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interventional. We assume that each dataset is generated by an unknown causal network altered

under different experimental conditions (interventions, manipulation or perturbation). As a re-

sult, we get a collection of heterogeneous datasets having different distributions. Manipulated

distribution implies manipulated graphs over the variables. Combining all the data to learn a net-

work might increase statistical power but only if it assumes a single encapsulating network that is

true for all the datasets, which is not always the case under uncertain interventions. Pooling un-

der uncertainty leads to spurious changes in correlations among variables. While learning causal

network by pooling data from different experiments is common, we found by experimenting that

this paves the way for false causal discoveries, if the effects of interventions are uncertain.

We address these issues and present a Bayesian approach of combining data from multiple ex-

periments with observations to learn a single and accurate causal network. Our approach, called

‘Learn and Vote’ learns causal links using data from each experiment and combines them by

weighted averaging. We show through studies on synthetic and natural datasets that our method

outperforms many state of the art approaches and is more robust with respect to modelling as-

sumptions about the nature of the interventions.
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Chapter 1: Introduction

1.1 Significance of Causal Inference

“Where causation is concerned, a grain
of wise subjectivity tells us more about
the real world than any amount of
objectivity.”

Judea Pearl, The Book of Why (2018)

The importance of causal modeling in science, engineering and humanities is remarkable

due to its utility in action planning, prediction and diagnosis [27, 37]. A primary goal in causal

modeling is to discover “causal” interactions of the form X ⇒ Y , where X and Y are observable

entities and the arrow indicates that the state of X causes the state of Y or vice-verse.

For example in medical domain, we wish to diagnose the conditions that lead to a certain

disease. When doctors, while examining sample data from their patients, find a relationship

between two or more variables, they conclude that they have found a association or correla-

tion. Which means one has an effect on the other. A study made on the effects of marijuana

[4] showed an association of weed smoking teenagers and their troubled relationship in future

(late-20’s). Furthermore, researchers observed that correlation can be positive or negative. For

example as strength of one variable (marijuana) increases, the probability of the other variable

(relationship trouble) increases as well. Obviously there might be other variables, like mental

health, education, gender etc, which are causing the associations as well. We call these studies

of the world as observations.

Although we can deduce that the variables of our interest are related to each other, we still

can’t say for sure that who caused the occurrence of the another. When we claim that causation

is found, it means that a change or intervention in one of the variable is a direct cause for the

change in the other. We can achieve this by fixing the value of one variable and measure the

effect on the other. For example, inferring such causal relationship is of paramount importance

in the fields of molecular biology. Knowing the causal structure of a molecular process allows
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advanced reasoning on its behavior, and such knowledge could be valuable in therapeutic ap-

proaches, for example though predicting side effects of pharmaceutical drugs. There has been a

lot of recent development of high throughput technologies to infer the structure and dynamics of

complex biological networks, including protein signaling pathways [33], system biology cellular

networks [15], and gene regulation networks [1] etc.

Causal models can also be further used to analyze “what-if” cases or counterfactual in-

ferences. In economics and statistics, we wish to find out the effect of a number of proposed

marketing strategies without actually implementing through counter-factual reasoning. Such

queries can be answered once we have the true causal model of the world. Causal models can be

fit to passive observational measurements (“seeing”) as well as measurements after performing

external interventions (“doing”).

Figure 1.1: The three ladders of causality
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1.2 Observation vs Intervention

The “Principle of Common Cause” [31] states that given two associated events Vi and V j, there

can be three possible explanations: Vi caused V j, V j caused Vi or both Vi and V j have a common

cause. For the third case, an inference of a causal relationship Vi ⇒ V j or V j ⇒ V j would be

spurious. In an observational study, we can determine whether other factors (besides Vi and V j)

are present in the underlying causal network.

Observational studies are useful in various contexts, for example, to retrospectively infer

whether an exposure-outcome statistical relationship is causal. However, given only observa-

tional data we cannot distinguish between various Markov equivalent structures that are compati-

ble with the data [22, 28]. For example, the three graphical models Vi −→ V j −→ Vk, Vi ←− V j ←− Vk,

Vi ←− V j −→ Vk (where an arrow denotes an arc in the probabilistic graphical model) are Markov

equivalent, since they encode the same Vi ⊥⊥ Vk|V j conditional independence statement.

Interventional studies, on the other hand, can be used to compare the likelihood of various

Markov equivalent structures consistent with an observation [17]. For instance, if we intervene

on A and find a change in B, we can conclude that A causes B. Unlike in observational studies,

here events can be externally manipulated and become independent of their cause(s). Thus sup-

plementing observational studies with interventions helps to discriminate between such models

and determine the true causal directions of correlated relationships in the system [14]. The in-

ability of observational studies to discriminate between Markov-equivalent structures motivated

studies that combine observational data with interventional data [17].

Why do we need to include observation at all?

• Because its very crucial in these kinds of studies. We cannot simply assign people to

intervention in real world in an unethical way, for example, children to consume marijuana

to study their effects. We have to depend on the study of association. Through observations

we learn the true nature of a relationship and rule out other interfering variables.

1.3 Key contribution of this work

The inability of observational studies to discriminate between Markov-equivalent structures mo-

tivates studies that combine observational data with interventional data [17]. Despite its potential

advantages, learning causal networks from a mix of observational and experimental studies is a

significant challenge. Data collected after different experiments might not be identically dis-
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tributed as before making the results incoherent with one true causal structure. Such discrepan-

cies could be due to unknown consequences of interventions. Different experiments might have

different joint distributions due to uncertain effects of each intervention or condition [13]. For

instance, in the case of a drug intervention on cells, a drug may have unintended direct effects

on molecules other than the drug’s intended target, i.e., “off-target” effects. Pooling data from

different experiments can lead to misleading changes in correlation. Eberhardt (2008) described

two such types of problems: a) Independence to Dependence: where Vi and V j being two in-

dependent variables in a structure before and after an intervention, become dependent when the

two samples are pooled and b) Dependence to Independence: Vi and V j, which are dependent

in a passive observational study, become independent when pooled with an interventional study.

This problem occurs even though the interventions are perfect. This gives rise to a problem of

false causal discovery which we address in this work.

In light of the above issue, it is important to carefully consider how to handle uncertain in-

terventions while learning causal network structures. Relatively little attention has been given

to the problem of how to assimilate data generated from many such interventional experiments.

Given two or more datasets generated from different interventions, it is unclear how to combine

the data for optimal efficiency of learning. Most of the popular causal learning algorithms as-

sume that interventions are perfect, which raises questions about their applicability to real-world

datasets that violate this assumption. While these algorithms might be able to learn most of the

true arcs, significant false detection might lose the very purpose of learning such networks. For

example in medical science, a false positive result giving an erroneous indication that a particular

disease is present (when it isn’t) can result in unnecessary panic and cost of medical tests. In

such cases, learning a reliable causal network is more important than learning an accurate but

low confident one. The key contributions of this paper are as follows:

1. We describe a way of handling uncertain interventions by learning causal information

from different experiments separately and combining the resulting structures using a sim-

ple approach called ‘Learn and Vote’.

2. We compare our results with a baseline method on Flow cytometry data. We found that

our approach gives a significant reduction of false causal discovery.

3. We performed a comparative study of prominent casual network discovery methods with

uncertain interventions over various benchmark networks to validate our method’s perfor-

mance.
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Chapter 2: Motivation

2.1 Related Study

While learning causal network from mix of observation and interventional data is useful, many

of such experiments arise from different conditions. Even if the observed variables in all the ex-

periments are the same, the conditions under which the experiments are conducted are different.

A certain dependency occurring in one experiment might be absent in another. Collaborating

such datasets might eradicate the dependency and should be taken extra care. How to correctly

use causal information from such different experiments into a single efficient network is still an

open question.

Popular Constraint-based methods like PC [37], FCI [38] etc use the entire dataset to learn

causal networks using conditional Independence tests through examining the properties of Markov

networks. Similarly, Score based methods like GES, GIES [19] etc uses a score based method to

measure the best fitting candidate network using the entire dataset. Both type of algorithms are

designed to fit a single dataset since they were originally designed to infer causal network from

observational data. They do not take into account partitioning the data based on the different

condition they have been experimented from. In this section, we describe some works which

have extended these methods to take into account the different context behind the experiments.

• Pooling: These methods deals with learning a single causal graph by pooling data from

across different experiments. The interventions can be perfect [33], imperfect [39], un-

certain or even unknown. Cooper and Yoo (1999) [10] first provided a score-based causal

learning algorithm by combining data from across various experiments each having one

or more perfect known targets of intervention by adding additional context variables. This

idea was later re-defined by Eaton and Murphy (2007) [13] to handle soft interventions or

mechanism changes [39]. The causal invariance property across environments changes is

exploited by Claassen and Heskes (2010) [7].

Some practical application were studies in flow cytometry data set [10], yeast transcrip-

tional regulatory network [5] etc. A recent approach called Joint causal inference (JCI)
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[25] that takes into account data generating from different conditions and introduced addi-

tional context variables (representing different contexts like age, country etc that discrim-

inates the different datasets) before pooling.

• Not Pooling: This method deals with learning causal information separately from each

experiments and combining them to learn a single graph. The ION-algorithm [11] have

shown a way to integrate locally learned causal networks having overlapping variables.

Triantafillou and Tsamardinos (2015) [41] proposed a constraint based algorithm, COm-

bINE, which estimates dependencies and in-dependencies across separate experiments.

However, both the above methods assume knowing a single causal structure that com-

prises of all observed causal dependencies. This might be hard to achieved in reality when

the experimental conditions are changing across each experiments. The MCI [8] algorithm

presents a constraint based method by exploiting the ‘local’ aspect of causal Y-structures

[24] which is sufficient to explain the in-dependencies between two variable. This does

not differs even if the information are learn from two separate datasets.

2.2 Spurious Dependencies and Independecies

External perturbation that effects two or more variables in a causal model Mc can lead to spurious

dependencies or in-dependencies. We have shown two such cases in Figure 5.1. Each causal

model Mc contains a pair (V, E), where V is a set of vertices and E is a set of edges between pairs

of nodes with P(V) representing the joint distribution. The causal arcs Vi ⇒ Vk and V j ⇒ Vk

are represented by black arrows, shown in Figure 2.1a. We represent the external perturbation

caused by experiments as an external model Me containing a set of unobserved policy variable

I1, I2 ... In ∈ I. Experiments can be both observational as well as controlled. The combined

model is MT = Mc + Me which includes all the external effects in the causal system.

Definition 2.2.1. False causal dependence: Two or more variable say Vi, V j, where Vi ; V j,

are effected by a common intervention (I1 in Figure 2.1a) becomes Vi 6⊥⊥ V j due to confounding

effect. This gives rise to a new model MT1 = Mc + Me1 with a changed distribution P1(V ⊂

MT1). Pooling data from such different distribution may lead to spurious correlation between

independent variables.

Definition 2.2.2. False causal independence: Intervening on a child node having causal parents

removes all the incident arrows and cuts of the causal influence. Pooling data from such models
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(a) False dependence (b) False independence

Figure 2.1: Problem with Pooling: Dashed arrows represent intervention effect, Solid black ar-
rows represents True positives (TP), Red arrows represents False positives (FP) and Blue arrows
represents False negatives (FN).

nullifies the true causal dependence by causing ViPa(Vi). This gives rise to a new model MT2 =

Mc + Me2 with a changed distribution P2(V ⊂ MT2). Pooling various such experiments on V j,

shown in Figure 2.1b will dominate over other experiments having the causal relations Vi ⇒Vk

and V j ⇒Vk.

This potential for false causal dependencies and independencies is a shortcoming when pool-

ing data to learn causal networks. Before describing how our approach aims to address these

issues (compared in Figure 5.2d), we first define some causal network concepts, notation, and

standard approaches.
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Chapter 3: Causal Network learning

3.1 Brief Overview

A causal network [27, 37] is defined by a directed acyclic graph (DAG) G = (V, E), where

V = {v1, . . . , vn} denotes the set of variables (nodes) and E denotes the causal relationships

(edges), and Pi denotes a set of conditional probability distributions for each variable vi. For an

edge (vi, v j), we say vi is a parent (cause) of v j, and v j is a child (effect) of vi. We define Pa(vi)
as the set of parents of vi. The conditional probability distribution Pi defines the probability of

vi given its parents Pa(vi). A causal network represents a joint distribution P over variables V as

long as it satisfies two main assumptions:

1. Causal Markov Assumption: Any given variable vi is independent of its non-descendants,

conditioned on all of its direct causes. The assumption implies that the joint distribution

P(V) can be factored as:

P(V) =

n∏
i=1

Pi(vi|Pa(vi)).

2. Faithfulness Assumption: P(v1, . . . , vn) is said to be faithful to G if every conditional in-

dependence relation that holds in P is entailed by the causal Markov Assumption applied

to G [12].

Distinguishing networks via observations: Most of the popular causal learning algorithms

are based on the Markov condition. These algorithms evaluates the statistical dependencies

present in the given data samples and use them to build causal graphs, satisfying the Markov’s

constraints. The ‘Constraint-based’ method searches a space of all possible causal structure,

but are limited due to the limited nature of the constraints. They are used to analyze whether

two variables are statistically dependent and ignore specific indications —such as whether one

variable is always present when the other is, or always takes on the same value as another variable

etc.

Distinguishing networks via intervention: From Figure 3.1, we can see three networks are

Markov equivalent with the common undirected graph but different direction of one or more
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Figure 3.1: Markov equivalence class

arrows. Three networks which tells us the same statistical dependencies under observation. An

intervention on one variable (say B) of this structures will be adding an external variable into the

causal network as an additional parent of B. In an ideal intervention, the manipulated B becomes

uniquely determined by the external parents an invalidates any other influences any other causes.

The effect of this intervention tells us about the true underlying causal model. For example, if

we intervene on B, and find both A and B turning on (under the hypothesis A← B→ C , then

we can conclude that the third network in the figure is the correct causal model.

3.2 Constructing a causal network

Let us suppose the dataset D consists of n observations and m variables. A common approach is

to start by learning a reasonably high likelihood causal graph for D and then estimate model pa-

rameters based on the graph structure and data. The network learning approaches are categorized

into mainly two groups:

• Score-based: This is based on a scoring function measuring the fit of the graph G to

the data, while at the same time favoring simpler structures [9, 6]. The scoring function

is combined with a search-heuristic that explores the space of possible graphs. Typical

heuristic are greedy ones (hill-climbing or tabu search) [32, 16].

• Constraint-based: This approach relies on estimating some of the conditional (in)dependencies

in the data distribution from the data by performing hypothesis tests [21]. The results of the

hypothesis tests constrain the graph to reconstruct. Constraint-based methods start with

a fully connected, undirected graph and progressively remove edges as a new conditional

independence relationship is discovered.
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3.3 Learning with interventions

Interventions are externally manipulate nodes (“targets”) in a network, which are assumed to

be known. Interventions are important to detect causal relations that can help disambiguate

Markov equivalent sub-networks. Let Ie represent the target nodes which are altered in the

interventional experiment e and Oe = V\Ie be the complementary set of observational variables.

Each intervention can have one or more targets whose conditional probabilities are changed.

Hence, each intervention results in deletion of arrows pointing towards the intervened nodes.

The joint distribution of P after intervention is given as:

P′(v1, ..., vn) =
∏

vi∈Oe

Pi(vi|Pa(vi)) ×
∏
vi∈Ie

P′i(vi|Pa′(vi)),

where P′(vi|Pa′(vi)) is the post-intervention conditional probability of vi given its new set of

parents Pa′(vi). For a “perfect” intervention, we set Pa′(vi) = ∅ [27].

Another way to model intervention is to introduce intervention nodes as switching parents,

on the target nodes. These switches can have values 0 or 1. By setting them to 0, we assume

a normal mechanism of the network. On setting it to 1, will model an imperfect or “soft”

intervention [40], which will simply increase the likelihood of the node to enter its target state

instead of cutting them off their parents. This is often referred as “mechanism change” and is

more realistic than perfect interventions.

A further relaxation is to consider if all the targets of an intervention are “uncertain” [13].

Such cases (for example chemicals in molecular biology) occur when interventions have a “fat

hand” which touches many nodes. In this study, we have considered the case where we are

not aware of the consequence effects each intervention might be having other than its intended

targets. The actual real-world setting would be a combination of the imperfect and uncertain

case, which would be difficult to model.
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Chapter 4: Our Approach: Learn and Vote

To avoid the problems arising from pooling data from different distributions, we propose an ap-

proach we call “Learn and Vote” (Algorithm 1) to learn causal networks. The approach is to learn

a separate weighted causal network from the data generated in each experiment or observational

study by ignoring the directed arcs into the intervened variables and then combine the results by

weighted averaging. For each dataset, we have the observed variables (N) and the known targets

(stored as list intv) if any intervention is performed. The details of our approach are as follows.

4.1 Scoring Function

The effect of intervention is incorporated in the score component associated with each node by

modifying the standard Bayesian Dirichlet equivalent uniform score (BDeu) [20, 10, 30].

Given a dataset D j from the jth experiment G j represents a DAG over a set of variables N

learned from it (with conditional distributions P(Ni|PaG
i ), where Pai is parent of Ni). In case of

an interventional experiment, we assume perfect intervention by fixing the values of Ni[m] in

Int(m), which is the set of intervened entities in the mth sample. Hence, we should no longer

consider P(Ni[m] | Pai[m]) in the scoring function. But since the interventions are “perfect”,

[27] all the other variables are unaffected and therefore we sample them from their original

distributions. Here, the distribution D j is per experiment and not a mixture of pooled data from

different experiments like in Sachs et al.’s method. We define the score of S(G j : D j) as a

composition of the contributions of each local score (S local) of variables Ni. The modified local

score is as follows:

S local(Ni,U : D j) = log P(Pai = U) + log
∫ ∏

m,Ni<Int(m)

P(Ni[m]|U[m], θ)dP(θ),

4.2 Structure Learning

Due to limitations in data, the results of structure learning in most real-world setting are noisy. To

overcome this we create n = 100 random DAGs using createRandNet over the set of given nodes
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to learn an averaged network from each experiment. We learn the structure from each DAGs

in randomNet using the Tabu search algorithm [16] which searches over the space of different

structures and store them in a list Net. The list intv of known targets is passed as an argument

which incorporates interventions in the search algorithm by preventing the arcs to be incident on

the targets. Next, we measure the probabilistic arc strength and direction (using arcStrength) for

each arc as its empirical frequency given the list of networks in Net. We average the arc strengths

for every directed arc over the networks in which corresponding target node was not intervened

and store them as arcProb.

Algorithm 1 Learn and Vote
Input: set of k experiments with dataset D1,D2...Dk

Output: DAG G f = (E, V), final causal network
1: procedure Our Approach
2: for j=1 to k do
3: N=nodes In D j

4: intv=Intervened nodes in D j

5: randomNet=createRandNet(N, 100)

6: for l=1 to 100 do
7: Net[l]=Tabu(randomNet[l], intv)

8: arcProb[j]=arcStrength(Net)

9: avgArcs = avgNetwork(arcProb)

10: G f = learnDAG(avgArcs,Threshold)

4.3 Combining results from the experiments

Given arc strengths from each experiment, we average their strengths and directions over the

number of experiments the given arc is valid (using avgNetwork). Finally, we store the averaged

arc strengths as avgArcs to build the final DAG (using learnDAG) containing only the significant

arcs over a certain Threshold. We found our method performing best at a threshold of 0.5. We

implemented our methods in the bnLearn R package [35].
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Chapter 5: Comparative Studies

5.1 Biological Signaling Network

In this work, we have analyzed polychromatic flow cytometry data which examines the phospho-

rylation states of different proteins in cells. Flow cytometry is a process to examine the physical

and chemical characteristics of cellular particles. The components are fluorescently labelled and

are excited with the help of laser to discharge light at different wavelengths. These fluorescents

are used to measure the different properties of cell molecules. Flow cytometry experiments have

application in health-care science such as cell counting, cell sorting, detection of biomarkers,

Protein engineering etc. In the experiments, the elements of the three Mitogen-Activated Protein

Kinase (MAPK) pathway in human CD4+ T-cells are detected. The MAPK/ERK signal trans-

duction pathway is a chain of proteins that emits a signal from a surface receptor to the DNA in

the cell’s nucleus and produces some changes in the cell. The proteins in the pathway commu-

nicate with each other by adding phosphorate groups to a neighbor protein acting like an on/off

switch. Such pathways are very useful for cancer detections [26]. Since the protein states are

found to get stuck in an on or off position on an occurrence of a mutation, reversing the effect of

such switch can be useful for treatments. For this experiment, the 11 well-known proteins of the

MAPK pathways were studied as highlighted in Figure 1a. The pathways were intervened by 9

external stimuli, whose effects targets are described in Table 1.

Sachs et al. [33] inferred the signaling pathway and novel causal interactions in human CD4+

T-cells, using a Bayesian network approach (Figure 5.2a). They carried out nine experiments,

including two general (observations) and seven specific (interventional) perturbations to measure

the expression levels of eleven phosphorylated proteins and phospholipids using multiparameter

flow cytometry. They found 17 true positives (TP=17, with 15 from well-established literature

and 2 with at least one citation) out of 20 expected arcs and missed 3 false negatives (FN=3)

shown in blue dashed lines. They did not have any false positives (FP=0). They also showed that

network inference from solely the observational measurements is inaccurate and that inclusion

of interventions gives more accurate results. We re-analyzed Sachs et al. approach twice, first

using observational samples only (Figure 5.2b) and then using an equal number of samples
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(a) (b)

Figure 5.1: (a) Classic signaling network with points of interventions by reagents, (b) Model
inference result by Sachs et al.

(a) TP: 17, FP: 0, FN: 3 (b) TP: 3, FP: 10, FN:
17

(c) TP: 5, FP: 10, FN: 15 (d) TP: 4, FP: 5, FN:
16

Figure 5.2: (a) Network inferred by [33] (b) Network inferred from two observational experi-
ments (c) Network inferred from pooling data from a observational and a interventional experi-
ment d) Network inferred from “Learn and Vote” using the same experiments as (c).

comprising 50% observational and 50% interventional data. (Figure 5.2c) illustrates this point

by being much closer to the ground truth.

This analysis clearly shows the benefit of interventional experiments for causal network re-

construction. However, like most causal discovery approaches, the methods used in the Sachs

et al.’s study and in our re-analysis, assume perfect intervention. Each of the seven specific

perturbed experiments sets exactly one of the signalling molecule to a specific state. This is

inspired by Pearl’s “do-calculus” [27] in which all the parents’ influences on the target node are

removed from the graph structure. Such a perfect intervention modelling is often not consistent

with interventions that are typical in biology, for example, due to off-target effects of an inter-

vention. Moreover, the effects of interventions like a gene knockout may not be describable via
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(a) (b)

Figure 5.3: (a) ”perfect” intervention on D (b) ”uncertain” intervention on D with unknown
target E

the forcing of a target node’s state to a specific value in the observational network. In the Sachs

et al.’s cell signaling data, we know the nominal target of each of the reagents used in the tar-

geted interventions, but they might affect other (possibly hidden) variables. In such cases, using

causal inference methods assuming perfect intervention with known targets can detect spurious

interactions due to the following issues:

• For the cases where there are some intervention targets that are unknown, a problem of

uncertainty is introduced. The current algorithms might make mistakes since the arcs

pointing towards the unknown targets are not removed or handled properly, as shown in

Figure 5.3. E being an unknown target of intervention, we need to remove the arcs from

its parents too. So all the spurious arcs pointing towards the unknown targets still remains

and are added up in the inferred causal network.

• Although combining data from different uncertain interventions adds more confidence

into the true causal arcs, there are several spurious arcs which might get more weights and

result in false detection.

• Apart from uncertain targets, each intervention might also cause a mechanism change or

influence the local distribution in an unknown way [40].

Before describing how our approach aims to address these issues (compared in Figure 5.2d), we

first define some causal network concepts, notation, and standard approaches.

We evaluated our algorithm on various synthetic and real world data ranging from small to

medium size. For the synthetic networks we sample equal amount of data from observational and

interventional experiments from each network. We simply draw the observation data as random
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samples from each synthetic network. In the interventional experiments, to model uncertainty,

we set the known target node of each perfect intervention to a certain value. Next we also set one

or more of its children to different values (like “fat-hands”) which are assumed to be unknown

and finally sample data from each of these mutilated networks.

5.2 Description of datasets used for experiments

Description of the datasets we used for this study are as follows:

• Flow Cytometry: This is a technique for obtaining multiparameter molecular measure-

ments from individual cells. The original data, provided by [33] is collected from a series

of 9 experiments. We use the raw data and replicate their data-processing procedure in R

for our evaluation. Although, the interventions are assumed to be ideal, their effects are

known to have unknown consequences as shown in [13].

Table 5.1: Summary of the stimulating reagent and their effects

REAGENT CLASS

Anti-CD3/CD28 General Perturbation
ICAM-2 General Perturbation
b2cAMP Activates PKA
AKT inhibitor Inhibits AKT
U0126 Inhibits Mek1/2
PMA Activates PKC
G06976 Inhibits PKC
Psitectorigenin Inhibits PIP2
LY294002 Activates AKT

Data Preprocessing: We collected the raw data provided in [33] containing 9 experi-

mental files. Next, the data was cleaned by removing all the outliers falling more than

three standard deviations from the mean. Equal number of datapoints (600), from each

experiments, were randomly sampled with replacement to prevent biasing to a particular

experiment.

Data Discretization: Each dataset records all the proteins concentration levels after each
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stimulatory cues. Since the data contains molecule concentrations, they are continuous

and using a Gaussian Bayesian Network (GBN) seems more reasonable. However the

result found is not as good as expected. Hence, data from each experiment are sepa-

rately discretized to preserve maximum pairwise dependencies using a method described

by Hartemink, et al [18]. First the data are binned into intervals, followed by subsequent

collapsing due to reduction of mutual information among variables. The process continues

until each variable has three levels (high, medium, low protein expression).

• Lizards: This is a real-world dataset having 3 variables representing the perching be-

haviour of two species of lizards in the South Bimini island [34]. We generated one ob-

servation and two interventional studies.

• Asia: This is a synthetic network of 8 variables [23] about occurrence of lung diseases

and their relation with visits to Asia. For our experiment, we created two mutilated net-

works. Asia mut1 have one observation and one interventional study. Asia mut2 have one

observation and two interventional studies.

• Alarm: This is a synthetic network of 37 variables representing an alarm messaging sys-

tem for patient monitoring [2]. For our experiment, we created two mutilated networks.

Alarm mut1 have three observational and six interventional studies. Alarm mut2 have five

observational and ten interventional studies.

• Insurance: This is a synthetic network of 27 variables for evaluating car insurance risks

[3]. We created two mutilated networks. Insurance mut1 have one observation and five

interventional studies. Insurance mut2 have three observations and eight interventional

studies.

• gmInt: This is a synthetic dataset containing a matrix of observational and interventional

data from 8 Gaussian variables, provided in the pcalg-R package.

5.3 Popular Causal Structure Learning Methods

We evaluate the following algorithms (implemented in R) for our comparative analysis. The

learned causal graphs on the flow cytometry datasets are shown in Figure 5.4a-5.4e.
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• PC: The observational experiments were used to evaluate the equivalence class of a DAG

using the PC algorithm [37]. Fisher’s z-transformation conditional independence test was

used by varying α from 0 to 1 in steps of 0.01.

• GDS: This is a greedy search method [19] to estimate Markov equivalence class of DAG

from observational and interventional data. This is a greedy DAG search proposed by

[19] to estimate the Markov Equivalence Class of a DAG. It estimates the observational or

interventional Markov equivalence class of a DAG based on a mix of interventional and

observational data. This algorithm performs a greedy DAG search by maximizing a score

function (l0-penalized Gaussian maximum likelihood estimator) in 3 phases: 1) forward

phase (addition of an arrow in the space of DAGs, until improvement of score can be

seen), 2) backward phase (removal of an arrow in the space of DAGs, until improvement

of score can be seen) and 3) turning phase (reversal of an arrow in the space of DAGs,

until improvement of score can be seen).

• GIES: This algorithm [19] extends the greedy equivalence search (GES) algorithm [6] to

a generalized version that includes interventional data into observational data.

• Globally optimal Bayesian Network: This is a score-based dynamic programming ap-

proach [36] to find the optimum of any decomposable scoring criterion (like BDe, BIC,

AIC). This function (simy) estimates the best Bayesian network structure given interven-

tional and observational data but is only feasible up to about 20 variables.

• Invariant Causal Prediction: This method by Peters et al., [29] calculates the confi-

dence intervals for causal effects by exploiting the invariance property of a causal (vs.

non-causal) relationship under different experimental settings. We implemented it using

InvariantCausalPrediction R package.
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Table 5.2: Comparative Results

Dataset Metric
Causal Discovery Algorithms

PC GDS GIES ICP simy Sachs et al Learn and Vote

Flow Cytometry

Precision 0.5714 0.4186 0.377 1 0.4222 0.68 0.89
Recall 0.4 0.9 0.85 0.45 0.95 0.85 0.89

F1 score 0.47 0.572 0.522 0.62 0.584 0.7558 0.89

Lizards

Precision 1 1 1 0 1 1 1
Recall 1 1 1 0 1 0.5 0.5

F1 score 1 1 1 0 1 0.667 0.667

Asia mut1

Precision 1 0.625 0.625 1 0.31578 0.77 1
Recall 0.75 0.625 0.625 0.5 0.75 0.875 0.75

F1 score 0.857 0.625 0.625 0.666 0.4444 0.8237 0.857

Asia mut2

Precision 1 0.85714 0.85714 1 0.3043 0.666 1
Recall 0.75 0.75 0.75 0.5 0.875 0.75 0.75

F1 score 0.857 0.8 0.8 0.666 0.4928 0.7058 0.857

gmInt

Precision 0.75 0.889 0.889 1 0.889 0.8571 1
Recall 0.75 1 1 0.375 1 0.75 0.75

F1 score 0.75 0.94 0.94 0.5454 0.94 0.8 0.857

Alarm mut1

Precision 0.666 0.25 0.26 0.7 n/a 0.625 0.564
Recall 0.434 0.217 0.26 0.26 n/a 0.4464 0.4

F1 score 0.526 0.2325 0.26 0.38 n/a 0.52 0.468

Alarm mut2

Precision 0.666 0.411 0.5128 0.6 n/a 0.725 0.769
Recall 0.434 0.456 0.434 0.21 n/a 0.63 0.642

F1 score 0.526 0.432 0.47 0.3115 n/a 0.675 0.7

Insurance mut1

Precision 0.7143 0.36 0.3617 0.7 n/a 0.857 0.8
Recall 0.288 0.3461 0.327 0.25 n/a 0.577 0.538

F1 score 0.4107 0.352 0.3435 0.368 n/a 0.689 0.643

Insurance mut2

Precision 0.7143 0.355 0.366 0.64 n/a 0.676 0.6857
Recall 0.288 0.423 0.423 0.21 n/a 0.4423 0.4615

F1 score 0.4107 0.386 0.392 0.316 n/a 0.535 0.5517
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(a) TP:8, FP:6, FN:12 (b) TP:18, FP:25, FN:2 (c) TP:17, FP:28, FN:3

(d) TP:9, FP:0, FN:11 (e) TP:19, FP:26, FN:1

(f) TP:17, FP:8, FN:3 (g) TP:18, FP:2, FN:2

Figure 5.4: Network Inferred from various algorithms: (a) PC, (b) GDS, (c) GIES, (d) ICP, (e)
simy, (f) Re-implemented Sachs et al. 2005 and (g) ’Learn and Vote’
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(a) Flow Cytometry (b) Asia mut1

(c) Asia mut2

Figure 5.5: ROC plot for comparing results over various datasets

(a) Flow Cytometry (b) Asia mut1

(c) Asia mut2

Figure 5.6: Sample size vs Accuracy plot for comparing results over various datasets
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Chapter 6: Analysis of Results

Table 6.1 summarizes the results of the different structure learning algorithms over all the datasets.

6.1 Evaluation Metrics

We treat the presence of an arc in the ground-truth dataset as a “positive” example and its ab-

sence as a “negative” example. For each inferred network we compute the confusion matrix

counts in the usual manner. For each of the nine datasets and each of the seven inference algo-

rithms, we report the precision, the recall, and the F1 score.

Our approach outperformed all the baselines in five out of nine studies in terms of precision,

with the ICP method having second best performance. The positive predictive rate of our ap-

proach is higher for small or medium sized networks (less than 20 nodes) but comes down as

the size of the network increases. In terms of recall, although the performance of the greedy

algorithms (GDS, GIES, simy) is better for smaller networks, it decreases as the network size

increases. In terms of F1, our approach outperformed the others in five out of nine studies and

is more stable even when the network size increases. The PC algorithm learns better in case of

small networks (less than ten nodes), even with only observational data.

6.2 Network inference results on Sachs et al.’s dataset

Here, we compare the graphs learned using our approach in Figure 5.4g with that of the Sachs

et al. network inference method in Figure 5.4f on their cell signaling dataset. The Sachs et al.’s

method resulted in 8 false positive arcs, 3 false negative arcs, and 17 true positive arcs (Fig-

ure 5.4f). Our method detected all 17 arcs that were correctly detected by the Sachs et al.

method plus another arc (PIP2→PKC) that the Sachs et al. method missed. We detected two

false positives. On further study, we found that both of the detected putative false positives by

our method, (P38→ pjnk) and (PKC→ p44.42), are likely real interactions according to PCViz1

and PubMed2.
1PCViz: http://www.pathwaycommons.org/pcviz/
2PubMed : https://www.ncbi.nlm.nih.gov/pubmed/
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Table 6.1: Results on Flow cytometry data

METHODS Expected Reported Missed

Sachs et at. 15/17 17/17 3
Our Approach 16/20 20/20 2

Figure 5.4 shows the networks inferred by the seven inference algorithms on the Sachs et al.’s

dataset. The greedy algorithms (Figure 5.4b, fig. 5.4c, fig. 5.4e) are able to find most of the true

positive arcs at the cost of a large number of false positives. Hence such methods are not reliable

in interventional studies having uncertain targets. ICP on other hand is restrictive due to its

strict invariance property and helps reduce false causal arcs to a great extent, but at the cost

of sensitivity (Figure 5.4d). We also contrast the performance of the PC algorithm by working

only on the observational data. we can see from Figure 5.4a that most of the directions are

undetermined and the overall performance improves by adding interventional data.

To show the effect on a smaller scale, we can refer back to Figure 5.2c and 5.2d. Here we

used one general perturbation (Anti-CD3/CD28) and one specific perturbation experiment (AKT

inhibitor). We can see how the number of false positives reduces by avoiding pooling data.

6.3 Sensitivity to Threshold

To analyze the sensitivity of our results to the threshold parameter (which was set to 0.5 in

our experiments so far), we further compared ‘Learn and Vote’ to the method of Sachs et al.

using the threshold-independent performance visualization, the receiver operating characteristic

(ROC) curve (Figure 5.5a). We can see that the area under ROC in our approach is more than

theirs for the experiment on the flow cytometry data. The comparison on the two studies on Asia

dataset (asia mut1 & asia mut2) shows that including more experiments by informative targets

improves the performance. However, choosing which intervention is informative in an unknown

network structure is a challenging task, which will be a future extension of this work.

6.4 Effect of Sample size

Figure 5.6 shows the performance of our method vs Sachs et al.’s method by varying the sample

sizes extracted from each experiments. We observe that in case of very small samples per exper-
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iment, the learning from pooled data gives a better result. For the Asia network having 8 nodes,

learning from 20 data points from each experiments gives a non-significant result (Figure 5.6c).

Hence, in case of less number of available data it is a good idea to combine them irrespective

of experimental conditions. However, for large enough sample data pooling will raise the issue

of false discovery. In this work, we randomly sampled ‘equal’ number of data points from each

experiments to prevent biasing towards a particular experiment. Future work will deal with the

case of uneven samples of data from different experiments.

6.5 Conclusion

In this paper, we addressed the issue of false causal discovery which is observed when we pool

data from two or more experiments having different joint distributions caused by uncertain in-

terventions. We provided a benchmark for causal network learning methods with observational

and interventional experiments having uncertain interventions. We showed by evaluating several

state of the art causal learning algorithms that combining data from multiple experiments could

result in a large number of false positive causal arcs.

We presented our new approach, ‘Learn and Vote’, which avoids pooling data from multiple

experiments and instead combines the weighted graphs learned separately from each experiment.

Our approach significantly reduces the number of false positive arcs and achieves superior F1

scores.

Our research motivates the need to focus on the uncertain and unknown effects of interven-

tions to learn high precision causal networks from experimental data. Since most causal learning

algorithms assume perfect interventions, they might not be working as well as we expect on real

world domains having uncertain effects.
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Appendix A: Redundancy

This appendix is inoperable.




