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Lidar is able to provide height and cover information which can be used to estimate 

selected forest attributes precisely. However, for users to evaluate whether the 

additional cost and complication associated with using Lidar merits adoption requires 

that the protocol to use lidar be thoroughly described and that a basis for selection of 

design parameters such as number of field plots and lidar pulse density be described. 

In our first analysis, we examine these issues by looking at the effects of pulse density 

and sample size on estimation when wall-to-wall lidar is used with a regression 

estimator. The effects were explored using resampling simulations. We examine both 

the effects on precision, and on the validity of inference. Pulse density had almost no 

effect on precision for the range examined, from 3 to .0625 pulses / m
2
. The effect of 

sample size on estimator precision was roughly in accordance with the behavior 

indicated by the variance estimator, except that for small samples the variance 

estimator had positive bias (the variance estimates were too small), compromising the 

validity of inference. In future analyses we plan to provide further context for wall-to-

wall lidar-assisted estimation. While there is a lot of literature on modeling, there is 

limited information on how lidar-assisted approaches compare to existing methods, 



and what variables can or cannot be acquired, or may be acquired with reduced 

confidence. We expand our investigation of estimation in our second analysis by 

examining lidar obtained in a sampling mode in combination with Landsat. In this 

case we make inference about the feasibility of a lidar-assisted estimation strategy by 

contrasting its variance estimate with variance estimates from a variety of other 

sampling designs and estimators. Of key interest was how the precision of a two-stage 

estimator with lidar strips compared with a plot-only estimator from a simple random 

sampling design. We found that because the long and narrow lidar strips incorporate 

much of the landscape variability, if the number of lidar strips was increased from 7 to 

15 strips, the precision of estimators with lidar can exceed that of estimators applied to 

plot-only SRS data for a much larger number of plots. Increasing the number of lidar 

strips is considered to be highly viable since the costs of field plots can be quite 

expensive in Alaska, often exceeding the cost of a lidar strip. A Landsat-assisted 

approach used for either an SRS or a two-stage sample was also found to perform well 

relative to estimators for plot-only SRS data. This proved beneficial when we 

combined lidar and Landsat-assisted regression estimators for two-stage designs using 

a composite estimator. The composite estimator yielded much better results than either 

estimator used alone. We did not assess the effects of changing the number of lidar 

strips in combination with using a composite estimator, but this is an important 

analysis we plan to perform in a future study.   

In our final analysis we leverage the synergy between lidar and Landsat to improve the 

explanatory power of auxiliary Landsat using a multilevel modeling strategy. We also 



incorporate a more sophisticated approach to processing Landsat which reflects 

temporal trends in individual pixels values. Our approach used lidar as an intermediary 

step to better match the spatial resolution of Landsat and increase the proportion of 

area overlapped between measurement units for the different sources of data.  We 

developed two separate approaches for two different resolutions of data (30 m and 90 

m) using multiple modeling alternatives including OLS and k nearest neighbors 

(KNN), and found that both resolution and the modeling approach affected estimates 

of residual variability, although there was no combination of model types which was a 

clear winner for all responses.  The modeling strategies generally fared better for the 

90 m approaches, and future analyses will examine a broader range of resolutions.  

Fortunately the approaches used are fairly flexible and there is nothing prohibiting a 

1000 m implementation. In the future we also plan to look at using a more 

sophisticated Landsat time-series approach. The current approach essentially 

dampened the noise in the temporal trend for a pixel, but did not make use of 

information in the trend such as slope or indications of disturbance – which may 

provide additional explanatory power.  In a future study we will also incorporate a 

multilevel modeling into estimation or mapping strategies and evaluate the 

contribution of the multilevel modeling strategy relative to alternate approaches.  
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1 Introduction 

1.1 Background 

1.1.1 Forest inventory 

Forest resources are often distributed over vast areas, and the measurement, 

monitoring and mapping of forest resources can prove quite difficult and costly. 

Strategies for sampling and estimation of these are quite mature (e.g. Gregoire and 

Valentine, 2004; Schreuder et al., 2004; Shiver and Borders, 1995; Johnson, 2000), 

and forest inventory procedures play a role in nearly every forest manager’s 

operations. However, traditional sampling and estimation strategies commonly used 

for forest inventory may not be feasible or efficient in all areas (e.g. Alaska: Barrett et 

al., 2011, p.1). The utilization of modern remote sensing may improve the efficiency 

of estimation, enabling forest inventory and monitoring even in remote areas 

(Andersen et al., 2011a) or improving spatial products and potentially reducing costs 

where traditional forest inventory strategies are already implemented. Mapping is an 

area where standard forest sampling, inventory, and estimation strategies are likely to 

prove deficit. For example, fine-scale Information about how the forests and terrain 

vary spatially may prove important for representing and understanding ecological 

processes that drive some management decisions (Russel et al., 2007). Field 

measurements alone may not reflect spatial variability on the landscape at a resolution 

that is suitable to monitor the phenomenon (Hinsley et al., 2006). This is an area 

where leveraging remote sensing data is likely to provide benefit (Mutlu et al., 2008). 
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1.1.2 Remote sensing 

Remote sensing data has an advantage over in-the-field measured data in that it can 

most often be collected for large areas at a fraction of the cost per unit area relative to 

the cost of field measurements. Remote sensing data has a disadvantage in that the 

information represented often does not correspond exactly with the variables that we 

wish to measure, map, or monitor.  From this perspective, it is may be necessary to 

collect remote sensing in conjunction with field measurements. The field 

measurements can provide a bridge between remote sensing data and what the data 

represents on the ground. This “bridge” is formalized through the development of an 

empirical (typically) model linking the sources of data. Clearly there will be some loss 

in information (errors or residuals) in using the model instead of measurements when 

the model is applied. However, depending upon the variable of interest and the remote 

sensing data source, it is sometimes possible to increase the precision of estimates 

(e.g. the total and mean) and predictions (e.g. mapped values) over those made without 

leveraging remotely sensed information. However, the information contained within 

remote sensing data differs depending upon the system, and the data from some 

systems do not have the capacity to provide the information desired by the user. And, 

clearly there are some field measurements that are not likely to ever be measured with 

remote sensing, such as soil biomass or wood density. 

1.1.3 Aerial photos in forest inventory 

 Aerial photos are still the most common source of remote sensing data for forest 

inventory, often used for delineation and classification (Hall, 2003). For industrial 
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forest inventory, delineation and classification is typically performed by a skilled 

photo interpreter using aerial photos with resolutions commonly ranging from 

1:10,000 to 1:20,000 (Ahern and Leckie, 1987). Aerial photos can also be used to 

measure forest structure directly (photo measurements taken as truth) or photo 

measurements can be adjusted by double sampling. In a double-sampling approach a 

large number of measurements from aerial photos are calibrated using a model(s) 

fitted to corresponding field measurements for a small subsample of photo 

measurements  (Howard, 1991, 307–314). Aerial photos provide some advantages in 

forestry over other remote sensing data sources in that they are high resolution (> 0.2 

m), can be used with some success for species differentiation, and provide context that 

is evident to the naked eye, and they can be easily transported to and used in the field.  

A primary downside of aerial imagery is that some variables, such as volume a key 

requirement of many inventories, may not be attainable without time intensive user 

interpretation or additional information (Hall, 2003).  

1.1.4 Space borne sensors 

Satellite-based imagery has been available for use in mapping forest resources at least 

since the launch of the Landsat 1 platform in 1972 (Garner, 2012). Studies which used 

Landsat data to map forest resources were published shortly thereafter (Kirvida and 

Johnson, 1973; Jobin and Beaubien, 1974).  Images from medium resolution (e.g. 30 

m), satellite-based sensors are a source of data that can be used to classify and predict 

forest resources for large areas. Satellite-based sensors provide much higher temporal 

resolution than is feasible from aerial platforms and the cost of data is lower, although 
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the spatial resolution that is feasible from a satellite platform is also lower. Landsat is 

a data source that is frequently used for mapping over large areas because it has a long 

collection history, has a frequent re-measurement cycle, and is of reasonably high 

resolution (Huang et al., 2003, 389–390). Landsat TM data (from Landsat 4 and 

Landsat 5 platforms, which are no longer operational) are 30 m resolution data 

collected using scanning sensors which are sensitive to seven spectral bands. This data 

was passed to ground stations where it was processed and distributed as georeferenced 

grids of digital numbers. However, while the cost, coverage and temporal data density 

represent advantages of Landsat, and derivatives on a regional scale may be adequate, 

the quality of individual mapped predictions and classifications may be quite low 

(DeVelice, 2012; Hyyppä et al., 2000). There are sensors in orbit capable of acquiring 

much higher resolution imagery (>1m), but for large areas these sensors have many of 

the same feasibility and cost constraints as imagery collected from aerial platforms 

(Huang et al., 2003, 389–390). Higher temporal resolution data are also available, but 

typically have reduced spatial resolution, and may have a variety of technical issues 

associated with their use (Cihlar et al., 2003).   

1.1.5 Lidar 

Airborne near-infrared scanning light detection and ranging (lidar) systems are a 

source of auxiliary data that have grown in importance in forestry in recent years. 

While lidar is primarily collected to enable accurate representation of the terrain 

surface, it was early on recognized by the natural resource community that the vertical 

distributions of lidar data corresponding to laser reflections from vegetation can be 
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used to quantify vegetation properties (Maclean and Krabill, 1986; Nelson et al., 

1988). Lidar sensors use a laser pulse and a sensor, in addition to various positioning 

equipment to actively measure three-dimensional structure. The combination of an 

accurate digital terrain model (DTM) which can be derived from lidar points and the 

vertical distributions of lidar points above the estimated surface make it possible to 

make inference about vegetation height and canopy cover. These in turn can be used to 

predict forest metrics like biomass and volume (e.g. Strunk et al., 2012). It should not, 

however, be assumed that lidar directly provides information about every individual 

tree (e.g. a tree list) or that lidar-derived height and cover are the same as field 

measured height and cover. The strength of the reflected lidar pulse (intensity) can 

also be used with some success for prediction and classification (Donoghue et al., 

2007; Hudak et al., 2006).  

Fortunately, the application of lidar aided techniques in forestry and forest inventory is 

quite similar to the techniques which are already in use with aerial imagery. Much like 

the double sampling approach previously described for use with aerial photo 

measurements, corresponding lidar and field metrics can be used to train models for 

prediction of field metrics in locations where only lidar is available (Andersen et al., 

2005) or for estimation (Corona and Fattorini, 2008; Opsomer et al., 2007). An 

advantage of lidar in this context is that it is fairly easy to automate the calculation of 

lidar metrics. Using photo plots as an analogy, it is equivalent to automating the 

measurement of hundreds of thousands to millions (and perhaps even billions) of 

photo plots – or the complete area covered by the lidar. Lidar can also be used to 
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identify potential tree crowns, although sub-canopy trees are likely to be omitted and 

interconnected trees may be lumped together (Ene et al., 2012; Peuhkurinen et al., 

2011). The height, cover, and intensity information could potentially even be used 

simply as the basis for automated stand or stratum delineation and 

classification(Sullivan et al., 2009) while using traditional forest inventory plots for 

estimation – an approach which is similar to how aerial imagery is most often used in 

practice for forest inventory.  

In the forestry literature lidar is most often studied in a wall-to-wall capacity, and for 

good reasons. This type of acquisition is the most flexible with respect to potential 

because it is possible to develop complete maps of the study area including DTMs, 

canopy height, and predicted forest metrics in addition to performing estimation. The 

alternate uses may in fact have greater influence on the decision to acquire lidar than 

estimation, especially for DTMs.  However, in some instances it will not be feasible to 

acquire lidar over an entire study area due to cost and estimation may be the primary 

motivation to acquire lidar. A number of recent studies looked at estimation with strips 

of lidar collected as a sample over their respective study areas (Andersen et al., 2011b; 

Parker and Evans, 2007; Gregoire et al., 2011; Ståhl et al., 2011). Collecting lidar as a 

sample of strips will negate many of the mapping benefits of lidar when strips of lidar 

are used alone, but may yield a better cost for precision ratio for large areas. For small 

areas the approach will not yield sufficient cost reduction to warrant obtaining lidar as 

a sample of strips.  
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1.1.6 Lidar limitations 

As with satellite and aerial based passive sensing systems, lidar is not without 

limitations. A primary limitation currently is the cost of a lidar acquisition. To 

guarantee that reflected lidar pulses have enough energy to register with the systems 

sensor, flying heights must be relatively low, less than 4000 to 5000 m typically – 

although the flying height is frequently much lower, ≈1000 m, to achieve a desired 

pulse repetition frequency (PRF). This is much lower than for aerial photography and 

means that the number of passes required over a target area is high – driving up costs 

to on the order of approximately $0.70 per acre in contrast $0.35 per acre for aerial 

imagery. An additional limitation of lidar is that it may provide less information which 

is useable for species differentiation. Lidar is typically flown using a single near-

infrared (1064 nm) laser which provides less spectral information than is available 

from a multi-band sensor under optimal conditions. Additionally, since a lidar pulse 

has a non-negligible footprint, information on reflectance properties may be 

confounded by the size of the object which registers a return, or may represent 

multiple objects with quite different reflectance properties (e.g. foliage and branches).  

1.1.7 Adoption of lidar aided inventory approaches 

While there have been a large number of studies that explored the use of lidar for 

mapping, estimation, and classification, whether there is sufficient impetus to adopt 

new these techniques which take advantage of lidar depends in large part upon the 

success of existing methodologies to satisfy information needs, and the perceived 

benefits from adopting new methodologies. In the experience of the first author from 
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interacting with private industry users of forest inventory data across the United 

States, existing plot and aerial imagery based methodologies are perceived to be 

satisfactory, if costly, and whether lidar approaches provide sufficient benefits to 

warrant adoption is unclear. In light of the lack of clarity on the tradeoffs between 

traditional forest inventory monitoring and measurement approaches and new remote 

sensing approaches (especially with lidar), it is important that benefits of modern 

approaches be provided with context. One way to do this is to provide results in a 

format that is comparable to existing inventory outputs – when possible (some lidar 

products, such as a 1m DTM, are simply not available except with lidar). This is not 

meant to diminish the importance of exploratory analyses that do not immediately 

translate into applicable and comparable methodologies.  Lidar aided techniques, for 

example, are sufficiently advanced today to enable straightforward prediction and 

estimation of volume for complete forests, but this may have seemed a distance pipe 

dream to early researchers in this area. 

1.2 Research problems 

Lidar is recognized as a powerful tool in the prediction of forest attributes such as 

volume and biomass, but there is a knowledge gap that impedes using lidar as an 

auxiliary data source for many potential users.  Users must be able to assess the 

tradeoffs between how the data is collected and the resulting estimation precision or 

feasibility before they can critically assess adoption. For example, in an estimation 

strategy in which relationships between forest and lidar metrics on plots are 

empirically modeled, changing the number of field plots and the lidar pulse density 
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can also greatly affect the cost. To select a configuration that meets the requirements 

of the users, it is also important to understand how components of the configuration 

affect estimation precision.   

The issues of pulse density and sample size have been examined in a number of 

studies (e.g. Gobakken & Næsset, 2008; Magnusson et al., 2007), however they 

typically do not place the effects of density and sample size in the context of 

estimation, an important basis for inference, and typically do not consider wide 

variation in pulse density and sample size in combination. In chapter 2 we focus on the 

properties of estimation of forest metrics with lidar for a case study when lidar was 

acquired for the entire study area. The precision of estimates was described for various 

lidar pulse densities and different numbers of training plots. The analysis was 

performed using a simulation approach for a range of parameters that include the 

lower end of sampling and acquisitions parameters that are likely to be considered. 

Both the lidar and field plots were sub-sampled, and the effect on finite-population 

parameters was empirically demonstrated using bootstrap simulations. As one would 

expect, the number of field plots was found to have a pronounced effect on estimator 

precision. Less intuitively, but in line with previous studies, pulse density had almost 

no effect on estimator precision. The results from this analysis contribute to forest 

inventory with lidar by providing a thorough description of the relationship between 

pulse density, sample size, and estimator precision. 
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Clearly lidar can be used for both mapping and estimation purposes when it is 

collected wall-to-wall, but for large areas when considered for estimation purposes 

alone, it may also prove beneficial to consider lidar in a sampling mode. Long narrow 

strips of lidar dispersed over the study area are likely to capture much of the variability 

in the study area, potentially achieving much of the gains possible with wall-to-wall 

lidar. This is an important area of inquiry with lidar that has been examined in a 

several studies (Parker and Evans, 2007; Gregoire et al., 2011; Andersen et al., 2011a; 

Ståhl et al., 2011), however it is an area that is still relatively unexplored and 

deserving of further attention. Much as with wall-to-wall lidar, the performances of 

estimators for different configurations of estimation strategies with lidar in a sampling 

mode need to be reported with context to enable critical assessment of their merits 

prior to adoption. If strategies are reported relative to alternate estimation strategies, 

any advantages from using samples of lidar strips are more likely to be apparent. 

Landsat is another source of auxiliary information which may work well for 

estimation of forest metrics over large areas. For prediction of forest metrics like 

volume and biomass and classification, Landsat variables are likely to have less 

predictive power than lidar (DeVelice, 2012; Hyyppä et al., 2000). However, since 

Landsat provides frequent and expansive medium resolution coverage for free, if it can 

provide any aid in estimation it may prove to be useful in increasing the efficiency of 

an estimation strategy. The cost to inventory and monitor natural resources in large 

regions in remote locales can prove to be prohibitive, and any reasonable means to 

increase the viability of an estimation strategy is worth pursuing.  
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In chapter 3 we investigate of the precision of lidar aided estimation for a scenario in 

which lidar is collected as a sample of strips, in addition to considering several 

Landsat assisted and plot-only approaches. This chapter can be seen as an extension of 

the concepts investigated in chapter 2 to scenarios in which lidar cannot be used for 

complete coverage due to the high cost. However, as a sample it was hypothesized that 

for some forest metrics, lidar aided estimation can improve upon estimation efficiency 

with respect to the number of required field plots to achieve a given level of precision. 

As previously discussed, the spatial properties of lidar strips make them ideally suited 

for estimation because the long narrow strips will include much of the variability on 

the landscape, a desirable condition which is likely to enable relatively small variances 

for the appropriate estimators (Lohr, 2009, 173–178) . In our analysis this proved to be 

the case, and the lidar-assisted estimator used for a two-stage sample performed quite 

well, especially when used together with a Landsat- assisted estimator as part of a 

composite estimator.  We additionally identified the number of lidar strips that are 

necessary for the lidar-assisted estimator to achieve the same precision as the 

estimator for a plot-only simple random sampling strategy. In a future study we plan to 

investigate the reduced number of strips that would be necessary for the lidar and 

Landsat composite estimator to achieve the same precision. 

An approach that is able to use both lidar and Landsat as sources of auxiliary data for 

estimation was shown to fare better than an approach which uses either source alone.  

The addition of Landsat when lidar is collected in a sampling mode may also yield 

advantages with respect to modeling. Due to rectification errors and differences 
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between the size of a Landsat pixel and the size of the field plot, it may prove difficult 

to model forest metrics with Landsat values. If lidar were used to aid in training a 

Landsat model, some of the modeling difficulties with Landsat may be overcome 

because the area used to model could be increased substantially, increasing the area 

that is likely to overlap between response and auxiliary variables. In chapter 4 we 

implemented a number of multi-phase modeling strategies and for several strategies 

we were able to achieve improved results with respect to residual variability over 

those achieved by modeling Landsat directly as was done in chapter 2. We also found 

that the resolution of the data used to model with Landsat was important, with larger 

areas faring better, and identified modeling approaches which appear to work better 

than others. 
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Abstract 

Using lidar in a model-assisted approach to forest inventory has the potential to 

increase estimation precision for some forest inventory variables. This study 

documents the bias and precision of a model-assisted regression estimator approach 

to forest inventory with lidar-derived auxiliary variables relative to lidar pulse density 

and the number of sample plots.  

For managed forests on the Lewis portion of the Lewis-McChord Joint Base (35025 

ha, 23290 forested) in western Washington state, we evaluated a regression 

estimator for combinations of pulse density (.05 - 3 pulses / m2) and sample size (15 – 

105 plots) for estimation of the five forest yield variables basal area, volume, 

biomass, number of stems, and Lorey’s height. The results indicate that there is 

almost no loss in precision in using as few as .05 pulses / m2 relative to 3 pulses / m2. 

In contrast, precision for reduced sample sizes declines quickly and even affects the 

validity of inference; simulations indicate that central limit theorem based 

confidence intervals were too small on average for sample sizes smaller than 45. 

The results from this study can aid in selecting an appropriate pulse density and 

sample size.  
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2.1 Introduction 

Over the last several decades many studies have used models to relate forest variables 

to variables derived from airborne scanning lidar (lidar metrics) including basal area 

(Lefsky et al., 1999), stem volume (Næsset, 1997b), stand height (Næsset, 1997a), 

biomass (Lefsky et al., 1999; Means et al., 1999), and others. The many studies 

documenting the relationship between lidar and forest variables are important because 

they indicate that there is a strong association between the two types of variables, 

although the studies may provide limited descriptions of how the models should be 

used for practical inference. The most common approach to inference in forest 

inventory and survey sampling in general is design-based inference. In the design-

based context a probability sample is used to make inference about parameters of a 

finite population (e.g. the population mean or total). If a forest analyst wished to 

estimate the carbon present in a forest and achieve a level of confidence in the 

estimate, the analyst would most often use a design-based estimator. Lidar metrics and 

a model can be leveraged in a design-approach by using a model-assisted approach 

(Parker and Evans, 2007; Corona and Fattorini, 2008). For the same number of plots a 

model-assisted approach with lidar can for some variables increase estimation 

precision over a plot-only approach.  

As with planning a traditional design-based inventory, it is desirable to quantify the 

effect that inventory design parameters have on estimation precision. Increasing the 

number of ground plots is one possible way to modify a design to increase estimation 

precision. In the case of model-assisted forest inventory with lidar (FIWL), lidar pulse 
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density is a lidar acquisition parameter that must be specified in addition to the 

number of ground plots. The effects of lidar pulse density have been examined in a 

forestry setting using at least three approaches, including by thinning the data 

(Holmgren, 2004; Gobakken and Næsset, 2008; Maltamo et al., 2006), performing 

multiple lidar acquisitions for the same area (Parker and Glass, 2004; Næsset, 2004), 

and by generation of synthetic lidar data (Lovell et al., 2005). There appears to be a 

consensus among findings that reduction in pulse density increases the variability in 

lidar metrics (sometimes this is expressed implicitly in studies, such as in increased 

standard error (SE) estimates for model coefficients for reduced pulse density) which 

is in accordance with the consistency property (asymptotically approaches the true 

value as the sample size increases)  of statistics which are used to summarize lidar 

height values, but studies differ in whether there is an effect on the variability of 

residuals around the regression line. The study by Gobakken and Næsset (2008) 

additionally details the effects of number of ground plots and the size of ground plots. 

Both of these had an effect on residual bias and root mean square error (RMSE). 

While these studies have exclusively focused on model behavior, they are highly 

relevant for estimation of population parameters in the model-assisted context because 

model behavior plays an important role in the estimation of variance for model-

assisted estimators.   

The objective of this study is to look at the effects of pulse density and sample size on 

regression estimator precision for selected forest attributes, biases of estimators of the 

standard deviations of regression estimators, and on 95% confidence interval coverage 
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probabilities for a model-assisted regression estimation approach. We pursue our aim 

with a simulation approach. We simulate sampling distributions of model-assisted 

mean and mean variance estimators for different combinations of pulse density and 

sample size. The performance of estimators for a given pulse density and sample size 

is assessed by looking at properties of the sampling distributions of estimators, and by 

contrasting model-assisted and simple random sampling (SRS) estimators. The related 

study by Strunk et al. (2012) provides a practical demonstration of inference for an 

entire forest using regression estimation with lidar metrics as auxiliary variables. This 

study extends the work of previous studies that have looked at the effects of pulse 

density and sample size on residual variability by looking at the implications of pulse 

density and sample size for design-based estimation. Our inference here is restricted to 

cases where wall-to-wall lidar is used, but our results concerning the effect of sample 

size and pulse density on estimation can be easily extended to other approaches (e.g. 

lidar strip sampling as in Andersen et al., 2011).  

2.2 Methods 

2.2.1 Study Site 

This study was conducted on the forested areas of the Fort-Lewis military installation 

(47⁰ 30’ 58” N 122⁰ 35’ 11” W) in western-Washington state, USA (Figure 2.1). 

Managed forests are dominated by conifer trees, especially Douglas-fir with 

interspersed western hemlock (Tsuga heterophylla (Raf.) Sarg.), western red cedar 

(Thuja plicata Donn ex D.Don) and very limited amounts of Sitka spruce (Picea 

sitchensis (Bong.) Carrièr) and pacific yew (Taxus brevifolia Nutt.). Hardwood trees 
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are also present on managed sites, mostly in the wet areas, including red alder (Alnus 

Rubra Bong.), big leaf maple (Acer Macrophyllum Pursh) and black cottonwood 

(Populus balsamifera ssp. Trichocarpa (Torr. & A. Gray ex Hook.) Brayshaw).  

 

Figure 2.1 Location of study area in central western-Washington state 

2.2.2 Data Description 

2.2.2.1 Forest inventory variables  

Values of forest inventory variables were calculated for 120 circular 809 m
2
 (0.2 

acres) continuous forest inventory plots measured between May of 2004 and January 

of 2005. The plots are distributed on a 1.28   1.28 km grid within forested areas of the 

study site. Field measurements recorded for each tree that we used include diameter at 

breast height (dbh) measured at 1.37 m, and species. Because measurements were not 

consistently taken on trees less than 20.32 cm in diameter, trees with dbh's less than 

20.32 cm were excluded from plot tabulations. Tree heights were measured for a 

subset of trees on plots, approximately 2.5 trees per plot.  
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Unmeasured Douglas-fir heights were estimated using a non-linear mixed effects 

model (Temesgen et al., 2008) developed specifically for this study using Fort Lewis 

inventory data. There were insufficient numbers of trees from other species to model 

heights in this way. Heights for other species were estimated using the Wykoff et al. 

(1982) model form with Eugene-area (Oregon state, USA) parameter estimates from 

the Pacific Northwest Coast Variant Overview for the Forest Vegetation Simulator 

(Keyser, 2010). The values for five variables were calculated for each plot (Table 2.1) 

including basal area (ba), total stem volume including top and stump (vol), mean 

height weighted proportional to ba – Lorey's height (lor), total aboveground biomass 

(bm) and number of trees (stems).  Vol was estimated using the allometric models 

included with the National Volume Estimator Library plug-in for excel (USFS, 2008) 

and bm was estimated using the models provide by Jenkins et al. (2004). 

Table 2.1 Summary of plot level variables. 

variable mean min. max. st. dev. 

ba (ft
2
 / ha) 35.1 0 130.9 21.1 

vol (ft
3
 / ha) 453 0 2376 334 

stems (/ha) 220 0 864.9 156 

bm (kg / ha) 294 0 1508 205 

lor (m) 35.1 0 59.27 9.42 

 

2.2.2.2 Precision plot positioning 

Coordinates for plot centers were collected between September 2007 and May 2008. 

Survey-grade differential global navigation satellite system (GNSS) receivers were 

used to survey plot centers marked with stakes. GNSS data were post-processed, 
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including differentially corrected, using the Ensemble processing suite from Javad 

Navigation Systems (now Javad GNSS) to achieve the desired level of accuracy, 

approximately 1m horizontal RMSE, under dense northwestern USA forest canopy 

(Andersen et al., 2009; Clarkin, 2007). 

2.2.2.3 Lidar data and variables 

The lidar data used for this study were acquired in September 2005 (leaf on) within 

one growing season from when field measurements were performed.  Lidar data were 

collected from a fixed wing aircraft. The airplane flying height was approximately 

1000m above ground, the scan angle was +/- 14 degrees, and the laser beam 

divergence was 0.3 mrad. The pulse repetition frequency (PRF) was approximately 71 

kHz and the nominal pulse density was 4 pulses / m
2
. The vendor collected the data 

with an Optech ALTM 3100.  

The lidar metrics used in this study are a series of statistics calculated on the lidar 

height data. The statistics were computed on first return lidar heights above 1m, 

including the mean, standard deviation, and percentiles (e.g. ht5 and ht95 represent 5
th

 

and 95
th

 percentile heights). We also computed the ratio of the number of first returns 

above a given height relative to the total number of first returns for a plot (e.g. cover1 

and cover2 are the proportions of returns above 1 and 2 m respectively).  Lidar heights 

were estimated by subtracting ground elevations from lidar elevations. Ground hit 

designation and interpolation to a raster processing were performed with FUSION 

(McGaughey, 2012) in addition to other lidar processing tasks. 
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2.2.3 Regression estimation 

In this study we make use of a regression estimator (Särndal et al., 1992, 225–238)  for 

the mean  

 ˆˆ T

Xy    

where 

ˆ y  is the regression estimate of the response mean
 

ˆ   is a vector of regression coefficients fitted with OLS 

including the intercept, 

T

X  is the transpose of a vector of means of auxiliary 

variables including a 1.0 corresponding to the intercept.
 

 

(1) 

An accompanying SE is  

 

 2

ˆ

sreg
SE

n
   

where 

mean,  theof estimate regression  theoferror  standard  theis ̂SE  

n is the size of the sample, 

residuals. regression  theof  variance theis 2

regs  

(2) 
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This formulation of a regression estimator is appropriate when the auxiliary variables 

are available for the entire finite population of interest, and the sample was collected 

using an SRS design (Lohr, 1999; Gregoire and Valentine, 2008; Särndal et al., 1992). 

Using SRS estimators for a systematic sample will yield unbiased mean estimates, but 

SEs under a systematic design will tend to be conservative (too large) when using SRS 

estimators unless periodicity of the attribute of interest matches the interval of the 

systematic sample. This bias of the variance estimator is typically ignored because 

there is not a design-unbiased estimator for systematic designs. In the model-assisted 

approach to estimation, inference is dependent upon having a probability sample, and 

does not require that the model fits the data – which is a requirement for model based 

inferences with an OLS model. We contrast this aspect of model-assisted inference 

with model-based inference because of the practical result that we need not assume 

linearity, homogenous variance, and correct specification of the model to make 

inference from an OLS model – although a model that fits the data well is likely to 

have lower residual variance.   

2.2.4 Simulations 

2.2.4.1 General description 

In this study we use resampling to approximate the sampling distributions of 

estimators for given pulse densities and sample sizes. The resampling approach that 

we use for inference in this study is methodologically very similar to bootstrap 

variance estimation (Efron and Tibshirani, 1993). However, for convenience we 

defined our population as our complete sample, all 120 observations collected in the 
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field. This approach is similar to the approach used by Andersen and Breidenbach 

(2007) to contrast several approaches to estimation with lidar. We elected to treat our 

sample as the population because we were not attempting to estimate parameters of the 

original population; we were attempting to describe general behavior of an estimation 

strategy relative to pulse density and sample size. This is not to say that our results 

will hold everywhere, but they can serve to highlight general trends and issues and can 

be indicative of their behavior for similar areas and sampling designs.  

2.2.4.2 Lidar thinning 

To assess the effect of pulse density on inference in model-assisted estimation the 

original lidar point cloud was thinned repeatedly to reduced pulse densities. The pulse 

densities examined are .05, .3, .45, .6, .85, 1, 2, and 3 pulses / m
2
. Thinning, along 

with other lidar processing, was performed using FUSION. The first step in the 

thinning procedure was to thin the original lidar dataset for large (relative to the plots) 

314m wide squares centered on the ground plots. The large squares contain both the 

plots and buffer regions around the plots to eliminate edge effects within field plots 

when creating digital elevation models (DEMs) and thinning the lidar. Reduced pulse 

density data on the 314 x 314 m squares were then used to select ground returns and 

create bare-earth digital elevation models. A 3m median smoother was applied to each 

ground DEM. DEM elevations were then subtracted from lidar elevations to calculate 

lidar height values. The reduced density elevation-corrected lidar data was then 

clipped to the extents of the precisely geo-referenced ground plots. Finally, lidar 

metrics were calculated for each thinned lidar dataset. 
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2.2.4.3 OLS regression 

The relationship between measures of forest yield (e.g. ba) and lidar metrics was 

modeled using OLS regression. OLS models were fitted using a two step procedure: 1) 

prior to the simulations predictor variables were selected to include in the models 2) 

model parameters were re-estimated using the fixed set of predictors for each of 5000 

random resamples. Model RMSE values were calculated for each of the 5000 models 

(fit to the 5000 resamples of data). We initially considered inclusion of an automated 

variable selection algorithm in the simulations to allow different variables for each 

simulation, but found that the choice of model-selection algorithm highly influenced 

the results.  

The sets of predictor variables used for regression were selected by comparing the 

RMSEs of a variety of models using all 120 observations and comparing their 

Bayesian information criterion (BIC) scores – one of several common bases for 

variable selection (Schwarz, 1978).  Additionally, we preferred simple models that 

included at least one height quantile metric and one cover metric. Interactions between 

variables selected for inclusion were also explored. No transformations of the 

responses were used because there was only very mild heteroskedasticity, and model-

assisted inference does not require equal variance. The same set of predictors was used 

for ba, vol, stems, and bm (ht25, cover1.37, and cover1.37   ht70) with a slightly different 

set used for lor (ht70, ht95, cover1.37, and cover1.37   ht95). It should be noted that many 

different sets of predictors fared comparably in terms of BIC, RMSE, and simplicity, 
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and that the selection of one of the many comparable sets of variables is somewhat 

arbitrary, but that this has no effect on our ability to make inference.  

2.2.4.4 Estimator performance 

We used a straightforward basis to evaluate the mean estimator for different 

combinations of pulse density and sample size. First, we sampled from our population 

of 120 elements to a reduced sample size 5000 times with replacement. For each 

sample we estimated the population mean using the regression estimator (1) and 

calculated deviations (or residuals) of mean estimates from the known population 

mean  

    ii
ˆ

,ˆ
. (3) 

The empirical distribution of mean residuals was evaluated using the mean (or bias) 
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A smaller bias and standard deviation of mean residuals indicates superior 

performance for a given configuration of pulse density and sample size.  
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We used a two step procedure to evaluate the performance of SEs relative to pulse 

density and sample size. Our first step was to approximate the sampling distribution of 

the regression estimates of the mean. An approximate sampling distribution of means 

estimates was generated by taking 5000 samples with replacement from our 

population of 120 elements and applying the regression estimator to each sample. 

Because we have taken 5000 repeated samples from our population it allows us to 

unbiasedly estimate the standard deviation of the regression estimator by taking the 

standard deviation of the 5000 estimates. And since the number of samples is large, 

5000, the variability of our estimate will be very small. This value was treated as if it 

was the actual standard deviation of mean estimates, ̂ , a population parameter. The 

second step to our evaluation was to approximate the sampling distribution of SEs 

using the 5000 samples. For each of the 5000 samples we estimated the SE in addition 

to the mean. The SEs for each sample, ˆSE , were then differenced from ̂    

 
ˆ ˆ ˆSE     . 

 

(6) 
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and small variance  
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of residuals indicates superior performance for the analytical variance estimator. We 

then used the distribution of SE estimates and looked at coverage probability, the 

proportion of confidence intervals developed from SE estimates for a given confidence 

level that cover the population mean.  

For each combination of pulse density and sample size we also calculated the relative 

precision  

 2

ˆ

2

,120

,nk

SRS

RP



  

where 

 nkRP
is the relative precision of the regression estimator for nk 

observations, 

2

,120  SRS
is the variance of 5000 SRS sample mean estimates for 120 

plots.  

 

(9) 

Relative precision is analogous to design effect (Särndal et al., 1992, 53–55) which is 

used to roughly indicate the efficiency (precision relative to sample size) of an 

estimation strategy. Multiplication of relative precision reported in this study by the 
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ratio 
120

kn
 will yield a value that is equivalent to design effect for a given pulse density 

and sample size.  

2.3 Results and Discussion 

2.3.1 Model performance 

The magnitudes of percent RMSE differed by response variable, but the general 

behavior relative to pulse density and sample size was similar for the five response 

variables examined (ba, vol, bio, stems, and lor). Reduction in sample size caused a 

noticeable increase in the median model RMSE and had a pronounced effect on the 

variability of the distribution of RMSEs, shown for ba in Figure 2.2, and for all of the 

variables for a fixed pulse density in table 2.2. The shaded curves in Figure 2.2 are 

empirical densities created from 5000 simulations for each of the combinations of 

pulse density and sample size.  The effect of sample size was slight for samples with 

as few as 45 observations. Below this threshold the median of the simulation 

distribution of model RMSE’s and the widths of the simulation distributions increased 

more rapidly. The effect of reduced pulse density on RMSE was slight. The behavior 

shown for ba relative to pulse density in Figure 2.2 is typical of the behavior for the 

remaining response variables. The median of the simulation distribution of RMSEs 

does not appear to change as a result of reduction in pulse density until pulse density is 

reduced to .05 pulses / m
2
. The variances of the simulation distributions of RMSE 

values do, however, increase slightly for reductions in pulse density.  
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Figure 2.2 Simulation distributions of model RMSEs in percent of the mean by sample 

size and pulse density for ba. Black dots indicate the medians RMSEs and the 

horizontal lines indicate bounds of 95% empirical confidence intervals. 

 

Table 2.2 Model RMSEs for different sample sizes using lidar with 1 pulse / m
2
. 

 Sample size 

Resp. 15 25 35 45 55 65 75 85 95 105 

ba  11.6 10.8 10.6 10.4 10.3 10.3 10.2 10.2 10.1 10.1 

stems  139.4 129.2 126.1 124.4 123.5 122.9 122.5 122.1 121.9 121.7 

vol  200.3 190.3 186.4 183.8 181.8 180.4 179.4 178.4 177.6 177.1 

bm  130.7 124.1 121.4 119.6 118.3 117.4 116.6 116.1 115.6 115.2 

lor  5.3 4.9 4.8 4.7 4.7 4.6 4.6 4.6 4.6 4.6 
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2.3.2 Mean estimator  

The behavior of the regression estimator of the mean relative to pulse density and 

sample size, shown in Figure 2.3 for lor, was similar to that observed for the 

remaining response variables.  The sampling distributions of mean residuals indicate 

that the mean estimator is nearly unbiased and that, as we would expect, the variability 

of mean residuals increases for smaller sample sizes. However the decline in 

performance is slight for as few as 45 observations. Below this threshold the widths of 

95% CIs increase more rapidly.  Reduction in pulse density does not appear to affect 

the bias or variance of the regression mean estimator.  

 
Figure 2.3 Simulation distributions of differences between estimates of mean lor and 

the population mean. Black dots indicate the medians of differences and the 

horizontal lines indicate bounds of 95% empirical confidence intervals. 
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2.3.3 SE performance 

SEs varied methodically from negative to positive bias as sample sizes ranged from 15 

to 105 plots. The trends in SE behavior displayed in Figure 2.4 when used to estimate 

bm is very similar to the trend observed when the estimator was used for the other 

variables, except that the point where median bias crossed from negative to positive 

bias ranged from 75 for stems to 75 for bm and vol. For bm, SEs were positively 

biased for 55 or more observations, approximately unbiased for 45 observations, and 

gradually increasingly negatively biased, to a maximum of -1%, for fewer than 45 

observations. No effect from pulse density was detected on the SEs. 

 
Figure 2.4 Simulation distributions of differences between sample SEs and the 

standard deviations of the sampling distributions of mean estimates for bio. Black 

dots indicate the medians of differences and the horizontal lines indicate bounds of 

95% empirical confidence intervals.   
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The effect of variance estimator bias on analytical confidence intervals as a result of 

sample size was more dramatic. There was a sharp decline in the percentage of 95% 

asymptotic confidence intervals that cover the population mean following reductions 

in sample size to fewer than 35 observations (Table 2.3). This is perhaps not surprising 

since asymptotic properties are dependent upon having a reasonably large sample size, 

although it is important to demonstrate what is “reasonably large”. Coverage 

probabilities were nearly unchanged for different pulse densities (not shown).  

Table 2.3 Coverage probabilities by sample size for 1 pulse / m
2
 for analytical two-

side 95% confidence intervals. 

  Coverage Probability 

sample size ba stems vol bm lor 

15 0.81 0.80 0.80 0.79 0.81 

25 0.90 0.89 0.88 0.88 0.89 

35 0.92 0.91 0.91 0.91 0.91 

45 0.94 0.94 0.93 0.92 0.93 

55 0.95 0.95 0.94 0.93 0.95 

65 0.95 0.96 0.94 0.94 0.95 

75 0.96 0.97 0.95 0.94 0.96 

85 0.97 0.97 0.95 0.95 0.97 

95 0.98 0.97 0.96 0.96 0.97 

105 0.97 0.98 0.96 0.96 0.97 
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2.3.4 Relative precision 

Relative precision varied for a given sample size amongst the response variables 

(Table 2.4), but were not affected by pulse density (not shown). Our primary interest 

in relative precision is the region where relative precision is equal to or smaller than 

1.0.  This is the region where the regression estimator provides greater estimation 

precision than with plots alone with 105 plots. Each of the response variables was 

sufficiently correlated with lidar metrics to yield some gain in precision from using the 

regression estimator. The threshold at which design effect was 1.0 or smaller varied 

from 35 to 75 plots.  For sample sizes of 75 observations or more, regression 

estimation was more precise than SRS estimation on average for the forest inventory 

variable stems, the variable that fared poorest. The results for pulse density were not 

reported because they do not appear to have an effect on relative precision for the 

densities examined. 
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Table 2.4 Relative precision for regression estimates by sample size for 1 pulse / m
2
 

  Relative Precision 

sample size ba stems vol bm lor 

15 4.01 10.53 4.79 5.49 5.14 

25 1.47 3.70 1.80 2.17 1.90 

35 0.93 2.15 1.09 1.23 1.09 

45 0.63 1.55 0.78 0.87 0.75 

55 0.48 1.20 0.61 0.67 0.57 

65 0.39 0.93 0.49 0.53 0.45 

75 0.32 0.79 0.40 0.45 0.35 

85 0.27 0.64 0.33 0.37 0.30 

95 0.23 0.55 0.28 0.32 0.25 

105 0.20 0.45 0.24 0.26 0.23 

Note: The denominator sample size for relative precision calculations was fixed at 

120. 

2.4 Discussion 

2.4.1 Pulse density 

The effect of reduction in pulse density on estimation and inference in a model-

assisted inventory with lidar was assessed in several ways. We looked at the effect of 

pulse density on model RMSE, on mean estimation precision, and on the precision of 

the SEs.  The reduction in information present in lower density data caused model 

RMSE to increase slightly. However, the effect of reduction in pulse density was so 

small that it did not carry through to impact inference. There was no observed effect of 

pulse density on mean estimators.  

The empirical study by Parker and Glass (2004) performed with .5 and 1m lidar pulse 

spacing corroborates our results in that they did not find an effect of pulse density on 
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estimation precision when using a double sampling estimator – although they looked 

at a much smaller range of densities. We are not aware of any other studies that detail 

the performance of model-assisted estimators relative to pulse density.  As previously 

mentioned, there are a number of studies that have looked at model precision relative 

to pulse density for forest yield variables. In four studies of particular relevance, two 

of the studies found increased RMSE as a result of lower pulse density (Magnusson et 

al., 2007; Gobakken and Næsset, 2008), while two others did not (Holmgren, 2004; 

Maltamo et al., 2006). We found that there was a slight but negligible effect of pulse 

density on model RMSE. The discrepancy between our findings and others’ may result 

from the fact that there are substantial methodological differences between our study 

and other studies.  The differences in results highlight the constraint that results from 

this study may not extend to implementations of model-assisted forest inventories with 

lidar that deviate from our methodology. 

 The first methodological difference we noted between this and other studies was that 

we created highly smoothed DEMs. Smoothed DEMs have less detail, but they appear 

to be less susceptible to irregularities like pits and spikes. Secondly, our plot size was 

larger than the plots used in the studies that found a noticeable density effect. For the 

lowest pulse density we examined there were on average 40 pulses per plot, double or 

more the number of returns for alternate studies which encountered a density effect.  

The sample statistics used for this study, including percentiles (Serfling, 1980) and 

ratios, are consistent statistics; this means they asymptotically approach the true 

population parameter as the sample size increases. It is likely then that sample 
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statistics calculated for our plots with greater area achieved greater stability for a given 

pulse density than observed in studies which detected a density effect with smaller 

area plots. 

The absence of a density effect on precision is an important result because it indicates 

that airplanes may fly higher and faster to achieve the same precision in estimation as 

achieved for narrower pulse spacing. Flying higher and faster may save both time and 

energy in the acquisition of lidar for forest inventory purposes.  The savings from 

flying low-density lidar may make it feasible for more forest land managers to fly their 

forests, or to fly greater proportions of their land base if they are acquiring lidar in a 

sampling context (Andersen et al., 2011; Gregoire et al., 2011; Ståhl et al., 2011). 

However, the cost savings from choosing a reduced pulse density will depend upon 

details specific to each acquisition. Mobilization of the aircraft to the forest can be a 

major, or the major cost in acquiring lidar. If the distance to the forest is great, or the 

forest is small, then selection of a pulse density may have little impact on the cost of 

the acquisition. The cost of mobilization can be reduced if the timing of the acquisition 

is not critical; the vendor may be able to schedule a lidar acquisition over a forest 

when they are planning to be in the vicinity of the forest for another acquisition. 

 An important consideration with regards to lidar is that forest inventory is only one of 

many potential applications of lidar. In some instances lidar may be used for a great 

number of applications including detailed DTM extraction, individual tree 

segmentation, canopy surface modeling, and others. For alternative uses a reduced 
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pulse density may have drastic repercussions on what is feasible. For example, it is 

highly unlikely that accurate individual tree segmentation is feasible with 1 pulse / 20 

m
2
. However, for large acquisitions when forest inventory is the primary concern and 

the cost of mobilization is not the bulk of the acquisition cost, acquiring reduced pulse 

density wall-to-wall lidar appears to be a highly viable option to reduce the cost of the 

acquisition without affecting estimation precision for the variables we examined.  

2.4.2 Sample size 

The effects of sample size on model-assisted estimation and inference were evaluated 

by looking at resampling distributions of model RMSE, the regression mean estimator, 

and the SE for the regression mean estimator. Unlike reductions in pulse density, 

reductions in sample size clearly had a deleterious effect on performance, and for 

small samples biased the SE. The bias was small, but coverage probabilities were 

appreciably biased for small samples. This result indicates that for small sample sizes 

the analytical SE may provide misleading results.  Ideally we prefer unbiased SEs, but 

even conservative (too large) variance estimators can be acceptable, within reason. 

However, with a negatively biased (too small) variance estimator, the probability that 

a confidence interval covers the true population parameter will be less than is 

expected. Also, there is no guarantee that the sample size thresholds for which the 

variance estimator is unbiased or conservative for this study will hold for other 

variables or other study areas –especially given alternative measurement and sampling 

protocols. It may prove useful to compare analytical and simulation confidence 
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intervals. This would help assess the bias of analytical variance estimators as well as 

non-normality and skewness in the resampling distribution of mean estimators.  

The precision of the regression estimator for the variable stems, the variable that 

performed the poorest amongst the response variables examined, was superior with 

greater than 75 observations than the SRS estimator with 120 observations, as 

indicated by having a relative precision of approximately 1.0. From an estimation 

standpoint there would be no precision gain from using the regression estimator with 

lidar using 75 plots over performing SRS estimation with 120 plots, if stems is a 

critical variable. Practically speaking, a forest inventory may use a design which is 

more precise than with SRS. This means that 75 observations serve as a lower bound 

to achieve the same precision with the regression estimator as is achieved with 120 

observations with the SRS estimator. To evaluate (roughly) the sample size that is 

required to realize a precision gain from using model-assisted estimation with lidar 

over another inventory requires that the design effect of the alternative design must 

also be estimated. However, presenting variance estimates for alternative designs is 

beyond the scope of this study.  The results that we present are instead general so as to 

enable such comparisons for planning purposes.  

A caveat is that if comparison between the precisions of regression estimates and 

estimates from another design and estimator are required for a forest type that is quite 

different from our study site, then the model variances from this study may not be 

appropriate. Instead, it should prove feasible to take advantage of the model variances 
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reported for a study site that is more similar to the forest of interest. SE estimates for 

the regression estimator for a variety of sample sizes can then be obtained by inserting 

a model variance estimate reported in the literature into equation (2) and then varying 

kn  across a range of sample sizes. Unfortunately, there is a sample size effect on 

model RMSE, but so long as the sample size contemplated is greater than 45 

observations the effect is slight.  

2.4.3 Limitations 

A weakness in this study which is common to studies which estimate forest inventory 

variables is that some variables which were treated as if they were measured, such as 

volume and biomass, were actually estimated with allometric models. The effect of 

using predicted biomass and volume on variance estimators is not something that this 

or other similar studies take into consideration when estimating variability.  However, 

the variables estimated with allometric models are highly correlated with ba. The 

results for ba can serve in some sense as a reality check on results for bm and vol.   

 A characteristic of this study that differs from some other studies using lidar to 

estimate forest attributes is that relatively few heights were measured for each plot. 

This is the result of using data from an operational forest inventory with a set 

measurement protocol instead of tailoring a new set of field measurements for this 

study. This resulted in larger model RMSEs for vol, bm, and lor than we see for ba 

even though vol, bm, and lor are more closely related to height – the forest 

characteristic represented by lidar predictors. If we measured each tree height it would 

likely reduce models’ residual variability and increase the precisions of total and mean 
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estimators for vol, bm, and lor. As a result the standard errors reported here are likely 

conservative for a given pulse density and sample size relative to what could be 

obtained using data from inventories in which more tree heights were measured – 

although this will not introduce bias for this analysis. 

 Additionally, our field data does not include trees smaller than 8 inches. While this is 

problematic for management reasons, if only merchantable trees are considered the 

effect on variance estimates and hence our inference relative to pulse density and 

sample size is negligible.  As the values ba, vol, bm are exponentially related to height 

and diameter (which are relatively small for these trees), the magnitude of the 

contribution of small trees to these variables (and lor, a function of ba and height) is 

also very slight. If there is interest in representing numbers of small trees, then clearly 

the effect on stems is very pronounced because small trees are weighted equally with 

large trees for this response variable. 

2.5 Conclusions  

Lidar is a tool that has gained popularity for remote measurement and monitoring of 

natural resources. Whether there is benefit to using lidar for forest inventory depends 

in large part on characteristics specific to each forest. This study should facilitate 

examination of whether using lidar will provide a gain in precision over an alternative 

estimation strategy for a specific forest and provide indication of an appropriate 

sample size and pulse density. Fortunately, almost no effect of pulse density was 

observed on model precision. We saw equivalent precision with 0.05 pulses / m
2 

as 

with 3 pulses / m
2
. In contrast, a sample size effect on residual variability was evident, 



 
 

 

47 

 

47 
 

but the majority of the influence of sample size on the precision of the regression 

estimator of the mean is introduced by central limit theorem; as the sample size 

increases the variability of mean estimates declines proportional to kn . The expected 

influence of kn  can be seen in the denominator of the variance estimator. 

Unfortunately for inference for small samples, we found that central limit theorem 

based confidence intervals were too narrow for small samples (fewer than 35 to 45 

observations).  If fewer than 45 observations are used, caution should be taken with 

respect to inference from analytical confidence intervals.  
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Abstract 

In this study we examined whether regression estimators appropriate for a two-stage 

design using Landsat and a sample of 7 lidar strips as auxiliary data were more precise 

for estimation of biomass than Horvitz-Thompson (HT) estimators appropriate for 

simple random sample (SRS) and two-stage designs. Estimators appropriate for two-

stage designs were compared with each other and with estimators appropriate for SRS 

designs. We additionally examined a composite estimator which combined Landsat 

and lidar-assisted estimators for a two-stage design. The study was carried out for our 

study site, a portion of the western lowlands of the Kenai Peninsula AK, USA. 

 Both the lidar and Landsat-assisted estimators for a two-stage design were estimated 

to be equivalently precise to the HT estimator for the SRS design with the same 

numbers of plot, with standard errors (SEs) on the order of 9-10 Tg. However, the 

composite estimator combining the two regression estimators for the two-stage design 

fared better than the HT estimator for the SRS design for the same number of sample 

plots. Additionally, we briefly demonstrate that by increasing the number of lidar 

strips it should be possible to reduce the SE without greatly affecting the number of 

sample plots required.  This will also improve the precision of the composite 

estimator, but we did not analytically explore this relationship. 
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3.1 Introduction 

Estimation of finite population parameters for a forest is not always feasible using 

traditional design-based estimators found in a standard forest measurements textbook. 

This is especially the case for remote areas with limited transportation infrastructure. 

Such remote areas may be extremely difficult to access to establish ground plots for 

inventory purposes. Sampling in remote areas may require more sophisticated 

sampling and estimation techniques, including composite and model-assisted 

approaches that can leverage remote-sensing information. While we emphasize these 

approaches for remote areas because traditional approaches are simply not feasible in 

many cases, these approaches are also likely to provide benefits even in areas with 

existing road-based transportation infrastructure. 

Remote sensing data, such as stereo imagery, interferometric synthetic aperture radar 

(IfSAR or InSAR), and airborne lidar can be used to measure or estimate three-

dimensional (3D) forest structure.  These advanced remote sensing technologies have 

been shown to enable more precise estimators of forest inventory parameters which 

are highly correlated with vegetation height and cover, such as tree biomass and 

volume. Manual interpretation of stereo imagery was the preferred method to leverage 

3D auxiliary information in forestry until scanning airborne lidar became well-known 

and widely available. Automated extraction of canopy surface is feasible with digital 

stereo imagery, but vegetation heights may require an accurate digital terrain model 

(DTM). There are few examples of estimation of forest variables like biomass with 

auxiliary variables automatically extracted from stereo images (St-Onge et al., 2008). 

In contrast, estimation of forest variables with lidar data, where lidar data are 

intrinsically 3D, is a field that is quite well developed. Lidar-assisted estimates of 

biomass and volume (e.g.) are precise and estimation is straightforward (Tonolli et al., 

2011; Woods et al., 2011). An internet search for scholarly articles with keywords 

“lidar”, “biomass”, and “volume” yielded 980 records for 2011 alone. A similar search 

for “radar” instead of “lidar” yielded over a thousand records. In contrast to lidar, 
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IFSAR can provide 3D elevation data for large areas very quickly, making it much 

more cost effective than lidar for large areas, although the resolution of IFSAR data is 

usually much lower than the resolution of lidar. Using IFSAR data may be a highly 

viable approach to measuring 3D forest structure information and estimating biomass 

(Solberg et al., 2010).   

While estimation of forest variables with lidar is now commonly described in research 

papers, most studies describe the use of wall-to-wall lidar for mapping or estimation 

(Strunk et al., 2012). This is not, however, always tenable – especially for large and 

remote areas. Attempting to obtain complete coverage with lidar over a large area may 

often prove prohibitively expensive. Instead, for large areas it may prove more 

realistic to obtain lidar as a sample (e.g. Parker and Evans 2004, Gregoire et al. 2011, 

Andersen et al. 2011). The most convenient strategy to adopt with lidar is to select a 

systematic sample of strips of lidar because it is relatively straightforward for an 

airplane mounted with a lidar sensor to fly parallel lines over a target area. Field plots 

within the lidar strips can then be used to estimate model parameters relating lidar 

derived variables and field plot derived variables. A two-stage estimator is necessary 

to estimate the total, with the first stage sampling units being lidar strips and the 

second stage sampling units being field plots. 

Several studies have examined the synergy between lidar and other remote sensing 

data sources (Hyde et al., 2007; Kennaway et al., 2008). Currently it appears there is a 

single study which lidar strips with Landsat for estimation (Andersen et al., 2011b). 

The study by Andersen et al., (2011b) uses a nearest neighbor model with Landsat and 

IFSAR auxiliary information to apportion lidar strip based estimates of biomass to 

areas not sampled with lidar. In this study we consider a design-based alternative 

approach to examine whether it is possible to improve the precision of total estimates 

by compositing distinct lidar-assisted and Landsat-assisted biomass estimator. 

Composite estimation is an approach that takes advantage of multiple estimators to 

create a new estimator with increased precision. In the forestry context the estimators 
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could, for example, be based on a combination of current and previous inventories 

(Särndal et al., 1992, 368–379), separate estimators (McTague, 2010), or take 

advantage of different inventories performed for different reasons or by separate 

agencies (Lund and Schreuder, 1980). In the context of this study, we are interested in 

the estimated improvement in estimator precision that is obtained by combining 

multiple remote-sensing based estimators relative to a single estimator. This is a 

particularly enticing approach because in some instances it is fairly cheap and easy to 

obtain multiple estimators. Estimators that take advantage of the large body of free 

Landsat data as well as previous inventory data are examples that would be 

inexpensive to implement (although we do not look at previous inventory data in this 

study). 

The primary objective of this study is to examine whether a two-stage lidar-assisted 

approach to estimation of biomass can be more efficient than a plot-only based 

approach using an estimator appropriate for a simple random sample (SRS) design. 

And, since Landsat is free and readily available, we are also secondarily interested in 

testing whether Landsat can be easily and beneficially incorporated into a model-

assisted approach to augment lidar-assisted estimation. We examine individual model-

assisted estimators with auxiliary lidar and Landsat, as well as a composite estimator 

which is a weighted combination of the two-stage lidar and Landsat-assisted 

estimators. The tradeoff between precision and number of sample strips is examined, 

and several additional estimation strategies are explored as an aside to provide context 

to the estimators of primary interest. 

3.2  Methods 

3.2.1 Study site 

Our study site was located in the western lowlands of the Kenai Peninsula in south-

central Alaska (Figure 3.1). The western Kenai lowlands cover approximately 8200 

km
2
. To facilitate the use of Landsat for this investigation, the extent of the study site 

was restricted to the portion of the lowlands that fall within a single Landsat scene, 
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approximately 7400 km
2
. A variety of forest types are present including black spruce 

(Picea mariana) predominating in poorly drained areas, and mixed stands populated by 

paper birch (Betula papyrifera), white spruce (Picea glauca), and quaking aspen 

(Populus tremuloides) predominating in upland areas. This study site was selected 

because it is the only boreal forest area in Alaska that is covered by the US Forest 

Service (USFS) Forest Inventory and Analysis (FIA)  program’s  annual inventory 

(Bechtold and Patterson, 2005). FIA has established a 10-panel inventory design on 

the Kenai lowlands.  The western Kenai Peninsula is more accessible than other boreal 

forests due to the relatively gentle terrain and the presence of several communities 

connected by an extensive road system, reducing the cost of plot access.  

 

 
Figure 3.3.1 Overview of study area on the Kenai Peninsula, Alaska 
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3.2.2 Data 

3.2.2.1 FIA plots 

Forest inventory data were compiled from the database of United States Forest Service 

(USFS) Forest Inventory and Analysis (FIA) individual tree measurements for the 

Kenai Peninsula, Alaska. The measurements were taken on FIA plot clusters 

containing four circular sub-plots each (Bechtold and Patterson, 2005). Under the FIA 

sampling design, Alaska is divided into inter-penetrated panels consisting of 

equilateral hexagonal polygons of equal area. While in the lower 48 contiguous states 

field plots are randomized within each hexagon, on the western Kenai peninsula of 

Alaska the entire grid of field plots was randomized a single time – thus adjacent plot 

are approximately a fixed distance apart. Each plot consists of 4 subplots 168.11 m
2
 in 

area. The 4 subplots include 3 satellite plots 36.578 meters from a center plot, placed 

120 degrees apart, and aligned with magnetic north (Bechtold and Patterson, 2005). 

The ground data used in this study were collected between 2005 and 2009 as part of 

the annual inventory program. We compiled biomass for each subplot from individual 

tree records in the FIA database (The Forest Inventory and Analysis Database: 

Database Description and Users Manual Version 3.0 for Phase 2, n.d.). The biomass 

values in the FIA database were predicted by FIA using species-specific allometric 

equations – an important contribution error but one that we do not treat explicitly. The 

minimum biomass observed (predicted by allometry) biomass at a subplot was 0.0 Mg 

/ ha, the maximum was 281.6 Mg / ha, the median was 41.8 Mg/ha, the mean was 59.3 

Mg / ha, and the first and third quartiles were 11.7 and 87.6, with a standard deviation 

of 60.5 Mg / ha.  

Subplot data are typically averaged prior to an analysis by FIA; however we 

maintained separate records for each subplot for modeling purposes. Our analyses 

required fitting regression models between response variables (measured on the field 

plots) and remotely sensed auxiliary variables (lidar, Landsat, and DEM derived). The 

regression analyses were performed at the subplot level, but prior to computing 
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landscape estimates, subplot response predictions and corresponding residual error 

predictions in per hectare units were averaged (separately) for each plot. 

3.2.2.2 Plot coordinates 

For a random subset of plots on the Kenai peninsula, subplot coordinates were 

precisely georeferenced using survey grade L1/L2 GPS/GLONASS global navigation 

satellite system (GNSS) receivers. Receiver antennas were raised to 3 meters using a 

bipod and the receiver was allowed to collect positions at a 1hz epoch rate throughout 

the subplot measurement period, which can require a substantial (hours) amount of 

time, with a minimum of 15 minutes of 1hz data recorded.  The precise coordinates 

were obtained to enable precise spatial alignment of remotely-sensed data with field 

measurement data. A study performed in an interior boreal forest in Alaska indicated 

that the horizontal precision for coordinates collected with these survey-grade GNNS 

units and 20 minutes of data (1 hertz) is on average better than 0.5 m RMSE 

(Andersen et al., 2009).  

3.2.2.3 Lidar 

Small-footprint discrete-return airborne lidar data (lidar) were collected in strips 

(Figure 3.1) over the Kenai Peninsula in the spring of 2009 with and Optech Gemini 

sensor. A total of 10 strips were collected for the peninsula, although only 7 of the 

strips were used in this study. The 7 strips cover 4.3% of the forested area in our study 

area. Lidar data were collected in the spring of 2009 leaf-off for the Kenai Peninsula. 

The arrangement of the lidar strips corresponds to alternate strips of systematic FIA 

field plots. The lidar data was collected from a fixed wing aircraft fly at an average 

height of 1,150 m. The maximum scan angle was limited 7.5 degrees. The aircraft 

speed average 130 Knots. The lidar system scan rate was 71 kHz .The flight 

configuration yielded a nominal pulse density of ~4 pulses / m
2
.  

Lidar data consists of a series of records corresponding to locations where pulses 

within laser scan lines intersected the ground or objects above the ground. We are 
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specifically interested in the 3D lidar point cloud data that represent measurements of 

forest canopy structure. Raw lidar coordinate data are first summarized using statistics 

computed on lidar heights (the lidar statistics are henceforth referred to as “lidar 

metrics”). Lidar heights are lidar point elevations minus ground elevations for the 

same positions. The point data were processed to extract lidar structural metrics both 

at the subplot level and within each grid cell of a raster layer (GIS grid). The subplot 

level variables are statistics calculated on the lidar points falling within the spatial 

bounds of each 168.11 m
2
 subplot. A grid of lidar metrics was calculated by 

tessellating the study area into 12.96 by 12.96 m grid cells and calculating the lidar 

metrics for the lidar data falling within the grid cells. 

 Lidar metrics considered in our analysis include height percentiles (e.g. ht95,ht50, and 

ht30 ) and cover ratios (e.g. cover1 and cover2) which are described in detail below. 

Both percentile and cover metrics are calculated using only lidar first returns. Only 

heights greater than 1m (a cutoff for “ground” and low vegetation returns) in height 

are considered for height quantile metrics. As an example, if ht95 for a given pixel is 

17 m, then 95 percent of lidar point heights within the pixel fall below 17 m 

(excluding ground returns). Cover metrics correspond to the percentage, or 

equivalently proportion, of first returns above a given height. Cover1, for example, 

indicates the proportion of first returns on a plot or a pixel that are greater than 1m in 

height.  Lidar data were processed, including creation of a DTM, using freely-

available FUSION software (McGaughey, 2012).   

3.2.2.4 Landsat and elevation data (excluding lidar) 

National Elevation Dataset (NED) elevation raster data were downloaded from the 

National Map Seamless Server website (http://seamless.usgs.gov/). Five tiles of 

elevation data were necessary to cover the entire study area. Data with approximately 

10 m resolution (1/3 arc second) were available for nearly the entire peninsula. 

Elevation data were processed to estimate slope, aspect, and 24-hour solar irradiance.  
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 Landsat images were downloaded from the GLOVIS website (http://glovis.usgs.gov/).  

As mentioned previously, the extent of our study area within the Kenai lowlands was 

restricted to fall within a single Landsat image. This was to simplify the analysis and 

reduce artifacts from mosaicked images. The Landsat archive from 2005 through 2009 

(these years match the range of years of field data collection) was browsed for 

relatively cloud-free images between June and September. Unfortunately, cloud-free 

images are difficult to find for the Kenai Peninsula. Only 6 images with large cloud-

free portions of the landscape exposed were found for the indicated period. All of the 

selected images had some cloud cover over the study area – despite the 0% cloud 

cover reported for one image by the GLOVIS website.  Cloudy pixels were treated as 

noise in this analysis and included in the analysis without modification. The images 

were not processed to correct for atmospheric and sensor effects; we used the raw 

digital numbers (DNs) assigned to each image pixel.  

Values for subplots were calculated by using a bilinear interpolation of grid values to 

the locations of subplots. 

3.2.3 Strata 

Our target population, forested areas in the Kenai lowlands, was identified using 

LANDFIRE data (Rollins, 2009). Forested and un-forested regions were defined based 

upon the layer specifying vegetation height by vegetation type. Any pixels classified 

as either as having tree heights greater than 0.0 m were considered within our target 

population. LANDFIRE products for Kenai include vegetation type, vegetation height 

by type, cover by type, and maps of disturbance areas by year. The accuracy of 

LANDFIRE classification products was estimated to be between 46% and 57% for a 

region of the Kenai Peninsula in an assessment using multiple sources of field 

measurements (DeVelice, 2012).  
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3.2.4 Estimation 

3.2.4.1 Inference 

In this study we use design-based inference for estimation (Gregoire, 1998).  Design-

based inference refers to inference about the estimation of parameters such as the 

mean or the total of a realized finite population. The design-based properties of 

estimators (e.g. bias and variance) are with respect to the finite sampling distributions 

of the estimators (Särndal et al., 1992, 40). For example, if an estimator is design-

unbiased for the total, it means that if it were possible to take every possible unique 

sample from the population, then the mean of all estimates would equal the population 

mean. Common assumptions for this type of inference include that all of the elements 

in the population have non-zero probability of selection, and that the first order 

inclusion probability for sampled elements is known or approximately known.  

Commonly used estimators for design-based inference typically exhibit the desirable 

consistency (Särndal et al., 1992, 166–169) property that the expected difference 

between the estimator and the parameter of interest decreases for an increased sample 

size. However, even if an estimator is unbiased for a population parameter, a single 

estimate from the estimator may differ considerable from the population parameter. 

We selected this mode of inference because it most accurately reflects our objective in 

practice – which is to estimate what is currently present on the landscape, and is not 

dependent upon correct specification of a model for the population. 

In this study we perform estimation using both asymptotically design-unbiased 

regression estimators and design-unbiased estimators. Regression estimators are 

asymptotically unbiased estimators which are able to leverage the explanatory power 

of a regression model for estimation fitted to a sample of data. This can prove very 

useful, as models can contribute to estimation efficiency, and although the estimators 

are biased, the bias is minimal for a sufficiently large sample (Särndal et al., 1992, 

235).  We would also like to note that the properties of regression estimators are not 

subject to common modeling assumptions that one might require for model-based 
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inference (Särndal et al., 1992, 227) – where model-based inference is an alternate 

mode of inference in which we suppose the data arise from a super population model 

(e.g. for a regression model fitted by ordinary least squares (OLS)  it is common to 

assume that regression residuals are approximately normally distributed with mean 0 

and variance   ), and we attempt to make inference about the super-population model 

parameters (Gregoire, 1998).  

3.2.4.2 Preliminary notation  

 

Table 3.1 Definitions of symbols 

Symbol Definition 

U Population of elements 

Ui A cluster of elements  

i A cluster 

j An element 

N Number of clusters in the population 

n Number of clusters in the sample 

G Set of sampled clusters 

s Set of sampled elements 

si Set of sampled elements in cluster i 

M Number of elements in the population 

Mi Number of elements in a given cluster 

m Total number of elements in the population sampled 

mi Number of elements sample in a cluster 

  The total of some attribute for the population 

   The total of a response attribute for the population 

   The total of an auxiliary attribute for the population 

AU The area (ha) of the study region 
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Symbol Definition 

Ai The area (ha) of a cluster 

A0 The area (ha) of a single element 

yj The response value for a single element 

   The mean response value of all elements in U 

   The first order inclusion probability (probability of selection) of a cluster 

     The conditional probability of selection for element j given cluster i  

   The first order inclusion probability for an element 

 

Let U be a finite population consisting of M elements for which we wish to estimate 

the sum of response values
jy  associated with each element; this parameter of interest, 

 , is defined for y as           or as        where    is the mean of the M 

elements in U. Let s denote a random sample of m elements, where      is the 

number of elements from s falling within a cluster                  , where 

cluster Ui consists of Mi elements, and where             is the set of n sampled 

clusters containing the m sampled elements. The first order inclusion probability (the 

probability of selecting a sampling unit as a result of the sampling design) for cluster 

Ui is   , and the first order inclusion probability for element j is            where      

is the conditional probability that element j   given that i G.  

With respect to our case study, U is a tessellated irregular polygon with M elements 

that approximately bounds the western lowlands of the Kenai Peninsula. A systematic 

sample of north-south lidar strips, G composed of 7 clusters              , 

transect U   The plots within G were originally laid out as a systematic sample of 

elements. For this study we obtained a random subsample of 32 plots which are a 

subset of the original plot layout which were precisely positioned. Both G and s are 

treated as simple random samples, which provides unbiased two-stage estimators of t 

and   , but can result in biased estimators of the variance for two-stage t and    

estimators (typically positively biased (Gregoire and Valentine, 2008, 55)). The area 
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of the study region U is AU, the area of a lidar strip Ui is Ai and the area of an element 

j is A0. M is defined as AU/A0, and Mi as Ai/A0. For the inclusion probability        

for cluster i we use        /M, and mi/Mi for the conditional inclusion probability 

     for elements j Ui.  

The M elements that compose U correspond to a 13 x 13 m grid overlaid on the 

boundary of U where each cell had approximately the same area as a subplot (168.11 

m
2
). Although sample plots do not fall precisely on grid cells, and their shapes do not 

conform to the shape of a grid cells, for estimation we perform a simplification by 

treating the center subplot as an element in the population of grid cells, where the 

response value yj for a given center subplot is defined as the average of attributes on 

all four subplots. If a subplot did not fall within a forested area it was not included, 

thus the response for plot yj can represent the average of from 1 to 4 subplots. Lidar 

and Landsat values used to predict biomass were also calculated for the location of the 

precisely georeferenced subplots. Lidar metrics were calculated for each cell in the 13 

x 13 m grid overlaid on U.  For total and means of auxiliary variables, tx and    , 

auxiliary variables for lidar and Landsat values are also arranged on a fixed grid, but 

the grid differs in resolution (30 m) from  the grid of 13 x 13 m cells which compose 

U. However, the parameters of the finite population of an auxiliary variable, e.g. tx, are 

approximately equal for the original grid or for an alternate grid with a slightly 

different resolution.  

The model-assisted estimators used in this study, described in the next section, use 

models fitted by the OLS method for estimation with auxiliary data. The models were 

fit between field measured variables and remote sensing derived variables for sub-

plots. Predictions and residuals for the subplots were then averaged and assigned to 

the center sub-plot.  

3.2.4.3 Estimators 

The Horvitz-Thompson (HT) design-unbiased estimators for the total for an SRS 

sample and an unbiased estimator of its variance are (Lohr, 2009, 37) 
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The regression estimator for the total for an SRS design is (Särndal et al., 1992, 231) 
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An approximate variance estimator for regSRSt̂  is (Särndal et al., 1992, 237) 
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(4)  

The HT estimator for the total from a two-stage sample is given by  (Lohr, 2009, 183)   
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The variance of (5) can be unbiasedly estimated by (Lohr, 2009, 185)   
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The Durbin with-replacement estimator for the variance of 
St2̂

 in (7) is slightly biased 

for without-replacement sampling (for a small sampling fraction), but the variance 

estimator has smaller variance than (6), is always positive definite, and is simple to 

compute. 
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(6)   

Estimators (8) and (10) are regression estimators which we used with regression 

models fitted by OLS to relate our response variable to predictor variables. The first 

two-stage model-assisted total estimator, 1r̂egt  (Särndal et al., 1992, 322–327), is 

appropriate when auxiliary data are available for every element in the population 
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(7)   

Because of its extreme simplicity and the near equivalence between with-replacement 

and without replacement two-stage estimators, for the regression estimators we 
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adapted the Durbin variance estimator (7) for use with (8) and (9). The variance of (9) 

was estimated with (6) by replacing 
jy  values with regression residuals 
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The second two-stage model-assisted estimator, 2r̂egt , is appropriate when auxiliary 

information is available for every element in sampled PSUs but is not available 

otherwise 
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(9)   

The variance of (10) was firstly estimated with  
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(10)   

 

The variance of (12) was also estimated using a bootstrap estimator. Bootstrap 

variance estimators are a non-parametric, resampling-simulation based approach to 

estimation of variance. In the simplest approach to bootstrap variance estimation 
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(Efron and Tibshirani, 1993, 47) a large number of resamples are taken with 

replacement from the original sample, then the estimator of interest is applied to each 

resample. The resulting empirical distribution of resample-based estimates is then used 

to approximate the properties of the sampling distribution of the estimator. The 

standard error, for example, can be estimated by taking the standard deviation of the 

resampling distribution of estimates, or confidence intervals for the estimator can be 

calculated directly by calculating quantiles from the resampling distribution. 

Our bootstrap simulations for an estimator for a two-stage design proceeded as 

follows: in a given bootstrap simulation  1,..., kk N  we select a bootstrap resample



ks  of m elements. We first took a resample of n clusters with replacement (G*) from 

our original sample G of n clusters. Within each resampled cluster, 

iU , mi plots, 

is , 

were resampled with replacement from the mi elements original from 

iU  in s. If 

multiple 

iU  were present in G*, then plots in 

is  were sampled independently for 

each copy. This resampling procedure follows from Rao and Wu (1988). The Nk 

bootstrap resamples were then used to estimate the variance,  
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(11)   

where the inflation factors, 
 1n

n
 and 1ii mm ,  arise in (12) because the 

bootstrap variance estimator is negatively biased (decreasing for larger n and mi; Antal 

and Tillé, 2011). The variables included in the model to predict ˆ
j

y  were selected 
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using the full dataset, but the model coefficients were estimated uniquely with OLS 

for each resample. 

3.2.5 Composite estimation 

Multiple estimators can be combined to create a composite estimator which can reduce 

the variance over the contributing estimators. We consider a composite estimator 

which is a linear combination of two correlated estimators. A restriction is typically 

placed on the weights such that the variance estimate of the composite estimator is at 

most equal to variance of the less precise of the contributing estimators. This means 

that the estimator will at worst perform equally to the more precise of the two 

estimators. For two estimators, the composite estimator is (Green and Strawderman, 

1986; Gregoire and Walters, 1988)  

 
y,c 1 2

y,c

1 2

ˆ ˆ ˆt t (1 )t

0 1

t̂ composite estimator

ˆ ˆt  and t  are any two estimators of the population total

 is an estimated weight treated as a constant

 





  

 

  

(12)  

with variance estimator 
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where we estimate the covariance, Ĉ , between 1t̂ and 2t̂ by calculating the covariance 

between 5000 simultaneous bootstrap estimates of 1t̂ and 2t̂ .  To estimate a  that on 

average minimizes the variance we use (McTague, 2010)  
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3.2.6 Design effect 

Design effect, a specific case of relative efficiency, indicates the performance of a 

sampling and estimation strategy relative to that of the HT estimator for an SRS 

design. Algebraically, design effect is the ratio of the variance estimate for an 

estimator to the variance of the SRS estimator 

 
.

)ˆ(ˆ

)ˆ(ˆ

.

.

SRStV

tV
DE   

(15)  

 Design effect indicates the performances of an estimator and design relative to the 

SRS design and estimator. The variance of a total estimator using an estimator other 

than the HT estimator for an SRS will depend upon characteristics specific to each 

design, making it difficult to interpret whether a variance estimate is large or small. 

The variance of the SRS estimator, in contrast, can be estimated in nearly every case. 

By comparing the variance of an estimate with the variance of the SRS estimator, a 

more general indication of performance is provided.  

3.3 Results 

3.3.1 Model Selection 

Models were selected using the leaps and bounds best subsets selection algorithm, a 

computationally efficient subset selection algorithm pioneer by Furnival and Wilson Jr 

(1974),  followed by manual interaction by the user to select meaningful combinations 

of variables. The coefficients and selected variables for final models are provided in 

Table 3.2. Lidar models explained more variability in biomass as indicated by the 

RMSE and R
2 

values than Landsat models. The final lidar model included two 

explanatory variables, a height percentile and a cover variable, and their interaction.  

The Landsat model included six variables. The Landsat variables selected are two of 

the longer of the Landsat wavelengths (bands 5 and 6) and come from three image 

dates, one image in 2005 and two images in 2009. None of the elevation derivatives 
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(elevation, slope, aspect) or coordinate variables (x,y,x
2
,y

2
,x:y) were selected for 

inclusion.  

Table 3.2 OLS model coefficients and fit statistics for lidar and Landsat models 

Lidar   Landsat 

Predictor Coefficients   Predictors Coefficients 

intercept -18.928310   intercept 1228.6031 

Ht99 6.588540   B5 (2005/06/28) -0.01478 

Cover1 -0.081450   B6 (2005/06/28) -2.72055 

Ht99:Cover1 0.073560   B5 (2009/07/09) 3.49811 

      B6 (2009/07/09) -1.46667 

      B5 (2009/08/10) -3.94418 

      B6 (2009/08/10) -5.10074 

          

RMSE (Mg / ha):  33.18     48.65 

R
2:

 0.69     0.34 

 

3.3.2 Estimation 

For inference estimates of the standard deviations of estimators, or standard errors 

)ˆ(ˆ .tVSE  , are often easier to interpret, compare and report than variance estimates. 

However, for clarity of notation we provided formulas for variance estimators instead 

of standard error estimators. For the remainder of the paper we make inference about 

standard error estimates while referencing corresponding variance estimators with the 

intention that the standard error estimate may be obtained by taking the square root of 

the variance estimate calculated using the referenced variance estimator. We also 

provide mean estimates, and corresponding standard errors. These are obtained by 

dividing total estimates and total estimator standard errors by M, the number of 

elements in the population. The mean estimates are more easily compared to the 

values obtained for other forests without need to account for the size of the area being 

studied.   
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Total and standard error estimates in Table 3.3 were calculated for our study area 

using formulas (1) – (15) in addition to design effect (16). Estimates are provided for 

the subset of 32 FIA plots for all of the estimators, but only with SRS HT estimators 

for the full set of 145 plots from which our subset was sampled. SRS estimates were 

obtained by ignoring the clustering of plots within PSUs. SRS estimates were 

calculated to provide an indication of the efficiency (number of elements sampled 

relative to precision) that is lost with the two-stage design relative to the SRS design.  

The remaining estimators were applied consistently with the arrangement of the 

sample as a two-stage design. 

For the HT total estimator for a two-stage design (5) and the second regression 

estimator for a two stage design (10), standard errors were calculated twice with 

separate estimators. The standard error of (5) was estimated twice, with both (6) and 

(7), to demonstrate that the Durbin estimators provide similar estimates to (6). This 

was to validate our use of Durbin-type standard error estimators for two-stage 

regression estimators of the total (8) and (10). The bootstrap estimator was used 

similarly to validate the Durbin-type estimator for the standard error of (10). In Table 

3.3 we see that in fact, for both of these cases, the pairs of estimators provided 

equivalent estimates. 
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Table 3.3 Total and mean parameter estimates for the finite population and estimates 

of the standard deviations of parameter estimators in addition to design effect and 

sample size   

Estimator 

t 

(Tg) 

t sd 

(Tg) 

mu 

(Mg/ha)  

mu sd 

(Mg/ha) DE(%)* n 

SRS HT 30.7 2 60.2 4 - 145 

SRS HT 31.2 5 61.3 9 100 32 

SRS Reg lidar 32.8 2 64.3 4 46 32 

SRS Reg Lands. 38.7 3 76.0 7 73 32 

2S Plots 34.2 8 67.1 15 159 32 

2S Plots Durb. 34.2 8 67.1 15 161 32 

2S Reg1 Durb. 38.7 4 76.0 9 94 32 

2S Reg2 Durb. 32.7 5 64.3 10 102 32 

2S Reg2 BS 32.7 5 64.3 10 105 32 

2S Reg Comp. 35.7 3 70.1 6 63 32 

*Design effect was calculated relative to the “SRS HT” for n=32. “t” and “mu” are the 

population total and mean in teragrams (Tg) and megagrams (Mg) respectively, and “t 

sd” and “mu sd” are the standard deviations of “t” and “mu” estimators. 

 

The two most precise estimators according to SEs were provided by the HT estimator 

for the SRS design (1) with 145 observations, and the regression estimator (3) for the 

SRS design with auxiliary lidar, with both of them yielding equivalent precisions (≈2 

Tg). The standard errors of the regression estimator (3) with Landsat for the SRS 

design and the composite estimator which combines two-stage regression (8) with 

Landsat and (10) with lidar were slightly larger (~3 Tg), with the composite estimator 

providing a dramatic increase in precision over either contributing two-stage 

regression estimator. The regression estimators (8) and (10) Landsat and lidar had 

lower precision by ~ 3 Tg relative to regression estimators (3) with Landsat and lidar, 

but were equivalent to the HT estimator (1) for 32 observations.  

The reason for the difference between standard error estimates in Table 3.3 from two-

stage estimators (5) and (10) can be explained by the corresponding PSU mean 

estimates in Table 3.4. The variability of these estimators is driven by the variability 

between PSU totals, unlike the variability of (8) which is not a function of PSU totals.  
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As a result of the long narrow north-south running regions of our study area spanned 

by the PSUs, we would expect that variability within strips would be high and the 

variability between strips would be low. This is an ideal scenario for two-stage 

sampling, resulting in lower variance than if the PSUs encompassed less geographic 

variability. However, the efficiency gain from using long narrow strips is better 

realized with regression estimator (10) than with HT estimator (5). This is because 

increased variability in PSU total estimators increases the precision of these two-stage 

total estimators. Regression estimators of PSU totals, applied for element predictions 

for every element in the PSUs, are very precise, while HT PSU total estimators, 

applied to the relatively few sampled elements per PSU, are much less precise.  The 

difference in variability between regression and HT estimators is evident from the 

PSU means shown in Table 3.4.  HT mean estimates range from 30 to 105 megagrams 

(Mg), while regression estimates range from 56 to 76 Mg. 

Table 3.4 PSU mean estimates used for 2S HT and 2S Reg2 variance estimators 

  Mean Estimates (Mg) for PSUs 

Estimator 1 2 3 4 5 6 7 

2S HT 77.2 49.6 95.9 105.5 68.1 42.7 29.7 

2S Reg2 53.4 60.0 73.8 76.3 60.4 64.2 56.0 

 

 

 In addition to being easy to implement and comparable to without-replacement 

estimators, the Durbin estimators are also convenient because they enable 

straightforward investigations of the effect of the number of sampled PSUS. We can 

look at alternate sample sizes, n, by multiplying the standard error estimate by the 

ratio of the number of PSUs in the observed sample to the target number of sampled 

PSUs.  In Figure 3.2 we can see standard error estimates for various sample sizes for 

(10). The standard errors for the observed number of PSUs (n=7) occurs where 

dramatic increases in precision are still possible for modest increases in the number of 

PSUs.  
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Figure 3.3.2 Two-stage lidar-assisted standard errors (10) relative to different numbers 

of sampled PSUs 

3.4 Discussion 

3.4.1 Total estimation 

The results from this study indicate that lidar and Landsat can play a beneficial role in 

estimation of some forest metrics. Under the two-stage design, model-assisted 

estimation with Landsat (8) was competitive with respect to precision to the HT 

estimator under the SRS design (1). And for the SRS regression estimator (3) with 

Landsat, the estimator was at least 20% more precise than the SRS HT estimator for 

the same number of sampled elements. The SRS regression estimator was more 

precise with lidar than either the SRS HT estimator or the SRS Landsat-assisted 

estimator, although the standard error for SRS lidar-assisted estimator was presented 

only as an indication of an upper bound on precision for a two-stage lidar-assisted 

approach, because the high cost of obtaining lidar makes wall-to-wall lidar collection 

likely too expensive to be viable as part of a standard FIA annual inventory protocol.  
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The lidar and Landsat-assisted two-stage estimators were much more precise than the 

two-stage HT estimator (5), but it is unlikely that this two-stage design would be used 

in practice if a lidar strip sample were not collected. The precisions of the two-stage 

lidar-assisted and Landsat-assisted estimators were equivalent– but again, in a scenario 

where lidar is not collected, a Landsat-assisted approach is most likely to be 

implemented using a design which legitimately makes use of (3). 

From Figure 3.2 we can see that for an increase in the numbers of PSUs to n=15, the 

two-stage lidar-assisted estimator (10) appears more viable as a stand-alone estimator. 

This is promising from a practical standpoint because the objective for a two-stage 

lidar-assisted approach in Alaska is to reduce the number of field plot measurements 

required because of concerns about cost, safety, and accessibly. For an increase in the 

number of lidar strips from n=7 to n=15, the two-stage lidar-assisted estimator would 

be approximately as precise as the SRS HT estimator for biomass for 145 plots. The 

number of field plots need not increase proportionally because the contribution of 

within-PSU variance to total estimator variability is small. Also, the relative gain from 

increasing the number of sample plots in the SRS design (32 plots) falls within a range 

for which the increase in precision for measuring an additional unit is much less steep 

– a result from the exponential relationship between sample size and precision. 

The use of a composite estimator also yielded highly promising results; by 

compositing lidar-assisted and Landsat-assisted two-stage estimators we were able to 

markedly increase the precision over either contributing estimator. The composite 

estimator with 32 plots did not achieve the precision of the SRS HT estimator for 145 

plots, but was able to increase the precision over the more precise contributing two-

stage estimator by ~33%, and exceed the SRS HT estimator for the same number of 

plots by ~33%. While we did not examine the relationship between number of sample 

strips and precision of the composite total estimator, it is likely that fewer than 15 

strips will be necessary for the composite estimator to achieve precision parity with 

the SRS HT for 145 plots.  
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While we compared results for alternate designs with the precision of estimators for 

the original sample, a fair comparison between a lidar-assisted approach and the 

existing design is not easily performed. The FIA inventory is used to provide detailed 

information for a wide array of forest attributes (Barrett et al., 2011), and it is likely 

that application of a lidar-assisted estimator will result in a significant increase in 

precision for only a subset of these attributes (biomass, merchantable volume, canopy 

fuels, aboveground carbon).However, it may be determined that obtaining more 

reliable estimates of these attributes (aboveground carbon in particular) is sufficiently 

important to justify the additional cost for a supplemental acquisition of lidar sample 

strips. It should be noted that due to the highly complicated logistics associated with 

establishing ground plots in interior Alaska, the cost of a lidar acquisition could 

represent a relatively small proportion of the total inventory cost. For example, plots in 

interior Alaska cost as much as $8000 each, while the average cost of a lidar strip 

sample on the Kenai was approximately $5,000. 

A similar study to this one was conducted in Norway’s boreal forests using a lidar-

assisted two-stage estimator for a region roughly five times the area of our study site 

(Gregoire et al., 2011). It appears that the approach used in the Norway study yielded 

poorer precision with the model-assisted estimator than for an equivalent sample size 

with field measurements alone. To compare the SE estimates reported in the Gregoire 

et al. (2011) study between plot-only and model-assisted estimates,  we multiplied the 

reported SE for the plot-only estimator by 445/975 to equalize the sample sizes 

between the two SEs (treating the plot-only estimate as if it was from an SRS design). 

The plot based standard error was 2.6  Mg/ ha versus 3.2 Mg/ha for the lidar-assisted 

estimator.  In a model-based analogue to the study described by Gregoire et al. (2011), 

the companion paper by Ståhl et al. (2011) uses the same dataset as  Gregoire et al. 

(2011) but  reported greater precision with the model-based estimator than with the 

plot-only estimator : 2.2 Mg/ha for the model-based total biomass estimator versus 2.6 

Mg/ha for the unbiased total biomass estimator (again adjusted for sample size). 
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However it is not necessarily reasonable to compare the reported values from the two 

studies since their bases for inferences differ.  

A lidar sampling approach was also by Andersen et al. (2011) for model-based 

estimation of biomass in a remote region of Alaska. In the study 27 lidar strips were 

flown over the 2000 km
2
 study area, then plots were placed randomly in accessible 

portions of the lidar strips. In a follow up analysis (Andersen et al., 2011b) the authors 

leveraged IFSAR and Landsat for stratification to reduce the variability of the total 

estimator.  The standard error of the total estimator was reduced from 7.3% to 5.1%. 

This compares to a 9.5% standard error if the sample is treated as a simple random 

sample (the “SRS” standard error estimate, which is not truly appropriate here, is not 

reported in the paper but can be calculated from the reported mean, sample size, and 

standard deviation for biomass). A conceptual drawback of the study is that since 

some sub-regions were not sampled, design-unbiased estimators are not possible.  

Practically, however, the effect on total estimation is likely to be small as the 

empirical relationship observed between biomass and lidar is quite strong and is not 

likely to vary drastically within a region of this size. 

3.4.2 Limitations 

An important limitation of this study is that forested areas are treated as if they were 

known. In fact the forest classifications were predicted, which contributes to the 

variance of total estimates, a source of variation not represented by our variance 

estimators (McRoberts 2010). If the effect from ignoring this source of error on 

variance estimators is additive, then the results presented here will still provide a 

reasonable indication of the relative precision of estimators – although the reported 

standard errors will be negatively biased. 

A second limitation of this study is with respect to the FIA plot design. FIA subplots 

are quite small, .168 ha, which means that the proportion of tree foliage on a plot 

which has boundary overlap issues (external trees with foliage falling in the plot, or 

internal trees with foliage falling outside the plot) may be quite high when attempting 
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to relate field measurements to lidar. Plot size is a feature of the FIA inventory 

protocol that is unlikely to change to accommodate lidar, but it is worth noting that the 

performance of a strip sampling approach with lidar will likely improve if the area of 

the measurement plot is increased. Plot size may also have an effect on a Landsat 

assisted approach; if we consider a perfectly spatially co-registered subplot and 

Landsat pixel, the information represented by the Landsat pixel includes a large buffer 

around the field plot – reducing the correlation between the two types of data. 

However, in practice the effect of plot size on a Landsat model may be less because 

the ability to develop such a model is largely dependent upon spatial correlation 

between forest characteristics over a short distance; the coordinates associated with a 

Landsat pixel may be off by 60m on average, thus it is unlikely that the information 

sensed by Landsat corresponds to the actual plot location. 

Finally, there is a temporal limitation to our dataset. The data used for this study were 

collected as part of the FIA annual inventory, which means measurements are carried 

out for a subset of plots in a given year. The data collected for this study were 

collected over a 5 year period. This is problematic for our study area because of the 

decay and mortality which may have occurred between when plots were measured and 

when the lidar was collected. As with plot size, this is a limitation which negatively 

affects the performance of a lidar-assisted approach. Since our results indicated that 

there is positive potential for using lidar for estimation, it is likely that an alternate 

field measurement strategy which uses larger plots and temporally matched field and 

lidar measurements could yield improved results for two-stage estimation with lidar. 

While our results were positive with respect to the viability of a Landsat-assisted 

approach, we should note that our implementation of a Landsat approach was fairly 

coarse. Landsat processing entailed only the interpolation of Landsat values to the 

locations of our plots. Adopting a more sophisticated approach which includes 

histogram matching, atmospheric correction, cloud masking, and temporal pixel 

trajectories may be a more viable option (Powell et al., 2010). 
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3.5 Conclusions 

In this study we explored the potential of lidar-assisted and Landsat-assisted strategies 

for estimation of forest metrics measured on the Kenai Peninsula, AK. Because a wall-

to-wall lidar collection approach is not considered viable due to the acquisition cost, 

we primarily compared two-stage regression estimators for use with a sample of lidar 

strips to the other estimation strategies. We found that a two-stage lidar assisted 

approach was comparable to SRS estimation with 32 plots, but that by doubling the 

number of lidar strips it would be feasible to achieve the precision of the existing 

estimation strategy with 149 plots. Both SRS and two-stage Landsat assisted 

estimators also compared favorably, exceeding the precisions of plot-based estimators. 

An estimation strategy with Landsat will be applicable to a variety of scenarios 

because Landsat data is free and widely accessible. While the use of lidar constitutes 

an additional cost, there are likely to be scenarios in which the increase in efficiency 

which is possible with a lidar strip sampling approach, especially in combination with 

a Landsat, will reduce the cost to achieve a target precision for some forest metrics.
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Abstract 

An important value of remotely sensed information is the capacity to model and map 

forest variables like biomass and volume. Mapped values can provide insight into the 

spatial distribution of forest resources, facilitating analyses not feasible with point 

estimates. In this study we leverage data from a lidar strip sample (collected for more 

efficient point estimation) to better match the resolution of forest structure information 

to the resolution of Landsat for model development and prediction, and to increase the 

number of training observations. Both of these are important for modeling, as Landsat 

values are only weakly related to forest inventory and analysis (FIA) plot 

measurements when modeled directly. We also leverage pre-processing outputs from 

the novel LandTrendr approach which can make use of a Landsat time-series, 

including partly cloudy images and SLC off ETM+ data to generate noise dampened, 

cloud free, images for any year in the range of the archive. 

The results from this study indicate that a three phase approach with plots, lidar, and 

Landsat could provide more precise predictions than those made from field data alone 

or with a two-phase (Landsat) approach. For the best three-phase strategy, model 

RMSEs for tree volume, biomass, and trees per hectare were 61%, 64%, and 81% 

respectively. 
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4.1 Introduction 

Studies that demonstrate techniques to incorporate lidar in forest inventory, mapping 

and monitoring are now fairly common. Investigators often report modeling and 

estimation of forest attributes(Tonolli et al., 2011) including classification by forest 

type (Pascual et al., 2008), species (Kim et al., 2009a), or condition(Kim et al., 2009b) 

, delineation of stand boundaries(Sullivan et al., 2009), and segmentation of upper 

canopy tree crowns (Hyyppa et al., 2001). The examinations typically rely on 

empirical relationships between lidar and field measurements developed for sample 

plots to train a process or approach for use with lidar covering the entire area of 

interest (AOI).  However, the acquisition of lidar for an entire AOI is not always 

justifiable due to high costs, especially for large AOIs.  Recently interest has increased 

in approaches to estimation that use strips (or swaths) of scanning lidar data instead of 

complete lidar coverage (Parker and Evans, 2007; Gregoire et al., 2011; Ståhl et al., 

2011; Andersen et al., 2011a).   The lidar strip sampling approach is not, however, 

directly suited to the development of mapped forest attributes. Lidar-based maps are 

feasible within the lidar strips, but since the lidar is not available elsewhere, direct 

predictions are not available for locations without lidar. Prediction of values for gaps 

between lidar strips would require additional auxiliary information for those areas, 

possibly lower cost spectral information acquired with a passive measurement device. 

A number of studies have examined integrated lidar and spectral approaches to model 

forest attributes. Many of these previous efforts describe using lidar and spectral 

information in unison, where lidar and spectral information are available for the same 

areas (Packalen and Maltamo, 2006; Hudak et al., 2006; Popescu et al., 2004). Lidar-

based approaches to modeling forest attributes improve slightly with the addition of 

spectral information, although spectral information can prove more useful for species 

differentiation. There have also been examples of mapping exercises in which lidar is 

only available for a subset of the study area, while spectral information was available 

over a broader area. Wulder et al. (2007) used Landsat ETM+ data and profiling lidar 

in concert. The Landsat data were used to classify the region into forest types, and the 
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lidar was used to assign height data for those classes. In a similar approach by 

(Andersen et al., 2011b), Landsat and IFSAR were used to classify the landscape 

using a nearest neighbor approach, then scanning lidar data was used to estimate 

average biomass for the classes. The approach described by (Andersen et al., 2011b) 

was aimed at estimation (e.g. the population mean or total) rather than prediction (e.g. 

mapping). In another study, Hudak et al. (2002) used simulations to look at estimation 

of canopy height from Landsat ETM+  and samples of lidar data for different numbers 

and configurations of lidar samples. Wall-to-wall lidar was resampled systematically 

in strips and small circles. Landsat data and spatial correlation were used to predict 

heights for areas omitted in a particular resample simulation. The study found that it 

was possible to sample the landscape with lidar and still predict forest height 

information for areas not covered with lidar.  A primary advantage of such an 

approach is that if it can be used successful, then Landsat, the auxiliary spectral data 

used in the study which has a frequent return interval (>1 month) and is available for 

free could be used to support forest mapping at little or no cost. However, the 

sampling densities examined exceed those that have been considered in practice 

(Andersen, 2009, 2009; Andersen et al., 2011a; Gregoire et al., 2011; Parker and 

Glass, 2004; Ståhl et al., 2011). 

Whether a multi-scale approach with lidar strips can succeed is also dependent upon 

the modeling strategy.  For example, one of the simplest strategies, taking the mean of 

sample plot data within a landscape segment and applying it to every pixel within the 

segment, will in many instances not be sufficiently precise for mapping or efficient for 

estimation.  Preferably a more efficient strategy can better reflect the range of 

response values observed within the segment. Two of the most common approaches to 

modeling forest attributes with lidar include ordinary least squares (OLS) (Means et 

al., 2000b; Strunk et al., 2012)  and nearest neighbors (Maltamo et al., 2006; Packalén 

and Maltamo, 2007). Ordinary least squares has proven to work well for prediction of 

a variety of continuous forest attributes including basal area (Means et al., 2000a; 

Jensen et al., 2006), volume (Næsset, 1997; Lim et al., 2003), and biomass (Drake et 
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al., 2003; Hall et al., 2005). Nearest neighbor approaches also appear  to work well for 

these variables, and depending upon the implementation, also have the flexibility to 

simultaneously predict attributes by trees species including diameter distributions 

(Packalén and Maltamo, 2008).  

While lidar can be quite effective for modeling some forest attributes, complete lidar 

coverage can be prohibitively expensive, and for a lidar sample strip estimation 

strategy, high-precision lidar-based mapped products are not available over the 

majority of the AOI. The objective of this study is to develop and evaluate modeling 

approaches for prediction of forest attributes using Landsat for an AOI in which lidar 

strips are available as a sample. We evaluate selected approaches to “fill in” areas not 

covered with lidar by using lidar to train models with Landsat as auxiliary variables. 

We demonstrate that using lidar strip data to train Landsat in a multi-step modeling 

procedure improves predictions of forest attributes. OLS and nearest neighbor 

approaches are explored for modeling, and both 30m and 90m data resolutions for 

training Landsat with lidar are explored. Prediction performance is evaluated in our 

investigations for a subset of the overlap between lidar and Landsat for our AOI, 

~1500 points.  

4.2 Methods 

4.2.1 Study site 

Our study was conducted for the boreal forests located in the western lowlands of the 

Kenai Peninsula Alaska (Figure 4.1). The western lowlands are an area of 

approximately 8200 km
2
 on the Kenai Peninsula. The extent of our study area was 

restricted to the portion of the western lowlands which falls within a single Landsat 

image, approximately 7400 km
2
. Prevalent forest types for this area include black 

spruce (Picea mariana) in wet lower parts of drainages, and mixed paper birch (Betula 

papyrifera), white spruce (Picea glauca), and quaking aspen (Populus tremuloides) in 

well drained areas.  
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FIA has an annual inventory design in operation for this area.  They were able to 

implement an inventory for this portion of Alaska because it is relatively accessible: 

the weather in this region is relatively mild, there is a road system connecting 

communities, and the peninsula is surrounded by water enabling helicopter access 

from a helipad located on a boat even in roadless areas. 

 
Figure 4.3 Location of study area on the Kenai Peninsula, Alaska 

 

4.2.2 Forest measurement data 

Data for this study were collected as part of the United States Forest Service (USFS) 

Forest Inventory and Analysis (FIA) annual inventory program. While the field plots 

are organized as part of a 10 panel design, for our purposes the relevant design 

components are that field plots are arranged systematically, and each field plot 

consists of four circular .017 ha subplots arranged in a fixed manner with respect to 

distance and orientation (Bechtold and Patterson, 2005). The systematic sample of 

field plots on the Kenai Peninsula has a single randomization for the entire grid, unlike 
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other parts of the country where individual plots are randomized within approx. 6000 

ha hexagonal tessellations. The field measurements used in this study were collected 

between 2005 and 2009 for trees greater than 12.7 cm in diameter. A subset of 32 

plots including 80 (Table 4.1) subplots from the systematic grid of field plots covering 

our AOI was used for our analyses. These are plots for which precise GPS coordinates 

(better than .5 m HRMSE, (Andersen et al., 2009)) were obtained with a survey-grade 

GPS unit. Tree height, diameter, species, condition class (live or dead), and biomass 

from the FIA database were used. Plot-level values were calculated from the 

individual tree records including biomass per hectare (bio), basal area per hectare (ba), 

and stems per hectare (stems). 

Table 4.2 Summary of response data for 80 subplots used in analyses 

  bio kg/ha  ba m
2
/ha stems /ha 

min 0 0.0 0 

max 179,002 32.9 1,130 

mean 35,421 8.3 227 

st. dev. 45,572 9.1 242 

    
4.2.3 Lidar 

Airborne discrete-return scanning lidar data (lidar) were collected leaf-off for the 

Kenai Peninsula in the spring of 2009. Lidar data were collected in a systematic 

sample of strips over the locations of a subset of the grid of FIA field sample plots on 

the peninsula. The average flying height was 1,150 m above ground, the maximum 

scan angle was 7.5 degrees, the average flying speed was 130 Knots, and the pulse 

repetition frequency was approximately 71 kHz .The flight configuration yielded a 

nominal pulse density of ~4 pulses / m
2
.  

 Lidar data consists of a series of records corresponding to locations (“returns”) where 

pulses within laser scan lines intersected the ground or objects above the ground. We 

are specifically interested in the vertical distribution of lidar returns within an area 

(e.g. a plot) which provide a sample of the vertical arrangement of stems, branches, 
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and foliage. Lidar data were summarized using statistics computed on lidar heights 

(these lidar statistics are henceforth referred to as “lidar metrics”). Lidar heights are 

lidar point elevations minus ground elevations for the same horizontal coordinates. 

The point data were processed to extract lidar metrics for circles with 13m, 30m, and 

90m radii. Lidar metrics considered in our analyses include height percentiles (for 

example, ht95 is the 95 percentile lidar height computed from all of the first-return 

lidar heights in the plot greater than 1m) and cover ratios (for example, cover1 is the 

proportion of first returns above 1m). Lidar data were processed using the freely-

available FUSION software (McGaughey, 2012) including identification of ground 

returns and interpolation of a digital terrain model.   

4.2.4 Landsat  

Our analyses made use of the historical archive of Landsat TM and Landsat ETM+ 

imagery available from the GLOVIS website (http://glovis.usgs.gov/).  Landsat 

images were selected for the period spanning 1984 to 2009. For this range of years 

images were selected for dates between late spring and early fall that had cloud-free 

areas intersecting our AOI. Landsat ETM+ images were used from both SLC on 

(1999-2003), and SLC off (after May 2003) periods.  

The Landsat data were used in this study by taking advantage of the trajectories of 

individual pixel values over time.  Ideally, we expect to relate the value recorded for a 

pixel to static (constant over a short period such as a year) vegetation properties for the 

corresponding location on the ground. However, the value recorded for a given pixel is 

influenced by a wide variety factors including phenology, atmospheric conditions, 

solar incidence angle, sensor properties, and others. For our purposes, effects from 

these factors are all considered noise. If we assume these sources of noise are random, 

then for a pixel representing a static ground condition we can average values from 

multiple years to obtain a more representative, less noisy pixel value. The LandTrendr 

process (Kennedy et al., 2010)  takes this one step further and empirically models the 

trend in values for a single pixel over time using iterated piecewise regression. This is 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=00344257&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fglovis.usgs.gov%252F
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useful because it essentially allows us to average out noise over a lengthy period of 

time despite potential changes in the structural characteristics of vegetation that we are 

interested in measuring. The rate of incline, decline, and the occurrence of drastic 

changes in the pixel trajectory over time can also be indicators of the physical 

processes taking place on the ground (Meigs et al., 2011; Pflugmacher, 2011; Powell 

et al., 2010). However, for this initial analysis, we only investigate the predictive 

properties of the noise-dampened fitted pixel values. Because the model will tend to 

be less stable near the bounds of the data (1984 and 2009 in our case) we used fitted 

values for 2007 as predictors for our analysis. We fitted pixel-based time-series 

models for Landsat bands 1-5, and 7, as well as the derivative vegetation indices 

normalized burn ratio (NBR), and normalized difference vegetation index (NDVI). 

Pixel values were interpolated to points from surrounding cells by taking the averages 

of cells with center points within 30m and 90m radii. 

4.2.5 Model development 

A model can be defined as a mathematical or statistical representation of a relationship 

between variables which may represent processes or attributes of interest(Ford, 2009). 

Or, more generally as a mechanism which accepts data as an input, processes the data, 

and outputs modified data (MacKay, 2012). We use models in this study to bridge a 

relationship between response variables and auxiliary variable. However, the models 

taken without appropriate context are non-parametric, and cannot necessarily be 

ascribed useful properties. Typically, however, we develop models in a way that they 

are useful for scientific inference and we make inference from and about the models 

by relying on statistical theory. But, fitting a model does not automatically imply that 

we are using model-based statistics. Ordinary Least Squares (OLS) regression, which 

includes simple linear regression and multiple regression, does not imply a model-

based analysis or an attempt at model-unbiasedness – although this may be the case 

and it is often useful to do so. An OLS model, for example, is at its simplest simply an 

explicit mathematical link between variables until we attempt to assign theoretical 

properties to the model. 
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It is in the sense of explicitly linking inputs and outputs that we proceed to examine 

OLS and several nearest neighbor (kNN) modeling approaches. In both of these 

approaches, algorithms are used to develop model(s) relating response and predictor 

variables.  The models are then used to predict response values for locations where 

only predictor information is available. The primary advantage of models in the 

mapping context is the ability to predict values for every location on the landscape. 

We do not, however, claim that the prediction strategies are unbiased for what is 

present at a given location from either a model-based or design-based perspective. The 

predictions are still useful however, even if they are, for example, biased towards the 

mean (noise in the explanatory variables with OLS causes coefficients to be biased 

towards zero (Kmenta, 1997b, 348–352), because they may still describe a sufficient 

portion of the variability that is present on the landscape to be useful for inference 

from mapped outputs. We do claim that our sample of field plots can be used to 

represent the variability of predictions relative to their true values.  

By convention in discussions of nearest neighbor models for forestry, “reference” or 

“training” observations are data points for which both explanatory and response 

variables are available, and “target” observations are observations for which only 

explanatory variables are available and for which we wish to make a prediction. 

“Imputation” is commonly used with nearest neighbor approaches instead of the word 

“prediction”. Formally the word “imputation” means to substitute for missing values, 

although practically the word is used synonymously with “prediction” – except that it 

denotes that a nearest neighbor strategy was employed for the prediction. These same 

conventions are equally applicable to alternate modeling approaches. The model used 

to predict a new value using the nearest neighbor approach is a linear function of the 

response values from the K (an integer > 0) nearest training observations as measured 

by some distance metric in explanatory space – thus it is referred to as the k nearest 

neighbors (kNN) approach. The k nearest neighbors imputed to a new location are 

referred to as “donors” for obvious reasons. In predicting a new value from a linear 

function of donor values it is common to weight donors inversely to their relative 
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distance from the target observation in explanatory space, or to simply average the k 

nearest neighbors. In preliminary investigations with the dataset used for this study, 

the performance of prediction (model RMSE) was largely insensitively to the choice 

of k in the range of 3 to 15 neighbors when there were sufficient numbers of training 

observations. We arbitrarily set k to 5 neighbors and used inverse distance weighting 

for imputations. The kNN approach is simplest to apply when used for continuous 

response variables, although a variety of approaches are feasible to reflect multiple 

donors of categorical variables (not discussed here). In this study only continuous 

variables were considered. 

The choice of a distance metric plays an important role in the kNN model, and has a 

significant role in performance. We examined four measures of distance for nearest 

neighbor approaches in this study. The first distance approach was Euclidean distance 

based on normalized predictors (kNN-EU). The second was weighted Euclidean 

distance with weights assigned according to the magnitudes of the coefficients when 

canonical correlation was used to relate normalized response and predictor variables 

(kNN-MSN). The third approach was based upon distances calculated from a random 

forest proximity matrix (kNN-RF).  The final approach used Mahalanobis distance 

(kNN-MH). 

4.2.6 Modeling strategies 

Selected strategies were examined to link Landsat to field metrics using both two-

phases and three-phases of data. In the two-phase scenario a vector of field measured 

forest attributes Y was linked directly to a vector of 30m auxiliary Landsat variables, 

      ,  with fitted model     

                   

                   , 

               

(1) 
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where the resolution of the forest attribute(s) and the Landsat differ. 

Two distinct three-phase procedures were examined. In three-phase procedure A, third 

phase field metrics were linked to second phase auxiliary (13m) lidar data,         

using fitted model    . Then estimates from second-phase data were linked to first 

phase Landsat data at 30m,       , and 90m resolutions,        , using fitted model     

                    

                      

(2) 

                          

                     

                                                            

                                    . 

 

(3) 

 

In three phase procedure B, phases 1 and 2, and phases 2 and 3 are linked separately. 

First, a model is developed to relate field metrics to lidar as in (2) from procedure A  

                   . (4) 

 

But instead of predicting phase 3 values with model     and auxiliary lidar as in (3), 

phase two is linked to phase 3 by directly modeling the relationship between phase 2 

lidar variables and phase 1 Landsat variables with     

 

 

                        

                    . 

(5) 
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Then phase 2 predicted values are used to predict forest attributes with the model 

developed to link phases 2 and 3 with the fitted model     developed previously 

                 . (6) 

 

 The rationale behind a three phase lidar and Landsat procedure is that Landsat may 

relate better to field metrics when modeled at the same resolution. Landsat is 

approximately 30m resolution, while the field metrics are approximately 13m. This 

means that the information recorded by Landsat includes the area around the field plot. 

There is also notable error (30m+) in the spatial registration of the Landsat imagery, 

which would further reduce the correspondence between the two sets of data. The lidar 

data may also include auxiliary information about the site which is not well 

represented in response data but may aid in bridging the field data to the first phase of 

the data.  If lidar is used as an intermediate data source, the scales of the data could be 

matched, and the influence of errors in co-registration would decrease for larger units 

of area. Additionally, using lidar and an intermediate data source will increase the size 

of the training set, increasing our power to discerning signal from noise.  

4.2.7 Variance estimation 

Prediction strategies were evaluated relative to their residual variability using a 

resampling simulation approach. A resampling simulation approach was adopted 

because of the simplicity of implementation, the flexibility of such an approach, and 

the freedom from parametric assumptions – which is especially relevant since we are 

evaluating non-parametric modeling strategies.  Residual variability was estimated 

using a leave-d-out cross-validation strategy (12) with d=2. Clusters of sub-plots 

subplots were omitted (2 at a time) in the delete-d simulations to reflect the clustering 

in the original dataset. 
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(12) 

 

A leave-one-out strategy was originally tested, but due to the small number of possible 

simulations for our sample size, 32 (the number of simulations is equal to the number 

of observations for a leave-one-out strategy), the leave-one-out estimator did not 

sufficiently converge.  By using a leave-d-out approach the n choose d (where d>1) 

possible simulation increases the potential to achieve convergence. For example, in 

Figure 4.2 for one of the modeling scenarios, the leave-3-out (ultimately we used 

leave-2-out for estimation) residual standard deviation estimator represented by the 

solid black line does not sufficiently stabilize until approximately 150 simulations for 

the three-phase strategy, a much greater number of simulations than 32, the number of 

simulations for a leave-1-out estimator for our dataset. The rate of convergence 

demonstrated in Figure 4.2 was roughly consistent with results for other modeling 

scenarios. 
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Figure 4.4 Visual diagnostic of convergence relative to number of simulations for an 

example leave-3-out estimator of residual standard deviation.        
 

 and       
 

 indicate 

the lines representing estimates of residual standard deviation for different numbers of 

simulations for three-phase and two-phase modeling strategies respectively.         
 

 is a 

horizontal line indicating the estimate of residual standard deviation following 100 

iterations.  

 

 Although convergence is less of an issue with bootstrap simulations because samples 

are taken with replacement, we chose not to not use a bootstrap approach because we 

found that for our sample size the reduced range of the explanatory variables in 

bootstrap resamples caused over-estimation of residual variance. In traditional 

bootstrap simulations (Efron and Tibshirani, 1993) a subsample of observations will 

have reduced range. This is not a problem for large datasets, but for a dataset as small 

as the one used in this study, in simulations it contributed extra variability to estimates 

of regression coefficients.  
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Because the resolution of phase 1 predictions did not match the resolution of field 

measurements, residual variability for the 3-phase A approach was estimated using 

(12)-(16), derived with similar notation to Kmenta (1997, 347–348) for simple linear 

regression .  In (12),    is a residual error from the model linking phase 3 to phase 2 

where    is an observed response variable and  

                 

            

       

                                                            . 

(12) 

 

Then phase 2 is linked to phase 1 contributing error    

                 

                                        

                  

                  

             

(13) 

 

The residual variance for      is the variance for the sum of the residuals 

                  

   
    

         
   

       

        
  

        
  

               
  . 

(14) 
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A variance estimator is developed from consistent estimators for the various 

components   

               
      

                 

                                                        

     
      

                                      

                
    

          
                                  

                                            

(15) 

 

This approach to variance estimation is applicable generically if we replace the simple 

linear regression model from (12) (and similarly (13) ) as follows  

               

          

           

                                                       

                 for element i. 

(16) 

 

A modification to steps (12) – (16) was necessary for the 3-phase B approach since in 

(4) –(6) we do not have a model that involves the response when relating phases 1 and 

2. In the 3-phase B approach residuals     from relating phase 1 and phase 2 in (15) are 

estimated as 

                              (17) 

 

4.3 Results  

Residual variability was quantified using the leave-2-out strategy described in (12)-

(17) for the 32 plots (80 sub-plots) used for this analysis. Residual variability was 

estimated from the 32 choose 2 simulations, or 496, possible unique combinations of 2 
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plots that can be withdrawn from the training dataset. Residuals were calculated for 

the subplots corresponding to the 2 omitted plots in each of the 496 simulations per 

modeling strategy. New models were fit relating forest attributes and auxiliary data for 

the subplots corresponding to plots not omitted in each of the 496 iterations. Estimates 

of residual variability, residual root mean square errors (RMSEs), were calculated by 

taking the standard deviations of residuals for the subplots from the 496 simulations. 

Although approximately 1500 points were available to model Landsat with lidar – data 

which could also be used to aid in variance estimation, only the points corresponding 

to the locations of field plots were used to estimate the variability of residuals for 

models linking phase 2 lidar to phase 1 Landsat. Simulations (figure 2) indicated that 

this approach was sufficient for convergence of leave-2-out estimators of residual 

standard deviations. 

RMSEs were calculated for three-phase models developed for a large number of 

modeling configurations using a subset of the lidar and Landsat datasets, 

approximately 1500 points including subplot locations. At each of the 1500 points, 

lidar metrics and Landsat values were calculated as described in the methods section 

for 13m (lidar only), 30m, and 90m resolutions. A subset of points on the landscape 

was used instead of the complete lidar and Landsat datasets because calculating 

RMSEs for the various configurations required extensive processing time. The 

processing times required for kNN approaches especially were affected by the number 

of observations used for training and the number of targets for which predictions were 

desired.  

The modeling configurations examined included three general strategies: two-phase 

strategies with Landsat and field plots, and three-phase strategies A and B with 

Landsat, lidar, and field data. As an aside we also examined two-phase strategies with 

field data and lidar to guide our selection of modeling strategies for use with three-

phase A and three-phase B approaches. For each of the combinations of multi-phase 

prediction strategies we examined select combinations of model types including OLS 
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and the various kNN approaches. We did not attempt every combination of modeling 

strategy and model type, instead focused on strategies motivated from examining the 

performance of two-phase strategies.  

In two-phase strategies, lidar (Table 4.2) performed much better than Landsat (Table 

4.3), which was the expected result - although a two-phase lidar approach is not 

considered a viable mapping strategy when lidar is collected as a sample of strips. For 

both auxiliary datasets, OLS models performed better on average than alternate model 

types. kNN-RF performed only slightly worse in most cases, and both kNN-RF and 

kNN-EU performed better than OLS for number of stems/ha for lidar. Coarser 

resolution (90m in this study) auxiliary data was not considered for two-phase 

strategies. The same sets of predictor variables were available for automated model 

selection in each strategy. 

Table 4.3 Two-phase lidar (13m) model RMSE values for various model types 

  

 

    Models bio kg/ha (%) ba m
2
/ha (%) stems /ha (%) 

OLS 21061 (44%) 5.0 (52%) 193 (77%) 

kNN-MSN 23786 (50%) 5.5 (58%) 213 (85%) 

kNN-RF 22395 (47%) 4.9 (52%) 184 (73%) 

kNN-EU 23880 (50%) 5.1 (54%) 177 (70%) 

kNN-MH 28734 (60%) 6.2 (66%) 219 (87%) 

              

Table 4.4 Two-phase Landsat (30m) model RMSE values for various model types 

    
  

        

Models bio kg/ha (%) ba m
2
/ha (%) stems /ha (%) 

OLS 43115 (92%) 8.4 (90%) 228 (93%) 

kNN-MSN 48344 (104%) 9.3 (100%) 243 (99%) 

kNN-RF 46053 (99%) 8.8 (95%) 233 (94%) 

kNN-EU  48862 (105%) 9.4 (101%) 237 (96%) 

kNN-MH 48663 (104%) 9.2 (100%) 237 (96%) 

 

,2 ,2 ,
ˆ ˆ ˆ ( / 100%)P P Y SRS    

,2 ,2 ,
ˆ ˆ ˆ ( / 100%)P P Y SRS    
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The performances of three-phase A and B strategies were quite different for both 30m 

and 90m resolutions. For the 30 m resolution (Tables 4.4 and 4.5) the performance for 

three-phase B was superior to that of three-phase A for biomass and volume for nearly 

every modeling configuration –especially for biomass, although the poorest three-

phase B models were exceeded by the best three-phase A models. For number of 

stems/ha and 30m resolution, in contrast, the three-phase A strategy appears to be 

generally superior.  

Table 4.5 Three-phase A 30m prediction strategy RMSE values for various model 

types 

    
  

        

Models bio kg/ha (%) ba m
2
/ha (%) stems /ha (%) 

OLS OLS 43159 (90%) 8.3 (88%) 222 (88%) 

OLS kNN-MSN 43742 (91%) 8.7 (92%) 222 (88%) 

OLS kNN-RF 46336 (97%) 9.2 (98%) 227 (90%) 

OLS kNN-EU 46112 (96%) 9.2 (97%) 226 (90%) 

OLS kNN-MH 45582 (95%) 9.1 (96%) 221 (88%) 

kNN-MSN OLS 45264 (94%) 9.3 (98%) 259 (103%) 

kNN-RF OLS  44800 (93%) 8.6 (91%) 216 (86%) 

kNN-EU OLS 44053 (92%) 8.7 (92%) 221 (88%) 

kNN-MH OLS 39764 (83%) 8.3 (87%) 249 (99%) 

 

,3 ,3 ,
ˆ ˆ ˆ ( / 100%)P P Y SRS    
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Table 4.6 Three-phase B 30m prediction strategy RMSE values for various model 

types 

              

Models bio kg/ha (%) ba m
2
/ha (%) stems /ha (%) 

OLS OLS 38288 (80%) 7.8 (82%) 229 (91%) 

OLS kNN-MSN 43630 (91%) 8.6 (91%) 241 (96%) 

OLS kNN-RF 41474 (86%) 8.3 (88%) 238 (94%) 

OLS kNN-EU 42183 (88%) 8.2 (87%) 234 (93%) 

OLS kNN-MH 45084 (94%) 8.9 (94%) 249 (99%) 

kNN-MSN OLS 39587 (82%) 8.8 (93%) 302 (120%) 

kNN-RF OLS  37357 (78%) 8.0 (85%) 268 (106%) 

kNN-EU OLS 33652 (70%) 7.6 (81%) 258 (103%) 

kNN-MH OLS 33161 (69%) 7.8 (83%) 295 (117%) 

 

The differences between three-phase A and B performances for 90m were even more 

pronounced in favor of the three-phase B strategy for all three of the response 

variables (tables 6 and 7). Both strategies saw improvement from using 90m resolution 

data in linking lidar to Landsat, but the improvement was minimal for three-phase A. 

For the three-phase B strategy, improvements were substantial for all three of the 

response variables for several combinations of models. 

Table 4.7 Three-phase A 90m prediction strategy RMSE values for various model 

types 

              

Models bio kg/ha (%) ba m
2
/ha (%) stems /ha (%) 

OLS OLS 35017 (73%) 7.7 (81%) 218 (87%) 

OLS kNN-MSN 39583 (82%) 8.3 (88%) 224 (89%) 

OLS kNN-RF 42257 (88%) 8.8 (93%) 224 (89%) 

OLS kNN-EU 42409 (88%) 8.8 (93%) 224 (89%) 

OLS kNN-MH 41174 (86%) 8.6 (91%) 230 (91%) 

kNN-MSN OLS 38191 (80%) 8.6 (91%) 251 (100%) 

kNN-RF OLS  37894 (79%) 7.9 (84%) 231 (92%) 

kNN-EU OLS 35129 (73%) 7.5 (79%) 209 (83%) 

kNN-MH OLS 36697 (76%) 8.2 (87%) 264 (105%) 

 

,3 ,3 ,
ˆ ˆ ˆ ( / 100%)P P Y SRS    

,3 ,3 ,
ˆ ˆ ˆ ( / 100%)P P Y SRS    
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Table 4.8 Three-phase B 90m prediction strategy RMSE values for various model 

types 

    
  

        

Models bio kg/ha (%) ba m
2
/ha (%) stems /ha (%) 

OLS OLS 28538 (59%) 6.1 (64%) 203 (81%) 

OLS kNN-MSN 35550 (74%) 7.3 (77%) 213 (85%) 

OLS kNN-RF 36543 (76%) 7.5 (79%) 217 (86%) 

OLS kNN-EU 37144 (77%) 7.8 (82%) 222 (88%) 

OLS kNN-MH 37347 (78%) 7.8 (82%) 215 (85%) 

kNN-MSN OLS 30960 (65%) 7.5 (79%) 258 (103%) 

kNN-RF OLS  31044 (65%) 7.1 (75%) 243 (97%) 

kNN-EU OLS 29562 (62%) 6.8 (72%) 244 (97%) 

kNN-MH OLS 29358 (61%) 6.3 (67%) 238 (95%) 

 

Amongst the RMSE values reported for the various strategies in Tables 4.3 – 4.6 some 

of the modeling configurations consistently performed better than others. The kNN-

MH OLS three phase strategy, for example, was competitive in nearly every case. The 

OLS OLS strategy also performed well generally, and was the strategy that for three-

phase B with 90m resolution performed the best of any of the strategies examined. 

Excluding OLS OLS, it appears that strategies which used a kNN model followed by 

OLS performed the best for biomass. There was no clear difference between these two 

groups for volume, and OLS followed by a kNN approach worked best for number of 

stems/ha. 

4.4 Discussion 

4.4.1 Multi-phase modeling strategies 

We examined a two-phase approach and two three-phase approaches to modeling 

selected forest attributes. The two-phase approach with plot and Landsat data 

performed the poorest amongst the approaches. Based upon what we found with our 

later analyses, it is likely that plot size played a role in the lack of performance, and 

that a two-phase Landsat approach would be more successful with larger, and a larger 

number of plots. Conceivably, if the area covered by four subplots per FIA plot were 

,3 ,3 ,
ˆ ˆ ˆ ( / 100%)P P Y SRS    



 
 

 

111 

 

 

consolidated into a single larger plot the performance of Landsat models would be 

improved for the forest attributes examined here. Consolidation of sub-plot area into a 

single plot would also likely improve the performance of lidar models as there would 

be proportionally fewer trees with edge effects (trees in the plot with foliage extending 

beyond the plot, and trees external to the plot with foliage extending into the plot). 

However, such a plot design is likely to be less efficient for variables not effectively 

modeled with lidar and Landsat, and would provide less information about spatial 

variability. And, since for our study area a lidar strip can be less expensive than a field 

plot, if performance can be improved for variables associated with forest structure by 

leveraging lidar at an intermediate stage it could possibly mitigate this weakness.   

Our analyses showed that lidar can be of assistance in an intermediate step for 

prediction of forest attributes ultimately with Landsat. For some configurations of 

resolutions and model types, both three phase approaches worked much better than a 

two-phase Landsat approach. Between the two three-phase approaches examined, 

approach B in which phases 1 and 2 and 2 and 3 are modeled separately performed 

better than approach A in which phase 3 predictions from phase 2 lidar were modeled 

with phase 1 Landsat data. Prediction performance for three-phase approaches also 

improved when we used larger pixels – although the improvement varied 

considerably.  The best overall performance was seen with three-phase B for 90m 

resolution with OLS models linking the separate phases. The performance may 

improve even further for modeling strategies using larger areas (>90m) for relating 

lidar and Landsat, as the proportion of the areas overlapping between lidar and 

Landsat would increase, reducing the impacts of edge effects and registration errors.  

4.4.2 Limitations 

In this study there were a variety of limitations with respect to the training dataset 

restricting our ability to explore different modeling scenarios. As a result, the findings 

we present here are certainly not the last word on the issues explored in this study, 

even for our study area. For example, our training data was not collected 
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simultaneously with the lidar. Field measurements spanned a 5 year period, while lidar 

was collected in 2009, the 5
th

 year of data collection. Also, the number of training 

observations was small, and the size of subplots was quite small. As a result we cannot 

speculate on the performance of our approach under ideal conditions, but given that 

we were able to explain more variability with a three-phase approach than was feasible 

in a two-phase approach with Landsat, our results still indicate that using lidar to scale 

up plot data to the resolution of the Landsat data is an opportunity worth exploiting. 

This is especially the case if a lidar strip sampling approach is already in place or 

under consideration for estimation purposes.  

4.4.3 Multi-temporal Landsat 

The multi-temporal Landsat data available for free from USGS is an under-utilized 

resource. We were able to make use of this resource to generate atmospherically 

corrected, cloud free, and temporally normalized Landsat values. By temporally 

normalized we mean that there is apparent variability in the sensed values for a 

particular pixel for a particular band which is not associated with changes is the 

associated vegetative structure. However, this too is an under-utilization of this 

resource and we envision greater success in the prediction of forest attributes if the 

trend information, such as intercept for the trend, or the slope or information about 

large perturbations are taken into consideration as described in Meigs et al. (2011), 

Robert E. Kennedy et al. (2007), Powell et al. (2010), Pflugmacher, (2011), and 

others. At this time we also cannot comment on whether using LandTrendr data for 

image processing improved the performance for cloud-free pixels, but since there are 

no recent Landsat images available for the Kenai peninsula which are 100% cloud 

free, we can say that we were able to develop predictions for all areas on the peninsula 

which would not be possible with a single image. In the future we plan to quantify any 

gains from using this approach for cloud-free pixels, as well as the potential gains 

from a more sophisticated interpretation of Landsat time-series information for 

individual pixels. 
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4.4.4  High-resolution aerial imagery 

The availability of off-the-shelf and publicly available imagery has increased in recent 

years. In many areas greater than 1 meter resolution aerial imagery is available for 

free, or at a low cost; USDA NAIP  imagery (Gabbott and Officer, 2003), for example. 

As with Landsat, there is some difficulty in relating forest attributes to aerial imagery. 

However, with higher resolution data the potential for relating field metrics, especially 

species, to texture, vegetation indices, and pixel DN values may be higher because the 

resolution, quality, and quality of spatial reference for aerial orthophotos is generally 

higher than for medium resolution satellite imagery. This means that with higher 

resolution imagery there may be even more potential for a three phase approach with 

lidar as an intermediate data source. It is unlikely that planar information from aerial 

imagery can achieve the precision achieved with three-dimensional information 

available from lidar, thus even for very high resolution imagery, using lidar as an 

intermediate data source may still provide and advantage by increasing the size of the 

training dataset for modeling with imagery. We did not use high resolution imagery in 

this study due to availability, complexity, and cost, but when available it is likely to 

contribute to the viability of a multiphase plot, lidar, and imagery modeling approach. 

4.5 Conclusions 

Using lidar as a strip sample is an innovative approach to leverage the forest structural 

information measured by lidar, while collecting the data for a reduced cost relative to a 

complete area collection. This is chiefly aimed at point estimation, e.g. total biomass 

for an area, but we demonstrate in this study that lidar strips can also be useful in 

training coarser resolution and planar Landsat data for prediction of the forest 

attributes biomass, volume, and trees per hectare. We explored a number of 

approaches and found that linking plot data to lidar and lidar to Landsat in separate 

steps before predicting forest attributes with Landsat yielded the most gain with 

respect to prediction RMSE. And using a 90m resolution yielded better results than 

when lidar was linked to Landsat at 30m resolution. Moving to an even larger area for 

modeling lidar to Landsat may also prove beneficial. 



 
 

 

114 

 

 

While we only performed our analyses for a sample of locations on the peninsula in 

our exploratory investigations, for mapping applications the use of LandTrendr pre-

processing algorithms enables mapping of predictions with a preferred modeling 

strategy across the entire study area and potentially for any point in the time series. 

These are important benefits given the difficulty in finding cloud-free images in 

Alaska, the irregularities in ETM+ data after May 2003 caused by the failure of an 

important sensor component, the scan line corrector (SLC), for Landsat 7, and the 

recent (November 2011 to current) difficulties with Landsat 5 data continuity. 

However, the approach used here did not fully leverage the Landsat pixel trajectories 

modeled with LandTrendr; we plan to make better use of them in future analyses. 
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5 Conclusion 

5.1 Contributions 

The research performed in this dissertation contributes to the body of knowledge 

which is related to estimation and modeling of forest resources using auxiliary remote 

sensing data, especially with lidar and Landsat. The research performed also 

contributes implicitly to the fields of mapping or prediction as a result of our treatment 

of modeling, but although this is also an important application, it is not an area that we 

discuss in detail. Remote sensing is a tool that can provide explanatory power for 

some forest attributes. With an appropriate conceptual framework we can harness this 

predictive power to make inference about vegetation attributes including lack of 

vegetation on the landscape. An important distinction regarding use of the word 

inference in discussing the contributions of this dissertation is that inference may 

include statistical inference, but the two concepts are not identical. I distinguish two 

modes of inference that prove useful in my discussion here. I will henceforth refer to 

the mode of inference which is practically useable but which is not required to be 

accompanied by statistical properties as practical inference, and inference relying on 

the calculation of statistics as statistical inference. For example we can make inference 

from a lidar derived canopy surface model about the heights of upper canopy trees in 

the forest which is practically useable for management without performing statistical 

inference. If we wish to additionally make statistical inferences about the capacity of 

lidar to distinguish between stand heights, we would need a measure of the accuracy 

of the lidar-based height measurements of height. This can be obtained by measuring 
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forest heights in the field and comparing them to the lidar-based measurement. The 

field measurements could then also be used to improve our height measurements from 

lidar by adjusting them by an amount indicated by their correspondence with field 

measurements.  

The strategy of making inference from remote sensing data by leveraging the 

correspondence between field measurements and remote sensing measurements for the 

same locations, as described in our discussion of inference, is in fact the basis for all 

of the analyses performed in this dissertation. There are already a large number of 

studies which examine the correspondences between remote sensing and field 

measured forest attributes for the same locations. Many of these studies provided 

statistical inferences which are valuable from a scientific standpoint, but may provide 

limited practical inference.  I believe that an important contribution to this field in its 

current state, where it is already known that there are strong correspondences between 

lidar variables and some forest attributes, is to develop, perform, and report statistical 

inferences in a manner that communicates practical solutions to real world problems 

(e.g. Corona, 2010).  

The research conducted in this dissertation is aimed at communicating inferences that 

solve problems associated with implementing forest inventory estimation and 

monitoring strategies that use auxiliary lidar and Landsat. One component of a 

contribution to the body of knowledge from evaluating a solution is the solution itself, 

and the second is providing useable inference either by placing the statistical inference 
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in context or by providing statistical inference that is practically useable. The approach 

we use to provide useable inference in chapters 1 and 2 is to perform analyses with 

respect to design-based inference and by comparing the performance of a target 

strategy with one or more alternate strategies to provide context. Manuscript 3 

emphasizes selected multi-phase modeling strategies; context for this section is 

provided by contrasting the residual variability for a variety of modeling strategies and 

practical inferences are provided only with respect to the modeling performance. 

 In manuscripts 1 we used design-based inference to evaluate the effects of pulse 

density and sample size on estimation.  Performing our analyses with respect to 

design-based estimation had a substantial effect on practical inference regarding the 

importance of the number of field plots for estimation with wall-to-wall lidar.  A 

number of studies have examined the effects of sample size on modeling (statistical 

inference) and found that above a certain threshold, the effects of sample size on 

residual variability was small.  This is a valuable scientific contribution that we 

corroborated. However, by placing this result in the context of estimation we came to 

a completely different conclusion than one might expect from the result alone. For 

estimation, the number of field plots was demonstrated to have a substantial effect on 

precision (a practical application), but chiefly because asymptotic precision of the 

regression estimator is a function of sample size rather than because of sample size 

effects on residual variability. If taken without further consideration there is a risk that 

the statistical inferences provided by previous studies will be interpreted as practical 

inferences. An incorrect inference from the statistical analysis on sample size and 
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residual variability is that there is no real benefit from increasing the number of 

sample plots. Our manuscript obviates the fact that this is not the case.  

While we found that modeling errors were immaterial for most sample sizes, 

accounting for and describing this source of error was an additional component of our 

contribution to research to this field. We initially estimated the effect of sample size 

on the variability of model residuals for our study, and did not find a practically 

worrisome effect of sample size on residual variability for as few as 15 observations, 

perhaps in part because we used a systematic sample which will yield a greater range 

of auxiliary values and hence more precise parameter estimates. Accounting for this 

source of error in estimation also contributes to the defensibility of our practical 

inferences from the results concerning sample size effects on estimation. The 

simulation approach that we used to examine reduced sample sizes incorporated both 

sampling and modeling errors, inflating standard error estimates by an appropriate 

amount to account for modeling errors. 

While the effect of sample size on modeling may have been slight in most cases, it 

may have influenced the behavior of the variance estimator, contributing to our 

observation that the formula-based variance estimator for the regression estimator 

worked poorly for small samples. Even without the effect of sample size on modeling 

this was not a surprising result given that the properties of the formula-based variance 

estimator are large sample properties, however it may cause the threshold for 

reasonable inference from the variance estimator to be greater than if the model 
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coefficients were not estimated from the sample.  Documenting the fact that sample 

size affects the validity of statistical inference is a particularly important contribution 

of our research given that many studies modeling forest attributes with lidar were 

performed with relatively small samples, or reasonable numbers of plots for a single 

model were stratified yielding too small numbers of plots for stratum models. Our 

discussion of this issue and providing a warning about the hazard of making inference 

from a small sample improves the chance that both in applications and in future 

studies sufficient numbers of observations will be used to make defensible statistical 

inferences. 

In our second manuscript we used design based inference again to support practical 

inferences about estimation, this time with lidar collected as a sample of strips, 

Landsat, and lidar strips and Landsat combined. In this manuscript we performed 

contrasted estimates of precision for a variety of estimation strategies and for multiple 

approaches to variance estimation. Estimation with strips of lidar is a relatively 

unexplored area of inquiry and as in the small number of previous studies examining 

similar approaches, we firstly contributed to this area of research by demonstrating the 

application and performance of estimation with sample strips for our case study. We 

secondly contributed to this body of research by suggesting two variance estimators 

including a bootstrap variance estimator and a Durbin style variance estimator. And 

finally, we contributed to this body of research by providing extensive context for the 

precision of estimation with a lidar sample strip approach relative to other estimation 

strategies. We compared a sample strip approach (which induces a two-stage design) 
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to an SRS design, to estimation with plots only, and to estimation with and in 

combination with Landsat. We also examined the effects of the number of lidar 

sample strips on estimation with lidar. Without contrasting the precision of the lidar 

sample strip approach to a variety of other estimation strategies it would be difficult to 

interpret the merits and viability of using lidar in a sampling mode. 

As it turns out we were able to demonstrate that there were configurations with a lidar 

sample strip approach that were highly viable for estimation of biomass, especially 

when combined with Landsat using a composite estimator.  Our results extend the 

work of previous studies by demonstrating that select configurations with lidar in a 

sampling mode are viable for estimation by contrasting the relative precisions of 

alternative estimation strategies including a lidar sampling strip strategy with different 

numbers of lidar strips. As previously noted, lidar sampling strips have been explored 

previously, but the relative performances for a variety of related estimation strategies 

were not provided, hindering the user’s ability to interpret whether using lidar as a 

sample of strips contributed in any way to estimation. Since our study is actually part 

of a pilot project attempting to develop an approach to more efficiently quantify 

natural resources (or monitor) in interior Alaska, a region without a complete forest 

inventory in place, the results from this study may be directly applicable in practice to 

the development of a sampling strategy for interior Alaska. 

Manuscript 3 is slightly different than manuscripts 1 and 2 because the focus is on 

modeling instead of estimation. We make statistical inferences which are practically 
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interpretable with respect to estimation, but we do not directly provide statistical 

results for estimation, although we plan to do so in the future. The objective of 

manuscript 3 is to develop and evaluate improved strategies for modeling forest 

attributes with Landsat by using lidar as an intermediary data source. In this analysis 

statistical inference was provided with estimates of residual variability when for 

alternate modeling strategies. 

The first practical contribution that we made in manuscript 3 was that we identified 

superior modeling strategies with respect to residual variability. The selection of a 

superior modeling strategy included as components the approach used to treat lidar as 

an intermediary step, the order and type of different modeling approaches (KNN and 

OLS), and the resolution used to train Landsat (30 m or 90 m). There are perhaps 

innumerable different potential modeling strategies, and we do not claim to have 

found the best of all possible strategies, but the results indicated strategies that worked 

well for our case study and should perhaps be tested or implemented with priority over 

the alternate strategies described. Practically applicable statistical inference with 

respect to estimation can still be made in a roundabout way from our results by 

examining the modeling performance in manuscript 3 relative to the modeling 

performances in manuscript 2 and examining the effect of residual variability on 

estimation precision – although clearly explicit treatment would be superior, an 

approach we plan to undertake in future work.   
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A second contribution from manuscript 3 with practical implications was the 

development of a strategy to estimate residual variance for a multiphase modeling 

strategy. This is an important step because the resolution of the field measurements 

does not match the resolution of the Landsat, especially when Landsat was resampled 

to 90m resolution. Our estimator of residual variance can then quite easily be plugged 

into a design-based variance estimator, for example, to make statistical inference that 

is also of practical value (a step we did not take, but plan to include in future work). 

We do not claim originality for the concepts or strategy used to develop the residual 

variance estimator, and in fact leaned heavily on Kmenta (1997) for the derivation, but 

we are unaware of another study that provides an estimator of residual variance for a 

multi-phase  modeling strategy. 

5.2 Limitations 

A primary limitation of an approach that uses auxiliary remote sensing information for 

modeling and estimation of forest attributes is that many field measured variables may 

have limited or zero useable correspondence with remote sensing variables. Often 

remote sensing augmented approaches are explored to improve the performance of 

estimation strategies with the objective to increase the quality of outputs, provide 

outputs not feasible otherwise, or reduce the cost to achieve the same level of quality. 

For variables with zero correspondence with remote sensing the addition of remote 

sensing may provide no benefit, and is likely to require additional cost. Certainly no 

improved products are feasible for these variables. And if the number of 
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measurements is reduced to pay for remote sensing then the quality of information for 

some variables will also be reduced. 

For forest inventory applications, acquisition of species information is often 

mandatory, but is only minimally supported by predictions with lidar or Landsat. For a 

limited number of applications including where extensive legacy information is 

available, a single species is dominant, or in rare applications where species is not 

important, this will not be an issue, but for many cases lack of species information is a 

deal breaker. In this study, and in many other studies with lidar, the difficulty in 

acquisition of species information is not addressed.  In this dissertation we examined 

continuous response variables with relatively strong associations with lidar-derived 

variables. While our analyses provide valuable contributions to scientific and practical 

inferences, the practical inferences are currently limited in scope to instances where an 

alternate source of species information is available or species is not needed.  Of the 

variables that we did not address, we especially single out species because in 

applications it is perhaps the most important attribute which cannot be easily obtained 

from lidar or Landsat, but the same limitation to our inference is present for any other 

scenario where an attribute that is required cannot be reasonably captured from these 

remote sensing sources. 

5.3 Future research 

Because it provides three dimensional information that is useful in predicting biomass 

and related variables it is likely that lidar will play an increasing role in forest 
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inventory and monitoring. However, as previously described, lidar cannot provide 

species information as easily as forest structure information. Since it is abundantly 

clear that it is possible to provided volume, biomass, and related variables with lidar, 

the most important next step in demonstrating the usability of lidar is to develop and 

describe approaches to retrieve species information. There has been a fair amount of 

work on predicting species composition from lidar, but it is not clear how the various 

approaches perform operationally. The effect of these approaches on the quality of 

practical statistical inference is not described. It is necessary that they are contrasted 

with existing protocols to acquire forest attributes such as volume by species class, 

much as we did in chapter 3 by comparing alternate estimation strategies.  

Species classification  is described in the literature for both individual tree (Holmgren 

and Persson, 2004) and areal approaches (Donoghue et al., 2007) . An area approach is 

preferable from a computational perspective, but even an individual tree based 

approach is highly beneficial so long as it provides additional explanatory power – 

perhaps in combination with areal estimates of alternate variables. However, lidar may 

never be the ideal tool for species differentiation by itself. For cases where lidar does 

not have sufficient explanatory power to differentiate species it will be important to 

demonstrate alternate sources of species information, such as from aerial photos. 

Studies in the literature demonstrate that species differentiation is feasible with lidar 

and aerial imagery. Ideally the approach should be automated, where automation (and 

vegetation penetration) is one of the primary advantages of using lidar over stereo 

imagery for height measurements.  An approach which relies upon user interpretation 
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of stereo imagery may be too expensive in many instances. Recently there has also 

been a fair amount of interest in automated approaches to species differentiation which 

make use of hyperspectral imagery with promising results (Naidoo et al., 2012; Jones 

et al., 2010), although the gain relative to multispectral imagery may not warrant the 

additional cost or effort (Dalponte et al., 2012). 

In the same vein as we approached lidar for the research in this dissertation, it is 

important to demonstrate the effect that various approaches to acquisition of forest 

variables have on estimation, especially if variables cannot be accessed effectively 

with remote sensing. Many of the studies in the literature and the research in this 

dissertation focus on variables accessible with lidar.  It is not clear what the 

implications would be if a large number of variables must be reported, such as for the 

national FIA program. For example, is there a middle ground where fewer plots are 

used because of the increased efficiency afforded by remote sensing for variables of 

primary interest, but more plots than are strictly necessary for biomass (e.g.) to enable 

adequate (but reduced) precision for variables which are not related to remote sensing 

variables. Alternatively it may be possible to achieve the desired level of precision at 

reduced cost by measuring variables at different spatial and temporal frequencies. 

Understory species composition (e.g.) is unlikely to change rapidly for some forest 

conditions, so it may prove feasible to acquire this information using a higher spatial 

sampling intensity measurement protocol with a reduced temporal sampling intensity. 

Update measurements could even be target to areas with observed remote sensing 

changes that are indicative of composition changes.
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