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Data Assimilation for Prediction of Shallow Water Flows with
 

Uncertain Bathymetry
 

1. General Introduction 

In 1871, Adhémar Jean Claude Barré de Saint-Venant published a manuscript introduc

ing the mathematical treatment of one-dimensional shallow water hydrodynamics, the 

equations which now bear his name (Barré Saint-Venant, 1871). At the time, Saint

Venant’s physical reasoning would not have been considered groundbreaking (having 

been developed by Euler over a century beforehand), and his mathematical derivation 

was not particularly difficult. However, the monumental impact of Saint-Venant’s equa

tions stems from the fact that shallow water hydrodynamics applies to a huge breadth of 

societally relevant problems. One example is the propagation of tides in an inlet or es

tuary, the original motivation for Saint-Venant’s work. Indeed, a century later the same 

approach was used for an analysis of flooding on the Thames River including the city 

of London (Bowen & Pinless, 1974), to determine the level of coastal protection needed, 

and inform the design and operation of the Thames Barrier. Another example is the 

prediction of nearshore currents: the importance of currents in amphibious naval opera

tions during World War II led to an increased scientific interest in nearshore prediction 

(Sverdrup & Munk, 1946; Galvin, 1967), and ultimately to a mathematical description 

using shallow water theory1 (Longuet-Higgins, 1970a; Bowen, 1969), which forms the 

foundation of most contemporary nearshore models. It is a testament to the importance 

of shallow water hydrodynamics, and hence to the insight of Saint-Venant himself, that 

his equations have touched so many applications in engineering and science. 

Following the development of basic mathematical descriptions for shallow water flows, 

researchers have since turned to the study of increasingly detailed physics in the same 

general setting, namely unstratified nearshore/estuarine/river environments (the subject 

1It is interesting to note the parallels between the development of nearshore hydrodynamics and that 
of Saint-Venant’s equations. In both cases, proposed models from the engineering community for solving 
practical problems (Galvin, 1967) were ultimately replaced by a more general theory using shallow water 
equations. In the nearshore, a key insight was the introduction of the radiation stress due to surface 
gravity waves (Longuet-Higgins & Stewart, 1964). 
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of the present work). Examples include the study of bottom boundary layer processes 

(Smith & McLean, 1977; Grant & Madsen, 1979; Nielsen, 1992) and horizontal mo

mentum mixing (Svendsen & Putrevu, 1994; Nadaoka & Yagi, 1998). Still others have 

looked to three-dimensional aspects which are not explicitly included in the traditional 

shallow water equations (Bathurst et al., 1979; Garcez-Faria et al., 2000). The ability 

to compute solutions at high resolution in space and time has also permitted the study 

of detailed flow behavior; some examples in nearshore oceanography include the gener

¨ ation and evolution of low-frequency eddies (Bowen & Holman, 1989; Ozkan Haller & 

Kirby, 1999; Clark et al., 2012), the response of the flow to a spatially varying seafloor 

(Slinn et al., 2000; Wilson et al., 2013), and the coupling between hydrodynamics and 

sediment transport (i.e., nearshore morphodynamics, Wright & Short (1984)). Similarly 

in fluvial dynamics there has been much interest in the understanding of flow in mean

dering and braided river channels, and, again, the resulting morphodynamics (Smith & 

McLean, 1984; Ikeda & Parker, 1989). As a result of these and other efforts, present day 

understanding of shallow water hydrodynamics2 can be considered quite mature, and 

numerical models can now generate quantitative predictions of natural flows. 

This ongoing development has, of course, been paralleled by continued interest in 

new real-world applications of such models. Two such applications have already been 

mentioned, above (tidal flooding in estuaries, and naval operations in the nearshore). 

Other recent examples include the prediction of hazardous currents for recreational beach 

users (Austin et al., 2012), and the transport of tracers, such as bacteria/pollutants (Feng 

et al., 2013), or larval organisms (Shanks et al., 2010; Rilov et al., 2008), along natural 

coastlines. Due to efforts to improve model physics, as above, the challenges faced in 

more-recent applications are often less related to the correctness of the model, and more 

related to the ability to correctly specify the physical environment. In short, model 

boundary conditions (and other inputs) can never be exactly specified in the real world, 

and this can have serious consequences for model accuracy. Hence, the complexity of 

coastlines, inlets, and rivers is tantalizing to some researchers (Coco & Murray, 2007), 

but can spell disaster for others seeking to make quantitative predictions or forecasts. 

It is this problem — hydrodynamic prediction in poorly-constrained natural shallow 

water systems — that forms the motivation for the present work. We ask: how can we 

make meaningful predictions in situations where the model physics is well-established, 

but the detailed physical environment is unknown or uncertain? In particular, we focus 

on one important aspect of that problem: uncertainty of bathymetry. We present a new 

2We now use this term loosely, not specifically referring to the shallow water equations. 
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approach, using methods from data assimilation (specifically the ensemble Kalman filter; 

Evensen (2006)) to incorporate bathymetric uncertainty into model predictions, and to 

control that uncertainty via the inclusion of additional observational data. 

The second chapter of this dissertation introduces the application of data assimilation 

for the prediction of surf zone waves and currents. The surf zone, defined as the nearshore 

region where depth-limited wave breaking occurs, is a highly energetic and dynamic 

environment. Surf zone bathymetry is difficult to measure directly, and can change 

dramatically within a matter of days due to sediment transport. We present a real-

world case study where the resulting bathymetric uncertainty dominates the sources 

of error for prediction of a surf zone flow. Assimilation of data (in-situ measurements 

of alongshore current and wave height) is subsequently shown to alleviate this model 

error by correcting bathymetry errors. We also delve into the basic workings of the 

assimilation method, and explore its ability to model interrelationships among variables 

in the presence of bathymetric uncertainty. This work appeared as a publication in the 

Journal of Geophysical Research, Oceans (Wilson et al., 2010). 

Chapter Three applies the same methodology to a different shallow water setting: 

that of a river or narrow estuary. Here, the method is again shown to be capable of mod

eling the relationship between uncertain bathymetry and uncertain model predictions of 

river currents. Again, the assimilation of observed currents is shown to correct errors in 

bathymetry, or, equivalently, to estimate bathymetry as an “inverse problem”. In this 

case, the investigation is done using twin-tests, to explore several possible methods of 

observation (fixed in-situ gages, remote sensing, and passive drifters). This work ap

peared as a publication in the Journal of Atmospheric and Oceanic Technology (Wilson 

& ¨ Ozkan-Haller, 2012). The results have since been extended by Landon (2012), using 

the same methodology but with actual observations of currents from passive drifters 

deployed by Swick (2011). Landon found that the method was capable of generating ac

curate estimates of bathymetry in two different river reaches, was robust against errors 

in input parameters such as the expected length scale of unknown bathymetric features, 

and did not require unreasonable observational effort (ca. 10 drifter trajectories were 

sufficient for an accurate estimate). 

In Chapter Four, we return to the surf zone environment, with the goal of refining the 

data assimilation method for potential use in a more operational-oriented application. 

Whereas Chapters Two and Three focused on how and why the method works in theory 

(taking advantage of a relatively controlled observational setting), here we shift to how it 

can be used in practice. To that end, we incorporate new methods for observing the surf 
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zone remotely, using shore-based optical and infrared video cameras, as well as marine 

radar. An obvious advantage of such methods is that the surf zone is an unforgiving 

environment for in-situ observation (due to breaking waves, strong currents, and often an 

unstable sandy bottom). Using remote sensing, one is able to observe for a longer period 

of time, and over a wider area. Surf zone bathymetry, however, cannot be observed 

remotely, hence the present method is a natural fit. We show that remote sensing data 

can be successfully used to control bathymetric errors, as in the previous two chapters. 

We also show how assimilation of data can permit model predictions of a rip current 

(whose presence is strongly tied to a bathymetric feature), even in the absence of any 

in-situ bathymetric observations. 

It is worth mentioning that the main three chapters (2–4) of this dissertation also 

take three complimentary viewpoints on the problem of bathymetric uncertainty in pre

dictive models. In Chapter Two, we show that bathymetric uncertainty due to rapid 

bathymetric change (time scale of days) has a strong impact on model error, which can 

be modeled and corrected using data assimilation. Chapter Three takes a more prag

matic approach, where one seeks to estimate bathymetry using observations of currents 

(the “inverse problem”), without giving much importance to the resulting effects on 

model predictions. Chapter Four takes the viewpoint of a forecaster, who is interested 

in “controlling” bathymetry error for the purposes of improving model predictions over 

time. Throughout, a unifying theme is the use of data assimilation to incorporate and 

manipulate uncertainty in the model and its inputs. 
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2.1 Introduction 

Many nearshore circulation models utilize the depth- and wave-averaged equations of 

motion, coupled with a “wave driver” for transfer of momentum from incident gravity 

waves to surf zone currents. When validating these models (i.e. assessing their ability to 

match observations), one must consider two sources of error: mis-specification of physical 

processes in the model, and errors in model inputs, namely the underlying bathymetry 

and boundary conditions. Here, we will refer to these as “process error” and “input 

error”, respectively. 

The majority of previous studies (e.g. Longuet-Higgins (1970b); Thornton & Guza 

(1986); Reniers & Battjes (1997)) have focused on minimizing process error, leading 

to improved parameterizations and empirical calibrations now standard in nearshore 

models. Meanwhile, the potential role of input error is often acknowledged but tends to 

be difficult to quantify, let alone to correct. An important example, which is the focus of 

this paper, is the presence of bathymetric uncertainty when modeling surf zone currents. 

Bathymetric input error may appear in various forms. In the extreme case, where the 

bathymetry has not been measured, one is forced to assume some reasonable beach shape 

for the model. Even when measurements are available, they are subject to instrument 

error. Spatial undersampling may not resolve high-wavenumber bathymetric features 

(Plant et al., 2002), and the resulting spatial smoothing may affect model outputs (Plant 

et al., 2009). Temporal undersampling may also occur, as beach changes occur on daily 

or even hourly time scales. In field situations, these various sources of bathymetric input 

error may be as important as process error as constraints on model accuracy. 

In this study, we address the issue of bathymetric input error from two perspectives. 

First, we seek to quantify the sensitivity of the model to errors in bathymetry. Second, 

at the same time, we evaluate a method for indirectly correcting bathymetric errors, 

by incorporating in-situ measurements of waves and currents. These two perspectives 

encompass data assimilation and bathymetric inversion. 

In previous data assimilation efforts, Feddersen et al. (2004) used a variational ap

proach (Bennett, 2002), deriving adjoint equations for a surf zone model involving lin

earized alongshore-uniform dynamics, to assimilate pressure and bi-directional current 

(PUV) measurements on a natural beach. Kurapov et al. (2007) extended this approach 

to the nonlinear 2DH time-dependent equations, and used the process of nonlinear shear 

instability in alongshore currents (Slinn et al., 1998) as a test-bed for variational data as

similation. Both these studies focused on model sensitivity in the form of forcing errors, 
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which we would characterize as process error. Feddersen et al. (2004) also considered 

sensitivity to the bottom friction coefficient, i.e. input error. 

Regarding the topic of surf zone bathymetric inversion, the majority of previous stud

ies have focused on the technical challenge of observing surface wave properties, which 

are often related to water depth using simple physical models. For instance, previous 

studies have estimated bathymetry using the linear wave dispersion relationship (Stock

don & Holman, 2000), the nonlinear wave dispersion relationship (Catalán & Haller, 

2007), or wave refraction (Splinter & Holman, 2009). Wave breaking dissipation proxies 

have also been used in combination with empirical models (Aarninkhof et al., 2005) to 

infer bathymetric changes. 

Recently, van Dongeren et al. (2008) have applied data assimilation techniques to the 

problem of bathymetric inversion, providing a fresh perspective on this long-standing 

problem. Their method employs a sequential least-squares estimator, which assimilates 

multiple remote sensing (video and radar) wave observations. While not as sophisticated 

as the variational schemes of Feddersen et al. (2004) or Kurapov et al. (2007), their 

technique stems from a comparable approach. Adjoint equations are derived, in this 

case, from simple localized models for the observed physical processes. Spatial covariance 

is neglected (although this may be unimportant for the spatially-dense observations 

being considered), and temporal covariance is approximated empirically. Despite these 

simplifications, their results show the most robust and reliable bathymetric inverse to 

date. This reliability stems from the important step of acknowledging data errors as 

well as model errors, and covariances thereof, in order to form a statistically optimal 

estimate. 

The present work is conceptually similar to that of van Dongeren et al. (2008), but 

with some key differences. First, our method quantifies model sensitivity using statistical, 

rather than analytical, means. This facilitates the assimilation of arbitrary geophysical 

variables, without having to compute their derivatives with respect to depth (i.e. adjoint 

equations). Second, we incorporate spatial covariance, and hence can compute non-local 

corrections based on local in-situ measurements. Finally, we put special emphasis on 

bathymetric sensitivity and its role in the inversion problem. 

The paper is organized as follows: section 2.2 introduces the in-situ data set. Sec

tion 2.3 presents the data assimilation methodology: the parameter estimation scheme, 

the hydrodynamic model, and the technique used to represent bathymetric uncertainty. 

Section 2.4 gives examples of the application of that methodology to field data. Sections 

2.5 and 2.6 summarize and discuss the results, and give conclusions. 
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2.2 Observations
 

In this study, we will use a subset of the data collected during the SandyDuck ’97 (SD97) 

experiment (Duck, NC); Figure 2.1 shows the experimental layout. Between 22 Septem

ber and 31 October, the U.S. Army Corps of Engineers Field Research Facility (FRF) 

conducted 38 daily bathymetric surveys in the region shown (except for 19 October), us

ing the CRAB survey vehicle (Birkemeier, 1984) to collect multiple across-shore transects 

of bathymetry spaced 25-50 m apart. These surveys were interpolated onto a regular grid 

with 5 m and 10 m spacing in the across-shore and alongshore directions, respectively, 

using a quadratic loess filter (Plant et al., 2002) with interpolation filter length scales 

of 200 m in the alongshore direction, and 5 m in the across-shore direction. Additional 

bathymetry was incorporated from larger-scale surveys conducted on 16 September and 

23 October, such that the total model domain was 0 ≤ x ≤ 900 m and 0 ≤ y ≤ 1000 

m; the detailed daily surveys were stitched on top of the larger-scale bathymetry using 

weighted interpolation, i.e. 

h = wh0 + (1 − w)h1, (2.1) 

where h0 is the larger-scale bathymetry, h1 is the detailed minigrid bathymetry, and w 

is a weighting function which ramps from 0 to 1 over 50 m at each edge (using a tanh 

shape). Herein, plots and figures will present bathymetric data in terms of distance 

from the National Geodetic Vertical Datum (NGVD) to the sea floor, or zb; that is, 

h = −zb + zt, where zt is the still water level (which changes with time due to tide and 

large-scale surge). 

An offshore array of 15 bottom-mounted pressure gages (labeled “8m-array” in Figure 

2.1; Long (1996)) provided frequency-directional wave spectra at 3-hour intervals, which 

are used to specify the offshore boundary for the wave model (section 2.3.3). When the 

model time is not centered on a 3-hour collection time, a time-interpolation is applied 

using the scheme described in the SWAN wave model user manual (www.wldelft.nl). 

In-situ measurements from sonar altimeters, pressure gages, and bi-directional cur

rent meters (SPUV) were provided at the locations shown in Figure 2.1 (Elgar et al., 

2001). These were processed to obtain the significant wave height Hmo (17 minute in

tervals), time-averaged currents (17 minute intervals), and estimated depths (three-hour 

intervals). The depth measurements were further processed by comparing to the daily 

bathymetric surveys; offsets which persisted for five or more days were removed from 

the sonar altimeter data, in cases where the offset was significant (using Welch’s t-test 

for significance of bias, with n ≥ 5 and p < 0.05) and the correlation was significant 

http:manual(www.wldelft.nl
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Figure 2.1: Top: plan-view map of observational array. Bottom: side-view, with depth 
transect from 22 September survey, showing typical bathymetric profile and sensor po
sitions in water column. Still water level ranged from -0.5 m to 1.5 m NGVD during the 
experiment. 

√ 
and positive (p < 0.05, r > 0.1). These corrections were typically small (less than 20 

cm) and in deep water (depths greater than 3 m). Agreement with the CRAB surveyed 

depths was otherwise excellent (root-mean-square difference was 7.3 cm). 

2.3 Methodology 

In this section, we outline a methodology for assimilating data and generating bathy

metric inversions based on point observations of wave height and alongshore current. As 

a general overview, the method involves the following steps: 

1. Generate an ensemble hf (f for “forecast”, following the standard notation) con

sisting of N realizations of bathymetry (in our application, N = 150). The distri

bution of the ensemble should be representative of prior knowledge and uncertainty 

(section 2.3.2). 

2. Apply the hydrodynamic numerical model (section 2.3.3) to each of the N bathy

metric ensemble members, assuming other inputs are perfect (e.g. wave spectrum 

at offshore boundary), and store the output. 

3. Compute the sample mean and covariance from the ensemble of modeled fields. 
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4. Generate an updated (posterior) state ψa (a for “analysis”, equation (2.3)), which 

includes bathymetry, wave height, currents, and calculate the posterior uncertainty 

Ca 
ψψ (equation (2.5)). 

We note this methodology is not particularly new or novel: Mourre et al. (2004) have 

previously applied ensemble-based methods (steps 1–3) to examine bathymetric sensi

tivity in a regional ocean model. The equations for optimally updating the model (step 

4) are following a vast and ongoing literature on data assimilation using ensemble-based 

methods, for example the ensemble Kalman filter (EnKF) (see Evensen (2006), on which 

the present method is largely based, as well as references therein). The following sec

tion reviews the existing methodology, as it applies to the unique problem studied here: 

nearshore bathymetric sensitivity and inversion. 

2.3.1 Theory for Bathymetric Inversion 

To begin, we define some notation which will be useful in what follows. Suppose, for 

simplicity, we are dealing with a single observable v. In later sections we will in fact 

observe and assimilate two variables, alongshore current and wave height, but the ex

tension is straightforward: simply augment v with Hmo. We are also given a model, 

v = G(h), which makes predictions of v on a discrete spatial grid, given the water depth 

h. Here, we have assumed the model (including all boundary conditions and inputs 

other than h) is “perfect”, so the error of the model prediction is due only to errors in 

h. To that point, we define the model input bathymetry h = ht + p, where ht is the true 

bathymetry. When the error p is included in the model input, the resulting prediction 
tis v = G(ht + p) = v + q. 

tOur goal is to obtain an optimal estimate of the true field on the model grid, v = 

G(ht), given a set of K observations which are themselves subject to some error ǫ, 

d = Lvt + ǫ. Here, L is a measurement operator, in our case simply a matrix which 

linearly interpolates from the gridded field to the measurement locations. We define the 

optimal posterior estimate ψa as the one which minimizes the following cost function: 

( )T ( )

J [ψ] = ψ − ψf Wψψ ψ − ψf 

+ (d − Lv)T Wdd (d − Lv) , (2.2) 

where ψ = [vT , hT ]T is a state variable in which v is augmented with h (note v and 

h should each be treated as M × 1 vectors, where M is the total number of model 
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gridpoints), ψf corresponds to a prior estimate for v and h, and Wψψ and Wdd are 

positive-definite weighting matrices. 

Note that J contains a “model” part and a “data” part: the model part says the 

posterior state should not stray too far from the prior (hence, it retains physics from 

the model solution), and the data part says the posterior should match closely with 

observations. If Wψψ ≫ Wdd (“perfect prior”) the posterior solution is just the prior ψf , 

and if Wdd ≫ Wψψ (“perfect data”) the posterior solution is an exact interpolation of the 

data d. Clearly, the perfect-prior assumption ignores the information contained in the 

observations; the perfect-data assumption, on the other hand, can lead to interpolation 

of observation noise. Hence, a central challenge of data assimilation is to find the correct 

balance between these two extremes by correctly choosing the weights W . In some 

cases, it is useful to “hedge” the estimate towards the prior, for instance if there is a 

possibility of instrument malfunction. In other cases, the observations are known to be 

very accurate and a perfect-data assumption is valid. 

It can be shown (Evensen, 2006; Bennett, 2002) that the solution ψa which minimizes 

J is given by 
( )

  −1 
ψa = ψf + CψψL

T
a LCvv L

T + Cdd d − Lvf , (2.3) 

where La = [L, 0K×M ] is an augmented measurement operator for extracting v from ψ, 

and Cψψ and Cdd are the inverse of the weights Wψψ and Wdd. Specifically, Cψψ has the 

following structure: 
  

Cvv Cvh 
Cψψ = (2.4) 

Chv Chh

By choosing Cψψ as the covariance, equation (2.3) gives the maximum likelihood esti

mator for Gaussian statistics. 

At this point equation (2.3) can be viewed as a general solution, and the problem is 

reduced to specifying Cψψ based on properties of the model (Cdd is typically specified 

as a diagonal matrix whose elements are the observation error variances). The simplest 

approach is to define Cψψ a-priori without reference to the model itself. A more at

tractive approach, which recognizes the intrinsic properties of the model, is the method 

of representer expansions (Bennett, 2002). That method requires the specification of 

Chh, but uses the model (via adjoint equations, which must be derived) to obtain the 

corresponding Cvh and Cvv. Feddersen et al. (2004) and Kurapov et al. (2007) used 

representer expansions, except their goal was to correct forcing and/or bottom friction, 

not bathymetry. van Dongeren et al. (2008) used a hybrid approach, where Cvh, Cvv , 
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and Chh were assumed a-priori to be diagonal matrices (hence the correction is local

ized), but are related to one another by a physical model. In our application, we use an 

ensemble-based methodology, described next. 

The crux of ensemble-based methods (e.g. the ensemble Kalman filter, Evensen 

(2006)) is that Cψψ is approximated by the sample covariance of a representative en-
fsemble ψi , i = 1, 2, . . . ,N . This ensemble is generated by applying the forward model 

G to an ensemble of inputs hf , drawn from a statistical distribution specified by some i 

reasonable Chh (see section 2.3.2). In the update step, one applies equation (2.3) to 
feach member of the ensemble (each time treating ψf = ψ ) to obtain the posterior i 

members ψi
a . The sample mean of ψi

a is interpreted as the posterior state estimate, and 

the sample covariance provides a posterior estimate of uncertainty (under a Bayesian 

interpretation), given by 

−1 
Ca = Cψψ − CψψL

T LCvv L
T + Cdd LaCψψ. (2.5) ψψ a 

2.3.2 Prior Bathymetric Ensemble 

The previous section showed that the problem estimating v and h, based on observa

tions d, hinges on the specification of the bathymetric covariance matrix Chh. In our 

application, we do not explicitly define Chh, but instead we construct an ensemble of 

bathymetric realizations hi, in such a way as to represent the spread of potential bathy

metric error to the best of our knowledge. Chh is then approximated by the sample 

covariance of that ensemble. 

We assume the dominant bathymetric error, in this context, is due to integrated 

sediment transport between bathymetric surveys (instrument error is also present, but 

we have attempted to minimize its impact using loess interpolation, see section 2.2). 

Hence, the reasonable spread of bathymetric realizations should be constrained by mea

surements (survey data from the recent past/future). We must also limit the ensem

ble to realistic bathymetries: perturbations around the prior mean h must not include 

physically-unrealistic shapes or features. To that end, we seek realizations on the state 

space where bathymetric change naturally occurred throughout the experiment. We 

approximate this space by applying an empirical orthogonal functions (EOF) decompo

sition to the complete set of interpolated bathymetric surveys over the entire experiment. 

For a particular bathymetric ensemble, the prior mean loadings are set to the time-mean 

observed loadings from a 72-hour period surrounding the target time. The prior stan
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Figure 2.2: Top: leading modes in bathymetric EOF decomposition (normalized to unit 
variance). Bottom: percent of total variance for leading ten modes of bathymetric EOF 
decomposition. 

dard deviation of loadings is set equal to the range of loadings observed over the same 

time period. 

Figure 2.2 shows the leading modes of the EOF decomposition, and their correspond

ing percent of variance. The first mode represents full-domain surveyed change (only two 

full-domain surveys were conducted); subsequent modes show increasing detail mostly 

focused on the dynamics of the inner bar at x ≈ 150 m in the minigrid domain (defined 

as 550 m ≤ y ≤ 1000 m). For instance, the across-shore position and width of the inner 

bar is mainly determined by EOF modes 2 and 3. 

2.3.3 Forward Model 

Once the bathymetric ensemble is specified, we must generate the corresponding en-
fsemble of observables vi , which involves applying a forward model to each ensemble 
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fmember hi . Here, we use the freely-available code shoreCirc (version 2.0, Svendsen 

et al. (2002)) to solve the depth-integrated and wave-averaged equations of motion for 

arbitrary bathymetry. These comprise the momentum equation, 

  

∂Qβ ∂ QαQβ ∂η 
+ = −g(h + η)

∂t ∂xα (h + η) ∂xβ 
( )

+ τQ3D − 1 
τβ
s − τβ

b + τM 
β βρ 

1 ∂Sαβ − . (2.6) 
ρ ∂xα 

and the conservation of mass equation, 

∂η ∂Qα 
+ = 0, (2.7) 

∂t ∂xα 

where α and β are dummy indices for horizontal coordinates (summation is implied over 

repeated indices). In these equations, Q is the depth-integrated volume flux, h is the 

still water depth, and η is the wave-averaged water surface elevation. We define the 

depth-averaged across-shore and alongshore current as u = (Qx − Qwx)/(h + η) and 

v = (Qy −Qwy)/(h + η), respectively, where Qw is the contribution to volume flux from 

waves (approximated using linear wave theory). τ s and τ b are surface and bottom shear 

stresses, τM is a non-dissipative momentum mixing, τQ3D represents “quasi-3D” mixing 

(Svendsen & Putrevu, 1994), and S is the radiation stress tensor (Longuet-Higgins & 

Stewart, 1964). Details of the parameterizations of the various terms can be found 

in the shoreCirc manual (http://chinacat.coastal.udel.edu/programs/nearcom). 

Default values for physical constants were used throughout, except for the bottom friction 

coefficient fw which was specified as 0.0053 (cf. Feddersen & Guza (2003)). We employ 

no-flux shoreline boundary conditions (the shoreline is defined as h = 0.05 m), and 

radiation offshore boundary conditions. The lateral boundaries are treated as periodic, 

where a 300 m artificial buffer zone is added to enforce periodicity in the model inputs. 

The equations are solved on a mesh with (Δx, Δy) = (5, 10) m, and time-step Δt = 0.18 

s. 

To define the time-independent model operator G, equations (2.6) and (2.7) are 

integrated from rest to steady-state. Shear instability of the alongshore current (Bowen 

& Holman, 1989) did not occur for the conditions tested here, except if the quasi-3D 

terms were turned off, similar to the results of Zhao et al. (2003). Hence, the steady-state 

flow corresponds to a single snapshot of the final model state. 
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To compute the radiation stress gradients due to wave motion, as well as other 

wave-related quantities which appear in equation (2.6) via parameterizations, we use 

another freely-available code, SWAN (Booij et al., 1999). SWAN solves the spectral wave 

action-balance equation (Mei, 1983), and thus predicts the full-field wave spectral trans

formation. The model is initialized with measured wave frequency-directional spectra 

at the offshore boundary (see section 2.2). We include the effect of the wave roller, a 

mass of aerated water which travels on the face of breaking waves, using the formulation 

of Reniers & Battjes (1997) (also Reniers et al. (2004) and Ruessink et al. (2001)). We 

neglect interaction between the waves and the wave-averaged velocities. 

The accuracy of the above model, although assumed perfect for the purposes of 

developing the data assimilation methodology, is in fact limited by many underlying 

assumptions about physical processes. In practice, it is very difficult to quantify the 

process model accuracy, except in very controlled laboratory conditions, because of the 

simultaneous presence of model input errors (the focus of the present work). An example 

of such a controlled validation is provided by Haas et al. (2003), who applied shoreCirc 

to simulate a laboratory rip current flow. In that study, shoreCirc was shown to re

produce the broad features of the 2DH flow, while smaller-scale flow details were shown 

to be influenced by errors in the bathymetric input. They also found the accuracy of 

shoreCirc to be comparable to that of a wave-resolving Boussinesq model. 

The present model is also known to be as accurate as other available 2DH numerical 

codes under comparable field conditions. Wilson (2009) performed a validation of the 

present model for 455 hours of the SD97 field experiment, and found rms errors of order 

5–15 cm for Hmo and 10–20 cm/s for v (larger errors occurring closer to shore). Similar 

values have been reported by Ruessink et al. (2001) (for a 1DH model), and Morris (2001) 

and Hsu et al. (2006) (for 2DH models), among others. Hence, the present model setup 

is considered representative of the state-of-the-art for depth-integrated wave-averaged 

nearshore prediction. 

2.3.4 Observational Error Estimates 

We assume observation error standard deviations of 6.7 cm/s in alongshore current, and 

7.0 cm in significant wave height. These values encompass errors of measurement (instru

ment noise), as well as so-called representation errors (the two are added in quadrature). 

The former are due to practical issues of data collection and quality, while the latter 

are due to the fact that what the model predicts is not strictly comparable to what is 
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measured. 

Measurement error standard deviation for v has been estimated using laboratory and 

field calibration (Feddersen & Guza, 2003) as (σ2 + (α|v|)2)1/2, where σ0 = 5 cm/s, and 
0 

α = 0.05. For the present case, |v| ∼ 0.75 m/s, and we therefore assume a measurement 

error standard deviation of 6.25 cm/s for v. 

To obtain an estimate of measurement error for Hmo during SD97, we have compared 

measurement differences for sensors placed less than 4.5 m apart in the alongshore direc

tion and less than 0.55 m apart in the across-shore direction (four sensor pairs passed this 

criteria, located from x = 210 m to x = 261 m). The standard deviation of measurement 

differences, based on over 2500 hours of data, ranged from 3.6 cm to 6.3 cm. Values were 

increased for sensors closer to shore, and for increasing offshore wave height. Hence we 

assume a (conservative) measurement error standard deviation of 6.5 cm for Hmo. 

Several potential sources of representation error exist in the present model. One 

example is the fact that the measurements were collected at a particular water depth, 

whereas the model predicts depth-averaged flow. Further, the measurements may have 

been sampled during slowly-varying conditions (such that time averaging of observational 

data does not suffice to remove the variability), or may even be unsteady (Bowen & 

Holman, 1989), whereas the model predicts the steady-state waves and flow which would 

occur under static conditions. The treatment of representation error is not trivial, and 

is the subject of ongoing research (e.g. Oke & Sakov (2007), and references therein). 

Here, we simply assume a constant, spatially-uniform contribution to the observational 

error, of 2.5 cm/s for v and 2.5 cm for Hmo. We have tested different values of total 

observational error, and find no qualitative change in the posterior solution. 

2.3.5 Underlying Assumptions and Optimality 

Several assumptions underlie the derivation of equation (2.3), which should be kept in 

mind when applying the method. Importantly, we have assumed that the model is 
t“perfect”, in the sense that if the true inputs ht were known, the output v = G(ht) 

would be exact. This assumption pertains to physical processes in the model, as well as 

boundary conditions: for the present application, the latter is important because the off

shore boundary condition (an input wave spectrum) is itself derived from measurements. 

While this effect may be reduced at locations far from the boundary (i.e. the inner surf 

zone), it is likely not negligible. 

Another factor in the interpretation of equation (2.3) as an “optimal” solution is the 

http:than0.55
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assumption of Gaussian statistics. In our case, the model operator G is nonlinear, hence 

the statistics are not likely to be Gaussian. Therefore, we will avoid the use of the term 

“optimal” in describing the posterior estimates. Instead, we interpret the results as a 

least-squares estimate, based on approximate model statistics. 

Finally, the quality of the posterior estimate is conditioned by the quality of the 

prior statistics. Specifically, one must define an appropriate prior mean/covariance for 

the bathymetry, and a reasonable error model for the observations. The present results 

are based on rational and well-defined estimates of those statistics, as described above, 

but these estimates are still subjective, to some degree. In practice, we have found 

the quality of the posterior to be degraded if the prior statistics are not carefully de

fined, and this may be unavoidable in the absence of extensive observational data. An 

attractive extension of the present method would be to include time-evolution in the 

ensemble statistics, as in the sequential method of van Dongeren et al. (2008). Using 

that approach, the prior statistics are only specified once, and are continually updated 

whenever measurements become available (using equations (2.3) and (2.5); this is the 

ensemble Kalman filter, Evensen (2006)). Such an extension is highly recommended for 

future application of the present method. 

The above caveats underscore the need for cross-validation when applying the present 

method. Therefore, in the following, we first show the applicability and skill of the 

method before using it to assess the sensitivity of modeled circulation to bathymetric 

uncertainty. 

2.4 Results 

In this section, we demonstrate the ability of the statistical inverse method to estimate 

bathymetry, in a situation where it was not possible to conduct a bathymetric survey. 

Our primary example case is for 1530 EST on 20 October, for which the dynamics are 

2DH. This time was selected due to its interesting morphodynamic setting, the presence 

of strongly-2DH flow features, and a low rate of instrument malfunctions in shallow 

water. Before moving to this more-complex 2DH case, however, we will present a 1DH 

case study from the same day, at 1130 EST. The 1DH case will serve to introduce 

important conceptual topics related to the assimilation methodology. 
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Figure 2.3: Conditions observed for the period from 18 October to 21 October during 
the SD97 experiment: offshore significant wave height Hmo, peak frequency fp, mean 
wave angle θ0 (Kuik et al., 1988) (positive is from the north), and maximum alongshore 
current in SPUV array vmax (positive is towards the north). Shaded regions represent 
times when bathymetric surveys were being performed (see Figure 2.4). Dashed lines 
correspond to 20 October, 1130 EST and 1530 EST (sections 2.4.2 and 2.4.3). 

2.4.1 Physical Setting 

The conditions surrounding 20 October were strongly influenced by the passage of a 

Nor’easter storm, which peaked during the hours 1600–1900 EST on 19 October. The 

measured significant wave height (at 8 m depth) during the storm was 3.4 m. Some

what less-energetic conditions continued throughout the day on 20 October. Figure 2.3 

summarizes the observed conditions. 

No bathymetric survey was conducted on 19 October due to dangerous conditions. 

Complete minigrid surveys were conducted, however, on 18 October, 0600–1340 EST, 

and 21 October, 0550–1530 EST. Also, a limited survey was conducted on 20 October, 

0630–1040 EST. Figure 2.4 summarizes these bathymetric observations. The sequence 

of surveyed bathymetries illustrates the speed with which bathymetric change occurred 

in the days surrounding the storm. The surveyed transects suggest changes in across
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Figure 2.4: Black: bathymetric transects collected by CRAB on (from left to right) 
18, 20, and 21 October. Colors: interpolated surveyed bathymetry zb (hotter colors 
represent shallower water). 

shore bar profile, alongshore variability, or both (the exact morphodynamics may not be 

resolved by the surveys). This rapid bathymetric change, combined with the paucity of 

survey data on 19 and 20 October, makes specification of model bathymetry quite difficult 

for the target model times, which can be between survey times. Temporal interpolation 

from surveys would be a questionable approach, as the surveys, as well as the sonar 

altimeters, suggest a non-monotonic change through time. Hence the present method 

has practical relevance, because it makes use of additional time-resolved measurements 

(wave height, velocity) to improve the bathymetric estimate. 

The observed flow during the 19 October storm was alongshore uniform (1DH) and 

reached speeds of up to 1.6 m/s. Over the course of the day of 20 October, conditions 

changed such that the observed flow was weaker, and exhibited alongshore-nonuniformity 

(2DH). Indeed, as we will see in later sections, assimilation of data on 20 October, 1530 

EST, leads to a 2DH posterior model state. However, at earlier times on 20 October, 

particularly at high tides, the observed (and posterior estimated) flow was closer to 

1DH. Next, we study such a case, 1130 EST, as a simple dynamical setting in which to 

introduce the present method. 

2.4.2 Conceptual Interpretation: 1DH Case Study 

In this section, we run the forward model assuming ∂/∂y = 0 in the governing equations, 

using as the bathymetry a single transect y = 828 m from the 2DH bathymetric ensemble 
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(observational data are taken from the same transect). The assumption of 1DH dynamics 

is only approximately valid, here. For instance, v measured on the transect x = 160 m 

varied from -45 cm/s (y = 704 m) to -70 cm/s (y = 816 m) (no other sensors were 

functioning at the time on x = 160 m). On the transect x = 210 m (five sensors), v 

varied from -68 cm/s (y = 906 m) to -50 cm/s (y = 816 m), with mean -59 cm/s and 

standard deviation 7.1 cm/s. However, neither the measurements nor a 2DH assimilation 

indicated any strongly-2DH features such as rip currents. Moreover, our purpose in this 

section is to elucidate the mechanics of the assimilation in the context of simple 1DH 

model dynamics. Cross-validation using more-accurate 2DH dynamics will be taken up 

in later sections. 

Figure 2.5 shows the prior and posterior predictions of bathymetry, velocity, and wave 

height, compared to measurements. The prior bathymetry does not include a sharp 

nearshore bar, as was measured by the sonar altimeters, and confirmed by a nearby 

CRAB survey transect. Hence the prior alongshore current jet is too broad, causing v to 

be overpredicted at the innermost sensor. Similarly, the offshore face of the inner bar is 

too shallow in the prior, causing increased wave breaking and hence underprediction of 

Hmo at nearby locations (e.g. compare wave transformation from x = 210 m to x = 185 

m). After assimilating data, the above errors are reduced and the overall fit is improved, 

including the fit to h (which was not assimilated). 

In order to understand how equation (2.3) used the observed model-data misfit 

(d − Lvf ) to update the full model state ψ, it is useful to examine the coefficient ma

trix r = CψψL
T
a . In the language of data assimilation, r is usually referred to as the 

matrix of representers. Each column rk quantifies the sensitivity of the model to a par

ticular observation (the k’th observation). Hence by analyzing these columns, suitably 

normalized, we can better understand how the overall model corrections are assembled 

(Kurapov et al., 2009). Here, we will normalize as follows, 

σm + σd 
r̂ = r . (2.8) 

σ2 + σ2 
m d 

This normalization is obtained by taking model and data errors to be equal to their 

standard deviations (denoted σm and σd, respectively), and assuming an isolated obser

vation. We will interpret maps of r̂ as the “potential correction” which can be obtained 

by assimilating a particular measurement. For instance, we will write r̂hv as the po

tential correction to bathymetry h from assimilating velocity v. In this way, we may 

compare the magnitude and spatial pattern of the correction derived from each element 
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in the measurement array. Note this analysis is performed without reference to the ac

tual measurements; r is a property of the model (and prior statistics) only. We have 

also compared equation (2.8) to the contributions of actual measurements to the overall 

model update in equation (2.3), and generally find good agreement. 

Figure 2.6 shows scaled representers for each instrument on the observational transect 

(including instruments which were not functioning at 1130 EST). Both observation types 

show the largest potential corrections coming from sensors in the inner surf zone (x < 250 

m). Potential corrections from outer surf zone sensors are small, because of small prior 

uncertainty (cf. Figure 2.5) and/or lack of bathymetric sensitivity at those locations. 

Hereafter, we will concentrate on the inner surf zone. 

Focusing first on r̂hH , underprediction of Hmo typically resulted in a local increase 

(deepening) of h; that is, r̂hH is locally-positive. This agrees with the expectation based 

on saturated depth-limited breaking, Hmo = γh, with γ > 0 (i.e. ∂Hmo/∂h > 0). To be 

more precise, consider the following local approximation of CHh near the point x0: 

CHh = E [δHmoδh] 
� � 

 

≈ E 
δHmo  

 δhδh 
δh  

x0 
 

 δHmo 
 = Chh, (2.9) 
 δh x0 

where E is expected value, and δHmo/δh denotes the relative increment of Hmo for 

a given increment of h, evaluated based on the prior statistics at a given point. As 

suggested above, the prior statistics for the present case indeed gave δHmo/δh > 0 for 

locations where waves were breaking; in fact, δHmo/δh was significantly correlated with 

the prior wave dissipation (r = 0.58, p = 10−10). Positive δHmo/δh occurred in the inner 

surf zone where dissipation was large, while small (or even negative) δHmo/δh occurred 

outside the surf zone and in reshoaling regions. At locations near the maxima of wave 

dissipation, δHmo/δh had a value of approximately 0.5. 

Turning next to r̂hv, we note that an underprediction of −v in the prior (i.e. prior 

predicted current not as large as observed current towards the south, or negative y, 

direction) always produces a local decrease (shoaling) of h; that is, −r̂hv is locally-

negative. Conceptually, this behavior is due to the fact that local maxima in |v| tend to 

be associated with local minima in depth (e.g. a sand bar). Indeed, the prior statistics 

for the present case gave δ(−v)/δh < 0 for all x > 105 m. 
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Figure 2.6: Solid lines: scaled representers. Dashed lines: corresponding approximation 
based on extrapolation with Chh (see text). Crosses indicate location of measurement 
for each representer. r̂hv has been negated for comparison with Figure 2.5. 

The above interpretation highlights the role of the model dynamics for determining 

the local values of δHmo/δh and δv/δh, and hence the magnitudes of the representers 

themselves. Non-local corrections to bathymetry, on the other hand, are derived from a 

combination of model dynamics and the assumed prior covariance Chh. In order to judge 

the balance between these two contributions, we may compare r̂ to the approximation 

based on (2.9) (dashed lines in Figure 2.6), which is representative of the contribution of 

Chh to the non-local correction. Clearly, Chh plays an important role in determining the 

basic structure of r̂, and hence the corrections themselves, while model dynamics mainly 

act to amplify and/or shift that structure. This highlights the importance of choosing 

appropriate prior statistics, if non-local corrections are to be trusted. 

Finally, we note there are qualitative differences between the shape and magnitude 

of r̂hv and r̂hH , suggesting v and Hmo play different roles in the overall correction. 

To further illustrate this fact, Figure 2.7 shows the posterior model state when each 

observation type (either v or Hmo) is assimilated individually. The results are best 

understood by considering differences in the posterior Hmo. When assimilating v only, 

the spatial gradient of Hmo is altered in the inner surf zone, resulting in a correction 

to the wave-induced forcing (not plotted); however, the resulting Hmo is not in good 

agreement with observations (in particular, the posterior breakpoint is too far offshore). 

Conversely, when assimilating Hmo only, the magnitude of Hmo is improved but the 
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Figure 2.7: Prior (blue), measured (black) and posterior data when assimilating Hmo 

only (green), v only (magenta), or both (red). 

resulting change in wave-induced forcing does not lead to an improved v (particularly 

at the innermost sensor). Assimilating v and Hmo together allows the forcing to be 

corrected without severely affecting the accuracy of Hmo, resulting in an improved overall 

agreement for all variables (also see section 2.4.4). The representers (Figure 2.8) confirm 

the above interpretation: for the most-shoreward sensors, r̂HH and r̂Hv indicate controls 

on magnitude and gradient, respectively. That is, the most-shoreward observation points 

correspond to anti-nodes of r̂HH , and nodes of r̂Hv. These sensors dominate the overall 

correction, producing the above behavior. Further-offshore sensors do not show such a 

clear contrast between r̂HH and r̂Hv, likely due to differences in the qualitative dynamics 

(e.g. the influence of momentum mixing). 
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Figure 2.8: Scaled representers for correction of Hmo. Crosses indicate location of mea
surement for each representer. r̂Hv has been negated for comparison with Figure 2.5. 

2.4.3 Assimilation During 2DH Flow 

Having established the conceptual framework for assimilation under simple 1DH dynam

ics, we now move to a 2DH case: 20 October, 1530 EST. 

Figure 2.9 shows the prior prediction of v and Hmo. Recall this corresponds essentially 

to a forward model run, with bathymetry derived from a smoothed interpolation in EOF 

space (section 2.3.2). The predictions in the outer surf zone are fairly consistent with 

observations (overprediction of offshore wave height is likely due to error in the offshore 

boundary conditions). For sensors in the inner surf zone, x < 250 m, however, the flow 

becomes alongshore-nonuniform, and the velocity predictions are highly inaccurate in 

magnitude and even wrong in direction (see sensors at y ≈ 830 m and y ≈ 700 m). 

Given the known bathymetric sampling issues (see section 2.4.1), we will now explore 

the possibility that the model error is due to mis-specification of h. 

Figure 2.10 compares the posterior velocity field to observations, after assimilating 

Hmo (46 observations) and v (29 observations). Model-data agreement in alongshore 

current is improved, particularly in the inner surf zone, which is to be expected because 

that data was assimilated. Importantly, the modeled across-shore currents u are also 

improved, which can be interpreted as a cross-validation for the update step (u was not 

assimilated). 

The posterior bathymetry is also an improvement over the prior. Figure 2.11 shows 

an across-shore transect comparing the prior and posterior h to that measured by the 
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Figure 2.9: Prior mean velocity, bathymetry, and wave height on transect y = 828 m, for 
20 October, 1530 EST. Red arrows in left-hand plot are observed velocity; blue arrows 
are modeled velocity, plotted at even gridpoints; scale arrow in upper left is 50 cm/s. 
Colors in right-hand plot are model zb (still water level was 0.17 m NGVD). Solid and 
dashed lines in the lowermost plot are prior mean and standard deviation of Hmo, and 
red circles are measured Hmo. 
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Figure 2.10: As in Figure 2.9, but for posterior (updated) fields. 
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Figure 2.11: Across-shore transect (y = 828 m) of prior (blue), posterior (red), and 
measured (black) zb (still water level was 0.17 m NGVD). Dashed lines represent ± one 
standard deviation. 

sonar altimeters (again, these measurements were not assimilated). The comparison 

shows that the update step correctly adjusted the prior in the direction of the actual 

(measured) bathymetry. As in the 1DH case study, major corrections occurred in the 

inner surf zone, whereas outer surf zone (x > 250 m) corrections were relatively small. 

Next, as in the 1DH case study, we examine the scaled representers r̂ for 2DH flow. 

Figure 2.12 (top plots) shows maps from r̂hH , the potential correction to h from as

similating measurements of Hmo, at four different locations ranging from the inner to 

outer surf zone. Clearly, Hmo is effective for constraining local bathymetry in the inner 

surf zone, where wave height is strongly controlled by water depth because of depth-

limited wave breaking. For measurements in the outer surf zone, r̂hH is much smaller in 

magnitude, indicating a smaller potential for correction in that region. 

Figure 2.12 (bottom plots) shows maps from r̂hv, the potential corrections to h from 

observing v. A distinguishing feature of r̂hv in this case is that sensors offshore of the 

inner bar contribute information about bathymetry onshore of the inner bar. This did 

not occur under 1DH dynamics, and hence is attributed to advection by 2DH currents. 

This also means a greater number of sensors for v could provide significant (potential) 

corrections to h: 19 columns of r̂hv had maximum magnitude exceeding 10 cm, as opposed 

to only six for r̂hH . The actual model corrections when assimilating data reflect the same 

trend: five observations of v contributed corrections of more than 10 cm to h, compared 

to two for Hmo. Thus, the v array included a greater number of “useful” sensors. The 

corresponding correction to h should be considered more stable, in the sense that it is 

more robust against isolated observation errors dominating the overall correction. A 

more rigorous way to examine the stability of the measurement array is to compute 

the singular value decomposition of the matrices Lrhv and LrhH (so-called “array-mode 

analysis”, Bennett (2002); Kurapov et al. (2009)). Five of the singular values for Lrhv 



29 

700 700 700 700 

600 600 600 600
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 

x [m] x [m] x [m] x [m] 

1000 1000 1000 1000 

900 900 900 900 

1000 1000 1000 1000 

900 900 900 900 
y 

[m
] 

y 
[m

] 

y 
[m

] 
y 

[m
] 

y 
[m

] 
y 

[m
] 

y 
[m

] 
y 

[m
]

800 800 800 800 

800 800 800 800 

700 700 700 700 

600 600 600 600
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 

x [m] x [m] x [m] x [m] 

Figure 2.12: Maps from scaled representer sub-matrix r̂hH (top) and r̂hv (bottom), for 
select measurement locations (white dots). Thick black contour is 0 cm, and subsequent 
contours are plotted at 5 cm intervals. 

exceeded the observational noise level, indicating stable array-modes; two singular values 

for LrhH passed the same criteria. Thus, again, v was the more stable observation type 

for the present case. 

2.4.4 Skill Statistics 

Next, we evaluate the skill of the posterior model state, compared to that of the prior. 

Our aim is to quantify the improvement in the model state when assimilating observations 

of Hmo and v, together as well as individually. Here, we will limit our discussion to the 

inner surf zone region x < 250 m, for two reasons: first, as noted earlier, corrections 

were broadly confined to this region, whereas the outer surf zone was constrained by low 

prior uncertainty; second, the point x = 250 m corresponds to a minimum in modeled 

wave dissipation, separating two distinct wave breaking regions and flow regimes. For 

completeness, skill statistics for x > 250 m are listed in Appendix B, Table B.1. Indeed, 

the model updates in that region were small, for the reasons stated above, and often did 

not result in an improved fit to cross-validation variables. 

The skill of the prior and posterior model states will be assessed in a probabilistic 

validation framework (Casati et al., 2008), taking into account the predicted model 

state ψ as well as the predicted uncertainty Cψψ. Specifically, we adopt the Continuous 

Ranked Probability Score (CRPS; appendix A) to assess skill, which measures the overall 
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1DH (1130 EST) 2DH (1530 EST) 

variable(s) 
assimilated 

variable 
updated 

units ǫ CRP S S ǫ CRP S S 

u m/s 0.13 0.13 - 0.33 0.68 -
none v m/s 0.22 0.24 - 0.29 0.56 -
(prior) Hmo m 0.11 0.11 - 0.11 0.18 -

h m 0.45 0.75 - 0.41 0.88 -

u m/s 0.13 0.16 -0.17 0.19 0.36 0.48 
v m/s 0.15 0.18 0.27 0.054 0.055 0.90 

Hmo, v 
Hmo m 0.080 0.092 0.16 0.084 0.15 0.18 
h m 0.20 0.28 0.63 0.18 0.30 0.66 

u m/s 0.11 0.12 0.11 0.30 0.62 0.093 
v m/s 0.26 0.35 -0.47 0.28 0.55 0.013 

Hmo Hmo m 0.041 0.033 0.70 0.064 0.10 0.46 
h m 0.36 0.61 0.18 0.37 0.83 0.061 

u m/s 0.17 0.21 -0.54 0.20 0.36 0.48 

v 
v m/s 0.12 0.11 0.52 0.054 0.053 0.90 
Hmo m 0.19 0.30 -1.7 0.13 0.25 -0.34 
h m 0.42 0.74 0.016 0.20 0.32 0.64 

Table 2.1: Model accuracy statistics before and after assimilation, for sensors in x < 250 
m. ǫ is rms difference between model and observations, CRPS is the Continuous Ranked 
Probability score (see text, and appendix A), and S is a skill score (equation (2.10)). 
The calculation of CRPS for u and h assume observational error standard deviations of 
6.7 cm/s (same as for v) and 10 cm, respectively. 

difference between prediction and observation probability density functions. In the limit 

of deterministic predictions and observations, CRPS is equal to the root-mean-square 

(rms) error. We also compute a skill score, 

S = 1 − (CRP S) / (CRP S)f , (2.10) a 

which indicates whether the posterior state (subscript a) has improved skill relative to 

the prior (subscript f). Finally, for completeness, we also report the rms error, as a 

simple and easy to understand measure of accuracy which does not take into account 

the predicted uncertainty. These statistics are given in Table 2.1, and the results are 

discussed next. 
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2.5 Discussion 

2.5.1 Assimilation Skill 

Table 2.1 reports statistics which assess the improvement in model skill when assimilating 

different combinations of data. In general, if the present methodology is skillful, we 

should find a decrease in rms error and CRPS (i.e. positive skill score S) as a result of 

assimilating data. When this is not the case, we will generally assume the inversion is 

converging (with respect to increasing number of observations) on an incorrect posterior 

state ψ. In this section, we ask: what data were required to obtain a skillful inverse, in 

the above sense? 

First, we consider the case where both v and Hmo are assimilated, under 2DH dynam

ics (20 October, 1530 EST). The resulting posterior state is improved in all variables, in

cluding the cross-validation variables u and h. This indicates the assimilation of data has 

introduced a realistic correction to the overall model state. The error that remains in the 

posterior estimate represents a combination of still-unresolved uncertainty in the input 

h, observational/representation errors, and (importantly) errors due to model physics. 

When only v is assimilated (2DH case), the situation is quite different. Both u and 

v are brought into good agreement with the observations, and CRPS indicates positive 

skill. The prediction for h is also improved, although not to the extent as when Hmo and 

v were assimilated together. However, the posterior Hmo is actually less accurate than 

the prior, and has larger CRPS, indicating the assimilation is not converging towards the 

true Hmo. Overall, cross-validation suggests the assimilation is overfitting the velocity 

data, at the expense of Hmo (we define overfitting, here, as achieving improved skill in 

one variable, at the expense of any other variable). 

When only Hmo is assimilated (2DH case), we find a similar result to when only v 

was assimilated. The posterior state is an improved fit to the assimilated variable, but 

not to the unassimilated variables (in this case, the skill for u, v and h is essentially 

unchanged). Again, the result may be converging on an incorrect posterior model state. 

Statistics from the 1DH case (20 October, 1130 EST) indicate similar results, with 

overfitting occurring unless Hmo and v are assimilated together. One distinction between 

the 1DH and 2DH cases lies in their ability to correct the across-shore current u. In the 

2DH case, u was improved when v was assimilated, but made worse when Hmo was 

assimilated; the opposite was true for the 1DH case. This is perhaps not surprising: 

under 1DH dynamics, u is entirely due to the below-trough return flow of wave volume 

flux, which is in turn directly related to Hmo. In contrast, in the 2DH case, the cross
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shore current is likely driven as a result of non-local alongshore-nonuniform dynamics. 

Another distinction between the 1DH and 2DH results is that, in the 1DH case, h could 

be better corrected by assimilation of Hmo than by assimilation of v. We note, however, 

that the 1DH case had only three active sensors for v in the inner surf zone, compared 

to six active sensors for Hmo. 

A result common to both 1DH and 2DH cases is that the true ocean state ψ can only 

be recovered by assimilating both variables v and Hmo. This may be partly attributed 

to the fact v and Hmo provide different (complimentary) information with regard to 

the dynamics, as demonstrated using the 1DH model in section 2.4.2. However, other 

factors may serve to exacerbate the overfitting behavior. For instance, we have already 

noted that the specified prior Chh influences the shape of representers, and hence the 

correction itself; errors in this specification could lead to unexpected results. Errors may 

also exist in the forward model, causing the true v and Hmo to be incompatible under the 

“perfect-model” assumption; Plant et al. (2009) find an analogous result, where artificial 

smoothing of bathymetry leads to decreased error in Hmo but increased error in v. One 

way to exclude the influence of the above effects is to extract synthetic observations 

from a forward model run with idealized bathymetry. From that experiment, we find a 

similar result as above: assimilating v appears to correct the gradient of Hmo, and hence 

the wave-induced forcing, while the magnitude of Hmo is not improved (and vice-versa). 

However, the synthetic tests do not show strongly-negative skill in the unassimilated 

variable as was the case with real observations. Hence, we cannot not rule out the 

possibility of model error being present. 

To summarize, the ensemble-based method was successful in assimilating observa

tions and correcting bathymetry, when using all of the available data for v and Hmo. The 

resulting prediction is an improvement over the prior (rms error and CRPS are both de

creased). When one observation type (either v or Hmo) was withheld, bathymetry could 

still be improved relative to the prior, but only at the expense of a poor posterior pre

diction of the unassimilated variable (either Hmo or v). This is explained by considering 

the complimentary information carried by each variable, although other factors are con

sidered. In any case, there is an inherent benefit of assimilating (semi)independent data 

types. 
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2.5.2 Bathymetric Input Sensitivity 

In sections 2.4.2 and 2.4.3, representers were used to clarify how prior error/sensitivity 

is utilized for the assimilation of data: by combining all of the representers (with ap

propriate normalization), one obtains the posterior model state. The magnitude of the 

potential correction fields r̂ indicate strong model sensitivity between the observed vari

ables v and Hmo and the target variable h. 

A closely-related problem is the extent to which v and Hmo are sensitive to errors 

in h. A direct quantification of this sensitivity is given by the prior standard deviation 

of modeled v and Hmo, which, for October 1530 EST, had maximum values of 31 cm/s 

and 19 cm, respectively. At the observation locations, prior standard deviations ranged 

from 0–29 cm/s (for v), and 0–10 cm (for Hmo), with larger values occurring closer to 

shore. The 1DH case (20 October, 1130 EST) gave similar values, except for v at the 

observation locations which ranged from 0–13 cm/s. Given that model validation studies 

have reported errors on these same orders of magnitude (e.g. Ruessink et al. (2001)), this 

suggests bathymetric input error may be equally as important as process error, for cases 

like the ones we consider here. 

It should be noted, however, that the above results are influenced by the specified 

prior statistics for h. In particular, the uncertainty in h is constructed, here, to reflect 

unresolved changes in bathymetry between surveys. Other sources of uncertainty, such 

as instrument error or spatial over-smoothing (Plant et al., 2009), could be treated by a 

similar analysis, with Chh redefined appropriately. 

2.5.3 Effect of Sampling Scheme 

In the preceding sections, we have performed the model inverse using all available mea

surements. However, the present data set, from the SD97 experiment, had an unusually 

large observational array which sampled both alongshore and across-shore variability. 

Previous experiments such as SuperDuck (Oltman-Shay & Howd, 1989) and DUCK94 

(Elgar et al., 1997; Feddersen & Guza, 1998; Gallagher et al., 1998) have focused on 

only alongshore or across-shore variability, respectively. It is natural to ask whether the 

present method can be applied under a more limited experimental layout. 

Figures 2.13 and 2.14 show the posterior wave and current fields for October 20, 1530 

EST (cf. Figure 2.10), obtained by assimilating v and Hmo from a single alongshore or 

across-shore transect. The sampling schemes are similar to SuperDuck and DUCK94, 

respectively. We find that, in the present case, either sampling scheme is sufficient to im

http:EST(cf.Figure2.10
http:Figures2.13
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Figure 2.13: As in Figure 2.10, but for posterior (updated) fields using alongshore tran
sect sampling scheme. Assimilated observations of v are marked by white crosses, and 
observations of Hmo are marked by white circles. 

prove the prediction of the model state (a positive skill score S is found for all variables). 

However, the posterior bathymetry is more accurate when using the alongshore array 

(skill S = 0.77, rms error ǫ = 15 cm, taking measurements from x < 250 m), compared 

to the across-shore array (S = 0.45, ǫ = 26 cm). On the other hand, the alongshore 

array was less able to constrain wave height (S = 0.051, ǫ = 10 cm), compared to the 

across-shore array (S = 0.27, ǫ = 8.0 cm). 

2.5.4 Assimilation of Other Observational Data Types 

So far, we have presented results for assimilation of v and Hmo, two commonly-measured 

observational data types. However, standard surf zone instruments are also capable 

of recovering additional information about the wave field, including wave directional 

information. As an example, here we test the assimilation of the radiation stress tensor 

component Sxy. 
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Figure 2.14: As in Figure 2.13, but for across-shore sampling scheme. 
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An observational estimate of Sxy can be computed from a cross-spectral analysis of 

timeseries of u and v (Higgins et al., 1981). Here, we computed the cross-spectrum from 

17 minute records, using a Bartlett taper. Depth-dependence is accounted for using 

linear wave theory. 

Guza & Thornton (1978) have noted that Sxy is generally a statistically unstable 

observation which can be very difficult to measure, particularly due to instrument align

ment issues. Hence, the choice of observational error for this derived quantity was not 

obvious, and we chose an error of 20 N/m (in the present test case, Sxy varied from 

-87–230 N/m). Values of 15 N/m and 30 N/m were also tested, and did not change the 

qualitative conclusions that follow. 

When Sxy is assimilated (alone) for the 20 October 1530 EST case presented in section 

2.4, the effect on the posterior bathymetry is qualitatively similar to that found when 

assimilating v. Specifically, the areas onshore and offshore of the inner bar at x ≈ 160 m 

were made deeper, a correction which could not be attained by assimilating Hmo alone. 

Hence, Sxy could be used in conjunction with Hmo to generate an improved posterior 

bathymetry (S = 0.65, ǫ = 18 cm, for x < 250 m). On the other hand, assimilation 

of Sxy was not found to be a substitute for the information provided by v. The skill of 

the posterior v was not much improved by assimilation of Sxy (S = 0.31, ǫ = 22 cm/s), 

compared to when v itself was assimilated. Results were similar for the 1DH case. In 

summary, then, Sxy appears to provide information about bathymetry, but further work 

would be required to incorporate this data type into an accurate assimilation. 

2.6 Conclusions 

In this study, we have applied standard methods from data assimilation to examine the 

sensitivity of surf zone models to bathymetric uncertainty. Our purpose was twofold: 

to directly analyze the impact of bathymetric uncertainty on a surf zone model using 

field data, and to demonstrate the potential of ensemble-based data assimilation for 2DH 

nearshore prediction. 

The results presented here show that, even in an extensively-sampled experimental 

setting (SD97, possibly the most detailed short-term bathymetric data set available 

to date), bathymetric uncertainty can play a leading role in determining the error of 

hindcast model circulation. This was demonstrated in several ways, as described below. 

Figures 2.5 and 2.9 illustrate that the best prior estimate of bathymetry can lead to 

poor model results in the inner surf zone for a particular field case. On its face, this 
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could indicate a problem with model physics, or a problem with model inputs. How

ever, by assimilating data under the assumption of perfect model physics and uncertain 

bathymetry, we were able to derive a consistent model state. Thus, we conclude that 

the standard approach of estimating bathymetry from recent bathymetric surveys and 

running the forward model did not apply here, as the bathymetry was changing rapidly 

(time scales of hours–days) and was therefore very uncertain. 

The underlying details of the assimilation step were investigated using an analysis of 

the matrix of representers (Kurapov et al., 2009), i.e. the interrelationship (covariance) 

between the modeled Hmo, v, and h. We found that surf zone Hmo tended to provide 

slightly-larger magnitudes of correction to h, but corrections were relatively localized in 

space. Under 2DH flow, observations of v could provide non-local corrections to h, which 

meant a larger portion of the observational array for v was useful for the assimilation. 

The pattern and magnitude of the corrections are determined by a combination of Chh 

(which must be specified) and the model dynamics. In this case, Chh represents the 

estimated variability in h due to unresolved bathymetric change through time. 

Table 2.1 reports the model-data misfit before and after assimilating data. For 2DH 

(1DH) flow, root-mean-square errors in v and Hmo in the inner surf zone were reduced 

by 81% (27%) and 24% (27%), respectively. Errors in h and u, variables which were 

not assimilated, were also reduced, by 56% (56%) and 42% (0%) respectively. Thus a 

significant portion of model output errors were linked to input (bathymetric) errors in 

a self-consistent way. However, we also found the assimilation to be sensitive to the 

type of observations used: only by assimilating multiple observation types (v and Hmo 

together) were we able to avoid overfitting the data. This was explained by considering 

the different types of information carried by each variable: observations of v were useful 

for constraining gradients of Hmo, but not magnitudes, and vice-versa for Hmo. 

The above results all point to a strong model sensitivity to the input h; this sensitivity 

was quantified directly using the prior ensemble variance. The estimated uncertainty in v 

and Hmo due to uncertainty in h was found to be up to 29 cm/s and 10 cm, respectively, 

at the measurement locations. These values are comparable to what is reported in typical 

field validation studies (e.g. Ruessink et al. (2001)). We stress, however, the modeled 

uncertainty is conditioned by the (specified) uncertainty in h. 

Finally, we have tested the above results when using a subset of the available mea

surements. It was shown that an accurate posterior bathymetry and velocity field can 

be obtained when using only a single alongshore array of sensors, noting the present sit

uation had strongly 2DH flow and therefore this configuration provides non-redundant 
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information. An across-shore array gave a less skillful posterior estimate of bathymetry 

and velocity, but was necessary for an accurate estimate of wave height. 

Based on the above results, we conclude 2DH velocity and wave height observations do 

provide information about surf zone bathymetry, which can be exploited using statistical 

methods. Conversely, uncertainty in bathymetry (which is often large due to sampling 

constraints) can have a strong impact on model skill, a fact which should be considered 

when validating models. 
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3.1 Introduction 

Flow in freshwater channels (rivers and upper estuaries) is governed by a number of fac

tors, including the rate of discharge and the channel geometry. The latter may include 

effects due to large scale bedforms, such as bars and holes. Knowledge of bathymetry 

is therefore essential for modeling the channel hydrodynamics, particularly at the reach 

scale. In many natural settings, however, it is not practical to obtain a detailed field 

survey of bathymetry. Various methods have been developed using remote sensing tech

nologies to replace or supplement field survey data (e.g. lidar (Hilldale & Raff, 2008), 

hyperspectral imaging (Legleiter et al., 2009)); however, these methods are typically lim

ited to clear shallow water. Hence, other investigators have proposed indirect methods 

for estimating bathymetry based on non-bathymetric variables that can be more eas

ily measured, such as Lagrangian drifter trajectories (Honnorat et al., 2010), or water 

surface elevation maps (typically for larger-scale applications, Andreadis et al. (2007); 

Durand et al. (2008)). The present work is another such method: we seek to estimate 

bathymetry indirectly using measurements of Eulerian velocity. 

The use of measured river velocity to infer bathymetry relies on the strong sensitivity 

between those two variables (Smith & McLean, 1984). The main obstacles in exploiting 

this sensitivity involve (a) how the measurements are to be collected, and (b) how the 

sensitivity can be represented as an inverse model. Our focus here is on issue (b), 

the development and verification of the inverse model, using twin tests. Issue (a) will 

also be addressed to some extent by designing the twin tests based on the capabilities 

of existing instrument technology, including limitations in observational accuracy and 

spatial resolution. 

In developing the inverse model, we will use tools from data assimilation, a method

ological approach which combines known uncertainty in models and observations to 

produce a statistically-optimal estimate of the true state of a system. Data assimilation 

for estimation of model parameters (such as bathymetry) has been a topic of recent in

terest in river modeling (Andreadis et al., 2007; Durand et al., 2008; Tossavainen et al., 

2008; Honnorat et al., 2010; Rafiee et al., 2011). Most recently, Zaron et al. (2011) 

demonstrated the success of this approach to estimate bathymetry using remotely sensed 

velocity in an estuarine setting. Our work builds on this existing literature, continuing 

a trend towards field applications on natural channels at reach scales. 

The paper is organized as follows. Section 3.2 describes the parameter estimation 

methodology. Section 3.3 then applies this methodology to three test cases: the first 
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case involves a one-dimensional channel with linearized dynamics, presented as a simple 

case which illustrates the use of the method; the second and third test cases involve two 

natural channels, to demonstrate the real-world applicability of the method. Sections 

3.4 and 3.5 summarize and discuss the results. 

3.2 Methods 

3.2.1 Bathymetric Inversion Method 

The method used here employs state-augmentation in an ensemble-based statistical es

timator, treating bathymetry as a fixed model parameter. This approach is largely fol

lowing Wilson et al. (2010), who applied similar methodology but in a nearshore ocean 

environment. 

The goal of the method is to combine a prior estimate of bathymetry, a known 

discharge, and point measurements of velocity (including measurement uncertainty or 

noise), to produce a posterior estimate of bathymetry. Specifically, we seek to minimize 

the following cost function: 

( )T ( )

C−1J [ψ] = ψ − ψf ψ − ψf 
ψψ 

C−1+ (d − Lu)T 
dd (d − Lu) . (3.1) 

Here, ψ = [uT , hT ]T is a model state variable, consisting of a M × 1 vector u containing 

the velocity at each of the M model gridpoints, augmented with a M × 1 vector h con

taining the corresponding water depths. The K ×1 vector d contains the measurements, 

and L is a K ×M matrix which serves to extract the corresponding modeled values at the 

measurement locations. The matrices Cψψ and Cdd are covariances of model and mea

surement uncertainties, respectively. The superscript f denotes the prior, or “forecast” 

model state, considered the most-likely state if no measurements were available. 

The posterior, or “analysis” model state ψa is the one which minimizes J above, and 

is given by (e.g., Evensen (2006); Bennett (2002)) 

( )

−1 
ψa = ψf + CψψL

T
a LCuuL

T + Cdd d − Luf , (3.2) 

and the posterior covariance (interpreted as an estimate of uncertainty) is given by 

−1 
Ca LT 
ψψ = Cψψ − CψψL

T
a LCuu + Cdd LaCψψ, (3.3) 
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where Cuu is the upper-left submatrix of Cψψ, and La = [L, 0K×M ]. For Gaussian 

statistics, ψa can be interpreted as the maximum likelihood estimate of the true state, 

given all available information. For nonlinear dynamics this is not the case; instead we 

interpret ψa as a least-squares estimate, whose usefulness must be evaluated based on 

experiment, as will be done in subsequent sections. 

3.2.2 Assumed Known Information 

For the present application, we will assume the only unknown information is the devia

tion of channel depth from a nominal along-channel-uniform shape (e.g. a parabolic or 

piecewise-linear channel cross-section). While this nominal shape would need to be esti

mated somehow (for instance from a survey transect, or by using lower-order (channel

averaged) model equations and a separate statistical estimator) we consider this to be 

a separate problem from the one addressed here. Additionally, we will assume that the 

discharge is known during the time when measurements are collected; estimating dis

charge accurately would require a consideration of the larger-scale hydrology, and is not 

in the scope of the present work. 

In summary, the assumed known quantities (or “inputs”) for the present method are 

(a) the nominal channel cross-section; (b) the discharge; and (c) a statistical characteri

zation of the unknown deviations in depth, to be discussed next. 

3.2.3 Specification of Prior 

The solution (3.2) is so far incomplete as we have not yet specified a statistical model 

for the prior (mean and covariance). These appear as submatrices of Cψψ in equation 

(3.2), 

Cuu Cuh 
Cψψ = . (3.4) 

Chu Chh 

In general, we would like to define a covariance Chh representing uncertainty in the 

bathymetry, and from it derive (using a model) the corresponding velocity covariance, 

Cuu, as well as the covariance between velocity and bathymetry, Chu. This can be done, 

for example, using adjoint model equations (Bennett, 2002; Zaron et al., 2011). Another 

approach, used here, is to approximate the covariances using ensembles. An ensemble 

of h is drawn from a specified distribution (defined below), a numerical model is used 

to compute the corresponding u for each member of the ensemble, and then Cψψ is 
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estimated using the sample covariance. 

In the present application, the prior mean bathymetry is chosen on a case-by-case 

basis, but generally consists of a nominal channel cross-section and bank geometry. Per

turbations around this prior mean are based on a bell-shaped covariance, 

  

2 2Δx Δy
Chh(Δx, Δy) = σh 

2 exp −3 − 3 , (3.5) 
L2 L2 
x y

where Δx and Δy are separation distances; Lx, Ly, and σh are parameters representing 

the expected length and amplitude scales for bathymetric perturbations. We generate 

realizations from (3.5) using the Fourier Transform method described in Evensen (2006) 

(Fortran code available from enkf.nersc.no). 

Note that the distribution Chh as defined above includes the potential for small or 

even negative water depths in individual realizations of h. In practice, this can be 

problematic for the numerical model. Hence, in the cases discussed below we define a 

truncated distribution such that h > 0.5 m. Similarly, some bathymetric perturbations 

can generate flows for which the Froude Number is large; in our model setup, such 

flows produce sharp steplike features in the free surface, ultimately leading to poor 

representation of the upstream open boundary condition. Hence, we also reject/replace 

any realizations for which the maximum Froude Number is greater than 0.5. 

Finally, we note that ensemble estimates of Cψψ may introduce spurious long-range 

correlations, which can contaminate the result of equation (3.2). To combat this, we 

follow the approach used by Hamill et al. (2001), wherein the estimated covariance is 

localized using element-by-element multiplication with a bell-shaped correlation function 

having compact support. Specifically, they define 

(Cψψ)ij = Sij C
ens 
ψψ ij 

, (3.6) 

where Sij is the desired correlation function. They suggest 

Sij = Ω
(

 

10/3Lloc, |xi − xj |
) 

(3.7) 

http:enkf.nersc.no
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where Lloc is the desired localization length scale, and Ω(a, b) is given by 
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(3.8) 

Using this method, any spurious non-local correlations are eliminated from the estimate 

of Cψψ, and the resulting posterior estimate is improved. 

3.3 Verification 

3.3.1 Idealized Test Case: Straight-Channel With a Bump 

In this section we apply the present method in a simplified setting: flow with small 

Froude Number, with no variability in the across-stream direction (i.e. no effect of side 

walls). In this idealized case, the relationship between u and h can be written explicitly 

using a rigid-lid approximation hu = Q, where Q is a constant (known) discharge. This 

will allow us to illustrate (and test) some potential sources of error in equation (3.2). 

As a specific test case, we consider the bathymetry shown schematically in Figure 

3.1, consisting of a flat bottom interrupted by a Gaussian-shaped bump located at the 

center of the model domain: 

(x − l/2)2 

ht(x) = h0 − hb exp −3 , (3.9) 
l2 
b 

where l = 500 m is the domain length, lb = 50 m is the width scale of the bump, h0 = 5 m 

is the depth at x = 0, and hb is the height of the bump. The prior bathymetry is defined 

as hf = h0, i.e. the position and height of the bump is unknown. The goal of the depth 

inversion is to detect the bump width, height, and location, based on measurements of 

velocity. 
tMeasurements are defined by sampling at 12.5 m spacing from the “true” velocity u , 

defined as the velocity given by the rigid-lid dynamics with true bathymetry: ut(x) = 

u0h0/h
t(x), where u0 = 0.5 m/s is the velocity at x = 0. The measurement error 

covariance is taken to be diagonal, Cdd = (0.01 m)2I (where I is the identity matrix), 

although noise is not explicitly added to the data for these experiments. Unless otherwise 

stated, the prior ensemble uses parameters Lx = 50 m, Lloc = 100 m, and σh = 1 m 
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Figure 3.1: Schematic of 1D test bathymetry h(x), equation (3.9), showing the location 
of the river bottom (or negative-depth, −h(x)) as a function of along-channel distance 
(x). The flow velocity u(x) is assumed depth-uniform, and is in the +x direction. 

(see equations (3.5) and (3.6)). Also, unless otherwise stated, the same ensemble of 500 

members is used for each test below. 

Figure 3.2 shows examples of inverse bathymetry estimates, for several values of 

bump size hb. In general, the estimator overpredicts the height of small bumps, and 

underpredicts that of large bumps. This can be viewed as a consequence of the implicit 

linearization in equation (3.2), when relating u and h. To see this, consider the correction 

ha −hf fΔh = induced by an observed velocity error Δu = umeas −u ; neglecting spatial 

correlation (Chu, Cuu scalar) and also neglecting measurement error (Cdd = 0), the 

correction can be written as 
Chu 

Δh = Δu. (3.10) 
Cuu 

Assuming a relationship u = u(h), we can write, formally, 

E [δhδu]
Δh = Δu 

E [δuδu] 
[( ) ]

dh 1 d2hE f δu + δu2 + · · · δudu u 2 du2 
fu= Δu 

E [δuδu] 
[ ]

dh 1 d2h E δu3

= Δu + Δu + · · · (3.11) 
du f 2 du2 

f E [δuδu]u u
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Figure 3.2: Example estimates of h(x) using equation (3.2), for various values of bump 
size hb; corresponding true h(x) are plotted as dashed lines. 

Whereas the desired “true” correction would be 

dh 1 d2h 
2Δh = Δu + Δu + · · · (3.12) 

du f 2 du2 
fu u

If the relationship between u and h is linear, then these two expressions agree, and (3.2) 

is valid. A nonlinear relationship, on the other hand, as in the present case u = Q/h, 

will result in error, especially if Δu is large. This is illustrated in Figure 3.3, which 

plots the bathymetry correction, Δh = hf − h, as a function of the prior velocity error, 

Δu = uf − umeas. Equation (3.2) predicts this relationship is approximately linear 

(solid line), whereas the true relationship (dashed line) is not. Referring back to Figure 

3.2, this same linearization is responsible for the underprediction of the height of small 

bumps, and overprediction of that of large bumps. More generally, we should expect the 

bathymetry estimate to have larger errors if the prior hf is further from the truth. 

Next, we consider the effect of ensemble size when computing covariance estimates 

for equation (3.2). To test this, we generated different sized ensembles ranging from 10 

to 1000 members (in increments of 10). Ten independent ensembles were generated for 

each ensemble size, in order to account for random variability. Then, for each ensemble, 

we applied equation (3.2), and computed the root-mean-square error of the resulting 

bathymetry estimate. This is plotted as a function of ensemble size, in Figure 3.4. As 

expected, error is reduced with increasing ensemble size; the estimate appears to be 
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Figure 3.3: Estimated depth correction Δh = hf − h from equation (3.2), plotted as 
a function of prior velocity error Δu = uf − umeas, at the location x = l/2. True 
relationship (using u = Q/h) is plotted as dashed line; differences between true and 
estimated relationship are attributed to nonlinearity (see text). 

converged for ensemble sizes greater than about 500 members. 

Lastly, Figure 3.5 (left panel) shows the effect of covariance decorrelation length 

Lx on the depth estimate. Assuming a decorrelation length less than the observation 

sampling rate (in this case 12.5 m) results in overly-localized corrections; assuming an 

unrealistically-large decorrelation length, on the other hand, results in overly-smoothed 

corrections. Hence, the choice of Lx should, ideally, take into account the expected 

bathymetric scales as well as the sampling scale. Figure 3.5 (right panel) quantifies 

this dependence for various measurement sample spacings dxobs (the point x = 250 m 

is always included in the measurements, and other measurements are spaced a distance 

dxobs apart). In all cases, error in the bathymetry estimate is minimized by choosing Lx 

to be close to the true bump length scale lb = 50 m. However, when the measurement 

sample spacing is small, there is less penalty for choosing a smaller value of Lx. Note 

in realistic applications it would be advantageous to choose Lx as small as possible so 

that smaller scales of bathymetry, if they exist, would also be well-estimated. Hence as 

a rule of thumb based on the present tests, we recommend choosing Lx as the lesser 

of (a) three times the measurement sample spacing, and (b) the maximum expected 

bathymetric length scale. 

http:rate(inthiscase12.5m
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Figure 3.4: Left: convergence of root-mean-square error (rmse) for increasing ensemble 
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izations of each ensemble size. Right: example estimates using various ensemble sizes 
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Figure 3.5: Left: depth estimates of a bump with hb = 1 m, for Lx = 5 m (blue), 50 m 
(green), 100 m (red), and 200 m (cyan). True depth is plotted in black, and measure
ment locations are marked by circles (measurement sample spacing is dxobs = 12.5 m). 
Right: root-mean-square (rms) difference between true and estimated bathymetry, using 
same bump geometry, for various decorrelation lengths Lx, and various measurement 
sample spacings dxobs. Ten realizations of 500-member ensembles are computed for each 
combination of Lx and dxobs; solid line represents average rms error, and dashed lines 
are ± one standard deviation. 
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3.3.2 Test Cases With Realistic Bathymetry 

Thus far, we have considered several specific aspects of the depth inversion process which 

can affect the result. These include the nonlinearity in the relationship between u and 

h, the specification of the prior covariance, and the impact of ensemble-based estimates. 

These effects can be isolated when assuming highly-idealized dynamics and geometry; in 

a realistic case, however, they act simultaneously. We next test the method using two 

real-world reaches with known bathymetry. 

3.3.2.1 Test Case A: Snohomish River, WA 

The first case we consider is based on a 2.3 km reach of the Snohomish River, WA 

(TerraSond, 2009), which was the site of the COHerent STructures in Rivers EXperi

ment (or, COHSTREX) (Chickadel et al., 2009; Giddings et al., 2011). As part of the 

COHSTREX experiment, a high-resolution bathymetric survey was conducted at this 

site during September, 2009 (TerraSond, 2009). 

The river is nominally 100 m wide and its depth varies with the tide, having channel 

depths in the nominal range 3–6 m. Discharge is also tidally-influenced, spanning a range 

of about ± 300 m3/s. Salinity intrusions occur with each tide cycle, but here we will 

restrict our attention to tidal phases when measured salinity was negligible. Specifically, 

we assume an ebb-tide phase with discharge 180 m3/s and nominal depth 3.5 m, and we 

neglect buoyancy effects in the equations of motion. 

3.3.2.2 Test Case B: Kootenai River, ID 

As a second test case, we consider a reach of the Kootenai River, ID. This channel is 

deeper than that of the Snohomish River (nominal depth 6.5 m), and has larger spatial 

scales in its bathymetry and bank geometry. 

Bathymetric data for this test case were collated from existing U.S. Geological Survey 

measurements (Barton et al., 2004), as well as supplementary survey data collected in 

2010, as described by Swick (2011). The same 2010 field program (Swick, 2011) provided 

measurements of river stage and discharge on which we have based our tests. Adjoining 

streams and side-channels were excluded from the model domain, hence their influence 

on discharge is not accounted for in the present model. 
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3.3.2.3 Governing Equations and Numerical Model 

The river dynamics (necessary to provide forcing to the inverse model) are simulated 

using depth-averaged hydrostatic equations of motion. To solve the equations nu

merically, we employ the community code ROMS (Regional Ocean Modeling System) 

(Shchepetkin & McWilliams, 2005). The ROMS code integrates the equations of motion 

on a curvilinear grid, which we generate using the “gridgen” software of Pavel Sakov 

(http://www.marine.csiro.au/∼sakov). 

The model grid for the Snohomish River includes 651 points along-channel (nominal 

spacings 2–6 m) and 60 points across-channel (nominal spacings 1–3 m). For the Koote

nai River, we use 739 points along-channel (nominal spacings 6–10 m) and 35 points 

across-channel (nominal spacings 3–5 m). In both cases, the model time step is 0.025 

seconds. 

The ROMS code includes a variety of options for model physics and parameteriza

tions; some essential details on our particular setup are as follows. The model includes 

bottom stress in the form of a quadratic drag law, with drag coefficient Cf = 0.01, and 

harmonic mixing with eddy viscosity νt = 0.01 m2/s. Boundary conditions at the river 

banks (defined as the location where depth is less than 0.1 m) are no-slip; upstream and 

downstream boundary conditions are ramped up from rest to a steady discharge over a 

period of 30 minutes. Discharge is then held fixed at the downstream boundary until the 

flow reaches a steady state. The ramping-up phase excites waves which must be allowed 

to propagate out of the model domain, hence we employ Flather and Chapman boundary 

conditions (Palma & Matano, 1998) for velocity and free surface at the upstream bound

ary. For the incoming velocity and free surface height, which must be pre-specified, we 

assume a channel-averaged balance between downstream pressure gradient and bottom 

stress; some tuning is required in this calculation, to account for the effective drag due 

to nonuniform channel geometry. 

3.3.2.4 Prior Statistics 

We use a 500-member ensemble of bathymetric perturbations, drawing from the distribu

tion described in section 3.2.3. For the Snohomish River, we choose parameters Lx = 100 

m (along-channel decorrelation length), Ly = 50 m (across-channel), σh = 0.75 m, and 

Lloc = 100 m. The Kootenai River has naturally larger spatial scales, hence we increase 

the prior decorrelation length scales to Lx = 200 m, Ly = 100 m (other parameters are 

unchanged). Note we do not consider the measurement sample spacing in the choice of 

http://www.marine.csiro.au/�sakov
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Lx and Ly; this is to ensure an objective comparison among various sampling schemes 

(defined below). 

As discussed in section 3.3.1, the present method is, in a sense, linearized about the 

prior mean state, and hence its accuracy depends partly on the choice of the prior mean. 

For both the Snohomish and Kootenai Rivers, we assume the prior mean bathymetry 

is uniform in the along-channel direction, i.e. hf (x, y) = hf (y), where y is the across-

channel coordinate. For the Snohomish River, we assume hf (y) is piecewise-linear, hav

ing a bank slope of 1:5 and a horizontal bottom at 3.5 meters depth (Figure 3.6a). For 

the Kootenai River, we use a parabolic shape for hf (y) (Figure 3.9a). In both cases, 

hf approximately matches the measured along-channel-averaged depth profile, hence is 

partly based on known information. In practice, hf could perhaps be estimated by 

assuming highly simplified and/or channel-averaged dynamics, as in Zaron et al. (2011). 

3.3.2.5 Simulated Measurement Schemes 

Next, we employ a similar test methodology as above (for idealized 1D dynamics), where 

synthetic measurements are extracted from a forward model run with true bathymetry, 

and are then used to generate bathymetry estimates. Specifically, we generate a velocity 

field for the true (measured) bathymetry using the model described in section 3.3.2.3 — 

this is assumed to be equivalent to the true velocity, i.e. errors in model physics are not 

considered. The velocity is then “measured” by interpolating to a set of measurement 

points, and adding normally-distributed random noise to simulate instrument noise. 

Finally, these measurements are used in equation 3.2 to estimate bathymetry, and the 

result is compared to the truth (a “twin test”). We will test several possible measurement 

sampling schemes, representing realistic observational capabilities. 

First, we test isolated point measurements of 2D velocity. In this case, we assume 

high accuracy is obtained at the expense of spatial resolution, for example using an in-

situ gage. Measurements are taken from gridpoints along the channel centerline, with a 

nominal spacing of 200 m along-channel. Measurement error standard deviation is taken 

to be 0.01 m/s (e.g. the typical upper limit for bias error in acoustic Doppler current 

profiler instruments, RDInstruments (1996)). 

A second test involves assimilation of 2D velocities, measured along a simulated 

drifter track, e.g. Swick (2011). The drifter is released near the center of the channel at 

the inlet, and 2D model velocities are interpolated to the drifter track at 5 m along-track 

spacing. Measurement error standard deviation is taken to be 0.05 m/s. 

http:tobe0.01
http:metersdepth(Figure3.6a
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Full-Domain Obs.Points 

Case rmse 
[m] 

r2 rmse 
[m] 

r2 

Prior 1.4 0.18 1.4 0.014 
Pts 1.2 0.37 1.1 0.61 
u 1.0 0.57 0.91 0.64 
v 1.2 0.37 1.3 0.27 
u, v 0.84 0.70 0.76 0.77 
Drifter 1.1 0.52 1.4 0.48 

Table 3.1: Accuracy statistics for Snohomish River bathymetry estimates, comparing 
several measurement sampling schemes. Labels in first column are: Prior, no assimila
tion; Pts, assimilating isolated point observations of 2D velocity; u, assimilating observa
tions of along-channel (but not across-channel) velocity on a ∼10 m grid; v, assimilating 
observations of across-channel (but not along-channel) velocity on a ∼10 m grid; u, v, 
assimilating observations of 2D velocity on ∼10 m grid; and Drifter, assimilating 2D ve
locity sampled along a simulated drifter track. The statistics are root-mean-square error 
(rmse) and squared-correlation (r2); separate columns show statistics computed using 
all model gridpoints as the sample (“Full-Domain”), and using only the measurement 
locations as the sample (“Obs.-Points”). 

The final test case involves assimilation of 2D velocities on a coarse grid, similar 

to what could be obtained from remote sensing, e.g. Plant et al. (2005) using Doppler 

radar. Data are subsampled from model gridpoints, at nominally 10× 10 m spatial reso

lution, excluding locations within 15 m of the river banks. Measurement error standard 

deviation is taken to be 0.1 m/s. 

3.3.2.6 Results, Snohomish River 

Figure 3.6 shows the prior bathymetry, and the true bathymetry for the Snohomish 

River. To reiterate, the goal of the assimilation is to reduce error in the prior, i.e. obtain 

a better match to the truth. Results for the various sampling schemes outlined above 

are shown in Figure 3.7. Accuracy statistics are given in Table 3.1. In all cases, the 

posterior bathymetry is an improvement over the prior, indicating positive skill for the 

depth-inversion routine. As expected, higher skill can be obtained by reducing the 

observational error and/or increasing the observational resolution. The various sampling 

schemes tested here reflect inherent trade-offs between those two factors. 

The most bathymetric information is recovered when spatially-dense observations of 

both across-channel and along-channel velocities are assimilated (Figure 3.7a). Assimi

http:assimilated(Figure3.7a


53 

Figure 3.6: Prior bathymetry (a) and measured bathymetry (b) for Snohomish River 
test case. Inset shows along-channel-average of prior bathymetry, plotted as a function 
of across-channel position. 
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Figure 3.7: Posterior bathymetry for Snohomish River test case, with various sampling 
schemes: (a), assimilating 2D velocities, ∼10 m grid; (b), assimilating across-channel 
velocity only, ∼10 m grid; (c), assimilating along-channel velocity only, ∼10 m grid; (d), 
assimilating across- and along-channel velocities at 5 m spacing on a simulated drifter 
track; and (e), assimilating isolated point measurements of across- and along-channel 
velocities. For (d) and (e), the locations of measurements are indicated by black dots. 
Bottom plot shows across-channel-averaged depths, compared to truth. 
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lating along-channel velocity (Figure 3.7c) produces a larger and more accurate correction 

than across-channel velocity (Figure 3.7b). However, we note that the assimilation of 

across-channel velocity appears to provide/reinforce the across-channel structure of the 

bathymetry, for example the location of the thalweg in the southern river bend. 

Assimilation of 2D velocities along a simulated drifter track (Figure 3.7d) shows 

promising results, at least in terms of resolving the along-channel variability of bathymetry. 

Similarly, estimates from assimilating point observations are somewhat accurate near the 

observations themselves, but little to no information is gained in terms of non-local fea

tures. 

Finally, although thus far our focus has been on the estimation of bathymetry itself, 

we note that equation (3.3) also provides an estimate of the posterior uncertainty in 

bathymetry. Figure 3.8 shows the maps of posterior standard deviation (square root of 

diagonal of Ca ), for each of the depth estimates in Figure 3.7. Recall the prior standard hh

deviation was σh = 0.75 m; by definition, assimilation of data causes a reduction of 

standard deviation below this value. Cases where the posterior bathymetry estimate is 

skillful (e.g. assimilation of spatially-dense 2D velocities, Figures 3.7a and 3.8a) corre

spond to smaller posterior standard deviation, as expected. Likewise, locations where 

the bathymetry was not significantly changed due to assimilation of data (e.g. far from 

observation points, Figures 3.7d and 3.8d) have almost no reduction in standard devia

tion. This demonstrates that the posterior standard deviation is providing meaningful 

information about bathymetric uncertainty, which could be used to aid the interpretation 

of the result, or even to guide the further collection of observations. 

3.3.2.7 Results, Kootenai River 

The results for the Kootenai River are similar to those for Snohomish River. Accuracy 

statistics are summarized in Table 3.2. As an example, Figure 3.9 shows the poste

rior depth estimate from assimilating ∼10 m-gridded 2D velocities; results from other 

tests are listed in Table 3.2 but are not plotted, for brevity (conclusions are similar to 

Snohomish River, Figure 3.7). 

3.4 Discussion: Applicability to Real Observations 

The present results have shown the potential for estimating river bathymetry using 

spatially-dense measurements of velocity. This has been done using synthetic observa

http:ofspatially-dense2Dvelocities,Figures3.7a
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Figure 3.8: Posterior standard deviation (i.e. uncertainty) of bathymetry for Snohomish 
River test case, after assimilation of measurements using various sampling schemes. La
bels (a)–(d) are as in Figure 3.7. 

Full-Domain Obs.Points 

Case rmse 
[m] 

r2 rmse 
[m] 

r2 

Prior 1.6 0.52 1.8 0.19 
Pts 1.4 0.63 1.2 0.62 
u 1.1 0.78 1.2 0.64 
v 1.6 0.56 1.7 0.24 
u, v 1.1 0.77 1.1 0.67 
Drifter 1.3 0.71 1.5 0.45 

Table 3.2: Accuracy statistics for Kootenai River test cases (cf. Table 3.1 for labeling 
conventions). 
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Figure 3.9: Prior (a), posterior (b), and measured (c) bathymetry, for Kootenai River, 
assimilating 2D velocities on ∼10 m grid. Inset shows along-channel-average of prior 
bathymetry, plotted as a function of across-channel position. 

tions derived from the same model (i.e., twin tests) in order to demonstrate the method 

in an idealized setting. Extension to real observations is a logical next step, however 

several important hurdles remain. 

Model error is an obvious concern for real-world application of this method, and 

has not been considered here. One question is whether the present method would be 

significantly contaminated by spatial variability in bottom stress, which is parameterized 

using a constant bottom roughness in the numerical model. Similarly, the model used 

here is only capable of simulating depth-averaged hydrostatic flow; in cases where the flow 

is non-hydrostatic, or strongly depth-dependent, the resulting estimate of bathymetry 

would be contaminated, as shown by Honnorat et al. (2010). And finally, we have also 

assumed prior knowledge of river discharge and channel-averaged depth; error in those 

parameters would correspond to error in model boundary conditions, and would affect 

the posterior estimate. 

Another assumption made in the present methodology is that of a linear relationship 

between velocity and bathymetry. Because this assumption is violated, the update equa

tion (3.2) is not truly optimal, but is in a sense a linearization around the prior state 

(this was demonstrated for a simplified case in equation (3.11)). Figure 3.3 illustrates 

the effect of this linearization on the posterior prediction. Based on this interpretation, 

the method may produce large errors in cases where the prior model state is very far 

from the truth. Possibly this error could be reduced by introducing an ad-hoc iterative 

http:caseinequation(3.11
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scheme. We suggest experiments with such a procedure (and its statistical justification) 

as a topic for future work. 

Finally, it is important to emphasize the role of observational uncertainty. Without an 

accurate model for observational error, one risks overfitting to unphysical noise. Hence, 

data must be properly vetted for quality and given appropriate error bars. This seems 

particularly relevant to the present method, which benefits greatly from spatially dense 

observations as in remote sensing data; often such data require careful quality control. 

Despite the above caveats, we believe the present method is a useful tool for river 

depth estimation. It has the advantage of being easily extensible to new observation 

types, and is able to handle observational uncertainty/error. Continuing developments 

in remote sensing techniques for river flow (e.g. Plant et al. (2005); Chickadel et al. 

(2011); Puleo et al. (2012)) make this a promising possibility. Application of the present 

method to such data will be an interesting challenge and may reveal new technical or 

physical insights. 

3.5 Summary 

We find that the sensitivity of river velocity to variations in river bathymetry is strong 

enough to be exploited in an inverse model for realistic observational data quality. 

In other words, measurements of river velocity can potentially be used to estimate 

bathymetry. We have presented a methodology for doing so, using a least-squares 

estimator, which takes into account the prior bathymetric uncertainty as well as the 

measurement uncertainty. 

The inverse method was verified using synthetic twin tests. Under highly-simplified 

1D channel dynamics, the method is capable of detecting bathymetric perturbations with 

high skill (section 3.3.1). In more-complex applications with real-world channel geometry 

(section 3.3.2), the method still produces skillful corrections to bathymetry, quantified 

in Tables 3.1 and 3.2. Moreover, the method also quantifies the posterior uncertainty of 

the bathymetry estimate, which can aid the interpretation of the result. 

The effect of various observational sampling schemes on the accuracy of the posterior 

bathymetry was also investigated using synthetic tests. These schemes represent inherent 

practical trade-offs between spatial resolution and observational accuracy. We find that 

higher spatial resolution of observations, and observation of both across-channel and 

along-channel velocity, can help to resolve more detailed features such as the location 

of the river thalweg, or individual bumps/holes. The most highly-resolved observational 
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scheme produced the most skillful estimate, despite having larger observational error. 

The application of this method using real measurements, especially remote-sensing 

data, is promising based on the present results. We note, here, that detailed estimates 

of measurement error are also valuable and are crucial for the accuracy of the present 

method. Also, a prior estimate of mean river depth and discharge is required — for 

example, from a coarser-scale model. Despite these caveats, the present results suggest 

that river bathymetric inversion is within reach of current observational and modeling 

capabilities. 
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4. Surf Zone Bathymetry and Circulation Predictions via Data 

Assimilation of Remote Sensing Observations 

4.1 Introduction 

The surf zone is defined as the coastal region where the effects of wave breaking dominate 

the hydrodynamics. It is characterized by large waves and strong currents, and often has 

a sandy/unstable bottom, and hence can be a challenging or even hazardous environ

ment for in-situ observation. Because of this, remote sensing has played an important 

role in surf zone research; for a recent review, see Holman & Haller (2013). The most 

common implementation has been optical imagery collected from shore-based platforms 

such as Argus cameras (Holman & Stanley, 2007). Recently, efforts have also been made 

to exploit new imaging mechanisms such as radar (Catalán et al., 2011; Puleo et al., 

2003; Haller et al., 2013), infrared (Chickadel et al. (2009), and as discussed herein), 

and LIDAR (Blenkinsopp et al., 2012), as well as new platforms such as stereo-video 

(de Vries et al., 2011; Palmsten & Holman, 2011) and airborne. Furthermore, image 

processing techniques are increasingly being used to translate surf zone imagery into 

quantitative data products (e.g., using particle image velocimetry, Holland et al. (2001); 

Puleo et al. (2003); as well as other techniques discussed herein). And beyond remote 

sensing, other non-traditional measurement techniques such as passive GPS-equipped 

drifters (MacMahan et al., 2010) and fluorescent dye tracers (Clark et al., 2009) are now 

becoming standard. 

A common factor among all the above measurement techniques and data products 

is the ability to sample a broad spatial and temporal range, compared to traditional 

in-situ instruments (i.e., bottom-mounted gages and profilers). The trade-off, however, 

is usually in terms of measurement uncertainty (“noise”) and/or the inability to sample 

continuous high-quality data at a fixed location (“sparseness”). Hence the use of such 

data requires an ability to filter through sparse and noisy observations. Data assimilation 

is a powerful approach to this problem where one seeks to utilize the full information 

contained in observations (including their uncertainty), combined with knowledge of 

physical processes, to generate a statistically optimal estimate of an unknown variable. 

One of the major triumphs of data assimilation, for example, has been the use of satellite 
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remote sensing data to reduce errors in numerical weather prediction. It is estimated 

that three quarters of the effective information used by such models now comes from 

satellite data (Cardinali et al., 2004), and this has resulted in marked improvement 

in forecast skill. The challenges faced in that case (noisy/sparse imagery from non

traditional platforms) are completely analogous to the situation described above. Hence, 

data assimilation methods are a natural fit for surf zone prediction using remote sensing. 

A necessary prerequisite for applying data assimilation to the surf zone is the spec

ification of uncertainty in the data, and, importantly, in the model itself. Here, we 

argue that the dominant source of surf zone model uncertainty is often due to uncertain 

bathymetry. This is explained next. 

Bathymetry plays a central role in wave transformation and breaking, which is in turn 

responsible for the transfer of momentum from waves to time-averaged surf zone currents. 

This leads to the suspension and transport of sediment, which ultimately causes changes 

in the bathymetry itself. Hence, not only is bathymetry difficult to measure directly due 

to operational considerations (breaking waves, strong currents), it is also time-varying. 

Indeed, significant bathymetric change can occur even on daily time scales (Lippmann 

& Holman, 1990), which can be responsible for significant model error if not corrected 

(Wilson et al., 2010). As a result, errors in bathymetry are often cited as a fundamental 

barrier to operational nearshore modeling (Allard et al., 2008; Austin et al., 2012). 

One approach to minimizing bathymetric error is to incorporate the physics of sed

iment transport into the modeling system, thus reducing the need for continual mea

surements of bathymetric change. Here, however, the modeler is faced with several 

challenges. First, the bathymetry and sediment properties (e.g., grain size) still must 

be initialized in the model. Second, present knowledge of sediment transport processes 

is far from mature and is the subject of ongoing research (e.g., Hoefel & Elgar (2003); 

Henderson et al. (2004)). Finally, the spatial scales associated with sediment transport 

processes (of order centimeters to millimeters in the turbulent bottom boundary layer) 

are much smaller than the typical resolution of wave and circulation models, hence one 

must rely on sub-grid-scale parameterization. The accuracy of such parameterizations 

is often suspect, to the point that fundamental predictability of medium-to-large scale 

bathymetric change has been questioned by some (Coco & Murray, 2007; Plant et al., 

2006). 

To bring the various threads of discussion, above, together: in the present work we 

propose to use remote sensing data to control errors in surf zone bathymetry via data as

similation. This is a departure from the traditional approach of driving a nearshore model 
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with direct measurements of bathymetry, and/or deterministically modeling bathymet

ric change through time. Instead, the problem is cast in terms of a non-deterministic 

modeling system which incorporates bathymetric uncertainty (due to either unknown 

initial bathymetry or unknown bathymetric change, or both) as a random time-varying 

model parameter. The time-evolution of this parameter is treated very simply, and no at

tempt is made to incorporate physical models for sediment transport processes. Instead, 

bathymetry is estimated/controlled via the assimilation of data alone. 

We approach this problem with two goals in mind. First (a), assimilation of data 

results in an improved estimate of bathymetry, which can be used to improve model 

predictions of other variables (e.g., currents) and reduce forecast error. Second (b), as 

more data are assimilated the estimated bathymetry will become increasingly accurate 

and hence could be used for other applications (e.g., monitoring bathymetric change 

through time). The latter goal (b) has been the focus of several recent applications 

of data assimilation in nearshore and shallow water environments (van Dongeren et al., 

2008; Holman et al., 2013; Wilson & ¨ Ozkan-Haller, 2012; Zaron et al., 2011). In that case, 

the focus is on inversion of a physical model to assimilate potentially-noisy observations 

and predict bathymetry. The work of van Dongeren et al. (2008) and Holman et al. 

(2013) in particular highlight the benefits of using surf zone remote sensing data in such 

an application. The other goal (a), control of bathymetric error in a predictive surf 

zone model, was investigated by Wilson et al. (2010), who demonstrated model skill was 

strongly influenced by bathymetric error in a field setting, which could be corrected by 

assimilation of data. 

The work of Wilson et al. (2010) can be viewed as a precursor to the present study. 

They found that bathymetric errors could be corrected using single-time observations of 

wave heights and alongshore currents from an in-situ instrument array. Here, we extend 

their methods to assimilate time-dependent remote sensing observations of multiple geo

physical variables, a more realistic scenario for operational use. Our modeling system, 

described in section 4.3, assimilates remote sensing data as they become available (in 

this case once every half hour), and continually updates the estimated bathymetry and 

its uncertainty without the need for direct in-situ observation. In section 4.2, we outline 

a series of remote sensing data products, as well as in-situ data, collected during a 2010 

field experiment, which we use to test the system. Results are shown in sections 4.4 

and 4.5. We find that bathymetric errors can be successfully controlled using remote 

sensing data alone, and this leads to significant improvement in the ability of the model 

to predict surf zone currents. 
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4.2 Observations 

4.2.1 Experiment 

Observations were collected during a field experiment in September 2010 at the U.S. Army 

Corps of Engineers Field Research Facility (FRF) in Duck, NC. The study domain en

compassed approximately 1 km of a sandy barrier island beach, from the shore to approx

imately 8 m water depth (roughly 800 m offshore). Figure 4.1 shows the experimental 

layout, including the locations of in-situ instruments and the footprints of remote sens

ing observations. These instruments were deployed by several in-situ and remote sensing 

research groups, who provided pre-processed data sets for use in our data assimilation 

system. Their methods are reviewed next. 

4.2.2 In-Situ Data 

Bathymetry at the FRF has been regularly surveyed (approximately fortnightly) since 

1981 using the CRAB amphibious survey vehicle (Birkemeier & Holland, 2001), which 

uses RTK-GPS to obtain vertical accuracy of approximately 5 cm. A standard bathy

metric survey consists of across-shore transects at roughly 50 m spacing in the alongshore 

direction. Each such transect extends from the subaerial beach to beyond the offshore 

extent of our study domain. Two surveys were performed around the time of the present 

experiment, on September 6 and 15. This data will be used for cross-validation of our 

bathymetry estimation routine in section 4.4. Additionally, we calculated a climatologi

cal bathymetry from 253 archived surveys collected between 1981 and July 2010, which 

we used to initialize our data assimilation system (again, see section 4.4). 

Measurements of the incoming waves at the offshore boundary of our study domain 

(x = 900 m, or about 8 m depth) are also provided by the FRF, using an array of 15 

bottom mounted pressure sensors, referred to as the 8m-array (Long, 1996). These data 

are processed to form estimates of frequency-directional wave spectra, reported every 

three hours, which we use as alongshore-uniform offshore boundary conditions in our 

numerical model. 

Additional in-situ data collected within the model domain came from three bottom 

mounted co-located pressure and acoustic-Doppler current profiler sensors on the transect 

y = 940 m (Mulligan et al., 2010), and a bottom mounted acoustic-Doppler current 

profiling instrument at (x, y) = (191, 714) m. These are used for verification of remote 

sensing observations. 
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Figure 4.1: Map of 2010 field experiment, showing locations of in-situ and remote sensing 
data. Location of shoreline and FRF pier are plotted as black lines for reference (off
shore is in the positive-x direction). In-situ data consist of 8m-array pressure gages (◦), 
co-located FRF pressure and current-profiling instruments (+), and acoustic Doppler 
current profiler (×). Remote sensing data, from Argus tower (⊗) and radar tower (⊕), 
consist of Optical Current Meter (blue), Infrared PIV (red), CB1-optical (green), CB1
radar (magenta), and shoreline (yellow). 
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4.2.3 Optical Remote Sensing 

Optical remote sensing data was collected from an Argus station (Holman & Stanley, 

2007), consisting of five video cameras mounted on a 43 m tower located at (x, y) = 

(32, 590) m. The combined field of view covers the full alongshore extent of the study 

site, and extends out to x = 500 m. Pixel resolution degrades with distance from the 

tower, roughly 0.25–10 m. The cameras recorded data in 17 minute bursts, sampling at 

2 Hz, starting every 1/2 hour during daylight hours. 

4.2.3.1 Shoreline Identification 

The most-basic data products from the Argus system are the time-mean and variance 

of pixel intensity, which were saved at the top of every hour in this case. These are 

often used to estimate the location of submerged bathymetric features which affect wave 

breaking (a strong optical signal). Another use of such images is for shoreline detection, 

i.e., estimating the location of the zero contour in mean water level (e.g., Plant & Holman 

(1997)). Here, we estimate the shoreline as a function of y using the most-shoreward local 

maximum of image variance. An example is shown in Figure 4.2. These observations were 

recorded at one meter spacing in y, excluding locations within 75 m of the FRF pier where 

the shorebreak was often masked by waves breaking on the FRF pier pilings. Initially, 

estimates were extracted automatically, with fair success; however manual corrections 

were also used, e.g., to deal with uneven lighting or irregular wave breaking patterns. 

The data were also smoothed using a quadratic Loess interpolation having a alongshore 

window span of 100 m. Finally, a conservative error estimate of 10 m standard deviation 

in x was assigned for all data. 

4.2.3.2 Optical Current Meter 

A second data product from the Argus system uses the Optical Current Meter tech

nique (hereafter, OCM) for measuring alongshore current, as originally developed by 

Chickadel et al. (2003) (hereafter, CHF). In the present experiment, we defined five 

alongshore transects of pixels, spaced 25 m in the across-shore, starting at x = 125 m. 

17-minute timeseries from these transects were processed every 1/2 hour using a mov

ing analysis window of width 30 m, to obtain estimates of alongshore current at 5 m 

alongshore resolution. To calculate the estimates, data within the analysis window were 

first bin-averaged to a uniform sampling resolution equal to the maximum pixel spacing 
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Figure 4.2: Example shoreline detected from optical imagery on September 13, 1200 
EST. Shoreline (red line) is defined as shoremost maximum of variance image (a); time
exposure (b) and snapshot (c) images are also shown for reference. 

in the window; the CHF algorithm then applies a 2D Fourier decomposition, and uses 

a parametric spectral fit to identify slowly moving features. Such features are usually 

associated with the alongshore drift of foam (initially generated during wave breaking), 

which is a proxy for alongshore current. 

Uncertainty estimates for the OCM product are provided based on the spectral fitting 

procedure, which includes a noise model as described by CHF. Automated quality control 

of data also follows CHF. Additionally, periods where raindrops were present on the 

windows in front of the cameras occurred for 6 hours during the experiment, and those 

times were manually excluded (was not flagged by automated quality control). No rain 

occurred during the specific time period analyzed in section 4.4. Finally, we also excluded 

estimates for which the raw-data alongshore pixel spacing was greater than one meter. 

Figure 4.3a shows an example OCM data product (red arrows) at a time with dense 

data coverage, overlaid on a time-exposure optical image to indicate the locations of 

wave breaking. For visualization purposes, this figure uses spatial smoothing of the 

OCM estimates to reduce the effects of noise, such that the across-shore component of 

current could be estimated from the continuity equation using measured water depths 

(this processing was not applied when assimilating the data, or when comparing to in-situ 

observations below). Figure 4.3a also shows time-averaged predictions from a forward 

numerical model (yellow arrows; model is described in section 4.3.1), using measured 

bathymetry from September 15. This demonstrates that the model could agree well with 

the remote sensing data, given accurate bathymetry. In this case the model is correctly 

predicting a gyre-like flow caused by a gap in the nearshore sandbar (see Figures 4.9c 

and 4.9d). This type of circulation was common during the experiment, and mainly 

http:agapinthenearshoresandbar(seeFigures4.9c
http:Figure4.3a
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Figure 4.3: Left (a): example data product for Optical Current Meter (OCM): September 
13, 0830 EST. Red arrows represent spatially-smoothed measured alongshore currents, 
with across-shore currents derived using continuity equation; yellow arrows are a numer
ical model prediction using measured bathymetry; magenta scale arrow in lower right 
represents 0.5 m/s; background is an Argus time-exposed image from the same time pe
riod. Right (b): comparison between OCM alongshore current, and in-situ (AquaDopp) 
measurements of depth-averaged current. 

occurred during low tide (Haller et al., 2013). 

Figure 4.3b shows a comparison between OCM data and depth-averaged currents 

measured by an AquaDopp instrument at (x, y) = (191, 714) m (nominal depth 1.5 m). 

The data shown cover the period September 11–14 (OCM collections began Sep. 11, 

and in-situ collection ended Sep. 14). To make this comparison, quality-controlled OCM 

observations were averaged within a radius of 20 m around the in-situ gage, excluding 

cases with fewer than five such observations; 31 OCM collections passed this criteria. 

The in-situ data were then time-averaged over the OCM collection window. Although 

the data set is small, the results indicate good skill for the OCM measurements: root
2mean-square (rms) error was 9.3 cm/s, and r = 0.88, comparable to the verification 

results of CHF. 

http:endedSep.14
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4.2.3.3 Wave Celerity and Direction 

A third optical data product comes from the so-called “cBathy phase-one” routine (here

after CB1) developed by Holman et al. (2013). The CB1 algorithm analyzes imagery 

downsampled to 5 m by 10 m resolution, within a movable spatial window of width 

40 m (across-shore) by 100 m (alongshore). For each such window, CB1 calculates a 

cross-spectral matrix, retaining only the first singular vector thereof, then fits the result

ing phase maps using sinusoidal waveforms at pre-specified frequency bands. This gives 

estimates of wavenumber (scalar) and wave angle for each band, as well as estimated un

certainty based on the fitting routine. Data are then reported for the four most coherent 

frequency bands. We will refer to the wavenumber product as CB1k, and the wave angle 

product as CB1a. The above processes is repeated at different locations by shifting the 

analysis window to obtain an output resolution of 10 m by 25 m, and collections occur 

every 1/2 hour. Automated quality control of the data follows Holman et al. (2013); we 

also increased the threshold for phase-map fit skill from 0.5 (default) to 0.75, and we 

excluded data for which the analysis window included subaerial (dry) points (based on 

the identified shoreline, section 4.2.3.1). 

Holman et al. (2013) showed that by fitting CB1k frequency-wavenumber pairs to 

the linear wave dispersion relationship they could extract accurate estimates of water 

depth. When combined using a Kalman filter (not unlike the one used here), this infor

mation produced accurate spatial maps of bathymetry, which they verified using in-situ 

surveys. One minor shortcoming of their results was the Kalman filter predicted much 

lower bathymetric error than was observed. This may be partly due to unrealistically-

small observational uncertainty in the assimilation system. The same issue was present 

in our system when assimilating CB1k data, and to avoid it we chose to increase the 

CB1k observational uncertainty by a factor of two. This resulted in similar estimates of 

bathymetry, but more-realistic error estimates. 

The bathymetry verification by Holman et al. (2013) suggests the CB1k wavenumber 

data are accurate, in the sense they can be used to predict water depth. For additional 

verification, we also compared the CB1k data to wavenumber data from in-situ pressure 

gage measurements. The in-situ data consist of 34-minute 2 Hz timeseries, collected 

hourly, at locations (x, y) = (233, 940), (375, 939), and (446, 938) m (see Figure 4.1). For 

each collection period, we performed a cross-spectral analysis between pairs of adjacent 

in-situ gages to extract estimates of the across-shore component of wavenumber at each 

CB1k frequency band. Corresponding estimates from CB1k (taking wave angle into ac



69 

Figure 4.4: Left (a): comparison between wavenumber from optical CB1k product, and 
an estimate from cross-spectral analysis of in-situ pressure gage pairs. Dots represent 
in-situ gage pair (x, y) = (233, 940), (375, 939) m; crosses represent (375, 939), (446, 938) 
m. Right (b): comparison between wave angle CB1a and peak wave angle from analysis 
of in-situ gage data. Gages are located at (x, y) = (233, 940) m (dots) (375, 939) m 
(crosses), and (446, 938) m (plusses). 

count using CB1a) were extracted by interpolating to the midpoints between gage pairs. 

Figure 4.4a shows the resulting comparison, for 75 CB1k data collections covering the 
−1time period September 9–17. The agreement is good, with overall rms-error 0.011 m

2and r = 0.93. Much of the error is due to an apparent bias between the in-situ and 

remote sensing estimates, which could be explained by reasonable synchronization offsets 

among the in-situ instrument clocks (1–2 seconds; K. Hathaway, personal communica
2tion). If this bias was removed, skill increased to rms-error 0.0060 m−1 and r = 0.97 

Similarly, Figure 4.4b shows a comparison between CB1a wave angle data and ob

servations from the same three in-situ gages as above, for the same time period (in this 

case 83 collections; the number of comparable data is different than for CB1k because 

the data locations differ). To make this comparison, wave spectra were estimated from 

the in-situ data as described by Hathaway & Hanson (2011), and peak wave directions 

then were extracted for each of the CB1a frequency bands. The CB1a data were then 

spatially interpolated to the gage locations. The results show CB1a represents the peak 
2wave angle with fair accuracy: rms-error is 6.4◦ and r = 0.71 (note, part of the dif

ferences may also be due to uncertainty in the in-situ data). A comparison was also 

made to the in-situ mean wave angle using the definition of Kuik et al. (1988), which 
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2resulted in worse agreement: rms-error 8.1◦ and r = 0.67. The fact CB1a agrees better 

with peak angle rather than mean angle is likely due to the CB1 processing technique, 

which filters data by extracting only the first EOF mode of the cross-spectral matrix. 

For broad or multi-modal wave spectra, additional EOF modes may include significant 

information (other wave trains), but are not considered. The problem of making best 

use of multi-directional wave information in cBathy is a subject of ongoing research. 

4.2.4 Infrared Remote Sensing: Particle Image Velocimetry 

An infrared video camera, similar to the system used by Chickadel et al. (2009), was 

also deployed on the Argus station tower during this experiment. This imagery was 

analyzed in 30 minute bursts using particle image velocimetry (PIV) to extract velocity 

and its uncertainty, a product we will refer to as IR-PIV. The output resolution of this 

product is 8×8 m (raw pixel data has resolution of order 1 m), using analysis windows of 

16×16 m (i.e., 50% overlap), and data are reported every 1/2 hour. The incident wave 

signal was removed from the imagery prior to processing by extracting the minimum pixel 

intensity over a moving 10-second window. It is assumed the tracked features correspond 

to remnant foam (which is typically cooler than surface water and/or recently-generated 

foam), and remnant/active coherent structures, both of which are generated by wave 

breaking and are passively advected by mean currents. 

Quality control was defined by excluding measurements for which the PIV algorithm 

used fewer than 30 samples within its 30 minute analysis window. Also, we excluded mea

surements which were within 20 m of the shoreline. Finally, although this method pro

vides estimates of both x and y components of current, we only consider the alongshore 

current when assimilating data. This is because our numerical model is not designed to 

reproduce the stronger depth-variability expected in the across-shore current. 

An example IR-PIV result is shown in Figure 4.5a, similar to Figure 4.3a. Again, we 

find that the numerical model agrees qualitatively well with the remote sensing data, in 

a case where bathymetry is accurately known. The remote sensing data also compare 

well with in-situ observations, as shown in Figure 4.5b (using the same in-situ data 

set and method of comparison as described above for the OCM data, Figure 4.3b). In 

this case, the comparison spanned September 9–14, and included 63 IR-PIV collections. 
2Root-mean-square error for the IR-PIV data was 8.9 cm/s, and r = 0.71. 
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Figure 4.5: Left (a): example data product for Infrared Particle Image Velocimetry: 
September 13, 1800 EST. Red arrows represent measured currents; yellow arrows are a 
numerical model prediction using surveyed bathymetry; magenta scale arrow in lower 
right represents 0.5 m/s; background is a time-exposed image during the same period 
(unfortunately not very informative due to low light). Right (b): comparison of IR-
PIV estimates of alongshore current, and in-situ (AquaDopp) measurements of depth
averaged current. 
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Figure 4.6: As in Figure 4.4, but for CB1-radar. 

4.2.5 Radar Remote Sensing: Wave Celerity and Direction 

An X-band marine radar, described by Haller et al. (2013), was mounted at a height of 

14 m during the experiment, at the location (x, y) = (17, 971) m. For this experiment, 

the system measured backscatter intensity in 330 range bins (total range 1 km), and 270 

azimuthal bins. Data were collected at the top of each hour, and each collection consisted 

of 760 antenna rotations at a rate of 46 rotations per minute (17 minutes total). 

Haller et al. (2013) have demonstrated this instrument’s effectiveness for imaging 

waves and wave-averaged properties (e.g., locations of wave breaking, presence of rip 

currents) during the present experiment. The imaging mechanism is scattering from 

centimeter-scale sea surface roughness, for example due to wind or wave breaking; the 

scattering is then modulated by incident waves, resulting in a strong wave signal in the 

imagery. Wavefield information could therefore be extracted using the CB1 routine, as 

in section 4.2.3.3 (the same analysis window and output resolution was used). We will 

refer to this as CB1k-radar and CB1a-radar, to distinguish it from the optical products. 

Figure 4.6 shows a comparison between in-situ data and CB1-radar products, where 

the in-situ data is calculated as in Figure 4.4. This comparison used 121 CB1k-radar 

collections and 128 CB1a-radar collections, spanning September 10–17. The CB1-radar 
2accuracy appears to be comparable to the optical-based product: rms-error and r were 

−1 −10.010 m and 0.89, respectively, for wavenumber (0.0065 m and 0.95 after removing 

per-instrument-pair bias), and 5.7◦ and 0.47 for wave angle. 

http:mand0.95
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Direct comparison of the radar- and optical-based CB1 products also showed good 

agreement for the most part. However, we did identify a systematic bias towards smaller 

predictions of wavenumber by CB1k-radar, in a nearshore region roughly the equal to the 

extent of the surf zone. Because the radar observations are known to be of poor quality in 

that region compared to optical observations (M. Haller, personal communication), it was 

decided to discard radar-based data for x < 250 m. Conversely, we noted that the radar-

based product, unlike the optical product, did not require inflation of the observational 

uncertainty estimate in order to obtain reasonable assimilation results. Indeed, if the 

radar-based observation uncertainty was inflated, the result was an over-reliance on the 

optical data (and hence almost no added benefit from radar). It is not known why the 

two products required differing calibration for observational uncertainty, but we note 

this is a notoriously difficult quantity to estimate for remote sensing data, and is the 

subject of ongoing research in the data assimilation community (e.g., Desroziers et al. 

(2006); Li et al. (2009)). 

4.3 Modeling and Bathymetry Inversion System 

To reiterate, our goal is to predict surf zone waves and currents in an setting where 

bathymetry is uncertain. To that end, we utilize a combination of a forward numerical 

model and a data-assimilating inverse model. The overall modeling system thus tracks an 

uncertain estimate of bathymetry, and controls that estimate by assimilation of remote 

sensing data. 

Our methodology follows Wilson et al. (2010), but includes extensions for time-

varying sequential estimation and hence implements the ensemble Kalman filter (EnKF, 

Evensen (2006)). It also makes use of different observational data, and a slightly different 

physical model. In overview, the basic procedure is as follows: 

1. Define an initial background ensemble consisting of 200 realizations of bathymetry 

(section 4.3.3). 

2. For each member of the ensemble, apply the hydrodynamic numerical model (sec

tion 4.3.1) with fixed boundary conditions for the target observation time. 

3. Define the observational data set for the target time (section 4.2) and its uncer

tainty (section 4.3.6), and extract corresponding predictions from the ensemble 

(section 4.3.5). 
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4. Apply the EnKF update equations with state augmentation (section 4.3.4), to 

assimilate the observations and thereby obtain an updated ensemble of bathymetry. 

5. Adjust the ensemble spread to account for unresolved sediment transport and po

tential shortcomings of the filter, and resample to replace any failed ensemble 

members (section 4.3.7). 

6. Move to the next observation time, and repeat from step 2. 

After a sufficiently long period of time, multiple assimilation cycles should refine the en

semble of bathymetry such that its distribution represents an improved state of knowl

edge given the observations. The mean of the ensemble will represent the maximum 

likelihood estimate of the true bathymetry, and the covariance will represent the ex

pected uncertainty of that estimate. This will be tested in section 4.4. 

4.3.1 Forward Model 

We begin by defining the forward model, which represents transformation and breaking of 

waves as they enter shallow water (using linear wave theory), and the subsequent transfer 

of momentum from waves to depth- and time-averaged currents, as represented by the 

radiation stress (Longuet-Higgins & Stewart, 1964). This basic description of surf zone 

dynamics was first introduced by Longuet-Higgins (1970b) and Bowen (1969). Physical 

parameterizations for unresolved processes such as turbulence and wave dissipation have 

since reached a fairly high level of maturity, and the resulting predictive models have 

been validated extensively in field and laboratory settings (e.g., Ruessink et al. (2001); 

Haas et al. (2003)). We describe our specific implementation next. 

In our application, we use SWAN (Booij et al., 1999) to simulate incident waves, and 

the Regional Ocean Modeling System (ROMS, Shchepetkin & McWilliams (2005)) to 

simulate time-averaged currents. Both models will be described in detail below. The 

model domain extends from the 10 cm depth contour (i.e., the shoreline, x ≈ 100 m) 

to an offshore boundary x = 900 m, and for an alongshore span −105 < y < 1410 

m. Model grid spacing is 10 m (across-shore) by 15 m (alongshore). The domain is 

assumed to be periodic in the y-direction, and the area 1110 < y < 1410 m is used 

as a buffer zone over which the bathymetry is smoothly ramped to satisfy periodicity 

(the buffer zone is reapplied each time bathymetry is updated via data assimilation). 

The model is re-initialized from rest for each observation period; continuous simulation 
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would be problematic, because the model bathymetry changes abruptly each time data 

are assimilated. 

The wave part of the model, SWAN, solves the stationary conservation of wave 

action equation (Mei, 1983), which governs the transformation of wave energy (i.e., 

the frequency-directional wave spectrum) from the offshore boundary to the shoreline. 

Offshore boundary conditions are specified for a given observation time using the FRF 

8m-array measurements, which are assumed alongshore-uniform and are interpolated 

in time using the internal SWAN routine. Energy dissipation due to wave breaking is 

included using the parameterization of Battjes & Janssen (1978), with default physical 

constants in SWAN. The effect of currents on waves (i.e., wave-current interaction) is 

not included, so that SWAN runs as a standalone model. 

The wave spectral predictions from SWAN are then used to compute radiation stress 

gradients (Longuet-Higgins & Stewart, 1964), which are passed as a static input to 

ROMS. The effect of wave rollers, the aerated mass of water riding on top of breaking 

waves which acts as a reservoir for momentum (Svendsen, 1984), is included following 

Reniers et al. (2004). 

ROMS, in turn, solves the Reynolds-averaged hydrostatic Navier Stokes equations, 

which are also averaged in depth and in time, over the time scale of waves (this time 

averaging produces the radiation stress gradient terms noted above). The model is 

allowed to spin-up for seven hours, and then model outputs are averaged over 30 minutes 

to simulate an observational data collection period. Bottom stress is parameterized 

following Svendsen & Putrevu (1990), with a drag coefficient fw = 0.0053 chosen based 

on an analysis of field data on this beach by Feddersen & Guza (2003) for a similar, 

though not identical, bottom stress formulation. Surface stress is assumed to be due 

to wind only, and is modeled using the parameterization of Smith (1988), using wind 

measurements from the offshore end of the FRF pier and assuming nominal values for air 

temperature, 10◦ C, and density, 1.22 kg/m3 . Horizontal momentum mixing is modeled 

using an eddy viscosity, parameterized for the surf zone following Haas et al. (2003). 

Tides are included as a static adjustment to the water level, as measured by a tide gage 

at the end of the FRF pier (note, this implies the sub-tidal depth is what is estimated 

by assimilation of data, rather than the total water depth). The shoreline boundary 

condition is no-slip, applied at the 10 cm depth contour, and a radiation condition is 

applied at the offshore model boundary. 
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4.3.2 Mathematical Statement of Inverse Problem 

Next we introduce the inverse model, which incorporates bathymetric uncertainty into 

the forward model, and then attempts to control bathymetric error (hence estimate 

bathymetry) using observations. 

In order to formally define the inverse problem, we begin by introducing some nota

tion and nomenclature. First, we define a state vector ψ, consisting of a concatenation 

of all the relevant variables in the model (i.e., h, u, v, k, etc.), including bathymetry, for 

all model gridpoints. The dimensions of ψ are therefore MV ×1, where M is the number 

of model gridpoints and V is the number of model variables. We also define a vector 

of observations, d, having dimensions K × 1, and a K × MV matrix L which serves to 

map ψ to the observation space. For example, if d comprises a list of observations of the 

velocity u at specific locations, then Lψ represents interpolation of the model u to those 

locations. 

In general, the number of degrees of freedom contained in the observations is far 

less than that of the model, so that estimation of ψ (or even a subset of ψ such as 

bathymetry) using d alone is a mathematically under-determined problem. For that 

reason, any method which seeks to estimate bathymetry from sparse observations must 

introduce regularizing assumptions (extra information) to constrain the inverse problem. 

In the usual formulation of data assimilation, this information is given explicitly in the 

form of a prior or “background” model state ψb and its covariance Cb. These represent 

the best possible estimate of the model state, and the uncertainty of that estimate, 

before observations are taken into account. Given this information, the problem becomes 

overdetermined, and one can seek a generalized inverse by minimizing a least-squares cost 

function: 

( )T ( )

ψ − ψb C−1J [ψ] = ψ − ψb + (d − Lψ)T C−1 (d − Lψ) . (4.1) b d 

In this cost function, the first term penalizes departure of the estimate of ψ from the 

background ψb, and the second term penalizes misfits to the observations. These are 

weighted using the matrices Cb and Cd, which represent the expected covariance of 

errors (i.e., uncertainty) in the background and the observations, respectively. 

The solution to this minimization problem gives an updated estimate of ψ and its 

covariance, for a given set of observations. In our application, we then extract the 

bathymetry from this updated state, and use it to form the background for the next 

observation time. This is described in more detail in the following sections. 



    

77 

4.3.3 Covariance Modeling Using Ensembles 

A central aspect of any data assimilation system is the method used to construct the 

background ψb and Cb given a specified distribution of uncertain parameters, in this case 

bathymetry. It is easy to see that given a background bathymetry hb, plus boundary 

conditions (which we assume are known), one could run a forward numerical model to 

produce ψb . Calculation of Cb, on the other hand, is not straightforward. The approach 

we use here follows Evensen (2006), as implemented by Wilson et al. (2010) for surf zone 

bathymetric inversion. 

For the first assimilation step, we generate N = 200 realizations of bathymetric 

perturbations, using the Fourier Transform method described in Evensen (2006) (Fortran 

code available from enkf.nersc.no), which draws from the covariance 

2 2Δx Δy
Ch(Δx, Δy) = σh 

2 exp −3 + . (4.2) 
L2 L2 
x y 

In the present experiments we choose Lx = Ly = 100 m, and σh = 0.5 m, representative 

of the presumed typical length scales of unknown bathymetric features. These perturba

tions are then added to a prescribed initial background estimate of bathymetry hb (e.g., 

see section 4.4) to form a bathymetric ensemble. We then execute the forward model 

(section 4.3.1) for each member of the ensemble, resulting in an ensemble of full model 

state vectors which we will denote ψi
b . The sample mean of this latter ensemble is used 

for ψb, and the sample covariance is used for Cb. After the first assimilation step, the 

ensemble and its covariance evolves via assimilation of data (section 4.3.4), and equation 

(4.2) is no longer used. 

A common issue with ensemble-based covariance approximations is the potential for 

spurious long-range spatial correlations in the estimated Cb. Hence, following Hamill 

et al. (2001), we localize all sample covariances using a Schur product with a compactly

supported correlation function. The correlation function used here is the same as used 

by Hamill et al. (2001), with a length scale of 75 m. This yields a cutoff separation 

distance of roughly 150 m beyond which all covariances are effectively set to zero. 

We also note the present approach does not constrain realizations of h to be strictly 

positive. This is physically acceptable, as negative water depth can simply be interpreted 

as dry land. However, problems arise if negative depths occur in locations where waves 

or currents were measured. In that case, it is not possible to “measure” the ensemble 

as required in the assimilation process (section 4.3.5). To circumvent this issue, we 

http:enkf.nersc.no
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define a rule that only one zero-crossing of still-water-depth may occur for any given 

y location, meaning the shoreline is a single-valued function of y, and no “islands” are 

allowed. To enforce this rule, depths are truncated to a minimum of 0.25 m at all points 

offshore of the first zero-crossing. In cases where truncation would cause a change in 

depth of more than 0.5 m, the realization is completely removed from the ensemble. If 

after these changes a given observation is still not measurable across all of the ensemble 

members (which occurred for some CB1 data near the shoreline), that observation is 

removed from the assimilation process. For the experiment of section 4.4.2, the above 

rules caused depths to be truncated in 4.1% of realizations, 0.5% of realizations had to 

be discarded, and 3.5% of the available CB1 data was discarded. 

4.3.4 Update Step 

With the above definitions, we are now prepared to assimilate data and update the 

model state by minimizing the cost function (4.1). A formal minimization (e.g., Evensen 

(2006); Bennett (2002)) results in the following equation for the updated (or “analysis”) 

state: 
( )

† 
ψa = ψb + CbL

T LCbL
T + Cd d − Lψb + e , (4.3) 

where the superscript “†” indicates a Moore-Penrose matrix inverse, which accounts 

for possible conditioning problems when the number of observations is larger than the 

ensemble size (Evensen & van Leeuwen, 1996). Equation (4.3) is applied to each member 

of the prior ensemble, producing an updated ensemble of state vectors (with updated 

sample covariance), from which we extract the updated bathymetry ensemble, hai . Note 

we must introduce random measurement perturbations ei for each member, with mean 

zero and covariance Cd, in order for updated ensemble to have the correct covariance 

(Houtekamer & Mitchell, 1998). Also note in practice we usually forego the computation 

of the entire state update and instead compute only the rows of ψa which correspond to 

the bathymetry ha . 

Equation (4.3), the EnKF update equation, is the core of the assimilation system. 

At this point, however, there are a few remaining details regarding our particular imple

mentation, which we describe next. 

http:minimumof0.25
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4.3.5 Observation Operator 

Recall the observation operator L serves to “measure” the model state ψ, and hence 

produce model predictions corresponding to the observations d. In practice, L is not 

specified explicitly, rather each observed variable is extracted from the model (i.e., mea

sured) using a set algorithm, described below. This reveals a minor abuse of notation 

in equation (4.3) in cases where the measurement process is nonlinear. In actual fact, 

in our system Lψb is defined as L(ψb), where L is a function (possibly nonlinear) which i i 

maps to the observation space. Similarly, CbL
T is defined as the sample covariance (in

cluding localization) between ψb and L(ψb) (and similarly for LCbL
T ). The function Li i 

is described next for each observation type. 

Measurements of currents are treated simply by linearly interpolating the predicted u 

and v from the model grid to the observation locations. This is the simplest of observation 

operators, because the forward model already outputs u and v explicitly. 

Wavenumber measurements are defined using a sub-model for wave dispersion, ap

plied as a function of depth, waves and currents. Following the recommendation of 

Catalán & Haller (2007), we use the dispersion relationship of Kirby & Dalrymple (1986) 

(hereafter KD86), 

( )2 
σ − �k · �u = gk 1 + f1ǫ

2E tanh (kD + f2ǫ) , (4.4) 

where 

kH 8 + cosh 4kD − 2 tanh2 kD 
ǫ = , E = ,

2 8 sinh4 kD 
kD 4 

f1 (kD) = tanh5 kD, f2 (kD) = . 
sinh kD 

In these equations, σ is the radial wave frequency, �k is the wavenumber, H is the wave 

height, and D is the mean water depth. The KD86 model includes the effect of currents 

on waves, as well as the effect of finite wave amplitude. Note these effects are not 

included in our implementation of SWAN, hence the use of KD86 in the inversion step 

is somewhat ad-hoc; however, we found that if they were not included, the resulting 

estimate of bathymetry was biased towards being too deep. Another aspect of the 

wavenumber measurement is the fact the remote sensing measurements are computed 

over a large spatial footprint. To account for this, all variables in KD86 are averaged 

over the same footprint before applying the equations. 
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Measurements of the location of the shoreline are defined by interpolating the x-

locations of the modeled shoreline to the y-locations of the observations. An alternative 

would be to treat the measurement as an observation of zero depth at the measured 

(x, y); however, in that case the observation uncertainty would be difficult to define, 

as the sensor does not actually “observe” depth. A related point is that the shoreline 

measurements in L(ψb) do not have a well-defined (x, y) location (because x is treated 

as an uncertain observable). This leads to ambiguity when applying localization to the 

sample covariances; we chose to localize based on the modeled mean x-location of the 

shoreline (an alternative would be to use the observed x-location). 

Measurements of wave angle were the most difficult to represent. Recall (section 

4.2.3.3), the CB1 algorithm filters its observational data by extracting the leading EOF, 

which is likely (though not guaranteed) to be associated with the most-energetic wave 

train. With that in mind, we extract frequency-directional spectra from the wave model, 

integrate with respect to frequency over each CB1a frequency band, then extract the 

peak wave angle in each band. This procedure was repeated for each of the CB1a output 

locations, and results were then averaged over the CB1a analysis windows. 

4.3.6 Observation Error Covariance 

To define Cd, we begin by noting that its main diagonal corresponds to the estimated 

error variances for the observations, which are already given by the remote sensing data 

analysis (section 4.2). In addition, however, we must take into account the fact the 

remote sensing data are derived using analysis windows, and those analysis windows can 

overlap, which would imply spatial correlation of the observation error covariance (i.e., 

Cd should also include off-diagonal terms). If this fact was not accounted for we would 

effectively assimilate the same information multiple times. 

We therefore model the full observation error covariance Cd as block-diagonal, with 

each block representing a particular data product (that is, errors between different data 

products are assumed uncorrelated). The i’th block of Cd (representing one data prod

uct) is modeled by 

2 2Δx Δy
Cdi(Δx, Δy) = wΣ exp −3 + ΣT + (1 − w)ΣΣT , (4.5) 

L2 L2 
xi yi 

where Δx and Δy are the separation between observations, Lxi and Lyi are the analysis 

window half-widths in the x and y directions, Σ is a diagonal matrix containing the 
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observation error standard deviations, and w = 0.9 is a weighting factor. In the case 

of the shoreline observations (the only data product which does not have a clearly-

defined analysis window) a representative analysis window half-width of 30 m was used, 

based on the alongshore smoothing function that was applied to the measurements. 

Additionally, CB1 observation errors from different frequency bands are assumed to be 

uncorrelated (likewise for CB1-radar), as are OCM observation errors from different 

alongshore transects. 

The weighting factor w allows us to hedge our estimate of Cd towards a more-

traditional diagonal matrix, which helps to ensure Cd is well-conditioned — note the 

more the measurement analysis windows overlap, the less independent are the rows of 

Cd, which influences the condition of the matrix. The choice of w was also used as 

a rudimentary calibration parameter for Cd. With w = 0 (diagonal Cd), we found 

the ensemble spread was strongly underestimated, and corrections to bathymetry were 

amplified, sometimes at the expense of accuracy; we interpret this as overfitting the ob

servations. With w = 1, we found Cd was not as well conditioned, and estimates of some 

bathymetric features were overly smeared-out. The choice w = 0.9 was a compromise 

between those two extremes. 

4.3.7 Ensemble Resampling and Covariance Inflation 

The bathymetric ensemble obtained from the update equation (4.3) forms the basis for 

a new background ensemble for the next assimilation time. However, recall our method

ology includes the possibility of excluding ensemble members with unacceptable depth 

variations (e.g., large islands); similarly, in rare cases certain realizations induce numer

ical instability in the forward model and therefore must be excluded (this occurred for 

0.13% of all realizations in the experiment of section 4.4.2). Over time, these restrictions 

could lead to unacceptable shrinking of the ensemble size. Hence, we choose to resam

ple the ensemble after each update, producing a new ensemble of 200 members with 

conserved sample mean and covariance. This resampling is calculated using code from 

the EnKF-Matlab package by P. Sakov (available at http://enkf.nersc.no/Code/EnKF

Matlab/enkf-matlab-0.30.tar.gz). 

Lastly, before proceeding to the next observation time, the spread (uncertainty) of 

the ensemble is inflated using additive random noise. This is done for two reasons. 

First, our forward model does not account for time-evolution of bathymetry by sediment 

transport, hence this must be incorporated as additional uncertainty (similar methods 

http:Matlab/enkf-matlab-0.30.tar.gz
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were used by van Dongeren et al. (2008) and Holman et al. (2013)). Effectively, this 

is a simple statistical “forward model” representing bathymetric change. Second, the 

assimilation method used here is known to be sub-optimal (e.g., due to nonlinearity 

in the forward model and observation operator, and finite ensemble size), which can 

lead to underprediction of ensemble spread. In either case, if inflation is not used one 

risks developing unrealistically-small ensemble spread, such that the true bathymetry is 

no longer a viable realization. This can cause a situation known as filter divergence, 

where the filter is so “certain” of an inaccurate model state that it effectively ignores 

new observations. The problem of filter divergence is well-known in geophysical data 

assimilation, and inflation is used routinely to mitigate it (e.g., Hamill et al. (2001)). 

Construction of the additive inflation noise is primarily based on accounting for 

unknown bathymetric change due to sediment transport. This was quantified for our 

field site by Holman et al. (2013), who suggest the following empirical formula for the 

growth rate of variance, based on in-situ field measurements of bathymetric change: 

(x − x0)
2 

Q (x, Hm0) = CQHm
2

0 exp −
σ2 . (4.6) 
x 

Here, x is the across-shore coordinate, CQ = 0.067 days−1 , Hm0 is significant wave 

height measured at the 8m-array, x0 = 150 m, and σx = 100 m (the values of x0 and σx 

reflect the typical location of breaking waves at this particular beach). By integrating 

Q between successive assimilation cycles (see section 4.2) we obtain a baseline envelope 

for the inflation noise variance. Next, we set thresholds on this envelope such that, once 

the inflative noise is added to the ensemble, the ensemble spread (standard deviation) 

will be between 0.25 m and 0.75 m. The use of a lower bound on variance follows the 

“conditional covariance inflation” methodology used for parameter estimation by Aksoy 

et al. (2006), and is intended to avoid filter divergence. The use of an upper bound 

is to avoid unbounded growth of ensemble spread in sparsely-observed regions (Hamill 

& Whitaker, 2005). After applying these thresholds, the square-root of the variance 

envelope is multiplied by unit-variance random noise, using covariance as in equation 

(4.2) with Lx = Ly = 100 m. This noise is then added to the bathymetry ensemble 

before moving to the next observation time. 
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4.4 Results
 

Next, we apply the modeling/assimilation system described in section 4.3 to the obser

vational data set described in section 4.2. 

4.4.1 Experiment Setup 

Figure 4.7 shows the conditions observed during the experiment, and Figure 4.8 shows 

the number of observations reported by each remote sensing data product. Based on this 

data set, we chose to test our modeling system by assimilating data on September 13, 

for an 11.5 hour period during daylight hours (0700–1830 EST). During the development 

of our system we also tested other times and longer assimilation windows, and generally 

found similar results (although, see section 4.5.1). The main criteria for selecting a 

targeted test period was that all data products were consistently reporting with good 

spatial coverage, allowing for a fair comparison between the assimilation of different 

observation types (section 4.4.4). On other days, unavoidable factors caused one or more 

data products to be poorly represented, such as mismatched data start/end times (e.g., 

OCM data not available before September 11) or weather conditions (e.g., rain, which 

occurred on September 12 during otherwise favorable conditions). Another consideration 

was that wave heights on September 13 were sufficient to cause consistent breaking over 

the nearshore bar/terrace throughout the day, which drove significant surf zone currents. 

On days with smaller wave heights, currents were sometimes driven by other forces not 

represented by the forward model, resulting in errors which will be discussed in section 

4.5.1. 

As shown in Figure 4.7, combined significant wave height during the test case var

ied from 0.7–1.1 m. Wave spectra were somewhat complex, consisting of at least two 

sea components and a weaker swell component. The observed dynamics were spatially 

nonuniform, primarily due to the presence of nonuniform bathymetric features (see sur

veyed bathymetry in Figures 4.9c and 4.9d). Most notably, a rip current was observed 

during low tide at y ≈ 800–900 m, apparently due to a gap in the nearshore bar/terrace 

which caused a nonuniform wave breaking pattern. This rip current is of particular in

terest, because it was in the field of view of all of the remote sensing instruments. For 

instance, it can be seen in the example data shown in Figures 4.3a and 4.5a. 
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Figure 4.7: Conditions observed during experiment, vs. time in EST. The start/end time 
of the September 13 test case presented in section 4.4 is marked by vertical lines. Plots 
(a)–(c) show observed wave conditions in 8 meters depth: significant wave height Hm0, 
and integrated frequency and directional wave energy density (shown as shading in (b) 
and (c), normalized to unit energy for each time), with peak frequency and direction 
marked by solid lines. Wave directions are measured counterclockwise from the positive
x axis to the direction waves are coming from. Plot (d) shows observed tidal elevations 
relative to the NAVD88 vertical datum. 



85 

Figure 4.8: Number of remote sensing observation data points, vs. time in EST. The 
start/end time of the September 13 test case presented in section 4.4 is marked by vertical 
lines. Legend indicates the type of observation; the total number of observations during 
the September 13 test period is listed in parentheses. 

4.4.2 Estimated Bathymetry 

To initialize the data assimilation system, we defined a highly simplified background 

bathymetry based on 29 years of bathymetric surveys at the field site (253 surveys 

in total). This data was merged/interpolated to the model grid using a linear Loess 

interpolator (Plant et al., 2002) having length scales of lx = 20 m and ly = 200 m. 

The resulting background bathymetry is shown in Figure 4.9a. Uncertainty for this 

background bathymetry, Ch, was initialized as described in section 4.3.3. Note this 

background estimate includes almost no information pertaining to the actual bathymetry 

during the experiment, except for the presence of mild scour under the FRF pier, and the 

approximate beach slope; this ensures that any subsequent corrections to bathymetry can 

be clearly attributed to information in the assimilated data, rather than user-specified 

prior knowledge. 

Figure 4.9b shows the estimated bathymetry after assimilating the 11.5 hour test 

data set (24 observational data cycles). For this test, we assimilated all available remote 

sensing data products (see section 4.2 and Figure 4.8), with the exception of wave angle 

observations. The reason for excluding wave angle observations is they were found to 

degrade the bathymetry estimate; this will be discussed in section 4.4.4. 

The accuracy of the estimated bathymetry can be assessed qualitatively by comparing 

to the survey data in Figures 4.9c and 4.9d. These show a nearshore bar at x ≈ 200 

m, which migrated onshore over time to form a more terrace-like nearshore feature. 

The bar/terrace was also incised with several channels (y ≈ 100, 250, 900 m) which 

caused alongshore nonuniform wave breaking patterns and rip currents. There was also 



86 

Figure 4.9: Plot (a): background bathymetry hb used to initialize the ensemble assimila
tion system: a climatological average of bathymetry observed at the field site. Plot (b): 
updated bathymetry after assimilating all observations except wave angle, over 24 as
similation cycles (ending 1830 EST). Plots (c,d): surveyed bathymetry from September 
6 (c) and September 15 (d), where individual survey data points are plotted as yellow 
dots, and interpolated depths are shown as colors (white area in upper-right of Sep. 15 
bathymetry is due to a gap in the data). Colorbar with contour marks at far right 
applies for all plots, and refers to depth relative to the NAVD88 vertical datum; in the 
case of the updated bathymetry (b), the same colors and contours at are used, but color 
transparency is scaled to represent the the posterior estimate of bathymetric uncertainty. 

http:ofSep.15
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a prominent trench at y ≈ 500 m, which is a persistent feature at this site due to scour 

around the FRF pier pilings. While none of these qualitative features existed in the initial 

background bathymetry (Figure 4.9a), all are fairly well represented in the final estimated 

bathymetry (Figure 4.9b). This is further illustrated using individual across-shore and 

alongshore transects in Figure 4.10. A transect of the estimated bathymetry over the 

nearshore bar/terrace (red line in Figure 4.10a) shows that assimilation of data correctly 

captures the location and approximate amplitude of rip channels, in good agreement with 

the survey data from September 15 (black line). An across-shore transect at y = 690 

m shows that the across-shore profile of the terrace is also fairly well captured, as is a 

secondary bar at x ≈ 350 m; another across-shore profile at y = 870 m also shows good 

agreement, including a corrected shoreline location, although in that case the inner bar 

location is mis-predicted. 

Figure 4.11 shows differences between the raw survey data and the estimates of 

bathymetry before and after data assimilation. Positive values in this plot represent 

overestimates of depth. Despite ambiguity as to which survey should represent the 

“truth” for September 13, both surveys indicate the bathymetry estimate is generally 

improved by the assimilation of data (also cf. Table 4.1 in section 4.4.4). For example, the 

initial estimate did not include a bar/terrace, resulting in the initial bathymetry being 

overly deep for approximately 150 < x < 250 m, an error which was largely corrected by 

data assimilation. 

A region of low skill, on the other hand, occurred in the south part of the domain 

offshore of the surf zone, roughly 0 < y < 400 m and 250 < x < 500 m, where the 

system estimated overly-shallow depths. Note only one observation type, wavenumber, 

was assimilated in this region (see Figure 4.1). Inspection of the data showed CB1k 

measured wave celerities were indeed consistent with such shallow depths (based on 

linear wave dispersion), and the alternative data assimilation method of cBathy Phases 

2–3 (Holman et al., 2013) produced similar results. CB1k-radar data were sparse in this 

region, but the few data points that were available showed larger wave celerity than 

measured by CB1k (i.e., consistent with larger depths). Hence, we suspect low skill in 

this region was due to an isolated problem with observational (CB1k) data quality, not 

with the data assimilation method. 

http:bathymetry(Figure4.9b
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Figure 4.10: Transects from initial (blue) and final (red) estimated bathymetry (as in Fig
ures 4.9a and 4.9b, respectively), and ± one standard deviation (dashed lines), compared 
to measured bathymetry on September 6 (green) and September 15 (black). Alongshore 
transect (a) is from x = 150 m, located over the nearshore terrace; across-shore transects 
(b,c) are from y = 690, 870 m. Dots represent measured data from within 2 meters of 
the alongshore transect in plot (a), and within 10 meters of the across-shore transects 
in plots (b,c); green and black lines represent smoothed 2D interpolation of raw survey 
data, as in Figures 4.9c and 4.9d. 
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Figure 4.11: Difference between estimated bathymetry and raw bathymetric survey data. 
Top plots (a,c) use data from the September 6 survey, showing differences before (a) and 
after (b) data assimilation; bottom plots (c,d) are the same, but using data from the 
September 15 survey. Positive differences indicate an overprediction of depth. Black 
contours are the estimated depths as in Figure 4.9. 

http:Figure4.11
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4.4.3 Improved Prediction of Currents 

An important aspect of the assimilation system is its ability to improve overall model 

skill as a result of assimilating observations and correcting bathymetry. To demonstrate 

this, we test the ability of the system to predict a persistent rip current which appeared 

throughout the experiment during low tides, at y ≈ 900 m, coincident with a gap in the 

nearshore bar/terrace. The rip was well-imaged by IR-PIV measurements, and was also 

visible in time-averaged radar backscatter imagery (Haller et al., 2013). 

On the day of our test case, observations did not indicate the presence of the rip 

current at y ≈ 900 m until 1500 EST, at which point it appeared and persisted until 

the end of the day. Hence, to test our system we consider assimilating data within the 

time period 0700–1200 EST (i.e., before the rip was observed), then running the model 

forward, using the same boundary conditions but without assimilating data, to predict 

currents at low tide, 1800 EST. The reason 1200 EST was chosen as a cutoff was that 

near that time a reversal of currents was observed at y ≈ 700 m, perhaps a precursor to 

the formation of the rip current. It also should be noted that the 1200 EST bathymetry 

estimate (not shown) already contained the qualitative bathymetric features described 

above for the final estimate shown in Figure 4.9b, and estimates were not significantly 

different for other nearby times. 

Figure 4.12 shows the resulting prediction of currents at 1800 EST. If no data were 

assimilated, the bathymetry remained nearly alongshore uniform (that is, as in Figure 

4.9a), and no rip current was predicted (not shown). After assimilating the 0700–1200 

EST data, the model was capable of predicting the rip current in roughly the correct 

location (Figure 4.12a). Hence, assimilation of data resulted in the prediction of a 

bathymetry-controlled rip current, without the use of any direct bathymetry observa

tions. An even more accurate prediction was obtained if data were also assimilated 

during 1200–1800 EST (Figure 4.12b). 

As an aside, note we do not expect the forward model to be capable of predicting the 

trajectory of the rip current once it exits the surf zone (roughly x > 200 m in this case), 

regardless of the accuracy of bathymetry. In that region, there is likely to be a strong 

influence from wave-current interaction (Haas et al., 1998; Yu & Slinn, 2003) as well as 

3D aspects of circulation (Haas & Svendsen, 2002), neither of which is included in our 

forward model. The prediction of the trajectory in Figure 4.12b appears accurate, but 

was found to be sensitive to small details in the bathymetry and so may simply have 

been a coincidence. On the other hand, the ability to predict the location of the rip 
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Figure 4.12: Measurements and forward model predictions for September 13, 1800 EST 
(low tide). Background shading represents X-band radar backscatter averaged over a 17 
minute collection period; high backscatter (green) corresponds to breaking waves, and/or 
surface roughness due to the presence of a rip current (Haller et al., 2013). Red arrows are 
IR-PIV measurements of currents (scale arrow in lower-right is 50 cm/s), which confirm 
the presence of a rip current at y ≈ 900 m. Red line is optical-based shoreline position. 
Yellow arrows are predicted time-averaged currents from a forward model run using (a) 
the estimated bathymetry after assimilation of data from 0700–1200 EST, before any rip 
current was observed, and (b) the estimated bathymetry after assimilation of data up to 
and including 1800 EST. 
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inside the surf zone (after assimilating data) is within the expected capabilities of the 

model, and was a robust result. 

4.4.4 Observation Impact and Quantitative Skill Assessment 

To judge the impact of each individual observation type on the estimated bathymetry, 

we conducted a series of data-denial experiments, in which only one observation type 

was used in addition to shoreline observations. The reason shoreline observations were 

always included was that the initialized shoreline (i.e., from the climatological average 

bathymetry, Figure 4.9a) was further offshore than the true shoreline; if the shoreline 

location was not corrected, many observations fell on “dry land” in the model and hence 

could not be assimilated. 

Figure 4.13 shows the final bathymetry estimate (after 24 assimilation cycles) for each 

observation type, including a case where only shoreline data were assimilated. With the 

exception of wave angle observations, discussed in more detail below, assimilation of data 

generally produced qualitative improvement in the bathymetry estimate in the region 

where observations were available (see Figure 4.1). In areas where there were no observa

tions, assimilation has less of an effect and the estimated uncertainty is correspondingly 

large. 

Table 4.1 presents skill statistics for the bathymetry estimates from the various data

denial experiments presented in Figure 4.13, as well as for the full assimilation test, 

Figure 4.9b, and the case with no assimilation, Figure 4.9a. Skill is assessed by com

parison to raw data from each of the bathymetric surveys (Figures 4.9c and 4.9d), for 

two different sub-regions: (A) the region where both wave and current observations were 

available (i.e., union of red and blue polygons in Figure 4.1), and (B) the combined re

gion spanned by all of the observations (nearly the entire model domain). The statistics 

consistently show that assimilation of either wavenumber or alongshore current produced 

a quantitative improvement in bathymetric accuracy, relative to the initial estimate with 

no assimilation. Wavenumber observations produced a more accurate estimate than did 

alongshore current observations, which we attribute to two factors. First, the relation

ship between wavenumber and bathymetry is more clear-cut, via the wave dispersion 

relationship (equation (4.4)). Second, the density of wavenumber observations far ex

ceeded that of currents (see Figure 4.8); this is because waves are nearly always visible 

in the remote sensing imagery, and can be analyzed at multiple frequencies for each loca

tion, whereas observations of currents rely on tracking of ephemeral image features. Our 

http:ofthebathymetricsurveys(Figures4.9c
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Figure 4.13: Estimated bathymetry from data-denial experiments (see text), plotted as 
in Figure 4.9b. Each result is from assimilating shoreline observations and one other 
observation type: (a), alongshore currents (OCM and IR-PIV); (b), wavenumber (CB1k 
and CB1k-radar); (c), wave angle (CB1a and CB1a-radar); (d), shoreline only. 

http:Figure4.13
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Sep. 6 Survey Sep. 15 Survey 

Obs. Type Region A Region B Region A Region B 
ǫ r2 ǫ r2 ǫ r2 ǫ r2 

(cm) (cm) (cm) (cm) 

Initial 57 0.49 51 0.93 55 0.68 65 0.88 
(a) Current 35 0.81 41 0.96 43 0.85 52 0.93 

(b) Wavenumber 33 0.81 39 0.96 36 0.86 48 0.94 
(c) Wave Angle 46 0.58 79 0.88 48 0.75 86 0.85 

(d) Shoreline-Only 53 0.74 45 0.95 59 0.81 53 0.93 
All 27 0.86 38 0.97 36 0.86 49 0.94 

Table 4.1: Skill statistics, comparing September 6 and September 15 raw bathymetric 
survey data (Figures 4.9c and 4.9d, resp.) to estimates from data-denial experiments 
presented in Figure 4.13 (labels (a)–(d) are following Figure 4.13), as well as the initial 
estimate before data assimilation (“Initial”, Figure 4.9a) and the estimate when assim
ilating all observational data except wave angles (“All”, Figure 4.9b). The statistic ǫ is 
defined as the root-mean-square difference between surveyed and estimated bathymetry, 
and r2 is the squared correlation. Both statistics are computed over two regions: Region 
“A” is the area where both alongshore current and wavenumber were observed (union 
of red and blue polygons in Figure 4.1); Region “B” is the union of all observed areas 
(union of all polygons in Figure 4.1). 

final comment on Table 4.1 is that assimilation of wavenumber, alongshore current, and 

shoreline observations together (row labeled “All”) produced accuracy similar to that of 

assimilating wavenumber observations; this may be again partly due to the sheer number 

of wavenumber observations used, which would cause the estimate to be dominated by 

that observation type. 

Another interesting data-denial experiment involves the effect of spatial coverage on 

the estimation of bathymetry from alongshore currents: Figure 4.14 compares the results 

when assimilating OCM currents vs. IR-PIV currents (again, in addition to shoreline 

data). In this comparison, we note the observed region coincides with the region pre

sented in Figure 4.12, where a gap in the nearshore bar/terrace caused a rip current to 

occur. It happened that the IR-PIV data coverage was largely over the gap itself, whereas 

the OCM data was concentrated slightly to the south, over the bar/terrace. Hence in the 

case where only the IR-PIV data were assimilated (Figure 4.14b) the assimilation system 

would have had fewer observations over the bar/terrace. In that situation, the system 

apparently obtained a fit to the observations by creating a deep channel at y ≈ 900 m. 

The OCM assimilation run, on the other hand, obtained a fit to observations by creating 

a “bump” at y ≈ 700 m (Figure 4.14a), where data were readily available. If both OCM 

http:Figure4.14
http:angles(�All�,Figure4.9b
http:assimilation(�Initial�,Figure4.9a
http:arefollowingFigure4.13
http:surveydata(Figures4.9c
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Figure 4.14: As in Figure 4.13, but assimilating shoreline plus (a) OCM currents, and 
(b) IR-PIV currents. Note the different observational footprint of the two products, and 
the resulting differences in estimated bathymetry. 

and IR-PIV were assimilated together (Figure 4.13a) the estimate included both the 

bump and a more-realistic channel, essentially an average of the two individual results. 

Surprisingly, despite their differences all three of these bathymetry estimates resulted 

in the prediction of a low-tide rip current at y ≈ 900 m, similar to Figure 4.12. This 

illustrates the complex and indirect relationship between bathymetry and currents, and 

underscores the importance of data coverage when attempting to invert that relationship. 

Lastly, we turn to the least skillful estimate of bathymetry, which was from wave angle 

observations, Figure 4.13c. In that case, we found that for assimilation cycles early on 

in the test period (not shown) some aspects of the estimated bathymetry appeared to 

be related to actual bathymetric features. However, as more data were assimilated gross 

perturbations began to appear, which removed nearly all skill. We attribute this to the 

fact the incident wavefield contained multiple directional components (see observations 

in Figure 4.7c), resulting in an unstable observation as discussed in section 4.3.5. That is, 

we found SWAN would often report the angle of one wave train, whereas CB1a and/or 

CB1a-radar would observe the angle of a different wave train at the same frequency. 

This caused severe unexpected differences between model and data, and hence resulted 

in severe errors. Moreover, error in the forward model may have also played a role 

here, as the assimilation of CB1a places a high demand on the detailed wave spectral 

transformation predicted by SWAN. To assess both of the above issues, we tried replacing 

the CB1a data with predictions of peak wave angle from a forward model run with 

measured bathymetry, using the same frequencies, locations, and estimated observation 

http:transformationpredictedbySWAN.To
http:inFigure4.7c
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uncertainty as in the real CB1a data set. The estimate of bathymetry had more skill in 

this twin-test environment, which indicates model error (the inability of the model to 

predict the CB1a representative wave direction) may have been important. 

4.5 Discussion 

The above results show how an EnKF-based data assimilation system can be used to 

estimate bathymetry as an uncertain parameter in a nearshore model for waves and 

currents, by assimilating remote sensing data alone. Next, we discuss some potential 

shortcomings and pitfalls of the system. 

4.5.1 Effects of Model Error 

An important consideration in the application of the assimilation system is the potential 

for unaccounted-for errors in the forward model. In our system, we assume the model 

physics and boundary conditions are perfect, and model error is entirely due to errors 

in bathymetry. However, this is not always the case. One exception occurred in the 

2010 experiment during high tide on September 11, at which time a 30–40 cm/s along

shore current was observed in the in-situ and remote sensing data, despite minimal wave 

breaking and wind (winds on this day were less than 5 m/s). This current was observed 

even in 8 m depth, and was presumably caused by larger-scale processes (Lentz et al., 

1999) which are not included in our model. When alongshore current observations were 

assimilated in this case, the system obtained a fit to the observations by producing a 

spurious nearshore bar. This error persisted until later that day, when waves heights 

increased and offshore currents weakened, such that nearshore currents were once again 

driven by wind- and wave-induced forcing as assumed by the model. With the model 

error thus reduced, the system gradually re-corrected the spurious nearshore bar and 

regained skill by September 12. 

Another potentially important source of model error is due to offshore wave boundary 

conditions. In the present experiment, we have relied on in-situ observations of frequency

directional wave spectra from a highly-accurate (and unique) observational array. In 

many realistic applications, however, boundary conditions would be derived from larger 

scale wave forecasts, which are error-prone. We did attempt to assimilate data when 

using forecasted boundary conditions, but this was not successful. The forecast was 

produced specifically for this experiment, and is described in Appendix C. It is considered 
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representative of a typical regional wave forecasting system. Unfortunately, however, 

during our test case (September 13) the majority of wave energy was generated locally 

by a small storm, whose wind speeds were underpredicted by the atmospheric component 

of the forecasting model. As a result, waves and currents in our nearshore model were also 

underpredicted. Our system does not account for such biases, which resulted in errors 

in the predicted bathymetry when assimilating data. Specifically, the system predicted 

a deep channel extending out from y ≈ 900 m, which was apparently required to fit the 

observations of the rip current during low tide. We conclude that boundary condition 

error remains a barrier to “in-situ-free” nearshore prediction. An interesting avenue for 

future work would be the development of a data assimilation system which corrects for 

both bathymetric error (as in the present work) and boundary condition error. For an 

example of the latter problem, correcting boundary condition errors in a nearshore wave 

model using data assimilation, we refer the reader to the work of Veeramony et al. (2010). 

4.5.2 Representation of Posterior Uncertainty 

An aspect of the system which we have not chosen to focus on, but is important to 

discuss, is its ability to track bathymetric uncertainty as data are assimilated. Unfor

tunately, we noted a tendency to underpredict this uncertainty (as compared to errors 

based on bathymetric survey data), similar to the results reported by Holman et al. 

(2013). In our case, we chose to combat this by using conditional additive inflation of 

the ensemble spread (section 4.3.7). This inflation was generally applied in regions near 

shore with dense observational data coverage. In other words, the estimated bathymetric 

uncertainty in such regions was held close or equal to our specified minimum value of 0.25 

m (after about five observation cycles), and in that sense it was not truly “dynamically” 

updated over time. 

We attribute this undesirable behavior to the following factors. First, we have not 

attempted to account for errors in the forward model (e.g., section 4.5.1), which would 

tend to cause underprediction of uncertainty (Houtekamer et al., 2008). Second, there 

is the possibility that the observational error covariance is poorly specified (this is a 

difficult problem for remote sensing data). Our attempt to include spatial correlation in 

observation errors (section 4.3.6) did reduce the tendency to underpredict bathymetric 

uncertainty, but did not fix the problem completely. 

To summarize: longer term applications of this method would likely benefit from fur

ther calibration of the filter. This would include refining the method used for covariance 
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inflation, adding a systematic representation of model error, and improving the specifi

cation of observational error covariance. The methods used here (see sections 4.3.6 and 

4.3.7) are a first attempt, but more sophisticated methods do exist (e.g., Dee (1995); 

Houtekamer et al. (2008); Li et al. (2009)). 

4.5.3 Computational Efficiency 

A potential shortcoming of our system is the computational cost associated with a large 

ensemble (in our case 200 members) of forward model runs. 

We ran our tests using an array of 2.67 GHz Intel Xeon processors, each of which 

could execute 12 simultaneous forward model runs in roughly 13 minutes. Assimilation 

updates were calculated using the Matlab Parallel Toolbox, and took roughly 5 minutes. 

In total, then, our system was capable of assimilating data within the timeframe of the 

30 minute observation collection cycle. The majority of runtime was spent in spinning-

up the circulation model, hence runtime could have been significantly reduced by using 

a more clever model initialization. 

Another factor in computational efficiency is the number of ensemble members re

quired to obtain an accurate result. To assess this in the full system would require re

peated tests with increasingly large ensemble size, which would be impractical. Instead, 

we modified our system to assimilate only CB1k observations, and to use only a single 

SWAN model run to represent wave height (and assuming zero current) in equation (4.4). 

This eliminated the need for an ensemble of wave and circulation model runs, and hence 

greatly reduced runtime. Figure 4.15 shows the convergence of bathymetry estimated by 

this simplified system for the test case described in section 4.4.2, by comparing results 

with increasingly large ensemble sizes to a reference run having 300 members. Note even 

for the smallest ensemble size tested, 50 members, the effect on the bathymetry estimate 

is not excessive (order 10 cm). In fact, the estimated bathymetry was not qualitatively 

different for any of the ensemble sizes tested. With that in mind, we then tested the 

assimilation of all available data (except wave angle), in the full system using a 50

member ensemble; the result is shown in Figure 4.16, which should be compared to the 

200-member result shown in Figure 4.9b. The 50-member estimate still includes basic 

bathymetric features, although it appears to be prone to error at short length scales. 

http:Figure4.15
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Figure 4.15: Root-mean-square difference in estimated bathymetry for various ensemble 
sizes in a simplified assimilation system (see text), compared to a reference run with 300 
ensemble members. In each case, differences are computed over the domain 50 < x < 500 
m and 0 < y < 1000 m, and over each of the 24 assimilation cycles. Three realizations 
(indicated by circles) were performed for each ensemble size, to account for differences 
due to the stochastic nature of the filter. Note, the rms-difference computed for two 
runs with 300 ensemble members each was 4.8 cm, which defines an approximate “noise 
floor” for the statistic. 

Figure 4.16: Bathymetry estimate as in Figure 4.9b, but using 1/4 ensemble size (50 
members rather than 200). 
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4.6 Summary 

The present work demonstrated a new application of the ensemble Kalman filter (EnKF) 

to the problem of surf zone bathymetric uncertainty. The method was applied to a test 

case spanning 11.5 hours of remote sensing observations collected at Duck, NC. We 

showed that assimilation of wavefield observations (frequency-wavenumber pairs, i.e., 

wave celerity), circulation observations (alongshore current), and shoreline observations 

led to an improved estimate of bathymetry. After assimilating data, the model became 

capable of predicting an observed surf zone rip current, without the use of any in-situ 

bathymetry observations. 

An important feature of the EnKF method is the ease with which it can be extended 

for assimilation of new geophysical data types, and for new physical processes in the 

forward model, without the need to redefine the assimilation system itself. This con

trasts with existing methods such as that of van Dongeren et al. (2008), who relied on 

explicit knowledge of the derivative of the observable with respect to depth (effectively, 

an adjoint model), or Holman et al. (2013), who converted the observations to depth 

estimates prior to assimilation. The EnKF has no such requirements, which is beneficial 

when incorporating/testing the assimilation of new and novel observation types such as 

remotely sensed time-averaged currents or wave angle. The ability of this method to 

assimilate currents (which, to our knowledge, is unique for this type of application) may 

be a particular advantage in environments where observation coverage varies between 

different observation types. An example would be a coastal inlet, where wavefield obser

vations would dominate near shore, but observations of currents would dominate within 

the inlet itself. 

Likewise, the ability to assimilate multiple geophysical variables allowed us to assess 

the relative usefulness of each variable with regard to bathymetry inversion. In this exper

iment, frequency-wavenumber observations were available in high density over a broad 

field of view, and those observations were most successful for estimating bathymetry. 

Assimilation of alongshore current observations was also successful, although there was 

evidence that the bathymetry was not uniquely determined unless the data had good 

spatial coverage. Wave angle observations were not successfully assimilated in this case, 

due to an inability to properly represent the observations using the numerical model. 

The use of remote sensing data to help control errors in a surf zone model is attractive 

due to the difficult nature of in-situ observation. We have shown that using remote sens

ing data alone we may overcome significant model errors caused by uncertain bathymetry. 
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This suggests the possibility of an operational nearshore forecasting system which does 

not rely on in-situ data for its inputs. We found, however, that a remaining barrier to 

such an application would be the influence of errors in model boundary conditions, in 

particular the accurate specification of waves at the offshore boundary. 
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5. General Conclusion 

Recalling the Introduction, our primary motivation for studying nearshore and fluvial 

hydrodynamics is its broad relevance to many important engineering and scientific ap

plications. Taking inspiration from Saint-Venant’s work, we have not attempted to 

introduce new physics to this problem, but rather to attack a key gap in the existing 

approaches. In particular, we have focused on the role of uncertain bathymetry in the 

application of predictive models, an issue which is pervasive in real-world nearshore and 

fluvial environments, but has heretofore not been directly addressed. We introduce a new 

application of data assimilation for this problem, providing a way to incorporate bathy

metric uncertainty in model predictions, and to control that uncertainty using available 

observations. Chapters 2–4 give three examples of this approach, which reflect three key 

conclusions, outlined next. 

Conclusion A: bathymetry can be a dominant source of error in surf zone models. In 

Chapter Two, we showed a case where bathymetry was surveyed extensively on a daily 

basis, yet unresolved rapid bathymetric change led to significant model uncertainty and 

error. This was confirmed by the fact that, once data were assimilated, the model 

located an improved solution which was consistent with in-situ point observations of 

both bathymetry and waves/currents. That is, the errors were indeed largely due to 

bathymetry, not other deficiencies in the model. 

Conclusion B: bathymetry can be estimated by exploiting the relationship between 

bathymetric uncertainty and model error. Chapter Two explored this concept in a con

trolled observational setting (using single-time data from an in-situ array); we described 

how our data assimilative model represents uncertainty among multiple state variables, 

and demonstrated how this information is used to produce an updated bathymetry esti

mate. Chapter Three also focused on this aspect of the problem, using measurements of 

currents to estimate bathymetry as an unknown parameter (i.e., the “inverse problem”). 

Conclusion C: data assimilation can be used in a surf zone forecasting model, to 

control errors due to uncertain bathymetry, without the requirement of direct in-situ 

observation. In Chapter Four, we demonstrated an application of our method using 

surf zone measurements from shore-based remote sensing platforms. Assimilation of 

these measurements resulted in the prediction a rip current without the use of any in



103 

situ bathymetry observations. This suggests an interesting application of our method 

for operational prediction and forecasting, where the inability to specify bathymetry is 

often cited as a limiting factor. 

Overall, data assimilation has been shown to be an effective tool for understanding 

and manipulating bathymetric uncertainty in a general shallow water setting. It is our 

hope that these results will improve the ability to predict natural flows, and will help 

elucidate the role of uncertainty in those predictions. 



104 

Bibliography 

Aarninkhof, S.G.J., Ruessink, B.G. & Roelvink, J.A. (2005). Nearshore subtidal 
bathymetry from time-exposure video images. Journal of Geophysical Research, 
110(C06011). 

Aksoy, A., Zhang, F. & Nielsen-Gammon, J.W. (2006). Ensemble-based simultane
ous state and parameter estimation in a two-dimensional sea-breeze model. Monthly 
Weather Review , 134, 2951–2970. 

Allard, R., Dykes, J., Hsu, Y.L., Kaihatu, J. & Conley, D. (2008). A real-time nearshore 
wave and current prediction system. Journal of Marine Systems, 69, 37–58. 

Amante, C. & Eakins, B.W. (2009). ETOPO1 1 arc-minute global relief model: proce
dures, data sources and analysis. U.S. Department of Commerce, National Oceanic 
and Atmospheric Administration, National Environmental Satellite, Data, and Infor
mation Service, National Geophysical Data Center, Marine Geology and Geophysics 
Division. 

Andreadis, K.M., Clark, E.A., Lettenmaier, D.P. & Alsdorf, D.E. (2007). Prospects for 
river discharge and depth estimation through assimilation of swath-altimetry into a 
raster-based hydrodynamics model. Geophysical Research Letters, 34, 10403. 

Austin, M.J., Scott, T.M., Russell, P.E. & Masselink, G. (2012). Rip current prediction: 
Development, validation, and evaluation of an operational tool. Journal of Coastal 
Research, 29, 283–300. 

Baringhous, L. & Franz, C. (2004). On a new multivariate two-sample test. Journal of 
Multivariate Analysis, 88, 190–206. 
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A. Continuous Ranked Probability Score 

In section 2.4.4, we test the skill of the prior and posterior estimates of the ocean state 

ψ, by cross-validation with observations. This involves testing the accuracy of the ocean 

state prediction, as well as the predicted uncertainty. Both must be assessed together 

in order to fully characterize the skill of the assimilation methodology. The validation is 

carried out using the Continuous Ranked Probability Score (CRPS), defined below. 

For a given probabilistic forecast of a scalar random variable x (e.g. the prior or 

posterior model state ψ and its uncertainty Cψψ), define the cumulative distribution 

function (cdf) fX (x). Also define the cdf of the same random variable x as determined 

from an observation of the same variable, fY (x). Then the CRPS is defined by (Hersbach, 

2000; Gneiting et al., 2008; Casati et al., 2008) 

∞ 

CRP S = (fX (x) − fY (x))
2 dx. (A.1) 

−∞ 

Note this is a generalization of the standard definition, allowing for observational uncer

tainty (e.g. instrument error). 

Figure A.1 shows a graphical interpretation of the CRPS, as the squared area of 

the regions pointed to by the arrows. When the probability density functions (pdf’s) 

of the prediction and the observation coincide, the CRPS goes to zero; large values 

of CRPS indicate an unskilled prediction. Note that CRPS takes into account both 

calibration (the agreement of the predicted and observed expected value) and sharpness 

(the agreement of the predicted and observed uncertainty). The prediction depicted in 

Figure A.1 is fairly well calibrated, but is not particularly sharp. 

The extension to multiple observations (vector-valued random variables x) follows 

Gneiting et al. (2008), who point out the following identity (from Baringhous & Franz 

(2004), Lemma 2.2): 

[ ]

CRP S = E [IX − Y I] − 1 
E IX −X ′I

2 
1 [ ]

− E IY − Y ′I ≥ 0, (A.2) 
2 

′ where X and X are independent realizations following the cdf fX (similar for Y and 
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Figure A.1: pdf (left) and cdf (right) representations of the prediction (blue) and obser
vation (red). 

Y ′ ), I · I is the Euclidean norm, and E denotes expected value (computed herein using 

Monte-Carlo methods). With the norm thus-defined, CRPS is naturally extended for 

any number of observations. This definition also means CRPS reduces to the rms error 

when the variables are deterministic. 
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B. Skill Statistics for x > 250 m 

For completeness, the following table lists model skill for the offshore sensors x > 250 m 

(discussed briefly in section 2.4.4). 



119 

1DH (1130 EST) 2DH (1530 EST) 

variable(s) 
assimilated 

variable 
updated 

units ǫ CRP S S ǫ CRP S S 

u m/s 0.19 0.34 - 0.15 0.48 -
none v m/s 0.032 0.042 - 0.14 0.42 -
(prior) Hmo m 0.075 0.17 - 0.11 0.44 -

h m 0.091 0.085 - 0.12 0.23 -

u m/s 0.20 0.35 -0.029 0.16 0.53 -0.11 
v m/s 0.028 0.044 -0.049 0.091 0.26 0.37 

Hmo, v 
Hmo m 0.068 0.15 0.10 0.11 0.44 -0.0077 
h m 0.13 0.16 -0.86 0.14 0.32 -0.38 

u m/s 0.19 0.35 -0.017 0.15 0.50 -0.048 
v m/s 0.030 0.046 -0.098 0.16 0.50 -0.20 

Hmo Hmo m 0.070 0.16 0.077 0.11 0.44 -0.0015 
h m 0.11 0.12 -0.37 0.11 0.22 0.065 

u m/s 0.19 0.34 -0.014 0.16 0.51 -0.079 

v 
v m/s 0.028 0.042 0.0044 0.084 0.24 0.43 
Hmo m 0.073 0.16 0.032 0.11 0.44 -0.0098 
h m 0.12 0.13 -0.58 0.15 0.36 -0.53 

Table B.1: As in Table 1, but for x > 250 m. 
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C. Global Wave Forecasting Model 

In section 4.5.1, we discuss the effect of using forecasted (error-prone) wave boundary 

conditions in our assimilation system, rather than boundary conditions derived from 

in-situ measurements. Here, we describe the model used to generate those forecasts. 

The model uses a series of nested WaveWatch III (Tolman, 2002, 2006) and SWAN 

(Booij et al., 1999) grids, summarized in Table C.1. At the global and basin (Western 

North Atlantic) scale, the grids are based on the National Centers for Environmental 

Prediction operational wave model, which was re-implemented as described by Garćıa-

Medina et al. (2013). Regional predictions are then calculated over the continental shelf 

using a 6 arc-minute resolution WaveWatch III model, and a 1 arc-minute resolution 

SWAN model extending to roughly 50 km offshore of our study site. In turn, the lat

ter (SWAN) model is used to generate boundary conditions for the nearshore model 

described in section 4.3.1. 

“Forecast” winds were derived by blending hindcast products from the Global Fore

casting System (Center, 2003; Sela, 1980) and the 12 km resolution North Atlantic Model 

(Rogers et al., 2009). True forecast products were not available, but it is assumed that 

these hindcasts would be comparable to forecasts at short lead times. Bathymetry for 

the shelf and FRF grids use data from ETOPO 1 (Amante & Eakins, 2009) and the U.S. 

Army Corps of Engineers (Blanton et al., 2008), respectively. 

Grid Resolution Lower Left Upper Right 
arc-degrees Lat,Lon Lat,Lon 

Global 1.25◦ × 1◦ −78◦ , 0◦ 78◦ , 359.5◦ 

Basin 0.25◦ × 0.25◦ 0◦ , −98◦ 50◦ , −30◦ 

Shelf 6 ′ × 6 ′ 30◦ , −82◦ 40◦ , −70◦ 

FRF 1 ′ × 1 ′ 36.10◦ , −75.80◦ 36.30◦ , −75.60◦ 

Table C.1: Description of grids used by wave forecasting model. 




