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We model multiple population dynamics simultaneously and as simply as possible to produce dust bunny 

distributions. Other existing community simulators are static and statistical rather than dynamic (e.g. COMPAS by 

Minchin 1987). These simulate communities according to the statistical properties of species response to 

environmental gradients, rather than deriving communities from dynamic population processes. In contrast, we 

develop communities in unoccupied space, simulating response to a community-replacing disturbance. Populations 

are described by Aj, the density or number of individuals of a given species j. The model is discrete with respect to 

time. One time step can be considered either a single generation (in which case we assume that all species in the 

community have the same generation time), or a specific time interval (e.g. 1 year). 

Environmental gradient.—Species have Gaussian responses on one or more environmental gradients. For 

simplicity, species response curves are identical in height and spread and are evenly spaced along the gradients. In 

other words, for a given simulation, niche widths and maxima are set equally among species. In reality, species 

performances along environmental gradients take various shapes and spreads, but this added complexity was 

unnecessary to generate realistic data sets.  

The environmental effect on species j at a particular point x on an environmental gradient k, the species 

having an optimum at xoptkj and spread or niche width, sk, is modeled as a Gaussian function: 

  (1) 

The range of the environmental effect is 0 (complete failure) to 1 (maximal performance).  

Zero to three environmental gradients are generated independently: species optima are assigned at random 

along each gradient. The sampled range of each gradient is 0 to 100, but the optima are assigned from -25 to +125, 

such that some species optima fall outside of the sampled range. 

With more than one environmental gradient, the performances on individual gradients are multiplied to 

achieve a combined effect Z* of the q environmental gradients on species j:  

  (2) 

Optionally, individual environmental gradients can be assigned weights, w, ranging from 0 (no effect) to 1 

(full effect), in calculating the combined effect, Z*, of multiple environment gradients on species performance: 

  (3) 

Although this could be useful in making the model more realistic and general, it proved unnecessary to generate dust 

bunnies. Similarly, each environmental gradient could be weighted individually by species. In the simulation results 

reported here, however, we gave the environmental gradients equal and full weights. 

Competitive ability.—Competitive abilities (C) are assigned to species by generating random numbers with 

a uniform distribution ranging from zero (no competitive ability) to one (maximal competitive ability). Recognizing 

the inherent tradeoffs between competitive ability and reproductive effort, both immigration rates and the intrinsic 

rate of population growth are set to vary negatively with competitive ability (Fig. 1-1). We call this "competitive 

ability" because it incorporates both a competitive effect on other species (via its relationship to immigration and 

growth rates) and a competitive response to other species (via its effective carrying capacity; see below). 

Immigration.—The number of immigrants in the population incorporated a random draw that can be 

thought of as the number of propagules arriving; this was then filtered by the favorability of the habitat, Z*, at the 

site such that immigrants were more likely to survive in suitable habitats. 
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Immigration (I) is treated as a species-specific stochastic Poisson process. We chose a Poisson model 

because it counts the number of discrete and independent random occurrences per unit time. In this case the discrete 

event is the arrival of an individual and, for sessile organisms, its subsequent colonization. The Poisson parameter, 

µ, for a given species can be thought of as the immigration pressure from that species. For simplicity, we assumed 

that the immigration pressure, µ, varies linearly and negatively with competitive ability: µ = -C + 1 (Fig. 1-1).  

Furthermore, we assume that immigration pressure is regional, rather than from other sample units in a given data 

set. 

Immigration in a given time step is determined by a draw from a uniform random number generator along 

with the probabilities of I immigrants:  

  (4) 

 
For example, if µ = 0.05, then pj(0) = 0.905, pj (1) = 0.090, pj (2) = 0.005. and . We calculated pj 

(I = y) for I ≤ 15, because for our choices of µ, pj is negligibly small for I > 15.  

Immigrants cannot colonize successfully outside of their environmental tolerance, so before taking a 

random draw to determine I, these probabilities, pj, are first adjusted to pj' by the environmental effect zj
* as derived 

above, for example: . 

Cumulatively the environmental effect deflates the sum of the Poisson distribution for nonzero values by 

the proportion z*j, ranging from z*j = 1 at a species optimum to z*j = 0 for complete failure. We correspondingly 

increase the frequency of zero values as follows. Since  and , 

then . The idea is that we know the probability of a positive value of I by subtracting 

pj(0) from 1. Then we deflate   by z*j. The amount of deflation is added back in to p'(0), so that  

. 

For example, assume pj(1) = 0.08, and species j is tolerant to the environment at a given location, with z*j = 

0.5 indicating half of its optimum performance, then p'j(1) = 0.08(0.5) = 0.04. Conversely, if a species has this same 

immigration pressure, but the habitat is completely unfavorable with z*j = 0, then p'j(1) = 0.08(0.00) = 0, and the 

species will not be observed there, regardless of the immigration pressure. 

After generating p'j (I = 0), p'j (I = 1), p'j (I = 2), etc., I is assigned accordingly by a random number draw. 

In computation, as soon as a random number from a uniform pseudorandom number generator in the interval (0,1) 

exceeds the cumulative sum of p'j as I is incremented, I is set to that integer. 

Intrinsic Growth Rate.—Assume that the relationship between intrinsic growth and competitive ability has 

a fixed, negative tradeoff (Fig. 1-1): 

 R = -1C + 2 (5) 

This is a simple expression of the basic relationship proposed by Pianka (1970), Grime (1977), and others. Then by 

algebra, species with higher intrinsic growth rates, R, tend to have higher immigration pressure, µ (Fig. 1-1): 

  (6) 

Tuning Immigration Pressure against Competitive Ability.—To control the system-wide balance between 

growth rates and dispersal limitations, we introduce a dispersal limitation factor, d. This single factor is used to 

change the relative slopes of µ vs. C, R vs. µ, and R vs. C, with the last slope arbitrarily held constant at -1 (Fig. 1-

1). 

The parameter d is held constant for a given simulation, but can be varied to increase or decrease the 

dispersal limitation built into the whole community. Increasing d increases the dispersal limitation by selecting a 

lower immigration pressure for a given competitive ability and intrinsic growth. 

For µ vs. C,  

  (7) 

Similarly, for R vs. µ,  
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  (8) 

Stronger dispersal limitation at the community level means that immigration pressure is low for a given combination 

of intrinsic growth rates, R, and competitive ability, C. 

Growth.—Growth, Gj, of a particular species j is a function of intrinsic growth rate R diminished by: 

1. an effect of suboptimal environment, z*j 

2. a logistic competitive effect as the sample unit approaches its carrying capacity, K, set 

here to a constant 1000. 

  (9) 

The term cjK makes an "effective carrying capacity," that is, a species-specific carrying capacity that is 

proportionate to competitive ability. This last term departs from the widely used Lotka-Volterra standard, which is  

   (10) 

with αji being the effect of each species i on species j. Here we make the simplification that each species is affected 

equally by equal amounts of other species (i.e. αj1 = αj2 = ... αijp). Furthermore, rather than express negative 

competitive effects, α, of other species, we use its complement, cj, the competitive ability of species j. This makes it 

easier to express a basic trait, competitive ability, in the other parts of the model. The model implies that the general 

competitive ability of a given species matters more than the impact of other particular species on that species. 

In contrast, the traditional Lotka-Volterra formulation allows that a species might have a strong impact on 

one species and a weak impact on another. For example, if Species A is limited by water, and Species B by light, 

they may not compete strongly because A can grow well under B. Introduce Species C, which strongly competes for 

light but does not use much water. In the Lotka-Volterra formulation, Species C can be strongly competitive against 

B and have little effect on A. In our formulation of the model, however, competitive ability doesn't apply differently 

to different resources, except as expressed in optima along particular environmental gradients. Thus in our model, 

Species C would be assumed to be a strong competitor against both A and B. 

Population size.—Population size for a given sample unit is incremented with a difference equation based 

on population size of species j in the previous time step (Aj,t), immigration, and growth: 

 

  (11) 

  (12) 

Community matrices.— Each sample unit × species matrix was assembled by running the model once for 

each sample unit, choosing the following parameters, as specified in Table 2: degree of dispersal limitation, niche 

width, number of environmental gradients, and number of time steps (or generations). Sample units in a given 

matrix vary in position on one or more environmental gradients. Species in a given matrix vary in position of optima 

on those gradients, degree of dispersal limitation, competitive abilities, and intrinsic growth rates. 
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Fig 1-1. Simple functions relating competitive ability (C), the intrinsic population growth rate (R), and the Poisson 

parameter (µ) representing immigration pressure. The dispersal limitation factor (d) controls the balance between 

population growth rates and dispersal limitation.  
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Table 1-1  Community simulation model parameters, inputs, and outputs. Manipulated inputs are constant for 

generating a given data set ("manipulated by data set") or for generating a given community sample unit 

("manipulated, by sample unit"). Each data set consisted of 200 sample units × 30 species. 

 

Model inputs and outputs, units Symbol Source or type Min Max 

Environment and disturbance 

descriptors 

    

Position on environmental gradient k, 

arbitrary environmental gradient units 

xk random 0 100 

Number of environmental gradients, 

count 

q manipulated, by data set 0 3 

Maximum number of time steps (or 

number of generations) since 

disturbance, count 

tmax manipulated, by data set 1 10 

Individual species descriptors     

Species optimum on environmental 

gradient, arbitrary environmental 

gradient units 

xoptjk random -25 125 

Niche width, standard deviations of 

environmental gradient units 

s manipulated, by data set 15 50 

Environmental effect, unitless 

proportion of maximum performance 

z*j function of x, s, xoptjk 0 1 

Immigration pressure (Poisson 

parameter) 

µ random 0 2 

Probability of y immigrants for species 

j 

pj (I = y) Poisson distribution   

Competitive ability, density/density C random 0 1 

Dispersal limitation, unitless slope of µ 

vs. C 

d manipulated 1 20 

Intrinsic growth rate, density/density R fixed linear function of 

C and µ 

1 2 

Carrying capacity, community-level 

but applied to individual species, 

density 

K constant 1000 1000 

Population growth, density G modified logistic 

function of R, z, A, C, 

and K 

0 unbounded 

Inputs varied by time step     

Immigration, count I Poisson distribution 

applied to random draw 

0 unbounded 

Probability of y immigrants for species 

j 

pj (I = y)  0 1 

Outputs     

Population size, number of individuals 

(or density) of species j 

Aj function of I, G, and A 

in previous time step 

0 unbounded 
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Additional inputs available in 

software, but not used here 

    

Range across sample units in time steps 

since disturbance, count 

trange constant for these 

simulations 

0 0 

Maximum number of time steps since 

disturbance, for sample unit i, count 

tmax,i random within trange 1 10 

Environmental gradient weighting 

option, categorical 

Eopt 0=equal, 1=descending 

linear series, 

2=descending series, 

broken stick 

0 2 

Weight of environmental gradient k, 

proportion of maximum 

wk function of Eopt 0 1 

 

 

Sensitivity Analysis 

Sensitivity analysis measured the importance to the dust bunny intensity (DBI) of the four factors that we 

varied as inputs to the population models: number of environmental gradients, niche width, number of generations 

since community-replacing disturbance, niche width, and dispersal limitation. Sensitivities were analyzed by first 

fitting a multidimensional response surface for the DBI = f(input variables), where f is an unspecified smooth 

function derived with a kernel smoother, and each data point is one of the 19,200 simulated data sets. We used a 

multiplicative Gaussian kernel with a local linear model for nonparametric multiplicative regression (NPMR, 

McCune 2006), as implemented in HyperNiche (McCune and Mefford 2009). The multiplicative kernel 

automatically accommodates interactions among input variables. Smoothing parameters ("tolerances" in 

HyperNiche) were arbitrarily set to 5% of the range of the input variables; this yielded cross-validated R2 of 0.982 to 

0.985 for the 5-dimensional response surface of DBI to the four factors. 

Given an NPMR representation of the response surface, sensitivity analysis proceeded by nudging the input 

values up and down by 5% of the range for individual variables, then measuring the resulting change in the dust 

bunny indices, data point by data point. The change in the response was measured as a proportion of the observed 

range of the response variable. Scaling the differences in response and differences in predictors to their respective 

ranges allows a sensitivity measure, Q, that is an easily interpreted ratio, independent of the units of the variables. 

The general concept is: 

 

 
predictorin  range/ predictor in  difference

responsein  range / responsein  differencemean 
 Q  (13) 

If iŷ  is the estimate of the response variable for case i, having increased the input variable j by an arbitrarily small 

value Δ (say 0.05 of the range of the input variable), and iŷ  is the estimate of the response variable for case i, 

having decreased the input variable by the same small value Δ, then the numerator for Eqn. 13, the scaled difference 

in response, can be written as: 

 

minmax

1

2

ˆˆ

responsein  difference scaled
yyn

yy
n

i

ii











 (14) 

Dividing by two expresses the sensitivity as a response to a single nudging, since two nudgings are used to calculate 

the numerator. The denominator, the scaled difference in the predictor, is Δ. This is the amount by which we choose 

to nudge the predictor expressed as a proportion of the predictor's range. Combining these yields the sensitivity 

measure Q: 
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By accumulating Qj across all of the data points for each input variable j, we evaluated the sensitivity of the 

modeled response to each input variable. The greater the sensitivity, the more influence that variable has in the 

model. If Q = 1.0, then, on average, nudging a predictor results in a change in response of equal magnitude to the 

change in predictor, both changes measured relative to their ranges. If Q = 0.0, then nudging a predictor has no 

detectable effect on the response. 
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Table 2-1  Content, source, beta diversity, and dust bunny indices for real data sets. 

 

  Raw data log(x+1) 

transformed 

 

Matrix % zero βd DBI  βd DBI  Source 

AlaskaEpiphytes: 50 plots × 29 lichen 

spp, cover classes on arscine-squareroot 

scale, averaged across many subplots 

61.2 1.0 0.873  0.8 0.728  Derr et al. (2007) 

HydroPlants: 50 plots × 88 plant species, 

% cover 

82.1 2.1 0.929  1.7 0.881  Otting (1998) 

IntertidalWhelks: 53 plots × 17 

invertebrate species, rocky intertidal, % 

cover averaged across dates 

45.7 0.6 0.855  0.4 0.655  Navarrete and Menge 

(1996) 

MammothTrees: 78 plots × 22 tree 

species, basal areas per hectare 

87.5 3.0 0.956  2.3 0.911  McCune and Henckel 

(1993) 

OakWoods: 47 stands × 189 plant species, 

various abundance measures all relativized 

by species maximum 

81.8 2.0 0.931  1.4 0.889  Thilenius (1968) 

OceanMicrobes: 369 samples × 830 T-

RFLP peak heights 

84.6 1.5 0.959  1.3 0.907  Treusch et al. (2009) 

PondBirds: 130 ponds × 87 bird species, 

counts 

83.4 1.5 0.954  1.2 0.933  Harris (2001) 

SoilFungi: 96 samples × 283 OTUs, 

frequency of DNA sequence reads 

80.8 2.0 0.961  1.0 0.881  Hesse and Spatafora 

(2013) 

StreamInverts: 108 sites × 78 taxa, 

counts 

67.3 1.3 0.939  0.7 0.797  Miller et al. (2007) 

XmasBirds: 41 Area-Year combinations 

× 145 species, counts 

62.8 1.9 0.902  0.8 0.780  Hoyer (1994, 1995). 
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The intensity of a dust bunny is, in practice, strongly related to the beta diversity of a data set (Fig. 3-1). They are 

not, however, identical. Beta diversity measures the amount of heterogeneity in a community sample. The dust 

bunny intensity measures a particular kind of heterogeneity, where points tend to lie along the edges of a high 

dimensional species space. It is measured by the DBI, which is based on the community matrix mean after 

relativization by species maxima, and by the proportion of zeros in the community matrix. 

The relationships among these measures reveal some of their basic properties: 

 

1. Whittaker's beta diversity (BetaDivW = βW = gamma/alpha – 1) is a simple hyperbolic function of the 

proportion of zeros in the community matrix (PctZeros; see text). 

2. Beta diversity measured in half changes, βD, is an exponential function of the average Sørensen (Bray-

Curtis) distance among sample units, by definition. 

3. DBI based on the log transformed data matrix (DBIlog) is more closely related to the proportion of zeros in 

the matrix (PctZeros) than is the DBI based on the untransformed matrix. Either DBI log or PctZeros is 

therefore usable as a measure of the intensity of the dust bunny distribution. 

4. Average Sørensen (Bray-Curtis) distance of the log-transformed matrix (AveDistL) has a nearly linear 

relationship to the proportion of zeros in the matrix (PctZeros; Fig. 3-1). 
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Fig 3-1  Scatterplots of beta diversity and dust bunny measures in simulated data sets. Variable abbreviations: DBI = 

dust bunny intensity on untransformed matrix; PctZeros = percentage of zeros in the matrix; AveSorDi = average 

Sorensen distance among sample units, untransformed; BetaDivH = βD = beta diversity in half changes, 

untransformed matrix (eqn. 18 in text); BetaDivW βW = Whittaker's beta diversity; DBIlog = dust bunny intensity on 

log transformed matrix; AveDistL = average Sørensen distance among sample units, after log transformation, 

BetaHClo = βD = beta diversity in half changes on log transformed matrix. 

 

 

 


