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Abstract approved

Estimating the carrier frequency from a modulated waveform is one of the most

important functions of a coherent signal receiver. Good performance and low bit

error rates are obtained by coherent demodulation. Therefore, exact knowledge of the

received signal carrier frequency is critical for communication systems. Also due to

the spectral crowding, a high probability of channel interference can be observed.

Under moderate carrier frequency offsets, data-aided estimators have been developed

which have a high accuracy of estimation. However, for high frequency offsets the

frequency estimator does not have the information of data or timing. In this thesis we

propose a parametric based carrier frequency estimation of GMSK, which has

improved performance over ad-hoc methods (delay and multiply) and has high

resolution capability.
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In this thesis three methods are implemented over GMSK data to improve the

performance and their results compared with the standard delay and multiply

method. Two of these methods are parametric based estimators and one is a fast

frequency estimator. Parametric based estimators were chosen partly due to their

high resolution capabilities and mainly for their proven performance. Parametric

based estimators were seen to have high computational load, and hence an alternate

fast frequency estimator was implemented. The tradeoffs involved with respect to

computational load and performance were shown.

The contributions of this thesis include the verification of the validity of

applying a parametric based approach on GMSK data, and compare the

performances of parametric methods and fast frequency estimator. It is showii that

such an approach has a better performance compared to non-data aided ad-hoc delay.

and multiply methods. A closed loop configuration of the open ioop parametric

methods is suggested in the end.
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CHAPTER 1

INTRODUCTION

1.1 iNTRODUCTION

Estimating the carrier frequency plays an important role in communication receivers.

This research investigates the Carrier Frequency measurement for burst mode

applications, which have short data bursts. The concentration is on the continuous

phase modulation (CPM) which is a popular modulation format and has widespread

usage in comniunications. This is due to its attractive spectral efficiency and constant

modulus property. The data available to estimate the frequency is limited under burst

mode assumption, and improved frequency estimators are necessary for faster lock.

The digital frequency estimators are broadly classified as data aided and non-data

aided estimators. Data aided estimators make use of the signal timing or data

information to achieve low variance estimates. Non-data aided techniques on the

other hand do not use any advanced information on the timing and data information.

These estimators on the other hand exhibit poorer performance with respect to data

aided methods. The case in study focuses on the estimation of large carrier frequency

offsets. At large frequency offsets of the order larger than 0.1 percent of the symbol

period, extracting the timing information or data information is extremely difficult.

Under these circumstances non-data aided techniques are preferable. A refinement
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approach is proposed as a means to improve the performance of a non-data aided

delay and multiply method most often used in ad-hoc estimation [12].

Parametric frequency estimation problems have been studied extensively

before [2] [14] and their superior frequency resolution for short data records is well

established. These estimators due to their high resolution have also the added

advantage of estimating the dominant frequency while rejecting any interference. In

this thesis we improve the performance by using eigenvalue based frequency

estimation over a delay and multiply method, and compare the performance of signal

subspace methods and noise subspace methods, along with their advantages over

delay and multiply methods. The aim of this work is to implement an improved

estimator for CPM formats with improved performance compared to ad-hoc.

estimators. The case in study would be a bursty transmission of GSM data. GSM

stands for global system for mobile Communications, is a popular standard used

extensively today. GMSK (Gaussian Minimum Shift keying) is a popular modulation

type, which is used in the GSM standard. The algorithm developed can be also

implemented on other continuous phase modulation formats as very few restrictions

are placed on the format while deriving our structure. The restrictions placed have

been verified to hold for MSK (Minimum Shift Keying) also, but other CPM

modulations have not been checked. The research focuses on a digital algorithm as

such algorithms can be implemented on a DSP chip. MATLAB and simulinic are

used for the simulations that verify the analytic results.
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1.2 MOTIVATION

The goal of this research is to come up with a digital algorithm for carrier recovery

in burst transmissions. The ability to measure the carrier when the local carrier offset

varies over a wide range compared to the symbol period is important for the case of

not so good oscillator stabilities. Added to this problem is the non availability of data

symbols or timing information in the case of large carrier frequency offsets. In such

instances the frequency recovery has to be done without the aid of timing and data

symbols. Such techniques are broadly classified as non-data aided methods. An ad-

hOc delay and multiply method was proposed [1 2} under the above constraints for

carrier estimation. As discussed above we will try to improve the performance of the

delay and multiply algorithm for the case of continuous phase modulations under the

above assumptions.

1.3 GSM OVERVIEW

GSM is the most popular standard in the world. It uses a binary GMSK modulation

with a BT=O.3, where B is the 3db bandwidth of the Gaussian filter and T is the

symbol period. GSM uses a combination of time division and frequency division

multiplexing. The FDMA part involves the division by frequency of the total 25

MHz bandwidth into 124 carrier frequencies of 200 kHz bandwidth each. One or

more carrier frequencies are assigned to each base station. Each of these carrier

frequencies is then divided in time, using a TDMA scheme, into eight time slots.



4

Each time slot has a duration of 4.615 ms. The unmodulated carrier is transmitted in

1 time slot of the frame every 10 frames.

1.4 RESEARCH OVERVIEW

Normally a phase locked loop is used to recover a modulated signal carrier

frequency. Phased lock loops have very slow acquisition capabilities and need some

kind of an aid to acquire a signal faster. A frequency ramp provided to the VCO

central frequency could speed up the process, but would require longer data intervals

before it can lock. A high rate of frequency ramp would help in reducing estimation

times and there by lock on with limited data. But a very large rate as required for

large frequency offsets and short data records would make it lose lock and is not

feasible. When considering burst transmissions, the window of data to acquire lock is

very small. Hence, alternate methods have to be looked into for this purpose. Digital

algorithms provide a good means of estimation in such cases. With the advent of

high speed DSPs, it has become possible to work with large frequency offsets in the

discrete time domain. Apart from the above constraints the over crowding of the

frequency spectrum introduces a high probability of co-channel interference (CCI).

Hence an estimator must also be good at rejecting such interference and avoiding

false lock.

In GSM as we have seen above, an unmodulated carrier is transmitted every 10

frames in 1 time slot. If the carrier is tracked while the data is being transmitted, the

estimate could be used during the unmodulated carrier slot to make a quick and



accurate measurement. This would reduce the acquisition time during that slot as the

carrier is being constantly tracked while the data is being transmitted and would be

in close proximity of the actual value when the unmodulated carrier is sent.
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CHAPTER 2

GMSK BURSTY TRANSMISSION

2.1 [NTRODUCTION

Modulation is a means by which information is encoded into signals. Carrier

modulation is often used for wireless communications due to many reasons. It

involves translating the baseband message signal to a higher frequency by either

multiplying it with a sinusoid at that frequency or by inserting it into either the phase

or the frequency of a sinusoidal carrier. These carrier modulations can be classified

into two types, namely linear and non-linear modulations. Modulation schemes that

have amplitude modulated (AM) components like BPSK and QPSK fall under the

linear modulations category. Constant envelope modulations such as MSK and

GMSK fall under the non-linear modulation category. Linear modulations have good

spertral efficiencies but they need highly linear RF power amplifiers before

transmission. As linear amplifiers are expensive and inefficient, an alternative is to

use highly efficient non-linear amplifiers. Non-linear modulations which have

constant envelope are less sensitive to the amplifier non-linearities.

2.2 CONTINUOUS PHASE MODULA'1ON (CPM)

Continuous phase modulation is a non-linear modulation where the information of

the signal is encoded into the phase or frequency of the carrier. The advantages of
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CPM can be demonstrated with the help of a simple example. A QPSK modulated

signal would undergo phase transitions of 1800 for some bit periods depending on the

QPSK mapping. An OQPSK signal on the other hand undergoes phase transitions of

90° for every bit period. This results in a reduction in out of band interference. This

suggests that the out of band interference can be further suppressed by reducing the

discontinuous phase transitions in the signal. Since the data information is

incorporated into the phase of the signal, CPM signals have a constant envelope

nature. As discussed before, this is very useful when dealing with non-linear

amplifiers. These advantages led to the many CPM formats being designed and

deployed in the many communications systems around the world today. The only

draw back of the CPM formats is increased inter symbol interference (1ST).

The complex envelope of a CPM signal has the form [5]

s(t,a) e31(t

where

yi(t,a) = 27tha,q(t iT). (2.2.1)

In the above equation h is the modulation index, T is the symbol interval and a, are

the encoded data belonging to the binary alphabet. q(t) is the phase response of the

system given by the relationship[4]

q(t) = Jf(r)di. (2.2.2)

The pulse f(r) is time limited to the interval (0, LT) and satisfies the conditions
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fO) = f(LTt), (2.2.3)

q(LT) = .
(2.2.4)

The signal formats above, for which L=1 are called full response formats and for

L>1 are called partial response formats.

2.3 GMSK

MSK (Minimum Shift Keying) is a popular CPM modulation format because of its

spectral efficiency, constant envelope and ease of implementation. MSK uses a

modulation index h=O.5 and L=1. GMSK which is used in GSM is one of the many

CPM formats. GMSK is in essence an extension of MSK, where increase in

suppression capabilities of out of band interference is traded off with the bit error

rates. A GMSK also has a modulation index h=O.5 but L is infinity. But, for all

practical purposes L could be considered to be equal to 4 [15]. The out of band

suppression is achieved by using a pre-modulation linear filter. When the filter is a

Gaussian filter, the output waveform becomes a GMSK wave. This wave is obtained

by feeding the NRZ (non return to zero) data signal to a Gaussian filter whose

impulse response is given by [1]

( 2zr2B2t2
h(t) = .JB exp

ln 2
(2.3. 1)

It should be noted that the filter will introduce considerable ISI (inter symbol

interference) [8] as this makes the adjacent symbol pulses overlap one another. The
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tail of one pulse extends into adjacent pulse intervals interfering in the detection of

that symbol. For GSM a BT of 0.3 is used as trade off between ISI and BER (Bit

Error Rate) performance, where B is the 3db bandwidth of the Gaussian filter and T

is the symbol time period. The presence of the pre-modulation filter spreads the

pulse over a time greater than T (pulse interval) that is L>1. Hence GMSK is a

partial response signal. The real part of the complex baseband GMSK signal for

BT=0.3 is given in the figure below.

04

02

C

-02

-04

-0 U

-CU

GMSK beeebend

U C.2 0.4 0.0 00 1 12 14 1.0 1.0 2

Time (sacs)

Figure 2-1 GMSK baseband signal

2.4 GSM CHANNEL STRUCTURE

As stated before, GSM is a popular global standard in wireless communications. It

uses a combination of time and frequency division multiple access. GSM uses two
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frequency bands of 25 MIHz. One is a forward link and the other is a reverse link.

Each 25 MII-Iz band is frequency division multiplexed into 124 carrier frequencies of

200 kHz bandwidth. Each base station is allotted one more carrier frequencies. Each

of the carrier frequencies is divided into 8 time slots using TDMA. One slot is used

for the transmission and one for the reception. This is done so that the mobile station

would not transmit and receive at the same time. The structure of the time slot is

shown in the figure below

3 57 1 26 1 57 3 8.25

Tail Data Bits Training Data bits Tail

Guard

Bits sequence

Figure 2-2 A single GSM TDMA slot

bits bits

The overall bit rate is 270.833 kbps. The training sequence is used for

equalization and the guard bits are a buffer for propagation delay. A group of 8 time

slots is one TDMA frame. One frame is sent every 4.6 15 ms. There are two types of

multiframe, containing 26 or 51 TDMA frames. The 26-frame multiframe contains

24 traffic channels (TCH) and two slow associated control channels (SACCH) which

supervise each call in progress. The SACCH in frame 12 contains eight channels,

one for each of the eight connections carried by the TCHs. In addition to the above
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channels, GSM uses other control channels for different purposes. Some of the

control channels are

2.4.1 Broadcast Control Channel (BCCH): Continually broadcasts, on the downlink,

information including base station identity, frequency allocations, and frequency-

hopping sequences.

2.4.2 Standalone Dedicated Control Channel (SDCCH): Used for registration,

authentication, call setup, and location updating. Implemented on a time slot,

together with its SACCH selected by the system operator.

GSM also uses Slow Frequency hopping to overcome problems like multipath

fading. GSM traditionally uses coherent demodulation mainly because of the

improvement in performance over non-coherent methods.

2.5 SUMMARY

Chapter 2 gives us a brief overview of GSM and the GSMK modulation format it

uses. It gives us an insight into popular burst mode applications, GSM in our case. It

outlines the advantages of the GMSK modulation format and CPM modulations in

general.
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CHAPTER 3

PARAMETRIC ESTIMATION

3.1 [NTRODUCTION

Spectrum estimation of data has received extensive attention by researchers over the

years due to its numerous applications in diverse fields. Spectrum estimation could

be broadly classified into two classes. One is the non-parametric estimation and other

is the parametric estimation. The non-parametric classes of estimators rely on the

idea of estimating the auto correlation sequence of a random process from the

measured data, and taking the fourier transform to obtain a power spectrum of it.

One of the disadvantages of the non-parametric methods are they do not incorporate

any information about the data known apriori. Apart from that, the assumption of

unobserved data outside the measurement window being zero results in poor

resolution and smearing of the spectrum for finite and short data records.

Parametric methods on the other hand are based on fitting an appropriate

model for the process to estimate the power spectrum. The advantage of a model

based approach is inherent in the ability to predict the nature of the measured process

outside the measurement interval. This overcomes the problem of using a window

function in our estimation, and consequently the distortion caused by such an

assumption. The model that we are interested in this thesis is one in which the data is

comprised of a complex exponential embedded in noise. We are more interested in
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the estimation of the frequency than the spectrum of the data itself. Though these

frequencies could be estimated from the peaks of the spectrum, this method will not

fully utilize the parametric form of the above process. Therefore, we will discuss

methods based on the eigen decomposition of the auto correlation matrix into signal

and noise subspace. Once these are determined, the frequencies are obtained with the

aid of a frequency estimation function. A brief description of the eigen

decomposition and an explanation of the MUSIC algorithm (noise subspace method),

a forward backward linear predictor (Tufts-Kumaresan method) [2] which is a signal

subspace method are given in this chapter. These two methods are applied in our

algorithm and compared in performance with respect to a delay and multiply method.

3.2 EIGEN DECOMPOSITION

Before going into the description of a MUSiC algorithm, a brief review of eigen

decomposition is given.

Consider the first order process

x(n) = Ae3' +w(n) nr=O,1,...N (3.2.1)

that consists of a single complex exponential in noise, where w(n) is white noise

with variance 2 and N is the length of the signal. The auto correlation of the above

sequence would be

r(k) = Pe' +a28(k) k0,1....N-I, (3.2.2)

where I =1 A 12, the power in the exponential and k is the lag. If only the first M
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elements of the auto correlation are chosen, then (3.2.2) can be represented in matrix

form as

R =R +R, (3.2.3)

where

1
e_iw1 e_3(M_Uw1

eJt 1 .

e_J(M_21

R=Pj . . . . .
, (3.2.4)

e1(MJ1 ej(M_2j

is the signal autocorrelation matrix of size MxM. It can be easily verified that it has a

rank of one. The noise autocorrelation matrix is diagonal, i.e., R = cr2J. I is the

identity matrix of dimension M. Now, if we definee = [1,e.w1 ,ej(M_]T,

then

R =P1e1e1" (3.2.5)

where eiH is the hermitian matrix of e1 Since rank ofR. = 1, it has only one non-zero

eigenvalue. Therefore,

R9e1 =](e1e111 )e1 =MIe1, (3.2.6)

and the non-zero eigenvalue is equal to MP1 and that e1 is the corresponding

eigenvector. In addition since R is hermitian the remaining eigenvectors

V2,V3,V4,. .vM will be orthogonal to e1. That is

e1'v =O:i=2,3,4,.M. (3.2.7)



If 2' are the eigenvalues of R, then the eigenvalues of R are

15

(3.2.8)

For a single exponential process, A for i=1.2. . .M, would have only one non

zero eigenvalue and it would be equal to MP1. Thus, the largest eigenvalue of

RisMJ + 2, and the remaining eigenvalues are equal to a2. The eigenvector

corresponding to the largest eigenvalue is called the signal eigenvector, and the set of

eigenvectors corresponding to the rest of the eigenvalues are called the noise

eigenvectors. The same argument can be applied to two (or more) complex

exponentials embedded in noise. In which case, the eigenvectors corresponding to

the two largest eigenvalues will be the signal eigenvectors, and the rest the noise

eigenvectors. Thus the eigenvalues and eigenvectors ofR can be divided into two

groups. The first group with the eigenvectors corresponding to the two largest

eigenvalues are referred as signal eigenvectors, and span a two dimensional subspace

called the signal subspace. The second group with the eigenvectors corresponding to

the eigenvalues equal to a2 are referred to as noise eigenvectors, and span a (M-2)

dimensional subspace called the noise subspace.

Under the assumption that the exact autocorrelation is known, the power of a

single exponential process and the frequency can be determined from the following:

f (2max 2min)' (3.2.9)



16

where Am is the largest eigenvalue and 2mm is the smallest eigenvalue. The

frequency can be obtained from the signal eigen vector from,

WI =arg{v(1)}. (3.2.10)

In reality, however, the above method is not useful as the exact

autocorrelation is usually not available. Instead, an estimated autocorrelation is used

in place of the exact one. But this results in the eigenvalues and eigenvectors being

only approximately equal to the true values. The MUSIC [14] and the Tufts-

Kumaresan (TK) [2] methods include improvements that will mitigate the problems

due to errors in estimation.

3.3 MUSIC FREQUENCY ESTIMATION

Multiple Signal Classification Method (MUSIC) was first developed by Schmidt

[14]. MUSIC algorithm is a parametric method, which means it takes into the

account the known properties of the signal in noise and exploits that information to

get a bettei result. MUSIC is also a noise subspace method. Let us assume that x(n)

is a random process consisting of p complex exponentials in white noise with a

variance a2 and let R is the autocorrelation of x(n). Taking the order of R as M

where M > p-I-i. Take the eigenvalues of R and their corresponding eigenvectors,

and arrange them in descending order of eigenvalues. These eigenvectors can be

divided into two groups. The p eigenvectors corresponding to the p largest

eigenvalues, and the M-p eigenvectors corresponding to the M-p noise eigenvalues.
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These noise eigenvalues should be ideally equal to Cr2. Since we do not have the

exact correlation values, we only get approximate results of a2

Let the z transform of the noise eigenvector be referred to as an eigen filter.

This can be represented as [6]

v(z)=1v(k)z;i=p+1 M, (3.3.1)

where v are the noise eigenvectors. V (z) is referred to as the noise subspace eigen

filter. For the signal auto correlation R of dimension M, the eigenvectors will have a

length of M. Since the eigenvectors ofR are of length M, each of the noise subspace

eigenfilters will have M-1 roots. Ideally p of these roots will lie on the unit circle at

the frequencies of the complex exponentials. This is because of the orthogonality of

noise eigenvector with the signal eigenvector. Consider a noise eigenvector v of the

autocorrelation matrix. Computing the discrete time fourier transform of the

coefficients in v [6]

= v(k' = eHv. (3.3.2)

But, the orthogonality condition implies that the above is zero at w = w1. Hence

taking the Z transform of v , and rooting the polynomial will result in p roots lying

on the unit circle. This can be easily seen as transform z = e"' corresponds to the z

transform evaluated on the unit circle. The eigen spectrum will be given by



FI1

1
I1(eJw)i2=

M-1 , (3.3.3)

I

v1(k" 2

k=O

where v, are the noise eigenvectors. This spectrum will exhibit sharp peaks at the

frequencies of the complex exponentials. Ideally they would be infinite, but due to

the errors in the estimation they would be very large. This would still result in

spurious peaks if only a single noise eigenvector is considered mainly due to the

uncertainties of using estimated values. The noise eigenvectors are formed by the

noise component in the signal, and they are highly prone to errors. Since the auto

correlations are not exact, the effects of the spurious peaks due to them is mitigated

by averaging over all the available noise eigenvectors, using

1P(e)=
e'v, 12

i=p+1

(3.3.4)

the frequencies are taken as the p largest peaks. For a signal with a single complex

exponential, the value of p is 1. But instead of searching for the largest peaks, we

will use a method called root MUSIC, which involves finding the roots of the

polynomial

D(z)= V(z)V(l/z*), (3.3.5)

where 1 is the complex conjugate of J7

The p roots that are closest to the unit circle are used to estimate the

frequency. It was shown by Rao and Han [9] that a root MUSIC is preferred over
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spectral MUSIC because of the better resolution when compared to the spectral

MUSIC. This is well explained by the effect of an error Az in the signal zero z, on

the signal frequency. If the error in the root is radial, then there is no corresponding

effect in the estimate of the frequency. This is not the case for spectral MUSIC

where radial errors affect the peaks of the spectrum. Hence, root MIJSIC has better

resolution capability.

3.4 KUMARESAN AND TUFTS METHOD

Tufts and Kumaresan suggested a principal component or signal subspace method

[2], which was an improvement over a modified covariance method of frequency

estimation. The modified covariance method which is also known as the forward

backward linear predictor was suggested by Nuttall/Ulrych [16]. The modified

covariance method is an auto regressive model based approach, which involves

finding the coefficients of a linear predictor and then rooting the polynomial formed

by these coefficients. Consider a case of estimating the frequencies of the

M complex exponentials embedded in noise where

x(n)=A1e +A2eJ2
+...+AMemnwM +w(n) n=O,1,...N (3.4.1)

The equation for finding the coefficients of the prediction filter, in matrix

form forx(n), and an AR model of order p is [3]
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c[U] c[1,2] . c[i,p] a[1] c[1,O]

c[2,1] c[2,2] c[2,p] a{2] ç[2,o]
, (3.4.2)

c[p,i] c[p,2] . cjp,p] a[p] c[p,O]

where c [I, k]

1
1 x[n j]x[n k]

N-I-p

+ k]x[n + j]
2(N p) n=o

are the elements of the modified covariance matrix. The above equation can be

rewritten as a = Rr,

where a = [a[1J, a[2],.....a[p]f

c[1,l] c[1,2] . c[i,p} c[1,O]

R
ç,[2,1] cj2,2] c[2,p]

and r =

c[p,i] cjIp,2] . ç,[p,p] c[p,O]

In a linear prediction notation, the prediction filter is given by the column

vector a = [a[1],a[2], .....a[p]]T, and a prediction error filter with its impulse

response given by

= [1,a[1],a[2], ..... a[p]f, (3.4.3)

where T stands for transpose. The transfer function of a prediction error filter

H(z)=l+a[k]z. (3.4.4)

It was shown by Kumaresan [2] that this prediction error filter has M zeros on = 1,

in the complex z plane, at angles corresponding to the M sinusoidal frequencies. The

rest of the p-M extraneous zeros fall inside the unit circle. This helps in identifying
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the M signal zeros. The modified covariance matrix equation given above can be

represented in terms of an eigen decomposition as

a=j(!fLiJu (3.4.5)

where 2 2 are the eigenvalues of R and u are their corresponding

eigenvectors. W is the rank of the data matrix.

The noise eigenvectors effect the values of a significantly. Since the noise

eigenvalues are usually small, these can amplify the results as they are in the

denominator. Hence the noise eigenvectors increase the probability of spurious

peaks. Kumaresan and Tufts [2] have suggested an improvement over this method by

considering only the signal components in estimating the coefficients, that is,

(3.4.6)

where forms the coefficients of the prediction filter. This principal component

approximation of a modified covariance matrix can be seen as filtering out a part of

the noise, and in the process improving the estimates. It can be seen that only M

principal components are used in estimating the coefficients. This allows increasing

the model order without increasing the spurious peaks due to noise eigenvectors.
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3.5 AUTO CORRELATION METHOD

The main disadvantage with eigen decomposition methods is their high

computational load while calculating the eigenvectors and eigenvalues of a high

order covariance matrix. To overcome this problem, an auto correlation method is

proposed which has much lower computational load compared to eigenvalue based

methods. It will be shown in the next chapter that the trade off involved in an

autocorrelation method is a loss in performance, but this would still have improved

performance over a delay and multiply method.

This method involves taking the auto correlation of the sequence to estimate

the frequency in a sinusoid embedded in noise. This method was first proposed by

Fitz [17] to estimate the frequency of a complex exponential embedded in noise with

reduced computational load. This was later improved by Luise and Regiannini [10].

Let

z(k) = e327T+O +n(kT), (3.5.1)

be the corrupted signal, where n(kT) is white noise. The correlation of the above

signal is given by

R(m) = e327T +n(m), (3.5.2)

where 1<m<Lo-1. Here L0 is the number of samples. Ideally n(m) would be zero, as

the autocorrelation of white noise is an impulse at zero lag and zero for all other lags.

Since we only have estimates of the autocorrelation, the noise n(m) would be a zero

mean process with small magnitudes.
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Now, summing the auto correlation over the range I m N and dividing by

N,

e(m) çarg{R(m)}z(N+1)vT, (3.5.3)

where

e(m) = arg{R(m)} 2,zmvT (3.5.4)

v is the frequency to be estimated. It can be noted that the values of the above

equation are restricted to the interval [-ir,ir]. The estimation ranges are restricted to

1

I
v . Minimizing the above error gives

NT

1
N

v= arg{R(m)}. (3.5.5)
ZN(N + l)T m=1

This method is also known as the Fitz [17] method, and has better error variance and

mean square errors at low SNRs compared to a delay and multiply method.
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CHAPTER 4

IMPLEMENTATION OF EIGEN DECOMPOSITION BASED
FREQUENCY ESTIMATORS TO ESTIMATE THE CARRIER

FREQUENCY OF BURSTY TRANSMISSION

4.1 INTRODUCTION

Synchronization is considered as a parameter estimation problem and the techniques

of estimation theory could be used to realize synchronization structures.

Synchronization circuits are also devised on an ad hoc basis and the usefulness of the

approach could be proved through simulation. Coherent demodulation is used with

passband digital modulations when better error performance is required. Coherent

demodulation implies that the carrier in the signal is removed by multiplying a local

reference which has the same carrier frequency and phase. Circuits that estimate

these parameters are referred to as carrier synchronizers. With the advances in

microprocessor chips, digital methods of estimation have become very popular in

communication technology. This is because of less stringent tolerances, low power

consumption and lower costs of these chips added with increasing speeds with time.

The objective would be to measure the frequency from short data records

which can be used to recalibrate the base station. The measurement need not be real

time, and therefore the only constraint in our case would be short data records. The

performance of a frequency estimator is optimum when it is able to remove the

modulation from the signal which results in a pure sinusoid tone in noise, which is
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much easier to estimate. Extensive research has been done in this field, and very

good estimators with good performance at low SNR (signal to noise ratio) have been

devised for the sinusoidal case. Many of the optimum frequency estimators remove

the modulation of the signal by using information about the timing and the data. It

was shown that under moderate frequency errors, accurate timing information can be

extracted from the received signal, and used to remove the modulation. But for large

frequency offsets, this is not possible and we will have to rely on estimators which

do not use any information about the timing or the data. An ad-hoc blind approach

followed under the above constraints is a delay and multiply estimator. An advantage

of the delay and multiply estimator is its robustness to different modulation types,

unlike other estimators which use some sort of match filtering to improve

performance. These optimum estimators require information about the modulation

type, and the signaling pulse to be able to effectively match filter the signal. But on

the other hand ad-hoc estimators are sub optimal and tend to have performance

parameters much below the optimal estimators.

Extensive work has been done on delay and multiply estimators by Mengali

[12], and the performance parameters analyzed. Parametric estimators on the other

hand have been shown to offer good performance in estimating frequencies in

exponentials especially for short data records. This has been the motivation in

implementing a parametric estimation based schemes to improve the performance of

a delay and multiply method. We will show in this chapter that the performance can

be improved by these estimators with a slight increase in computational load. Since
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the estimated frequency is a measurement, it is not done in real time and

computational complexity is not an issue in this study.

4.2 PASS BAND SYSTEMS

Pass band systems are obtained by modulating a baseband signal onto a sinusoidal

carrier. The mathematical model for a modulated carrier signal is given by

S(t) = Re{Sce(t)eJ22t}, (4.2.1)

wheref is the carrier frequency and Sce(t) is the signal complex envelope relative to

j. The expression Sce(t) depends on the modulation format used. Generally to obtain

the transmitted information, the pass band received signal is down converted to an

intermediate frequency (iF). This is accomplished by multiplying the pass band

received signal with local reference oscillators. Demodulation can be performed

either at this IF frequency or at baseb and after another stage of down conversion and

filtering. In general, the local frequency term is not exactly the same as f and this

results in a frequency difference. The process is shown in a block diagram below,

where it has been assumed that the noisy received signal is available at an

intermediate frequency.
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Cos(2 rft)

Sin(2 irft)

Figure 4-1 Down conversion

It can be shown that the filter outputs rR(t) and rj(t) may be represented as a

single complex waveform r(t)= rR (t) +1 rj(t), where r(t)=S(t)+n(t),

S(t) = e3(2t+O)S (t)
ce '.

(4.2.2)

and n(t) is the noise term. It can be seen that the base band signal has the following

unknown parameters. v is the frequency offset and 0 is the phase offset. To be able

to estimate the exact carrier frequency, an exact estimate of v is needed which can be

fed back to the local oscillator for it to make the necessary adjustment. Hence carrier

estimation is essentially the estimation of the frequency offset.
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4.3 PERFORMANCE BOUNDS

In verifying the accuracy of any estimator, a bound in the accuracy that could be

achieved is important. That will give an idea on how much the estimator could be

improved in the case of the estimates being far away from the bound. It provides a

benchmark in the accuracy that could be set and help compare the estimator. This

bound is given by the modified Cramer Rao bound (MCRB) {11] which is a variant

of the Cramer Rao bound(CRB). MCRB gives us the lowest error variance for a

given SNIR that could be achieved by an estimator.

The MCRB was introduced by Mengali [11] to over come the difficulties of

calculating the CRB. Without going into the details of the derivations of the bounds,

we will confine here to just the MCRB of frequency estimation. It was shown that a

MCRB for frequency estimation is given by the following formula

T2MCRB(v) =
3

2,r2L03(E IN0)
(4.3.1)

where L0 is the number of samples available in the observation interval, T is the

E.sampling period and is the SNR.
N0

4.4 DELAY AND MULTIPLY ESTIMATOR

At large frequency offsets, the signal timing cannot be extracted from the signal and

phase information is not available. Hence the ability of using information about the

signal symbols and timing information to improve performance is lost. Hence a
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method under the above limitations operates in a non-data aided and non-clock aided

fashion.

An ad hoc open-loop delay and multiply method was suggested by Mengali

[U] either in a closed-loop or open-loop architecture for faster frequency estimation.

The continuous phase signal after down converting is given by

x(kT)= s(kI)+n(kT[.), k=O,1,2 ... NL (4.4.1)

where

s(kT,) = e12 (4.4.2)

n(kT,) is zero mean filtered white noise, v is the frequency offset after down

conversion, r is the time delay introduced by the channel, I, is the sampling

interval, a are the data symbols, and iv(t, a) is the information bearing phase. L0 is

the observation length in symbol periods, N is the oversampling ratio.

The carrier frequency offset for a delay and multiply method is estimated

through the formula [12]

1
NLo-1

arg{z(kI)}, (4.4.3)
27rD1. k=O

where L0 is the observation interval and z(kI) is given by

z(k1)x(kTs)x*[(k_D)Ts]. (4.4.4)
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where D is the delay in samples and x*[.] is the complex conjugate of x[.]. The

validity of the above equation is verified below as given by Mengali [12].

Substituting x(kT) given by (4.4.1) and (4.4.2) into (4.4.4), we get

2E j2izvD7 j{yi(k1-r,a)-yi[(k-D)T-r,a)]} + N(kT), (4.4.5)e
T

where N(k7) is a zero mean noise term. Taking the expectation of z(k1) gives

E{z(kT,)} -----A(kI r)e2'', (4.4.6)

where

A(t) = E{e t,t-ur ,a)}

can be expressed as,

1 sin[2zthMp(t iT, 447)A(t)

with p(t,DT)=q(t)q(tDT),

where q(t)is the phase response of the modulation. The proof of the equation (4.4.7)

is given in appendix A. Coming back to the sum given in (4.4.3) between

OkNL0-1 gives

NLo-1
j2,ri'D7NL0Ae

k=O T
(4.4.8)

where A = ---A(kI r) and N is the over sampling rate. Therefore NI =T,

where T is the symbol period.



31

In all practical cases of CPM modulations, A is positive. Taking the

argument of (4.4.8) and solving for v gives

1
NLo-1

v= arg{E z(kI)}}.
2irDI, k=O

(4.4.9)

Since we do not have the expectation of the sum ofz(k1), we instead just

take the sum for our estimation. As the sum instead of the expectation of sum was

taken, the frequency estimate v caimot be exactly calculated. Instead what we get is

a close noisy estimate, whose error variance depends on the signal-to-noise ratio.

The delay chosen depends on the modulation format and the oversampling ratio.

Hence the optimum delay to get the best estimate varies depending on the above

factors. We could use a delay of one as default, but it would not be the best choice. A

simple block diagram for a feed forward delay and multiply method is shown in

Figure 4.2.

x(kT) z(kT)

Delay

DT, '] conjugate

Figure 4-2 Block diagram of delay and multiply method
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4.5 REFINING DELAY AND MULTIPLY METHOD

The delay and multiply method is not optimal because the noise suppression

capability is poor in this algorithm. Added to that we have discussed, that the delay

has to be changed depending on the modulation format and the sampling frequency.

This can only be ascertained by simulating for various values of delays and verifying

the estimator with the best variance over about 500 trails. This is not possible for an

estimator. As seen above, ideally the noise term is removed by the sum, the noise

process being zero mean. The estimated values could be improved, by either

reducing the noise from the signal x(kT), or by removing the noise term from the

estimates. That would require some sort of filtering, which might remove or greatly

attenuate the offset frequency component too. An alternative to filtering would be the

implementation of parametric methods on the data which have proven performance

parameters in estimating the frequency components embedded in noise. Simulations

have shown that such an approach indeed improves performance, but at the expense

of increased computational load.

A parametric estimation done on the GMSK data was shown to improve

performance due to the nature of the autocorrelation of GMSK. Simulations have

shown that this method has a better normalized error variance than the delay and

multiply method. This way, finding the best delay for the estimator would not be

necessary. The focus would be on the characteristics of the auto correlation of the
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data, and fitting our data to the model of the parametric estimation. As seen from

(4.4.8),

NLo-1

E{ z(kI)} (4.5.1)
k=O T

Since the actual expectation is not available, we substitute it with the sum

NLo-1

z(kT,). This results in

NLo-I
/2rvD1z(k7) =---NLoA e +N(k7) , (4.5.2)

k=O T

where N(kI) is a zero mean noise term. By varying the delay from 1 to N, and

using

(4.4.8), we get

Ge2 +N(nT,), (4.5.3)

for n=1 :N and G is some arbitrary positive parameter which varies with n. The term

N(nT5) will ideally be an impulse function, because the above method of taking the

outputs of a delay and multiply method for various delays is equivalent to finding the

estimated auto correlation of the GSM data. The noise corrupting the signal is zero

mean white noise, and hence its auto correlation will be an impulse at lag of zero,

and whose amplitude will be given by the variance of the noise. This problem hence

boils down to a frequency exponential embedded in noise, whose autocorrelation is

given by the above equation (4.5.3).
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The structure of the auto correlation as given in (4.5.3) is an exponential with

varying amplitudes. This structure cannot be used in an eigen based estimators unless

the varying amplitudes G are positive. This is because the frequency information

contained in the phase of the exponential is altered for negative amplitude

exponentials. In the parametric methods discussed in chapter 3, we found the

frequencies are obtained from the roots closest to the unit circle. The same cannot be

applied to this auto correlation as G is not a constant. But thesis research has shown

that the same methods can be used in this case also. This is due to the nature of the

parameter G. It can be seen that the auto correlation will have the form,

EA(k)e' , k1,2...N, (4.5.4)

where w is the frequency to be estimated and the signal eigen vector would be an

element by element product of A(k) and [i,e1w,eJ2,eJ3,...],
j is an imaginary

number. If the parameter is trivial, that is A(k) would be of the form b*[l,1,1,...}, b

is some arbitrary constant. This would result in a regular parametric estimation

where the roots closest to the unit circle could be identified as the signal roots. But

for changing A(k), the spectrum will be given by the convolution of the varying

constant and the signal eigen vector. Convolution results in spectral leakage of

energy and as long as the constant A(k) has a small bandwidth, the spectrum of E

would still retain the spectral properties of complex exponential data. As was showed

in (4.5.3) the parameter G is obtained for increasing delay values from I to N. It can

be seen from (4.5.2) and (4.5.3) that G is dependent on A. Under these
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circumstances, the parameter G varies slowly for increasing delays and hence it has

a very small bandwidth. The pattern of A for delays ranging from 1 to 50 is shown

in the figure below.

0.9
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5 10 15 20 25 30 35 40 45 50
Delay

Figure 4-3 Expectation A(t) for delays 1 to 50

Though the expectation A varies slowly, the plot shows that the expectation

is close to zero for delays greater than 40. It was observed that it goes to negative

values beyond delay of 100. Results have shown that the expectation is always

positive for delay upto the oversampling rate which is 25 in this case and generally

about twice the oversampling rate. This would decide the order of the autoconelation
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matrix that could be taken to achieve the best performance in a parametric based

estimation.

Therefore a MUSIC or other eigen based method would still be able to

identify the peaks through the roots of the polynomials as long as the order of the

autocorrelation is within the bounds discussed above. This can be verified by

observing the behavior of the roots of the polynomials for MUSIC and Tufts-

Kumaresan methods. These roots are obtained by the eigen decomposition of the

GMSK data. Z plane plot for the MUSIC method is given in the figure below.
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Figure 4-4 roots of the root MUSIC method for an autocorrelation order N25

The above simulation was done for an SNR of 15 db on GMSK data, and run

30 times. It can be seen from the Z plane plots of the complex roots that the roots
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have a uniform structure and the roots corresponding to the frequency are closest to

the unit circle. The spurious roots fall well below the unit circle. Hence for our case,

the roots closest to the unit circle can be taken as the frequency estimates.

Under these circumstances, the orthogonality of the noise eigenvectors of the

above auto correlation to the signal eigenvectors can be used to identify the peaks.

These peaks give the frequency in the exponential. This is true if the exact auto

correlation of the sequence is known. But since there is only an estimated

autocorrelation, the frequency estimate will only be an estimate to the actual value,

the accuracy of which depends on the SNR of the signal. The Z plane plot for the

Tufts-Kumaresan method is given below.
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Figure 4-5 roots of the Tufts-Kumaresan method for an autocorrelation order
of N=25
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It can be seen that even in the Tufts-Kumaresan case the roots for the GMSK

data follow the behavior of the roots for the case of an exponential in noise. It is also

observed that the number of roots in the TK method are half of the Root Music

method. This is because, though both methods use an eigen decomposition of the

covariance matrix, they start from different directions. TK follows the path of linear

prediction to form a polynomial representation of the signal in consideration. This is

achieved by representing the signal covariance matrix in a eigen decomposition and

rejecting the non-principal components. Then extracting the roots of the polynomial

gives the frequencies where they are estimated from the roots closest to the unit

circle. The rest of the spurious roots fall well inside the unit circle. Whereas MUSIC

follows the path of representing the signal covariance in an eigen decomposition, and

using the property of orthogonality of signal eigenvectors and noise eigenvectors to

estimate the frequencies. So, though both use the principal and non-principal

components of the eigen decomposition for frequency estimation, the philosophies

behind the approaches are different.

By using a MUSIC and TK algorithm in Matlab, the estimate of the

frequency offset v was shown to improve by a reduction in the error variance.

Simulation results have shown that the normalized frequency offset error variance is

lower than the delay and multiply method. This method is computationally more

intensive than a straight forward delay and multiply method. But the computational

complexity could be controlled by keeping the order of the autocorrelation matrix in

the eigen based methods small. That would result in degradation in performance.
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Simulations have shown that the increase in performance is related to the order of the

auto correlation matrix but hits a threshold at a certain value. Any attempts to

increase the order of the autocorrelation matrix results in spurious peaks, thereby

degrading the error variance of the estimator.

4.6 SIMULATION

For simulation purposes, a baseband GMSK signal with BT=O.3 and a known carrier

offset is used. The data is over sampled by a factor of 25 i.e., N=25. The simulation

can be represented by the block diagram as given below.

GMSK Auto- Parametric , Frequency
data correlation estimation estimate

Figure 4-6 Open loop frequency estimation

The performance of an estimator can be measured by the MSE (Mean Square

Error) and Error Variance. The MSE is given as

MSE{}=Ev_I2}, (4.6.1)

where is the estimate of the frequency v. The following is the normalized error

variance plot for delay and multiply method, the MUSIC, and TK algorithms. This
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was obtained by running the estimator 1000 times. These plots are for a frequency

offset of 1 Khz, and covariance order of 25.

>

E

z

5 10 15 20

SNO (db)

Figure 4-7 Normalized error variance with respect to symbol period 'T' Vs
'SNR' for the delay and multiply method, TK, and MUSIC

The above plot shows the improvements in performance for parametric

estimation based algorithms compared to the optimal delay and multiply method.

The 'dashed' line indicates the enor variance for TK , the 'dashed period' line

indicates the variance for the delay and multiply method for the optimal delay (delay

of 15) and the 'dotted' line for the MUSIC method. The optimal delay was found to

be 15 for this case through simulations. This delay is mainly dependent on the
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modulation, bit period T and the sampling interval T. Hence the best delay for

another CPM modulation format might not be 15, and it has to be found out through

simulations. The MUSIC and TK estimation has the advantage of improvement in

performance with respect to the delay method without having to have apriori

knowledge of the simulation parameters and optimum delay. It can also be seen that

the TK method has a slightly better performance when compared to MUSIC. This

can be attributed to the components of the eigen decomposition each method uses. It

was shown earlier in chapter 3 that the MUSIC uses the noise eigenvectors while the

TK method uses the signal eigenvectors. Coming back to the case of a single

exponential in noise, for a P order signal covariance matrix, we will have one signal

eigenvector and P-i noise eigenvectors. This is because we are considering the case

of only one frequency embedded in noise. This gives the advantage to TK method of

increasing the order P of the covariance matrix without a corresponding increase in

the spurious peaks due to noise eigenvectors as was shown in chapter 3.

The Cramer Rao bound for frequency estimation that was given before shows

that the performance improves as a third power of the length of the data N and

linearly with SNR. Therefore it can be seen that the order P should be as large as

possible to have a large aperture for the prediction filter. But at the same time,

increasing it to a very large value results in too many extraneous zeros. As can be

seen, the number of roots are equal to the order of the covariance matrix for the TK

method and twice the number for root Music. Hence there is a good chance that these

redundant roots might fall close to the unit circle, resulting in spurious peaks. The
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Mean square errors for the above methods are shown below. It can be seen that the

TK method has a slightly better performance compared to Root Music, and both

perform much better than a delay and multiply method.

uJ

Delay

MUSIC
lx

5 15 15

DSP (db)

Figure 4-8 Mean square errors Vs SNR

4.7 AUTO CORRELATION METHOD

We now apply the auto correlation method instead of the parametric methods to the

available data. The details of this method can be found in Chapter 3 and the cited

references.
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This plot shows the improved estimation capabilities of the Auto correlation

method, compared to a delay and multiply method. The increase in performance is

slightly better than the delay and multiply method. This is being compared to the

optimal delay of 15 in our case. The difference is greater at low SNRs, but as the

SNR increases the accuracy of both the estimators seem to merge.

Now we will look at the plot of the mean square error between the delay and

multiply method and the auto correlation method.
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Figure 4-10 Mean square error Vs SNR
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This plot shows the average mean square errors, for SNR= [5 10 15 201 db. It

can be seen that at low SNRs, the auto correlation method has better performance

compared to the delay and multiply method, but the errors seem to converge at

higher SNRs. So in all, the above methods show us three ways of improving the

performance, especially at low SNRs.

4.8 SIMULATION OF CLOSED LOOP STRUCTURE FOR DELAY
AND MULTIPLY METHOD
The above methods have open ioop architecture, as the frequency estimates are

obtained from one single block of data. They can also be modified into a closed ioop
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configuration for frequency estimation by feeding the frequency estimates to the

signal and thereby steering the frequency estimates to the actual frequency. Consider

a closed loop block diagram below

ejTs

x(kT) x'(kT5)

Figure 4-11 Block diagram of a closed loop estimator

The frequency estimator block implementing any of the three methods

discussed before could be used to give an estimate of the frequency over a block of

data and that frequency could be fed back to update the frequency in the signal

x(kT). Let be the estimated frequency out of the vco block. Then

x'(kI) = x(kT )e'2' (4.8.1)

It can be seen from (4.8.1) that x(k1) and x'(kI)have the same signal structure,

but now the frequency offset is v- i. This can be used as an error signal to guide

closer to v. The VCO frequency is updated as

[(n+1)T] = (nT) + D e(nT), (4.8.2)



46

where e(nT) is the frequency error estimate out of the frequency estimator block at

time nT and D is the error gain. For this simulation a GMSK signal is used, which is

sampled every T equal to 1.4769*1 O seconds and the signal is corrupted by white

Gaussian noise. This is passed onto a low pass filter and a buffer is used, which

accumulates the data. This is fed to a frequency estimator block which gives out an

estimate of the frequency offset. Any of the frequency estimators discussed in

sections 4.5 and 4.7 can be used to implement a frequency estimator. The buffer size

can be varied and is a design variable L. This estimate is used to improve on the lock

by feeding it back to X(kT5). Now the next estimate will be the difference of the

initial offset and the current estimate. This method has a draw back, that is, under

low SNR conditions the estimates can be off by a large margin and will make the

loop oscillate at large frequency offsets. This can be overcome to a certain extent by

having a discrete time integrator in the feed back path. An integrator acts like a low

pass filter, thereby reducing the effect of noise and also does an averaging operation

on the loop estimates. This would reduce the errors which are caused by the noise.

The integrator is followed by a gain block which controls the acquisition time and

the mean square errors. The higher the gain the faster the acquisition speed, but this

will be at the expense of larger frequency oscillations. The frequency counter is

updated every T seconds, where it accumulates the previous outputs of the integrator

and updates the frequency value every T secs. The simulink schematic is provided

below
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Figure 4-12 Simulink schematic for closed loop carrier lock.

The carrier lock achieved, the estimate of which is close to 1Khz offset is

shown below for 20 db SNR with a MUSIC frequency estimator.
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Figure 4-13 Carrier lock for I KIIz offset
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It can be seen that the above architecture gives a close enough estimate of the

carrier offset of 1 KHz. Results have shown that by varying the gain, a quicker lock

could be obtained. But it will be at the expense of larger estimation errors. It is a

design criterion to decide the amount of offset that can be tolerated so that it is

within the lock-in range of a phase lock loop or a data aided frequency estimator. For

a 10db SNR value, lock differences have been in the range of 200-300Hz.

This estimate could be used by a phase locked loop with aided acquisition to

lock on to the carrier faster when the unmodulated carrier is transmitted. The carrier

lock for a 2 KHz offset is given in figure 4-14.
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Figure 4-14 Carrier lock for a 2 KHz offset



49

One way of overcoming the frequency oscillations in high noise environment

would be to use the output of the discrete time integrator as a lock detector. The

output of the integrator going below zero or a small positive threshold value could be

used as an indicator of frequency lock. This happens, due to the fact that, as the

estimation gets closer to the frequency offset, the estimates of the buffer often

become negative. That results in the change in the slope of the output of the

integrator resulting in a decrease in the amplitude after an initial increase. This could

be used as an indicator of lock depending on the threshold decided. As soon as this

condition is met, the ioop is disabled and the frequency estimate noted. This way, we

can track the frequency of the carrier to a close value during the transmission of the

data, and this result could be used in the fast lock of a carrier offset when the

unmodulated carrier is transmitted. The output of the discrete time integrator for the

above simulation is shown below.
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Figure 4-15 Output of the integrator. Threshold lock detector for 2Khz offset
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4.9 OBSERVATIONS

It was seen in this chapter that an open loop parametric based estimation of

frequency for GMSK signal improves performance over an optimum delay and

multiply method by about 3 db. This improvement is at the cost of increased

computational complexity. It was also observed that the performance of the estimator

increases with the order of the autocorrelation matrix. The maximum allowable order

of the matrix would be about 2N, where N is the over sampling rate. It was shown by

Kumaresan [2] experimentally that an order of 3L/4 is optimal where L is the length

of the data. The same principle cannot be applied for our case due to the reasons

given in section 4.5.

The methods proposed being a non-data aided one, the need to extract timing

and symbol information is not required, A data aided method would have better

performance but the ability to have data aided synchronization is not practical in

many cases. A data aided method would also have a relatively narrow lock in range.

However, the non-data aided acquisition could be used to achieve an initial

frequency offset estimate which will fall under the lock in range of a data aided

method. A data aided method can then be implemented for higher performance. In

most cases the symbol timing information could be extracted at low frequency

offsets. In such a scenario, the non-data aided methods could be used to achieve low

frequency offsets whereby symbol timing could be extracted to implement a clock

aided carrier recovery. When the computational complexity has to be reduced, an

auto correlation method discussed in chapter 3 was shown to have a slight
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improvement in performance over the delay and multiply method. Hence it would be

a trade off between computational complexity and performance. Though the

estimators perform well compared to a delay and multiply method, the normalized

error variance of these estimators still falls short of the MCRB by a big margin.

A parametric based estimation would have a performance close to the data

aided methods when an unmodulated carrier is sent. This is because most of the data

aided methods use the symbol and timing information to remove the modulation

from the data thereby resulting in an exponential at the frequency offset. Once this is

achieved the problem is changed to the estimation of frequency in a complex

exponential. In such a case many estimators achieve the Cramer Rao theoretical

bound. A parametric based estimation would attain the CRB for all SNRs over 7 db

for TK method, and for all SNRs over 15 db in the case of MUSIC [3]. Hence while

estimating the unmodulated carrier, non-data aided parametric estimation techniques

have similar performance as data aided methods.

The added advantage of using a parametric based estimation is its high

resolution capabilities compared to other methods. This reduces the probability of

false lock due to interference from other carriers. As was noted in chapter 2, GSM

sends an unmodulated carrier once in every 8 time slots and transmits 124 carriers in

a 25MHz band. To use bandwidth effectively, the charmel separation is kept low.

This results in the congestion of the frequency spectrum with different carriers being

close to each other. With the congestion of the frequency spectrum, it would result in

a good probability of interference from other carriers. Using a parametric based
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estimation, the dominant frequency could be found rejecting the interference from

other carriers.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

This thesis presents an investigation into the model based, parametric frequency

estimation for estimating the carrier frequency offset in a non-data aided fashion.

Chapter 2 gives a brief description of the CPM signals with an emphasis on GMSK.

In chapter 3 the parametric estimation methods are given in detail with mainly eigen

decomposition based methods. Chapter 4 uses various frequency estimators

discussed in chapter 3 by fitting the auto correlation of a GMSK data to the models

in discussion in chapter 3. Different methods are compared to the more conventional

ad-hoc approach of delay and multiply methods for non-data aided estimation. The

results show a clear reduction in error variances of these estimators compared to a

delay and multiply methods. An eigen decomposition based parametric estimation,

which uses the information about the structure of the signal autocorrelation to

improve performance has been proposed and the performance characteristics of

signal subspace methods and noise sub space methods are compared. These two are

the main contributions in this thesis.



54

5.2 SUGGESTIONS FOR FUTURE RESEARCH

One of the main constraints faced in communications is channel interference (CI). It

is possible that during the estimation of the carrier frequency, frequency components

from the other channel could fall in the current channel, and thereby result in the

phase locked loops or other estimation algorithms locking onto the interference

channel frequency. As we have mentioned earlier already, the methods introduced in

chapter 3 have very high resolution for short data records. Therefore, these methods

might be useful in rejecting the unwanted frequencies and only identifying the main

frequency component. The true carrier offset of the channel would have higher

energy compared to the interference components, and thereby decreasing the chances

of false lock. More research is needed to verify the interference rejection capabilities

of such a process. Apart from the above, the mathematical bounds in the frequency

offset beyond which the methods fail could be calculated. The results of our methods

for different CPM modulations (other than MSK, GMSK) could be verified, and the

effect of the parameters of the CPM on the performance could be ascertained.

Also, more research needs to be done on the performance characteristics of a

closed loop estimator. A statistical analysis of the threshold detector mentioned in

the closed loop estimator can be undertaken. The usefulness of using the zero

crossings, and the probability of zero crossings for different SNRs can be verified.
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APPENDIX
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EXPECTATION

The result was shown by Mengali in [12]

We will calculate the expectation of E {eJl t2._t1.}, where
a

= 2ithFi1q(t iT) (A.1.1)

where h is the modulation index , q(t) is the frequency response of the CPM format,

and T is the bit period. t'(t,ä) is the information bearing phase function. Since

p(t,AT)q(t)q(t LT),

E {efl t2,(tI = E {exp[j2ith äp(t2 iT, t2 t1 )] }

=Eff {fJexp[j2,th?i,p(t2 iT,t2 -t1)]} (A.1.2)

As the symbols a are independent the above equation can be averaged separated as

given below.

E {e(t2 '

} J] E {exp[j2th a1p(t2 iT,t2 t1 )] } (A. 1.3)
i=oo

As a takes values belonging to the set { ± 1,±3 .. ..(M 1)), the right side of the

equation A. 1.3 can be separated as

I M-1 M-1= - + - (A.1.4)M m=1,3 M m=1,3

Also,



M-I M/2-1- -iT,t2-11) -IT,t2-t1)

M m=1,3 n=o

1sin[2thMp(t2 iT,t2 t1)J
At sin[2thp(t2 iT, t2 t1)]

Substituting in the equation (A. 1.3)

E 21 F(tI.a)}} sin[2ithAfp(t2 iT,t2 t1)]
At sin{2thp(t2 iT, t2 t1)]
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(A.1.5)

(A.1.6)




