2 − 1

11 0.23105 x3 − x2 − 2

13 0.093733 x3 − x2 + 1

17 0.23105 x3 − 2x − 2

19 0.12741 x3 + x + 1

23 0.20313 x3 − x2 + x + 1

29 0.093733 x3 − x − 1

31 0.093733 x3 + x2 − 1

37 0.20313 x3 + x2 + x − 1

41 0.093733 x3 − x − 1

43 0.23105 x3 − 2x + 2

47 0.23105 2x3 − 2x2 + 1

53 0.20313 x3 − x2 − x − 1

Continued on next page
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TABLE 4.1 – continued from previous page

p τ3,p fα

59 0.12741 x3 − x2 − 1

61 0.23105 x3 + x2 + x + 2

67 0.12741 x3 − x2 − 1

71 0.12741 x3 − x2 − 1

73 0.093733 x3 − x − 1

79 0.23105 x3 + x2 + 2

83 0.28612 2x3 + 2x − 1

89 0.20313 x3 − x2 − x − 1

97 0.12741 x3 − x2 − 1

101 0.12741 x3 − x2 − 1

103 0.20313 x3 − x2 + x + 1

107 0.23105 x3 − x2 − x + 2

109 0.12741 x3 − x2 − 1

113 0.12741 x3 − x2 − 1

127 0.18747 x3 − x2 + 2x − 1

131 0.093733 x3 − x2 + 1

137 0.20313 x3 − x2 − x − 1

139 0.18747 x3 − x2 + 2x − 1

149 0.23105 x3 − x2 − 2

151 0.093733 x3 − x − 1

157 0.12741 x3 − x2 − 1

163 0.093733 x3 − x − 1

Continued on next page
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TABLE 4.1 – continued from previous page

p τ3,p fα

167 0.093733 x3 − x − 1

173 0.12741 x3 − x2 − 1

179 0.23105 2x3 − 2x2 + 2x − 1

181 0.20313 x3 − x2 − x − 1

191 0.12741 x3 + x − 1

193 0.093733 x3 − x + 1

197 0.093733 x3 − x2 + 1
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5 An Upper Bound on lim inf
d→∞

τd,p

The previous two chapters have focused on calculating the height τd,p of the

smallest non-root of unity totally p-adic algebraic numbers of fixed degree d. In this

section, we fix a prime p and consider the set {τd,p ∣ d ≥ 2}. In particular, what can we

say about the smallest accumulation point of the set? In 2006, Bombieri and Zannier

[BG06] determined that

lim inf
d→∞

τd,p ≥ log p
2(p+1) .

This bound was improved by Fili and Petsche [FP13] to

lim inf
d→∞

τd,p ≥ p log p
2(p2−1) .

In this chapter, we use techniques from arithmetic dynamical systems to establish

an upper bound on lim infd→∞ τd,p. The exact value of lim infd→∞ τd,p is not known,

but in the following result we establish an upper bound on this limit infimum that is

approximately twice the lower bound provided by Fili-Petsche.

Theorem 5.1. For each prime p, there exist infinitely many α ∈ Tp such that

h(α) ≤ log(p+1)
p−1 . In particular,

lim inf
d→∞

τd,p ≤ log(p+1)
p−1 .

Lemma 5.2. Let p be a prime, and φp(x) = 1
p (xp − x). Then φp ∶ Zp → Zp is surjective

and p-to-1.

Proof. We first establish that φp(Zp) ⊆ Zp. Let α ∈ Zp. By Fermat’s Little Theorem,

∣φp(α)∣p = ∣1p ∣p ∣α
p − α∣p ≤ p ⋅ 1p = 1.

Let β ∈ Zp. We want to show that there are p distinct points α that satisfy

φp(α) = β. For this, we apply Hensel’s Lemma to the polynomial

g(x) = xp − x − pβ,
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noting that g(x) = 0 if and only if φp(x) = β. Let a ∈ {0,1,2,⋯, p − 1}. By Fermat’s

Little Theorem and the strong triangle inequality,

∣g(a)∣p = ∣(ap − a) − pβ∣p ≤ 1
p .

Since ∣pap−1∣p < 1, we have equality in the strong triangle inequality, and thus

∣g′(a)∣p = ∣pap−1 − 1∣
p
= 1.

For each a, Hensel’s Lemma indicates that there is a unique root in Zp congruent to

a. This finds p distinct roots, and this φp is p-to-1.

Remark. Given α ∈ φ−k(1), we note that all of the algebraic conjugates of α are also

in φ−k(1), because α is a root of φk(x) − 1 and hence its minimal polynomial over Q

is a divisor of φk(x)− 1. We can conclude from this observation and Lemma 5.2 that

the set φ−k(1) consists entirely of totally p-adic algebraic numbers.

Lemma 5.3. For distinct nonnegative integers k and k′, the sets φ−kp (1) and φ−k
′

p (1)

are disjoint.

Proof. For a proof by contradiction, suppose there exists some α such that φkp(α) =

φk
′

p (α) = 1. Without loss of generality, suppose k′ > k, with k′ = k + `. Then

1 = φk′p (α) = φ`p (φkp(α)) = φ`p (1) .

This implies that 1 is a periodic point. However, 1 is not a periodic point since

φp(1) = 0, 0 is fixed. Thus, no such α exists.

For each k ∈ N, select αk ∈ φ−kp (1). Let A be the set of αk chosen. By Lemma

5.3, the αk are distinct, and thus A contains infinitly many distinct totally p-adic

numbers.

Lemma 5.4. Let K be a number field containing αk, and v a place of K. Then

(a) ∣αk∣v ≤ 1 for v ∤∞, and
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(b) ∣αk∣v ≤ (1 + p)1/(p−1) for v ∣∞.

Proof. (a) Suppose v is a non-archimedean place of K, with v ∤ p. Then αk is a root

of f(x) = φkp(x) − 1. The polynomial f(x) has v-integral coefficients. In particular,

the leading coefficient, a power of 1
p , is a v-adic unit, and thus αk is v-integral.

Now suppose v ∣ p. By Lemma 5.2, all points in the backwards orbit of 1 are in

Zp, so ∣αk∣v ≤ 1.

Since αk is a preperiodic point, it has bounded forward orbit. Therefore, to

prove part (b), it will suffice to show that if α ∈ K satisfies ∣α∣v > (1 + p)1/(p−1), then

∣φnp(α)∣v → +∞ as n→ +∞.

Let α ∈K with ∣α∣v > (1 + p)1/(p−1), and let ε > 0 such that

∣α∣ > (1 + p + pε)1/(p−1).

Then

∣φp(α)∣v = ∣1p(α
p − α)∣

v

= 1
p ∣α∣v ∣α

p−1 − 1∣
v

≥ 1
p ∣α∣v (∣α

p−1∣
v
− 1)

≥ 1
p ∣α∣v ∣p + pε∣v

= ∣α∣v (1 + ε).

Iterating this inequality gives ∣φnp(α)∣v ≥ ∣α∣v(1 + ε)n and therefore ∣φnp(α)∣v → +∞ as

n→ +∞.

Proof of Theorem 5.1. Let αk ∈ A. Then

h(αk) = ∑
v∈MK

log max{1, ∣αk∣dv/dv }

≤ ∑
v∣∞

log max{1, ∣αk∣dv/dv }

≤ ∑
v∣∞

dv
d

log(1 + p)1/(p−1)
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= log(1 + p)1/(p−1).

Since A contains infinitely many totally p-adic algebraic numbers, all of which satisfy

the inequality above, it must be the case that

lim inf
d→∞

τd,p ≤ log(1 + p)1/(p−1).

Remark. Using the results of Pestche, Szpiro, and Tucker in [PST12], it can be

shown that the upper bound of log(p+1)
p−1 can be replaced by the value of the Arakelov-

Zhang pairing ⟨φp(x), x2⟩ of the map φp with the squaring map. Although this value

is smaller than log(p+1)
p−1 , it is probably difficult to calculate explicitly in closed form.

The inspiration for the proof for Theorem 5.1 comes from [Smy80], in which

Smyth uses a similar dynamical approach to create a small limit of point of heights

of totally real algebraic numbers. In Theorem 3 of
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A Code to Create a List of Polynomials

All code was written for SageMath, Version 8.2 [The18]. The function Mahler-

MeasureCubic calculates the Mahler measure of the cubic polynomial f(x) = ax3 +

bx2 + cx + d. The function accepts the integers a, b, c, and d as input, and returns

the Mahler measure of f , rounded to ten decimal places. We use the built in Sage

function roots() to find the roots of f , and then calculate the Mahler measure.

def MahlerMeasureCubic(a,b,c,d):

M=a

Poly=a*x^3+b*x^2+c*x+d

Roots=Poly.roots(CC)

for i in [0..len(Roots)-1]:

M=M*max(1,abs(Roots[i][0]))

return M.n(digits=10)

The following program creates a list of all irreducible cubic polynomials with Mahler

measure bounded above by 8.5. This threshold is high enough to obtain the covering

property needed in the proof of Theorem 3.13. By the height-length bound, we

know to find all such polynomials it is sufficient to check all irreducible polynomials

with length bounded above by 68. The program culls any polynomial that is either

reducible or has Mahler measure greater than 8.5. We use the built in Sage function

is irreducible() to determine if a polynomial is irreducible over Q.

In addition to the polynomial and Mahler measure, the list also contains the

coeffcients of the depressed cubic, A and B, and discriminant of the polynomial,

and the height of the roots. The output of this program is saved as the file ir-

red polynomials L68, and is used by the programs in Appendix B and Appendix

D.



79

R.<x> = QQ[]

Polynomials=[]

L=68

for a in [1..L]:

for b in [-L+abs(a)..L-abs(a)]:

for c in [-L+abs(a)+abs(b)..L-abs(a)-abs(b)]:

for d in [-L+abs(a)+abs(b)+abs(c)..L-abs(a)-abs(b)-abs(c)]:

Poly=a*x^3+b*x^2+c*x+d

if Poly.is_irreducible()==True:

MM=MahlerMeasureCubic(a,b,c,d)

A=(3*a*c-b^2)/(3*a^2)

B=(27*a^2*d-9*a*b*c+2*b^3)/(27*a^3)

Delta=B^2+4*A^3/27

h=1/3*log(MM);

if MM <= L/8:

Polynomials.append([MM,a,b,c,d,A,B,Delta,h])

Polynomials=sorted(Polynomials)

print ’done’

save(Polynomials,’irred_polynomials_L68’)
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B Code to Create a List of Cubic Abelian Numbers

This function loads the list of all irreducible cubic polynomials in Z[x] with

Mahler measure bounded above by 8.5, as created in Appendix A. For each polyno-

mial f , this program calculates the discriminant of the polynomial.

In general, the Galois group of a polynomial f(x) ∈ Z[x] of degree d is a sub-

group of Ad if and only if the discrimant of f is a square in Q [Con18a, Theorem 1.3].

If f is a cubic polynomial, as it is here, then the Galois group of f is A3, and thus

abelian, if and only if the discriminant of f is a square in Q.

If f is abelian, then the program calculates the discriminant of K, the number

field obtained by adjoining the roots of f to Q, by applying the built in function

absolute discriminant(). It then applies Theorem 3.11 and uses the built in Sage

command factor() to determine the conductor of K. All of this data is stored in the

array AbelianCubics, and the array is printed as a LaTeX ready table.
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Polynomials=load(’irred_polynomials_L68’)

L=len(Polynomials)

AbelianCubics=[]

for i in [0..L-1]:

Poly=Polynomials[i];

a=Poly[1];

b=Poly[2];

c=Poly[3];

d=Poly[4];

D=b^2*c^2-4*a*c^3-4*b^3*d-27*a^2*d^2+18*a*b*c*d;

if D.is_square()==True:

K.<j>=NumberField(a*x^3+b*x^2+c*x+d)

DD=K.absolute_discriminant()

MM=Poly[0];

h=Poly[8];

Factors=DD.factor()

ListOfFactors=list(Factors)

L=len(ListOfFactors)

Cond=1

for i in [0..L-1]:

Cond=Cond*ListOfFactors[i][0]

if ListOfFactors[i][0]==3:

Cond=Cond*3

C=Cond

AbelianCubics.append([h,a*x^3+b*x^2+c*x+d,DD,C]);

latex(table(AbelianCubics))
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C Code to Determine Congruence Condtions for Splitting

After running the code in Appendix B, we run the following program, which

checks the array AbelianCubics, and for each polynomial fαi
with conductor mi,

determines the elements of the subgroup of (Z/miZ)×, Bαi
, for which fαi

splits over

Qp if [p] ∈ Bαi
.

AbelianCubics=load(’AbelianCubics’)

L=len(AbelianCubics);

P = Primes();

for i in [0..L-1]:

Poly=AbelianCubics[i][1]

PolyList=Poly.list()

a=PolyList[3]

b=PolyList[2]

c=PolyList[1]

d=PolyList[0]

Cond=AbelianCubics[i][3]

v=[1];

for j in [0..50]:

for k in [1..P[j]-1]:

A=Integer(a*k^3+b*k^2+c*k+d)

A=A%P[j]

B=Integer(3*a*k^2+2*b*k+c)

B=B%P[j]

if A==0 and B>0:

v.append(P[j]%Cond)

V=sorted(v)

V=set(V)

AbelianCubics[i]

V
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D Code to Determine τd,p for all 5 ≤ p ≤ N

The function IsCubeInFp takes in integers a and p. It returns True if a is a

cube in Z/pZ, and False otherwise.

def IsCubeInFp(a,p):

b=0

while b<p:

if Mod(b,p)^3==Mod(a,p):

return True

b=b+1

return False

The function IsCubeInQp determines if the p-adic number A is a cube in Qp by applying

Lemma 4.3.

def IsCubeInQp(A,p):

val=A.ordp();

if 3.divides(val)==True:

L=A.list();

a=L[0];

if IsCubeInFp(a,p)==True:

return True;

return False
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The function IsCubeInK checks to see if A+B
√
−3 is a cube in K = Qp(

√
−3)

by applying Lemma 4.8.

def IsCubeInK(A,B,p):

A=K(A);

B=K(B);

AA=A.list();

BB=B.list();

A0=AA[0];

B0=BB[0];

if A.abs()<1:

A0=0

if B.abs()<1:

B0=0

for c in [0..p-1]:

for d in [0..p-1]:

if (c*c*c-9*c*d*d)%p==A0:

if (3*c*c*d-3*d*d*d)%p==B0:

return True

return False
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The function TauDP1mod3 determines τ3,p for the prime p where p ≡ 1

(mod 3), by implementing the algorithm described in Theorem 4.4. We use the

built in Sage command is padic square() to determine if a number is a square in

Qp.

def TauDP1mod3(p):

i=0;

while i < L-1:

A=Polynomials[i][5];

B=Polynomials[i][6];

D=Polynomials[i][7];

A=K(A);

B=K(B);

D=K(D);

if QQ(D).is_padic_square(p)==True:

if A==0:

C=-B;

if A!=0:

C=D.square_root();

Check=(C-B)/2;

if IsCubeInQp(Check,p)==True:

return Polynomials[i]

i=i+1;

return False
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The function TauDP2mod3 determines τ3,p for the prime p where p ≡ 2

(mod 3), by implementing the algorithm described in Theorem 4.9. We use the

built in Sage command is padic square() to determine if a number is a square in

Qp.

def TauDP2mod3(p):

i=0;

while i < L-1:

D=Polynomials[i][7];

if D.is_padic_square(p)==False:

b=D/(-3);

if b.is_padic_square(p)==True:

a=Polynomials[i][6]/2;

b=K(b);

b=sqrt(b);

if IsCubeInK(a,b,p)==True:

return Polynomials[i]

i=i+1;

return False
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The following code determines τ3,p for all primes p greater than 5, up to and

including the N th prime. The output is a LaTeX ready table.

Polynomials=load(’irred_polynomials_L68’)

L=len(Polynomials)

P=Primes(); # P is now a list of all primes

N=25

rows = [[’P’, ’$\tau_{3,p}$’, ’Polynomial’]]

for i in[2..N]:

p=P.unrank(i);

K = Qp(p, prec = 6, type = ’capped-rel’, print_mode = ’series’);

if p%3==1:

tdp=TauDP1mod3(p)

Poly=tdp[1]*x^3+tdp[2]*x^2+tdp[3]*x+tdp[4];

h=tdp[8].n(digits=5);

rows.append([p,h,Poly])

if p%3==2:

tdp=TauDP2mod3(p)

Poly=tdp[1]*x^3+tdp[2]*x^2+tdp[3]*x+tdp[4];

h=tdp[8].n(digits=5);

rows.append([p,h,Poly])

latex(table(rows=rows, frame=True))


