

What's ahead

- Introduce a low-cost and efficient technique for geomorphic data extraction called Structure from Motion (SfM)
- Evaluation of multiple low-cost SfM data collection platforms through a cost vs. performance analysis

Background- measuring subaerial beach and dune morphology

- Some current methods:
 - RTK GPS- ~5cm
 vertical accuracy, but
 requires lots of time
 and effort for
 relatively little data
 - TLS- highly accurate and spatially continuous data, but expensive and necessitates a high level of training

Next Steps

Structure from Motion: accurate, efficient, low-cost, and user-friendly

- 3-d reconstruction of a surface built from overlapping aerial photos
- Workflow:
 - Features ID'd and tracked across photos, solving automatically for camera intrinsic and extrinsic parameters, scene geometry

Next Steps

SfM is Flexible

- Many applications of SfM on the coast:
 - Sea cliff retreat rates (Warrick et al., 2016)
 - Intertidal ecology (Bryson et al., 2016)
 - Subaerial beach changes (Turner et al., 2016)
- This stems partially from flexibility in data collection platform
 - UAVs, kites, poles, balloons, airplanes, and any camera

Next Steps

Aim of this Study

 Create quantitative comparison between lowcost SfM platforms on subaerial beaches and dunes

 Provide outline for other SfMers to select optimal platform to obtain desired data

Study Site and Image Collection

Data Collection Platforms

Frames Cameras

SfM Image Processing

- Images from each platform run through SfM workflow using Agisoft Photoscan
- DEM created for each platform's data

Comparison of Platforms

Notes:

- UAV creating very accurate DEMs, kite and pole less
- Pole creating very spatially denseDEMs
- 3. Lower quality camera producing more accurate results with kite and pole

Platform Evaluation- a Cost vs. Performance Analysis

- Compare platforms through cost vs. "performance"
- Use methods adapted from environmental systems analysis and operational research
 - Scored categories
 - Category weights

$$Performance = \frac{\sum_{i=1}^{i=n} (Score_i * Weight_i)}{n}$$

Initial Results of the Cost vs. Performance Analysis

Category	Vertical Accuracy	DEM Point Density	Proportion of Area Modeled	Time to collect photos	RMS GCP Position Error	Processing Time per Image
Weight	.61	.07	.07	.21	.02	. 02

Preliminary Conclusions and Work to Do...

- UAV only platform creating consistently reliable data
- Lower cost platforms could still be useful
- To do:
 - Solidify PIs, perform full cost vs. performance analysis
 - Explain why some platforms perform better than others

Acknowledgements

- NSF grant EAR GLD 1561847 The Influence of Intertidal Sandbar Welding on Dune Growth
- John Stanley and Rob Holman for fantastic UAV data collection
- Sierd de Vries for TLS photo
- All the grad students in Ruggiero/Ozkan-Haller groups for continued help and support

- Olsen, M. J., Johnstone, E., Driscoll, N., Ashford, S. A., & Kuester, F. (2009). Terrestrial laser scanning of extended cliff sections in dynamic environments: Parameter analysis. *Journal of Surveying Engineering*, 135(4), 161-169.
- Ruggiero, P., Kaminsky, G. M., Gelfenbaum, G., & Voigt, B. (2005). Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell. *Journal of Coastal Research*, 553-578.
- Moore, L. J., Ruggiero, P., & List, J. H. (2006). Comparing mean high water and high water line shorelines: should proxydatum offsets be incorporated into shoreline change analysis?. *Journal of Coastal Research*, 894-905.
- Olsen, M. J., Johnstone, E., Driscoll, N., Ashford, S. A., & Kuester, F. (2009). Terrestrial laser scanning of extended cliff sections in dynamic environments: Parameter analysis. *Journal of Surveying Engineering*, 135(4), 161-169.
- Cawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W., & Totake, Y. (2017). LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models. *Journal of Structural Geology*.
- Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. *Geomorphology*, 179, 300-314.
- Smith, M. J., Chandler, J., & Rose, J. (2009). High spatial resolution data acquisition for the geosciences: kite aerial photography. *Earth Surface Processes and Landforms*, *34*(1), 155-161.
- Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. *European journal of operational research*, 48(1), 9-26.
- Hermann, B. G., Kroeze, C., & Jawjit, W. (2007). Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. *Journal of Cleaner Production*, 15(18), 1787-1796.
- Morton, R. A., and Miller, T. L., 2005, National assessment of shoreline change: Part 2: Historical shoreline changes and associated coastal land loss along the U.S. Southeast Atlantic Coast: U.S. Geological Survey Open-file Report 2005-1401.