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ABSTRACT

The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current

region of the Southern Ocean using theWeather Research and Forecasting (WRF)Model and the U.S. Navy

Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-

induced wind response is assessed from eight simulations with different subgrid-scale vertical mixing pa-

rameterizations, validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface

temperature (SST) observations on 0.258 grids. The satellite data produce a coupling coefficient of sU 5
0.42m s21 8C21 for wind to mesoscale SST perturbations. The eight model configurations produce coupling

coefficients varying from 0.31 to 0.56m s21 8C21. Most closely matching QuikSCAT are a WRF simulation

with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (sU 5 0.40m s21 8C21), and

a COAMPS simulation with a form of Mellor–Yamada parameterization (sU 5 0.38m s21 8C21). Model

rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind

stress, are similar to that based on sU. In all simulations, the atmospheric potential temperature response to

local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast,

the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300m.

The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent

eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the ab-

solute magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.

1. Introduction

Positive correlations of local surface wind anomalies

with sea surface temperature (SST) anomalies at oce-

anic mesoscales (10–1000 km) suggest that the ocean

influences atmospheric surface winds at these relatively

small scales. This is in contrast to the negative correla-

tions found at larger scales in midlatitudes (e.g., Mantua

et al. 1997; Xie 2004) that are interpreted as the atmo-

sphere forcing the ocean through wind-driven modula-

tion of surface heat fluxes and ocean mixed layer

entrainment (e.g., Frankignoul 1985; Cayan 1992). The

mesoscale correlations are based on measurements of

surface ocean winds by the SeaWinds scatterometer on

board the Quick Scatterometer (QuikSCAT), a micro-

wave radar instrument with a footprint size of ;35 km,

and satellite measurements of SST by passive micro-

wave and infrared radiometers (Chelton et al. 2004; Xie

2004; Small et al. 2008).

Motivated by the satellite observations of this ocean–

atmosphere interaction, a number of recent modeling

studies have addressed the response of the atmospheric

boundary layer to mesoscale SST variability (e.g., Small

et al. 2008, and references therein). Evaluation of

mechanisms for the boundary layer wind response have

centered largely on details of the relative roles of the

turbulent stress divergence and pressure gradient re-

sponses to spatially varying SST forcing. The pressure

gradient is driven by the SST-induced variability of
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planetary boundary layer (PBL) temperature and height,

and the overlying free troposphere. There are some dif-

ferences among previous modeling as to the relative roles

of these forcing terms in driving the boundary layer wind

response to SST. The primary goal of the present study is

to investigate the surface wind response to SST depend-

ing on the choice of the PBL mixing scheme. Song et al.

(2009) have previously found that the details of the PBL

mixing scheme can significantly affect the surface wind

response to SST perturbations.

The PBL turbulent mixing parameterizations in nu-

merical models are specifically designed to represent

subgrid fluxes of momentum, heat, and moisture through

specification of flow-dependent mixing coefficients.

Subgrid-scale mixing affects the vertical turbulent stress

divergence and pressure gradient, through vertical

mixing of temperature and regulation of PBL height and

entrainment. PBL parameterizations are especially im-

portant near the surface where intense turbulent ex-

change takes place on scales much smaller than the grid

resolution. For estimating the average SST-induced

wind changes, Song et al. (2009) and O’Neill et al.

(2010b) reported superior performance of a boundary

layer scheme based on Grenier and Bretherton (2001,

hereafter GB01) that was implemented in a modified

local copy of the Weather Research and Forecasting

(WRF) Model. The present study extends this model

comparison to evaluate the prediction of ocean surface

winds by a number of PBL schemes in the WRF atmo-

spheric model, as well as by the U.S. Navy Coupled

Ocean–Atmosphere Mesoscale Prediction System

(COAMPS) atmospheric model. It includes a new im-

plementation in WRF of the Grenier–Bretherton–

McCaa (GBM) PBL scheme (Bretherton et al. 2004),

which is an improved version of the GB01 scheme im-

plemented by Song et al. (2009) and O’Neill et al.

(2010b). For this comparison, we performed a series of

month-long simulations over the Agulhas Return Cur-

rent (ARC) region in the Southern Ocean, a region

characterized by sharp SST gradients and persistent

mesoscale ocean meanders and eddies. The simulations

are all based on the same SST boundary conditions,

specified from a satellite-derived product (Reynolds

et al. 2007). This region is far from land, thus avoiding

orographic effects that can confuse the interpretation of

wind response in coastal regions (e.g., Perlin et al. 2004).

Our general goal is to advance the understanding of

the atmospheric response to ocean mesoscale SST var-

iability. Particularly, we evaluate the role of different

PBL subgrid-scale turbulent mixing parameterizations,

and thereby the dynamics that they represent. First, we

assess the near-surface wind response to the small-scale

ocean features.We analyzemodels to identify important

mechanisms of PBL momentum and thermal adjust-

ment to the SST boundary condition. We also analyze

the vertical extent of the average SST influence on the

atmospheric boundary layer wind and thermal structure.

We evaluate metrics of eight different PBL parameter-

izations (six in the WRF Model and two in the

COAMPS model), with the objective of identifying how

differences between the schemes influence simulations

of surface winds.

2. Methods

a. Numerical atmospheric models and experimental
setup

The WRF Model is a 3D nonhydrostatic mesoscale

atmospheric model designed and widely used for both

operational forecasting and atmospheric research stud-

ies (Skamarock et al. 2005). Version 3.3 of theAdvanced

Research WRF (hereafter WRF), was used for the

present study simulations. The COAMPS atmospheric

model is based on a fully compressible form of the

nonhydrostatic equations (Hodur 1997), and its version

4.2 was used in the current research study. Of particular

importance for this study are the various PBL parame-

terizations available for these models, which are dis-

cussed in section 2b.

Numerical simulations with both models were con-

ducted on two nested domains centered over theARC in

the South Atlantic (Fig. 1). The area features numerous

mesoscale ocean eddies and meanders with scales of

a few hundred kilometers and associated local SST

gradients reaching 18C (100 km)21. This mesoscale

structure is superimposed on a large-scale meridional

SST gradient in the south Indian Ocean. The model

simulation and analysis period is July 2002, which is the

same month considered previously in the WRF simula-

tions by Song et al. (2009) and O’Neill et al. (2010b).

This winter month in the Southern Hemisphere was

characterized by several strong wind events associated

with synoptic weather systems that passed through the

area. Thus, the effects of mesoscale SST features are

investigated here are averaged over a variety of atmo-

spheric conditions. Domain settings are practically

identical in WRF and COAMPS. The outer domain has

75-km grid spacing extending 728 longitude by 338 lati-
tude. The nested inner domain has 25-km grid spacing

with spatial dimensions of 408 longitude by 178 latitude.
The vertical dimension is discretized with a scaled pres-

sure (s) coordinate grid with 49 layers, progressively

stretched from the lowest midlayer at 10m above the

surface up to about 18 km; 22 layers are in the lowest

1000m.
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We note that the 25-km grid resolution of our meso-

scale atmospheric model simulations is comparable to

the grid resolutions of global forecast models. Previous

studies have shown that the surface wind response to

SST in both the European Centre for Medium-Range

Weather Forecasts and the National Centers for Envi-

ronmental Prediction (NCEP) models is underestimated

by nearly a factor of 2 (Chelton andWentz 2005;Maloney

and Chelton 2006; Chelton and Xie 2010). The results of

this study therefore have relevance to the accuracy of

surface wind fields over the ocean in the global forecast

models.

The models were initialized at 0000 UTC 1 July and

integrated forward to 0000 UTC 1 August 2002, and

were forced at the lateral boundary with the global

NCEP Final Analysis (FNL)Operational Global Analysis

data on 1.08 3 1.08 grid, available at 6-h intervals. This is

the product from the Global Data Assimilation System

(GDAS) andNCEPGlobal Forecast System (GFS)model.

Atmospheric boundary conditions on the outer model

grid were updated every 6 h.

The SST boundary condition was updated daily in

each of the model simulations. We used SST fields from

the National Oceanic and Atmospheric Administration

(NOAA) version 2 daily optimum interpolation (OI)

analyses on a 0.258 grid (Reynolds et al. 2007) as the

lower boundary condition for the atmospheric model

simulations, and for estimation of the coupling co-

efficients in conjunction with QuikSCAT winds (see

section 3a). Beginning in June 2002, the OI SST analysis

combines two types of satellite observations, the Ad-

vanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E) andAdvancedVeryHigh

Resolution Radiometer (AVHRR), and includes a large-

scale adjustment of satellite biases with respect to the in

situ data from ships and buoys. AMSR-E retrieves SST

with a footprint size of about 50 km on a grid spacing

of 0.258 with coverage in all but raining conditions

(Chelton and Wentz 2005), whereas the AVHRR pro-

duces a 4-km gridded product, but only in clear-sky

conditions. Missing SST values in the interior of the

nested model domain that occur as a result of small is-

lands were interpolated using surrounding values. This

minor adjustment of the model’s topography to elimi-

nate small islands avoids orographic wind effects in the

models, and allows us to isolate the effect of mesoscale

SST forcing on the marine boundary layer.

The first day of model output during the spinup was

discarded. Model output from the subsequent 30 days

was saved at 6-hourly intervals and was used to derive

30-day averages of the variables of interest for the

analysis presented in this study. The month-long simu-

lation period and time-averaging statistics were suffi-

cient to obtain a robust statistical relationship between

the time-averaged SST and winds. Analysis of the sim-

ulations was carried out primarily using the model re-

sults from the inner domain.

b. Subgrid-scale parameterizations

1) PBL PARAMETERIZATIONS IN WRF
AND COAMPS

PBL schemes (also called boundary layer, turbulence, or

vertical mixing schemes) in atmospheric models provide

FIG. 1. Monthly average of satellite sea surface temperature (SST, 8C) for July 2002 from the

NOAA OI 0.258 daily product generated from measurements by the AMSR SST and the

AVHRR.Black rectangles outline theWRF outer and nested domains that have 75- and 25-km

grid spacing, respectively.MissingOI SST values in the interior of the nested domain that occur

as a result of small islands are interpolated for the model lower boundary conditions.
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a means of representing the unresolved, subgrid-scale

turbulent fluxes of modeled properties. The eight ex-

periments performed with the various widely used

boundary layer parameterization schemes considered

here that are available in the WRF and COAMPS

models are listed in Table 1: six schemes or their varia-

tions were run with the WRF Model, and two schemes

were run with the COAMPS model. Experiment names

are formed from the model name (WRF or COAMPS),

an underscore, and an acronym for the PBL scheme

according to the abbreviations given in Table 1.

Turbulent mixing schemes are based on a Reynolds

decomposition of the Navier–Stokes equations in which

the variables are partitioned into mean and fluctuating

components. For example, for property C and vertical

velocity w, the mean vertical flux is wC5wC1w0C0,
where w0 and C0 are the fluctuating departures from

the respective means w and C. The schemes often pa-

rameterize the vertical turbulent flux of any variable C

as proportional to the local vertical gradient (referred

to as the ‘‘local-K approach’’; Louis 1979), C0w0 5
2KC(›C/›z), where KC is a scalar proportionality pa-

rameter with units of velocity times distance. A coun-

tergradient term is added in some PBL schemes to

account for the possibility of turbulent transport by

larger-scale eddies that are not dependent on the local

gradient.

Four of the WRF experiments and both COAMPS

experiments in the present study use PBL parameteri-

zations based on the so-called Mellor–Yamada type 1.5-

order turbulence closure, known as level-2–2.5 schemes

(Mellor and Yamada 1974, 1982). The term order clo-

sure refers to the highest order of a statistical moment of

the variable for which prognostic equations are solved in

a closed system of equations (Stull 1988, chapter 6, see

his Table 6-1). In a 1.5-order closure, some but not all

the second-moment variables are predicted, and others

are parameterized with a diagnostic equation. For most

of the 1.5-order schemes considered here, an additional

prognostic equation is solved for the turbulent kinetic

energy (TKE), defined as q2/2, where q2 5 u02 1 y02 1
w02, but the other second moments (the Reynolds fluxes

of the form w0C0) are parameterized using the local

gradient approach, as in a first-order closure. The tur-

bulent eddy transfer coefficients KH,M,q are further pa-

rameterized using the predicted q value as follows:

KM,H,q 5 lqSM,H,q , (1)

where l is the master turbulent length scale and SM,H,q is

a dimensionless stability function. The subscripts M, H,

and q in Eq. (1) indicate momentum, heat, and TKE,

respectively; and K is the eddy diffusivity for each spe-

cific variable. The dimensionless functions SM,H,q in

general may depend on stability and wind shear param-

eters, or may be set to constant values. Here ‘‘Mellor–

Yamada type’’ refers to a variety of PBL subgrid-scale

mixing schemes developed along the lines of Mellor and

Yamada (1974) that parameterize turbulent eddy transfer

coefficients in the form of Eq. (1).

Different choices for (or representations of) q, l, and

SM,H,q will result in different dependencies of the eddy

transfer coefficients on the resolved model state, and

different behaviors of the corresponding model bound-

ary layers. A general form of the prognostic equation for

the TKE is the following:

D

Dt

�
q2

2

�
2

›

›z

�
Kq

›

›z

�
q2

2

��
5Ps 1Pb 2 « , (2)

where D/Dt is the material derivative following the re-

solved motion; horizontal turbulent diffusion is ne-

glected; Ps and Pb are shear production and buoyant

production of turbulent kinetic energy, respectively; and

TABLE 1. List and summary of the eight primary numerical experiments conducted for this study. The name of each experiment

combines the name of the atmospheric model (WRForCOAMPS) and name of the boundary layer scheme used. In theWRF v3.3 release,

the MYJ PBL scheme had to be used along with the ‘‘Eta similarity’’ surface layer scheme (sf_sfclay_physics 5 2). In the

WRF_MYJ_SFCLAY case the MYJ PBL was adapted to be used along with the ‘‘MM5 similarity’’ surface scheme (sf_sfclay_physics5
1). See section 2b(2) for other details.

Expt name PBL-type scheme PBL scheme reference Surface flux scheme (sf_sfclay_physics)

WRF_GBM 1.5 order closure GB01; Bretherton et al. (2004) MM5 similarity (1)

WRF_MYJ 1.5 order closure Janji�c (1994, 2002) Eta similarity (2)

WRF_MYJ_SFCLAY 1.5 order closure Janji�c (1994, 2002) MM5 similarity (1)

WRF_MYNN2 1.5 order closure Nakanishi and Niino (2006) MM5 similarity (1)

WRF_UW 1–1.5 order closure* Brethernon and Park (2009) MM5 similarity (1)

COAMPS_ipbl 5 1 1.5 order closure Mellor and Yamada (1982); Yamada (1983) Louis (1979), COARE-2.6 (water)

COAMPS_ipbl 5 2 1.5 order closure Mellor and Yamada (1982); Yamada (1983) Louis (1979), COARE-2.6 (water)

WRF_YSU Nonlocal K Hong et al. (2006) MM5 similarity (1)

* See notes in section 2b(1) on the WRF UW PBL scheme details.
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« is the dissipation rate. In some schemes, Eq. (2) is re-

placed, or partly replaced, by an assumption of

production-dissipation balance, (Ps 1Pb)/«5 1. For

example, the GBM PBL scheme in WRF calculates

TKE prognostically using Eq. (2) to obtain q, but as-

sumes production-dissipation balance [after Galperin

et al. (1988), their Eqs. (24)–(25)] for the purpose of

computing stability functions. This restricts the de-

pendence of SM,H on the wind shear, resulting in a sim-

pler but more robust quasi-equilibrium model.

Our implementation of the GBM PBL scheme in

WRF v3.3 follows Song et al. (2009), with some minor

code corrections. It is publicly distributed as an option in

WRF beginning with version 3.5. TheMYJ PBL scheme

in WRF v3.3 follows Eqs. (2.5), (2.6), (3.6), and (3.7) in

Janji�c (2002), employing an analytical solution to de-

termine SM,H , with a particular choice of closure con-

stants and dependencies on both static stability and wind

shear.

The Mellor–Yamada–Nakanishi–Niino (MYNN) PBL

scheme in WRF v3.3 uses a revised set of Mellor and

Yamada (1982) closure constants, and is available in the

WRFModel as a level-2.5 scheme, and a level-3 scheme

(i.e., second-order turbulence closure). For the consis-

tency in comparison with other schemes of similar clo-

sure type, only the 2.5-level scheme has been used in our

study, which we refer to as MYNN2.

The University of Washington (UW) PBL scheme in

WRF v3.3 is a heavily modified version of the GB01

approach that is intended to improve its numerical sta-

bility for the use in climate models with longer time

steps; it adapts an approach where TKE is diagnosed,

rather than being prognosed, which may qualify it as

lower than a 1.5-order scheme. The GBM and UW PBL

schemes in WRF v3.3 also include an explicit entrain-

ment closure for convective layers that modifies the

expression for KM.

Both COAMPS PBL schemes (set in the COAMPS

code by parameters ipbl 5 1 and 2) are 1.5-order, level-

2.5 schemes that are also based closely on Mellor and

Yamada (1982) and Yamada (1983). These schemes use

Eqs. (16) and (17) in Yamada (1983) to determine the

stability functions based on the flux Richardson number

with imposed limits. The COAMPS PBL option ipbl5 2

includes some improvements and code corrections, and

is now the recommended option.

The stability function Sq for the TKE diffusivity varies

widely between the schemes.Mellor andYamada (1982)

and Janji�c (2002) used the constant value Sq 5 0:2, but

the WRF MYJ and COAMPS schemes use the larger

constant values Sq 5 5 and Sq 5 3, respectively. The

GBM and WRF v3.3 MYNN PBL schemes instead

set Sq 5 5SM and Sq 5 3SM, respectively; the latter

differs slightly from the original MYNN Sq 5 2SM from

Nakanishi and Niino (2004).

The representations of the turbulent master length

scale l, and the boundary layer height if it is included in

calculations of the length scale, are different in each of

the PBL schemes as well. Additionally, each numerical

implementation of the PBL parameterization may con-

tain specific restriction conditions or tuning parameters

in order to ensure numerical stability, and may or may

not include a countergradient term. It is thus apparent

that different PBL schemes based on the same Mellor–

Yamada 1.5-order closure approach can perform dif-

ferently owing to numerous implementation details.

The eighth mixing parameterization considered here,

referred to as the Yonsei University (YSU) PBL scheme

in WRF v3.3, is not a 1.5-order Mellor–Yamada-type

scheme. It is based on Hong and Pan (1996) and Hong

et al. (2006), using a nonlocal-K approach (Troen and

Mahrt 1986). The scheme diagnoses the PBL height,

considers countergradient fluxes, and constrains the

vertical diffusion coefficientKM,H to a prescribed profile

over the depth of the PBL:

KM 5kwsz
�
12

z

h

�2
, (3)

where k is the von Kármán constant (0.4), z is the height
from the surface, ws is the mixed-layer velocity scale

depending on the friction velocity and the wind profile

function evaluated at the top of the mixed layer, and h is

the boundary layer height. The eddy diffusivity for

temperature and moisture are computed from KM in

Eq. (4) using the Prandtl number. Eddy diffusivity K

is calculated locally in the free atmosphere above the

boundary layer, based on mixing length, stability func-

tions, and the vertical wind shear. TheYSUPBL scheme

also includes explicit treatment of entrainment pro-

cesses at the top of the PBL.

Distinctions between the WRF and COAMPS atmo-

spheric model solutions can also be expected from dif-

ferences in other physical parameterizations (e.g.,

convective schemes), numerical discretization schemes,

horizontal diffusion schemes, lateral boundary condi-

tion, and other factors not related to the choice of the

vertical mixing scheme. For example, the differences in

vertical discretization in models affect the calculations

of vertical gradients, and consequently, the near-surface

properties and lower boundary conditions for the TKE

equation.

2) SURFACE FLUX SCHEMES

The lower boundary condition for fluxes of momen-

tum, heat, and moisture between the lowest atmosphere

4288 MONTHLY WEATHER REV IEW VOLUME 142



level and the surface are estimated by surface flux

schemes. The PBL mixing schemes are sometimes con-

figured and tuned to be run with specific surface flux

schemes. A total of three different surface flux schemes

were used in the simulations for this study (Table 1). The

two surface flux schemes used in the WRF simulations

are both based on Monin–Obukhov similarity theory

(Monin and Obukhov 1954); they are referred to as

‘‘MM5 similarity’’ (sf_sfclay_physics 5 1 in Table 1), or

‘‘Eta similarity’’ (sf_sfclay_physics 5 2). The fifth-

generation Pennsylvania State University–National

Center for Atmospheric Research (NCAR) Mesoscale

Model (MM5) similarity scheme uses stability functions

from Paulson (1970), Dyer and Hicks (1970), and Webb

(1970) to compute surface exchange coefficients for

heat, moisture, and momentum; it considers four sta-

bility regimes following Zhang and Anthes (1982), and

uses the Charnock relation to relate roughness length to

friction velocity over water (Charnock 1955). The Eta

similarity scheme is adapted from Janji�c (1996, 2002),

and includes parameterization of a viscous sublayer over

water following Janji�c (1994); the Beljaars (1995) cor-

rection is applied for unstable conditions and vanishing

wind speeds. The COAMPS model uses a bulk scheme

for surface fluxes following Louis (1979) and Uno et al.

(1995); surface roughness overwater follows theCharnock

relation; and stability coefficients over water are modi-

fied tomatch the CoupledOcean–Atmosphere Response

Experiment version 2.6 (COARE2.6) algorithm (Fairall

et al. 1996; Wang et al. 2002).

To investigate the influence of the differences be-

tween the surface flux schemes, we modified the original

MYJ PBL scheme in WRF to be used with the same

surface flux scheme as the GBM PBL scheme; this

simulation was named WRF_MYJ_SFCLAY, and is

identical to WRF_MYJ except for the different surface

flux scheme.

c. Observations

Satellite observations of vector winds from the mi-

crowave scatterometer on board the QuikSCAT satel-

lite on a 0.258 grid in rain-free conditions were used for

this study (version 4; Ricciardulli and Wentz 2011). All

satellite surface wind measurements over the ocean,

including the QuikSCAT winds used here, are cali-

brated to a reference wind called the equivalent neutral

stability (ENS) wind (Ross et al. 1985; Liu and Tang

1996). For consistency with the QuikSCAT data prod-

uct, the 6-hourly surface winds from the model simula-

tions were converted to model 10-m ENS winds prior to

time averaging. The ENS wind is a derived quantity that

is defined to be the 10-m wind that would be associated

with a given surface stress under reference (neutral)

stability conditions. The ENS wind U10m,N considered

here is the model 10-m ENS wind, computed as

U10m,N 5
u*
k

�
ln

10

z0

�
, (4)

where the friction velocity u* and roughness length (in

meters) z0 are taken from each model’s surface flux

parameterization at each output interval, and k 5 0.4 is

the von Kármán constant. The ENS wind response to
mesoscale SST features has been shown from in situ
buoy observations to be 10%–30% stronger than the

response of the actual 10-m winds (O’Neill 2012). For

the ARC region considered here, the difference is about

12% [see Fig. 12 of Song et al. (2009)]. The SST fields

used both for the empirical satellite-based estimates of

surface wind response to SST (see section 3a) and for the

surface boundary condition in each of the model simu-

lations are the NOAA version 2 daily OI SST on a 0.258
grid (Reynolds et al. 2007).

An important distinction between the observed and

modeled ENS winds is that QuikSCAT measures the

wind relative to the moving sea surface whereas the

models are intended to be the absolute winds relative to

a fixed coordinate system. Since surface velocity in the

ocean is very nearly geostrophic, the magnitude of the

surface ocean velocity is approximately proportional to

the magnitude of the local SST gradient. Surface cur-

rents are, therefore, approximately in quadrature with

the SST field. Because of this orthogonality and the

generally much smaller magnitudes of surface currents

compared with surface wind speeds, the distinction be-

tween relative winds and absolute winds has little effect

on the coupling coefficient for wind speed that is the

primary metric used in this study to assess the SST in-

fluence on surface winds (see section 3a).

d. Spatial filtering

A two-dimensional spatial high-pass filter was ap-

plied to the observed andmodeled fields to separate the

mesoscale signal from the larger-scale signal. The filter

used here is the quadratic loess smoother developed by

Cleveland and Devlin (1988) (see also Schlax and

Chelton 1992), which is based on locally weighted

quadratic regression. ENS winds or wind stresses and

SST were processed using a loess 2-D high-pass filter

having an elliptical window with a half-span of 308
longitude 3 108 latitude; it is similar to the filter pa-

rameters used in Song et al. (2009) study. These filter

parameters result in half-power filter cutoffs of 308
longitude 3 108 latitude [see Fig. 1 of Chelton and

Schlax (2003)]. The high-pass-filtered fields are re-

ferred to here as perturbations.
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To mitigate the edge effects on the loess filter window

near the boundaries of the nested grid of the inner do-

main of themodels, the filtering was done over the entire

model domain using model output from both the nested

and the outer grid. Data from the outer model domain

were interpolated onto a 0.258 grid outside of the nested

domain. The resulting perturbation fields were analyzed

in the region of the nested grid only.

With the spatial high-pass filtering applied to the data,

regions of strong SST gradients, and, hence, strong

surface ocean currents, correspond to regions of small

SST perturbations. As noted in the previous section, the

distinction between the relative wind measured by

QuikSCAT and the absolute wind simulated by the

models consequently has little effect on the wind speed

response to mesoscale SST perturbations estimated

from the observed and model winds as described in

section 3a.

Calculations of the derivative fields, such as ENSwind

divergence and vorticity, crosswind and downwind SST

gradients, and wind stress curl and divergence, were

performed as follows. The instantaneous derivative

fields were computed from 6-h output model wind fields.

In the case of the QuikSCAT data, the derivative wind

fields were computed on a swath-by-swath basis. These

instantaneous fields were then averaged over the 30 days

and processed using the loess filter with half-span pa-

rameters of 128 longitude3 108 latitude. Filtering is less
important for the derivative fields since the differentia-

tion is a filter itself, and a smaller filter window could be

used. For these derivative variables, the coupling co-

efficient is not strongly dependent on the precise choice

of half-power filter cutoffs for the high-pass filtering

(O’Neill et al. 2012).

3. Results

a. Observed coupling coefficients

As the primary metric for estimating air–sea coupling,

we adopt the wind speed coupling coefficient sU, which

measures the surface wind speed response to SST per-

turbations. The coefficient sUwas computed as the slope

of a linear regression of bin-averaged 30-day mean ENS

10-m wind perturbations on 30-day mean SST pertur-

bations. The SST perturbations were bin averaged with

0.28C bin width; mean wind perturbations and their

standard deviations were computed for each SST bin.

The wind speed coupling coefficient is simple and has

the additional advantage of being relatively invariant to

seasonal and geographical variations of the background

wind field. The coefficient for wind stress magnitude

response to SST perturbations (sstr) is also a widely used

quantitative estimate of air–sea coupling. Despite the

quadratic dependence of wind stress on the wind speed,

the wind stress and wind speed coupling coefficients

both exhibit approximately linear dependence on the

SST perturbations (O’Neill et al. 2012). These coupling

coefficients are thus qualitatively similar, but the cou-

pling coefficient for the wind stress magnitude varies

seasonally and geographically because it depends on the

background wind speed (O’Neill et al. 2012).

The resulting coupling coefficients for the

QuikSCATENSwinds of sU5 0.42m s21 8C21, and sstr5
0.022Nm22 8C21 for the month of July 2002 (Figs. 2a,b,

top right; see Table 3) are very similar to 7-yr estimates

for the Agulhas Return Current region obtained by

O’Neill et al. (2012) who report values of 0.44m s21 8C21

and 0.022Nm22 8C21.

The wind and wind stress responses to mesoscale SST

variability modify not only the magnitude of wind and

stress, but their directions as well (O’Neill et al. 2010a),

which are not reflected in the coupling coefficients for

scalar wind speed and wind stress magnitude. Consistent

wind direction changes of approximately 108 are ob-

served across midlatitude SST fronts from scatterometer

wind fields. Spatial variations in these wind direction

perturbations produce surface divergence and curl per-

turbations that, while pronounced, are surpassed by the

contributions from spatial wind speed variations. Satel-

lite observations have previously revealed strong cor-

respondences between wind and wind stress derivative

fields and SST derivative fields, and the coupling co-

efficients for derivative fields have been widely used

to assess SST influence on the overlying wind field

(Chelton et al. 2001; O’Neill et al. 2005; Chelton et al.

2004, 2007; Haack et al. 2008; Song et al. 2009; Chelton

and Xie 2010; O’Neill et al. 2010a; O’Neill et al. 2012).

Dynamically, the SST influence on wind stress curl is

important because the wind stress curl affects ocean

circulation through ocean Ekman layer divergence or

convergence. Themagnitudes of the curl and divergence

of vector winds and wind stress associated with meso-

scale SST gradients are found to be comparable to the

magnitudes of the basin-scale average curl and di-

vergence (Chelton et al. 2004; O’Neill et al. 2003, 2005;

Chelton et al. 2007). The two-way coupling between the

ocean mesoscale SST perturbations and atmospheric

wind could thus have important effects on upper ocean

dynamics and circulation.

For completeness and for comparison with the

above-noted previous studies that have assessed ocean–

atmosphere coupling on oceanic mesoscales based on

derivative wind fields (e.g., Chelton et al. 2004; O’Neill

et al. 2010a), we present four additional coupling co-

efficients that measure the wind and stress responses to
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FIG. 2. (a) (top left) July 2002 average of QuikSCAT 10-m ENS wind perturbations

(color) and satelliteAMSR-E/ReynoldsOI SSTperturbations (contourswith an interval of

18Cwith the zero contour omitted and negative contours shown as dashed lines). (top right)

The coupling coefficient sU estimated as a linear regression slope (red line) of wind per-

turbations bin averaged on SST perturbations (black dots); the shaded gray areas show61

standard deviation of wind perturbation for each SST bin. Blue lines indicate the number of

occurrenceswithin eachperturbation SSTbin. Estimates include SSTperturbations for bins

ranging from approximately238 to138C that contain.50 data points. (middle row)As in

(top row), but for ENS wind curl (vorticity)–crosswind SST gradient perturbation fields;

contour intervals of SST gradients are 18C (100km)21, with negative contours dashed and

the zero contour omitted. The coupling coefficient sCu is labeled in (right). (bottom row)As

in (middle row), but for ENS wind divergence–downwind SST perturbation fields; the

coupling coefficient sDu is labeled in (right). (b) (top row) As in (a) (top row), but for

QuikSCATwind stressmagnitude–SSTperturbationfieldswith the corresponding coupling

coefficient labeled sstr in (right). (middle row)As in (a) (middle row), but for theQuikSCAT

wind stress–crosswind SST gradient perturbation fields with the coupling coefficient

labeled sCstr in (right). (bottom row)As in (middle row), but for wind stress divergence–

downwind SST perturbation fields with the coupling coefficient labeled sDstr in (right).
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SST using spatial derivatives: 10-m ENS wind curl

(vorticity) and crosswind SST gradient (sCu); 10-m ENS

wind divergence and downwind SST gradient (sDu);

wind stress curl and crosswind SST gradient (sCstr); wind

stress divergence and downwind SST gradient (sDstr).

(The values of these coupling coefficients are shown in

Fig. 2 and Table 3.)

As noted in section 2c, QuikSCAT measures the rel-

ative wind (the difference between surface vector wind

and surface ocean velocity) while the models estimate

absolute wind, but this distinction has little effect on the

coupling coefficient sU estimated from QuikSCAT or

the models since the surface ocean velocity field is in

quadrature with the SST field. For the same reason, the

distinction between relative and absolute wind has little

effect on the coupling coefficient sstr for wind stress

magnitude. Moreover, because surface currents in the

ocean are very nearly geostrophic and are, therefore,

nondivergent, the difference between relative and ab-

solute currents also has little effect on the divergence

coupling coefficients sDu and sDstr.

On the other hand, since surface ocean velocity is

approximately proportional and perpendicular to the

SST gradient and the SST-induced wind and wind stress

curl are both approximately proportional to the cross-

wind SST gradient, the curl coupling coefficients sCu and

sCstr are more sensitive to the distinction between rela-

tive and absolute winds. Based on geostrophic surface

currents estimated from a combination of altimetry

(Ducet et al. 2000) and the mean sea surface from the

Gravity Recovery and Climate Experiment (GRACE;

Rio and Hernandez 2004; Rio et al. 2005), we estimate

that the coupling coefficient for the vorticity of absolute

winds after taking surface currents into account is

roughly 10% larger than the coupling coefficient for the

vorticity of relative winds (not shown). The effects of

surface currents on the coupling coefficient for the curl

of the stress from relative versus surface winds are

similar. Since the surface ocean velocity field is not

known accurately over theARC region considered here,

it is not possible to adjust the QuikSCAT winds to ob-

tain absolute winds for comparison with the model

winds. It must, therefore, be kept in mind that compar-

isons between the curl coupling coefficients estimated

from QuikSCAT winds and the model winds are af-

fected to some degree by surface ocean currents. This

issue could be resolved by running the mesoscale at-

mospheric models in a fully coupled configuration,

which would enable the calculation of relative winds

from the models that would be directly comparable to

the winds measured by QuikSCAT. Coupled simulations

are beyond the scope of the present study. Figures 2a and

2b demonstrate high visible correspondence between

spatially high-pass-filtered fields of monthly average

quantities of observed wind/wind stress derivatives and

SST derivatives (left columns). The approximately lin-

ear relationships between the wind response in different

SST bins justify the use of the coupling coefficient ob-

tained by linear regression as the primary metric con-

sidered here for model representation of SST influence

on surface winds (right columns, see the figure caption

for details).

b. Model surface winds and coupling coefficients

1) MEAN WINDS

The study period of July 2002 was characterized by

strong austral winter westerly winds and several strong

synoptic weather systems propagating eastward through

the area. The monthly averages of ENS 10-m winds

(Fig. 3, shaded) indicate broad similarity between

models and observations, but with some notable differ-

ences. Particular simulations vary in wind strength and

in details of spatial structure of the average wind fields.

The three WRF simulations using different Mellor–

Yamada-type schemes (GBM, MYNN2, and UW) and

the WRF_YSU scheme (refer to Table 1) simulate the

stronger wind in the eastern part of the domain, in

agreement with QuikSCAT. The other four simulations

all underestimate the winds and show less spatial vari-

ability. The strongest wind in the domain is found in the

east rather than aligned with the strongest meridional

gradient of SST along 428S in Fig. 1. We will later assess

spatial variability of the surface winds in response to

underlying mesoscale SST changes.

2) SPATIAL SCALES OF VARIABILITY

Zonal power spectral density (PSD) estimates of

mean July 2002 SST perturbations and wind perturba-

tions (Fig. 4) show a small peak in both variables at

wavelengths near 300 km (in the middle of the oceanic

mesoscale band). The broad peak at wavelength scales

of about 1000 km (close to the synoptic scale) arises

from attenuation of power at longer scales by the spatial

high-pass filtering applied to the wind and SST fields

(see section 2d). The WRF_GBM simulation is in

better agreement with QuikSCAT in the synoptic-to-

mesoscale range (i.e., for wavelengths of ;200 km and

greater). The COAMPS simulation with ipbl 5 2 un-

derestimates the PSD at wavelengths between 500 and

1000 km. Other models tend either to overestimate or

underestimate the PSD at all scales, except for

WRF_YSU, which is close to the QuikSCAT estimates

at about 400-km wavelength. With the major spectral

peak found near 300 km for both wind and SST pertur-

bations, the model resolution of the nested domain with
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25-km grid boxes appears to be adequate enough to

capture the important features.

3) WIND SPEED–SST COUPLING COEFFICIENTS

As in all previous studies, the mesoscale variability of

the average ENS 10-mwind speed and SST fields (Fig. 5)

indicates that warm SST perturbations are consistently

aligned with perturbations of stronger wind speed.Wind

speed is thus higher over warmer water and lower over

colder water. Visual inspection of the amplitudes of the

maximumandminimumwind speed perturbations reveals

that WRF_MYNN2 and WRF_UW both overestimate

the amplitudes while WRF_MYJ underestimates them.

WRF_GBM visually agrees best with QuikSCAT, with

COAMPS_ipbl 5 2 only slightly smaller in amplitude.

Comparison of the coupling coefficients obtained by

linear regression of the time-mean ENS wind speed and

SST perturbations for QuikSCAT and the models (Fig. 6)

confirms the visual impressions summarized above:

WRF_GBM produced sU 5 0.40ms21 8C21, the value

closest to the QuikSCAT estimate (0.42ms21 8C21), fol-

lowed by COAMPS ipbl 5 2, COAMPS_ipbl 5 1, and

WRF_YSU (0.38, 0.36, and 0.35ms21 8C21, respectively).

Excessively large sU resulted for WRF_MYNN2 and

WRF_UW (0.56 and 0.53m s21 8C21, respectively),

and the weakest sU 5 0.31m s21 8C21 resulted for

WRF_MYJ.

To test whether differences between the experiments

could be attributable to the different surface flux

scheme, we replaced the ‘‘Eta similarity’’ surface scheme

in WRF_MYJ with the ‘‘MM5 similarity’’ surface flux

scheme that is similar to what is used inWRF_GBMand

other models (refer to Table 1). The simulation with this

modification, referred to as WRF_MYJ_SFCLAY,

slightly increased the sU from 0.31 to 0.34m s21 8C21,

FIG. 3. The July 2002 mean 10-m equivalent neutral stability (ENS) wind speeds (m s21), over the model nested domain area, from

QuikSCAT v4 observations and the eight model simulations as indicated in the bottom-left corner of each panel. QuikSCAT winds

included 1.258 31.258 smoothing with a loess filter.

FIG. 4. Power spectral densities computed for the nested domain

area from the spatially high-pass-filtered monthly mean SST (the

thick gray line, with scale defined by the right y axis), and ENS 10-m

winds (with scale defined by the left y axis). Spectral density esti-

mates were computed for individual latitudinal bands within the

nested domain and then averaged. Results from six out of eight

model simulations listed in Table 1 are shown. Results from the

simulations WRF_MYJ_SFCLAY and COAMPS_ipbl1 were rel-

atively similar to WRF_MYJ and COAMPS_ipbl2, correspond-

ingly, and were omitted to avoid clutter.
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which is still almost 20% smaller than the QuikSCAT

estimate. Wind stress and surface flux differences from

the WRF_MYJ_SFCLAY simulation (not shown) in-

dicate that theMM5 similarity surface scheme was more

sensitive to the local SST changes, consistent with higher

coupling coefficient found for WRF_MYJ_SFCLAY.

An additional test was performed for the WRF_UW

simulation by including the Zhang–McFarlane cumu-

lus parameterization (cu_physics 5 7; Zhang and

McFarlane 1995) and the shallow convection scheme

(shcu_physics 5 2; Bretherton and Park 2009), both

adapted from the Community Atmosphere Model

FIG. 5. The July 2002 averages of 10-m ENS wind perturbations (color), and Reynolds OI SST perturbations (contours), similar to the

top-left panel of Fig. 2a. Wind speed perturbations are shown from the (top left) QuikSCAT satellite wind product (v4) with 1.258 3 1.258
smoothing with a loess filter; (other panels) the eight model simulations (WRF v3.3 or COAMPS) as indicated, with various turbulent

mixing schemes.

FIG. 6. Coupling coefficients sU (labeled as ‘‘s’’ in each panel) between the ENS 10-m wind speed and SST perturbation fields shown in

Fig. 5, as in the top-right panel of Fig. 2a.
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(CAM), as was theUW_PBLmixing scheme itself.While

inclusion of these physical options has been shown to work

well together in CAM (R. J. Small 2013, personal com-

munication), they resulted in only a slight reduction of

sU5 0.51ms21 8C21 compared to 0.53 inWRFwithout the

cumulus parameterization and shallow convection scheme.

We also tested one additional vertical mixing scheme

that is available in WRF v3.3, the nonlocal-K profile

GFS PBL scheme (Hong and Pan 1996) that is a pre-

decessor of the YSU PBL scheme (Hong et al. 2006),

over which the YSU PBL has been shown to be a notable

improvement. GFS PBL yielded a coupling coefficient of

only sU 5 0.23ms21 8C21. Because it produced the

weakest coupling coefficient among all of the experi-

ments, the GFS PBL scheme was not considered for

further analysis. Weakness of the GFS PBL perfor-

mance and limitations of the YSU PBL schemes are

likely due to these schemes’ constraint of the eddy vis-

cosity and diffusivity profiles to a specific shape within

the boundary layer. The importance of the vertical

profiles of eddy mixing coefficients for surface wind

prediction is discussed in the text in section 3c(2).

4) RELATION OF THE LARGE-SCALE WIND TO

MESOSCALE WIND SPEED–SST COUPLING

Because of the significant differences among themean

wind speed fields from the eight model simulations and

among their mesoscale wind–SST coupling coefficients,

we investigated the possibility that the mesoscale sta-

tistics were influenced by differences in the large-scale

background winds. We found that strong domain-mean

ENS 10-m winds in the simulations do not imply strong

mesoscale wind variability. For example, both COAMPS

simulations produced reasonable coupling coefficients

(Fig. 6), but underestimated the mean wind speed

(Fig. 3).

In an attempt to separate the large-scale and meso-

scale contributions to the total wind in the models, the

total 30-day average wind speed and SST fields (U, T)

were partitioned into spatial means over the entire do-

main (and) and two spatially variable components,

large-scale variations (hUi and hTi), and mesoscale

perturbations (U 0 andT 0), where the last two are defined
by the half-power filter cutoffs of the two-dimensional

loess smoother. The spatial covariance of the time-mean

speed and SST, cov(U, T), can then be written as

cov(U,T)5 (U2U)(T2T)

5 (hUi1U0 2U)(hTi1T 0 2T) . (5)

After carrying out the multiplication in the above

equation, rearranging the resulting nine terms, and noting

that small-scale averages (U 0, T 0) over the entire do-

main are numerically negligible, the covariance in Eq.

(5) is closely approximated by four individual compo-

nents as follows:

cov(U,T)’ cov(hUi, hTi)
I

1 cov(hUi,T 0)
II

1 cov(U0, hTi)
III

1 cov(U0,T 0)
IV

. (6)

The left-hand side of Eq. (6) is the spatial covariability

of the temporal mean quantities. Term I on the right-

hand side (rhs) is the covariance of large-scale (low-pass

filtered) U and T fields. The cross terms II and III

evaluate the covariability of a large-scale of one variable

with the mesoscale of the other variable. Term IV rep-

resents the mesoscale covariability of the wind and SST

that is proportional to the regression slope sU. This de-

composition of covariance into four components places

the mesoscale covariability into the context of the total

and large-scale covariability. The covariances and vari-

ances (s2) of the different pairs of U and T variables in

Eq. (6) are listed in Table 2, and the correlation co-

efficients for the corresponding terms are shown in

Fig. 7.

The large-scale wind speed and SST fields (term I) are

negatively correlated (Table 2 and the light blue bars in

Fig. 7). Since the mesoscale perturbations are small rel-

ative to the large-scale wind speeds, the time-averaged

wind speed and SST fields [the lhs of Eq. (6)] are also

negatively correlated (Table 2 and the dark blue bars in

Fig. 7). This result agrees with previous observations of

negative correlations between wind speed and SST on

large scales (e.g., Xie 2004), consistent with increased

evaporative cooling of the ocean by surface winds.

All the terms on the rhs of Eq. (6) involving pertur-

bation fields have positive covariances (data columns 3–

5 in Table 2 and the green, orange and red bars in Fig. 7).

The positive correlation between hUi and T 0 in term II,

representing stronger larger-scale wind speeds at the

locations of the positive small-scale SST perturbations,

is very small. The correlation between mesoscale wind

perturbations U 0 and the large-scale SST hTi in term III

is also positive in all of the models with slightly larger

magnitude. The positive correlations of the mesoscale

perturbations U 0 and T 0 are by far the strongest (Fig. 7).
These mesoscale perturbations and their covariability

are the focus of the present study.

5) WHAT DETERMINES THE COUPLING

COEFFICIENT?

The coupling coefficient sU, obtained by linear regres-

sion on the binned averages as described in section 3a can

be expressed in terms of the correlation rU0T 0 as follows:
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sU 5 rU 0T 0
sU 0

sT 0
, (7)

where sU0 , sT 0 are the corresponding standard de-

viations of the wind and SST perturbation fields, re-

spectively, estimated from the fields shown in Fig. 5. As

noted in the previous section, the correlation co-

efficients rU0T 0 are generally high for all of the models,

falling within the narrow range of 0.86–0.92, as shown in

Fig. 7. The standard deviation of temperature

sT 0 5 1:18C is nearly identical for all of themodels as it is

prescribed by the imposed surface forcing. Differences

between the values of the coupling coefficients sU are

thus primarily determined by the standard deviation of

the model wind speed perturbations sU0 . Indeed, Fig. 8b

shows that the correlation between wind perturbation

variance s2
U0 and sU is 0.996 among the eight model

simulations. In contrast, no statistically significant cor-

relations are found between the domain-averaged wind

speed and sU (Fig. 8a). Spatial variances of time-mean

total wind speed U and mesoscale wind speed pertur-

bationsU 0 over the nested domain are found to be highly

correlated at r5 0.94 (Fig. 8c). The process ofmesoscale

wind response to SST is thus the primary contribution to

the total spatial variability of the wind field.

6) COUPLING COEFFICIENTS FOR OTHER WIND

VARIABLES

To facilitate comparisons with earlier estimates of

mesoscale air–sea coupling, we present several other

metrics in the form of coupling coefficients for wind

stress magnitude, and derivatives of vector winds and

wind stress (i.e., the curl and divergence). For these, wind

stress magnitude is regressed onto SST, while wind stress

curl and divergence are regressed onto the crosswind and

downwind SST gradient components, respectively (see

Chelton et al. 2004; O’Neill et al. 2010a). The rationale

for use of the derivative fields for assessing the model

representations of SST influence on the surface wind

field were discussed in section 3a. Table 3 shows a sum-

mary of the six different coupling coefficients, and the

FIG. 7. Correlations between the pairs of mean 10-m ENS winds

and SST fields, and their spatially low-pass and high-pass compo-

nents, from Eq. (7). Black open circles indicate the coupling co-

efficients sU for QuikSCAT and the eight experiments according to

the numerical values on the x axis, but in m s21 8C21. Dashed line

passes through the value of the QuikSCAT coupling coefficient.

TABLE 2. Covariances and variances (s2) of the time average, large-scale (spatially low-pass filtered), and mesoscale (spatially high-pass

filtered) SST and ENS winds fromQuikSCAT and the eight models simulations. Units for the covariances are 8Cms21; units for the variances

of wind variables are m2 s22. Variances of SST are essentially the same for all of the simulations because of the same SST boundary condition

was used for every model, differing as follows because of the different model interpolation procedures: Variances of NOAA

SSTares2(T)5 23:27(8C)2, s2(hTi)5 20:49(8C)2, and s2(T 0)5 1:27(8C)2. Variances for WRF SST are s2(T) 5 23:79(8C)2, s2(hTi)5
20:30(8C)2, and s2(T 0)5 1:27(8C)2.Variances for COAMPS SST are s2(T)5 23:14(8C)2, s2(hTi)5 20:56(8C)2, and s2(T 0)5 1:23(8C)2.

Database cov(U, T) cov(hUi, hTi) cov(hUi, T 0) cov(U 0, hTi) cov(U 0, T 0) s2(U) s2(hUi) s2(U 0)

QuikSCAT v4 20.63 21.49 0.03 0.31 0.52 1.92 1.55 0.30

WRF_GBM 21.58 22.39 0.05 0.26 0.49 2.02 1.66 0.25

WRF_MYJ 21.41 22.13 0.06 0.28 0.28 1.54 1.26 0.15

WRF_MYJ_SFCLAY 20.90 21.67 0.07 0.29 0.41 1.41 1.10 0.18

WRF_MYNN2 21.06 22.14 0.07 0.32 0.69 2.47 1.88 0.46

WRF_UW 21.28 22.32 0.05 0.33 0.66 2.22 1.72 0.43

WRF_YSU 21.41 22.16 0.05 0.27 0.43 1.57 1.29 0.19

COAMPS_ipbl 5 1 21.01 21.82 0.06 0.30 0.45 1.42 1.15 0.21

COAMPS_ipbl 5 2 21.00 21.81 0.06 0.28 0.48 1.47 1.15 0.23
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ratio of each to its corresponding estimate from

QuikSCAT wind fields. The mean and standard de-

viation of these ratios for each of the eight experiments

(in the order of Table 3) are: 0.81 6 0.10, 0.89 6 0.11,

0.926 0.12, 0.926 0.15, 1.016 0.21, 1.106 0.12, 1.506
0.22, and 1.70 6 0.21; by definition, the corresponding

value for the observations is exactly 1.

Despite some large differences in specific cases, there

is a general consistency between the values of sU and the

other coupling coefficients. For example, ordering the

models by increasing value of sU (as in Table 3) or by

increasing value of the mean ratio of model-to-observed

coupling coefficients produces the same result. From the

ratios in Table 2, estimates of the four coupling co-

efficients, sU, sCu, sstr, and sCstr, in the WRF_GBM ex-

periment were all within 2%–8% of the corresponding

QuikSCAT estimates; for the two divergence metrics

sDu and sDstr, however, WRF_GBM overestimated

the QuikSCAT values by 23% and 26%, respectively.

TheWRF_MYJ simulation consistently underestimated

the coupling coefficients by 6%–29%, while WRF_UW

and WRF_MYNN2 both overestimated the QuikSCAT

coupling coefficients by 27%–86% and 34%–97%, re-

spectively. The COAMPS coupling coefficients were

relatively larger for wind and divergence than for stress

and curl.

Based on our primary metric sU, the WRF_GBM ex-

periment produced the wind field response to SST that is

most consistent with the QuikSCAT observations of

SST influence on the surface wind field, followed by

COAMPS_ipbl5 2. One might say COAMPS_ipbl5 2

performed best based on the mean ratio of simulated to

observed coupling coefficients, but its mean ratio results

from compensating overestimates and underestimates

of individual coefficient ratios. The six individual cou-

pling coefficient ratios for COAMPS_ipbl 5 2 had

a standard deviation 1.75 times larger than the standard

deviation for WRF_GBM.

c. Boundary layer structure

1) WIND AND THERMAL PROFILES

In addition to examining the response of the surface

wind to SST, we analyzed the vertical structure of the

model atmospheric boundary layer in the simulations.

Profiles of average wind speed for all of the simulations

over the nested domain (Fig. 9a) differ by a maximum

of 1.1m s21 near the sea surface, and about 1.0–

1.4m s21 at 150–1500m. Average profiles of potential

temperature (Fig. 9b) differ by up to 1.3K near the sea

surface, by somewhat more than 2.0K at an elevation

around 600m, and by less than 1.0K at elevations of

1500m and higher.

FIG. 8. Mean statistics over the nested domain for QuikSCAT

and the eight model simulations: (a) wind speed coupling co-

efficients vs the corresponding mean ENS 10-m winds; (b) wind

speed coupling coefficients vs spatial variance of ENS wind speed

perturbations s2
U 0 , with the label ‘‘r’’ corresponding to the corre-

lation coefficient computed over the nine points; and (c) spatial

variance of the time-averaged ENS wind s2
U vs spatial variance of

ENS wind perturbations s2
U0 (i.e., variance of the fields shown in

Fig. 3 vs the corresponding fields from Fig. 5), with the label ‘‘r’’

corresponding to the correlation coefficient between the nine

points. The black dashed lines pass through the QuikSCAT esti-

mate in each panel.
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The models differ significantly in their simulation of

near-surface wind shear and stability (Figs. 9a,b), both

of which affect the vertical transfer of momentum in the

boundary layer. The WRF_UW experiment yields the

most stable (nearly linear) potential temperature pro-

file, and the strongest wind shear near the sea surface

below 400m. Vertical profiles of the wind speed cou-

pling coefficients (Fig. 9c), estimated in a simplified

manner using Eq. (7), indicate a dipole structure in

which the sensitivity of wind speed to SST is highest near

the sea surface (0.19–0.44m s21 8C21), decreases rapidly

with increasing height and crosses zero near 150–300m

for most models, and has a weak negative coupling near

300m. There is virtually no sensitivity of the wind speed

to SST above 600–800m for any of the models. These

profiles are consistent with SST-induced vertical trans-

fer of momentum between the middle of the PBL and

the sea surface. Coupling coefficients for potential

temperature sensitivity to SST (Fig. 9d) show a signifi-

cantly different picture in which high surface values

(0.38–0.50K 8C21) in all of the experiments decrease

gradually and monotonically, but not approaching zero

until 1000–1400m.

Composite profiles of the wind response to SST for

different SST perturbation ranges (Fig. 10) show stron-

ger positive wind perturbations over warmer areas, and

stronger negative wind perturbations (weakest winds)

over colder patches. Consistent with the coupling-

coefficient profiles (Fig. 9c), these wind perturbations

are generally restricted to the lowest few hundred meters.

Above 150–400m, the models predict stronger winds in

the most stable conditions over the coldest SST patches

(,21.58C), but not over the intermediate range of mod-

erately stable conditions over cooler SST perturbations

(21.58 # SST0 # 20.58C). There is less agreement be-

tween the models on weakening of winds in the middle

and upper part of the boundary layer in the most un-

stable conditions over the warmest SST perturbations

(.1.58C). All simulations show an asymmetrical re-

sponse between the warm and cold patches, indicating

an asymmetric response of turbulent mixing to modified

sea–air stability. This results because the mixing co-

efficient KM depends on the nonlinear stability function

SM [Eq.(1)] in the Mellor–Yamada-type schemes, and

depends nonlinearly on stability through theRichardson

number in the nonlocal-K schemes.

The modeled weakening of near-surface winds over

cold water is expected if increased static stability permits

an increasingly strong sheared layer in the lowest 400m,

depleted of momentum at the surface (Samelson et al.

2006). Somemodels have an excess of momentum above

the stable layer due to the anomalous reduction of drag,

analogous to the mechanism that produces nocturnal

low-level jets (Small et al. 2008; Vihma et al. 1998).

2) VERTICAL TURBULENT DIFFUSION

To test the assumption that the differences between

the coupling coefficients obtained from themodels using

different boundary layer schemes would be reflected in

differences in the vertical mixing of momentum, we

examined profiles of the eddy viscosityKM from each of

the model simulations. Spatial-mean profiles of time-

mean KM (Fig. 11, left panel) show elevated maxima at

350–500m, varying from about 45 to 80m2 s21, with one

exception; the vertical structure of KM is notably dif-

ferent for WRF_UW, with much higher values than the

other seven models throughout the boundary layer

above 400m and a maximum of almost 140m2 s21 at an

TABLE 3. Summary of the coupling coefficients computed for different wind variables (see section 2e): sU is for ENS wind–SST per-

turbations (m s21 8C21); sCu is for ENSwind curl (relative vorticity)–crosswind SST gradient (m s21 8C21); sDu is for ENSwind divergence–

downwind SST gradient (m s21 8C21); sstr is for wind stress–SST perturbations (Nm22 8C21); sCstr is for wind stress curl–crosswind SST

perturbations (3100Nm22 8C21); and sDstr is for wind stress divergence–downwind SST perturbations (3100Nm22 8C21). Ratios in data

columns 7–12 are between the given coupling coefficient and its corresponding estimate fromQuikSCAT (QuikSCAT1NOAAOI SST).

Highlighted in boldface font are the rowwith QuikSCAT coupling coefficients and the columnwith the wind speed coupling coefficient sU
that is used in this study as the primary metric for assessment of air–sea coupling. Rows are ordered according to the magnitude of sU for

each model simulation.

Database sU sCu sDu sstr sCstr sDstr

sU
sU_QS

sCu
sCu_QS

sDu

sDu_QS

sstr
sstr_QS

sCstr
sCstr_QS

sDstr

sDstr_QS

WRF_MYJ 0.31 0.28 0.57 0.017 1.56 2.82 0.75 0.73 0.94 0.79 0.71 0.93

WRF_MYJ_SFCLAY 0.34 0.30 0.61 0.019 1.79 3.10 0.82 0.77 1.02 0.87 0.81 1.02

WRF_YSU 0.35 0.29 0.61 0.021 1.87 3.19 0.85 0.75 1.02 0.98 0.85 1.05

COAMPS_ipbl 5 1 0.36 0.40 0.68 0.016 1.83 2.78 0.85 1.05 1.13 0.73 0.83 0.91

COAMPS_ipbl 5 2 0.38 0.42 0.82 0.017 1.84 3.19 0.91 1.10 1.36 0.79 0.84 1.05

WRF_GBM 0.40 0.38 0.74 0.024 2.35 3.82 0.96 0.98 1.23 1.08 1.07 1.26

QuikSCAT v4 0.42 0.39 0.60 0.022 2.20 3.04 1.00 1.00 1.00 1.00 1.00 1.00

WRF_UW 0.53 0.53 1.03 0.033 3.54 5.66 1.27 1.38 1.70 1.49 1.61 1.86

WRF_MYNN2 0.56 0.66 1.05 0.035 3.97 6.00 1.34 1.70 1.75 1.61 1.80 1.97
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elevation around 1500m. Profiles of the spatial standard

deviations of the time-averaged KM perturbations (de-

fined to be the KM at each level after spatially high-pass

filtering in the samemanner as the filtering of the winds)

are similar to the mean KM profiles (Figs. 11a,b), with

magnitudes that scale roughly with the mean KM. The

relative amplitudes of the mean and standard deviation

KM profiles (Figs. 11a,b) are generally consistent with

the relative values of the coupling coefficients (Table 3),

with themodels that produce larger coupling coefficients

tending also to have larger mean and perturbation KM.

This relation can be illustrated and quantified by com-

puting the correlation r between and sU and a height-

averaged eddy viscosity KM for the eight experiments in

Table 1. For an average over 0–600m, this yields r 5
0.83 (Fig. 11c).

We carried out an additional experiment based on the

WRF_GBM simulation in which the turbulent eddy

FIG. 9. Vertical profiles averaged over the nested domain for (a) average wind speed,

(b) potential temperature, (c) coupling coefficients for the SST dependence of spatially high-

pass-filtered wind speed at each level, and (d) coupling coefficients for the SST dependence of

spatially high-pass-filtered potential temperature at each level.
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transfer coefficients (KM and KH) were set constant in

time and location, and identical to the average profile

from WRF_GBM in Fig. 11a. The turbulent mixing in

this simulation was therefore invariant to the actual at-

mospheric stability. The resulting coupling coefficient

was only 0.15m s21 8C21 (the point labeled ‘‘Km, Kh

fixed’’ in Fig. 11c). This experiment indicates that rep-

resentation of the stability dependence of parameter-

ized eddy transfer is essential in order to produce an

accurate model estimate of air–sea coupling.

Song et al. (2009) previously reported a strong re-

lation between sU and the stability dependence of ver-

tical diffusion in WRF simulations that compared the

GB01 PBL scheme (an earlier version of the GBM PBL

scheme, as discussed in the introduction) and the

WRF_MYJ PBL scheme. Song et al. (2009) introduced

a ‘‘stability factor’’ Rs to investigate the effects of the

stability functions SM, SH on the turbulent eddy mixing

coefficients KM,H 5 lqSM,H [Eq. (1)]. The stability

functions SM, SH were scaled with this stability factorRs

as follows:

~S5 SN 1Rs(S2 SN) , (8)

where S is the stability function for momentum (SM) or

heat (SH) evaluated by the model scheme for the pre-

vailing conditions, and SN is the same model stability

function evaluated for neutrally stable conditions. A

FIG. 10. Average profiles of spatially high-pass-filtered wind speed for ranges of SST perturbations, as indicated on the legend, for the

following six simulations: (a) WRF GBM, (b) WRFMYJ, (c) WRF MYNN2, (d) WRF UW, (e) COAMPS ipbl5 2, and (f) WRF YSU.
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value of Rs 5 0 thus effectively removes the stability

dependence, while Rs 5 1 is equivalent to the original

GB01 scheme. The modified stability functions ~SM and
~SH were then used in the equations for the turbulent

eddy coefficient for momentum and heat. In the case of

Song et al. (2009), Rs 5 1 gave the GB01 scheme esti-

mated by Eqs. (24) and (25) from Galperin et al. (1988).

Song et al. (2009) found that reducing the stability pa-

rameter Rs below 1 consistently lowered the coupling

coefficient; attempts to increase theRs, however, rapidly

led to mixing that was too strong, resulting in unstable

model behavior.

We conducted additional experiments following this

modified stability-parameter approach for the WRF_

GBM scheme. The profiles of KM shown in Fig. 11a for

values of Rs 5 0 and Rs 5 1 (equivalent to WRF_MYJ

and WRF_GBM, respectively) and Rs 5 1.1 show

a systematic increase of KM with increasing Rs. Profiles

ofKM for Rs5 0.1, 0.3, 0.5, 0.7, and 0.9 (not shown here)

vary gradually between those with Rs 5 0 and Rs 5 1,

and all showed a single elevated maximum. Increasing

the stability with Rs 5 1.1 produced excessive mixing in

the boundary layer (though not nearly as strong as

WRF_UW), with a secondary maximum at an elevation

of about 1200m. Examination of the individual KM

profiles for the different values of Rs suggests that the

simulations that have a stronger maximum of KM also

have a higher wind speed coupling coefficient. The

sensitivity experiments resulted in consistently higher

coupling coefficients sU with increasing Rs and the static

stability had more influence on the vertical mixing. The

simulation with Rs 5 1 resulted in a coupling coefficient

for 10-mENSwinds that was the closest to theQuikSCAT

estimate. For Rs 5 0.0, the coupling coefficient was too

small by almost 60%. These results are consistent with

those obtained by Song et al. (2009) with the GB01 PBL

scheme.

The sensitivity of the KM profiles to SST in the stan-

dardWRF_GBM experiment withRs5 1 was studied in

two different ways (Fig. 12). We calculated vertical

profiles of Km anomalies, defined as deviations of the

modeled values from their temporal and spatial average

at each vertical level. In the first method, the monthly

average vertical profiles of KM perturbations were

grouped by the local SST perturbations (Fig. 12, left

panel). In the second method, instantaneous profiles of

KM anomalies at each time step of the simulation were

grouped according to the orientation of the surface wind

vector relative to the SST gradient (Fig. 12, right panel).

The calculations were done for every individual time

step because the wind direction changed over the 30-day

simulation. The grouped instantaneous profiles in the

FIG. 11. (a) Vertical profiles of monthly average eddy viscosity coefficients KM for the nested domain and (b) vertical profiles of the

standard deviations of monthly average perturbation of KM for eight model simulations. (c) The 0–600-m vertically averaged KM vs the

coupling coefficient. The black line in (c) corresponds toWRF_GBM simulations with modified stability response factors of Rs5 0.0, 0.1,

0.3, 0.5, 0.7, 0.9, 1.0, and 1.1 (only the first and last numbers are labeled). The cyan point with very small coupling coefficient corresponds to

the simulation usingWRF_GBM, but with the turbulent eddy viscosity and diffusivity profiles invariant and fixed to the domain average of

the KM profile for WRF_GBM shown in (a).
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secondmethodwere then averaged to obtain the profiles

in the right panel of Fig. 12.

In the first method, the warmest patches (.1.58C)
resulted in more than a 55% increase in peak values at

about 350–400m compared with the average profile in

Fig. 11a. The coldest SST patches (,21.58C) yielded

a reduction of 50% from the peak average values. A

consistent increase in vertical mixing over the warmest

patches occurred over the upper portion of the bound-

ary layer as well, between elevations of 1000–2000m,

where reduction of mixing is less for the cold patches.

This could be due to deepening of the boundary layer

over the warmest SST perturbations.

The analysis using the secondmethod indicates a clear

tendency of increased vertical mixing and higher KM by

about 30% at ;300m when surface winds blow pre-

dominantly along the SST gradient toward warmer SST,

and a decrease of about 20% when winds blow in the

opposite direction (i.e., toward colder SST). No signifi-

cant changes in eddy viscosity profiles were found for the

cases of winds blowing perpendicular to SST gradients

(i.e., parallel to isotherms). The effect of relative di-

rection on the profiles of KM decreases with increasing

elevation above 300m and becomes negligible above

1600m.

Because of the strong effect of local SST changes on

vertical mixing (Fig. 12, left), we further quantified the

sensitivity of turbulent eddy viscosity KM to SST per-

turbations for the variousmodels by bin averaging the 0–

600-m height-averaged KM perturbations as a function

of SST perturbation (Fig. 13). Height-average KM per-

turbations were most sensitive in the WRF_GBM,

WRF_MYNN2, and WRF_UW simulations, with

WRF_UW having the most extreme sensitivity. The

FIG. 12. (left)Average profiles of eddy viscosity anomaliesK0
M from theWRF_GBM simulation for different SST

perturbation ranges, where the anomaly of KM was determined at each level as the departure from the average at

that level. (right) Monthly mean KM anomaly for different orientations of the surface wind vector relative to the

SST gradient, where the anomaly at each level was determined as the departure from the time- and domain-

averaged KM at that level for each time step of the model simulations, after which the monthly average was

computed. The vectors s and n are unit vectors in the downwind and crosswind directions, respectively (see the

insert for details). Quadrants I, II, III, and IV are determined from downwind ›SST/›s and crosswind ›SST/›n

components, as follows. Quadrant I: ›SST/›s. 0 and j›SST/›sj. j›SST/›nj (wind blows predominantly along the

SST gradient, from cold to warm water); Quadrant II: ›SST/›n. 0 and j›SST/›nj. j›SST/›sj (wind blows across

the SST gradient, with warmer water to the left of the wind direction); Quadrant III: ›SST/›s, 0 and

j›SST/›sj. j›SST/›nj (wind blows in the direction opposite the SST gradient, from warm to cold water); and

Quadrant IV: ›SST/›n, 0 and j›SST/›nj. j›SST/›sj (wind blows across the SST gradient, with warmer water to

the right of the wind direction).
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COAMPS_ipbl 5 2 and WRF_YSU simulations had

much weaker sensitivity, and WRF_MYJ had the

weakest sensitivity. The variability between the models

is substantial not only in the rate of KM increase per

temperature perturbation (8C), but also in the standard

deviations of the KM perturbations within each binned

value of SST. For all of the experiments except WRF_

MYJ, the rate of increase is slightly lower for negative

SST perturbations, and higher for positive SST pertur-

bations. This is in agreement with Fig. 12 (left), in which

warmer SST patches produced eddy viscosity gain not

only in the lower levels where the KM is largest, but in

the upper portion of the boundary layer (between 1000

and 2000m) as well.

4. Summary and discussion

Our numerical modeling study explores the sensitivity

to the choice of vertical mixing parameterization of the

SST influence on the atmospheric boundary layer in the

region of Agulhas Return Current (ARC). Month-long

simulations were conducted for July 2002 using eight

different combinations of state-of-the-art boundary

layer mixing schemes and mesoscale atmospheric

models (WRF and COAMPS). The performance of

each simulation was assessed by how closely it repro-

duced the response of the surface wind fields to SST

deduced from satellite data.

The primary metric for model performance in our

study is the coupling coefficient between equivalent

neutral stability (ENS) wind speed and SST. We advo-

cate this metric for comparing atmospheric and coupled

ocean–atmosphere models to satellite observations be-

cause it is less sensitive than the coupling coefficient for

wind stress to seasonal and large-scale changes in the

background mean winds (O’Neill et al. 2012). The cou-

pling coefficient computed forQuikSCATmeasurements

of ENS wind speed is 0.42m s21 8C21. The ENS winds

from the eight model simulations resulted in coupling

coefficients ranging from 0.31 to 0.56m s21 8C21.

We also investigated the vertical structures of meso-

scale wind and potential temperature response to SST

from the simulations. The sensitivity of potential tem-

perature perturbations to SST perturbations was strong

near the sea surface (0.38–0.50K 8C21) and decreased

rapidly with elevation in the lower 200m, and then more

FIG. 13. Sensitivity of 0–600-m height-averaged eddy viscosity perturbations K0
M to binned SST perturbations, for

the six models labeled in each panel, computed using a method similar to the wind speed coupling coefficients. The

error bars indicate 61 standard deviation from the mean value for each bin.
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gradually up to about 1400m. Wind speed sensitivity to

SST near the surface (0.19–0.44m s21 8C21) decreased

rapidly to near zero at 150–300m, and then became

weakly negative at about 150–500m for the experiments

with Mellor–Yamada-type PBL schemes. [‘‘Mellor–Yamada

type’’ refers to the family of schemes that parameterize

eddy diffusivities as a function of TKE of the form of Eq.

(1).] The change in sign of the coupling between the

surface and the middle of the boundary layer is consis-

tent with the vertical exchange of momentum expected

from SST influence on vertical mixing.

Among the eight mixing parameterizations consid-

ered, the newly implemented Grenier–Bretherton–

McCaa (GBM) boundary layer mixing scheme in the

WRF Model produced a wind speed coupling co-

efficient of 0.40m s21 8C21 that is the closest to the

estimate from QuikSCAT observations. Additionally,

the WRF_GBM simulations showed the best consis-

tency with QuikSCAT for three of the other five cou-

pling metrics considered in our analysis. Namely, the

estimates from the WRF_GBM simulation were within

2%–8% of their corresponding QuikSCAT estimates

for the wind stress magnitude, wind vorticity, and wind

stress curl responses to the underlying SST field. Al-

though it overestimated the wind and wind stress di-

vergence responses, the GBM PBL scheme compared

the best overall with the QuikSCAT observations. The

computer code for our implementation of GBM mixing

is now distributed with WRF versions subsequent to

version 3.5.

The COAMPS experiment with the ipbl 5 2 Mellor–

Yamada-type boundary layer scheme produced a slightly

lower value of the wind speed coupling coefficient,

0.38ms21 8C21, only slightly smaller than theWRF_GBM

coupling coefficient. Based on the mean modeled-to-

observed ratios of all six coupling coefficients, the

COAMPS_ipbl 5 2 simulation performed better than

any other simulation, including WRF_GBM. However,

with the exception of wind stress divergence, the de-

partures from the QuikSCAT values of the individual

coupling coefficients were all larger in magnitude for

COAMPS_ipbl 5 2 than for WRF_GBM. Also,

COAMPS_ipbl 5 2 (as well as COAMPS_ipbl 5 1)

underestimated the large-scale ENS winds compared

with the QuikSCAT observations and with all of the

WRF experiments. This could be due to the use of the

global NCEP FNL reanalysis model for initial and

boundary conditions in all of our model experiments.

Use of initial and boundary conditions from the U.S.

Navy’s Operational Global Atmospheric Prediction

System (NOGAPS) model, the standard source for de-

velopmental and operational implementations of

COAMPS, might have produced different results.

A perhaps surprising result of this study is that the

seven simulations with Mellor–Yamada-type vertical

mixing schemes of the form in Eq. (1) yield widely

varying coupling coefficients, with extreme values of sU
differing by nearly a factor of 2 (Table 3). In an effort to

understand this, we looked in detail at the various im-

plementations of the equation for KM [Eq. (1)] and the

resulting model values for the eddy viscosity KM in the

lower atmosphere. Vertical profiles ofKMwere found to

depend strongly on the underlying mesoscale SST vari-

ability: the coldest patches with SST perturbations

,21.58C resulted in a decrease of KM by up to 50%,

implying decreased mixing in the presence of shear be-

low 350–400m. The warmest SST patches (.1.58C SST

perturbations) resulted in an increase of KM by as much

as 55%, as well as additional increase in the mixing be-

tween 1000 and 1200m. The latter result is consistent with

deepening of the boundary layer over the warmer areas.

The relative orientation of the surface wind vector

and the underlying SST the gradient affected vertical

mixing profiles as well; higher values ofKM by up to 30%

of the mean were found within the boundary layer for

flow from cold to warmwater (i.e., in the direction of the

SST gradient), and lower values of up to 20% were

found for flow from warm to cold water (counter to the

SST gradient). Overall, the diagnosed 0–600-m height-

averaged turbulent eddy viscosity KM was found to be

well correlated (r 5 0.83) with the coupling coefficients

for the eight model experiments in Table 3. This further

implicates the importance of vertical mixing in the lower

part of the boundary layer to this air–sea interaction

process.

With the importance of variations in KM established,

we attempted to identify the key parameters in the dif-

ferent formulations and implementations of Eq. (1) that

affected the atmospheric response to the SST variability.

Static stability, wind shear parameters (used in calcula-

tions of stability functions SM and SH), turbulent kinetic

energy (TKE), turbulent master length scale l, and eddy

transfer coefficient Kq for TKE in Mellor–Yamada

schemes, all showed notable variations between the

model simulations. For example, theWRFandCOAMPS

schemes use different estimates for the turbulent mixing

master length l and different forms for the stability

functions SM,H. Furthermore, the two formulations use

different numerical techniques for computing vertical

gradients, which in turn affects the estimate of the sta-

bility parameters SM,H. Since vertical gradients are

strong near the sea surface, small details in the numer-

ical techniques can have large effects on the resulting

estimates of SM,H. The different values of l and SM,H in

the various models with Mellor–Yamada-type mixing

apparently account for the wide range of coupling
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coefficients. However, these differences themselves can

have different effects on KM, depending on the im-

plementation of the TKE equation [Eq. (2)]. Ultimately,

no single parameter was clearly identifiable as a perfor-

mance metric or dominant control for the SST response.

Surprisingly, the results ofWRF_UWsimulation were

very different from the GBM simulation. The UW PBL

scheme is an implementation of the GB01 boundary

layer mixing scheme, simplified and adapted for use in

climate models with longer time steps. The GBM PBL

scheme evolved from the GB01 boundary layer mixing

scheme. Despite their shared heritage, the WRF_UW

simulation produced a wind speed coupling coefficient

of 0.53m s21 8C21 that is much higher than the value of

0.40m s21 8C21 obtained from the WRF_GBM simula-

tion. All of the other coupling coefficients from the

WRF_UW experiment were similarly larger in com-

parison with those from the WRF_GBM experiment. It

worth mentioning, however, that the UW PBL scheme

in the CAM5 global model has been found to produce

a wind speed coupling coefficient for the same geo-

graphical region (the ARC) that is quite close to the

observed value obtained from QuikSCAT (R. J. Small

2013, personal communication). There is no clear ex-

planation yet on why the UW PBL scheme appears to

perform so differently in WRF and CAM5.

Perhaps the most important conclusion of this study is

that the choice of PBL mixing parameterization for

a given atmospheric model (or coupled-model compo-

nent) must be given careful consideration, because the

coupling coefficients depends strongly on that choice, as

illustrated by their differences for the various charac-

terizations of the surface wind field and the eight dif-

ferent PBL schemes considered in this study (Table 3).

Since the horizontal grid spacing in the mesoscale model

simulations carried out for this study is comparable to

the grid spacing in operational global forecast models,

the results presented here are relevant to the global

models, which are known to underestimate surface wind

response to SST (Chelton and Wentz 2005; Song et al.

2009; Chelton andXie 2010). It is important that this air–

sea interaction be accurately represented in models,

since the wind response to mesoscale SST is coupled to

other changes in the boundary layer (e.g., clouds that

can arise from surface wind convergence) (Minobe et al.

2008; Young and Sikora 2003). It is especially important

that the surface wind response to SST be accurately

represented in coupled models in order to reproduce

accurately the SST-induced wind stress curl perturba-

tions that feedback on the ocean circulation, which in

turn alters the SST that then perturbs the surface wind

field. This two-way coupling cannot be accurately rep-

resented if the surface wind response to SST is under- or

overestimated by the atmospheric component of the

coupled model.
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