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RNA-Sequencing (RNA-Seq) has rapidly become the de facto technique in transcrip-

tome studies. However, established statistical methods for analyzing experimental and

observational microarray studies need to be revised or completely re-invented to accom-

modate RNA-Seq data’s unique characteristics. In this dissertation, we focus on statistical

analyses performed at two particular stages in the RNA-Seq pipeline, namely, regression

analysis of gene expression levels including tests for differential expression (DE) and the

downstream Gene Ontology (GO) enrichment analysis.

The negative binomial (NB) distribution has been widely adopted to model RNA-Seq

read counts for its flexibility in accounting for any extra-Poisson variability. Because of

the relatively small number of samples in a typical RNA-Seq experiment, power-saving

strategies include assuming some commonalities of the NB dispersion parameters across

genes, via simple models relating them to mean expression rates. Many such NB dispersion

models have been proposed, but there is limited research on evaluating model adequacy. We

propose a simulation-based goodness-of-fit (GOF) test with diagnostic graphics to assess

the NB assumption for a single gene via parametric bootstrap and empirical probability



plots, and assess the adequacy of NB dispersion models by combining individual GOF test

p-values from all genes. Our simulation studies and real data analyses suggest the NB

assumption is valid for modeling a gene’s read counts, and provide evidence on how NB

dispersion models differ in capturing the variation in the dispersion.

It is not well understood to what degree a dispersion-modeling approach can still be

useful when a fitted dispersion model captures a significant part, but not all, of the variation

in the dispersion. As a further step towards understanding the power-robustness trade-offs

of NB dispersion models, we propose a simple statistic to quantify the inadequacy of a fitted

NB dispersion model. Subsequent power-robustness analyses are guided by this estimated

residual dispersion variation and other controlling factors estimated from real RNA-Seq

datasets. The proposed measure for quantifying residual dispersion variation gives hints

on whether we can gain statistical power by a dispersion-modeling approach. Our real-data-

based simulations also provide benchmarking investigations into the power and robustness

properties of the many NB dispersion methods in current RNA-Seq community.

For statistical tests of enriched GO categories, which aim to relate the outcome of

DE analysis to biological functions, the transcript length becomes a confounding factor

as it correlates with both the GO membership and the significance of the DE test. We

propose to adjust for such bias using the logistic regression and incorporate the length as

a covariate. The use of continuous measures of differential expression via transformations

of DE test p-values also avoids the subjective specification of a p-value threshold adopted

by contingency-table-based approaches. Simulation and real data examples indicate that

enriched categories no longer favor longer transcripts after the adjustment, which justifies

the effectiveness of our proposed method.
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Statistical Analysis of RNA Sequencing Count Data

1 Introduction

In the last decade, with the advent of high-throughput next-generation sequencing (NGS)

technologies which generate unprecedented volumes of high-quality gene expression data,

life scientists have the opportunity to obtain a progressively fuller knowledge of the quan-

titative and qualitative aspects of the transcriptome (Ozsolak and Milos [89]). The use of

the NGS technologies for transcriptome studies at the nucleotide level is known as RNA

sequencing (RNA-Seq), and it has revolutionized the manner in which eukaryotic tran-

scriptomes are analyzed (Wang et al. [121]). Compared to hybridization-based microarray

technologies introduced in the mid-1990s on which earlier genomics studies primarily relied,

RNA-Seq has many clear advantages on the scope and complexity of biological questions it

can answer, and the declining costs have led to explosive growth in its use for transcriptome

studies. At the same time, RNA-Seq experiments have precipitated the flood of massive

and complex datasets and the interpretations are not straightforward.

Understanding this wealth of RNA-Seq data requires sophisticated statistical methods

and dedicated computational software that take into accounts some prominent features of

this sequencing-based method (e.g., discrete, digital sequencing read counts with typically

small sample sizes) and the sources of variations in the pipeline (e.g., read alignments

and summarizations), among other factors that fundamentally differ from those in the mi-

croarray era. Statisticians and bioinformaticians have been developing novel and improved

approaches for solving problems that arise at various stages of the RNA-Seq pipeline (see

Section 1.1.3). In this dissertation, we restrict our attention to some statistical problems

in two areas, namely regression analysis of gene expression levels including tests for differ-
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ential expression (DE) and the downstream enrichment analysis using the Gene Ontology

(GO).

The rest of this introductory chapter is divided into three parts. First, we start with an

introduction to the biological problems that motivate the methodological development in

statistics for RNA-Seq analysis; specifically, we give a brief overview of the high-throughput

sequencing (HTS) technology (Section 1.1.2) and the RNA-Seq pipeline (Section 1.1.3);

DE tests and GO enrichment analysis are particularly detailed in Sections 1.1.4 and 1.1.5,

respectively. Second, we introduce some statistical techniques for modeling RNA-Seq read

counts, including statistical models for count data (Section 1.2.1), generalized linear models

(GLM) and negative binomial (NB) regression (Section 1.2.2), and NB dispersion models

(Section 1.2.3). Since these biological and statistical concepts are shared among the three

main chapters that follow, we therefore provide the relevant background and literature

reviews in a unified manner in this chapter. We conclude in the third part with an outline

of the objectives and structure of the dissertation in Section 1.3.

1.1 Biological Introduction and Motivation

1.1.1 The Central Dogma of Molecular Biology

The flow of genetic information in a biological system is revealed by the central dogma of

molecular biology, which states that deoxyribonucleic acid (DNA) is transcribed into mes-

senger ribonucleic acid (mRNA), and then translated into proteins that perform functions

in cells (Crick [25]). Following this central dogma, we refer to “gene expression” as the

process by which the information encoded in a gene is used to direct the assembly of a

protein molecule. Though the machinery for expressing genes is highly sophisticated, it is

clear that a gene’s expression level (or activity), i.e. the amount of gene product (protein)



3

present and functioning in a cell, is proportional to the mRNA transcript abundance of

that gene, which provides an accurate snapshot of the gene’s expression profile. To under-

stand the dynamic system, one essential component involves analyses of the transcriptome

(the set of all RNA molecules in an organism), such as measuring transcriptome compo-

sition and discovering novel genes. In the next section, we will introduce in more details

the state-of-the-art RNA-Seq technology and some of the“second-generation” sequencing

platforms widely used for current transcriptome studies.

1.1.2 High-Throughput Sequencing Technology

Over the last ten years, the technologies of choice for large-scale genomic studies have

been switching from DNA microarrays to sequencing-based approaches that directly de-

termine complementary DNA (cDNA) sequence. These approaches have evolved from

the early (first generation) Sanger sequencing of cDNA or EST libraries (Boguski et al.

[14], Gerhard et al. [41]), to tag-based methods such as serial analysis of gene expression

(SAGE; Velculescu et al. [117]), and to the recent development of novel HTS methods for

RNA (RNA-Seq) that have fundamentally changed how we investigate transcriptomics. As

RNA-Seq becomes the current technology of choice, we summarize some key advantages

of RNA-Seq over the hybridization-based microarray technology (Wang et al. [121]): (1)

RNA-Seq requires no existing knowledge about genome sequence as it explicitly sequences

transcripts, which is ideal for studies of non-model organisms where genomic annotations

are unavailable; (2) for the detection and quantification of alternative splicing events, RNA-

Seq can reveal the location of transcription boundaries to a single-base resolution as well

as sequence variations (e.g., single-nucleotide polymorphisms, SNPs), whereas specialized

microarrays with probes spanning exon junctions have to be made for such purposes; (3)



4

RNA-Seq determines gene expressions more accurately as evidenced by the strong corre-

lation with quantitative PCR analyses and RNA spike-in controls; (4) RNA-Seq has low

background noise and a larger dynamic range of expression levels, whereas microarrays

suffer from high technical noise due to cross-hybridization and lack sensitivity for highly

or lowly-expressed genes.

Three major sequencing platforms have been released since 2011: Ion Torrent’s Personal

Genome Machine (PGM), Pacific Biosciences’ RS and Illumina’s MiSeq. Quail et al. [92] did

a comprehensive comparison of these platforms with the popular Illumina Genome Analyzer

(GA) and HiSeq 2000, and discussed their differences in terms of the generated data quality

and the supported applications. The platform information for RNA-Seq experiments can

be accessed via online databases and repositories, for example, the National Center for

Biotechnology Information (NCBI). See Anders et al. [5] for the procedures of getting such

meta-data via the NCBI Sequence Read Archive (SRA).

Along with the benefits RNA-Seq offers, many challenges and problems still remain

unsolved at various stages in the RNA-Seq pipeline (see next section). For example, not

all RNA molecules can be sequenced directly, so that large RNA molecules have to be

fragmented into smaller pieces (200–500 base pairs) to be compatible with current deep-

sequencing technologies. Such fragmentations introduce bias during library preparations,

in addition to some other complications such as discrimination of abundant RNA species

from polymerase chain reaction (PCR) artefacts, the inclusion of strand information, etc.

(Wang et al. [121]). In addition, the so-called “transcript length bias” is present in RNA-

Seq but not in microarrays. As pointed out in Oshlack and Wakefield [87], the confounding

factor of transcript length will influence downstream GO analysis and need to be accounted

for. Statistical adjustment methods have been proposed in Young et al. [126], Gao et al.

[38] and Mi et al. [83]. Chapter 4 is devoted to the discussion of this problem.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/sra
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The variability associated with sequencing-based technologies is often referred to as

“technical variation” arising from measurement error (Marioni et al. [77], McCarthy et al.

[78]). It is to be distinguished from the so-called “biological variation” that changes (in

expression levels) between experimental subjects (Chen et al. [23]). Studies performed in

Marioni et al. [77] indicate that, across technical replicates (repeating identical web-lab and

sequencing protocols on a single biological sample), only a small proportion (∼ 0.5%) of

genes have variations not captured by a simple Poisson model. The variations between bio-

logical replicates, however, need to be properly accounted for using more flexible statistical

models, so that appropriate statistical inference on testing differentially expressed genes can

be made (see Section 1.1.4). We will give a general overview of effective variation-modeling

approaches in Section 1.2.1.

1.1.3 The Pipeline of RNA-Seq Analysis

Even though the chemistry and procedures substantially differ across HTS platforms, in

general a typical RNA-Seq pipeline can be summarized as follows: purified RNA samples

are converted to a library of cDNA with attached adaptors, and then sequenced on a HTS

platform to produce millions of short sequences (about 30 to 400 base pairs long depending

on the DNA sequencing technology used; a.k.a “sequence reads” or just “reads” for short)

from one or both ends of the cDNA fragments (called “single-end” or “paired-end” reads,

respectively). These reads are aligned to either a reference genome (e.g., genome sequenced

in the Human Genome Project) or a reference transcriptome—an important step called

sequence mapping, or assembled de novo without the genomic sequence. The aligned reads

are then summarized by counting the number of reads mapped to the genomic feature

of interests (e.g., exons or genes). The expression profile is eventually represented by a

http://www.genome.gov/10001772
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Table 1.1: Statistical methodologies and computational tools in the RNA-Seq pipeline
(partial): normalization, differential expression (gene-level) and GO analysis.

Analysis Stage Method/Category Software Reference

Normalization
RPKM/FPKM

ERANGE [84]
Cufflinks [113]

Upper-quantile Myrna [19, 62]
TMM edgeR [99]
Median of fold change DESeq [3]

DE (gene-level)

Poisson
DEGseq [120]
TSPM [9]
PoissonSeq [71]

Negative Binomial

edgeR [102]
DESeq [3]
NBPSeq [32]
baySeq [52]
EBSeq [68]

Beta-Binomial BBSeq [128]

Poisson-Tweedie tweeDEseq [36]

Non-parametric
NOISeq [112]
SAMseq [70]
NPEBseq [13]

Quasi-likelihood
QuasiSeq [76]
AMAP.Seq [107]

Shrinkage
DSS [124]
ShrinkSeq [116]

Transformation limma (voom) [108, 63]

GO analysis
Wallenius approx. GOseq [126]
logistic regression GOglm [83]
transformation-based [R codes] [38]

Abbreviations: RPKM/FPKM, Reads/Fragments Per Kilobase of transcript per Million mapped reads; TMM,
Trimmed Mean of M-values; DE, Differential Expression; GO, Gene Ontology.
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matrix of read counts having non-negative integer values, where rows are genes (or some

other genomic features like exons) and columns are samples. Subsequent steps that rely

heavily on statistical analyses include normalization of reads and DE tests (of genes or

exon usage). See Oshlack et al. [88] for an overall discussion of the RNA-Seq analysis

process. Some downstream analyses, after getting a list of DE genes that have passed

multiple-test adjustment, include tests for enriched categories (GO enrichment analysis)

and network inference. We summarize in Table 1.1 some statistical methodologies and

computational tools developed in recent years for the analysis stages of normalization,

differential expression (mostly at the gene-level) and GO analysis. Most of the software

packages are part of the Comprehensive R Archive Network (CRAN; R Core Team [94]),

or part of the Bioconductor project (Gentleman et al. [40]).

Many statistical methodologies proposed for RNA-Seq data analysis (especially for DE

tests) directly use the read count matrix as the starting point, which is a great simplification

with less concern to the ambiguity and variability during sequence mapping and count

summarization. As the reference genome is never a perfect representation, decisions have

to be made when reads arise from a spliced transcriptome rather than a genome, or reads

cannot be uniquely assigned to a feature of interest (mostly results from the “multi-reads”

issue that read are aligned to multiple locations), among other scenarios (Oshlack et al.

[88]). With different aims and scopes, a variety of short-read aligners have been developed

(Grant et al. [47]), including general aligners such as GSNAP (Wu and Nacu [125]), Bowtie

(Langmead et al. [61]) and SHRiMP (Rumble et al. [104]), and de novo annotators such

as TopHat (Trapnell et al. [114]) and SpliceMap (Au et al. [8]). They differ in some

evaluation metrics such as mapping accuracy, memory efficiency and the ability to detect

splice junctions. In this dissertation, unless otherwise specified, we assume that RNA-Seq

reads have been properly aligned under some alignment quality controls without going

http://cran.us.r-project.org/
http://www.bioconductor.org/
http://research-pub.gene.com/gmap/
http://bowtie-bio.sourceforge.net/index.shtml
http://compbio.cs.toronto.edu/shrimp/
http://tophat.cbcb.umd.edu/
http://www.stanford.edu/group/wonglab/SpliceMap/
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into details for any particular alignment algorithm used. For quality controls of RNA-Seq

experiments and relevant computational tools, see, for example, FastQC and Wang et al.

[119] with the RSeQC package.

For accurate comparisons of gene expressions between and within samples, normaliza-

tion is an essential step in both microarray and RNA-Seq data analyses. It is essential to

ensure the observed expression differences truly reflect differential expression rather than

nuisance experimental or technical effects [97]. Sources of systematic variation present in

RNA-Seq experiments can be divided into “between-sample differences” and “within-sample

gene-specific effects”. For the former, different sequencing depths (a.k.a. observed library

sizes) of the samples make the observed read counts not directly comparable across samples

(Mortazavi et al. [84]); for the latter, technical confounders such as gene length (Oshlack

and Wakefield [87]) and guanine-cytosine content (GC-content; Pickrell et al. [90]) will in-

fluence the measure of a gene’s expression level. For absolute quantifications of expression

levels and downstream analyses, these within-sample effects need to be properly accounted

for. However, they are less of a concern if we test differential expression of individual genes

as they will cancel out between samples. See Hansen et al. [51] and Risso et al. [97] for

gene-specific normalizations. In the context of DE tests, the between-sample normalization

is more essential as it not only involves adjustment for different observed library sizes, but

also the (more subtle) apparent reduction or increase in the expression levels of non-DE

genes to accommodate the increased or decreased expression of a few truly DE genes (Di

et al. [33]). There is no consensus on the most appropriate normalization method, and

performances seem to be experiment-dependent. See Bullard et al. [19] for the impact of

normalization on DE test results and Dillies et al. [35] for a comprehensive evaluation on

a number of popular normalization approaches. We refer to the normalizing factors in

more details in Section 1.2.2, and introduce how they can be incorporated into statistical

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://rseqc.sourceforge.net/
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models there. We note that these normalization methods have an common underlying

assumption that only a small proportion of genes are truly differentially expressed. Risso

et al. [98] recently published their work on using spike-in sequences as controls to relax

this assumption, but that is beyond the scope of our discussions.

1.1.4 Differential Expression in RNA-Seq Data

Because many biological studies primarily aim to profile gene expressions between samples

under different environmental or experimental conditions, in this dissertation we restrict

our attention to statistical inferences at the gene-level where the rows in a summarized

read count matrix represent genes. Despite that such gene-level summarization may not

recover true differential expression if there are both up-/down-regulated isoforms present

in a gene (Trapnell et al. [114]), many statistical methods which start from a count matrix

have been developed and they are quite extensible to analyzing other types of count data

beyond RNA-Seq, for example, comparative analysis of immunoprecipitated DNA (ChIP-

seq, MBD-seq), proteomic spectral counts and metagenomics data (Anders et al. [5]). In

fact, with moderate modifications, the statistical theories and methodologies discussed in

subsequent chapters are also applicable for analyses at the level of exons or other genomic

constructs of interests: Anders et al. [4] is one such attempt that, given a catalog of

transcripts, tests for differential exon usage by generalized linear models and accounts for

biological variations via the NB distribution (after flattening gene models and forming

counting bins from exons); Glaus et al. [42] is another attempt that adopts a Bayesian

approach for estimating expressions at the transcript level.

Genes with zero or very low read counts are in general of less interest in DE analysis, in

the sense that (1) a gene of biological importance needs to be expressed at some minimal
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level; (2) little information is available to distinguish between the null and alternative for

lowly-expressed genes. Therefore, it is a common practice to specify some ad hoc criteria

for filtering out genes with very low read counts before performing any statistical analyses.

For example, we may require the average read counts for a gene across samples to be

greater than five, or require the count-per-million (CPM) value greater than one. We often

observe that, in general, genes with low counts have high over-dispersion in the NB setting

and are often poorly fitted by conventional NB dispersion models (see Section 1.2.3). Van

De Wiel et al. [116] suggested using zero-inflated NB (ZINB) models in such scenarios, but

for DE tests in general, we prefer to subset the dataset in advance to achieve more accurate

statistical inference and possibly avoid computational issues.

From Table 1.1, we see that the RNA-Seq community is now flooded with statisti-

cal methods for DE tests, and many of them adopt the NB distribution to account for

the biological variation. However, there is a lack of research on the adequacy of using

NB regression and dispersion models on analyzing RNA-Seq data. A simulation-based

goodness-of-fit (GOF) test discussed in Chapter 2 is the first attempt to such investi-

gations. Evaluation on the power-robustness trade-offs for DE tests using different NB

dispersion methods are closely relevant to GOF tests, but surprisingly, it has received little

attention in the literature. We will formally address these topics in Chapters 2 and 3.

Before that, in Section 1.2 we will first give an introduction to the statistical methods that

are integral to DE tests.

1.1.5 Gene Ontology Enrichment Analysis

In system biology, researchers can gain more biological insights by looking at sets of genes

that differ in expressions. Downstream analyses after testing for DE genes aim to high-
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light biological processes which are over-represented among those DE genes. To relate the

outcome of the DE analysis to biological functions, a widely-used approach is to exam-

ine enriched Gene Ontology (GO) categories based on the terms annotated to the genes

identified as DE (Ashburner et al. [6], Khatri and Drăghici [58]).

For RNA-Seq data, the value of a read count (for a particular gene) summarized in

the count matrix is proportional to its gene length times the true mRNA expression level,

under idealized assumptions of no alignment error or sequencing bias (Marioni et al. [77]).

Therefore, a longer transcript tends to have more reads mapped to it. Because statistical

tests are more powerful in detecting DE from those longer transcripts, even if those shorter

transcripts have similar expression levels, they will be at a disadvantage for being declared

as DE. Oshlack and Wakefield [87] used three RNA-Seq datasets to empirically demon-

strated that such kind of “bias” is inherent to the standard RNA-Seq process, regardless of

which protocols, normalization or re-scaling methods are used. Such bias does not present

in microarrays as the intensity-based measurements are only proportional to the expression

level plus features intrinsic to the probe like GC-content.

Statistically speaking, the term “length bias” seems to be inappropriate because es-

sentially the transcript length is a confounding factor as it correlates with both the GO

membership and the significance of the DE test. Several adjustment approaches have been

proposed to alleviate the effects of gene length on gene-set analysis. Bullard et al. [19]

suggested a modification of a DE t-statistic by dividing the square root of gene length.

Gao et al. [38] also considered adjustment on each gene’s test statistic (at gene level) and

the null distribution for the Fisher’s exact test (at gene-set level). Young et al. [126] pro-

posed a resampling approach and used the Wallenius approximation. We will address this

problem from a different perspective in Chapter 4.
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1.2 Statistical Techniques for Modeling Count Data

In this section, we will introduce statistical methodologies for modeling count data in

the context of analyzing RNA-Seq experiments. Because of the special characteristics of

sequencing data, for example, counts that exhibit extra variations, small sample sizes but

a large number of genes (a typical example of “large p, small n” scenario), many existing

methods either fail to satisfy the basic assumptions for large-sample asymptotic inference,

or require modifications in order to make full use of the data. We now give an overview

of the statistical tools that are key components for the following three main chapters, and

emphasize how biological factors and research questions mentioned in earlier sections can

be modeled and formulated under different statistical frameworks.

1.2.1 Statistical Models for Count Data

Because of the discrete nature of RNA-Seq read counts, it is tempting to assume the Pois-

son distribution for each read count Yij of the ith gene and jth sample: Yij ∼ Poisson(µij)

with E(Yij) = Var(Yij) = µij , where the variance is completely determined by the mean. In

fact, early RNA-Seq studies had shown that the Poisson model was adequate to account

for technical variations (Marioni et al. [77]) and some statistical packages were developed

based on this model (see, for example, Wang et al. [120] and Auer and Doerge [9]). How-

ever, as revealed by many recent RNA-Seq analyses, the one-parameter Poisson model

has severe limitations for modeling the variations between biological replicates (Di et al.

[31], McCarthy et al. [78]). Since biological samples are essential and required in experi-

ments which aim to provide broader inference scope not limited to the particular samples

being studied, appropriate accommodations of such biological variations are considered to

be the rule rather than the exception for almost all current RNA-Seq data analyses.
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The negative binomial (NB) distribution is a natural extension to the Poisson distri-

bution which includes an extra parameter to account for the extra-Poisson variations (i.e.

over-dispersions). It can be derived as a mixture of Poisson distributions in the so-called

Gamma-Poisson model. For a random variable Y having an NB distribution with mean µ

and dispersion φ, the variance Var(Y ) = µ + φµ2 takes a quadratic form on the mean, and

the dispersion parameter φ determines the extent to which the variance exceeds the mean.

This formulation is often referred to as the “NB2” model, a conventional NB model among

a total of 22 varieties of NB regression for modeling count data (see Chapter 8 in Hilbe

[53]). Denote κ = 1/φ as the shape parameter, the probability mass function (p.m.f.) of an

NB random variable Y under this parameterization is

p(Y = y;µ,κ) = Γ(κ + y)
Γ(κ)Γ(1 + y) ( µ

µ + κ)
y

( κ

µ + κ)
κ

, y = 0,1,⋯ (1.1)

Quantities such as the likelihood function, the gradient (score function), the observed and

expected information matrices can be calculated based on this p.m.f.

Several approaches were proposed in earlier works for testing and estimating the NB

dispersion parameter φ. For statistical tests of detecting over-dispersion, Dean and Lawless

[29] developed two statistics and used score tests for Poisson regression models; a unifying

theory of testing for over-dispersion in Poisson and binomial regression models was later

given in Dean [28]. For estimation, NB or mixed (random-effects) Poisson models and

analyses based on weighted least squares or quasi-likelihoods for count data were discussed

in Lawless [64] and Breslow [15] to accommodate over-dispersion. These approaches for

testing Poisson against NB models and estimating the dispersion parameter are not directly

applicable for analyzing RNA-Seq data, as the asymptotic assumptions and the requirement

for large µ’s are typically not satisfied in the RNA-Seq context. Therefore, statistical

inference on the regression coefficients based on these works will in general be inaccurate
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and at best sub-optimal on RNA-Seq data.

Because many RNA-Seq studies have shown that the NB distribution is an effective and

flexible tool for modeling count variation, researchers had made more efforts on accurate

estimation of the NB dispersion parameter (which is crucial for statistical inference of

differential expression), given the limited number of samples available and a large dynamic

range of expression levels. Small-sample estimation of the NB dispersion was discussed

in Robinson and Smyth [101] using a quantile-adjusted conditional ML (qCML), but it

was limited to completely randomized designs with two treatment groups only and did not

generalize to the more complex regression settings (see Section 1.2.2). McCarthy et al. [78]

advocated the use of adjusted profile likelihood (APL; Cox and Reid [24]) in the generalized

linear model (GLM) framework, which has less bias than competitive estimators. Lund

et al. [76] discussed the quasi-likelihood (QL) approach with shrunken dispersion estimates,

which provided better estimates of false discovery rate (FDR). Empirical Bayes shrinkage

for dispersion estimation has gained increasing popularity as it effectively share information

across tens of thousands of genes. This technique has been implemented in many software

packages including the empirical analysis of digital gene expression data in R (edgeR;

Robinson et al. [102]), DESeq (Anders and Huber [3]) and DESeq2 (Love et al. [75]). We

will provide more details on relevant methods in Chapters 2 and 3.

In the simplest case of two-group comparison, it is also attempting to consider conven-

tional two-sample tests for detecting DE genes. However, it turns out that using parametric

discrete distributions for modeling counts has many benefits over a standard two-sample

t-test for the difference between the two groups. For untransformed counts, the viola-

tions of the normality and homogeneity of variance assumptions make different versions

of t-tests far from ideal. Tests on data after applying variance-stabilizing transformations

(e.g., square root for the Poisson to stabilize the variance for different means) still have
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unsatisfactory performance—for example, the FDR is not maintained at the nominal level

(Di et al. [31]). Simulations have also revealed that as the mean decreases and fold change

increases, testing with an appropriate discrete distribution (e.g., NB) will provide substan-

tial power gains over transformed data. We will formally introduce the NB regression and

dispersion models for RNA-Seq read counts in Section 1.2.3.

1.2.2 Generalized Linear Models and NB Regression

The generalized linear models (GLMs) proposed in Nelder and Wedderburn [85] provide

a unified way for handling categorical and continuous response distributions. A GLM

consists of two components: the random component specifies the distribution assumption

on the response yi given the covariates xi, and the systematic component specifies the link

between the expected response and the covariates. For the random component, within the

exponential family framework we can re-write the NB p.m.f. (1.1) as

p(Y = y;µ,κ) = exp{[log(π) + (y/κ) log(1 − π)] /(1/κ) + log( Γ(κ + y)
Γ(κ)Γ(1 + y))}

where π = κ/(µ + κ). For the scaled response y/κ and dispersion φ = 1/κ, we obtain a

simple exponential family for fixed κ. For the systematic component, instead of using a

canonical link function η = log ( µ
µ+1) that may cause problem when η → 0 (µ → ∞), it

is more common to adopt the log-link η = log(µ) so that the linear predictor η is not

restricted. For a univariate count response, we relate the linear predictor η = log(µ)

with a number of covariates by X ′β, where X and β are p-dimensional vector of known

explanatory variables and unknown regression coefficients, respectively. The flexibility of

GLMs for accommodating arbitrarily complex designs with multiple treatment conditions

and/or blocking variables is essential as the complexity of the study designs for typical
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RNA-Seq experiments can vary a lot—from the simple case of comparing gene expressions

between two conditions (e.g., stimulated versus unstimulated, or wild-type versus mutant

samples), to more complicated designs including additional experimental factors (e.g., drug

doses or time points) and additional covariates (e.g., non-biological experimental variation

or “batch effects”, pairing of tumor and normal tissues, or difference in library type). For

multi-factor designs, methods developed within the GLM framework are more superior

to their counterparts (say, Cufflinks, Trapnell et al. [113]) that cannot handle complex

designs such as testing for interaction effects between factors.

We fit a GLM to each of the tens of thousands of genes in the dataset, so here we

present the model for a single gene i and repeat the process for the rest of the genes.

As discussed in the RNA-Seq pipeline in Section 1.1.3, normalizing read counts between

samples involves adjustment for different observed library sizes (denoted by Nj) and the

apparent reduction/increase in the expression levels of non-DE genes to accommodate the

increased/decreased expression of a few truly DE genes (an adjustment term denoted by

Rj). These factors can be modeled in the GLM framework: denote πij = µij
NjRj

as the

relative mean frequency, so that the log mean expression can be decomposed as

log(µij) = log(Nj) + log(Rj) + log(πij)

with two known additive constants. These quantities log(Nj) and log(Rj) which are called

offsets in the GLM terminology are pre-estimated and treated as known during GLM fit-

ting. The ad hoc library size (quantile) adjustment procedure required for the validity of

exact NB tests for two-group comparison problems (Robinson and Smyth [100]) is automat-

ically accounted for in this GLM framework. Note that here (and in many applications) the

same constant (NjRj) is assumed for all genes in a sample, but it may be advantageous to

calculate between-gene normalization factors sij to account for some gene-specific sources

http://cufflinks.cbcb.umd.edu/
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of technical biases such as GC-content and gene length (Love et al. [75]). See Hansen et al.

[51] and Risso et al. [97] for relevant discussions. This kind of normalization can be treated

in the same manner in the GLM framework as well.

For making comparisons between gene expression levels under different conditions j,

we have (for the ith gene):

log(µij) = offset +
p

∑
k=1

βikXjk

where in the case of p = 2, Xj1 = 1 for all j; Xj2 = 1 if sample j is from group 2 and Xj2 = 0

if sample j is from group 1. This is the popular “treatment contrasts” parameterization

due to its easy interpretation in terms of log fold changes (cf. contr.treatment in R,

contrasts each level with the baseline level). Other options (e.g. sum contrasts) are also

used. The estimate for β1 gives the estimate of group 1’s overall expression level, while

the remaining coefficients β2,⋯, βk are interpreted as log fold changes against group 1 (the

baseline level).

The maximum likelihood estimates of the regression coefficients β in the linear pre-

dictor can be obtained by the iteratively re-weighted least squares (IRLS) algorithm that

works for all GLMs (McCullagh and Nelder [79]). To numerically solve the maximum

likelihood equations, depending on calculation complexity of the observed or the expected

information, the Newton-Raphson algorithm or the Fisher scoring method will be used.

In the (k + 1)th iteration of the Newton-Raphson algorithm, the coefficient βk+1 is given

by βk + U(βk;y)
I(βk;y) , where U = ∂l

∂β is the score function and I is the observed information.

Fisher scoring replaces I(βk; y) with the expected information J (βk). Convergence is

achieved if some criterion for estimates over consecutive iterations is satisfied, for example,

∣βk+1 − βk∣ < ε, a pre-specified threshold.

For multi-factor design problems, the GLM allows for the possibility of testing any con-

trast of regression coefficients equals to zero (McCullagh and Nelder [79]), corresponding to
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the formulation of different biological questions. In general, hypotheses of regression coef-

ficients in GLMs are tested by asymptotic tests, most notably the Wald test and likelihood

ratio tests (LRT) with the asymptotic χ2 approximation to the likelihood ratio statistic

(Wilks [123]). Di et al. [33] incorporates the LRT with higher-order asymptotic adjust-

ments for more accurate inference under small sample size scenarios typical for RNA-Seq

studies.

Testing differential expression is essentially equivalent to testing a coefficient or contrast

of interest being zero. For the two-group comparison, the null hypothesis H0 ∶ β2 = 0

is tested against either a one-sided or two-sided alternative hypothesis. Under the null

hypothesis, twice the log likelihood ratio statistic has an asymptotic χ2 distribution, and

simulation studies have shown that the likelihood ratio test (LRT) controls Type I error

rates reasonably well. Di et al. [33] further suggested LRT with higher-order asymptotics

(HOA) adjustments. Lund et al. [76] discussed quasi-likelihood (QL) methods by replacing

LRTs with QL ratio F -tests for better FDR controls, and the test statistics are based on

quasi-dispersion parameter estimates or two variants called QLShrink and QLSpline for

sharing information across genes.

1.2.3 NB Dispersion Models

Even though the cost of RNA-Seq experiments is decreasing each year, explicit trade-off

exists between having more biological replicates and deeper sequencing. Liu et al. [73]

showed that having more biological replications is an effective strategy for statistical power

gains and increased accuracy in RNA-Seq studies. However, due to constraints in resources,

current RNA-Seq experiments are commonly conducted in duplicates or triplicates in each

condition. With such small replication levels, large-sample statistical theories are not
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applicable most of the time. Small-sample inference and methods that effectively borrow

information across tens of thousands of genes are becoming more important for RNA-Seq

data analysis.

The discrete read counts of RNA-Seq data are characterized by strong mean-variance

relationships that can be modeled by the NB distribution. However, modeling such vari-

ability is challenged by the relatively small number of replicates available in a typical

experiment. Earlier works of Robinson and Smyth [100, 101] assumed a common disper-

sion estimated by all genes combined. Recognizing an evident trend relationship between

the dispersion and relative gene expression, researchers have proposed many alternative

NB dispersion models. Di et al. [31] (with the NBPSeq package) adopted a parametric

dispersion-modeling approach by using the over-parameterized NBP distribution (Greene

[48], Hilbe [53]), where the log dispersions are modeled as a linear function of the relative

mean frequencies (on the log-log scale). A natural extension to NBP is the NBQ model

which incorporates an extra quadratic term. Anders and Huber [3] (with the DESeq/DESeq2

packages) suggested fitting a non-parametric curve to capture the dependence so that ge-

newise estimates can be shrunk toward the values predicted by the curve (either a local

or parametric regression is used to compute this trend). McCarthy et al. [78] (with the

edgeR package) introduced a similar “trended” (non-parametric) model in which a different

dispersion is estimated for each gene using APL and then modeled as smooth functions

of the genewise average read counts. Two variants of the “tagwise” models that adopted

empirical Bayes estimations and Cox-Reid approximate conditional likelihood (Cox and

Reid [24]) were also introduced in McCarthy et al. [78] (we call them “tagwise-common”

and “tagwise-trend”). In the most recent release of the NBPSeq package, the NBS approach

models the dispersion as a smooth function (a natural cubic spline function) of the prelim-

inary estimates of the log mean relative frequencies, and the “step” approach models the
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dispersion as a step (piecewise constant) function. Quasi-likelihood dispersion estimates

(either borrowing information across genes or not) were proposed in Lund et al. [76], with

implementations in the QuasiSeq and edgeR packages.

As listed in Table 1.1, various NB dispersion models are flooding the RNA-Seq literature

and new methods are expected to be proposed in the future. However, discussions on eval-

uating the model adequacy and the associated impacts (in terms of power and robustness)

on DE tests are rather limited. We address this problem by proposing a simulation-based

goodness-of-fit test of NB regression and dispersion models with diagnostic graphics in

Chapter 2, with some initial power-robustness evaluations. Chapter 3 further discusses

a simple statistic we proposed for quantifying the inadequacy or lack-of-fit of a fitted

dispersion model, with more comprehensive power-robustness investigations into several

RNA-Seq datasets across different species.

1.3 Dissertation Objectives and Structure

The topics in this dissertation are motivated by practical biological problems in life sciences,

where large-scale genomics sequencing data are generated by the state-of-the-art RNA-Seq

technology. This dissertation includes three main chapters of manuscripts published or

ready for submission. Specifically, in Chapter 2 we discuss goodness-of-fit (GOF) tests and

model diagnostics for NB regression and dispersion models for RNA-Seq data analysis. We

introduce in Chapter 3 a direct approach for quantifying residual variation in fitted dis-

persion models, which provides a measure that complements the GOF tests and facilitates

realistic power-robustness evaluations; we also investigate into several RNA-Seq datasets

across species and use simulation results to show that the magnitude of the residual disper-

sion variation gives hints on whether we can gain statistical power by a dispersion-modeling
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approach. Chapter 4 is about the downstream analysis after DE tests, the Gene Ontology

(GO) enrichment analysis, where we propose a simple but effective approach to account

for the confounding factor of transcript lengths in RNA-Seq data. Chapter 5 provides a

summary of the dissertation and an outline of future work.
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2.1 Abstract

This work is about assessing model adequacy for negative binomial (NB) regression, par-

ticularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appro-

priateness of models for NB dispersion parameters. Tools for the first are appropriate for

NB regression generally; those for the second are primarily intended for RNA sequencing

(RNA-Seq) data analysis. The typically small number of biological samples and large num-

ber of genes in RNA-Seq analysis motivates us to address the trade-offs between robustness

and statistical power using NB regression models. One widely-used power-saving strategy,

for example, is to assume some commonalities of NB dispersion parameters across genes

via simple models relating them to mean expression rates, and many such models have

been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to

make more thorough investigations into power and robustness of the resulting methods,

and into practical tools for model assessment. In this article, we propose simulation-based

statistical tests and diagnostic graphics to address model adequacy. We provide simulated

and real data examples to illustrate that our proposed methods are effective for judging ad-

equacy of fit of several NB dispersion models. The GOF test results on a small experiment

concerning the plant Arabidopsis and a simulation study based on the conditions found

in that example indicate that there is a power advantage in capturing the trend (either

parametrically or non-parametrically) and that the methods based on an exact trend are

robust against noise about the trend of the size found in the example.

Keywords: Dispersion modeling; Goodness-of-fit test; Negative binomial regression; Over-

dispersion; Residual diagnostics; RNA-Seq
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2.2 Introduction

2.2.1 Negative Binomial Models

The negative binomial (NB) model has been widely adopted for regression of count re-

sponses because of its convenient implementation and flexible accommodation of extra-

Poisson variability. Let Y represent a univariate count response variable and X a p-

dimensional vector of known explanatory variables. Then an NB log-linear regression

model specifies that the probability distribution of Y is NB with mean µ and dispersion

parameter φ, with log(µ) = X ′β where β is a p-dimensional vector of unknown regression

coefficients.

The NB distribution can be derived as a Poisson-gamma mixture model. For the con-

ventional parameterization (which we refer to as NB2), suppose υ is a gamma-distributed

random variable with E (υ) = µ and Var (υ) = φµ2, and that Y ∣υ ∼ Poisson (υ), then the

marginal distribution of Y is NB with mean µ and variance µ+ φµ2 [see, for example, 65].

The NB2 probability mass function (p.m.f.) has the form

f(y∣µ,φ) = Γ(y + θ)
Γ(θ)Γ(y + 1) ( θ

µ + θ)
θ

( µ

µ + θ)
y

where θ = 1/φ.

Other NB parameterizations follow from different parameterizations for the gamma

mixing distribution. A general form, called NBP (Greene [48], Hilbe [53]), follows from the

assumption that the gamma variance is φµα, and has the same form of p.m.f. f(y∣µ,φ),

but with θ replaced by φ−1µ2−α. In this parameterization, E (Y ) = µ and Var (Y ) = µ+φµα.

We note that (1) for identically distributed count variables the NBP distribution is over-

parameterized, but in a regression setting it offers additional flexibility in mean-variance
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modeling, which is useful in the RNA sequencing (RNA-Seq) analysis that follows; and (2)

NBP includes the well-known NB1 (α = 1) and NB2 (α = 2) parameterizations as well as

others. Greene [48] specified the symbol “P” for our α, which is why this parameterization

is called “NBP”.

2.2.2 RNA-Seq Analysis and NB Regression

RNA-Seq analysis (Wang et al. [121]) may be performed on biological units from any of

the traditional forms of life science study, such as randomized experiments with multiple

treatments and covariates, or observational studies with multiple observed explanatory

variables. The response variable for each unit is a vector of relative frequencies, which

measure expression levels for each of a large number of genes or gene isoforms. Although

much of the statistical attention to RNA-Seq analysis has so far focused on the two-group

problem – and, therefore, on identification of differentially expressed genes – there is a

clear need for regression analysis for identifying differential expression after accounting for

other variables, and for identifying patterns of expression and differential expression as a

function of explanatory variables.

Future statistical techniques might be derived for the multivariate regression on all genes

simultaneously, but the problem is currently tackled by the simpler univariate regression

on each gene individually, with appropriate attention to false discovery rate. The response

for a single gene is the number of RNA-Seq reads corresponding to that gene (Y ) out of

a total number of reads for the particular biological unit (s). Although there is evidence

that the “technical variability” in Y – meaning the variability in the RNA-Seq technical

procedure repeated on a single biological unit – can be described by a Poisson distribution

(Marioni et al. [77]), the observed variability from multiple biological units in the same
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observational or experimental group is greater than Poisson (see, for example, Anders and

Huber [3], Di et al. [31]). The gamma mixture of Poissons, as described in Section 2.2.1,

is a conceptually appealing alternative because the gamma mixing represents “biological

variability”. Practically, the NB model is both flexible and convenient.

The primary statistical challenge involves simultaneous regression fitting for tens of

thousands of genes from fairly small numbers of biological samples (e.g. less than twenty).

An important power and efficiency issue in this case involves the modeling of the NB2

dispersion parameter φ. Five possibilities, for example, are (1) φ is constant for all genes;

(2) φ is allowed to differ between genes but is constant within gene under all conditions; (3)

φ is allowed to differ for all gene/condition combinations; (4) φ is taken to be a function of

µ; and (5) φ is taken to have a trend as a function of µ, but with some additional between-

gene variability. More flexible models are much more likely to fit the data, of course, but at

the expense of tens of thousands of nuisance parameters. If a more specific model fits, based

on vastly fewer nuisance parameters, it could offer substantial power and efficiency gains

(for improved “true discovery” rates of differential expression, for example). Because of the

very large number of hypothesis tests performed in a single RNA-Seq study and the very

large number of RNA-Seq studies being performed world-wide, even a small improvement

in power can have an important impact on the overall rate of scientific learning from the

RNA-Seq technology.

Let Yij denote an RNA-Seq read count for the ith gene (i = 1,⋯,m) of the jth experi-

mental or observational unit (j = 1,⋯, n), and Xj the associated p-dimensional explanatory

variable. Suppose Yij ∼ NB(µij , φij) where µij is the mean and φij is the dispersion param-

eter in the NB2 parameterization. Suppose also that log(µij) = log(sj)+ log(Rj)+ log(πij),

with πij = exp (X′

jβi), where sj is the library size (the number of RNA-Seq reads in the

biological sample from unit j), and Rj is an optional normalization factor estimated before-
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hand (Anders and Huber [3], Robinson and Oshlack [99], Bullard et al. [19]) and treated as

known. In this formulation, πij is the mean relative frequency of occurrence of RNA-Seq

reads associated with gene i, which is taken to be the expression level of gene i associated

with observational or experimental unit j.

We label some of the ways to model the nuisance parameters φij as follows:

#1. Genewise: φij = φi (constant within each gene i across all conditions j), with m

parameters for NB dispersion

#2. Common: φij = φ (constant for all gene/condition combinations), with one parameter

for NB dispersion

#3. NBP: log(φij) = α0 + α1 log(πij), equivalent to assuming NBP response distribution

discussed in Di et al. [31], with two parameters for NB dispersion

We also introduce here a new approach, in which the dispersion parameter trend is

quadratic on the log scale:

#4. NBQ: log(φij) = α0 + α1 log(πij) + α2 [log(πij)]2, with three parameters for NB dis-

persion

An important related method estimates the φij ’s via non-parametric regression:

#5. Non-parameteric: φij is estimated in a first step as a smooth function of log(φ̂ij)

on log(µ̂ij), and then treated as known in the second step of regression coefficient

inference

In addition, there are variants that use an average of trend and individually-estimated

dispersion parameters, based on empirical Bayes considerations [78]:
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#6. Tagwise-common: φij is estimated as a weighted average of the common and genewise

estimates, based on empirical Bayes calculations

#7. Tagwise-trend: φij is estimated as a weighted average of the non-parametric and

genewise estimates, based on empirical Bayes calculations

Methods for inference from the common, genewise, non-parametric, tagwise-common,

and tagwise-trend approaches are available in the edgeR Bioconductor package (Robin-

son et al. [102], Gentleman et al. [40]). The non-parametric method is also available in

the DESeq package (Anders and Huber [3]). Both DESeq and edgeR provide options for

non-parametric estimation of the dispersion parameters (the two packages differ in im-

plementation details). The NBP and NBQ approaches are implemented in the NBPSeq R

package (Di et al. [34], R Core Team [94]).

The details of estimation for these methods are important but are not relevant to the

proposed diagnostic tools and so are not discussed here. For the first four models above,

however, maximum likelihood (ML) estimation can be used for simultaneous inference of all

parameters, and likelihood ratio tests for regression coefficients account for the uncertainty

in estimation of the parameters associated with dispersion. The final three approaches, on

the other hand, involve a two-step procedure: NB dispersion parameters are estimated in

the first step and then treated as known in the second, and the uncertainty in estimating

dispersion parameters is typically ignored. Because of this automatic incorporation of

dispersion parameter uncertainty, the avoidance of user-required tuning parameters, and

the optimality of likelihood ratio tests, ML based on models for NB2 dispersion is appealing.

The adequacy of the models for RNA-Seq data is not yet well understood, though. We

wish to use the model diagnostic tools proposed in this article to judge the degree of fit of

the various models on real RNA-Seq data – particularly the fit of simple parametric models

for the trend of log(φ) as a function of π and the degree of noise, if any, about this trend,
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so that realistic robustness and power studies can follow.

To further clarify this introduction, Figure 2.1 shows a log-log scatter plot of method-

of-moments-like estimated NB2 dispersion parameters, φ̂, versus estimated mean relative

frequencies, π̂, for each of 19,623 genes from a single sample of size three of a pilot Ara-

bidopsis RNA-Seq study examined in Di et al. [31]. The curves on the plot are estimated

dispersion trends based on the models described above. Polynomial gamma log-linear re-

gression models of φ̂ on log(π̂) were used for quick-and-dirty testing and quantification of

the trend, as follows. The linear model explains 24.1% of the variability in logged disper-

sion parameter estimates. A quadratic term (with p-value < 0.0001) explains an additional

7.2% of variability. A cubic term (p-value < 0.0001) in a full cubic model explains less than

0.1% additional variability. This plot and informal analysis suggest that the common φ

model is inadequate; the trend is primarily, but not entirely, linear; and that a quadratic

model captures essentially all of the trend in this particular dataset.

A simple model for trend in NB dispersion parameter φ as a function of mean relative

frequency π is a good starting point for reducing the number of nuisance parameters, but

the evidence of a trend does not imply that the φ’s fall exactly on the trend; there may

be additional variability in φ for genes with the same value of π. The main questions we

wish to address with diagnostic tools are the following: (1) Does the NB assumption hold

for a very rich model (for both regression and dispersion)? (2) What relatively simple

models are adequate for describing φ as a function of π? (3) Is there evidence of additional

biological variability in φ between genes having the same value of π?
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Figure 2.1: The mean-dispersion plot with six fitted dispersion models (common, NBP,
NBQ, trended, tagwise-common and tagwise-trend) for the Arabidopsis RNA-Seq dataset
(19,623 genes from three biological samples in the mock treatment group). The jagged
curves for the tagwise procedures indicate the variability of individual NB2 dispersion
parameters about the trend.
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2.2.3 Diagnostics and Goodness-of-Fit for NB Regression

Traditional tools for model diagnostics in generalized linear models (GLM), such as de-

viance and Pearson residuals and goodness-of-fit (GOF) tests, are suitable for binomial

and Poisson regression if the means are large, i.e. the adequacy of the normal and χ2

null distributions for residuals and GOF test statistics, respectively, are justified under

central-limit-theorem-like asymptotics rather than large sample size asymptotics (Pierce

and Schafer [91]). Such GOF tests are not appropriate for small means (which are typi-

cal for the majority of genes in RNA-Seq analysis), and the theory for the null sampling

distribution of the residuals and GOF test statistics does not extend to NB regression.

Best et al. [12] extended Anscombe’s tests of fit for the NB distribution by using fourth

order smooth tests, but these tests don’t extend in an obvious way to regression models

for non-exponential family response distributions. The test we propose in this paper gives

similar results to theirs for i.i.d. samples and can also be used for the procedures that

involve non-parametric trend fitting and empirical Bayes averaging. Esnaola et al. [36]

proposed a larger family of response distributions for RNA-Seq analysis, which permits

the testing of NB as a special case; but we do not believe the approach (validated under

extensively replicated experiments) is suitable for the small sample sizes we have in mind

here.

In this article, we propose a goodness-of-fit test statistic for NB regression based on

Pearson residuals, and the calculation of a p-value using Monte Carlo-estimated null sam-

pling distributions. The same simulations are used to estimate expected ordered residuals

for an empirical probability plot. For RNA-Seq diagnostics, the GOF p-values from all

genes are examined in a uniform QQ plot and combined via the Fisher’s combined proba-

bility test (Fisher’s method, Fisher [37]).

Similar regression diagnostic approaches that use Monte Carlo or resampling to de-
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rive null sampling distributions of diagnostic quantities have been previously proposed for

several situations. For ordinary linear regression, Atkinson [7] proposed half normal plots

of jackknife residuals. For logistic regression, Landwehr et al. [60] proposed an “empirical

probability plot” in which ordered residuals from the observed data are plotted against their

expected values (or median values), as computed by Monte Carlo simulations. Their sim-

ulation procedure, which resembles parametric bootstrapping, is based on the estimated

parameters from the fitted model. Similar graphical displays were adopted as informal

checks of various count models. For example, Svetliza and Paula [111] considered normal

probability plots for log-linear Poisson, log-linear NB and non-linear NB models. Garay

et al. [39] evaluated GOF between zero-inflated Poisson (ZIP) and zero-inflated NB (ZINB)

models. Both of these used simulated envelopes in their plots, but with standard normal

quantiles (instead of quantiles from simulations) on the x-axis. None of the aforementioned

papers provided statistical tests for evaluating model lack-of-fit.

2.2.4 Outline of Goals and Proposed Methods

In Section 2.3.1, we propose Monte Carlo-based GOF tests and graphical diagnostics for

univariate NB regression. We demonstrate these tools in Sections 2.3.1 and 2.3.2 on real

and simulated datasets. In Section 2.3.3, we use simulations to illustrate Type I error

rates of the univariate NB regression GOF tests and power under various alternatives. In

Section 2.4, we provide tools for judging NB dispersion models in RNA-Seq analysis by

combining GOF test results on a random sample of genes. In Section 2.5 we illustrate the

techniques on an Arabidopsis RNA-Seq dataset, and discuss the quantification of dispersion

noise. The power and robustness of dispersion models are explored in Section 2.6 by a set

of simulations. In Section 2.7 we document the conclusions and further directions for



33

research.

2.3 Residual QQ Plots and GOF Tests for NB Regression

2.3.1 Residual Plot and Test

We consider univariate NB regression in this section and then return to the RNA-Seq

problem – of NB regression for each of many genes – in Section 2.4. For regression data

with counted response, we wish to determine whether any NBP model fits and, because

of the convenience of NB2 estimation programs, whether the NB2 model fits in particular.

We propose two GOF tests and an associated residual plot. The test p-values provide an

overall assessment of fit and the plot shows whether a small GOF p-value might be due to

a small portion of the data. We use the same notation as in Section 2.2.2, but without the

subscript i. In the RNA-Seq context, the methods of this section apply to a single gene.

We start with Pearson residuals: rj = (yj − µ̂j)/ŝj , where µ̂j is the estimated NB mean and

ŝj is the estimated NB standard deviation of yj from the particular model being tested,

for j = 1,⋯, n.

We first propose an empirical probability plot of the ordered Pearson residuals r(j)

versus the sampling distribution medians for each ordered Pearson residual, Med[r(j)],

assuming the proposed NB regression model is correct. To approximate the medians,

we simulate a large number of NB regression datasets of the same size and form as the

observed one, using the data estimates as parameters for simulation; fit the same NB

regression model to each simulated dataset; extract the ordered Pearson residuals; and

retain the sample medians for each ordered residual. This is exactly the Landwehr et al.

[60] approach applied to NB regression. Figure 2.2 shows the plot, along with a 95%

pointwise prediction envelope (in dashed blue lines) formed from the similarly estimated
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2.5th and 97.5th percentiles of the ordered residuals, for the NB2 and NBP regression

of 48-year earthquake frequencies on magnitude (i.e. the Gutenberg-Richter Law, for 45

magnitudes from 4.5 to 9.1). Note that the band is formed from prediction intervals for

the corresponding sample quantiles (not confidence intervals for their expected values). If

the model fits, we would expect about 95% of the ordered residuals to fall within the band.

We also superimpose a 95% simultaneous prediction band in solid red using the simulation

method discussed in Buja and Rolke [18], so that for 95% of samples all ordered residuals

should be contained in the red band. See Appendix (I) for details.

We wish to provide a global GOF test to accompany this empirical probability plot of

Pearson residuals. A natural starting point is a test based on the Pearson statistic, i.e. the

sum of squared Pearson residuals. The classical use of the χ2 reference distribution is not

appropriate here, but the null sampling distribution may be approximated by the Monte

Carlo estimate. A p-value can be obtained as the proportion of simulated samples that

produce a Pearson statistic as extreme or more extreme than the observed one. This is

similar to the approach of Best et al. [12] in its application of parametric bootstrap to obtain

a GOF p-value. We have found that our procedure and theirs give very similar results for

single samples, but the approach discussed in Best et al. [12] requires specification of higher

order moments, which is infeasible for the regression models we have in mind for RNA-Seq

analysis.

Since the simulations provide estimated sampling distributions for each ordered resid-

ual, a finer test statistic is available as the sum of squared differences of the ordered residuals

from their sampling distribution medians. We believed this was a worthwhile test statistic

to consider given that we had already obtained approximate sampling distributions for each

ordered residual to obtain the Landwehr et al. [60] type diagnostic plot. The test is also

related to the SAM graphical procedure of Tusher et al. [115] for identifying differential
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Figure 2.2: Empirical probability plots with GOF test p-values for evaluating NB2 and
NBP model fits on the earthquake dataset (sample size: 45), with 95% prediction envelope
in dashed blue lines and 95% simultaneous prediction band in solid red lines (based on
999 Monte Carlo simulations). Points outside the prediction envelope are flagged as blue
triangles.
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gene expression from microarray.

The following algorithm defines the diagnostic empirical probability plot of residuals

and the Monte Carlo GOF test p-value based on the second test statistic.

#1. Fit an NB regression model from the data Y(0) = (Y1,⋯, Yn)T ; estimate all unknown

dispersion parameters, e.g. α̂0, α̂1,⋯, and regression coefficients β̂(0); calculate Pear-

son residuals r(0) = (r(0)1 ,⋯, r(0)n ) and the mean vector µ̂(0)

#2. For h = 1,⋯,R:

a. Simulate a random vector Y(h) from NB(µ̂(0), α̂0, α̂1,⋯)

b. Compute and retain Pearson residuals r(h)

#3. Find the median, 2.5th and 97.5th percentiles of the Monte Carlo sampling distribu-

tion for each ordered residual, denoted by r̃50
(j), r̃

2.5
(j) and r̃97.5

(j) , respectively; plot the

ordered residuals from the observed data against the Monte Carlo medians; draw

a 95% pointwise prediction envelope on the plot by connecting the r̃2.5
(j)’s (for lower

bound) and the r̃97.5
(j) ’s (for upper bound).

#4. Compute the sum of squared deviations of ordered residuals from the medians of their

sampling distributions d(h) = ∑nj=1 (r
(h)
(j) − r̃

50
(j))

2
for the observed data (h = 0) and for

the simulated samples (h = 1,⋯,R); compute a Monte Carlo GOF test p-value by

PMC
1sided =

∑Rh=1 1 (d(h) ≥ d(0)) + 1

R + 1
(2.1)

where 1(A) is the indicator function equal to 1 if the event A is true and 0 otherwise

(Davison [27]).

The Pearson GOF p-value is computed in the same way, but using the sum of squared

residuals as the test statistic. The two statistics are visualized on the empirical probability
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plots as the sum of squared deviations about the y = 0 line and the sum of squared deviations

about the y = x dotted line. For this reason, we call the latter statistic the sum of squared

vertical distances. The p-values for testing the NB2 and NBP models on the earthquake

dataset are shown in Figure 2.2. The suggestive Pearson statistic p-value for goodness-of-fit

of the NBP model is due to two outliers, corresponding to the frequencies of earthquakes of

magnitudes 7.1 and 7.8. Although NB2 (with variance function µ+φµ2 and NBP (in which

the variance function is estimated to be µ+φµ2.5) produce nearly identical fits, the standard

errors (in the denominators of the Pearson residuals) from the NBP fit tend to be smaller

for the smaller counts, which is why the NBP, but not the NB2 diagnostic, is detecting some

potential lack-of-fit of the simple log-linear model in the region of magnitudes between 7

and 8 (corresponding to relatively small frequencies).

In using Monte Carlo simulation in lieu of theory to obtain the sampling distributions

of the ordered residuals and test statistics, it would be ideal, but impossible, to use the

true parameter values rather than their estimates from the data. Nevertheless, we expect

the sampling distribution of the residuals to be about the same.

We use R = 999 Monte Carlo samples so that the (binomial) standard error in p-value

estimation is 0.016 for p-values near 0.5, 0.007 for p-values near 0.05, and 0.003 for p-values

near 0.01. As pointed out in North et al. [86], adding 1 to both the numerator and the

denominator in Equation (2.1) produces a slightly biased estimate of the true p-value but

with the correct Type I error rate, in contrast to the unbiased but anti-conservative p-value

obtained without adding the 1.
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2.3.2 Illustration on Simulated Datasets with Known Response Dis-

tributions

In Figure 2.3 we demonstrate the NBP and NB2 empirical probability plots and Monte

Carlo GOF test p-values on four simulated regression datasets with known response distri-

butions. The regression structure is taken to be the estimated log-linear model from the

earthquake dataset of Figure 2.2, with sample size 45. For the first two scenarios, we gener-

ate NBP responses (with variance function µ+φµα) as follows: (1) NB1, with variance 2µ

and (2) NB2, with variance µ+0.1µ2. For the third scenario, we simulate NB2 responses as

(2) above, but introduce “outliers”: (3) “NB2 + Outliers”, by randomly doubling three of

the 45 counts. For the last one, we generate a mixture of NB2 distributions with different

dispersion parameters: (4) “NB2 + Noise”, with conditional variance µ+ [0.1 exp(G)] ⋅µ2,

where G ∼ N (0,22). In this case the response counts are still gamma mixtures of Poissons,

but the gamma variances are not constant.

In general, the two tests correctly indicate or fail to indicate lack-of-fit. An exception

is that the Pearson test doesn’t do as well at detecting the lack-of-fit in the last two

columns. As evident in the last column of the empirical probability plots, the ordered

Pearson residuals are larger in magnitude than expected in some regions and smaller in

others. While the ordered residuals do not seem to behave as a sample from the tested

distribution, the sum of their squares is moderated by the combination of small and large

magnitudes. We are particularly concerned about this cancellation aspect of the Pearson

test in the extension to RNA-Seq data, in which both under- and over-dispersion (relative

to the tested model) may be present in subsets of genes. This issue is not relevant to the

squared vertical distance test.
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Figure 2.3: Empirical probability plots and GOF p-values for testing NB2 (top row) and
NBP (bottom) on four simulated datasets with sample size = 45. The simulated response
distributions are (left to right): NB1, NB2, NB2 with outliers and NB2 with random
N (0,22) noise added to log(φ). We superimpose 95% prediction envelopes in dashed blue
lines and 95% simultaneous prediction bands in solid red lines (based on 999 Monte Carlo
simulations). Points outside the prediction envelope but inside the simultaneous confidence
bands are flagged as blue triangles, and points outside the simultaneous confidence bands
are flagged as red crosses.
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2.3.3 Error Rates of GOF Tests in Simulations

Table 2.1: Type I error rates and rejection rates for 0.05-level NB2 and NBP GOF tests
based on squared vertical distance (“Sq.Vert.D.”) or Pearson statistics (“Pear.Stat.”), from
1,000 simulated samples from each of several conditions. The standard error of simulation
is approximately 0.007 for the Type I error evaluations, and the maximum standard error
of simulation for the power evaluations is approximately 0.016. The simulation conditions
are detailed in Appendix (II).

Type I Error Rate Evaluations

Sq.Vert.D. Pear.Stat.

GOF Test For Simulated Data n: 5 10 50 100 5 10 50 100

NB2 NB2 0.045 0.055 0.049 0.054 0.041 0.032 0.051 0.052

NBP
NB1 0.031 0.042 0.057 0.041 0.025 0.034 0.049 0.042
NB2 0.040 0.034 0.056 0.060 0.044 0.030 0.047 0.044

Reject Rate (Power) Evaluations

Sq.Vert.D. Pear.Stat.

GOF Test For Simulated Data n: 5 10 50 100 5 10 50 100

NB2
NB1 0.17 0.17 0.37 0.55 0.17 0.19 0.48 0.71

NB2 + Outliers 0.05 0.13 0.45 0.70 0.03 0.15 0.56 0.84
NB2 + Noise 0.06 0.12 0.33 0.54 0.05 0.08 0.13 0.17

NBP
NB2 + Outliers 0.07 0.18 0.74 0.95 0.08 0.15 0.84 0.99

NB2 + Noise 0.05 0.06 0.36 0.61 0.05 0.04 0.16 0.22

The top three rows of Table 2.1 show the Monte Carlo Type I error rates for 0.05-level

tests using the NB2 and NBP Monte Carlo GOF tests on 1,000 simulated samples of NB1

and NB2 response distributions. The parameter specifications are detailed in the Appendix

(II). The standard error of simulation is approximately 0.007. The Type I error rates are

smaller than the nominal values for both tests at the small sample sizes. As the sample size

increases, the Monte Carlo evidence is consistent with actual Type I error rates matching

the nominal values. The severity of the small-sample conservatism is slightly greater for

the Pearson test than for the squared vertical distance test.

The bottom five rows of Table 2.1 show estimated statistical power of the NB2 and NBP
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Monte Carlo GOF tests under several alternative distributions. In the “NB2 plus noise”

alternative, we add random N (0,1) noise to log(φ) as described in Section 2.3.2, which

means the data are a mixture of negative binomials with different dispersion parameters

φ. In the “NB2 plus outliers” alternative, we randomly double 20% of the counts. The

details of the generated distributions are provided in Appendix (II). The results do not

indicate major power differences between the two tests, but the squared vertical distance

test is more powerful in detecting the “NB2 plus noise” alternative.

2.4 Diagnostic Tools for RNA-Seq Modeling

A major step for improving RNA-Seq analysis is the comparative evaluation of the models

and methods for incorporating commonalities of NB dispersion parameters within and

across genes, as described in Section 2.2.2 and displayed in Figure 2.1. For studying these

models on a given RNA-Seq dataset, we propose fitting them, calculating the squared

vertical distance NB GOF p-value from Section 2.3.1 for each of a randomly selected sample

of genes (i.e. testing the univariate NB regression model fit for each gene individually, using

the NB2 dispersion parameter estimated according to the particular dispersion model),

drawing a uniform QQ plot of the p-values, and calculating a single p-value using Fisher’s

method.

Let pi be the GOF p-value for gene i, based on the parameter estimates from the

global model being tested. Fisher’s method produces a single GOF p-value by testing the

conformity of the pi’s from m genes to a standard uniform distribution, i.e. by comparing

the test statistic X2 = −2∑mi=1 log(pi) to the χ2
(2m) distribution. Although it is possible to

base this on all genes, we elect to reduce the computational burden by selecting a random

sample m∗ genes, and use m∗ = 1,000 as a computationally tolerable value. We don’t
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have a direct way to study the suitability of this sample size for testing whether the p-

values follow a uniform(0,1) distribution with Fisher’s method; but we do have an indirect

approach that helps. Let P be the proportion of genes with p-values less than 0.05. A

binomial 95% confidence interval for P from a sample of 1,000 genes has half-width 0.0135,

so we would be likely to detect lack-of-fit to the uniform(0,1) – if it were represented by

a proportion of p-values less than or equal to 0.05 that is different from 0.05 – if the

actual proportion is 0.0635 or greater. Although we use Fisher’s method rather than this

(arbitrary) binomial test, the binomial calculation provides some clarification of the type

of departure from the uniform(0,1) that we are likely to detect with a sample of 1,000

genes. The m p-values are not exactly independent, as required for the theory of Fisher’s

combined test, but are approximately so because the global parameter estimates are based

on such a large number of genes.

As we noted in Section 2.3.2, the Pearson statistic can give misleading results if there

are combinations of under- and over-dispersion relative to the response distributional model

being tested. We have found this problem to be exacerbated in the RNA-Seq setting and

so focus only on the squared vertical distance estimator, which does not suffer from the

same problem.

Along with the Fisher’s combination of p-values, we suggest a uniform QQ plot of

individual p-values to help reveal the nature of any lack-of-fit, indicated by a higher than

expected proportion of small p-values. The proportion of genes with small p-values may

have some effect on the thinking about appropriate models.
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2.5 Application to an Arabidopsis RNA-Seq Study

2.5.1 Introduction to the Arabidopsis Study

Arabidopsis thaliana has been intensively studied as a model organism in plant biology.

The Arabidopsis data discussed in Di et al. [31] contain RNA-Seq reads that aligned to

more than 25,000 genes from two groups of Arabidopsis samples of size three each. The two

groups of size three each were derived from plants inoculated with ∆hrcC of Pseudomonas

syringae pv tomato DC3000 or 10 mM MgCl2 (mock). The dataset used in this article

comes from Di et al. [31], which is a subset of the data described in Cumbie et al. [26].

2.5.2 Goodness-of-Fit Analysis

The following are the GOF p-values (in parentheses) from fitting the seven dispersion

models (described in Section 2.2.2) to a random sample of 1,000 genes: common (< 0.0001);

NBP (0.04); NBQ (0.94); trended (0.21); genewise (> 0.9999); tagwise-common (> 0.9999)

and tagwise-trend (> 0.9999). The corresponding uniform QQ plots of p-values are shown

in Figure 2.4.

The p-values greater than 0.9999 for the genewise and tagwise methods, as can be seen

in the uniform QQ plots, are due to fewer small p-values than expected from a uniform(0,1)

distribution. The extra large p-value, therefore, cannot be taken as evidence of lack-of-fit

and is most likely due to conservatism in the tests from small sample sizes, as evident

in Table 2.1, when individual (genewise and tagwise) dispersion parameters are estimated

from the small sample. Even a slight degree of conservatism in the individual NB GOF

tests can produce a very small Fisher combination statistic when there are so many p-values

being combined. The evidence from Table 2.1, and our experience with simulations and
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Figure 2.4: Uniform QQ plots of individual GOF p-values for the Arabidopsis dataset
(based on a random sample of 1,000 genes from six experimental units in two experimental
groups). The tagwise-common model (not shown) has a very similar pattern to the tagwise-
trend model.



45

other RNA-Seq datasets suggests that this conservatism diminishes with increasing sample

size.

The consistency of the data with the NBQ trend model and the non-parametric “trended”

approach, suggest that models without noise about the the trend may be adequate. We

need to exercise caution with this conclusion, though – since the lack of evidence for

lack-of-fit does not prove “fit” and that the test may be conservative at this sample size.

Nevertheless, the apparent fit of NBQ in conjunction with the evidence of lack-of-fit for

NBP is intriguing.

Figure 2.1 shows the mean-dispersion plot (log-log scale) with six fitted dispersion

models (common, NBP, NBQ, trended, tagwise-common and tagwise-trend) based on the

mock treatment group alone. The genewise estimates are not included since there is no

implied trend associated with that model.

2.5.3 Estimating Variability of NB Dispersion

The tagwise approaches allow for individual gene-wise variations of the NB2 dispersion

parameter, φ, about a specified trend as a function of relative frequency, π (as indicated

by the light blue and magenta jagged lines in Figure 2.1) via approximate empirical Bayes

shrinkage of individual estimates towards the trend. In preparation for studying robustness

of the methods that assume an exact NB dispersion parameter trend, we wish to quantify

this degree of individual variability from real RNA-Seq datasets. For this purpose, we

consider a simple model for noise about the trend in which log(φ) is the sum of a trend

and a N (0, σ2) random variable. As a diagnostic measure to accompany the GOF p-value

and uniform QQ plot, we propose an estimate of σ derived from a calculated quantity,

“evar”, in the limma package (Smyth [109]).
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The variable evar is a sum of squares of a certain kind of residual associated with the

empirical Bayes estimation in the tagwise approaches, and is associated with the variability

of the gene-wise NB2 dispersion parameter about the trend. To use this to estimate σ in

the model that is more convenient for our purposes, we use a calibration approach as

follows. For each of several values of σ, we simulate RNA-Seq datasets from the “NB plus

noise” model, with parameters taken to be the estimates from the given dataset, but with

noise variance σ2; we obtain the value of evar from a tagwise fit to each simulated dataset,

fit the regression of evar on σ, and use calibration (inverse prediction, see Chapter 7 in

Ramsey and Schafer [95]) to obtain an inverse prediction of σ corresponding to the actually

observed value of evar. The resulting estimate of σ for the Arabidopsis data is 0.82, with

95% inverse prediction interval 0.75 to 0.88. (The calibration graph is available in the Web

Supplementary Materials.)

2.6 Power and Robustness Evaluations

2.6.1 Overview

We intend to obtain the following set of diagnostic tools for many RNA-Seq datasets: the

uniform QQ plot of individual GOF p-values, the single Fisher-combined GOF p-value, and

the estimate of “NB2 dispersion noise”, σ, for each of the seven NB dispersion models. That

information will provide the basis for a more thorough investigation into robustness and

power. As a start to this larger enterprise, we present simulations based on the Arabidopsis

example conditions.
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2.6.2 Simulation Specifications

For each of 96 sets of conditions, we simulated RNA-Seq read counts for 5,000 genes with

total library size of read counts constant at two million, for each of six sampling units

belonging to one of two treatment groups of size three. Four variable factors were the

percentage of DE genes (at 5% or 20% with equal numbers up- and down-regulated), the

fold change (1.2, 1.5, 2.0, or 3.0), the variance of the randomN (0, σ2) noise added to log(φ)

(with σ = 0,0.5,1.0, or 1.5), and the trend of NB2 dispersion as a function of mean relative

frequency, π (with three trends on the log-log scale: linear [NBP] with parameters chosen

to match those estimated from the Arabidopsis data, i.e. the dashed dark golden line in

Figure 2.1; quadratic [NBQ], with parameters chosen to match those estimated from the

Arabidopsis data, i.e. the dotted green curve in Figure 2.1; and “non-parametric” using

the estimated “trended” φ’s from the Arabidopsis data analysis, i.e. the dash-dotted dark

cyan curve in Figure 2.1).

We illustrate the three dispersion trends in the Web Supplementary Materials and

will just highlight the main findings in the next two sections. A primary emphasis is on

characterizing the power advantages of the NBQ parametric approach if its model is in fact

correct and the drop off in its power benefit when the quadratic trend isn’t quite right or

when there is extra variability in NB dispersion parameters about the trend.

2.6.3 Exact Quadratic Trend of log(φ) on log(π)

We focus on the exploration of the quadratic trend model, in which the NB response vari-

ance function is µ+exp[α0+α1 log(π)+α2 log(π)2]µ2, as suggested by the informal gamma

log-linear analysis of the Arabidopsis data reported in Section 2.2.2 and the conformity

of this model to the data based on the diagnostic analysis in Section 2.5.2. The gamma
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analysis indicates the trend is quadratic; the diagnostic analysis indicates, additionally,

that the data are consistent with this trend without any additional variability about the

trend. The estimate of σ, however, is 0.82.

We consider the performance of the tests of differential gene expression based on the

seven inferential methods. These simulation conditions match the model upon which the

NBQ method is based, so this setting provides an opportunity to examine the power benefit

from NBQ when its model is exactly right. We will highlight the particular conditions in

which 20% of the genes are truly differentially expressed (half upward and half downward)

and with all the fold changes fixed at 3.0 or 1/3.

In this two-sample setting, test performances may be assessed via the false and true

positive identification rates for differential expression. Figure 2.5 shows the true positive

rate (TPR, which is the same as recall and sensitivity) for all possible values of FDR for

the seven methods in this setting. Note that the y-axis values are the actual – not nominal

– FDRs, so that the x-axis indicates the power to correctly identify differentially expressed

genes if the test is properly calibrated.

For the conditions shown in panel A, the actual FDR corresponding to a nominal FDR

of 10% are as follows: genewise: 34.2%, common: 11.2%, NBP: 11.5%, NBQ: 7.3%, trended:

9.0%, tagwise-common: 12.0%, and tagwise-trend: 9.6%, with approximate standard errors

of 1.8%. We use the p-value adjustment method discussed in Benjamini and Hochberg

[11] to determine the nominal FDR. The plot shows the true detection probability for

all possible choices of FDR. For example, in order to achieve a true positive rate (a hit

rate) of 50% in this setting, a biologist must be willing to tolerate the following false

discovery rates: genewise: 34%, common: 20%, NBP: 20%, tagwise-common: 17%, NBQ:

16%, tagwise-trend: 14%, and trended: 14%. The approximate standard errors of these

estimates (corresponding to a true FDR of 0.2) are 1.6%. These simulations do not reveal
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Figure 2.5: Evaluations of power and robustness of seven NB dispersion models. Among
the 5,000 genes, we set 10% of DE genes with a fold change of 3.0 and 10% with a fold
change of 1/3. The simulated dispersions follow either a quadratic trend (panels A, C and
D) or a non-parametric trend (panel B). No noise was added to the simulated dispersions
in panels A and B, and N (0, σ2) noise was added in panel C (σ = 0.5) and in panel D
(σ = 1.0).
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power differences between NBQ and the two methods that use non-parametric regression

to estimate trend, but the estimation of the trend reduces the necessary FDR (to achieve

a true discovery rate of 50%) by about half over the genewise approach. The results based

on smaller fold-changes and a smaller percentage of differentially expressed genes are less

conclusive but show essentially the same patterns.

2.6.4 Robustness of NBQ Parametric Approach

We examine separately the robustness with respect to the form of the trend and the degree

of variability of gene-wise φ’s about the trend. The results for the simulation conditions in

which the trend is taken to be the one estimated non-parametrically from the Arabidopsis

data (the dash-dotted dark cyan curve in Figure 2.1) and with 20% of genes differentially

expressed with fold change of 3.0 or 1/3, is shown in panel B. As in panel A, there is a clear

improvement in power due to incorporating the trend, but a less clear distinction among

the methods that incorporate the trend.

Panels C and D exhibit the results for the simulation conditions in which the trend

is quadratic but normal noise is added to log(φ) with standard deviations 0.5 and 1.0.

For the smaller value, the trend methods still provide power benefits over the genewise

approach. For the larger value, the results are more ambiguous.

2.7 Discussion

In this article, we proposed a simulation-based GOF test and associated graphical displays

for assessing NB model adequacy for NB regression, and we showed a way to combine those

tests from multiple genes or gene isoforms in RNA-Seq datasets. We believe the results

may be useful for ordinary regression with count responses, but our concentration is on the
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RNA-Seq setting.

We are interested in the potential power and efficiency gains in inferences from NB

regression fits of individual genes when we adopt a global model that reduces the number

of NB nuisance parameters. In this article we proposed methodology for judging such

models. It is important to understand that there are two kinds of trend models relating

the NB2 dispersion parameter to the mean. In one, represented by the NBP approach, the

NB2 dispersion parameter is taken to be a simple function of the mean, so that the NB2

dispersion parameter will differ on the same gene for observations in different treatment

groups if there are different expression levels in the different groups. For the trended

approach and the related non-parametric approach in the DESeq package (Anders and

Huber [3]), the NB2 dispersion parameter is taken to be constant for all observations on

a single gene and that constant dispersion parameter is thought to be a smooth function

of the average of means for that gene. It is not theoretically obvious whether the NB2

dispersion parameter should or should not be constant for a gene or, for that matter,

whether the observed trend in dispersion parameter as a function of the mean is exact. We

intend that the diagnostic analysis, performed on a variety of RNA-Seq datasets, will help

provide an empirical clarification. The resolution of model adequacy is not, of course, the

final piece of the puzzle. As in data analysis more generally, we do not expect models to

fit exactly; we just need them to fit well enough for accurate and efficient inference. The

diagnostic tools should help clarify models so that more comprehensive robustness and

power studies can be used to compare the usefulness of the various inferential procedures

upon which they are based.

The NBP model – in which the log of the NB2 dispersion parameter is a straight

line function of the log of the mean – does not fully capture the trend in the RNA-Seq

data we have examined. For that reason, we introduced the NBQ to allow for the next
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simplest model. We see evident improvement in model fit to the Arabidopsis data when

the quadratic term is included. Note that the NBQ model also avoids the need for user-

specified tuning parameters (both for nonparametric regression and for empirical Bayes

weighting of trend and individual components of dispersion).

Although the results for NBQ on the Arabidopsis data are intriguing, no strong gen-

eralizations about model adequacy emerge from the analysis of this single dataset or from

the simulations based on the conditions of the dataset, which includes a very small sample

size. We are currently applying the diagnostic tools to a variety of RNA-Seq studies on

different organisms. In that regard, we believe a useful picture emerges from the following

set of diagnostic tools: (a) A plot of estimated NB2 dispersion parameter estimates with

various model fits (as in Figure 2.1). (b) The informal gamma log-linear regression analysis

associated with that plot, including successive testing of polynomial terms and estimates

of the proportion of variation in dispersion parameter estimates explained by polynomial

models (as discussed in Section 2.2.2). (c) The NB GOF p-value from the fits to various

models, such as the seven models reported in Section 2.5.2. (d) The estimate of σ in the

noise model, in which the log of the NB2 dispersion parameter is the sum of a trend com-

ponent (from NBQ trend or from trend estimated non-parametrically) and an individual

component from a N (0, σ2) distribution (as a measure of “noise” about the trend).

2.8 Supplementary Materials

The earthquake event dataset referenced in Section 2.3.1 and R codes for performing all

simulations and real data analyses are available with this article at the Biometrics website

on Wiley Online Library. The R package NBGOF (version 0.1.4) is available for download at

github.com/gu-mi/NBGOF.
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3.1 Abstract

RNA-Sequencing (RNA-Seq) has been widely adopted for quantifying gene expression

changes in comparative transcriptome analysis. For detecting differentially expressed genes,

a variety of statistical methods based on the negative binomial (NB) distribution have been

proposed. These methods differ in the ways they handle the NB nuisance parameters (i.e.,

the dispersion parameters associated with each gene) to save power, such as by using a

dispersion model to exploit an apparent relationship between the dispersion parameter and

the NB mean. Presumably, dispersion models with fewer parameters will result in greater

power if the models are correct, but will produce misleading conclusions if not. This pa-

per investigates this power and robustness trade-off by assessing rates of identifying true

differential expression using the various methods under realistic assumptions about NB

dispersion parameters. Our results indicate that the relative performances of the different

methods are closely related to the level of dispersion variation unexplained by the dis-

persion model. We propose a simple statistic to quantify the level of residual dispersion

variation from a fitted dispersion model and show that the magnitude of this statistic gives

hints about whether and how much we can gain statistical power by a dispersion-modeling

approach.

3.2 Introduction

Over the last ten years, RNA-Sequencing (RNA-Seq) has become the technology of choice

for quantifying gene expression changes in comparative transcriptome analysis [121]. The

negative binomial (NB) distribution has been widely used for modeling RNA-Seq read

counts [102, 3, 31]. Although early studies have shown that the Poisson model was adequate

for modeling RNA-Seq count variation from technical replicates [77], many recent RNA-Seq
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analyses revealed that RNA-Seq counts from biological replicates show significant extra-

Poisson variation. The NB distribution can be derived as a mixture of Poisson distributions

in the so-called Gamma-Poisson model. For a random variable Y having an NB distribution

with mean µ and dispersion φ, the variance is given by Var(Y ) = µ+φµ2, and the dispersion

parameter φ determines the extent to which the variance exceeds the mean. The square

root of φ is also termed “biological coefficient of variation” (BCV) in [78].

The dispersion φ is a nuisance parameter in tests for differential expression (DE), but

correct estimation of φ is essential for valid statistical inference. In a typical RNA-Seq

experiment, our ability to detect truly DE genes is hampered by the large number of

genes, the small sample size, and the need to estimate the dispersion parameters. To

ameliorate this difficulty, many different NB dispersion models have been proposed (see

the Background section for more details) with a common theme of “pooling information

across genes”. An NB dispersion model relates the dispersion to some measure of read

abundance, a, through a simple parametric or smooth function f with a small number of

parameters α (estimated from data):

log(φij) = f(aij ;α), (3.1)

where i indexes genes and j indexes biological samples. For example, in [31] we let a

be preliminarily estimated mean relative frequencies and let f be a linear or quadratic

function of log(a). This and other dispersion models are motivated by empirical evidence

of a trend over all genes—of decreasing size of dispersion parameter with increasing relative

frequency of RNA-Seq reads for the genes. By introducing a dispersion model f , one

hopes to summarize the dispersion parameters for all genes by a small number of model

parameters α and thus drastically reduce the number of nuisance parameters to estimate.

A dispersion-modeling approach as described above can lead to power saving, if a
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correct or “close enough” model is used. It will be convenient for us to consider a general

trend in dispersion parameter, but also allow for variation about the trend, as follows:

log(φij) = f(aij ;α) + εij , (3.2)

where ε represents an individual component in φ that is not explained by the trend. In-

tuitively, the strategy of “pooling information across genes” through a dispersion model f

will be most effective if the overall level of residual variation in ε is low. In this paper, as

an approximation, we model ε using a normal distribution εi ∼ N (0, σ2) and quantify the

level of variation in ε by σ2. We estimate σ for five real RNA-Seq datasets (from human,

mouse, zebrafish, arabidopsis and fruit fly) and then investigate the power and robustness

of DE tests when the amount of residual variation in dispersion matches that from the

real data. We also explore how the relative performances of different DE test methods will

change as the magnitude of σ changes.

3.3 Background

3.3.1 RNA-Seq

In brief, a typical RNA-Seq pipeline can be summarized as follows: purified RNA samples

are converted to a library of cDNA with attached adaptors, and then sequenced on an

HTS platform to produce millions of short sequences from one or both ends of the cDNA

fragments. These reads are aligned to either a reference genome or transcriptome (called

sequence mapping), or assembled de novo without the genomic sequence. The aligned reads

are then summarized by counting the number of reads mapped to the genomic feature

of interests (e.g., exons or genes), and the expression profile is eventually represented
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by a matrix of read counts (non-negative integers) where rows are genes (or some other

genomic features like exons) and columns are samples. Subsequent steps that rely heavily

on statistical analyses include normalization of reads and testing DE genes between samples

under different environmental or experimental conditions.

3.3.2 NB Regression Models

An NB regression model for describing the mean expression as a function of explanatory

variables include the following two components:

1. An NB distribution for the individual RNA-Seq read counts Yij :

Yij ∼ NB(µij , φij),

where i = 1, . . . ,m indexes genes, j = 1, . . . , n indexes samples, µij is the mean, and

φij is the dispersion parameter such that Var(Yij) = µij + φijµ2
ij .

2. A log-linear regression model for the mean µij as a function of p explanatory variables

Xjk (k = 1, . . . , p):

log(µij) = log(Nj) + log(Rj) +
p

∑
k=1

βikXjk. (3.3)

These two components resemble a generalized linear model (GLM) [85], but note that

the dispersion φij is unknown (see the next subsection for different dispersion models).

The two additive constants, log(Nj) and log(Rj), have to do with count normalization:

accounting for different observed library sizes (Nj) and the apparent reduction/increase in

the expression levels of non-DE genes resulting from the increased/decreased expression of

a few truly DE genes [3, 99]. The normalization constants, Nj and Rj , are pre-estimated
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and treated as known during GLM fitting. In many applications, the same constant (NjRj)

is assumed for all genes in a sample, but it may be advantageous to introduce between-gene

normalization factors to account for some gene-specific sources of technical biases such as

GC-content and gene length [75]. Between-gene normalization can be incorporated into

the GLM framework as well. See [51, 97, 98] for relevant discussions.

3.3.3 DE Tests

Testing differential expression can often be reduced to testing that one or more of the

regression coefficients equals zero. For example, for comparing gene expression levels be-

tween two groups, we can let p = 2, Xj1 = 1 for all j; Xj2 = 1 if sample j is from group 2

and Xj2 = 0 if sample j is from group 1. Under this parameterization, β1 corresponds to

group 1’s relative mean expression level and β2 corresponds to the log fold change between

group 2 and group 1. The null hypothesis is H0 ∶ β2 = 0.

In general NB regression settings, exact tests are not available, but asymptotic tests,

such as likelihood ratio test, can be used. Di et al. [33, 30] showed that the performance of

likelihood ratio test in small sample settings can be improved with higher-order asymptotics

(HOA) adjustment. Lund et al. [76] discussed quasi-likelihood (QL) methods by replacing

likelihood ratio test with QL ratio F -test for better FDR control, where the test statistic

is based on quasi-dispersion parameter estimates or two variants called QLShrink and

QLSpline for pooling information across genes.

3.3.4 NB Dispersion Models

As mentioned in the Introduction section, many current DE analysis methods use an NB

dispersion model to capture the general trend between dispersion and read abundance. The
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different DE analysis methods can be put into the following general categories according

to the functional form f of the dispersion model and the treatment of individual variation

(see Equation (3.2)):

1. Common: Earlier works of Robinson and Smyth [100, 101] assumed a common dis-

persion model where f is a constant. In other words, φij = c for all i, j.

2. Parametric function: Recognizing an evident trend between the dispersion and rel-

ative gene expression, Di et al. [31] adopted a parametric NBP model where the

log dispersions are modeled as a linear function of the log relative mean frequen-

cies. Referring to Equation (3.1), in an NBP model, aij = πij = µij
NjRj

and f(aij ;α) =

α0 + α1 log(πij). A natural extension to NBP is the NBQ model which incorporates

an extra quadratic term:

f(aij ;α) = α0 + α1 log(πij) + α2 [log(πij)]2 . (3.4)

3. Smooth function: Anders and Huber [3] suggested fitting a non-parametric curve to

capture the dispersion-mean dependence. McCarthy et al. [78] introduced a similar

“trended” (non-parametric) model. NBPSeq added an NBS model for non-parametric

smooth dispersion model.

The methods above ignore possible individual dispersion variation (i.e., εij in Equation (3.2))

in subsequent DE tests.

4. Shrinkage methods: McCarthy et al. [78] discussed options to use weighted average

between genewise dispersion estimates and trended estimates in an empirical Bayes

framework (we will call this method “tagwise-trend”). The genewise estimates can

also be shrunk towards a common value [100, 101]. Love et al. [75] added a shrinkage

option in DESeq2 similar to that implemented in edgeR.
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5. Quasi-likelihood methods: Lund et al. [76] suggested fitting a quasi-likelihood (QL)

model by specifying (for gene i and sample j):

Var(Yij) = ΦiVi(µij), (3.5)

with the (negative binomial) variance function Vi(µij) = µij + ωiµ2
ij . Both the NB

dispersion parameter (ωi) and the quasi-likelihood dispersion parameter (Φi) are es-

timated from the data and used to model the variance of the read count Yij . The

advantage of accounting for uncertainty in the modeled variance is brought by the

QL-dispersion Φi, which is absent in existing NB-based methods. Due to the small

number of replicates in RNA-Seq data, the QL approach can be improved by pooling

information across genes. This result in two variants of the QL dispersion, “QL-

Shrink” and “QLSpline”, that differ in the formulation of a scaling factor (either

estimated from the distribution of Φ̂i or a scale-adjusted spline-based estimate of

Φi), to which the QL dispersion is shrunken. These QL-based approaches are imple-

mented in the QuasiSeq package.

6. Genewise: NBPSeq allows for fitting NB regression model and performing DE test to

each gene separately without assuming any dispersion model.

In the above, we mainly summarized methods implemented in the R/Bioconductor pack-

ages DESeq, DESeq2, edgeR, NBPSeq and QuasiSeq [94, 40]. They represent the wide range

of currently available options. These packages use slightly different predictors (aij in Equa-

tion (3.1)) in their dispersion models, and also use different methods to estimate dispersion

models, but these differences are of no primary interest in our power-robustness analysis.

As we will see later, the main factor that influences the DE test performance is how the

individual dispersion variation is handled.
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3.3.5 Other Related Work

Our approach for estimating σ2 is related to the empirical Bayes approach for estimating ε

under a normal prior distribution, but our focus here is in estimating σ2, not the individual

εi’s. The issue of dispersion model adequacy has been raised before: the program edgeR

[102] used an empirical Bayes approach to combine the dispersion estimates from a fitted

model with genewise estimates. Lund et al. [76] proposed to incorporate the residual

dispersion variation using a quasi-likelihood method. Wu et al. [124] proposed another

empirical Bayes shrinkage estimator for the dispersion parameter which aims to adequately

capture the heterogeneity in dispersion among genes. Mi et al. [82] proposed goodness-of-

fit tests for dispersion models. There are also recent works on comparing the performances

of DE tests: Soneson and Delorenzi [110] evaluated 11 tools for their ability to rank truly

DE genes ahead of non-DE genes, the Type I error rate and false discovery rate (FDR)

controls, and computational times. Landau and Liu [59] discussed dispersion estimation

and its impact on DE test performance, mainly focusing on different shrinkage strategies

(none, common, tagwise or maximum). Our new contribution in this paper is to explicitly

quantify the level of inadequacy of a fitted dispersion model using a simple statistic, and

link the magnitude of this statistic directly to the performance of the associated DE test.

3.4 Results

We investigate the power and robustness of DE tests under realistic assumptions about the

NB dispersion parameters. We fit the NBQ dispersion model (see Equation (3.4)) to real

datasets to capture the general trend in the dispersion-mean dependence. We model the

residual variation in dispersion using a normal distribution (see Equation (3.2)) and the

level of residual variation is then summarized by a simple quantity, the normal variance
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σ2. Because biological variations are likely to differ across species, and experiments involve

varied sources of uncertainty, we choose to analyze five datasets from different species that

represent a broad range of characteristics and diversity for typical RNA-Seq experiments.

The species include human (Homo sapiens), mouse (Mus musculus), zebrafish (Danio

rerio), arabidopsis (Arabidopsis thaliana) and fruit fly (Drosophila melanogaster). The

Methods section includes descriptions of the datasets. For each experiment/dataset, unless

otherwise specified we will provide the following results:

1. Mean-dispersion plot with trends estimated from NB dispersion models;

2. Gamma log-linear regression as informal model checking;

3. Estimation of the variance σ2 of dispersion residuals from a fitted dispersion model;

4. Power-robustness evaluations of DE tests using datasets simulated to mimic real

datasets.

The main focus of this paper is on the quantification of the level of residual dispersion

variation and power-robustness investigation under realistic settings (3 and 4 above). The

diagnostic plots and statistics (1 and 2 above) are useful in routine analysis of RNA-Seq

data, and they also help us verify that the NBQ dispersion model largely captures the

general trend in the dispersion-mean dependence.

Anders et al. [5] suggested removing genes without one read per million (rpm) in at

least n of the samples, where n is the size of the smallest group of replicates. We follow a

similar criterion but set n = 1 in order to keep more (lowly-expressed) genes in study. In R,

this is achieved by subsetting the row indices by rowSums(cpm(data)>1)>=1. The library

size adjustments are computed for genes passing this criterion.
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3.4.1 Mean-Dispersion Plots with Estimated Trends from Dispersion

Models

Figure 3.1 shows the mean-dispersion plots for the two treatment groups in the human

dataset (with sequencing depth of 30 million). In each plot, method-of-moment (MOM)

estimates (φ̂MOM) of the dispersion φ for each gene are plotted against estimated relative

mean frequencies (on the log-log scales). We also overlaid the trends from five fitted

dispersion models representing the wide range of currently available options: common,

NBP, NBQ, NBS and trended. We make the following remarks:

#1 The fitted NBP, NBQ, NBS and trended dispersion models all capture the overall

decreasing trend in the MOM genewise estimates.

#2 The fitted models agree more in the mid-section of the expression distribution and

less in the tails where genes have extremely low or high expression levels. This kind

of behavior is common in non-parametric smooth estimates and regression models,

and it has some implications on how we design the power simulations later.

#3 Such mean-dispersion plots are informative in checking how different dispersion mod-

els may potentially over-/under-estimate the dispersion parameters, which in turn will

influence DE test results.

#4 Note that the deviation of the genewise MOM estimates from the fitted dispersion

models is not the same as the ε in Equation (3.2), since this deviation also reflects

the additional estimation error due to small sample size.

Mean-dispersion plots for the other four datasets show similar features and are included in

Supporting Information S1.
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Figure 3.1: Mean-Dispersion Plot of the Human30 RNA-Seq Dataset. The sequencing
depth for this dataset is 30 million. The control (E2-treated) group with seven biological
replicates is shown on the left (right) panel. Each point on the plots represents one gene
with its method-of-moment (MOM) dispersion estimate (φ̂MOM) on the y-axis and estimated
relative mean frequency on the x-axis. The fitted curves for five dispersion models are
superimposed on the scatter plot.

3.4.2 Gamma Log-Linear Regression Analysis

As informal model checking, we fit polynomial gamma log-linear regression models of φ̂MOM

on log(π̂). Table 3.1 summarizes the variability in the logged genewise dispersion esti-

mates log(φ̂MOM) explained by the linear, quadratic and cubic models (results shown for

the control group only and without pre-filtering lowly-expressed genes). The proportion

of variation in log(π̂) explained by the fitted models varies across species (e.g., for the

quadratic fit, it ranges from 31% to 75%) and also depends on sequencing depths. The

quadratic regression model improves over the simple linear regression model by explaining

an additional 2% to 11% of variation, while adding a cubic term has almost negligible

effects.
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Table 3.1: Polynomial gamma log-linear regression models of φ̂ on log(π̂) (results shown
for the control group only).

Dataset

Model Human5 Human30 Mouse Zebrafish Arabidopsis Fruit Fly

Linear 73.09% 72.29% 49.20% 32.08% 36.30% 23.79%
Quadratic 75.15% 74.38% 54.85% 43.02% 41.02% 31.20%
Cubic 75.46% 74.45% 54.55% 43.77% 41.01% 32.74%

3.4.3 Quantification of the Level of Residual Dispersion Variation

As discussed in the Introduction section, we model the dispersion residuals using a normal

distribution, ε = log(φ)− log(φ̂) ∼ N (0, σ2), and thus quantify the level of residual variation

using σ2 or equivalently σ. Using the approach described in the Methods section, we

estimated σ from each of the real datasets analyzed after fitting an NBQ dispersion model

(see Equation (3.4)). Table 3.2 summarizes the estimates and the corresponding standard

errors. The magnitudes of σ̂ indicate that the fitted dispersion models did not fully explain

the total variation in the dispersion. The NBQ dispersion model uses estimated mean

relative frequencies (π̂ij) as predictors, and the results here suggest that there is still

substantial individual variation among genes with the same values of π̂ij .

It is possible to turn the estimate σ̂ into a goodness-of-fit test for the fitted dispersion

model. However, we want to ask whether a dispersion model is useful even when the fitted

model shows lack-of-fit. For this purpose, the quantitative measure σ̂ is more intuitive than

a test p-value, since it directly reflects the degree of deviation from the fitted dispersion

model. In the next section, we will explore the connection between the magnitude of σ̂ and

the performance of DE tests in terms of power and FDR.
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Table 3.2: Level of residual dispersion variation in five real RNA-Seq datasets. The columns
are the name of the dataset, the number of samples (control, treatment), the maximum
likelihood estimate (MLE) σ̂, and the standard error (SE) of σ̂.

Dataset #samples MLE σ̂ SE(σ̂)
Human30 (7, 7) 1.021 0.028
Mouse (3, 3) 1.228 0.055
Zebrafish (4, 4) 1.105 0.043
Arabidopsis (3, 3) 0.956 0.040
Fruit fly (4, 3) 1.015 0.032

3.4.4 Power-Robustness Evaluations

We compare the power and FDR control of a range of DE test methods on datasets simu-

lated to mimic the five real datasets.

3.4.4.1 Simulation Setup

In our power-robustness analysis, we will choose one representative method from each of

the categories summarized in the “Background/NB Dispersion Models” subsection (with

R/Bioconductor package names in parentheses): genewise-HOA (NBPSeq), common (edgeR),

NBQ (NBPSeq), trended (edgeR), tagwise-trend (edgeR) and QLSpline (QuasiSeq). The

common dispersion model is included solely for benchmark purpose as it is over-simplified

and not recommended for practical use. The NBQ method represents parametric dispersion

models and it generally provides better model fit than the simpler NBP model [82]. The

tagwise-trend method represents the empirical Bayes shrinkage methods. The QLSpline

method represents quasi-likelihood methods [76]. For testing DE, methods from edgeR use

likelihood ratio test, methods from NBPSeq use likelihood ratio test with HOA adjustment,
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and the QLSpline method uses QL ratio F -test.

We simulate two-group comparison datasets that mimic the five real RNA-Seq datasets.

From each real dataset, we randomly select 5,000 genes and fit NB regression models to

them (see Equation (3.3) and the “Background/DE Tests” subsection). We generate a new

dataset of 5,000 genes based on fitted models. We specify the mean expression levels based

on estimated β̂ik, with Rj = 1 and Nj reflecting the sequencing depth (e.g., Nj = 2.5 × 107

for the human dataset and 1.5 × 107 for the mouse dataset). For all genes, we set βi1 as

the estimated value from the real data. If gene i is designated as DE, we use β̂i2 estimated

from the real data as its log fold change (i.e., we set βi2 = β̂i2). For any non-DE gene

i′, we set βi′2 = 0. In real data analysis, it is unknown which genes are DE. For each

dataset, we randomly designate m1 genes as DE. We consider two levels, 0.1 and 0.2, for

the percentage of DE genes (π1 = m1/m). Approximately half of the simulated DE genes

are over-expressed and half are under-expressed. Early microarray studies had shown that

a smaller proportion of DE genes tend to make it more difficult to control FDR at the

nominal level [72].

We specify the dispersion parameters according to Equation (3.2) with the trend part,

f(aij ;α), being the fitted NBQ model (fitting Equation (3.4) to real data). The deviation

from the trend is controlled by εi and will be simulated according to aN (0, σ2) distribution.

We want to choose σ2 to match the real data, but there is some subtlety in how to achieve

this: in practice, when fitting the NBQ model, we use the fitted values π̂ij as the predictors

since true πij values are not available, but when we simulate counts, the π̂ij values are not

available. Our solution is to use πij as predictor in the NBQ model when simulating ε, but

choose σ = σ̃ through a calibration approach such that if we were to fit the NBQ model

to the simulated data later—using the estimated π̂ij as predictor, the estimated σ̂ would

match the one estimated from the real data (also using the estimated π̂ij as predictor). The
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estimated values of σ̂ from real datasets are summarize in Table 3.2. The calibrated values

σ̃ and the details about the calibration approach are presented in the Methods section. In

our simulations, we will consider different levels of residual dispersion variation and set σ

to σ̃, 0.5σ̃ or 0.

There are other factors that may potentially contribute to the difference in DE test per-

formance, such as the presence of outliers, the proportion of up and down-regulated genes,

potential correlation between gene expression levels, to just name a few. In this paper, we

will focus on the impact of umodeled dispersion variation on DE test performance.

3.4.4.2 Power Evaluation

For power evaluation, we plot true positive rates (TPR) versus false discovery rates (FDR).

For a DE test, a true positive (TP) indicates the test correctly identifies a DE gene; a false

positive (FP) indicates the test incorrectly identifies a non-DE gene as DE; and a false

negative (FN) indicates the test incorrectly declares a DE gene as non-DE. The TPR and

FDR are defined as: TPR = TP/(TP+FN) and FDR = FP/(TP+FP). A TPR-FDR curve

contains equivalent information as a precision-recall curve, but focuses on the relationship

between TPR (power) and FDR. The power of a DE test depends on alternative hypothesis

and will likely vary between genes. TPR reflects the average power of a test to detect truly

DE genes in the simulated dataset. If we compare the TPR of the tests at the same FDR

level, we are essentially comparing the size-corrected power.

The left column of Figure 3.2 shows the TPR-FDR plots for the six tests performed

on each of the five datasets simulated to mimic the five real datasets. In particular, the

simulated datasets have the same level of residual dispersion variation σ2 as estimated from

the five real datasets. A better method will have its TPR-FDR curve closer to the lower-
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right corner, indicating a lower FDR for achieving a fixed power, or a higher power for a

fixed tolerable FDR. For four of the datasets, the QLSpline, tagwise-trend and genewise

methods outperform the NBQ, trended and common dispersion models, with the common

model being the worst. For the simulation dataset based on the Arabidopsis real dataset,

no test is dominate at all FDR levels.

It is somewhat surprising that the performance of the simple genewise method is compa-

rable to the best methods in all cases. This indicates that if the level of residual dispersion

variation is as high as the estimated (see Table 3.2), the potential power saving through

dispersion modeling is quite limited.

The relative performance of the tests will change if the level of residual dispersion

variation (σ2) changes. The right column of Figure 3.2 shows the TPR-FDR plots when

σ is simulated to be half the estimated values (σ = 0.5σ̃). The performance of the NBQ

and trended methods has much improved and is better than the genewise method in three

of the datasets (the ones based on mouse, zebrafish and arabidopsis). When we further

reduced σ to 0 in our simulations, all methods outperformed the genewise approach. The

QLSpline and tagwise-trend methods managed to perform consistently well as we vary the

magnitude of σ.

3.4.4.3 FDR and Type-I Error

In practice, the Benjemini-Hochberg method [11] is commonly used to control the FDR of

DE tests. In Table 3.3, we compare the actual FDR of the different DE tests based on

the simulation results when the nominal FDR is set to 10% using the Benjemini-Hochberg

method. The results were based on the datasets simulated to mimic the human dataset,

where we varied the percentage of DE genes (10% and 20%) and we varied σ from estimated
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value (σ = σ̃), to half the estimated value (σ = 0.5σ̃), and then to 0. The QLSpline and

genewise methods have good controls on FDR in all cases, and are conservative in some

cases. The FDRs from the tagwise-trend method are below the nominal level when the

percentage of DE is 20%, but are above the nominal levels when the percentage of DE

is 10%. For the NBQ and trended methods, the FDR control improves as the residual

dispersion variation decreases and as the percentage of truly DE genes increases. The

common method does not have good control of FDR in all scenarios.

Table 3.3: Actual FDR for a nominal FDR of 0.1. The best results are highlighted in bold,
and the second best results are highlighted with underlines. We consider three levels of
σ: at the estimated value (σ = σ̃), half the estimated value (σ = 0.5σ̃), and no variation
(σ = 0).

Actual FDR for 10% Nominal FDR

Variation %DE Genewise QLSpline Tagwise-Trend NBQ Trended Common

σ̃
10% 9.72% 7.84% 12.5% 28.3% 29.3% 39.6%
20% 7.90% 6.57% 6.76% 17.3% 18.2% 25.3%

0.5σ̃
10% 11.8% 10.5% 14.2% 13.3% 14.4% 38.3%
20% 10.7% 8.03% 11.5% 13.4% 14.1% 23.9%

0
10% 11.2% 10.2% 16.2% 10.6% 11.9% 26.6%
20% 7.19% 5.61% 9.88% 6.86% 7.46% 17.4%

The FDR control is closely related to the test p-values. Figure 3.3 shows the histograms

of p-values computed for the non-DE genes in one of the datasets used for the FDR compar-

ison above (20% DE and σ = σ̃). The histograms from the genewise and QLSpline methods

are more close to uniform. For the common, NBQ and trended methods, the histograms

are asymmetric v-shaped: there is an overabundance of small p-values as compared to a

uniform distribution, but the histograms also indicate that these tests are conservative for

many genes. Similar patterns have been observed for other dispersion-modeling methods
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by Lund et al. in [76]. The tagwise-trend method produces conservative p-values.
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Figure 3.3: P -value histograms of non-DE genes from six dispersion methods. The disper-
sions are simulated with residual dispersion variation estimated from the human dataset
(σ = σ̃). Out of a total of 5,000 genes, 80% are non-DE.

Figure 3.4 shows similar histogram comparisons when σ was reduced to half the esti-

mated value (0.5σ̃). The null p-value histograms from the NBQ and trended methods have

improved and are closer to the uniform distribution. The tagwise-trend method produces

a slight overabundance of small p-values. The common method is still unsatisfactory.

3.5 Conclusion and Discussion

We quantified the residual dispersion variation in five real RNA-Seq datasets. Using simula-

tions, we compared the performance—in terms of power and FDR/Type-I error control—of
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Figure 3.4: P -value histograms of non-DE genes from six dispersion methods. The disper-
sions are simulated with half the value of the residual dispersion variation estimated from
the human dataset (σ = 0.5σ̃). Out of a total of 5,000 genes, 80% are non-DE.
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six representative DE tests based on different dispersion methods. We demonstrated that

the level of residual dispersion variation is a crucial factor in determining the performance

of DE tests. When the residual dispersion variation is as high as we estimated from the five

real datasets, methods such as NBQ and trended, which ignore possible residual disper-

sion variation, fail to control Type-I errors and give suboptimal power. The QLSpline and

tagwise-trend methods have similar size-corrected power, but the tagwise-trend method

gives conservative FDR. QLSpline and tagwise-trend both account for individual disper-

sion variation, but QLSpline also makes degrees-of-freedom adjustment to address the

uncertainty in estimated NB dispersions. For other DE test methods that use a dispersion

model, we recommend using degrees-of-freedom adjustment to improve robustness.

The genewise method does not rely on a dispersion model, and it uses an HOA technique

to improve small-sample performance of the likelihood ratio test. The genewise method has

good Type-I error and FDR control in all simulations. The power of the genewise method

is comparable to that of the QLSpline and tagwise-trend. This indicates that when the

level of dispersion variation is high, the power saving available through dispersion modeling

is limited.

Reducing the level of dispersion variation boosts the performance of DE tests that use

a dispersion model. One may attempt to improve the dispersion model by considering

different functional forms of the trend and/or including additional predictors. We plan to

explore such possibilities in our future research. It is not well understood what factors

contribute to the count and dispersion variation in an RNA-Seq experiment: possible

factors to consider include transcript length, GC-content, and so on.

One notable difference between the genewise method and a dispersion-modeling method

is that the former detects more DE genes with small fold changes, while a method using a

dispersion model tends to detect DE genes with large fold changes. Figure 3.5 illustrates
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this point using MA plots. This is because current dispersion models often assume the

dispersion is the same for genes with similar mean levels (those genes having the same x-

values). Under such assumptions, large fold changes tend to correspond to more significant

test results. The behaviors of the tagwise-trend and the QLSpline methods are intermediate

between the genewise method and a dispersion-modeling method such as the trended model.
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Figure 3.5: MA plot of the mouse dataset for the trended, genewise, tagwise-trend and
QLSpline approaches. Predictive log fold changes (posterior Bayesian estimators of the
true log fold changes) for NB GLMs are calculated (the “M” values) and shown on the
y-axis. Averages of log counts per million (CPM) are shown on the x-axis (the “A” values).

We used a N (0, σ2) distribution to model the residual dispersion variation εi (see Equa-

tion (3.2)). We believe this is a reasonable starting point. A similar assumption is made in

[124] and the authors presented simple diagnostic plots to show the normality assumption

is reasonable. In future, we will explore more formal methods for model checking and

consider the possibility that σ may vary with some other variables, such as the mean level.

However, the conclusion that the performance of the DE tests depend on the level of the

residual dispersion variation should remain valid.
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3.6 Methods

3.6.1 Description of RNA-Seq Datasets

Experiment information for all species and the raw/processed data are available at the Gene

Expression Omnibus (GEO) of the National Center for Biotechnology Information (NCBI).

Table 3.4 gives a brief summary of the datasets analyzed in this paper, including the dataset

names in the SeqDisp R package we develop (see the Software Information section), the

SRA accessions that provides all the metadata describing a particular study (see the NCBI

website for different accession types), and published references. See Supporting Information

S1, “Access to the Datasets” section for more details.

Table 3.4: Summary of RNA-Seq datasets analyzed in this article.

Organism Name in SeqDisp SRA Accession References

Homo Sapiens human30/human5 SRP031476 [74]
Mus Musculus mouse SRP022850 [17]
Danio Rerio zebrafish SRP017511 [118]
Arabidopsis Thaliana arabidopsis SRP013873 [55]
Drosophila Melanogaster fruit.fly SRP001537 [16, 56]

3.6.1.1 Human RNA-Seq Data

The Homo sapiens (human) RNA-Seq experiment was discussed in [74], and information

for this experiment, the raw and processed data are available at NCBI GEO under accession

number GSE51403. Liu et al. [74] focused more on the technical side of RNA-Seq exper-

iments by investigating the trade-offs between sequencing depth (where a higher depth

generates more informational reads) and biological replications. Seven biological replicates

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/sra?term=SRP031476
http://www.ncbi.nlm.nih.gov/sra?term=SRP022850
http://www.ncbi.nlm.nih.gov/sra?term=SRP017511
http://www.ncbi.nlm.nih.gov/sra?term=SRP013873
http://www.ncbi.nlm.nih.gov/sra?term=SRP001537
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of both control and E2-treated MCF7 cells were sequenced, and the RNA-Seq reads in each

sample were down-sampled to generate datasets of different depths (a total of seven depths

from 2.5M to 30M). We include datasets from two sequencing depths (5M and 30M) in our

R package, but mainly focus on the dataset with 30M sequencing depth for analyses. See

[74] and NCBI GSE51403 for detailed descriptions of the dataset.

3.6.1.2 Mouse RNA-Seq Data

The Mus musculus (mouse) RNA-Seq experiment was discussed in [17], and information

for this experiment and the raw data are available at NCBI GEO under accession number

GSE47019. The raw data are downloaded from NCBI Sequence Read Archive (SRA), and

processed using the pipeline described in [5]. According to the experiment summary, the

goals of this study were “to compare signals from competent and abnormal human embryos

impacted differently on the expression of endometrial receptivity genes in mouse uteri.

Uterine mRNA profiles of 21-day old mice were generated by deep sequencing, in triplicate.”

We summarized the samples of “Control Salker”, “Developmentally competent embryo

conditioned media Salker” (abbreviated as DCECM) and “Arrested embryo conditioned

media Salker” (abbreviated as AECM) into the mouse dataset in the SeqDisp R package.

We only considered the control and DCECM groups in the analyses.

3.6.1.3 Zebrafish RNA-Seq Data

The Danio rerio (zebrafish) RNA-Seq experiment was discussed in [118], and information

for this experiment and the raw data are available at NCBI GEO under accession number

GSE42846. According to the experiment summary, the authors “used the zebrafish em-

bryo model to study the innate immune response against Staphylococcus epidermidis, by

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51403
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injecting S. epidermidis into the yolk at 2 hpf and took samples at 5 days post injection.”

Four biological replicates are prepared for the control group (Non-injected 5 DPI) and for

the treatment group (S. epi mcherry O-47 5 DPI).

3.6.1.4 Arabidopsis RNA-Seq Data

The Arabidopsis thaliana (arabidopsis) RNA-Seq experiment was discussed in [55], and in-

formation for this experiment and the raw data are available at NCBI GEO under accession

number GSE38879. According to the experiment summary, “the goal of this study is to

identify the targets of RVE8, a MYB-like transcription factor involved in the circadian clock

in Arabidopsis, and study reveals that RVE8 is a master regulator of circadian gene expres-

sion in Arabidopsis.” The overall design includes transgenic line rve8-1 RVE8::RVE8:GR

and rve8-1 treated with DEX or mock with three biological replicates each, for a total

of 12 samples. Our analyses only focused on the RVE8:GR mock control group, and the

RVE8:GR DEX treatment group.

3.6.1.5 Fruit Fly RNA-Seq Data

The Drosophila melanogaster (fruit fly) RNA-Seq experiment was discussed in [16], and

information for this experiment and the raw data are available at NCBI GEO under acces-

sion numbers GSM461176 to GSM461181. The dataset fruit.fly in our SeqDisp package

is directly obtained from the pasilla Bioconductor package [56], which provides per-exon

and per-gene read counts computed for selected genes in [16]. It can also be accessed from

data(pasillaGenes) once pasilla is loaded. The dataset contains three and four biolog-

ical replicates of the knockdown and the untreated control, respectively. See the package

vignette for more information.
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3.6.2 Methodological Details for Quantifying Dispersion Residual Vari-

ation

In the RNA-Seq context, we use Yij to denote the read count for gene i in sample j, where

i = 1,⋯,m and j = 1,⋯, n. We model a single read count as negative binomial with mean

µij and dispersion φij :

Yij ∼ NB(µij , φij).

We further assume a log-linear model for µij , i.e. log(µij) = offset+X ′βi, and a parametric

distribution as the prior distribution for the dispersion parameter φij :

log(φij) = log(φ0
ij) + εi,

where εi ∼ N (0, σ2). The prior mean, log(φ0
ij), is estimated from some preliminary model

(e.g. NBQ or a smooth fit like NBS) and is treated as known. Denote θij = log(φij) and

θ0
ij = log(φ0

ij), so that θij = θ0
ij+εi. Across all m genes, we assume that εi’s are independent,

and denote the prior distribution of εi by π(εi∣σ2). We obtain the joint likelihood function

of the unknown parameters (σ2, β) as:

L(σ2, β) =
m

∏
i=1
∫

⎡⎢⎢⎢⎢⎣

n

∏
j=1

Pr(yij ∣θij = θ0
ij + εi, βi)

⎤⎥⎥⎥⎥⎦
π(εi∣σ2)dεi. (3.6)

To estimate the hyperparameter σ2 (and the collection of all NB regression coefficients

β), one can use (σ̂2, β̂) = arg maxσ2,β L(σ2, β), but this approach can be quite difficult

computationally. For easier evaluations, suppose we know σ2 (i.e. fix θi) and rewrite the

likelihood (Equation (3.6)) as

L(σ2, β) = Lσ2(β), (3.7)
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where β is varying. To estimate β, we maximize Lσ2(β) with respect to β, i.e. the MLE

β̂σ2 = arg maxβ Lσ2(β). Note that for each σ2 we have a new curve Lσ2(β) over β. To

estimate σ2, we evaluate the maximum Lσ2(β) over β and choose the σ2 that yields the

maximum of all these curves. In other words, we have

σ̂2 = arg max
σ2

Lσ2(β̂). (3.8)

By profiling out the nuisance parameter β, the likelihood Lσ2(β̂) is completely in terms of

the parameter of interest σ2. Therefore, the term Pr(yij ∣θij = θ0
ij + εi, βi) in Equation (3.6)

is replaced by the profile likelihood of εi:

Lp(ε) = Pr(yij ∣θij = θ0
ij + εi, β̂i(θi)). (3.9)

Let lp(εi) be the log profile likelihood of εi so that Lp(εi) = exp{lp(εi)}. Define the

integrated likelihood of σ2 as

Lint(σ2) =
m

∏
i=1

1√
2πσ2

∫ exp(lp(εi; yi) −
ε2i

2σ2
)dεi. (3.10)

The task is to evaluate Lint(σ2), which will be discussed next.

3.6.2.1 Laplace Approximation of Posterior Distributions

For simple models such as the generalized linear model, the Laplace approximation of inte-

grals works quite well. This analytical approach is more efficient in terms of computation

compared to the Markov Chain Monte Carlo (MCMC) approach that converges to the

true posterior. It only has to find the posterior mode (i.e. the maximum a posteriori,

MAP) estimator without exploring the whole posterior distribution. The performance of
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the Laplace approximation gets better with (1) increasing sample size, as the posterior

is asymptotically normally distributed; (2) re-parameterization of the bounded parameter

(e.g. logarithm for the dispersion φ) to make its support on the entire real line.

Since for any j, εi = θij − θ0
ij , we drop the sample index j and denote

θ∗i = arg max g(θi; yi) = arg max [lp(θi; yi) −
(θi − θ0

i )2

2σ2
] ,

so that

g′(θi; yi)∣θi=θ∗i = l
′
p(θ∗i ; yi) −

θ∗i − θ0
i

σ2
= 0.

We can approximate the integral ∫ exp{g(θi; yi)}dθi by the Laplace approximation, so

that the approximate of the integrated likelihood (Equation (3.10)) is

Lint(σ2) =
m

∏
i=1

(1 − σ2l
′′

p(θ∗i ))
−1/2

⋅ exp(lp(θ∗i ; yi) −
(θ∗i − θ0

i )2

2σ2
) . (3.11)

By optimizing (Equation (3.11)) we obtain the variance of the prior distribution of log(φ).

To reduce the estimation bias from maximizing the (unadjusted) profile likelihood lp(θ),

we may use the adjusted profile likelihood (APL) discussed in [24]:

la(θ) = lp(θ, β̂θ) −
1

2
log det{jββ (β̂θ; θ)} , (3.12)

where in the adjustment term, jββ is the observed information matrix for estimating β̂θ,

where β̂θ maximizes the constrained likelihood l(θ, β) for fixed θ (i.e. fixed φ). Currently,

this APL approach is not implemented.
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3.6.2.2 Simulation Studies

To evaluate the estimation accuracy for σ, we perform a set of simulations using the human

RNA-Seq dataset as the “template” in order to preserve observed relationships between

the dispersions and gene-specific mean counts. We simulate 5,000 genes with a single

group of seven replicates: the mean structure µ is randomly generated from the log-normal

distribution with mean 8.5 and standard deviation 1.5 (both on the log scale and the

values are chosen to mimic the real dataset); the dispersion parameters are estimated from

the real dataset. We compare σ̂ with true σ specified at eight levels that are within a

reasonable range for typical RNA-Seq data: 0.1, 0.3, 0.5, 0.7, 0.9, 1.2, 1.5 and 2.0. At

each level of σ we evaluate three times using different random number seeds for generating

εi ∼ N (0, σ2). Figure 3.6 shows the simulation results for the NB2 (left panel) and NBQ

(right panel) models where the underlying dispersion model is refitted (NBP and NBS have

similar results not shown here). We highlight the median value (out of three repetitions)

in solid blue point at each σ level, and ideally these points should follow the y = x reference

line.

As discussed in the “Results/Power-Robustness Evaluations/Simulation Setup” subsec-

tion, we want to choose a σ that matches the residual dispersion variation in real data. This

is achieved by a calibration approach which determines the σ = σ̃ to be used in simulations.

The results are summarized in Table 3.5. The calibrated σ̃’s are essentially obtained from a

calibration plot (included in Supporting Information S1) that can be generated as follows:

first, at each of the eight true σ values, we obtain one estimated σ̂ (we actually repeat three

times using different random number seeds and take the median value highlighted in solid

blue); second, we fit a quadratic curve to the eight points and calculate the associated 95%

prediction interval; third, we calculate σ̂real from the real dataset and plot the value as a

horizontal line; fourth, we find the intersection of the horizontal line (σ̂real) with the fitted
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Figure 3.6: Simulation studies for empirical Bayes estimation of the residual variation in
NB dispersions. We refit the underlying NB dispersion model and estimate σ three times
at each level of the true σ’s. The underlying dispersion models are NB2 (left panel) and
NBQ (right panel).

curve to determine the σ̃ we will use in subsequent power-robustness simulations; the last

step is to find the 95% calibration interval (CI), as determined jointly by the horizontal

line (σ̂real) and the 95% prediction interval in the second step.

Table 3.5: Calibrated σ̃ to be used for power-robustness simulations for each dataset. We
also report the 95% calibration interval (CI) for each point estimate.

Dataset #samples Calibrated σ̃ 95% CI

Human30 (7, 7) 0.915 (0.90, 0.93)
Mouse (3, 3) 1.025 (0.99, 1.06)
Zebrafish (4, 4) 0.975 (0.94, 1.02)
Arabidopsis (3, 3) 0.855 (0.80, 0.92)
Fruit fly (4, 3) 0.890 (0.86, 0.93)
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3.6.3 Software Information

The datasets (raw read count table) analyzed in this article are available from the SeqDisp

package (version 0.1.4) for the cross-platform computing environment R (version ≥ 3.0.0).

The R codes for performing the simulations are also included in the SeqDisp package

(version 0.1.4) to be released at https://github.com/gu-mi/SeqDisp.
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4.1 Abstract

When assessing differential gene expression from RNA sequencing data, commonly used

statistical tests tend to have greater power to detect differential expression of genes encod-

ing longer transcripts. This phenomenon, called “length bias”, will influence subsequent

analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene

Ontology categories that include longer genes are more likely to be identified as enriched.

These categories, however, are not necessarily biologically more relevant.

We show that one can effectively adjust for length bias in Gene Ontology analysis

by including transcript length as a covariate in a logistic regression model. The logistic

regression model makes the statistical issue underlying length bias more transparent: tran-

script length becomes a confounding factor when it correlates with both the Gene Ontology

membership and the significance of the differential expression test. The inclusion of the

transcript length as a covariate allows one to investigate the direct correlation between the

Gene Ontology membership and the significance of testing differential expression, condi-

tional on the transcript length. We present both real and simulated data examples to show

that the logistic regression approach is simple, effective, and flexible.

4.2 Introduction

RNA sequencing (RNA-Seq) has the potential to enable simultaneous measurement of ex-

pression for all genes expressed in a cell. Statistical tests (Robinson et al. [102], Anders

and Huber [3], Di et al. [31]) further enable assessment of differential expression (DE) of

individual genes under different environmental or experimental conditions. To relate the

outcome of the DE analysis to biological functions, a widely-used approach is to exam-

ine enriched Gene Ontology (GO) categories based on the terms annotated to the genes
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identified as DE (Khatri and Drăghici [58], Ashburner et al. [6]). GO uses a structured

vocabulary to describe functional categories of gene products. Genes annotated with the

same GO term form a gene category and share a common biological function. The enrich-

ment of a GO term among DE genes can be used to indicate the association of biological

functions to variations in experimental conditions.

To quantify the enrichment of a GO term, one can dichotomize results of DE analysis

and cross-classify the genes according to whether they are indicated as DE and whether

they are annotated to the specific GO term. The level of enrichment can then be assessed

using contingency-table-based tests such as the Fisher’s exact test or the chi-square test

(for a summary, see Sherman et al. [106]). Table 4.1 shows an example of testing the

enrichment of the GO term GO:0005575 among DE genes in a prostate cancer dataset

(see the Results section for more details). One unappealing feature of the contingency-

table-based approach is that the numbers of DE and non-DE genes and, in turn, the GO

enrichment test result depend on the p-value cut-off for declaring a gene as DE. In Table

4.1, genes with DE test p-values less than 0.05 are declared as DE. Figure 4.1 shows that

Fisher’s exact test p-values vary with DE test p-value cut-offs.

Table 4.1: A typical two-by-two contingency table for testing enrichment of a GO category.

D D̄ Sum

C 1962 9803 11765
C̄ 118 709 827
Sum 2080 10512 12592

C: in category; C̄: not in category;
D: DE genes; D̄: non-DE genes.

Logistic regression is an alternative GO enrichment analysis approach that does not

require dichotomizing DE test results. For each gene i, let the binary variable yi indicate the
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Figure 4.1: Influence of DE testing p-value thresholds on the determination of enriched
categories. The p-value cut-off for calling DE genes (x-axis) influences the p-value of
subsequent GO enrichment test (y-axis). Therefore, subjective decisions on declaring DE
genes will make subsequent enrichment results rather unstable.



90

presence (yi = 1) or absence (yi = 0) of the gene in the GO category. Denote πi = Pr(yi = 1),

and let xi measure the significance of the DE test result (e.g., transformation of the DE

test p-value). The logistic regression (McCulloch and Neuhaus [80])

logit [πi] = log [ πi
1 − πi

] = β0 + β1xi (4.1)

relates the log odds of a gene belonging to a GO category to the significance of DE tests. A

significant positive β1 indicates that the odds of a gene belonging to this particular category

increase as the significance of DE increases. Sartor et al. implemented the logistic regres-

sion model in the software LRpath and applied it to enrichment analyses for microarray

expression data (Sartor et al. [105]). The logistic regression approach is more flexible than

the contingency table approach. First, it is easy to include covariates in a logistic regression

setting to adjust for potential confounding factors—such as gene length. Second, logistic

regression allows the use of continuous measures of DE test significance, which conveys

more information than dichotomizing DE test results and avoids the nuisance of choosing

an arbitrary cut-off for DE test p-values.

One statistical concern with tests for enriched GO terms, particularly those based on

analysis of RNA-Seq datasets, is that transcript length can be a confounding factor if it

correlates with both the GO membership and the DE test significance. In regards to the

latter, many existing DE tests have greater statistical power to detect DE for genes with

more reads mapped to them (Robinson et al. [102], Anders and Huber [3], Di et al. [31]).

Since genes with longer transcripts will have more reads mapped to them than an equally

expressed shorter gene, the statistical power of these DE tests will depend on transcript

lengths. Oshlack et al. refer to the dependence of DE test power on transcript length

as length bias (Oshlack and Wakefield [87]). In the presence of length bias, subsequent

GO enrichment analysis will have the potential to identify GO categories with a higher
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proportion of longer genes. These categories are not necessarily biologically more relevant.

Young et al. [126] compensated for potential length bias by developing a weighted

resampling strategy based on contingency tables. The basic idea is to estimate the DE

test power as a smooth function of the transcript length and resample genes with weights

inversely proportional to the estimated power of the DE test. For computational efficiency,

the resampling method can be approximated by a test based on the Wallenius non-central

hypergeometric distribution. If no length bias is present, the Wallenius approximation

reduces to the Fisher’s exact test, which is based on a central hypergeometric distribution.

Their method is implemented in the Bioconductor package goseq. Gao et al. proposed

a similar method where a different weighting function is used to compute the non-central

parameter of the Wallenius distribution (Gao et al. [38]).

The dependencies between the GO terms should also be considered in the statistical

assessment for enrichment of GO categories. GO terms are organized as a directed acyclic

graph (DAG). In this DAG, parent terms describe more general functional categories than

their child terms (Rhee et al. [96]) and each child term can have multiple parent terms.

Because of this relationship, a gene, when annotated with a GO term, is automatically

annotated to the term’s parent terms. Furthermore, any gene has the potential for being

annotated with multiple GO terms. Three distinct categories, biological process (BP),

cellular component (CC) and molecular function (MF), describe the most general biological

functions each having potentially thousands of annotated genes, while some of the very

specialized categories (e.g. inner membrane complex ) may even have no gene products

annotated to them. When a GO term describing a general biological function is identified

as enriched among DE genes, all its offspring – GO terms describing more specific functions

– tend to be enriched as well. As a result, if we rank the GO terms according to enrichment

test p-values, we tend to see many specific terms at the top of the list, which may result in
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potentially misleading interpretation of the data. To address this issue, Alexa et al. [2] and

Grossmann et al. [49] proposed “local” GO enrichment tests that incorporate the parent-

child relationship among GO terms. The basic idea is to examine the relative enrichment

of a GO term among genes that are offspring of the parents of the GO term being tested.

If a GO term is enriched only because its parents are, the local GO enrichment test will

not identify it as enriched. The topGO Bioconductor package (Alexa and Rahnenführer [1])

implements the method proposed in Alexa et al. [2], and the Ontologizer2 software (Bauer

et al. [10]) implements methods proposed in Grossmann et al. [49].

In this paper, we describe our development of GOglm, a logistic regression model

that effectively adjusts for length bias by including transcript length as a covariate. This

inclusion allows one to investigate the direct correlation between the GO membership and

the DE test significance conditional on the transcript length. We analyzed two public RNA-

Seq datasets and simulated data to show that in comparison to the GOseq approach, the

GOglm method for length bias corrections is equally effective, but confers the advantages

of being more simple, transparent and flexible. We also show that the flexibility of GOglm

allows one to address dependences in the GO terms.

4.3 Results

4.3.1 Length Bias Correction Using Logistic Regression

We propose to adjust for length bias using logistic regression. The method is simple and

effective, allows the use of continuous measures of DE test significance, and is flexible to

incorporate the parent-child relationship among GO terms.

Correcting length bias using logistic regression is straightforward. One includes a mea-
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sure of gene length, li, as a covariate in the logistic regression model:

logit [πi] = β0 + β1xi + β2li, (4.2)

where i indexes genes, πi is the probability of a gene belonging to the specified GO category,

and xi measures the significance of the DE test result. In GOglm, a gene’s length is defined

as the median length of all its corresponding mature transcripts.

The logistic regression model is easy to interpret and makes the underlying statistical

issue more transparent: the fundamental cause of length bias is that the transcript length

becomes a confounding factor when it correlates with both the GO membership and the

DE test significance. When we include transcript length as a covariate, the coefficient β1

now captures the correlation between the log odds of being in the specified GO category

and the DE test significance – conditional on gene lengths. A significant result from the

hypothesis test H0 ∶ β1 = 0 indicates that the GO membership is correlated with the DE

test significance even after adjusting for length bias.

The logistic regression method is more flexible than the GOseq approach. The logistic

regression can be used in the contingency table setting by letting xi be a binary variable

indicating whether gene i is DE or non-DE. In the data examples below, we will show that

the logistic regression method is equally effective in accounting for length bias as the GOseq

approach. But more generally, the logistic regression model can use continuous measures

of DE significance as explained earlier. In GOglm, one option is to use xi = log(1 −

log(DE test p-value)) as the continuous measure of DE. The inner log transformation

helps us focus attention on the order of magnitude change in p-values. The outer log

transformation will down weigh influence from extremely small p-values. There are other

ways to construct the significance measure. We discussed earlier that p-values can be

dichotomized, but that will incur loss of information. One can construct the significance
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measure based on test statistic values (usually, the p-value is a monotone function of the

test statistic). Other measures such as log fold change can also be used. We compared the

performance of using different measures of DE in the section Simulation Studies.

Logistic regression is flexible to incorporate the parent-child relationship. To test for

local enrichment, one fits the logistic regression using a subset of genes. For example, if the

set of all genes annotated to the direct parents of the GO term is used to fit the regression

model, the results will be similar to the parent-child union approach in Ontologizer2. In

the following section on RNA-Seq data examples, we analyze the Arabidopsis data and

compare results between GOglm and Ontologizer2.

Most statistical software includes efficient programs for fitting logistic regression mod-

els. We implement GOglm in R (R Core Team [93]) and fit the logistic regression model

using the glm function with quasi-binomial error distribution in order to account for poten-

tial over-dispersions. The function glm uses the iteratively weighted least squares method

(equivalent to Newton-Raphson algorithm for logistic regression) for estimation of regres-

sion coefficients and the Wald test for hypothesis tests of regression coefficients.

When a GO category contains very few (e.g., fewer than 5) annotated genes, the enrich-

ment test p-value can be volatile and the statistical evidence can be unreliable. In GOglm,

users have the option to exclude GO categories with too few genes when ranking the en-

richment test results. Other GO analysis software such as topGO (Alexa and Rahnenführer

[1]) and LRpath (Sartor et al. [105]) also allow users to filter out GO categories with small

sizes.
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4.3.2 RNA-Seq Data Examples

We present results to demonstrate the effectiveness and flexibility of the GOglm logistic re-

gression method for GO enrichment analysis. First, we present results from GO enrichment

analysis of the prostate cancer data (Li et al. [69]). Young et al. [126] used this dataset

to validate their GOseq method. We compare the performance of GOglm and GOseq and

demonstrate that the GOglm method effectively accounts for length bias. Second, we use

GOglm to perform local enrichment test on an Arabidopsis dataset (Di et al. [31]) by ex-

amining a GO term’s relative enrichment in the context of its direct parent(s). The results

are compared to results derived from Ontologizer2 (Grossmann et al. [49]).

4.3.2.1 Prostate Cancer Data Example

The prostate cancer data of Li et al. [69] contain RNA-Seq reads that aligned to 49506

genes from three untreated and four treated cancer samples. It has been demonstrated

that the GOseq method is effective in correcting length bias in this dataset (Young et al.

[126]). We will use this dataset to compare the performance of GOglm and GOseq.

We used edgeR (Robinson et al. [102]) with a common dispersion estimate to obtain DE

test p-values. The GOseq method was designed for contingency tables, so for the purpose

of comparison, the p-values were dichotomized – a gene was called DE if the FDR adjusted

p-value (i.e. q-value) was less than 0.05. The same DE results were then used by GOglm

and GOseq for GO enrichment analyses.

As discussed in the Introduction section, length bias becomes a confounding factor when

it correlates with both the response (GO category membership) and the predictor variable

(DE test significance). To illustrate the prevalence of the correlation between GO category

and gene length, we considered 4249 categories having at least 10 annotated genes and
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asked what proportion of these categories showed significant correlation with gene length.

For each GO category, we tested the correlation between category membership and gene

length by comparing lengths of genes (on log scale) within and out of the category using

Welch’s two-sample t-test. We found the proportion to be 44.7%, indicating that significant

correlation between gene length and GO category membership is prevalent among GO

categories.

In Figure 4.2, we compare GO enrichment test p-values from the logistic regression

method in GOglm and from the Wallenius method in GOseq. There is strong correlation

(0.854) between the two sets of p-values, especially for small p-values. In Table 4.2, we

list the most enriched GO terms identified by GOglm, and all of them also rank highly on

GOseq’s top list.

Figure 4.3 demonstrates the effect of length bias corrections. We first ranked the GO

categories according to one of the GO enrichment tests: GOglm, GOseq, or the Fisher’s

exact test. We then divided GO categories into 300 GO groups according to the average

gene length in each category and computed the average GO enrichment rank in each group.

In Figure 4.3, we plot the average GO enrichment ranks against the average gene lengths

in the 300 GO groups. Panel B shows that the ranks based on the Fisher’s exact test –

which was not adjusted for length bias – tend to be more biased towards GO categories

with greater average gene lengths. This trend is less pronounced in panels A and C, where

data were analyzed using GOglm and GOseq, respectively.

4.3.2.2 Arabidopsis Data Example

The Arabidopsis data contain RNA-Seq reads that aligned to more than 25000 genes from

two groups of Arabidopsis samples of size three each. The two groups were derived from
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Figure 4.2: Comparison of p-values (on log scale) between GOseq Wallenius and GOglm.
Among 3966 GO terms in the prostate cancer dataset, GOseq Wallenius and GOglm de-
tected 492 and 486 enriched categories, respectively. Each plus sign denotes one category.
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plants inoculated with ∆hrcC of Pseudomonas syringae pv tomato DC3000 or 10 mM

MgCl2 (mock). Di et al. [31] performed DE test on this dataset using the NBP negative

binomial model. Cumbie et al. [26] performed local enrichment analysis on this data using

the GORich tool of GENE-Counter. The dataset used in this paper comes directly from

Di et al. [31], which is a subset of the data described in Cumbie et al. [26].

Here we used the logistic regression in GOglm to perform the local enrichment analysis

and compared the results to those derived from Ontologizer2. We focused on up-regulated

genes only. Using the R package NBPSeq (Di et al. [32]), we performed one-sided DE test

to detect up-regulated genes. The logistic regression method in GOglm took continuous

measures of DE based on the DE test p-values. In Ontologizer2, DE genes were determined

by two criteria: the log fold-change greater than 0 (up-regulated) and the DE testing p-

value less than 0.05. In the local enrichment tests, we tested the relative enrichment of

a GO term relative to all genes that were offspring of the direct parents of the GO term

being tested, which corresponded to the parent-child union (PCU) option in Ontologizer2.

From a total of 3851 categories, GOglm and Ontologizer2 detected 358 and 483 enriched

categories respectively (using a p-value cut-off of 0.1 in the enrichment tests). Among the

358 categories identified by GOglm, 201 (56.1%) categories were also declared as enriched

by Ontologizer2. The two methods also show high consistency if we focus on the rankings

(instead of p-values) of the GO categories. Figure 4.4 shows the proportion of overlapping

categories when the same number of top-ranked categories are selected using each method.

Table 4.3 lists some of the most relevant categories that were declared as enriched by both

GOglm and Ontologizer2. Categories such as plant defense, differential expression in re-

sponse to pathogens, wounding, and/or stresses, signal perception, transduction, secretion

or modification of plant cell wall were expected. For the complete ranking lists, see the

Supporting Information (Table S1 and Table S2).
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4.3.3 Simulation Studies

4.3.3.1 Simulation I

We developed a simulated dataset to further clarify the cause of length bias and demon-

strate the effectiveness of our method (GOglm) in correcting the length bias. This dataset

consisted of 10426 genes that were binned into 40 non-overlapping categories of different

sizes. These 40 categories were simulated such that they varied in the average length of

genes, but none of the categories was significantly enriched with DE genes. (See Materials

and Methods for further details on the simulation setup.)

To demonstrate the efficacy of our method, we analyzed this simulated dataset using

three different methods: 1) a simple logistic regression without length bias corrections (see

equation (4.1)); 2) the GOglm method: logistic regression using log gene length as one

additional covariate (see equation (4.2)); 3) the GOseq method.

In the absence of any length bias corrections, the simple logistic regression method

identified a higher than expected number of categories with small p-values (false positives;

Figure 4.5). In contrast, with length bias corrections, both the GOglm and GOseq methods

identified the correct proportions of small p-values as expected under this simulation. A

further examination comparing the scatter plots of enrichment test statistic values versus

median gene lengths across gene categories provided additional support that the correction

methods addressed the problem of length bias (Figure 4.6). These scatter plots clearly

revealed that the simple logistic method in the absence of any length bias corrections

favored categories with longer genes whereas the GOglm method correctly adjusted for the

length bias.
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Figure 4.6: Scatter plots of the enrichment test statistic value against median gene length in
category (log scale) before and after length bias corrections. Before length bias corrections,
the enrichment test statistic value tends to increase with median gene length in category
(left panel). After length bias corrections using GOglm, the trend is no longer visible (right
panel).
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4.3.3.2 Simulation II

We use a second simulation to highlight an important difference between GOglm and

GOseq. We also compared the performance of using different measures of DE test signifi-

cance or different parameterizations of gene length in GOglm.

Here, we simulated six categories known to be enriched with equal proportions (15%)

of DE genes (versus on average 10% of DE genes in the other 34 categories). However,

we varied the degree to which the genes were differentially expressed: the DE genes in

category one has the highest fold change whereas those in category six had the lowest fold

change, but were still DE.

We compared the performance of the same three enrichment analysis approaches as in

the previous example. However, with the GOglm method, we tested different measures

of DE significance: untransformed DE test p-value, log fold change, log-transformed DE

test p-value, log(1 − log(DE test p-value)), and dichotomized DE p-values (cut-off used

was 0.05). We also examined the use of either lengths or log-transformed lengths as the

covariate. We repeated the simulation 10 times and summarized the average ranks given

to the six known enriched categories by the different approaches and parameterizations

(Table 4.4). Based on the simulation results, we make the following conclusions:

1. The GOglm method with − log(p-values) and log-transformed lengths (column 5) as

covariates yielded the best performance: the known enriched categories were ranked

highly and the ranking order reflected the degree of DE. When untransformed lengths

were used with − log(p-values) (column 6), the performance was very similar, but the

average ranks given to the top two enriched categories were closer, indicating these

two categories were less distinguishable under this setting.

2. The GOglm method with log fold change and log-transformed lengths (column 4) as
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covariates also performed well. Note that conditional on the mean level (which is

proportional to gene length under this simulation setting), the p-value is a monotone

function of the log fold change. We should also be aware that fold changes are not

available in regression settings (e.g., when investigating the dependence of expression

level on a continuous covariate).

3. The GOglm method using dichotomized p-values perform very similar to the GOseq

method (columns 9 and 10). Both methods ranked the known enriched categories

highly, but the ranking orders did not reflect the degree of DE. This is as expected,

since using dichotomized p-values retains only information on whether a gene is DE,

not on how much the gene is DE. This can be viewed as a feature, rather than a

drawback, of using dichotomized p-values, since sometimes it might be of interest

to identify categories with a large number of DE genes rather than categories with

a few extremely DE genes. Nevertheless, users should be aware of this interesting

difference between using continuous p-values and using dichotomized p-values.

4. Using the log(1− log(p)) transformation (columns 7 and 8) ranked the top 3 enriched

categories slightly lower than using the log-transformed p-values (columns 5 and 6).

In our real data examples, we used the log(1− log(p)) transformation to down weigh

very extreme p-values. This became unnecessary for the simulated datasets, since

we did not simulate very large fold changes. Again, we view this as a feature rather

than a drawback. In practice, we recommend the initial use of scatter plots to help

determine which transformations of p-values and gene lengths are most suitable. One

strength of the logistic regression method is that it allows different choices.

5. When length bias was not corrected (column 2), the logistic regression method still

ranked the three enriched categories with the highest degree of DE highly, but the
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average ranks given to categories 4 and 5 were lower. This indicated that some non-

enriched categories sometimes received higher rankings. As we now understand, this

can happen due to length bias.

6. Use of untransformed p-values (column 3) gave very poor performance. The degree of

DE significance was not reflected well on the original scale of untransformed p-values.

4.4 Discussion

The GOglm method discussed in this paper provides a simple and effective tool for GO

enrichment analysis with simultaneous length bias corrections. The use of continuous

measures of DE avoids the subjective specification of p-value thresholds that is inevitable for

any contingency-table-based approaches. The GOglm is also applicable to local enrichment

analyses which account for the parent-child relationship of the GO structure.

GO facilitates comprehensive and systematic functional explorations based on currently

known biological knowledge. However, the complexity inherent in the ontology structure

introduces statistical challenges from several different sources. Here we list a few issues

that warrant deeper consideration beyond the scope of this article. Researchers should be

aware of the potential influences these issues may have on inference before embracing any

statistical tools available for enrichment analysis.

4.4.1 Filtering Procedures

Not all genes under study had GO annotations available, and in this paper we restricted

attention to study genes annotated with at least one GO term. In a GO enrichment

analysis, researchers in general aim to determine which categories are more enriched relative
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to others in a database of all possible GO terms, so the selection is competitive in nature

among the GO categories. Because genes without annotations tend to have relatively low

expression and small variability across conditions, researchers may prefer to exclude them

for limited discriminatory power and focus instead on the more studied genes. In the

prostate cancer dataset, 10102 genes were without annotations, among which only 4.6%

were called DE. In contrast, 16.9% of the 12592 genes having annotations were called DE.

Alternatively, researchers may choose to retain those genes without annotations in the

study by assuming that they belong to a single “pseudo-category” and treating them as

background genes. We note that analyses by GOseq in Young et al. [126] and the goseq

Bioconductor package did not exclude genes without annotations, so the final category list

was slightly different than the list produced in this study.

4.4.2 Challenges in GO Enrichment Analysis

4.4.2.1 Multiple Testing Correction

Because of the graph structure of GO terms, enrichment tests for different GO categories

can be correlated, and therefore multiple testing corrections in GO analyses cannot be

simply addressed by calculating ordinary false discovery rates (FDR) (Goeman and Mans-

mann [43]). In our analysis, we did not adjust for multiplicity partially because we were

more interested in relative ranks of categories instead of absolute magnitude of gene set

p-values.

Commonly used multiple testing corrections include the Holm-Bonferroni’s correction

(Holm [54]), Benjamini-Hochberg’s FDR (Benjamini and Hochberg [11]), resampling-based

p-value adjustment (Westfall and Young [122]), bootstrap and Monte-Carlo simulation ap-

proaches. Khatri and Drăghici [58] gave an overview of these corrections with an emphasis
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on their performances under different total numbers of functional categories and depen-

dency levels [58]. Graph-structured tests have been discussed in Goeman and Mansmann

[43] where the authors proposed a “focus level” method for DAG, and a hierarchical ap-

proach suitable for tree structures is proposed in Meinshausen [81]. Both methods are

implemented in the Bioconductor package globaltest (Goeman and Oosting [44], Goe-

man et al. [46, 45]). Han et al. [50] also discussed false discovery control when test statistics

are correlated. Research on multiple corrections suitable for complex structures like GO is

still in high demand.

4.4.2.2 Other Sources of Bias

In addition to length bias corrections, we can also implement GOglm in other situations

such as corrections for total read counts of RNA-Seq data or corrections for intensity levels

in microarray (Young et al. [126]) in a similar manner. To obtain more accurate gene

expression levels, Zheng et al. [127] proposed a generalized-additive-model-based approach

for simultaneous bias corrections from different sources, including gene lengths, GC content

and dinucleotide frequencies. We believe that such bias corrections performed in regression

settings are promising, though the choice of appropriate regression tools depends on the

underlying problem of interest.

4.4.2.3 Annotation Quality

Even if the aforementioned statistical problems are properly addressed, the issue of anno-

tation quality still exists as a non-statistical problem. Rhee et al. [96] reported 14 types

of evidence supporting the association of GO identifiers to gene identifiers, with different

levels of experimental validation. Less than 5% of all annotations have been manually
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checked – which is considered as a reliable source of information. Over 95% of annota-

tions, however, are indirectly derived (i.e. inferred from electronic annotation), leading

to higher inaccuracy than those manually curated annotations (see Table 1 of Rhee et al.

[96]). Therefore, more efforts from biologists are needed to improve the annotation quality.

4.4.3 Fundamental Assumption

One fundamental assumption underlying length bias corrections is that there is no biological

cause for longer genes to be more differentially expressed, on average, than shorter genes.

This assumption is not statistically verifiable, but both Oshlack and Wakefield [87] and

Young et al. [126] cited evidence from microarray studies to support this assumption. If

there is a biological cause that violates this assumption, then its effect will not be fully

detected in GO enrichment analysis if length bias is corrected.

4.5 Conclusion

We discussed a simple and effective method for length bias corrections in the GO enrich-

ment analysis using logistic regression. We validated its effectiveness by analyzing real

and simulated RNA-Seq datasets. We also compared its performance with alternative en-

richment methods (e.g. GOseq) and examined the difference between the two approaches

via simulations. Explicitly modeling the gene length as a covariate in the logistic re-

gression framework helps to reduce length bias and enables flexible implementations and

straightforward interpretations. The use of continuous measures of DE avoids the sub-

jective specification of p-value thresholds. The method is flexible and applicable to local

enrichment analyses which account for the parent-child relationship of the GO structure.

making it a promising tool for enrichment analyses under different scenarios.
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4.6 Materials and Methods

4.6.1 Preprocessing of the Prostate Cancer Dataset

The prostate cancer data (Li et al. [69]) consist of seven samples: three from mock treated

prostate cancer cells and four from treated cancer cells. The data originally consisted of

49605 genes as annotated using Ensembl gene ID (ensGene) and NCBI Build 36.3 (hg18).

In order to directly compare GOglm to GOseq, we did not attempt to remap the reads to the

genome. We fetched gene lengths and mapped gene identifiers to GO terms from available

annotation Bioconductor packages. For example, we used the org.Hs.egGO2ALLEGS R

object in the Bioconductor annotation package org.Hs.eg.db to obtain mappings between

a given GO category and all its annotated Entrez Gene identifiers (Carlson et al. [22]). Gene

length information is also accessible from the Ensembl Project online. Descriptions of data

preparations can be found in the additional file of Young et al. [126].

The 49506 genes under study were first filtered by excluding genes with no fold changes.

Among the remaining 22743 genes, 12592 genes had GO annotations for a total of 13956

unique GO categories. In our GO enrichment analyses, we excluded 9162 categories

(∼69.8%) with fewer than 10 annotated genes from the final enrichment ranking list. Sta-

tistical and biological considerations for gene subsetting were mentioned in the Results and

Discussion sections, respectively.

4.6.2 Preprocessing of the Arabidopsis Dataset

The org.At.tairGO2ALLTAIRS R object in the Bioconductor annotation package org.At.tair.db

provides mappings between a GO category and all its annotated TAIR identifiers (Carlson

et al. [20]). We subsetted our dataset from a total of 6916 GO terms available in the
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database.

Testing a GO term’s relative enrichment requires knowledge of this term’s direct parental

term(s), and this information is available from the GO.db Bioconductor package (Carlson

et al. [21]). We found in our Arabidopsis dataset 3993 BP, 601 CC and 2322 MF terms

each having at least one annotated gene.

We excluded 2039 genes that had zero read counts in all samples, and discarded an

additional 909 genes with zero fold change. We further excluded 2504 genes without an-

notations, so that the original 26222 genes were subsetted into 20770 genes associated

with 6916 unique categories. Median transcript lengths for all genes were available. In

this example, we excluded categories with fewer than 4 genes (∼50%) and focused on 3851

categories for enrichment analysis.

Assessment of Differential Gene Expression

For ease of comparison with published results, in analyzing the prostate cancer data (Li

et al. [69]), we used edgeR (Robinson et al. [102]) with a common dispersion estimate to

obtain DE test p-values. For the Arabidopsis dataset, we used NBPSeq (Di et al. [31]) to

obtain DE test p-values. EdgeR and NBPSeq are both based on negative binomial models

for RNA-Seq read frequencies. The negative binomial model captures potential extra-

Poisson variation in RNA-Seq read frequencies between independent biological samples

using a dispersion parameter. Other methods based on negative binomial model include

the tagwise or trend options in edgeR, or the DESeq approach discussed in Anders and

Huber [3]. All of these methods use the same exact NB test (Robinson and Smyth [100])

for assessing DE, but differ in how they estimate the dispersion parameter as a function of

the mean frequency.
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4.6.3 Simulation I

We simulated a 10426 gene dataset. The genes were binned into 40 non-overlapping cate-

gories with the number of genes ranging from 101 to 1252. To keep the simulation simple

and focused on the issue of length bias, we simulated non-overlapping categories to avoid

correlated test statistics. In addition, moderate sizes of simulated categories provide ad-

equate statistical power in the enrichment analysis. Gene lengths (on the log scale) were

simulated according to a normal distribution with mean 6 and standard deviation 0.7 (sim-

ulated lengths ranged from 20 to 5867 base pairs). We assigned genes with the shortest

lengths to the first category, genes with the second shortest lengths to the second category,

and so on. The last category therefore contained the longest genes. After assigning genes

to categories, we added additional noise to the log gene length according a normal distri-

bution with mean 0 and standard deviation 0.2 so that there was overlap between gene

length distributions in different gene categories. This additional step was useful to avoid

potential convergence issues in the logistic regression.

We simulated RNA-Seq read counts according to negative binomial distributions for

12 biological samples divided into two groups, each of size 6. We specified the expected

values µ of read counts to be proportional to simulated gene lengths and the dispersion

parameter φ as a function of the mean 1.5µ−0.5. This dispersion model mimicked the one

estimated for the Arabidopsis data in Cumbie et al. [26]. We randomly designated 20% of

all genes as DE. The proportion of DE genes in each category varied from 14% and 26%

due to chance variations, but was independent of the gene length distribution. For the

DE genes, the mean values of read counts in one of the groups (randomly decided) was

less than that in the other group, and the expected log fold change (base 2) between the

two groups was 0.5. We performed DE tests using NBPSeq. The resulting p-values were

transformed into a significance measure using log(1 − log(p)) and used as one covariate in
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the logistic regression for testing category enrichment.

4.6.4 Simulation II

We simulated 40 gene categories with the same category sizes and gene length distributions

as in the first simulation. The baseline mean levels of simulated RNA-Seq reads were again

proportional to simulated gene lengths. However, this time we simulated six categories to

be enriched with DE genes. In each of these six categories, there were 15% of DE genes. The

remaining 34 categories had 10% of DE genes (randomly simulated among all genes, so the

actual number of DE genes in each of these 34 categories followed a binomial distribution

with probability 0.1). We assigned a constant log2 fold change of 0.5 to DE genes in the

non-enriched categories, but the log2 fold changes of DE genes in the six enriched categories

ranged from 0.5 to 1.0 at an increment of 0.1, resulting in varying degrees of DE among

these categories.

4.6.5 Software Information

The R codes implementing GOglm are available at the first author’s website:

http://people.oregonstate.edu/∼mig/Site/Research.html. GOglm conforms to the defini-

tion of Open Source as defined by the Open Source Initiative. We have licensed GOglm

under the GNU General Public License.
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5 General Conclusions

5.1 Summary of the Dissertation

As RNA-Seq has rapidly become the de facto technique in transcriptome profiling, appro-

priate statistical analyses on the high-throughput genomics data play a key role in making

meaningful biological conclusions. Although some insights from the microarray domain are

still helpful in RNA-Seq data analysis (at least conceptually), existing statistical method-

ologies developed for microarrays need to be revised or completely refined to accommodate

some unique characteristics in RNA-Seq data. In this dissertation, broadly speaking, we

focused on two stages in the RNA-Seq pipeline: evaluating the adequacy of negative bino-

mial regression/dispersion models for testing differentially expressed genes, and adjusting

for gene length bias in the subsequent downstream Gene Ontology enrichment analysis.

We also developed computational tools in R for implementing the proposed methodologies

and they have been actively maintained.

The negative binomial model has been widely adopted in the RNA-Seq community for

modeling read counts variability. However, no confirming answer has been given as to

whether the NB assumption is valid, and research on the adequacy of different NB dis-

persion models with varied complexity is also very limited. To fill this gap, we proposed

simulation-based goodness-of-fit tests with diagnostic plots for checking NB models’ ade-

quacy. We adopted the parametric bootstrap technique for constructing empirical quantiles

and obtaining the associated Monte Carlo p-value for a single gene, and used Fisher’s com-

bined probability test to evaluate the adequacy of NB dispersion models for multiple genes.

We have not found any inadequacies with the NB distribution so far in our investigations
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of real datasets, and NB dispersion models with different complexity offered varied levels

of lack-of-fit. The results served as a starting point for a more comprehensive evaluation

on power-robustness trade-offs for different NB dispersion models.

Given the goodness-of-fit test results (a p-value indicative of model fit), we further

developed a more direct approach for checking model adequacy by quantifying the resid-

ual variation on top of an underlying NB dispersion trend (fitted dispersion model). The

results were then used to simulate realistic RNA-Seq datasets for power-robustness analy-

ses, i.e., given the noise level estimated from the dataset and other controlling factors, we

compared several popular NB dispersion models by measures of true positives and false

discoveries, as well as their performances in terms of gene rankings. Given that the RNA-

Seq community is currently flooded with many approaches for modeling NB dispersions,

our proposed effective measure for quantifying residual variations sheds light on whether

we may have power gains by using dispersion-modeling approaches. Real-data-based sim-

ulation studies (across several species) also provided benchmarking investigations into the

power and robustness properties of NB dispersion models, which will benefit both users

and developers of these novel methods for DE tests.

From standard RNA-Seq protocols we know that a long gene is sequenced more of-

ten than a short gene, even though there is no difference between the number of mRNA

molecules. Unlike in microarray data analysis, this results in between-gene differences

arising from purely technical reasons. Hence, the transcript length in RNA-Seq studies

becomes an important factor that must be accounted for in certain analysis stages (e.g.,

gene-specific normalizations). For the downstream analysis of testing enriched GO cate-

gories which aims to relate the outcome of DE analysis to biological functions, the transcript

length becomes a confounding factor as it correlates with both the GO membership and

the significance of the DE test. We proposed to adjust for such bias using the logistic
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regression and incorporating the length as a covariate. The use of continuous measure of

DE also avoided the subjective specification of p-value thresholds adopted by contingency-

table-based approaches. After adjusting for the length covariate, we see from real and

simulated datasets that enriched categories no longer favor longer transcripts.

5.2 Future Work

Although RNA-Seq is the current state-of-the-art technology for transcriptome studies,

technical biases introduced from library preparation protocols, sequencing artifacts and

sources of variation from unmeasured or unmodeled factors are still considerable. Subse-

quent analyses are inevitably influenced by such detrimental effects from these heteroge-

neous factors. We believe that although some of the known technical biases can be reduced

as the technology advances in the future, there are still pressing demands on novel methods

which can provide improved biological accuracy and reproducibility.

Avoiding confounding between real effects and experimental artifacts is essential when

designing RNA-Seq experiments (e.g., preparing replicated samples several days apart

and/or by different personnel). Surrogate variable analysis (SVA; Leek and Storey [66])

techniques have been proposed as alternatives to explicitly modeling batch effects, and are

well-received in analyzing microarray experiments. The sva package (Leek et al. [67]) can

estimate surrogate variables regardless of whether the batch effects are known or unknown

(for removing known batch effects using ComBat, see Johnson et al. [57]). Any subsequent

analysis can include the estimated surrogated variables as covariates in the usual way.

However, because SVA is designed for symmetrically distributed data, it cannot be di-

rectly used for RNA-Seq read counts: some transformations are required to convert counts

into continuous-scaled data, for example, using the “voom” transformation from the limma
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package. A linear model with the primary variable and the set of surrogate variables can

be created, and the rest of the analyses follow the standard SVA procedures. There is no

previous work on applying SVA-like methods to RNA-Seq data, and we believe it is a rele-

vant alternative approach for reducing the dispersion noise (c.f. Chapter 3) and accounting

for the length bias in GO tests (c.f. Chapter 4).

Our current approach for quantifying residual variation in fitted models assumes a

common σ estimated for all genes combined. Some preliminary results have indicated that

dispersion noise levels are likely to vary across different expression levels. Therefore, as a

straightforward extension to the methods discussed in Chapter 3, a refined approach would

first stratify genes into K groups based on their relative frequencies, and then estimate σk

in each group for k = 1,⋯,K. This allows the possibility of fitting the most appropriate

dispersion model on genes within each region, so we may strike a better balance between

power gains (do not fit gene-wisely when a simpler model is sufficient) and robustness (more

flexible model for regions having larger variability). Based on what we’ve learned about

the pros and cons and model adequacy for each dispersion method (c.f. Chapter 2), this

approach seeks to borrow their strengths to achieve more appropriate dispersion estimates

after taking power and robustness into considerations.

The computational implementations for the methodologies discussed in each chapter

are in the form of three separated R packages, which facilitate producing automated anal-

ysis pipeline but may not be user-friendly to a broader audience. Open-source web-based

interactive applets are becoming more popular nowadays, with client-side applications tak-

ing advantage of end-users’ computing powers and providing them with greater control of

the data exploration and analysis processes. We have made some initial attempts on inter-

active visualization using the Shiny web framework (RStudio and Inc. [103]), and future

relevant works include development of dynamic visualization and analytical tools that not
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only automate the established analysis pipeline but also stimulate new biological insights.
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A Appendix (I): Description of the Earthquake Event Dataset

We consider an earthquake event dataset as an illustration on residual QQ plots and GOF

tests for NB regression in Section 2.3.1. The dataset (provided in the NBGOF package) con-

tains the frequencies of all earthquakes of a given magnitude (reported to one decimal place)

for magnitudes from 4.5 to 9.1, that occurred between January 1, 1964 to December 31,

2012 (Source: Composite Earthquake Catalog, Advanced National Seismic System, North-

ern California Earthquake Data Center (NCEDC), http://quake.geo.berkeley.edu/cnss/).

The empirical probability plots with GOF test results, based on a log-linear regression of

mean number of earthquakes on magnitude, are shown in Figure 2.2. Neither the NB2 nor

NBP model shows lack-of-fit.
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B Appendix (II): Parameter Specifications (Univariate Simulations)

We specify the parameters in the simulation studies in Section 2.3.3 (Table 2.1) as follows:

the mean is determined by µ = exp(X ′β) with the coefficient β = (15,−1.5). The design

matrix X takes an intercept and a covariate equally spaced from 4 to 8 of length n = 10,50

and 100. The resulting mean levels approximately range from 20 to 8100.

For the NB2 model fit: the NB2 responses are simulated under α0 = log(0.1), α1 = 0 and

φ = 0.1. The NB1 responses are obtained by simulating NB2 with α0 = log(0.5), α1 = −1,

and φ = 0.5/µ. The “NB2 plus outliers” responses are simulated with the same dispersions

as in NB2, except we randomly double 20% of responses (as outliers). The “NB2 plus

noise” responses are simulated with the same dispersions as in NB2, except φ is specified

as 0.5/µ ⋅ exp(G), where G ∼ N (0,1). The α in the variance µ + φµα is determined by

α = α1 + 2.

For the NBP model fit: the specifications are almost the same as in the NB2 model fit

above, except for the simulated NB2 data, we use α0 = log(0.05) so that φ = 0.05.
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C Appendix (III): Supporting Information S1 for Chapter 3

C.1 Access to the Datasets

Information for all the datasets we analyzed in this article can be accessed from the NCBI

website, using the GEO DataSets Advanced Search Builder. To obtain all the relevant

information for an interested species (e.g., experiment descriptions, raw/processed data

files, protocols and publications, etc.), we search in the “Organism” box and restrict the

scope of “expression profiling by high throughput sequencing” in the “Filter” box.

The following datasets in the SeqDisp package contain read counts for all the samples

in the original experiments: human5, human30, mouse, zebrafish and arabidopsis. For

the fruit.fly dataset, as indicated in the pasilla package vignette, we only include

read counts for seven samples. See SI Table C.1 for the accession numbers and sequencing

platforms for each of the datasets.

Table C.1: Additional information for RNA-Seq datasets analyzed in this article.

Organism Accession Number Platform

Homo Sapiens GSM1244809 – GSM1244816 Illumina HiSeq 2000
Mus Musculus GSM1143032 – GSM1143040 Illumina HiSeq 2000
Danio Rerio GSM1051294 – GSM1051301 Illumina HiSeq 2000
Arabidopsis Thaliana GSM951349 – GSM951360 Illumina HiSeq 2000
Drosophila Melanogaster GSM461176 – GSM461181 Illumina Genome Analyzer II

http://www.ncbi.nlm.nih.gov/gds/advanced
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C.2 Supplementary Figure for the Calibration Plot of σ

We show in SI Figure C.1 a calibration plot from the mouse dataset analyzed in the Results

section. We choose the true σ value at eight levels: 0.5, 0.7, 0.8, 0.9, 1.0. 1.1, 1.2 and 1.5,

and simulate the dispersion φij according to

log(φij) = log(φNBQ
ij ) + εi = α0 + α1 log(πij) + α2[log(πij)]2 + εi

where εi ∼ N(0, σ2) is the residual variation on top of a quadratic dispersion model with the

parameters αi, i = 0,1,2, estimated from the mouse dataset. At each level of σ, we use the

algorithm discussed in the Methods section to obtain three σ̂’s (by using different random

generating seeds), plot them in gray and highlight the median value in solid blue. We

then fit a quadratic curve to the eight points (i.e., median values), with a 95% prediction

interval superimposed in dashed curves. The σ̂ estimated from the mouse dataset is also

calculated, and the value is shown as a horizontal solid line. The intersection of the

fitted quadratic curve and the horizontal line (the solid red point) has its x coordinate

being the calibrated σ̂. Similarly, the intersections between the upper/lower bound of the

95% prediction interval with the horizontal line determine the associated 95% calibration

interval (CI) for the calibrated σ̂.

We only include the calibration plot for the mouse dataset as an illustration. Similar

plots for the rest of the datasets are not shown but are available upon request.
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Figure C.1: The calibration approach for estimating residual dispersion variation σ in
the mouse dataset. The simulated dispersions follow a quadratic trend (NBQ) which are
estimated from the mouse dataset (two groups), subset to 5,000 genes.
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C.3 Supplementary Figures for Mean-Dispersion Plots

In the main text, we showed the mean-dispersion plot in Figure 1 for the human dataset

(with sequencing depth of 30 million). Here we provide such mean-dispersion plots for the

mouse (SI Figure C.2), zebrafish (SI Figure C.3), arabidopsis (SI Figure C.4) and fruit fly

(SI Figure C.5) datasets. The left panels are for the control groups, and the right panels

are for the treatment groups.
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Figure C.2: Mean-Dispersion Plot of the Mouse RNA-Seq Dataset. The control (DCECM)
group with three biological replicates is shown on the left (right) panel.
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Zebrafish (Control)
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Figure C.3: Mean-Dispersion Plot of the Zebrafish RNA-Seq Dataset. The control (treat-
ment) group with four biological replicates is shown on the left (right) panel.
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Figure C.4: Mean-Dispersion Plot of the Arabidopsis RNA-Seq Dataset. The mock (DEX)
group with three biological replicates is shown on the left (right) panel.
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Fruit Fly (Control)
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Figure C.5: Mean-Dispersion Plot of the Fruit Fly RNA-Seq Dataset. The untreated
control (knockdown treatment) group with four (three) biological replicates is shown on
the left (right) panel.

D Appendix (IV): Supporting Information for Chapter 4

Link to Table S1: Complete GO ranking list by GOglm.

doi:10.1371/journal.pone.0046128.s001.

Link to Table S2: Complete GO ranking list by Ontologizer2 (PCU).

doi:10.1371/journal.pone.0046128.s002.

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0046128.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0046128.s002
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