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We now have broad consensus in the mathematics education research community that active, 

inquiry-based classrooms provide a wealth of learning benefits for students (Freeman et al., 

2014; Laursen et al., 2014; Theobald et al., 2020). Classrooms that utilize inquiry throughout the 

entire structure of the course, as opposed to the occasional group activity or unit, fall under the 

category inquiry-based mathematics education (IBME) (Laursen & Rasmussen, 2019). These 

classrooms are broadly characterized as consisting of four pillars: (1) students engage deeply 

with coherent and meaningful mathematical tasks, (2) students collaboratively process 

mathematical ideas, (3) instructors inquire into student thinking, and (4) instructors foster equity 

in their design and facilitation choices (p. 138). Given the wide acceptance of inquiry-based 

methods in undergraduate mathematics, a number of studies have addressed student experiences 

in these classrooms to provide further insight into the benefits of IBME, the potential downsides 

of IBME (e.g., Brown, 2018; Johnson et al., 2020; Stone-Johnstone et al., 2019), and to share the 

“what/when/how/why” of mathematical content as it is taught in these spaces (e.g., Dawkins, 

2014a; Kuster et al., 2018; Rasmussen & Kwon, 2007; Wawro et al., 2012). Moreover, there are 

few studies that combine classroom level observation data with student and professor interview 



data across the span of an entire term (Dawkins et al. (2019)is a notable exception) in order to 

capture the interplay between students’ social and mathematical experiences.  

For my dissertation study, I observed an inquiry-based learning (IBL, which is a particular 

strand of IBME) undergraduate advanced calculus course. Thus, in addition to the context of 

being an IBME classroom, my study contributes to research on the teaching and learning of 

advanced calculus (also known as real analysis), which in turn heavily involves proof-based 

arguments and reasoning. Real analysis, often introduced as advanced calculus at the 

undergraduate level is a required course for most mathematics major degrees across the country 

(Blair et al., 2018). Existing literature shows that proof is not a trivial activity for students to 

engage in (Stylianides et al., 2016; Stylianides et al., 2017; Stylianou et al., 2015; Weber, 2010) 

and that advanced calculus is a useful setting in which to study students’ proof activity (Alcock 

& Simpson, 2002; Alcock & Weber, 2005; Dawkins & Roh, 2016; Weber & Alcock, 2004; 

Zazkis et al., 2016). In particular, the IBME style of this advanced calculus classroom meant that 

students were engaging in authentic, student-centered proof activity for the majority of class 

time. Furthermore, the classroom I observed was run by a highly experienced instructor, who had 

over 12 years of experience teaching with IBL materials and had spent several years developing 

this course. Thus, this was an ideal case study for me to observe the full potential of the 

possibilities of what IBL can offer advanced calculus students, while still emphasizing the 

difficulties of IBL teaching no matter an instructor’s experience level.   

My broad research goal for the dissertation was to capture students’ social and mathematical 

experiences in this classroom setting, and to explore the relation between these experiences and 

the IBL structure. Additionally, the instructor I observed added several activities to her course 

that were not prescribed by the IBL structure (such as a reflective essay on personal axioms), and 



so I also wanted to explore the relation between these activities and students’ experiences. 

Notably, this class occurred over the Spring 2020 semester, which meant that I inadvertently 

captured the class’ transition to remote learning and the instructor’s expert facilitation of a safe 

classroom space throughout that difficult period. My data collection consisted of classroom 

observations for the entire term, along with a series of individual interviews across the term with 

the professor and five selected volunteer students. 

I am broadly motivated to explore the following questions regarding student experiences in 

inquiry-based learning and how a sense of classroom community was created over the course of 

a term: 

1) In what ways did the IBL structure of the classroom influence and support interplay between 
the combined social and mathematical experiences of students in this classroom? 

 
2) In what ways did the instructor influence and support interplay between the combined social 

and mathematical experiences of students in this classroom? 
 
3) How, if at all, did the interplay between these combined social and mathematical experiences 

work to create an overall sense of classroom community? 
 

To answer these questions, I analyzed both classroom and interview data, which enabled me to  

write three papers that address different aspects of the term. Each paper combines the social and 

mathematical experiences of the students in a different way (a narrative analysis of the first three 

days of the term, a thematic analysis of how rehumanizing mathematics occurred and benefited 

students during the remote transition to online learning due to COVID-19, and an application of 

a theoretical framework for understanding students’ developing values and norms around proof 

across the term). In order to address my first two research questions, in each paper I emphasize 

ways in which the IBL structure and the instructor’s additional activities influenced, or provided 

opportunity for, these experiences. My third research question is addressed primarily in the 

second paper in my data regarding classroom community at the end of the term.  



 
 
 
 
 
 
 
 
 
 
 
 

 
©Copyright by Branwen Schaub  

June 8, 2021  
All Rights Reserved 



Creating Community:  
A Case Study of Students’ Experiences in Inquiry-Based Learning 

 
 

by 
Branwen Schaub 

 
 
 
 
 
 
 
 

A DISSERTATION 
 
 

submitted to 
 

 
Oregon State University 

 
 
 
 
 
 
 
 

in partial fulfillment of 
the requirements for the  

degree of 
 
 

Doctor of Philosophy 
 
 
 
 
 

Presented June 8, 2021 
Commencement June 2022 



Doctor of Philosophy dissertation of Branwen Schaub presented on June 8, 2021 
 
 
 
 
 
APPROVED: 
 
 
 
 
Major Professor, representing Mathematics 
 
 
 
 
 
Head of the Department of Mathematics 
 
 
 
 
 
Dean of the Graduate School 
 
 
 
 
 
 
 
 
 
 
I understand that my dissertation will become part of the permanent collection of Oregon State 
University libraries.  My signature below authorizes release of my dissertation to any reader 
upon request. 
 
 
 

Branwen Schaub, Author 



 ACKNOWLEDGEMENTS 
 

First and foremost, I would like to thank my adviser, the incredible Dr. Elise Lockwood. She 

took a chance on me six years ago as an undergraduate looking to gain experience in 

mathematics education research and has blessed me with so many opportunities along this 

journey. I would not be in graduate school without her, her grant work provided me an 

invaluable amount of research experience and funding, and I would not have been able to write 

this dissertation without her continued guidance. I thank her for introducing me to the RUME 

community and for trusting me to do this dissertation that was so tangential to her own research 

projects. In the words of Hamilton, thank you for not letting me throw away my shot. 

I would like to thank the fabulous OSU Mathematics Graduate Students cohort of 2016 and 

the many students above and below me for their support and friendship. I wouldn’t have wanted 

to do graduate school without them, and I will carry many fond memories of wandering Kidder 

Hall with a cup of coffee looking for a good distracting conversation among friends. In 

particular, I need to thank Ayşe Yiltekin. Ayşe went from stranger to sister almost overnight, and 

I would not have survived the long-distance commutes to graduate school without her 

hospitality. There’s no one I would rather have taken quals with, eaten so many meals with, and 

had as my officemate and roommate. Teşekkür ederim arkadaşım. 

Along my graduate school journey, I have had several important mentors. I would like to 

thank my Masters adviser, Dr. Christine Escher, for inspiring my continued love of topology, my 

teaching mentor, Dr. Daniel Rockwell, for showing me what it means to put students first, and 

Dr. Mary Beisiegel for her unlimited advice. Additionally, I would like to thank Dr. David 

Pengelley, who willingly read every word of my dissertation and always provided me with 

thoughtful conversation on all topics mathematics and education related over a nice hot drink. 



I would also like to thank my undergraduate alma mater, the University of Portland, and the 

mentors from the mathematics department that helped me succeed there: Dr. Christopher Lee, 

Dr. Valerie Peterson, Dr. Stephanie Salomone, and Dr. Craig Swinyard. You all helped point me 

towards mathematics and provided an innumerable number of positive experiences that made me 

fall in love with the subject. I am blessed to have such powerful models of women in 

mathematics, and I am extremely thankful to Craig for introducing me to Elise.  

To my family members: Angela, Dan, Rhiannon, and Alan, thank you for all the ways you 

raised and guided me on this journey. My dance family, the Muellers, thank you for providing 

unconditional love and a much-needed weekly respite from academia. Brendan, thank you for 

keeping the light on at the end of the tunnel this past year. And of course, Brody, for teaching me 

the true meaning of patience and progress over perfection.  

I would like to pay tribute to the land which has raised me and graciously given me the space 

to complete my schooling from elementary, to undergraduate, and finally graduate education. To 

honor the past and present of these indigenous lands means to recognize the devastating effects 

of colonialism on indigenous people, and the land itself. My schooling was completed within the 

states of Oregon and Washington, and in particular the outdoor offerings of the Wenatchee 

Valley were essential to my mental health during the dissertation writing process. 

The University of Portland, and the surrounding Portland Metro area, rests on traditional 

village sites of the Multnomah, Wasco, Cowlitz, Kathlamet, Clackamas, Bands of Chinook, 

Tualatin, Kalapuya, Molalla, and many other tribes who made their homes along the Columbia 

River creating communities and summer encampments to harvest and use the plentiful natural 

resources of the area (Portland Indian Leaders Roundtable, 2018).  

 



Oregon State University in Corvallis, Oregon, is located within the traditional homelands of 

the Mary’s River or Ampinefu Band of Kalapuya. Following the Willamette Valley Treaty of 

1855, Kalapuya people were forcibly removed to reservations in Western Oregon. Today, living 

descendants of these people are a part of the Confederated Tribes of Grand Ronde Community of 

Oregon (grandronde.org) and the Confederated Tribes of the Siletz Indians (ctsi.nsn.us).  

The Wenatchee Valley is located on the traditional homelands of the p’squosa (wenatchi), at 

the place the p’squosa call Skwikwiast, which we call Wenatchee. The traditional territories of the 

Colville Tribes extend across eastern Washington and into portions of the British Columbia, 

Oregon and Idaho. The Confederate Tribes of the Colville Tribes include the Lakes, Colville, 

Okanogan, Moses-Columbia, Wenatchi, Entiat, Chelan, Methow, Nespelem, San Poli, Chief 

Joseph Band of Nez Perce and Palus Indians.  

 

 

Thank you.



 

Page 

 

TABLE OF CONTENTS 

1 Introduction .................................................................................................................................. 1 

1.1 Research Questions ...............................................................................................................3 

1.2 Overview of Papers ...............................................................................................................3 

2 Literature Review......................................................................................................................... 6 

2.1 Inquiry Based Mathematics Education .................................................................................6 

2.2 Inquiry-Based Learning and Inquiry-Oriented Instruction ...................................................8 

2.3 History of Inquiry-Based Learning and the Moore Method ...............................................10 

2.4 Studies in Inquiry Based Mathematics Education ..............................................................13 

2.4.1   IBME Studies on Students’ Social Experiences .................................................................13 

2.4.2   IBME Studies on Students’ Mathematical Experiences .....................................................15 

2.5 Literature on Proof and Motivating Connections to IBME ................................................16 

2.5.1   Defining Proof ....................................................................................................................17 

2.5.2   Student Experiences with Proof ..........................................................................................19 

2.5.3   Motivating Connections Between Proof and IBME ...........................................................21 

2.6 Literature on Advanced Calculus and Motivating Connections to IBME ..........................22 

2.6.1   Characterizing Advanced Calculus .....................................................................................22 

2.6.2   Research on Student Experiences in Advanced Calculus and Real Analysis .....................23 

2.6.3   Motivating Connections Between Advanced Calculus and IBME .....................................26 

2.7 Summary of Literature Review ...........................................................................................27 

3 Theoretical Perspectives ............................................................................................................ 27 

3.1 Social Constructivism .........................................................................................................28 

3.2 Specific Theoretical Frameworks for Each Paper ..............................................................29 

3.2.1   Interpretive Framework ......................................................................................................29 

3.2.2   Rehumanizing Mathematics Framework ............................................................................29 

3.2.3   Proof Values and Norms Framework .................................................................................30 

4 Methods...................................................................................................................................... 31 

4.1 Data Site ..............................................................................................................................32 

4.1.1   Class Structure ....................................................................................................................32



 
 

TABLE OF CONTENTS (Continued) 
 

4.1.2   Researcher Positionality......................................................................................................34 

4.2 Participants ..........................................................................................................................36 

4.2.1   The Students........................................................................................................................36 

4.2.2   The Professor ......................................................................................................................36 

4.3 Data Collection ...................................................................................................................38 

4.3.1   Classroom Observations .....................................................................................................38 

4.3.2   Individual Interviews ..........................................................................................................39 

4.4 Data Analysis ......................................................................................................................41 

4.4.1   Thematic Analysis ..............................................................................................................41 

5 (Paper 1) Are We Allowed to Do That? A narrative analysis of student experiences in an IBL 

class ............................................................................................................................................... 46 

5.1 Introduction and Motivation ...............................................................................................46 

5.2 Literature Review................................................................................................................47 

5.2.1   Inquiry-Based Learning ......................................................................................................47 

5.2.2   Axioms, Proof, and Advanced Calculus .............................................................................50 

5.3 Theoretical Perspectives .....................................................................................................53 

5.3.1   Classroom Norms and Practices .........................................................................................53 

5.3.2   Equity in the Classroom ......................................................................................................56 

5.4 Methods...............................................................................................................................57 

5.4.1   Data Site and Data Collection .............................................................................................57 

5.4.2   Data Analysis ......................................................................................................................59 

5.4.3   Mathematical Discussion ....................................................................................................64 

5.5 Results .................................................................................................................................68 

5.5.1   Day One ..............................................................................................................................69 

5.5.2   Day Two..............................................................................................................................73 

5.5.3   Day Three............................................................................................................................81 

5.6 Conclusion, Limitations, and Avenues for Future Research ..............................................85 

5.6.1   Conclusion ..........................................................................................................................85 

5.6.2   Limitations and Future Directions ......................................................................................88 

6 (Paper 2) Inquiry-Based Learning and Beyond: A Case Study of Rehumanizing Mathematics in 

Action ............................................................................................................................................ 95  



 
 

TABLE OF CONTENTS (Continued) 
 

6.1 Introduction .........................................................................................................................95 

6.2 Literature Review and Theoretical Perspectives .................................................................97 

6.2.1   Inquiry Based Mathematics Education ...............................................................................98 

6.2.2   Rehumanizing Mathematics..............................................................................................104 

6.3 Methods and Data Collection............................................................................................114 

6.3.1   Classroom Context ............................................................................................................114 

6.3.2   Data Collection and Analysis............................................................................................115 

6.4 Results ...............................................................................................................................119 

6.4.1   Dimensions of Rehumanizing Mathematics .....................................................................120 

6.4.2   COVID-19 and the End of the Term.................................................................................134 

6.4.3   Student Reflections in Final Interviews ............................................................................141 

6.5 Discussion .........................................................................................................................144 

6.5.1   Summary of Results ..........................................................................................................144 

6.5.2   Limitations and Future Directions ....................................................................................146 

7 (Paper 3) Students’ Shifting Values and Norms on Proof in an IBL Real Analysis Course ... 151 

7.1 Introduction .......................................................................................................................151 

7.2 Literature Review..............................................................................................................152 

7.2.1   Relevant Literature and Characterization of Inquiry-Based Learning ..............................153 

7.2.2   Relevant Literature and Characterization of Proof ...........................................................154 

7.2.3   Relevant Literature and Characterization of Real Analysis ..............................................157 

7.3 Theoretical Perspectives ...................................................................................................161 

7.4 Methods.............................................................................................................................163 

7.4.1   Data Site and Class Description ........................................................................................163 

7.4.2   Data Collection .................................................................................................................164 

7.4.3   Data Analysis ....................................................................................................................165 

7.5 Results ...............................................................................................................................167 

7.5.1   Relating Proofs and Definitions ........................................................................................168 

7.5.2   Relating Proofs and Problem-Solving Processes ..............................................................171 

7.5.3   Relating Proofs and Understanding ..................................................................................177 

7.6 Limitations and Future Directions ....................................................................................184 

8 Conclusion ............................................................................................................................... 190  



 
 

TABLE OF CONTENTS (Continued) 
 

8.1 Summary of Papers and Response to Overall Research Questions ..................................190 

8.2 Limitations ........................................................................................................................193 

8.3 Future Directions ..............................................................................................................196 

8.3.1   Future Directions Based on Each Paper............................................................................196 

8.3.2   Remaining Questions for This Dataset .............................................................................197 

9 References ................................................................................................................................ 199 

10 Appendices ............................................................................................................................. 208 



 
LIST OF FIGURES 

Figure                 Page 

Figure 2-1: The Four Pillars of Inquiry-Based Mathematics Education......................................... 8 

Figure 5-1: The Four Pillars of Inquiry-Based Mathematics Education....................................... 48 

Figure 5-2: Field Axioms in Class Packet .................................................................................... 65 

Figure 5-3: Definition of Division and Subtraction in Class Packet ............................................ 65 

Figure 5-4: The first four packet statements ................................................................................. 65 

Figure 5-5: Proof of Statement 1 (a) ............................................................................................. 66 

Figure 5-6: Proof of Statement 1 (b) ............................................................................................. 67 

Figure 5-7: Proof of Statement 1 (c) ............................................................................................. 67 

Figure 5-8: Rose’s First Proof of Statement 1 .............................................................................. 70 

Figure 5-9: Rose’s Edited Proof of Statement 1 ........................................................................... 72 

Figure 5-10: Rose’s New Proof of Statement 1 ............................................................................ 75 

Figure 5-11: Jordan’s Idea for Statement 1................................................................................... 78 

Figure 5-12: Easton’s Proof of Statement 1 .................................................................................. 79 

Figure 5-13: Taylor’s Proof of Statement 1 .................................................................................. 84 

Figure 6-1: The Four Pillars of Inquiry-Based Mathematics Education..................................... 101 

Figure 6-2: A student comment and response to Proof 65.......................................................... 138 

Figure 6-3: Part of a student’s thank you letter........................................................................... 140 

Figure 6-4: Part of a student’s poem ........................................................................................... 140 

Figure 6-5: A meme that was created and shared by a student ................................................... 141 

Figure 7-1: Epsilon-N definition of convergence as it appeared in class packet ........................ 158 

Figure 7-2: Sloan’s board work on Statement 34. ...................................................................... 173 

Figure 7-3: Dr. Miya’s board work on Statement 34 .................................................................. 173 

Figure 7-4: Two Versions of the Dear John Punctuation Activity ............................................. 178 



 
 

 
LIST OF FIGURES (Continued) 

 
Figure 7-5: Definition of supremum as it appeared in class packet ............................................ 178 

Figure 7-6: Dr. Miya’s writing of Easton’s opening and closing proof statements .................... 179 

Figure 7-7: Dr. Miya’s Example Using Multiple Quantifiers..................................................... 181 
 

 

 
 
 
 
 
 
 
 
  
 



 

LIST OF TABLES 
Table                 Page 

Table 3-1: Cobb and Yackel’s interpretive framework (1996, p. 177) ......................................... 29 

Table 3-2: Proof Values and Norms, adapted from Dawkins & Weber (2017) ........................... 31 

Table 4-1: Individual Student Interview Participants ................................................................... 39 

Table 5-1: Cobb and Yackel’s interpretive framework (1996, p. 177) ......................................... 53 

Table 5-2: Example of Coding and Analysis of Narrative ........................................................... 63 

Table 6-1: Characterization of Equity, Gutiérrez (2009) ............................................................ 105 

Table 6-2: Dimensions of Rehumanizing Mathematics, adapted from Gutiérrez (2018)........... 107 

Table 7-1: Proof Values and Norms, adapted from Dawkins & Weber (2017) ......................... 162 
 
 

 

 

 

 

 

 

 

 

 
 

 



 

 

 

 

 

DEDICATION 

This dissertation is dedicated to Dr. Stephanie Anne Salomone. Thank you for wearing so many 
hats in my life, including but not limited to the following: an inspiration, a teacher, a mentor, a 
mother figure, a shoulder to cry on, a motivator, a participant, a research partner, a boss, an ally 
in the fight for racial and social justice in mathematics education, and most importantly a friend.



1 
 

 

1 Introduction 
 

We now have broad consensus in the mathematics education research community that active, 

inquiry-based classrooms provide a wealth of learning benefits for students (Freeman  et al., 

2014; Laursen et al., 2014; Theobald et al., 2020). Classrooms that utilize inquiry throughout the 

entire structure of the course, as opposed to the occasional group activity or unit, fall under the 

category inquiry-based mathematics education (IBME) (Laursen & Rasmussen, 2019). These 

classrooms are broadly characterized as consisting of four pillars: (1) students engage deeply 

with coherent and meaningful mathematical tasks, (2) students collaboratively process 

mathematical ideas, (3) instructors inquire into student thinking, and (4) instructors foster equity 

in their design and facilitation choices (p. 138). Given the wide acceptance of inquiry-based 

methods in undergraduate mathematics, a number of studies have addressed student experiences 

in these classrooms to provide further insight into the benefits of IBME, the potential downsides 

of IBME (Brown, 2018; Johnson et al., 2020; Stone-Johnstone et al., 2019), and to share the 

“what/when/how/why” of mathematical content as it is taught in these spaces (Dawkins, 2014a; 

Kuster et al., 2018; Rasmussen & Kwon, 2007; Wawro et al., 2012). Moreover, there are few 

studies that combine classroom level observation data with student and professor interview data 

across the span of an entire term (Dawkins (2019) is a notable exception) in order to capture the 

interplay between students’ social and mathematical experiences.  

For my dissertation study, I observed an inquiry-based learning (IBL, which is a particular 

strand of IBME) undergraduate advanced calculus course. Real analysis, often introduced as 

advanced calculus at the undergraduate level, is a required course for most mathematics major 

degrees across the country (Blair et al., 2018). It is one of the core courses of undergraduate 
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mathematics majors, both because it requires students to justify and explore foundations for 

calculus, and because it exposes students to abstract mathematical topics and rigorous 

mathematical proof. In this way, it stands out as an important proof-based course that is known 

to be challenging for students (Reed, 2018, p. 26). Existing literature shows that proof is not a 

trivial activity for students to engage in (Stylianou et al. 2015; Stylianides et al., 2016; 

Stylianides et al., 2017; Weber, 2010) and that advanced calculus is a useful setting in which to 

study students’ proof activity (Alcock & Simpson, 2002; Alcock & Weber, 2005; Dawkins & 

Roh, 2016; Weber & Alcock, 2004; Zazkis et al. 2016). In particular, the IBME style of this 

advanced calculus classroom meant that students were engaging in authentic, student-centered 

proof activity for the majority of class time. Thus, in addition to the context of being an IBME 

classroom, my study contributes to research on the teaching and learning of advanced calculus 

(also known as real analysis), which in turn heavily involves proof-based arguments and 

reasoning. Furthermore, the classroom I observed was run by a highly experienced instructor, 

who had over 12 years of experience teaching with IBL materials and had spent several years 

developing this course. Thus, this was an ideal case study for me to observe the full potential of 

the possibilities of what IBL can offer advanced calculus students, while still emphasizing the 

difficulties of IBL teaching no matter an instructor’s experience level.   

My broad research goal for the dissertation was to capture students’ social and mathematical 

experiences in this classroom setting, and to explore the relation between these experiences and 

the IBL structure. Additionally, the instructor I observed added several activities to her course 

that were not prescribed by the IBL structure (such as a reflective essay on personal axioms), and 

so I also wanted to explore the relation between these activities and students’ experiences. 

Notably, this class occurred over the Spring 2020 semester, which meant that I inadvertently 
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captured the class’ transition to remote learning and the instructor’s expert facilitation of a safe 

classroom space throughout that difficult period. My data collection consisted of classroom 

observations for the entire term, along with a series of individual interviews across the term with 

the professor and five selected volunteer students. 

1.1 Research Questions 
 

I am broadly motivated to explore the following questions regarding student experiences in 

inquiry-based learning and how a sense of classroom community was created over the course of 

a term: 

1) In what ways did the IBL structure of the classroom influence and support interplay between 
the combined social and mathematical experiences of students in this classroom? 

 
2) In what ways did the instructor influence and support interplay between the combined social 

and mathematical experiences of students in this classroom? 
 
3) How, if at all, did the interplay between these combined social and mathematical experiences 

work to create an overall sense of classroom community? 
 

To answer these questions, I wrote three papers (Chapters 5, 6, and 7) that address different 

timelines during the term. Each paper combines the social and mathematical experiences of the 

students in a different way and emphasizes various ways in which the IBL structure and the 

instructor’s additional activities influenced, or provided opportunity for, these experiences.  

1.2 Overview of Papers 
 

In Paper 1, Are We Allowed to Do That? A Narrative Analysis of Student Experiences in an 

IBL Class, I analyze a narrative of the class’ discussions on the use of algebra in their first proof. 

The students’ work proving a statement on the uniqueness of the additive inverse for every real 

number took an interesting turn when one student cited what she called “the Law of 

Cancellation” to cancel like terms on both sides of an equation; leading the students to question 

whether they could assume the use of cancellation, or alternatively whether their proof of the 
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statement was justification for using cancellation in future proofs. My research goal in this paper 

is to share a nuanced picture of how students’ spontaneous mathematical ideas can occur within 

and impact the course of an IBL classroom. In particular, I highlight how these conversations, 

and the instructor’s role in these conversations, afforded opportunities for the class to engage in 

the creation of social and sociomathematical norms (Cobb & Yackel, 1996) that promoted more 

equitable (Gutiérrez, 2009) learning experiences.  

In Paper 2, Inquiry-Based Learning and Beyond: A Case Study of Rehumanizing 

Mathematics in Action, I present an empirically grounded case study that considers how the 

dimensions of rehumanizing mathematics (Gutiérrez, 2018) occurred and developed, both 

through the structure of the course and through course elements that an instructor incorporated 

(such as a writing assignment that asked students to articulate a personal axiom). My evidence 

that the course engaged in rehumanization comes from student data at the end of the Spring 2020 

term emphasizing how important this class was to them during the transition to remote learning 

due to COVID-19. I also employ the four pillars of inquiry-based mathematics education (IBME) 

(Laursen & Rasmussen, 2019) to frame my understanding of the IBL structure I observed and 

contribute to larger conversations on equity in undergraduate mathematics education.  

In Paper 3, Students’ Shifting Values and Norms on Proof in an IBL Real Analysis Course, I 

provide three examples of students developing proof values and norms over the term. I rely on 

Dawkins & Weber’s (2017) theoretical framework for conceptualizing proof in terms of values 

and norms that uphold hose values. My work provides data to shed light on their framework as 

well as extends the notions of why these values are hard to create with students, and how an 

inquiry-based learning classroom provides opportunities to practice proof that are valuable in 

creating these norms. I also share three key activities from the instructor that were instrumental 
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in helping students’ recognize these values and recall them in final individual interviews where 

they reflected on what they had learned about themselves as mathematicians and their proof 

writing abilities over the term.  

Together, these three papers address my overall research goals by taking different approaches 

(via separate theoretical frameworks and portions of the data set) to analyze the social and 

mathematical experiences of the students and emphasize ways in which the IBL structure and the 

instructor’s additional activities influenced, or provided opportunity for, these experiences. As a 

small caveat, I want to draw attention to the fact that these three papers by no means encompass the 

full range of experiences that occurred in the classroom over the course of the term. My three papers 

were written primarily from observational classroom data and the interview data of five voluntary 

students who had overall positive experiences in the classroom. In an IBME classroom, a large 

majority of the instructor’s work lies “behind the scenes”. During class time, the instructor acts as a 

facilitator, and is continually making small, unseen, choices to guide the class in ways that maintain 

the student-centered nature of IBME. My data collection was focused on students and did not 

capture this difficult and nuanced work of the instructor. I therefore encourage the reader to keep in 

mind the untold story of the instructor behind each of these papers; there is simply more to this story 

than I had space to tell. In addition, there were some students in class who did not participate as 

actively in class, and my data collection did not permit me to investigate or analyze their experiences 

deeply. Overall, then, my three papers should be read as proofs of existence of what’s possible with 

IBME, and I offer specific examples of what happened in this classroom, using certain theoretical 

frameworks to understand student experiences. The dissertation as a whole should not be considered 

an all-encompassing picture of the class or the instructor, and I acknowledge that there are more 

layers and nuance to all of these stories than three papers can accurately portray.  
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2 Literature Review 
 

The classroom I observed for my dissertation was described as an inquiry-based learning 

classroom by the instructor. This classroom structure defined several aspects of the instruction, 

and I emphasize the impact of the structure of the course throughout the results of all three 

papers. Thus, in this literature review, I provide an overview of what I mean by inquiry-based 

learning (IBL) and its history, the broader term inquiry-based mathematics education (IBME), 

and a variety of studies that have been conducted in IBME classrooms. In particular, I consider 

ways in which studies have looked at students’ mathematical experiences, affective experiences, 

equity related experiences, and experiences in classrooms that specifically used proofs or dealt 

with advanced mathematics material such as real analysis. I then consider both proof and real 

analysis more broadly, showing that proof is a fundamental practice at the undergraduate level 

that warrants further investigation and study, and that real analysis is a relevant and important 

course at the undergraduate level. In total, these studies all help to situate my own work in the 

wider context of mathematics education research describe the contributions of my own study to 

the existing literature base.  

2.1 Inquiry Based Mathematics Education  
 

First, I examine the broadest term possible for classrooms that use inquiry teaching methods: 

active learning. The benefits of active learning for mathematics have been well established by 

previous researchers (Freeman et al. 2014; Theobald et al. 2020). However, a definition of active 

learning that is both all-encompassing and non-trivial is difficult to write. In their article for the 

Notices of the American Mathematical Society, Braun et al. defined active learning as “classroom 

practices that engage students in activities, such as reading, writing, discussion, or problem 

solving, that promote higher-order thinking” (Braun et al. 2017, p. 124). Thus, the overall goal of 
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active learning is to engage students in their own learning process in a variety of ways, which can 

occur at a variety of different levels in a classroom. For example, a lecture-based classroom could 

instill a problem-solving session once a week for students, or provide small active-learning 

opportunities such as clicker questions throughout every class period.  

The term inquiry-based mathematics education (IBME) was jointly constructed by Laursen 

and Rasmussen (Laursen & Rasmussen, 2019), to unite various lines of inquiry-based teaching 

and research. IBME classrooms use active learning with “a longer-term trajectory that sequences 

daily tasks to build toward big ideas,” to “reinvent or create mathematics that is new to [students],” 

and to “offer students and instructors greater opportunities to develop a critical stance toward 

previous, perhaps unquestioned, learning and teaching routines” (Laursen & Rasmussen 2019, p. 

133-134). This characterization of IBME helps to shed light on Braun et al.’s definition and show 

how active learning can be systematically used as a classroom structure. 

Broadly speaking, Laursen and Rasmussen (2019) characterize IBME classrooms as 

encompassing four “pillars” (see Figure 1) that prescribe expectations for instructor and student 

involvement both mathematically and socially in the classroom. The language of the top row of 

pillars concerning student needs were established in Laursen et al. (2014), the third pillar on 

inquiring into student thinking was developed in Rasmussen and Kwon (2007), the fourth pillar 

on equity was established in Laursen and Rasmussen (2019), and the graphic organization is 

shown as presented in the observed instructor’s syllabus1.  

 
1 The instructor credited Dr. Nina White with the graphic. 



8 
 

 
Figure 2-1: The Four Pillars of Inquiry-Based Mathematics Education 

2.2  Inquiry-Based Learning and Inquiry-Oriented Instruction 
 

One of the main goals of the term IBME is to unite two branches of inquiry, inquiry-based 

learning (IBL) and inquiry-oriented instruction (IOI), through their common goals and themes. 

However, since the classroom I observed had features that drew heavily on the IBL tradition I 

find it useful to explicate the differences between these two approaches to inquiry. These 

distinctions also help to make sense of the research that has risen out of both lines of work, and 

position my own contributions to the IBL community in particular. We will see that the main 

distinction between these two approaches comes from their historical paths; the term IOI 

stemmed out of undergraduate mathematics education research tradition in the early 2000s, 

whereas IBL was developed along multiple concurrent paths as early as the 1960s through the 

broader mathematical community and practitioners of various education levels.  

IOI comprises a body of curriculum and research literature that is centered on design-based 

research (Cobb, 2000; Gravemeijer, 1994), Realistic Mathematics Education (Freudenthal, 1991; 

Gravemeijer, 1999), and is inspired by work on sociomathematical norms (Cobb & Yackel, 

1996). Laursen and Rasmussen (2019) describe IOI classrooms as follows, 

Visitors to IO classrooms would see students working in small groups on 
unfamiliar and challenging problems, students presenting and sharing their work, 
even if tentative, and whole-class discussions where students question and refine 
their classmates’ reasoning. The students’ intellectual work lies in creating and 
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revising definitions, making and justifying conjectures and justifying them, 
developing their own representations, and creating their own algorithms and 
methods for solving problems (p. 134).  
 

Due to the origins of this work in undergraduate mathematics education research, the majority of 

qualitative studies in IBME classrooms currently comes from IOI researchers and their curricula. 

For example, the National Science Foundation supported project Teaching Inquiry-Oriented 

Mathematics: Establishing Supports2 (TIMES) has reported on work related to the development 

and implementation of inquiry-oriented curricula within several mathematical domains 

(including abstract algebra, linear algebra, and differential equations). Within each domain, 

researchers have investigated work on student thinking, development and refinement of tasks and 

materials, and issues related to the effective implementation of such curricula in classrooms. In 

general, IOI can be seen as a particular characterization of IBL that has established curricula and 

ways of teaching (Kuster et al., 2018). 

IBL comes from a long history with both mathematicians (see Section 2.3) and practitioners. 

Laursen and Rasmussen describe the IBL community as “a lively place for practitioners to 

exchange ideas and deepen their practice – a network of people and events” (Laursen & 

Rasmussen 2019, p. 135). The large variety of inquiry-based learning classrooms and the focus 

on practitioner viewpoints has produced quantitative literature such as large-scale studies about 

student learning outcomes in IBL classrooms (Laursen et al., 2014), and personal accounts of 

teacher experiences in practitioner journals such as PRIMUS (Shannon, 2016). The description 

below from Laursen and Rasmussen aligns well with the classroom I observed.  

Visitors to IBL courses would see class work that is highly interactive, 
emphasizing student communication and critique of these ideas, whether through 
student presentations at the board or small group discussions. Whole-class 
discussions and debriefs are used to aid collective sense-making, and instructors 

 
2 https://times.math.vt.edu/ 
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may provide mini-lectures to provide closer and signposting. Instructors’ 
classroom role is thus shifted from telling and demonstrating to guiding, 
managing, coaching, and monitoring student inquiry (Laursen & Rasmussen 
2019, p. 136).   
 

In particular, the classroom I observed utilized whole class presentations at the board and a high 

amount of student interaction as they provided feedback and advice on each other’s 

presentations. The instructor’s role was mainly that of a guide or facilitator of these student 

conversations. Since the publication of Laursen and Rasmussen (2019), the Academy for Inquiry 

Based Learning now defines IBL using the four pillars discussed in Section 2.1, which also draw 

on these components of students engaging in deep mathematics while the instructor inquires into 

student thinking. Thus, there is a fair amount of overlap between inquiry-based learning and 

inquiry-based mathematics education. One way in which my study adds to the existing literature 

then is by providing detailed examples of how an IBL classroom can attend to the four pillars of 

IBME with lens’ and frameworks from the undergraduate mathematics education community 

more similar to the existing work in the IOI community.  

2.3 History of Inquiry-Based Learning and the Moore Method 
 

The classroom I observed employed a version of inquiry-based learning that was historically 

developed among mathematicians and called the Moore Method (or Modified Moore Method). 

However, the instructor recognized that the Moore Method had a highly problematic history and 

preferred to not label her classroom in a way that associated her with the method. In this section, 

I review the history of the Moore Method, and explore the reasons behind its controversy. I find 

it important to include this history in order to provide a full picture of an important aspect to the 

foundation of inquiry-based learning and the historical development of the classroom style that I 

observed. I begin by describing Moore’s teaching method, the ethical considerations of his 

method, and how the method evolved over time to present day classrooms.  
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Robert Lee Moore (1882-1974) was a prominent mathematician who had a significant impact 

on mathematics and mathematics education. In the 1960s, Moore’s classroom was considered 

highly radical because he did not lecture. Instead, students were responsible for creating 

mathematical proofs of theorems that Moore gave them, and they spent class time presenting 

their original work to their peers. Moore disallowed his students from talking with each other, 

other professors, or consulting any outside materials when writing their proofs. He even went so 

far as to change the definitions of terms so they could not be looked up in books. While there are 

several more details to his teaching, I emphasize two additional factors: the way he picked 

students to present, and his students’ transition from classwork to research. Moore made a point 

of asking whom he believed to be the weakest students in class for their problem solution first, 

and then letting one of the stronger students finish the proof. He was also known for giving the 

top students additional homework that were, unbeknownst to them, actually unsolved research 

questions that led to graduate school level work and publications. One of Moore’s students, 

Lucille Whyburn, wrote an article describing his methods. She describes how “the Moore 

Method develops rugged individualism” and comments on how personal responsibility for class 

material shows the “question of whether or not you have the ability” (Whyburn, 1970). One can 

imagine how attractive this style of teaching was for mathematicians at the time, particularly the 

idea that one can pull themselves up by their own mathematical bootstraps if they work hard 

enough. While Moore pioneered this way of teaching, his methods are not considered without 

controversy today. Moore handpicked the members of his class, and his qualifications were 

white students, typically but not always male, who had what he considered to be a great aptitude 

for logic and problem solving, and very little formal mathematical background (Starbird, 2015). 
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From these descriptions, it is understandable why individuals have shied away from the Moore 

method or felt victimized by its tenets (Hersh, 2010).  

Nevertheless, the Moore method continued to gain slow popularity over the next few 

decades, in part because several of Moore’s students went on to become key figures in 

mathematical organizations such as the Educational Advancement Foundation (EAF) and the 

Mathematical Association of America (MAA). These students had positive experiences with the 

Moore Method and hoped to spread their vision by attaching the name Moore Method to the 

growing concept of inquiry-based learning. However, the results of a historical sociological 

research project on the Moore Method showed that “the ways in which this IBL movement’s 

founders framed and labeled their movement, and consequently the pedagogical innovation they 

were hoping to disseminate, constrained its growth for several years” (Haberler et al., 2018). In 

their research, Haberler et al. found a difference in how older and younger generations of IBL 

educators framed the IBL movement: in general, older members desired to focus on preserving 

the legacy of Moore and younger members wanted to include more sociocultural viewpoints 

such as group work, collaboration, and social justice. As a result of such attempts by younger 

generations, multiple variations of Moore’s method have been introduced over the years. For 

instance, Mahavier describes his class as a “gentle discovery method”  (Mahavier, 1997). He 

allows for group work, office hours, and the usage of outside reference materials on the grounds 

that students will have to decipher book notation from class notation. Mahavier cites an 

unhealthy atmosphere as his reason for modifying the original method; a personal experience 

with a traditional Moore method class had led him away from mathematics for several years. As 

mathematicians have drifted further from Moore’s original design, and educators outside of the 

Moore lineage have become interested in IBL type teaching, it has become unclear what should 
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count as being called the Moore method, and what barriers the name may place on the 

movement’s progress. For these reasons, the professor whose classroom I observed chose to 

associate her classroom within the Academy of Inquiry Based Learning, a much broader 

community of practitioners who use inquiry in the classroom, and not the Moore Method. Even 

so, her classroom style did carry several traits of the modified Moore Method such as students 

presenting proofs to their peers and using no resources besides each other and the instructor, and 

I find it important to acknowledge the historical development of this classroom style and its 

potentially inequity implications.  

2.4 Studies in Inquiry Based Mathematics Education 
 

My three papers address both social and mathematical experiences of students in an IBL 

classroom. In this section, I survey the wide variety of IBME literature in both of these areas. 

The purpose of reviewing these studies is to give an over-arching view of the ways in which 

student experiences in IBME classrooms have been studied previously, and to situate my 

dissertation within this existing body of work. In each paper, I offer additional details about 

IBME studies that are relevant to that respective paper. 

2.4.1 IBME Studies on Students’ Social Experiences 
 

Due to the student-centered nature of IBME classrooms, there are a number of studies that 

have looked primarily at students’ social experiences in the classroom. By this I mean the data 

presented in the papers are centered on student data that is not directly related to any 

mathematical content. On the individual level this comes across through studies that look at 

affect, the collection of one’s attitudes, beliefs, and emotions (McLeod, 1994). At the classroom 

level this comes across most frequently as studies that consider aspects of equity. 
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Multiple studies have explored affect in IBME courses (Hassi, 2009; Love et al., 2014; 

Zwanch et al., 2019) through surveys and individual student interviews. For example, in Zwanch 

et al.’s study on the relation between IOI classes and motivation, students from 16 inquiry 

oriented differential equations classes were given a post-class survey question that asked them to 

“please comment on how the way this class was taught affects your ability to remember key 

ideas” (Zwanch et al. 2019, p. 3). Open coding of these answers led to four themes: (1) Engaging 

with Math and Each Other, (2) Less to “Know”, (3) Feelings of Helplessness, and (4) Resistance 

to Change. Additionally, I note Dawkins et. al (2019) which detailed the relationship between an 

IBL teacher’s goals (such as creating proofs and overcoming challenges), their practices (such as 

differentiated feedback) and student experiences (such as comparing students with low and high 

buy-in) in an IBL Real Analysis course with a similar structure as the one I observed. However, 

to my knowledge, no previous studies have connected this type of student or teacher data with 

classroom observations in order to draw connections between students’ classroom experiences 

and shifts in affect. Thus, one way in which my study adds to the literature is by providing a case 

study that examines the affective experiences students have in an IBL classroom. 

With regards to equity, studies such as (Laursen et al., 2014) have produced compelling 

results about the positive impact of IBL classrooms on the course performance by women 

students. In particular, they found that “women in non-IBL courses reported substantially lower 

cognitive gains than did their male classmates” while in IBL classes “women’s cognitive and 

affective gains were statistically identical to those of men, and their collaborative gains were 

higher” (Laursen et al. 2014, p. 411-412). However, more recent studies have questioned the 

assumption of a necessary and sufficient relationship between equity and IBL classrooms 

(Brown, 2018; Johnson et al., 2020; Stone-Johnstone et al., 2019). For example, Stone-Johnstone 
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et al. (2019) claim, “even though women may have improved outcomes, it is possible that they 

could be marginalized at the level of classroom participation” (p. 1). Such recent work suggests 

that more research is warranted to understand how IBME might affect some students.  

While my study as a whole does not have research goals or questions that contribute directly 

to the affect or equity literature, each of my three papers contains data of students’ affective 

experiences in the classroom and provides windows of insight into how the classroom structure 

contributed to the four components of equity – access, achievement, identity, and power – as 

characterized by Gutiérrez (2009).     

2.4.2 IBME Studies on Students’ Mathematical Experiences 
 

In addition to studies on social experiences, there have been a number of studies that look 

specifically at the mathematical experiences, or the interrelated sociomathematical experiences, 

of students in IBME classrooms.  

The inquiry-oriented instruction community has produced a number of results regarding how 

students’ experiences with the various curriculum materials they have produced (e.g., Larsen, 

2013; Rasmussen et al., 2006; Strand, 2016; Wawro et al., 2012). For example, Wawro et al. 

(2012) describe group board work and classroom conversations as students engage in an activity 

called The Magic Carpet Ride, which guided students towards reinventing the linear algebra 

concepts of span, linear dependence, and linear independence. There are less studies that look at 

IBL curriculum, in particular because it does not have the same research-design base as inquiry-

oriented instruction. Thus, one way in which my dissertation contributes to the IBME literature is 

by providing an in-depth look at students’ experiences of an IBL Real Analysis curriculum and 

their proof presentations of the material.  
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In addition, I highlight two studies that have considered the relationship between the social 

and mathematical experiences of students, through identifying norms and practices in IBME 

classrooms. Dawkins (2009) addressed sociomathematical norms in a non-traditional (i.e., not 

lecture-based with elements of IBME) advanced calculus classroom. He found three clusters of 

sociomathematical norms around valuing visualization, mathematical communication, and 

developing mathematics (i.e., creating definitions). In his conclusion he writes,  

The establishment of these three clusters of non-traditional sociomathematical 
norms transformed the students’ classroom experience from one of acquisition of 
externally imposed mathematical abstractions into one of construction, 
participation, and advanced meaning making. The students learned about and 
participated in many cognitive and social activities that characterize the greater 
mathematical community (p. 181-182).  
 

Similarly, Fukawa-Connelley (2012) categorized several social and sociomathematical norms 

from an Abstract Algebra class around student participation in class proof presentations. He 

categorized norms around presenter responsibilities (explaining and defending your work, 

responding to questions), audience responsibilities (reading carefully, convincing yourself, 

asking questions), and norms such as only using peer-validated knowledge, and working with 

others (p. 413). My dissertation contributes to existing literature by providing multiple examples 

of how the creation and negotiation of norms occur over a course term through both social and 

mathematical activities among the students and with the professor.  

2.5 Literature on Proof and Motivating Connections to IBME 
 

The classroom I observed was structured so that students spent most of class time presenting 

proofs they had written at the board, and giving feedback to each other. Proof is a well-studied 

practice at the K-12 (Ball & Bass, 2000, 2003), undergraduate (Raman, 2003; Weber, 2001; 

Weber & Alcock, 2009; Zazkis et al., 2016) and graduate (Reed, 2018) levels of mathematics. 

Furthermore, agendas for future research on proof, such as those described in Stylianides et al. 
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(2017), show that there is much left to be uncovered and understood about the ways in which 

students engage in proof. In this section, I define proof and explore ways in which it has been 

studied from the existing literature, showing that proof is a valuable practice worthy of continued 

study. I then consider some motivation as to why studying proof in the context of an IBL 

classroom is relevant to researchers today.  

2.5.1 Defining Proof 
 

Proof has been defined from a number of perspectives such as a rigorous mathematical 

process of logic, a cognitive process of an individual, and as a social phenomenon (Stylianides et 

al., 2017). Here I highlight a few ways that proof has been defined in the literature to justify my 

claims that proof is an area of great interest to the mathematics education community.  

From the mathematical perspective, one can think of proof as “logical deductions that link 

premises with conclusions (e.g., Healy & Hoyles, 2001; Knuth, 2002b; Mariotti, 2000a)” 

(Stylianides et al., 2017, p. 238). This perspective focuses on describing proof through its 

function, which is typically thought of as explanation of why a statement is true using a series 

logical steps. An example of this then, are the two-column proofs used in high school geometry 

classrooms where students begin with a premise and then write a list of claims in one column 

and the definition, axiom, or theorem that justifies that claim in the second column until a 

specific conclusion is reached. However, this perspective does not capture the entire experience 

of proof, as a formal logic proof that rigorously explains why some mathematical fact is true 

might not be convincing to a reader or bring them to new understanding of mathematics. 

The cognitive perspective addresses this concern by considering how individuals interact 

with proof and why they do so. One main concept from proof researchers under this cognitive 

perspective is distinguishing between proofs that convince and proofs that explain (Hanna, 2000; 
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Hersh, 1993; Weber, 2002, 2010). A proof that convinces leans on the use of logic and accepted 

definitions or axioms to conclude why the proposition is true (Weber, 2002) as in the 

mathematical perspective. In contrast, a proof may rely more on intuition or less formal 

mathematical reasoning to help the reader understand why the proof is true and thus may not be 

as rigorous (Weber, 2002). Another example is Harel and Sowder’s (1998) framework of proof 

schemes, which demonstrates a variety of ways in which students can engage in proof (namely 

external conviction, empirical, and analytical proofs). Finally, Selden and Selden (2013) 

developed the notion of proof frameworks to distinguish between the formal proof writing 

process and the problem-solving process to better understand the way that an individual engages 

in creating a proof.  

Finally, the social perspective addresses not just the mathematical nature of proof and how 

individuals engage in proof, but also how proof is socially constructed within the larger 

mathematical community. Combining all of these viewpoints, Czocher and Weber (2020) 

developed a descriptive definition of proof as a cluster category, which they describe as “a 

collection of properties that an object can satisfy to ‘count toward’ category membership, but no 

single property is necessary or sufficient for category membership” (p. 59-60). Czocher and 

Weber’s categories include a proof as a convincing justification, a perspicuous justification, an a 

priori justification, a transparent justification, or a justification that has been sanctioned by the 

mathematical community. This definition fits in best with my study because I am both observing 

students that are learning at the individual level how to write proofs that fit a number of these 

categories, as well as considering their proof activity at the classroom level and how they come 

to justify their mathematical activity as a group.    
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Stylianides et al. (2017) write the following about the socially-embedded perspective of 

proof, 

… one goal of instruction within this perspective is for students to engage in an 
authentic way with proving as this activity is practiced in the mathematical 
community, including meaningfully using proof as a tool for settling debates 
about the truth of contentious mathematical assertions (Alibert & Thomas, 1991; 
Zack, 1997) and for generating and communicating mathematical knowledge… A 
second goal is for classroom communities to use proof for the same reasons as 
mathematicians, including providing explanations (e.g., Hanna, 1990), illustrating 
new methods to solve problems (e.g., Hanna & Barbeau, 2010), and deepening 
one’s understanding of concepts (e.g., Larsen & Zandieh, 2008) (p. 247).  

 
In particular, they highlight a number of critical issues in this perspective: 1) understanding 

mathematical practice with respect to proof, 2) identifying what proving is for students and 

teachers, 3) designing classroom environments where proof can be seen as a tool for generating 

and communicating mathematical knowledge, and 4) creating social norms with respect to proof 

that invite students to prove and provide learning opportunities for students when engage in 

proving activities  (p. 247-248). This view of proof is relatively new when compared to the 

perspectives of proving as problem-solving or convincing and so the past literature is relatively 

thin. Fukawa-Connelley’s (2012) study discussed in Section 2.4.2 is a good example of studying 

proof from the socially-embedded perspective. Overall then, I have shown clear development 

and interest on the part of researchers’ understanding of proof as a phenomenon, and new 

directions in which to study proof, such as the critical issues remaining in the socially-embedded 

perspective of proof. 

2.5.2 Student Experiences with Proof 
 

In this section, I consider a few ways in which proof has been studied among undergraduate 

students, showcasing different ways in which students tend to have difficulty with proof, thus 

further justifying the mathematics education community’s interest in studying proof.  
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One source of difficulty for students comes from distinguishing between informal arguments 

and formal proofs. Pedemonte and colleagues have distinguished ways in which students might 

have difficulty constructing proofs from informal arguments (Pedemonte, 2007, 2008; 

Pedemonte & Reid, 2011). In a similar vein, Alcock and Weber (2005) distinguished between 

students that take a referential (based on examples) or syntactic (based on manipulation of formal 

facts) approach to proof and the different ways that these two approaches created barriers for 

students. This line of research has continued with work such as Zazkis, Weber, and Mejia-Ramos 

(2014) in which researchers investigated ways to move students from referential proof writing to 

a successful proof (namely through three actions of syntactifying, re-warranting, and 

elaborating). Researchers have also pinpointed more specific areas of distinguishing between 

argument and proof, such as Zazkis et al. (2016), which considered how to assist students in 

forming connections between graphical arguments and verbal-symbolic proofs.  

Another source of difficulty for students comes from students drawing distinctions between 

what they feel is convincing on a personal level and what they think valid mathematics looks 

like. Stylianou et al. (2015) conducted a study of 535 early undergraduate students with no 

formal proof-based mathematics classes, and found that “even though the majority of those 

students who were asked to construct their own arguments did not construct valid deductive 

proofs, the same students still indicated a preference for general arguments [when reading 

proofs]” (Stylianou et al., 2015, p. 116). This corresponds to a discrepancy between students 

seeing proof as a verification tool (Schoenfeld, 1994) used by instructors, versus a tool for 

students to engage more deeply in mathematical thinking (Alibert, 1988). In addition, research 

shows that undergraduate students draw distinctions between “deciding if an argument is 

personally convincing or would be sanctioned as a mathematical proof” (Weber, 2010). 
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Similarly, Erickson (2020) employed Harel and Sowder’s (1998) framework of proof schemes to 

specifically investigate students’ activity regarding combinatorial proof, and found that students’ 

often dismiss these proofs as being rigorous mathematical proofs because they are often more 

intuitive and do not involve symbolic manipulation.  

I have included this literature to emphasize that proof is a highly developed skill for students 

that takes time to develop as they are slowly enculturated into mathematicians’ values and norms 

of proof (Dawkins & Weber, 2017), and to provide justification that proof is indeed a widely 

studied phenomenon in mathematics education that is of interest to the wider community.   

2.5.3 Motivating Connections Between Proof and IBME 
 

One of the large motivating factors for observing the particular IBL classroom I did, is that 

the curriculum was entirely proof-based. In other words, students were engaging in writing, 

reading, interpreting, and critiquing proofs on a daily basis in the classroom. Since IBME 

classrooms are student-centered and provide opportunities for deep, rich mathematical thinking, I 

was especially interested to see how students’ proof activity developed over time in the 

classroom. One major contribution of my study then, is that it contributes to the socially-

embedded view of proof. The collaborative nature of students’ proof presentations addresses the 

third and fourth critical issues from Stylianides et al. (2017) (designing classroom environments 

where proof can be seen as a tool for generating and communicating mathematical knowledge 

and creating social norms with respect to proof that invite students to prove and provide learning 

opportunities for students when engage in proving activities). I discuss these topics across all 

three papers in regard to students’ social and mathematical experiences in the classroom. While 

none of my overarching research questions specifically address proof, it does come through in 

each paper, for example as the students work through the use of axioms and justifications with 
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the Law of Cancellation in Paper 1. In addition, Paper 3 focuses on students’ shifting values and 

norms of proof over the term and draws heavily on the socially-embedded view.  

2.6 Literature on Advanced Calculus and Motivating Connections to IBME 
 

The proofs that students completed in the classroom I observed were all situated in the 

context of advanced calculus (called Real Analysis at the university where I collected data). In 

this section I explain the particulars of the course content and address studies that have looked at 

students’ experiences working with advanced calculus material, and their experiences in 

advanced calculus classrooms. I then situate my own study in relation to this literature and justify 

why the uniqueness of an IBL advanced calculus classroom should be of interest to the 

mathematics education community.  

2.6.1 Characterizing Advanced Calculus  
 

Advanced calculus can broadly be described as the study of the real numbers and a formal 

proof-based undertaking of one-dimensional calculus, covering topics such as the real number 

field axioms, limits, convergence, continuity, and derivatives. To emphasize the importance of 

this course, I note that a course in advanced calculus is required of most undergraduate 

mathematics majors and as a prerequisite for mathematics graduate school programs. 

Additionally, the topics of advanced calculus lead to other mathematical areas such as statistics 

and applied mathematics, and provide a rigorous foundation for secondary teachers’ knowledge 

of the real numbers (e.g., Fukawa-Connelly et al., 2020). Furthermore, as one of the first 

rigorous, proof-based courses that undergraduate students’ encounter, it has been a prime area in 

which to study students’ advanced mathematical thinking and proof activity (e.g., Alcock & 

Weber, 2005; Lew et al., 2016; Zazkis et al., 2016). For these reasons, it is of natural importance 

to understand and study students’ understandings of advanced calculus content. At the graduate 
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level, advanced calculus continues into the more general studies of metric spaces and calculus 

concepts that go beyond the undergraduate level, and the course is often referred to as Real 

Analysis. The university I completed my study at was an undergraduate only institution, and 

titled their advanced calculus course as Real Analysis, and so I use the two terms somewhat 

interchangeably, noting that Real Analysis might mean a more advanced content than covered in 

the classroom I observed.  

2.6.2 Research on Student Experiences in Advanced Calculus and Real Analysis 
 

Although advanced calculus is an incredibly important subject in mathematics and 

notoriously difficult for students, there remains a wide gap in the literature on real analysis 

content when compared to other mathematical domains, with the exception of formal definitions 

of limits (e.g., Oehrtman et al., 2014; Swinyard, 2011). One reason for this may be that advanced 

calculus is a fairly high-level course and not as widely taken by students such as a course like 

linear algebra or differential equations. However, there has been a recent shift in attention 

towards research on advanced calculus content and I now address a few of these studies.  

Reed (2018) pointed to ways in which students can leverage ideas in advanced calculus for 

understanding more advanced topics (like metric spaces) that are important and necessary for 

explore in higher-level mathematics (such as what they might see in graduate school). Strand 

(2016) used local instructional theory to assist students in reinventing several advanced calculus 

concepts by developing a local instructional theory for “supporting the reinvention of formal 

conceptions of sequence convergence, the completeness property of the real numbers, and 

continuity of real functions” through the use of Cauchy’s proof of the Intermediate Value 

Theorem. In particular, Strand considers “two students' reinventions of formal conceptions of 

sequence convergence and the completeness property of the real numbers in the context of 
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developing a proof of the Intermediate Value Theorem (IVT)” (p. 1). In a similar style, Vroom 

(2020) considers guided reinvention as a way to develop students’ mathematical language 

fluency, and in particular the use of multiple quantifier statements in advanced calculus. While 

all of these studies offer new and exciting insights into students’ experiences with advanced 

calculus, there is still much more to be learned about how students develop their formal, proof-

based understandings of advanced calculus topics.  

Researchers are also considering ways in which to make the advanced calculus curriculum of 

interest and important to students that are not going on to higher mathematics. Notably, the 

Upgrading Learning for Teachers in Real Analysis (ULTRA) project has developed modules 

specifically targeting teaching advanced calculus to pre-service teachers (Fukawa-Connelley et 

al., 2020). These modules connect advanced calculus content to secondary mathematics by 

beginning with a teaching episode of secondary mathematics, building up to how advanced 

calculus can address the episode, and then stepping down again to draw some conclusions on 

how to connect their advanced mathematical knowledge to the practices of teaching secondary 

content. In general, the results of ULTRA so far have shown promise in both teaching advanced 

calculus content to students and making future teachers feel that a course in advanced calculus is 

beneficial and useful for their future career.  

I now consider ways in which studies have used an advanced calculus classroom for studies 

with other separate focuses, namely as a place to study proof and sociomathematical norms in 

advanced mathematics. First, advanced calculus is a common context for studying students’ 

proving activity (e.g., Alcock & Weber, 2005; Lew et al., 2016; Weber & Alcock, 2009). This is 

because it tends to be one of the first proof-based mathematics classes that students encounter, 

and it poses challenges for students as they must reason abstractly about novel concepts. For 
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example, in Lew et al. (2016) the authors use an advanced calculus classroom to investigate what 

students take away from proofs presented in advanced mathematics classes and whether or not 

these takeaways matched the instructor’s intentions. The authors video recorded a lecture on 

several proofs by a highly experience instructor and then interviewed the professor to determine 

what the main ideas they tried to convey during the lecture were. They then interviewed six 

students to see what they took away from the lecture and found several discrepancies between 

the instructor’s goals and the students’ experiences, mainly that the students’ did not internalize 

what the instructor had expected them to learn. Weber (2008) used undergraduate real analysis 

students as the subjects for his study on the role of affect in students’ proof writing experiences, 

asking students to think aloud as they worked on proofs in order to document moments of 

frustration, anxiety/despair, encouragement, and pleasure. He found strong that affect can have a 

strong influence on a students’ proving experience, i.e., “frustration and anxiety led the observed 

student to place more emphasis on rote learning strategies and avoid engaging in the course 

material” and “small gains in [a student’s] understanding provided her with feelings of pleasure 

and encouragement, which in turn motivated her to seek out opportunities to study the material 

further” (Weber, 2008, p. 71).  

Advanced calculus is also a useful place to study students’ socio-cultural experiences with 

advanced mathematics because it is often one of the most advanced courses undergraduate 

mathematics majors are required take (perhaps alongside a course in abstract algebra). Dawkins 

(2009) and subsequent works (2013, 2014b) consider the role of social and sociomathematical 

norms in advanced calculus classrooms. For instance, Dawkins (2013) considers “students’ 

individual patterns of adherence to a norm for creating and assessing definitions in an 

undergraduate real analysis classroom” (p. 237). However, the use of formal definitions occurs in 
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many classes besides real analysis, and the results presented in the paper identified patterns of 

non-adherence, peripheral adherence, and authoritative adoption of the norm on creating and 

assessing definitions. While a real analysis classroom was the setting for the study, there was no 

inherent connection to students’ understanding of real analysis content. I do not view this as a 

drawback of their study; I am merely reasserting the fact that many studies in real analysis 

classrooms do not address or expand on students’ understanding of real analysis content.  

2.6.3 Motivating Connections Between Advanced Calculus and IBME 
 

Not only did I observe a proof-based IBL classroom, but the particular proofs and material 

that students worked through was advanced calculus content. Thus, one major way in which my 

study contributes to the existing literature is by providing a detailed case study of student 

experiences in an IBL advanced calculus classroom and showcasing a number of aspects of the 

curriculum that are unique when compared to the existing IBME literature. In particular, I 

identify several connections between the real analysis content and the students’ social and 

mathematical experiences, such as the field axioms’ use in the Law of Cancellation in Paper 1, 

and the use of multiple quantifier statements in shifting students’ proof norms around 

understanding and interpreting others’ proofs in Paper 3. Additionally, the humanistic activities 

that the instructor added were centered around connecting the concept of axiomatic formal 

mathematics with students’ personal identities, as in the This I Believe essay on a core belief of 

an individual that they take without proof. While it is not heavily discussed in my papers, I do 

see this connection as more relevant in real analysis as opposed to a class like abstract algebra 

because the students are already familiar with most of the concepts of advanced calculus from 

their earlier classes. Thus, addressing their own identities and personal belief systems is an easier 

parallel to draw as they identify the axioms and formal definitions behind the calculus that they 
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already know. Thus, my dissertation as a whole brings out some of the unique features of how 

the proof-based structure of advanced calculus content is well-suited for an IBME classroom and 

ways in which humanistic activities can correlate to the advanced calculus content.  

2.7 Summary of Literature Review 
 
In this literature review, I have characterized the term inquiry-based mathematics education, 

as well as the history and differences between inquiry-based learning and inquiry-oriented 

instruction. Based on these definitions I have surveyed literature on students’ social and 

mathematical experiences in IBME classrooms, supporting my overall research goals by showing 

how past literature has collected data on, and analyzed student experiences in IBME. I have also 

argued for why the particular case of a proof-based advanced calculus IBME classroom should 

be of interest to the research community, based on the past literature in both of these areas of 

study.  My work thus extends the mathematics education research community’s understandings 

of IBME classrooms by combining classroom observation data and individual interview data to 

paint a fuller picture of the interconnected nature of students’ social and mathematical 

experiences in an IBL undergraduate Real Analysis classroom. 

3 Theoretical Perspectives 
 

In each of my three papers, I employ a different theoretical framework that targets the 

research questions of that particular paper. While each framework will be discussed in detail 

within the relevant paper, I provide a broad overview of the three frameworks, how they relate to 

my overall theoretical perspective as a social constructivist, and how they help me address my 

broader research questions. 
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3.1 Social Constructivism 

Social constructivism is a theory of learning that considers both students’ individual 

cognitive efforts and the context of their environment to create mathematical meaning for 

themselves. Glasersfeld (1989) states the first two principles of constructivism as: (1) that 

knowledge is not passively received but actively built up the cognizing subject, and (2) that the 

function of cognition is adaptive and serves the organization of the experiential world, not the 

discovery of ontological reality (p. 182). Taking (1) by itself gives trivial constructivism, named 

so by von Glasersfeld because it failed to consider the purpose of cognition, which is stated in 

(2). (1) and (2) together are called radical constructivism; the radical piece involves suspending 

one’s belief in an ontological (external) reality and shifting focus to how individuals build up 

their own experiential worlds. However, these principles focused on the cognition of an 

individual, and do not take their environments into account. Thus, social constructivism (Ernest, 

1994) extended the work of von Glasersfeld to include the physical and social worlds that an 

individual engages in. This idea is nicely summarized in a third constructivism principle added 

by Taylor and Campbell-Williams (1993); cited in Jaworski (1990). She writes, 

The third principle derives from the sociology of knowledge, and acknowledges 
that reality is constructed intersubjectively, that is it is socially negotiated between 
significant others who are able to share meanings and social perspectives of a 
common lifeworld (Berger and Luckmann, 1966) (Jaworski 1990, p. 24). 

From this third principle, I highlight the concepts of intersubjectivity and shared meaning. 

Intersubjectivity considers how meaning is co-created between individuals as they negotiate 

mutual understanding. This perspective aligns with my research questions because I am focused 

on collecting data at the classroom level and understanding students’ shared social and 

mathematical experiences due to the structure of the classroom and the instructor’s activities. 

While I do not explicitly discuss social constructivism in any of my three papers, it is implicit in 
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the nature of my data collection, my research questions, and my choice of theoretical 

frameworks. 

3.2 Specific Theoretical Frameworks for Each Paper 
 
3.2.1 Interpretive Framework  
 

In my first paper, I employ Cobb & Yackel’s (1996) interpretive framework for relating the 

social and psychological perspectives of classroom activity. This framework put forth three 

constructs (classroom social norms, sociomathematical norms, and classroom mathematical 

practices) – see Table 1, designed to characterize social analogues of the psychological (beliefs 

about roles and nature of mathematical activity, mathematical beliefs and values, and 

mathematical conceptions and activity) aspects of students’ individual activity.  

 
Table 3-1: Cobb and Yackel’s interpretive framework (1996, p. 177) 

 
In Paper 1 (Chapter 5), I focus primarily on the social aspects of Cobb and Yackel’s 

framework, and use their language to identify and explain the classroom activity that I observed. 

Notably, this social perspective ties into my overall positioning as a social constructivist since I 

am viewing the social, mathematical, and sociomathematical norms as being co-created in the 

classroom environment by the students and instructor. This framework also assists me in 

addressing my overall research questions by providing language with which to view activity at 

the classroom level and make claims about the overall classroom environment.  

3.2.2 Rehumanizing Mathematics Framework 
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In Paper 2 (Chapter 6), I use Gutierrez’s (2018) framework for rehumanizing mathematics as 

a lens to understand the instructor’s actions in the classroom, and to consider both how the 

instructor’s teaching actions were informed by the IBL class structure and how she took 

additional actions of her own to create an equitable experience for her students. I specifically 

chose the rehumanizing mathematics framework over other frameworks that focus on equity 

(Gutiérrez, 2009; Tang et al., 2017) in order to create a more detailed picture of how an 

instructor might foster equitable actions in a mathematics classroom. From Gutiérrez, I interpret 

that rehumanization, as opposed to equity, focuses on actionable, evidence-based, ways to 

encourage equitable experiences in the classroom. Gutiérrez (2018) lists eight dimensions of 

rehumanization: “(1) participation/positioning, (2) cultures/histories, (3) windows/mirrors, (4) 

living practice, (5) creation, (6) broadening mathematics, (7) body/emotions, and (8) ownership” 

(Gutiérrez, 2018, p. 4). This lens of rehumanization ties into my focus as a social constructivist 

by providing ways in which I can explain the purpose and impact of various social interactions in 

the classroom that I observed and how these social aspects impacted the overall mathematical 

learning. This in turn helps me address my overall research questions by showing ways in which 

the social aspects of the classroom interacted with the mathematical learning space.  

3.2.3 Proof Values and Norms Framework 
 

In Paper 3 (Chapter 7), I use Dawkins and Weber’s (2017) theoretical framework on proof 

values and norms to understand how students’ classroom proof practice developed over the term. 

Dawkins and Weber developed this framework as one way in which to help make sense of why 

numerous research studies have shown that it is difficult to “apprentice students into the 

mathematical practices associated with proof” (Dawkins & Weber, 2017, p. 123). Many students 
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find proof problematic or confusing, and in their paper, Dawkins and Weber argue that these 

struggles stem from students not having adopted the proof values and norms of mathematicians.  

In Table 1, I provide the values and norms around proof as listed in the section headings of 

Dawkins & Weber (2017); the numbering of norms and values is specific to my dissertation for 

ease of discussion. I note that there are no norms associated with the fourth value. Please see the 

Results of Paper 3 for more detail on these values and norms.   

 
Table 3-2: Proof Values and Norms, adapted from Dawkins & Weber (2017) 

This framework ties into my overall theoretical perspective as a social constructivist because 

it takes a social view of proof. This in turn helps me address my overall research questions by 

showing ways in which mathematics is socially constructed and impacts students’ social 

interactions.  

4 Methods 
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In this section I outline my overall methods for the whole dissertation – the data I gathered, 

the context of the research site, and the overall analytical approach I took with the data. I offer 

more methodological details that are relevant to each respective paper in Chapters 5, 6, and 7. 

4.1 Data Site 
 

The data collection for my dissertation took place at a small liberal arts university in the 

western United States. I observed an upper-division mathematics course which was entitled 

“Real Analysis” at this university. The topics, described in the course syllabus as follows, often 

fall under the purview of Advanced Calculus at the undergraduate level, but the course was 

called Real Analysis. The course syllabus described this class in the following way: “A rigorous 

treatment of properties of the real numbers and functions of a single real variable. Topics include 

completeness, limits, continuity, differentiation, integration, and sequences. Additional topics 

may include series, an introduction to Euclidean or metric spaces”. I chose to study this 

classroom for its uniqueness of being an upper-division mathematics course using IBL teaching 

methods that also engaged in humanistic activities (such as an essay on personal axioms called 

This I Believe). Furthermore, this classroom was run by a highly experienced instructor, who had 

over 12 years of experience teaching with IBL materials and had spent several years developing 

this course. Thus, this was an ideal case study for me to observe the full potential of the 

possibilities of what IBL can offer students, while still emphasizing the difficulties of IBL 

teaching regardless of an instructor’s experience level.  

4.1.1 Class Structure 
 

The entire Real Analysis course was based around a highly scaffolded packet of materials (a 

printed and stapled set of mathematical content for the class that was given to each student on the 

first day); I subsequently refer to these materials as “the packet,” which is how the instructor and 
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students referred to them. The packet began with the definition of the real numbers, the field 

axioms, a definition of subtraction and division, and a list of theorems to prove in numerical 

order (the packet included additional axioms and definitions that are beyond the scope of the data 

presented in this paper). Because the theorems were listed in order, the expectation was that the 

first proof could only be completed using the definitions and axioms given, the second proof 

could use the definitions, axioms, and first theorem, and so on. The standing homework 

assignment for students was to “try something” by working through the packet and claiming 

problems on an Excel spreadsheet when they had a proof to share with the class. Students were 

expected not to use any resources other than the definitions and axioms in the packet, the 

instructor’s office hours, and each other. In addition to the mathematical content addressed in 

class, the instructor included several humanities-based journal assignments and small class 

activities that focused on addressing students’ personal understandings of axioms, belief, and 

their identity as mathematicians.  

The class was structured so that most of the class time was spent with students at the board 

giving presentations of proofs from a packet that the instructor gave them, along with questions 

and corrections from their peers. A typical class day started with an open call for questions or 

discussion on previous work, and then the instructor would pick a student to present the next 

proof at the board, alphabetically from the Excel spreadsheet. After a student presented, they 

would answer questions and potentially engage with peers in a collaborative revision process, 

sometimes trading off who went to the board to explain new ideas. The instructor continually 

directed students to lead their own discussions, and she carefully chose when to engage in 

explanation or mediation of a debate. Time out of class was spent working alone or with peers on 

these packet problems. Final grades were based on class participation, weekly homework 
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assignments of writing up proofs that were presented in class, two exams, and a portfolio that 

combined commentary on proofs done throughout the term with a final reflective essay.  

In Appendix A, I provide a general overview of the term schedule, including the timeline of 

mathematical topics, humanistic activities, and protocols for the individual interviews with 

students and the professor. I note that one unexpected aspect of my data collection was the 

emergency transition to remote teaching that occurred between Week 9 and 10 of the term due to 

COVID-19. In Appendix B, I provide the syllabus with any identifying information for the 

school redacted. I include this syllabus to provide the interested reader with a more detailed look 

at how the inquiry-based learning structure was introduced and explained to the students. 

Additionally, in Appendix C, I provide the entire “packet” of mathematical material that was 

given to students over the course of the term. Again, I have included this material for the 

interested reader, and to provide further context for the class excerpts presented in the results of 

the three papers. These materials also highlight the depth of time and work that the instructor put 

into her course, and again I emphasize that this case study is an exemplary case of what is 

possible with IBL classroom design. 

4.1.2 Researcher Positionality 
 

One unique aspect of qualitative research is that the researcher (in this case, me) is the 

instrument for data collection as well as the analyst. Thus, every piece of data is filtered during 

collection through all of the bias, prejudices, and orientations of the researcher before the 

analysis stage has even begun. Given that this subjectivity is unavoidable, it becomes the 

researcher’s job to dutifully and ethically report as much bias as possible, to make obvious their 

own thoughts and to observe themselves just as much as their participants. To this end, I kept a 

research journal to write in daily and keep track of my own understandings of the study as it 
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evolves over time. Going into this study, I was aware of my friendship with the classroom 

professor, which both granted me access to the classroom and biased me to interpret her actions 

in an overly friendly light. Furthermore, my own experiences with Real Analysis and inquiry-

based learning endowed me with memories and my own feelings about the class experience that 

I had to both notice and separate from my dissertation work. I also acknowledge that my 

appearance as a young cis-female White graduate student undoubtedly positioned students and 

the instructor to act in certain ways around and towards me, both in my observations and 

interviews. These unavoidable lens were also a natural part of my own bias and again something 

I considered in my personal reflections. While none of these concerns were reason not to do my 

study, it is important that I remained aware of my personal biases throughout the research 

process. 

Throughout my data collection and analysis, I actively searched for alternative explanations 

to the themes I was generating and to be aware of whether and how I was providing a balanced 

view of the classroom. This class was extremely unique both in terms of the IBL mathematics 

materials, the humanistic activities, the instructor’s expertise, and comfort with facilitating an 

IBL classroom and with sharing her own humanity with students, and the transition to remote 

learning due to COVID-19. In presenting my results and considering the larger picture of what 

this case study has to offer, I worked diligently to maintain a frame of mind that acknowledged 

the uniqueness of this case study and how the results may or may not transfer to other IBME 

classrooms. This dissertation and the results are not meant to portray how every IBME classroom 

works, or the level of community that IBME on its own produces, but rather to exemplify how 

the intersectional space of IBME, humanism, and a highly skilled instructor can create beneficial 
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social and mathematical experiences for students that promote the formation of a classroom 

community. 

4.2 Participants  
 

The participants of my study were the students and the professor of the Real Analysis class. 

In this section I describe the student population and the professor.  

4.2.1 The Students  
 

The Real Analysis class had 19 students, mostly junior or senior students, mathematics 

majors, minors, or double majors ranging from theology, engineering, computer science, and 

biology. I use pseudonyms throughout all three papers to protect student identities. One 

important aspect of my student population is that because this was a small university and an 

upper division course, several of these students knew each other and were friends. Additionally, 

several of them had taken classes with the professor before, including a Discrete Mathematics 

(introduction to proof) course that had also utilized inquiry-based learning techniques. These 

aspects of familiarity with each other, the professor, and some level of inquiry-based learning 

had an unavoidable impact on the results of my data collection and the level of community that 

this classroom ultimately created.  

4.2.2 The Professor 
 

Dr. Miya (a pseudonym) is a full professor and was the chair of the mathematics department 

at the time I completed my study. Her interest in IBL teaching methods started in the summer of 

2006 when she attended a 4-day intensive IBL through the Educational Advancement 

Foundation. She has attended several IBL trainings since then and is now a trainer herself, 

leading workshops for the Academy of Inquiry Based Learning. In her Real Analysis syllabus, 

she states, 
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It’s entirely reasonable that you would wonder why I’d run a class this way. I mean, 
technically I am an expert in real analysis with a diploma signed by Arnold 
Schwarzenegger to prove it. I love talking about mathematics, so why take a back 
seat? The full answer to “WHY?” will unfold over the course of the semester. There 
will be times when you are certain this experiment in learning won’t work, or that 
what you’re doing won’t possibly get you to whatever academic goal you’ve set for 
yourself. When that happens, please step back and trust me. Trust that I believe you 
can do this, and do it well. Trust that I believe that learning using IBL is the best 
way to learn to think like a mathematician. Trust that the takeaways from learning 
using IBL are much bigger than you can predict now. You’ll see. I promise. 
 

Thus, Dr. Miya was fully engaged in and aware of IBL teaching methods, making her class an 

exemplary model with which to study student experiences in IBL classrooms.  

I note a number of demographic traits, and characteristics of the class, that afforded Dr. Miya 

the privilege to engage in this type of classroom, especially the additional humanistic activities. 

Dr. Miya identifies as a White, straight, cis-gender woman, and has tenure along with years of 

leadership in her department. I hypothesize that these traits gave her a level of social 

expectation/acceptance to engage in humanistic and vulnerable activities with her students and 

run an unconventional classroom. Additionally, she had cultivated a number of friendships and 

mentorships with students in this classroom before the beginning of the Real Analysis class that I 

am sure played an implicit role in the way community was established in this particular 

classroom. Finally, Real Analysis is considered a “capstone” course for the mathematics major 

and has no required topics as a pre-requisite for future courses (at this institution, Real Analysis 

2 is an optional course that picks up wherever the last professor ended Real Analysis). Thus, the 

transition to remote learning was somewhat easier for this professor in that she could pick and 

choose the pace of the course and provide more space for her students to engage in community 

building as opposed to necessary mathematical content to proceed to a future course (as might 

have been the case in a Calculus 1 class for example). I add these caveats to recognize that not 

every instructor may have the same opportunities or access to engage their students in 
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mathematics and create community as Dr. Miya did. However, I do believe that the overall 

classroom style and activities completed by students provide several great examples for other 

instructors and serve as a proof of existence for the benefits of inquiry-based learning methods in 

advanced undergraduate mathematics classes. 

4.3 Data Collection  
 

My data collection was comprised of two components: classroom observations and 

interviews. I describe both methods of data collection in the following section. Notably, during 

the 10th week of term (of a 16-week semester), the classroom had to transition to remote 

learning due to COVID-19. I continued both components of my data collection via video 

conference technology and updated consent forms.  

4.3.1 Classroom Observations 
 

Due to the IBL structure of the classroom, I could not guarantee when interesting episodes 

might occur, when certain topics would be discussed, or how any notions of community would 

develop over the term. Thus, I chose to complete in-person, and then virtual, classroom 

observations over the whole term, approximately 35 hours of observations. The classroom was 

already being recorded for professional development purposes, and I used these videos in my 

own data analysis as well. The video recorded observations came from one camera at the back of 

the classroom, focused the camera on the whiteboard and student presenting at the front of the 

room. I also took consistent fieldnotes detailing what proofs were done at the board, and noting 

any interpretations of classroom interactions that I would later triangulate with interview data 

from the students and/or professor. In particular, I made note of any instances in the class that I 

thought captured important features for my research questions and the accompanying time 

stamp. These timestamps allowed me to re-listen/watch the classroom event for further detail. 
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Thus, while a large amount of audio/video data was collected, I only interacted with this data on 

a daily basis as necessitated by my field notes.  

4.3.2 Individual Interviews  
 

In addition to the classroom observations, I conducted selection interviews (see Appendix D 

for the selection interview guide) and recruited 5 students for a series of individual interviews 

with the aim of obtaining a wide variety of student experiences (different backgrounds, career 

goals, and attitude towards the class). These students were selected based on availability and 

interest in participating in the research study. They were paid $20 an hour for their time. Student 

pseudonyms, areas of interest, and number of interviews are listed below in Table 3. 

 
Table 4-1: Individual Student Interview Participants 

For the 5 students that agreed to participate, I held three to four individual interviews over 

the course of the term: a beginning of class interview (Week 4), a pre-COVID transition 

interview (Week 8 for participants dependent on availability), a post-COVID transition interview 

(Week 11), and an end of class interview (Week 11) (see Appendix E for the individual student 

interview guide). These interviews ranged from 30 minutes to 1 hour. For student interviews, I 

used a standardized interview guide (Patton, 2015 p. 344), so that each student was asked the 

same questions about their course experience. However, I left myself freedom to combine the 
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guide with a more informal conversation approach (Patton, 2015, p. 342) that allowed to me to 

probe deeper if I feel that a student has more to say about a particular topic. I made this decision 

because I believed it likely that treating the interview as a jointly produced conversation would 

help interviewees give more robust and honest answers about their classroom experiences. I drew 

my interview questions from Darragh’s work on mathematical identity (Darragh, 2014, 2015, 

2016) to draw out each individual’s experience of the classroom and how they interpreted others’ 

actions in class. Example interview questions include: 

-Who stands out to you in class? 

-Is there anyone in class who stands out to you as being good at mathematics? 

-Can you describe for me what someone who is good at math would be like? 

-Do you fit this description? 

-What do successful students do in this class? 

-Describe your last proof presentation to the class, what was it like? 

In addition, I held three interviews with the class professor (pre-class, Week 4, and Week 8). These 

interviews were more open-ended discussions in which we discussed the overall progress of the 

class and compared interpretations of classroom events that I had selected for further analysis, as 

a form of data triangulation (See Appendix F for the professor interview guide). Example questions 

include: 

- How would you describe the classroom environment over the past two weeks? 
 
- What changes have you noticed in the classroom over the past two weeks? 
 
- I noticed this (example) happen, what is your take on why this happened? 
 
- How would you describe Student (name) in class? 
 
- I noticed you did this (example) in class, what was your reasoning? How did you expect 
students to respond? Was it successful?  
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All of the student and professor interviews were audio recorded and transcribed for further 

analysis. 

4.4 Data Analysis  
 

I consider my data analysis as consisting of two stages. The first stage was the preliminary 

analysis that occurred while I was still collecting data in the field. Examples of this analysis are 

starring classroom episodes as interesting or relevant, planning interview questions based around 

moments I noticed in the classroom that week, and adjusting my specific areas of focus as the 

term progressed and I noticed the growing sense of classroom community. The second stage was 

a series of thematic analyses (Braun & Clark, 2006) across the data set, spanning the classroom 

observations, interviews with the 5 students, and professor interviews, culminating in my three 

papers. This level of analysis did not occur until my data collection was complete since I had to 

step back and consider the entire term and allocate myself three distinct yet cohesive papers that 

exemplified the creation of community that I witnessed across the term. 

4.4.1 Thematic Analysis 
 

Thematic analysis is “a method for identifying, analyzing, and reporting patterns (themes) 

within data” (Braun & Clark 2006, p. 6). The flexibility in the definition of thematic analysis 

allows it to be considered as a methodology for a variety of studies. Thus, Braun and Clark are 

careful to describe three choices that researchers must explicitly make in order for their study to 

remain rigorous and make sound use of the definition.  

First, a thematic analysis may focus on an inductive (bottom-up) or deductive (top-down) 

approach. Typically, the deductive approach stems from a researcher using a particular frame, 

such as an existing theory as a way to generate codes for their data set. In contrast, an inductive 

approach allows codes to emerge and evolve from the data in whatever shape fits best. Due to the 



42 
 

broadness of my overarching research questions, and the student-centered nature of the 

classroom, while I always had a general idea of what to expect in the classroom, I allowed 

myself to stay curious and open to interesting turns the class was taking or unexpected ways in 

which students engaged in the content or IBME class structure. Thus, I chose an inductive 

approach to my data analysis, where my questions and themes rose out of the novel data I 

collected. One particular example of this is Paper 1 on the Law of Cancellation, which was a 

highly unexpected experience (both for the students and the instructor) that I had not planned to 

see or have an existing framework in mind ready to capture data on.  

Second, a thematic analysis can identify themes at either the semantic or latent level. A 

semantic approach focuses on the “surface meanings of the data and the analyst is not looking for 

anything beyond what a participant has said or what has been written” (Braun & Clark 2006, p. 

13). In this approach, a researcher will focus on describing, organizing, and interpreting patterns 

found in their data. Constructionists tend to work under the latent approach, which “starts to 

identify or examine the underlying ideas, assumptions, and conceptualizations – and ideologies – 

that are theorized as shaping or informing the semantic content of the data” (Braun & Clark 

2006, p. 13). As a social constructionist that was trying to infer meanings behind activity at the 

classroom level, I employed the latent approach in my data analysis. An example of this is my 

work in Paper 3 on students’ shifting proof values and norms in which I coded beyond what 

participants had said in interviews, or I had observed in the classroom, to identify the underlying 

norms and values of the conversations. For example, here is an excerpt from an interviewee 

recalling a particular classroom episode of a student receiving feedback on their proof.  

Ash:  Um I remember a moment in class when like Easton presented a proof and we talked 
about it the entire class. And we talked about the quantifiers and like what position they 
needed to be in. And um we came to the conclusion that Easton's last line needed to be 
written differently for the quantifiers to be in the right spot. And then I remember him 
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saying, I remember him saying "oh that was just my preference, I know that it's 
supposed to be written that way but I just put it on the board like that". 

Int.:   Mmm. 
Ash:  And like that definitely happened. Um I feel like those are really weird moments for me. I 

don't really know how to respond. Cause part of me is like "did you really know? or like 
are you just saying that was your preference and you know what they're talking about? 
Or like, you know? Sometimes I feel like it's easier to like use "yeah it was my 
preference" instead of saying like "oh yeah you're right, the logic of my proof is 
confused".  

 
In this quote, Ash does not explicitly say that she had a shift in how she viewed others’ proofs, 

but when compared to data at the beginning of the term and other interviewee responses as well, 

I was able to use the latent approach to help me in constructing my best interpretation of Ash’s 

underlying assumptions and views of proof that had shifted over the course of the term.  

Finally, Braun and Clark distinguish between researchers who use an essentialist/realist or a 

constructionist paradigm in their work. An essentialist thematic analysis would assume a one-

directional relationship between meaning and experience at the level of the individual, whereas a 

constructionist thematic analysis “seeks to theorize the socio-cultural contexts, and structural 

conditions that enable the individual accounts that are provided” (Braun & Clark 2006, p. 14). 

Again, my social constructivist perspective and the latent nature of my data analysis tended me 

towards a constructionist paradigm in my work. In particular, in my data analysis I was 

consistently aiming to understand relationships between the structure of the IBME classroom and 

the instructor’s particular facilitation of the IBME classroom on students’ social and 

mathematical experiences. An example of this is Paper 2, in which I provide a number of 

examples that contributed to the students’ “rehumanizing mathematics” and creating a sense of 

classroom community.  

There are six phases of thematic analysis: (1) familiarizing yourself with your data, (2) 

generating initial codes, (3) searching for themes, (4) reviewing themes, (5) defining and naming 
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themes, and (6) producing the report (Braun and Clark 2006, p. 17). These phases should not be 

considered as a strictly linear process, for example, when reviewing themes, one might realize 

that it would be helpful to add an additional code or dissolve a code into other existing ones. 

With this broad framework of thematic analysis in mind I was able to identify my three papers 

through multiple, iterative processes of familiarizing myself with the data, generating codes, and 

searching for themes.  

Paper 1 arose from starred episodes at the beginning of the term that ultimately had a 

significant impact on how the classroom developed sociomathematical norms (cite) and how 

students experienced that development over time. I found that these themes were best organized 

and described through a narrative analysis approach, which is detailed in the Methods of Paper 1. 

Paper 2 arose from a desire to capture the broader social experience of students across the term, 

and in particular the shift to remote learning due to COVID-19. In this paper, I especially 

employed the inductive lens of thematic analysis to work from the ground up and produce 

themes that ultimately aligned with Gutierrez (2018)’s eight dimensions of rehumanizing 

mathematics. Paper 3 arose from a targeted thematic analysis of students’ final interviews in 

which I coded for shifts in students’ perceptions of their proof activity. In this paper, I utilize 

Dawkins and Weber’s (2017) framework for mathematicians’ proof values and norms to inform 

my analysis. 

Together, all three papers address my research questions for the entire dissertation by providing 

different lens with which to view students’ social and mathematical experiences in the classroom and 

to pinpoint which of these experiences arose from the IBL structure and which arose from added 

elements of the particular instructor I observed. In addition, Gutiérrez’s (2018) framework for 
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rehumanizing mathematics provided a particularly potent lens with which to view my third research 

goal on establishing classroom community.  

Finally, I want to repeat that these three papers by no means encompass the full range of 

experiences that occurred in the classroom over the course of the term. and My three papers should 

be read as proofs of existence of what’s possible with IBME and specific examples of what 

happened in this classroom, using certain theoretical frameworks to understand student experiences. 

The dissertation as a whole should not be considered an all-encompassing picture of the class or the 

instructor, and I acknowledge that there are more layers and nuance to all of these stories than three 

papers can accurately portray.  
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5  (Paper 1) Are We Allowed to Do That? A narrative analysis of student experiences in an 
IBL class 

 
(Submitted to the Journal of Mathematical Behavior in March of 2021) 
 
Abstract: In this paper, I analyze a narrative of an inquiry-based learning undergraduate Real 
Analysis class’ discussions on the use of algebra in their first proof. The students’ work proving 
a statement on the uniqueness of the additive inverse for every real number took an interesting 
turn when one student cited what she called “the Law of Cancellation” to cancel like terms on 
both sides of an equation; leading the students to question whether they could assume the use 
of cancellation, or alternatively whether their proof of the statement was justification for using 
cancellation in future proofs. My research goal is to share a nuanced picture of how students’ 
spontaneous mathematical ideas can occur within and impact the course of an IBL classroom. In 
particular, I highlight how these conversations, and the instructor’s role in these convesations, 
afforded opportunities for the class to engage in the creation of social and sociomathematical 
norms (Cobb & Yackel, 1996) that promoted more equitable (Gutiérrez, 2009) learning 
experiences. 
 
Keywords: inquiry-based learning, social and sociomathematical norms, equity, axioms, proof 
 
5.1 Introduction and Motivation 
 

Real Analysis, often introduced as advanced calculus at the undergraduate level, is a 

milestone course for mathematics students. Over 78% of mathematics major programs require a 

course in real analysis (Blair et al., 2018), and most graduate programs require students to 

demonstrate competency with the subject. This class, along with abstract algebra, often serves as 

the foundation for students developing their ability to rigorously read, interpret, and participate 

in advanced mathematics (Tall, 1991) and advancing mathematical thinking (Rasmussen et al., 

2005). In this paper, I examine an undergraduate, inquiry-based learning (IBL) introductory Real 

Analysis class. I focus on the first three days of class, in which students proved that the additive 

inverse of a real number is unique. The narrative begins when a student cited something she 

called “the Law of Cancellation” as justification for cancelling like terms on both sides of an 

equation in the proof. This unexpected episode led to exchanges that afforded opportunities for 

students to take part in the inception and development of social and sociomathematical norms 
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within their classroom, and shed light on interesting mathematical distinctions that the students 

made. My research goal is to share a nuanced picture of how students’ spontaneous mathematical 

contributions, such as the Law of Cancellation, can occur within and impact the course of an IBL 

classroom. In presenting this case, I address the following research question: 

1) How did one student’s use of the Law of Cancellation afford opportunities for the students and 
instructor to engage in the development of social and sociomathematical norms (Cobb & 
Yackel, 1996) that promoted more equitable (Gutiérrez, 2009) experiences for students? 

 
By answering this research question, I provide insights about ways in which specific 

mathematical conversations can be leveraged for establishing and negotiating norms in an IBL 

classroom at the beginning of the term. 

5.2 Literature Review 
 
5.2.1 Inquiry-Based Learning 
 

The instructor observed for the study described in this paper utilized an inquiry-based 

learning (IBL) teaching style in her classroom. A single encompassing definition of IBL is 

elusive due to its long history in mathematics as a pedagogical style3, and varied use of the term 

“inquiry” when describing classroom styles. Broadly speaking, an IBL classroom encompass 

four “pillars”  (see Figure 2) that prescribe expectations for instructor and student involvement 

both mathematically and socially. The language of the top row of pillars concerning student 

needs were established in Laursen et al. (2014), the third pillar on inquiring into student thinking 

was developed in Rasmussen and Kwon (2007), the fourth pillar on equity was established in 

Laursen and Rasmussen (2019), and the graphic organization in Figure 5-1 is shown as it was 

presented in the observed instructor’s syllabus4. Together, these four pillars form the basis of a 

 
3 The presentation focus of this classroom is reminiscent of the Moore Method, however the professor observed in 
this study explicitly chose to not affiliate her classroom with his work due to Moore’s history of racial intolerance 
and competitive teaching style (see Haberler et al., 2018). 
4 The instructor credits Dr. Nina White with the graphic. 
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broader framework called inquiry-based mathematics education (IBME), as developed and 

articulated in Larsen and Rasmussen (2019). The pillars have also been adopted by the IBL 

community at large (for example they can be found on the Academy of Inquiry Based Leaning’s 

website homepage5), and thus I use them in my own characterization of IBL. I offer a description 

of the observed instructor’s specific classroom structure and participation expectations in the 

Methods, Section 5.4.1.  

 
Figure 5-1: The Four Pillars of Inquiry-Based Mathematics Education 

 
Most papers written on IBL courses are focused on the practitioner viewpoint (e.g., Capaldi, 

2015; Kinsey & Moore, 2015; von Renesse & Ecke, 2015), with a few studies that report on 

student experiences (e.g., Hassi & Laursen, 2015), teacher experiences (e.g., Hayward et al., 

2016; Mesa et al., 2020), and learning outcomes (e.g., Laursen et al., 2014, 2016).  Thus, for the 

remainder of this section, I widen my review to studies of IBME classrooms. While these 

classrooms may not have the exact IBL setup as the classroom studied in this paper, the studies 

are relevant to my work because they highlight important aspects of the student experience in 

classrooms that prioritize inquiry.  

 
5 www. inquirybasedlearning.org  

http://www.academyofinquirybasedlearning.org/
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A wide variety of mathematics topics have been studied through the implementation of 

inquiry-oriented instruction (IOI) materials (Kuster et al., 2018). The use of IOI materials in 

classrooms arose from a group of undergraduate mathematics researchers’ and educators’ work 

in creating inquiry-oriented instructional materials based in Realistic Mathematics Education 

(Gravemeijer, 1999). Notable examples include IOI materials developed for differential 

equations (Rasmussen et al., 2006), linear algebra (Wawro et al., 2012), abstract algebra (Larsen, 

2013), and most recently real analysis (Strand, 2016). These studies demonstrate ways in which 

mathematics education researchers have sought to incorporate active, inquiry-oriented instruction 

into undergraduate mathematics classrooms. These papers have tended to focus on examining the 

content side of IBME classrooms, understandably because the goal of IOI has been to create 

inquiry-oriented curriculum. In this study, I hope to share other important aspects IBME 

classrooms, in particular the types of interactions and dynamics involved in student proof 

presentations to the class.  

I highlight two studies that have considered the relationship between the social and 

mathematical experiences of students, through identifying norms and practices in IBME 

classrooms. Dawkins (2009) addressed sociomathematical norms in a non-traditional (i.e., not 

lecture-based, with IBME elements) advanced calculus classroom. He found three clusters of 

sociomathematical norms around valuing visualization, mathematical communication, and 

developing mathematics (i.e., creating definitions). In his conclusion he writes,  

The establishment of these three clusters of non-traditional sociomathematical 
norms transformed the students’ classroom experience from one of acquisition of 
externally imposed mathematical abstractions into one of construction, 
participation, and advanced meaning making. The students learned about and 
participated in many cognitive and social activities that characterize the greater 
mathematical community (p. 181-182).  
 



50 
 

Similarly, Fukawa-Connelley (2012) categorized several social and sociomathematical norms 

from an Abstract Algebra class around student participation in class proof presentations. He 

categorized norms around presenter responsibilities (explaining and defending your work, 

responding to questions), audience responsibilities (reading carefully, convincing yourself, 

asking questions), and norms such as only using peer-validated knowledge, and working with 

others (p. 413). While defining established norms and practices for the class I observed is outside 

the scope of this paper, which focuses on the first three days of class, I hope to add to the 

literature by providing further insights into what the creation and negotiation of norms and 

practices in an IBME class might look like.  

Finally, I consider the current relationship in the literature between IBME classrooms and 

equity. Several studies have looked at IBME classrooms with an equity lens, and there is even an 

existing theoretical framework (Tang et al., 2017) that identifies several ways in which themes of 

inquiry learning align with equity as defined in Gutiérrez (2009). While some studies have 

shown inquiry-based learning to have promising outcomes for women and minority students 

(e.g., Laursen et al., 2014), this does not imply that IBME classrooms automatically create 

equitable environments for students. In Johnson et al. (2020), the authors provided contradictory 

findings that their IOI abstract algebra courses benefited men but not women. Other studies have 

also shown that inequities can still occur on a day to day basis in IBME classes and that we need 

more awareness around the actions that students must take during class to fully participate (e.g., 

Brown, 2018; Stone-Johnstone et al., 2019). In this paper, I hope to further our understanding of 

the relationship between equity and IBME by providing a window into the dynamics of an IBL 

classroom, highlighting how it could promote both equitable and inequitable outcomes.  

5.2.2 Axioms, Proof, and Advanced Calculus 
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Because the students’ negotiation of mathematical ideas is central to the narrative of this 

paper, I now briefly survey literature on the relevant mathematics. First, axioms are statements 

that are taken as true without proof and, as such, they are used as the foundational building 

blocks of mathematical systems. Introducing students to axiomatic thinking is a nontrivial 

endeavor and works such as Dawkins (2014b, 2018) provide evidence of the explicit attention 

needed from the instructor and difficulties of the student to “develop conscious meta-

mathematical understandings of formal mathematics games like systematizing” (Dawkins, 

2014b, p. 22). In this paper, I focus on students’ reasoning about and proof of the uniqueness of 

the additive inverse for every real number, using the field axioms for justification, and in 

particular their discussion over the act of cancelling like terms on both sides of an equation. 

There are studies that have considered various aspects of post-secondary work in elementary 

algebra, such as Wasserman’s (2014) study on teachers solving one-step equations with the field 

axioms, and Cook’s (2014) study on students’ reinvention of the zero-divisor and unit for a ring. 

However, to my knowledge, there are no studies that examine algebra as the basis from which to 

begin an advanced calculus course or student difficulties in proving basic algebraic properties 

through justifications with the real number field axioms.  

There are several examples in the research literature of how students, mathematics majors 

included, struggle with proof (e.g., Harel & Sowder, 2007; Stylianides et al., 2017). Due to the 

proof-based nature of the curriculum, many studies have looked at proof in the context of real 

analysis classrooms. In Alcock and Weber (2005), the authors focused on the ways in which 

students validate real analysis proofs. Through student interviews that involved reading an 

illogical analysis proof, they found that "failure to consider the warrants used in a proof will not 

only cause students to be unable to validate proofs reliably but... can also prevent them from 
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gaining conviction and understanding from proofs presented in their classrooms" (p. 133). In 

Lew et al. (2016), the authors explored the relationship between the key points of a professor’s 

lecture, in which he gave several proofs, and what students recalled afterwards, especially after 

re-watching certain video clips. Their results showed a large disparity between what the 

professor expected students to take away from the lecture, and what students tend to 

write/remember. To my knowledge there are no studies whose data collection consisted of 

observing students present and discuss proofs with their peers at the advanced calculus level. I 

hope to offer new insights by observing this novel class environment.  

There have also been studies more broadly on student and instructor experiences in advanced 

calculus classrooms. Weber (2008) reports on the affective experiences of a single real analysis 

student, using weekly interviews that asked them to describe their class experiences and 

complete mathematical tasks while explaining their reasoning aloud. Dawkins (2014a) 

considered how the act of mathematical defining in an inquiry-oriented real analysis classroom 

contributed to students’ acculturation into advanced mathematical practices. Dawkins et al. 

(2019) detailed one Real Analysis IBL instructor’s goals for student development and provided 

supporting data from instructor and student interviews. Several studies have looked at various 

aspects of teaching in IBME advanced calculus classrooms (e.g., Mullen, 2012; Reinholz, 2020; 

Roh & Lee, 2017; C. A. Shannon, 2016; K. Shannon, 2018; Zazkis et al., 2016). Finally, the 

ULTRA (Upgrading Learning for Teachers in Real Analysis) project has created a curriculum of 

modules that each build up from a situation in teaching secondary mathematics, to secondary 

mathematics, to real analysis, and then back down the ladder again, leaving students with an 

understanding of how real analysis makes sense of underlying mathematical issues that pre-

service/in-service teachers might face in the classroom (see Fukawa-Connelly et al., 2020).  
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5.3 Theoretical Perspectives 
 
5.3.1 Classroom Norms and Practices 
 

In my analysis and interpretation of the classroom data I collected, I used the interpretive 

framework for relating the social and psychological perspectives of classroom activity developed 

by Cobb and Yackel (1996), which provided language by which to articulate classroom 

phenomena I observed. This framework put forth three constructs (classroom social norms, 

sociomathematical norms, and classroom mathematical practices) – see Table 5-1, designed to 

characterize the social analogues of individual, psychological aspects of students’ mathematical 

beliefs and activity. Using a social constructivist perspective (Cobb et al., 1992), I assume that 

all norms and practices were co-created by students and the teacher. Furthermore, I see the 

relationship between the social and psychological perspectives as reflexive – neither one 

“existed” first or is more important, although I focus on the social classroom level of interactions 

in this paper. Next, I offer a description of each of the social categories, along with the 

psychological counterparts to further clarify each social category.  

 
Table 5-1: Cobb and Yackel’s interpretive framework (1996, p. 177) 

 
Classroom social norms are characterized by “regularities in communal or collective 

classroom activity and are considered to be jointly established by the teacher and students as 

members of the classroom community” (Cobb & Yackel, 1996, p. 178). These norms are not 

discipline specific – for example, a classroom social norm could be that students raise their hand 

before answering a question, which is applicable to many subjects and classrooms outside of 
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mathematics. Furthermore, this social norm could imply that students’ raise their hands to offer 

correct answers that are in line with the teacher’s procedures or explanations of content.   

From the individual perspective, a student might have the belief about their role that in class 

they “follow instructions and to solve problems in the way the instructor and/or textbook 

demonstrate” (Yackel & Rasmussen, 2003, p. 318). These personal beliefs may conflict with an 

inquiry-based teacher’s expectations to have a classroom where they do not demonstrate 

problems or verify for students, creating a need for students to shift their individual beliefs to be 

successful in this new classroom environment (Yackel & Rasmussen, 2003). Thus, the 

interpretive framework makes sense of the connection between students’ personal beliefs about 

their role in a mathematics classroom and the way they participate socially in the classroom.  

Sociomathematical norms are norms specific to the discipline of mathematics; they have to 

do with shared expectations among a community, particularly related to doing mathematics. 

These norms can be thought of as delineating what counts as a different, sophisticated, efficient, 

or acceptable mathematical explanation (Cobb and Yackel, 1996, p. 179). An example of a 

sociomathematical norm is a class agreeing that “Visualization is an acceptable and helpful tool 

for sense-making, defining, and proof production” (Dawkins 2009, p. 162). The fact that 

visualization and graphical representations of proofs are not always accepted or emphasized in 

mathematics (Eisenberg & Dreyfus, 1991) shows how sociomathematical norms are specific to 

each classroom; in this case it took explicit work on the part of the instructor to guide and 

promote students’ visual thinking as an acceptable form of mathematical explanation. I note that 

at the beginning of a class term, the term expectations may be used instead of sociomathematical 

norms (Dawkins, 2009), as the teacher sets the expectation for certain mathematical activity to 

occur before it has been taken up and normalized by the students. In addition, Cobb and Yackel 
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pinpoint sociomathematical norms as a means by which teachers can develop intellectual 

autonomy for their students, by supporting a community that can validate mathematical work and 

spread the responsibility for judging mathematical solutions among each other.  

I now provide two examples to relate sociomathematical norms to the individual perspective  

of mathematical beliefs and values. In Hassi and Laursen (2015), they considered “the 

opportunity for empowering changes in students’ perceptions and activities, as they study 

mathematics and solve problems in classes that use inquiry, peer interaction, and 

communication” (p. 317). Through semi-structured individual interviews, they found aspects of 

self, cognitive, and social empowerment for students in an IBL class that promoted 

transformative learning experiences. In another study, Dawkins (2014a ) interviewed students 

over the course of a term and looked at their individual adherence to a classroom 

sociomathematical norm on defining by classifying for each student whether the norm was 

taken-as-expected, taken-as-beneficial, or taken-as-meaningful. Thus, interview data can be used 

to both explicate student beliefs at the individual level and to verify developing 

sociomathematical norms at the classroom level through changes in student beliefs.  

Classroom mathematical practices are defined as “the mathematical practices established by 

the classroom community [that] can be seen to constitute the immediate, local situations of the 

students’ development” (Cobb & Yackel, 1996, p. 180). These practices are one way to think 

describe how a classroom community decides what sorts of mathematics need explanation and 

what mathematics is implicitly known by the community. Due to their local nature, classroom 

mathematical practices are constantly shifting and evolving over the course of a term. For 

example, Rasmussen et al. (2015) provided data of students working in class to prove that for a 

set of n vectors in Rm, if m<n, the set of vectors will be linearly dependent. One student used 
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geometrical reasoning to describe how such a set of vectors would always allow you to “get back 

home”. However, the connection between a linearly dependent set of vectors and being able to 

the origin was itself a topic of debate for the students earlier in the term. This is an example of 

how a topic of debate, linearly dependent vectors have a nontrivial linear combination that equal 

the zero vector, can become a local classroom mathematical practice over time that is then used 

to assist in a new claim, in this case about linear independence and dimension.  

An individual student contribution such as the student describing how to “get back home” 

with a set of linearly dependent vectors is an example of a student participating in mathematical 

activity within their classroom. In addition, the student had their own mathematical conceptions 

of what linear dependence and linear independence meant based on the reasoning they described 

to their classmates. Thus, using the individual perspective, one can ascertain a student’s 

experience, participation in, and understanding of norms and practices at the classroom level.  

5.3.2 Equity in the Classroom  
 

I view equity through the perspective of Gutiérrez (2009), in which she characterizes 

equity as working towards the re-distribution of power in the classroom (and ultimately one’s 

every day life and the global society). She defines equity as being framed as a dominant axis 

(access and achievement), which focuses on helping students succeed in the currently inequitable 

system (i.e., “playing the game”), and a critical axis (identity and power), which focuses on 

helping students “change the game”. Access refers to the resources that students have to 

participate in and learn mathematics. Acheievement then, is the outcome affected by students’ 

access, and is measured in results such as participation, grades, and college/career choices. 

Identity refers to attending to the history of marginalization and discrimination in mathematics, 

helping students find ways to “balance between opportunities to reflect on oneself and others as 
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part of the mathematics learning experience” (p. 5), along with more global acknowledgements 

of the relations between their personal identity and the field of mathematics. Power is the 

outcome of this focus on identity, where students become critical and capable of making social 

transformation through mathematics. Tang et al. (2017) proposed a theoretical framework that 

delineates several connections between IBME classrooms and Gutiérrez’s definition of equity. 

While I do not make use of this exact framework in my study, I highlight their idea that the 

critical axis can benefit from an IBME class where “students can be involved in decision-making 

on acceptance or rejection of mathematical knowledge presented during class” (p. 59), thus 

positioning students as authority figures with power in the classroom. I particularly draw on this 

language to talk about ways in which the instructor distributed mathematical authority to 

students in the class. 

5.4 Methods 
 
5.4.1 Data Site and Data Collection 
 

Since the term inquiry-based learning covers a wide variety of classroom styles, in this 

section I give context for the classroom I observed. First, the data was collected at a small liberal 

arts university in a class of 19 upper-division mathematics major/minor students (pseudonyms 

are used throughout the data excerpts). The title of the course was Real Analysis, and according 

to the class syllabus, the purpose of the class was to “prov[e] all of those theorems you accepted 

as true back in calculus.” The class was structured so that most of the class time was spent with 

students at the board giving presentations of proofs from a packet that the instructor gave them, 

along with questions and corrections from their peers. This packet was a printed and stapled set 

of mathematical content for the class that was given to each student on the first day (see 
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Appendix C for a full set of the packet materials). Time out of class was spent working alone or 

with peers on these packet problems.  

The packet began with the definition of the real numbers, the field axioms, a definition of 

subtraction and division, and a list of theorems to prove in numerical order (the packet included 

additional axioms and definitions that are beyond the scope of the data presented in this paper). 

Because the theorems were listed in order, the expectation was that the first proof could only be 

completed using the definitions and axioms given, the second proof could use the definitions, 

axioms, and first theorem, and so on. The standing homework assignment for students was to 

“try something” by working through the packet and claiming problems on an Excel spreadsheet 

when they had a proof to share with the class. Students were expected to not use any resources 

other than the definitions and axioms in the packet, the instructor’s office hours, and each other. 

In addition to the mathematical content addressed in class, the instructor included several 

humanities-based assignments and small class activities that focused on addressing students’ 

personal axioms, beliefs, and their identity as mathematicians.  

A typical class day started with an open call for questions or discussion on previous work, 

and then the instructor would pick a student to present the next proof at the board, alphabetically 

from the Excel spreadsheet. After a student presented, they would answer questions and 

potentially engage with peers in a collaborative revision process, sometimes trading off who 

went to the board to explain new ideas. The instructor continually directed students to lead their 

own discussions, and she carefully chose when to engage in explanation or mediation of a 

debate. Final grades were based on class participation, weekly homework assignments of writing 

up proofs that were presented in class, two exams, and a portfolio that combined commentary on 

proofs done throughout the term with a final reflective essay.  
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The data for this paper comes from a larger data set of classroom observations across an 

entire semester term. Every class day was filmed with a single camera at the back of the room, 

focused on the front whiteboard where students would present proofs. I sat at the back of the 

classroom with the camera and did not interact with the students or instructor during class time. 

The rest of the classroom was set up into small table groups of four to five students and the 

instructor sat at the back of the classroom. Occasionally the camera would zoom out to capture 

whole class discussions easier, but any small group discussions or side conversations between a 

student and the instructor were not captured. I took written field notes to keep track of proofs as 

they were presented and any inferences I had about what was happening socially in the 

classroom, and starred any episodes that I found especially interesting for data analysis. Due to 

the large amount of classroom observation data that I collected, I primarily returned to these 

starred episodes in the first stage of my inductive thematic analysis and began by questioning 

whether and how they addressed my overarching research questions on students’ social and 

mathematical experiences in the classroom. In this paper, I report on the first three days of proof 

presentations, which were the second, third, and fourth days of class (the first day of class did not 

have any presentations) that I had starred as extremely interesting because they represented an 

unexpected shift in classroom focus for the students and instructor over the course of the three 

days on this Law of Cancellation and proving Statement 1.  

5.4.2 Data Analysis 
 

The strong story-arc of the data explored in this paper led me to analyze and frame my results 

as a narrative analysis. In Creswell and Poth’s (2018) book on qualitative inquiry and research 

design, they write “Czarniawska (2004) defines narrative analysis as a specific type of qualitative 

design in which ‘narrative is understood as a spoken or written text giving an account of an 
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event/action or series of events/actions, chronologically connected’ (p. 17)” (p. 67). Once I had 

identified that there was something to explore about the Law of cancellation and what had 

occurred in these first several class periods, my analysis began by creating enhanced transcripts 

of the first three class sessions with images of board work. I chose these three class sessions 

because I knew that the discission about the Law of Cancellation was restricted to these sessions. 

From the enhanced transcripts, I highlighted every conversation that involved the Law of 

Cancellation or proving Statement 1, from its first use in class to the final resolution when the 

class considered a proof of Statement 1 complete. I made note of these, and then I began to 

articulate a chronological narrative of what transpired related to the Law of Cancellation across 

these three days. Creswell and Poth (2018) write,  

One aspect of the chronology is that the stories have a beginning, a middle, and an 
end. Similar to the basic elements found in good novels, these aspects involve a 
predicament, conflict or struggle; a protagonist, or main character; and a sequence 
with implied causality (i.e., a plot) during which the predicament is solved in 
some fashion (Carter, 1993) (p. 71-72).  

 
The act of writing a chronology of the first three days of proof presentation focused solely on 

the Law of Cancellation served as a main feature of my data analysis. Specifically, I determined 

the beginning and the end of the narrative based on when the Law of Cancellation was first 

brought up, addressed, and then ultimately reconciled at the end of the third day. However, the 

middle of the narrative was much more difficult to discern. There were a number of contributing 

factors to the rising action: students were developing their social skills of interacting in class 

with each other, the instructor was establishing her primary role as a facilitator and not a content 

expert, and the students were developing their understanding of the field axioms and how to 

communicate their mathematics through proofs. For this reason, I consider my research to be 

inductive as I made multiple passes through the data to detail this middle part of the narrative 
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and make sense of and articulate the perspectives of the students and instructor through their 

class conversations. I worked through several versions of proofs of Statement 1 and wrote 

versions of the narrative, while actively working to balance these developing narratives against 

the broader dataset and my interview knowledge of students to make educated inferences as to 

the nature of the classroom activity. This process yielded an initial complete narrative, which  

was written in a way to emphasize the goals of my research questions regarding the IBL structure 

and the instructor’s facilitation of the class, while also recognizing the subtle mathematical 

implications of the Law of Cancellation and how this episode fits in to a larger picture of 

working with the real number system.  

I then analyzed the narrative using my theoretical framework of norms and practices (Cobb & 

Yackel, 1996). I systematically went through the transcript pieces of the narrative and coded for 

whether the participants were positioning themselves as individuals or members of a classroom 

through their pronoun choice. My main evidence of sociomathematical norm development came 

from students’ shifting their pronoun from “I”, to “We”, noting that the instructor always 

referred to the class as “We” or “Us” to emphasize the collaborative nature of an IBME 

classroom. Thus, I interpreted students’ use of the pronoun “We” during class discussions as 

attempts to engage their classmates in forming classroom norms and practices. I note that I took 

care to be aware of not just labeling pronouns as they appeared, but taking a critical lens to each 

episode and asking how the speaker used pronouns to position themselves in specific ways. For 

example, the pronoun “we” used in general class discussion often indicated trying to make 

classroom level decisions that developed sociomathematical norms, whereas “we” used when 

describing actions of doing mathematics within a proof was more indicative of the “royal we” 

presenter mode often used in mathematics by lecturers. Coding pronouns helped me further 
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define and describe the narrative’s description of the sociomathematical norm development 

amongst the students as to how mathematical “truth” was determined in their classroom. 

Table 5-2 is an example of the type of coding I did to highlight pronoun usage and 

subsequently sociomathematical norm development in the classroom. This excerpt comes from 

the third class day, when a student named Jordan gave a voluntary idea of how to prove 

Statement 1 in a way that does not involved the Law of Cancellation, and her classmates 

subsequently pointed out that her proof implicitly used the same mechanisms of the Law of 

Cancellation (i.e., subtracting from both sides of the equation).  

Student Transcript Coding for Pronouns 
Narrative Description of 
Sociomathematical Norm 

Development 

Jordan 

What I think you could do, to uh 
escape the add, is if we just 
added zero to one side. Because 
technically adding 0 it’s just (a 
+ (-a)), and if you add that 
can’t you still move one of the 
a’s to the other side with the 
additive inverse? 

-“I” refers to Jordan’s self 
-“You” refers to the 
general class 
 

 
This was a voluntary idea brought up 
by an individual student of how to 
work around using the Law of 
Cancellation in proof of Statement 1. 

Emory 

But if you can do that, couldn’t 
you just do that on the first 
line? Say a + b = a + c, then 
next line, b = a – a + c. 

-“You” refers to Jordan 

 
 

 
Emory extends Jordan’s individual 
idea to show that her logic is the 
same as a simpler version of the 
proof, which was already rejected.  
 

Sloan 
And then by associativity you’d 
get to b = c more quickly. But 
can we subtract? 

-“You” refers to Jordan 
-“We” refers to the class 

 
Sloan questions whether the class as 
a whole can use subtraction, and 
May agrees. There is confusion here 
as to what they have defined and 
decided upon as a class. Since the 
students are questioning what 
mathematics the accept as a class, 
this is a moment of where socio-
mathematical norm development 
occurs. 

May 

 
Are we allowed to do that? Is 
that defined? 
 

-“We” refers to the class 
 

Sloan 

 
I feel like we decided that we 
weren’t allowed to do that on 
Wednesday. 
 

-“We” refers to the class 
 

Jordan    
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But wasn’t the axiom just 
division is doing the inverse, or 
subtraction was just like an 
inverse? 
 

Jordan reiterates that subtraction is 
defined in their packet materials as 
adding the inverse element. Jo 
agrees and restates Jordan’s point. 
 
 
 Jo Yeah.  

Jordan 
 
So technically we’re just adding 
an inverse. 

- Royal “We” refers to an 
individual in the class 
doing the mathematics of 
the proof 

Jo 

 
You’re just adding an inverse to 
the other side. 
 

-“You’re” refers to an 
individual (in particular, 
Sloan) doing the 
mathematics of the proof 

Sloan 

 
But you’re taking it from the left 
side… 
 

-“You’re” refers to an 
individual (in particular, 
Jo) doing the 
mathematics of the proof, 
similar  to royal “we” 

Sloan emphasizes that the the 
inverse is coming from (the other 
side of the equation) which aligns 
with the class’ concern about the 
Law of Cancellation operating on 
both sides of the equation. 

Jo 
 
Yeah you’re right… 
 

-“You’re” refers to Sloan Jo agrees with Sloan. 

Table 5-2: Example of Coding and Analysis of Narrative 

Next, I read through the narrative, specifically flagging for instances where the instructor 

positioned the students as sources of mathematical authority, and whether and how the students 

began to position each other in these ways as well. This helped me to develop a more descriptive 

picture of the class’ experience, by drawing attention to moments that afforded equitable 

(Gutiérrez, 2009), and at times potentially inequitable, experiences for students.  

Finally, I enlisted an mathematics education researcher and a mathematician to read through 

and comment on the narrative, in order to help refine and make sense of what I had written. 

Through continued discussions with these researchers, I gained insights into both the 

mathematics behind the Law of Cancellation and the sociomathematical norm development of 

students that helped me write a clearer narrative of what had occurred in the classroom. These 

readers were especially helpful in coming up with possible counter-narratives for me to explore 

in the data, such as whether the instructor herself realized that the Law of Cancellation was an 
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appropriate fact to use given the packet materials or if she was trying to guide students towards a 

particular proof of Statement 1 that used the full strength of the hypotheses. I continued to edit 

the narrative until it satisfied both myself and my two readers, to a point where I felt confident 

that I had articulated the narrative as faithfully as possible.  

5.4.3 Mathematical Discussion 
 

In this section, I explain the mathematics that will be discussed in the Results. I start with 

information that students received in their packet prior to working on problems, including the 

field axioms for the real numbers. Then, I consider the statement that students’ worked on along 

with explanations for proofs of the statement that will aid in the reader’s understanding of the 

Results. I refer to this as Statement 1, since it was the first statement in the packet, and the 

purpose of the statement is to justify the uniqueness of the additive inverse for every real 

number. Finally, I explore a mathematical concept that became increasingly important to the 

students regarding the proof of Statement 1, which they called the “Law of Cancellation”.  

5.4.3.1  Introductory Material 

First, I describe the introductory packet material that came before the statements to be proven. 

This material consisted of the field axioms and definitions of division and subtraction. The field 

axioms for the real numbers (see Figure 5-2) are familiar properties of numbers which students 

gain exposure to as early as elementary school. These axioms are reinforced through several 

years of basic mathematics, algebra, calculus, and advanced coursework for undergraduate 

mathematics majors. One reason why these axioms become so innate in students is that the K-12 

mathematics education system primarily focuses on the real numbers (or subsets of the real 

numbers), so that students become familiar with these axioms and take them, and their 
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consequences, as givens. Thus, it can be a surprise to students to be required to justify properties 

of the real numbers that have been treated as givens for much of their mathematical careers.  

 
Figure 5-2: Field Axioms in Class Packet 

In addition to the field axioms, the packet also included a definition of division and 

subtraction which utilized the definitions of the additive and multiplicative inverses (Figure 5-3).  

 
Figure 5-3: Definition of Division and Subtraction in Class Packet 

5.4.3.2  Statement 1 

 I now discuss the statement that will be focused on in the Results section, and I provide three 

correct proofs of the statement. The first four statements are shown below (Figure 5-4) for 

context as they appeared in the packet, although this paper focuses on Statement 1.  

 
Figure 5-4: The first four packet statements 
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One correct proof of Statement 1 starts with the hypothesis that a+b = a+c, adds an additive 

inverse of a to both sides of the equation, employs the additive inverse axiom to write (-a)+(a) as 

0, and uses the additive identity axiom to write 0+b=0+c as b=c (see Figure 5-5).   

 
Figure 5-5: Proof of Statement 1 (a) 

 
While not explicitly stated as a field axiom, the ability to add equal quantities to both sides of 

an equation, which by the definition of subtraction also means the ability to subtract equal 

quantities from both sides of an equation, is embedded in the fact that (+) is a binary operation 

(which is stated at the beginning of the field axioms in Figure 5-2). In particular, if a=b, then 

a+b=a+c because on each side of the equation, the binary operation + is being applied to the 

same element of R. Since a binary operation is a function, its value is uniquely determined on the 

ordered pair of elements of the set R. However, this is a subtle point about the definition of a 

binary operation, and students may not recognize this without explicit explanation from an 

instructor6. A student who is concerned as to whether the field axioms allow for addition or 

subtraction on both sides of the equation may prefer a proof that uses the same logic as the proof 

in Figure 5-5, but that only manipulates one side of the equation (see Figure 5-6).  

 
6 I credit and thank Dr. David Pengelley for his insightful conversations on algebra and the field axioms that 
informed this section of the mathematical discussion. 
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Figure 5-6: Proof of Statement 1 (b) 

Finally, I provide a third proof of Statement 1 that uses one side of the equation and no 

inverse element of a (see Figure 5-7). This proof begins with rewriting b as 0+b by the additive 

identity axiom, substituting 0 with the hypothesis that 0=a+c, uses the associative and 

commutative axioms to rearrange elements, uses the hypothesis that a+b=0, and finishes by 

using the additive identity axiom to write c+0 as c.  

 
Figure 5-7: Proof of Statement 1 (c) 

 

5.4.3.3  The Law of Cancellation 

In the Results section, we will see students justify a proof that uses subtraction on both sides of 

the equation with a rule that one student introduces as the “Law of Cancellation”. I describe the 

rule briefly here and how it relates to Statement 1 to provide context for the reader. My 
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understanding and description of this rule comes from classroom data that I will elaborate in 

Section 5.2.2.   

The Law of Cancellation says the following for any real numbers a, b, and c: “If a+b=a+c, 

then b=c”. Notably, the proofs of Statement 1 in Figures 5-5 and 5-6 only use the hypothesis that 

a+b=a+c, without referencing that they both equal 0, and thus they are proofs of the Law of 

Cancellation. In fact, one could prove the Law of Cancellation with either of the proofs in 

Figures 5-5 or 5-6, and then claim Statement 1 as a corollary or result of the proof by adding the 

additional hypothesis that a+b=a+c=0. The proof in Figure 5-7 proves the narrower result of 

Statement 1 only, by making use of the additional hypothesis. While the name “Law of 

Cancellation” may not be listed in the field axioms, it is a direct result of the binary operation (+) 

which guarantees that one can add, and thus subtract, equal quantities from both sides of an 

equation, and it can be justified using the more general versions of the proof of Statement 1 

(Figures 5-5 and 5-6). However, the IBL packet did not explicitly state the definition of a binary 

operator or this quality of the real numbers. Thus, in the Results we will see how one student’s 

specific naming of the concept as the “Law of Cancellation”, which was not a phrase from the 

packet, created concern among the class that adding or subtracting equal quantities from both 

sides of an equation was prior knowledge that was not allowed in their class and that only a proof 

that operates on one side of the equation, such as in Figures 5-6 and 5-7, was acceptable. 

5.5 Results 
 

The results for this paper focus on student work during the first three days of proof 

presentations (the first day of class did not include any presentations), which I call Day One, Day 

Two, and Day Three. I have split the results sections by class day to help the reader visualize the 
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chronological progression of the students’ and instructor’s reasoning. I abbreviate the Law of 

Cancellation as LoC.  

In Section 5.5.1, I set the stage for the narrative by sharing how the LoC arose during the 

class’ feedback after a student presented their proof of Statement 1. In Section 5.2, we see how 

the LoC was retracted by the same student that proposed it, and how the instructor responded by 

turning the mistake into an important learning moment for the class. I also share two key 

moments of students recognizing the LoC in subsequent proof attempts, thus highlighting the 

level of caution the students had developed and their growing ability to debate mathematical 

truth with each other.  In Section 5.3, I provide comments from two students that tried to 

convince the class of the LoC. Finally, I show how the class accepted a proof of Statement 1 that 

did not use the LoC, and I end with the instructor’s summary of what the importance of the 

whole experience was for them as a class.   

5.5.1 Day One 
 

5.5.1.1  The Law of Cancellation arises 

The first day of proof presentations began with the instructor asking a student, Rose, to present 

her proof of Statement 1 on the board (see Figure 5-8). Note that the proof does not complete all 

steps equally on the left and right sides of the equations, but it is similar in form to the one given 

in Section 4.3.2, Figure 5-5.  
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Figure 5-8: Rose’s First Proof of Statement 1 

After Rose finished her presentation, the instructor prompted the class for questions and 

comments on the proof. In Excerpt 1 below, a student named Josh asked whether subtraction was 

allowed in their proofs. The class decided that while subtraction was allowed via the packet 

definition; they could instead cite what one student, Sloan, called the “Law of Cancellation”. 

Transcript Excerpt 1   

1 Josh:  Um just like open question to the class. I was under the impression that we had 
two binary operations on the real numbers, that were addition and multiplication. 
And so that we weren’t allowed to use subtraction or division? 

2 Sloan:  You can use the Law of Cancellation. You have a on both sides, you could just 
cancel them.  

3 Rose:  So like add it here? (points to third line) 
4 Sloan:  Yeah  
5 Inst.:  Josh, could you say what you said again? 
6 Josh:  Yeah I said that we have the two binary operations on the set of real numbers that 

were uh addition and multiplication as defined on the front page. Uh and so that, 
those would be like the only operations we could do with real numbers.  

7 Taylor:  The definition for division and subtraction comes before the first problem, so 
wouldn’t you be able to use that one as well? 

8 Josh:  That was my question.  
9 Taylor:  I would assume so.  
10 Rose:  That’s why I put it here. (points to fourth line) 
11 Taylor:  I would assume that’s also, I think the Law of Cancellation makes the proof 

shorter but I think that’s good by itself as well.  
12 Easton:  Also um, existence of (-a) is stated in the additive inverse theorem 
13 Inst.:  Say that one more time? 
14 Easton:  It states um the axiom of additive inverses says that for all (a) there exists a (-a) 

and a+(-a) = 0.  
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Josh made two bids in lines (1) and (6) for people to join him in assessing the validity of the 

proof through whether subtraction was allowed, using the pronoun “we”. Josh’s question was 

answered by Taylor in line (7), he showed that using subtraction was allowed since the definition 

of subtraction came before Statement 1. However, his suggestion was put aside when the class 

turned to Sloan’s suggestion in line (2) of using the LoC.  In line (11), Taylor also confirmed that 

the LoC was a valid way to make the proof shorter. This was especially noteworthy since the 

class had never acknowledged anything called the Law of Cancellation beforehand, and there 

was no statement by this name in the packet. I interpret the students Sloan, Taylor, and Rose as 

individuals participating in the classroom discussion, noting their use of the pronouns “I” and 

“you”. I view these interactions as the students validating each other’s individual mathematical 

conceptions of algebra regarding cancelling on both sides of an equation, which they understood 

so innately that they were able to make sense of Sloan’s phrase, “Law of Cancellation”. Overall, 

this first excerpt shows us students’ first attempts at creating sociomathematical norms (Cobb & 

Yackel, 1996) as to what counted as an acceptable proof, through trying to interpret what their 

packet did and did not allow in terms of proof justifications.  

Rose incorporated everyone’s suggestions to her proof on the board (see Figure 5-9). 

Notably, Rose accepted the LoC by adding it to her proof. She also changed her notation in line 3 

on the left side of the proof from subtracting a, to adding (-a), which indicates that she was 

aware of the conversation around subtraction and additive inverses. However, I note that Rose’s 

proof was not logically consistent line by line. For example, she writes +(-a) on the right side of 

the equation in line 3 and it did not appear on the right until line 4. Furthermore, it is not clear 

what the role of the LoC was in the proof. A careful reader may be confused as to whether the 

LoC was used to justify the addition of (-a) on both sides of the equation, or whether the law 
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allowed for “cancellation” of the term on the right side, or on both sides of the equation, and 

ultimately whether the law was necessary given that the students had asserted the validity of both 

subtraction and using an additive inverse element. This excerpt reveals an early baseline for the 

level of proof students expected of each other here on the first day of presentations. I argue that 

Rose’s proof was not polished or rigorous, and yet students allowed Rose’s proof to stand as 

complete. I hypothesize that at this point the students had not yet established social norms that 

would allow them to push back on corrections, or push for more detailed, accurate board work, 

and the establishment of such norms is outside the scope of this paper. These students had all 

taken Discrete Math, and many had taken Abstract Algebra, so they were aware of what a 

logically consistent proof should look like. However, a community that can engage in vulnerable 

communication (such as critiquing a community member’s work) takes time to build.  

 
Figure 5-9: Rose’s Edited Proof of Statement 1 

After Rose edited her proof, the students moved on to presentations of Statements 2 and 3, and it 

seemed that everyone assumed the proof of Statement 1 was complete and correct. If there were 

alternative proofs, they were not shared with the class, and to my knowledge no one questioned 

the validity of the proof of Statement 1 at the time on the first day of presentations.  

To summarize this episode, the LoC was proposed by Sloan and then accepted by students in 

the classroom, both verbally and through Rose’s additions on the board. The students understood 
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that their proof justifications should come from the packet, as evidenced by their debate around 

whether subtraction was allowed, but they did not question where the name “Law of 

Cancellation” had come from or its relation to their packet. Thus, we see that the students were 

starting to establish some sense of a norm about what constituted acceptable justifications for 

proofs in their class, but it had not reached a level of rigor that allowed students to correct each 

other’s feedback or consider the full impact of their suggestions during class.  

5.5.2 Day Two 

5.5.2.1  The Law of Cancellation is retracted  

At the beginning of the next class period, the instructor asked for any questions or 

outstanding business. As we see in the following excerpt, Sloan raised the issue to her peers of 

how the LoC should not have been allowed. It is noteworthy that Sloan was reflective and 

willing to share what she had realized, especially because it cast her previous contribution in a 

negative light, and that the instructor let her introduce the error on her own. Excerpt 2 below is a 

class conversation in which Sloan and the instructor reflect on an email exchange they had after 

class on Wednesday on using the LoC. 

Transcript Excerpt 2  

15 Inst.:  Um anything for the good of the order? Sloan? 
16 Sloan:  When I talked about the cancellation law, I don’t know what I was talking about 

Wednesday. But y’all believed me and that was nice [students laugh]. But you 
can’t use it! 

17 Inst.:  Right? Right, like we can’t do that. We could, we could establish a law of 
cancellation. And it can be whatever we want it to be. We could make up a law 
and call it Sloan’s Law or call it the Law of Cancellation. And then we could use 
it, that’s legit. But we can’t just write it down because the words came out of 
Sloan’s mouth. Like “oh it’s the law!” You said it with such authority that I was 
like “that must be true” (people laugh) Right? 

18 Sloan:  No one said anything against it 
19 Inst.:  Yeah I was out on a run yesterday and I was like “did Sloan say law of 

cancellation?” Then I realized, and like I wrote it in my notes “by the law of 
cancellation”, I bet you did too!... I wrote it down and then I was thinking about it 
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a day and a half later and was like, I have no idea what she was talking about. I 
accepted that as fact, right? Talk about accepting as true. I accepted it as true 
without actually looking like is that something we’re accepting as true? And it 
turns out, when I emailed Sloan she’s like “yeah we don’t have that thing”. So 
I’m like “ok then we don’t have that thing”.  

20 Inst:  But how often, think about that. How often have you done that? Just like “oh 
somebody said that was true”, “I wrote those words down”. Every day! Let’s not 
do that. Like and as I responded to Sloan in my second or third email in the back 
and forth, “yeah that was awesome modeling for me, just write it down oh law of 
cancellation yeah that seems good” and just write it law of cancellation! So let’s 
try, let’s not do that. We have exactly one axiom right now. One axiom and two 
definitions, yes? That’s all we have to work with. That’s all we can do. That’s all 
we can assume. We will continue to add axioms, there’s another one at the 
bottom, the mid-bottom of page 2.  Ok so yeah, just this axiom. And you’re right, 
axioms are things we do not prove. 

  
It is unclear from line (17) whether or not the instructor believed that the students could not add 

or subtract like terms from both sides of the equation (which is allowed by the binary operation 

(+) defined in the field axioms as explained in Section 4.2.2). Based on this exchange, and the 

lack of counter arguments given, I infer that the class as a whole did not recognize the use of the 

binary operation or believe that cancellation was allowed via their IBL packet after this 

conversation. This inference is further established by the instructor’s emphasis that they could 

talk through and create a Law of Cancellation as a class, but they could not assume its truth 

based on Sloan’s assumptions. Potentially, the instructor was focused primarily on the 

opportunity to reinforce the IBL packet expectations with her students, and was just as taken 

aback with how she herself had accepted the LoC as in line (19), that she did not question the 

validity of the content of the statement. I interpret her use of the conjunction “let’s”, as in “let 

us”, as an invitation for the students to join her in interrogating what they took for granted and 

believed as true mathematically in their classroom, and more broadly in their everyday lives. 

This was an important moment in norm development, as the instructor was explicit in her desire 



75 
 

in line (20) for students to consider their mathematical beliefs and assumptions, and suspend 

those beliefs that had not been justified using the IBL packet materials.  

5.5.2.2  The Law of Cancellation is found implicitly in another proof 

Following Transcript Excerpt 2, the instructor asked students to re-evaluate their proofs of 

Statement 1 in their small groups. After about ten minutes of group work, she asked Rose to put 

up her group’s edited proof of Statement 1 and see what changes the class wanted to make (see 

Figure 5-10). Excerpt 3 below starts after Rose’s presentation, when a student raised the question 

of whether this proof used the same logic as the LoC; suggesting that if they could not subtract 

equal elements from both sides of the equation, they also should not add equal elements to both 

sides. 

 
Figure 5-10: Rose’s New Proof of Statement 1 

 
Transcript Excerpt 3  
 
20 Connor:  So after thinking about it, if we look at 1 in another way, a+b=a+c and then you 

basically use the Law of Cancellation. But if we think about the Law of 
Cancellation conversely, so we are cancelling an equal number of things on both 
sides, can we also add an equal number of things on both sides? Do we also need 
to prove that? 

21 Inst.:  Can you come to the board and write down what we would need to prove? 
22 Connor:  So basically, we would need to prove this line. (underlines line four of Rose’s 

proof)  
23 Jo:   Like do we need to prove if we’re able to do that 
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24 Sloan:  That we can add to both sides 
25 Connor:  Because we said we needed to prove that we can cancel on both sides, for this 

problem. So do we also need to prove if we can add things on both sides? 
26 Sloan:  Oh no. 

 
In line (20), Connor questioned whether the LoC stated that one can subtract (a) from both sides 

of an equation or add (-a) to both sides of an equation, and his concern was quickly taken up as 

problematic by other students in class. The students did not consider the difference or 

relationship between these two operations (recall, subtraction was defined in their packet as 

adding the additive inverse). Instead, the students drew on their understandings of addition and 

subtraction as separate operations, as opposed to relying strictly on the packet and using the 

definition of subtraction given to them. Every participant in the conversation used the pronoun 

“we”, and I interpret that this shift in language suggests that the students were beginning to 

internalize their contributions as occurring at the classroom level. Thus, we see the class 

beginning to engage in the instructor’s expected sociomathematical norm by asking whether 

adding on both sides of the equation was something they could assume or whether it needed to 

be proven.  

The instructor turned to Sloan to clarify what she meant by the LoC and decide whether they 

could add on both sides of the equation. Sloan articulated that the LoC is “If a+b=a+c, then 

b=c”, and essentially cancelled an (a) from both sides of the equation, but that the explicit 

formulation of using the LoC involved adding an inverse element (-a) to both sides, thus addition 

on both sides was also not allowed. I note that the instructor did not present any sort of authority 

over the mathematics; instead she focused on presenting the class’ information back to them and 

asked Sloan what the LoC said. In this way she was offering Sloan an equitable (Gutiérrez, 2009) 

opportunity to grow her identity in class through being positioned as a mathematical authority 

figure, which in turn gave her more power in the classroom. While cancellation may be a true 
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and useful feature of algebra for students, here Sloan articulated that it was not an acceptable 

truth to use without proof in their classroom community, implying that cancellation did not 

strictly follow from their IBL packet, and her ideas were accepted by the overall class.  

I pause to comment on Rose’s multiple times at the board in front of her classmates in 

regards to potentially inequitable (Gutiérrez, 2009) student experiences. In the first section, we 

saw her add everyone’s ideas to her proof and that the final result was less than satisfactory. 

While she had access in terms of an opportunity to present her mathematical work and get 

feedback, it did not necessarily lead to the outcome of achievement of doing a proof that 

rendered the problem complete. Furthermore, I do not know what that experience was like for 

her personally or what effects on her identity she might have felt when her second proof was also 

rejected by the class and whether it led her to feel a lessening sense of power in the classroom. 

We do have evidence of students being comfortable rejecting their own work, as in Sloan’s 

retraction of the Law of Cancellation, but this was not necessarily the experience of every 

student in class. Thus, one difficulty that instructors must be aware of with an IBL class is how 

to promote a safe environment for students to present mathematical work in front of their peers 

as well as be corrected by them. 

5.5.2.3 Moving elements from one side of the equation to the other 

In an attempt to avoid invoking the LoC by adding to both sides, a student named Jordan 

proposed adding zero,  

(a+(-a)), to one side of the equation and then “moving” an a to the other side (see Figure 5-11).  
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Figure 5-11: Jordan’s Idea for Statement 1 

 
Transcript Excerpt 4  
 
28 Jordan:  What I think you could do, to uh escape the add, is if we just added zero to one 

side. Because technically adding 0 it’s just (a + (-a)), and if you add that can’t 
you still move one of the a’s to the other side with the additive inverse? 

29 Emory:  But if you can do that, couldn’t you just do that on the first line? Say a+b=a+c, 
then next line b=a – a +c.  

30 Sloan:  And then by associativity you’d get to b=c more quickly.  
31 Sloan:  But can we subtract? 
32 May:  Are we allowed to do that? Is that defined? 
33 Sloan:  I feel like we decided that we weren’t allowed to do that on Wednesday.  
34 Jordan:  But wasn’t the axiom just division is doing the inverse, or  
   subtraction was just like an inverse? 
35 Jo:  Yeah 
36 Jordan:  So technically we’re just adding an inverse 
37 Jo:  You’re just adding an inverse to the other side 
38 Sloan:  But you’re taking it from the left side… 
39 Jo:  Yeah you’re right…   
 
In line (29), Emory pointed out that moving a term from one side of the equation to the other still 

implicitly involved subtracting equal elements from both sides, which was verified by Sloan in 

line (38). This conversation was the first mathematical debate among students that seemed to 

formulate a bridge between their individual conception of algebraic operations (involving 

“moving/taking” elements from one side of the equation to another, highlighted with the pronoun 

use “you” as in lines 28, 29, and 37-39), and the class’ agreement to not allow subtraction in 

their proofs (with the pronoun use “we” as in lines 31-36). Although subtraction was a defined 

operation in the packet, the use of subtraction to move elements from one side of the equal sign 
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implicitly used subtracting the same element from both sides of the equation. I interpret the 

intermixing of these two levels of thought and experience in the classroom as evidence that the 

students were growing both in their social abilities to debate each other productively in class and 

in their sociomathematical understandings of what it meant to interrogate assumptions in their 

proofs and justify their work using only the IBL packet materials.  

After Jordan sat down, a student named Easton posed his own solution to Statement 1 that 

only manipulated one side of the equals sign (see Figure 5-12). In his explanation of his proof, 

Easton emphasized that his proof only used arithmetic on one side of the equation and no 

algebra7, thus eliminating the class concerns about using the LoC.  

    
Figure 5-12: Easton’s Proof of Statement 1 

 
I end this section by providing some of the instructor’s comments before and after Easton 

presented his proof. These excerpts are especially intriguing in that I interpret the instructor as 

highlighting that the proofs presented so far, included Easton’s, do not make use of the 

hypothesis that a+b=0 and a+c=0. 

Transcript Excerpt 5 
 
40 Inst.:  I guess I would pass back to all of you... Rarely do we have extra hypotheses. This 

isn’t a word problem where you throw in a bunch of stuff that is irrelevant to the 
problem. That doesn’t happen that often... This and this are different. (she points 

 
7 Easton’s distinction here was quite notable. The debate over what counts as “algebra” goes as far back as to the 
Arabic origins of algebra, in which al-jabar literally meant moving a term from one side of an equation to the other. 
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to Statement 1 and the Law of Cancellation written on the board). Right? And I 
get one of the issues is that you already believe this is true. That makes it harder 
to prove. Every time. So. What about that first line have we not used? Right? 
What makes this and this different? (points again to Statement 1 and the Law of 
Cancellation)   

(Easton presents his proof) 
41 Inst.:  Can everyone see what he (Easton) did? So, what. What, look at the proof here, 

Rose’s proof. You call out a+b equals 0 and a+c equals zero. What in that never 
gets used in the proof? 

42 Jo:   Oh the fact that they both equal zero? 
43 Inst.:  The fact that they’re zero! Right? Look at the difference between Sloan’s 

statement (Law of Cancellation) and this (Statement 1). So maybe that has to 
come into play. Alright we’re out of time, see you next time. 

 
It is possible that the instructor’s comments about extra hypotheses and noting “what doesn’t 

get used” in Easton’s proof were coming from an expectation that the students would create a 

proof more similar to Figure 8 in Section 5.4.3.2, which used the full strength of the hypotheses 

given in Statement 1. This excerpt provides evidence that the instructor may not have realized 

the connection between the binary operation (+) allowing addition on both sides of an equation, 

and that the issue with Sloan’s statement about the Law of Cancellation was not necessarily the 

content of the law, but the way in which Sloan had brought it up in class. This inference is 

strengthened by the fact that the instructor continued to let students claim Statement 1 on the 

Excel sheet, meaning that she still sensed disagreement in the class, or did not personally view 

the proof as complete, and would allow another student to present a proof of Statement 1 for 

presentation points. Thus, overall we see some ways in which the spontaneous work of students 

in an IBL class can lead away from an instructor’s mathematical expectations in favor of 

maintaining a student-centered classroom experience.   
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5.5.3 Day Three 

5.5.3.1 The students try to justify cancellation 

The third day of presentations started with the instructor recalling that not everyone seemed 

satisfied with the proof of Statement 1 on Day Two, and she asked for new students to go to the 

board and write proofs of Statements 1-4.  The students collected presentation feedback in 

groups, and then discussed all four proofs as a class. The student who presented Statement 1 

gave a proof very similar to Rose, using subtraction on both sides of the equation. In general, the 

class was satisfied with the proofs of Statements 2-4, rightfully so as the proofs were correct, and 

they continued to return to the proof of Statement 1, questioning whether subtraction or addition 

were allowed on both sides of the equation. In Excerpt 6, Josh questioned whether the class had 

come to any conclusions about operating on both sides of the equals sign. Jo and Emory 

provided counterarguments in support of operating on both sides of the equation. 

Transcript Excerpt 6 

44 Josh:  Um well we had two people write down the same question for number one, but it’s 
more of a general question not just for number one. Uh just raising the issue of 
adding/ subtracting/multiplying to both sides of the equal sign. To say like, the 
statement is still true, like for the third one. Like is that ok, like we were talking 
about on Friday. Cause I think we left on Friday not sure if we were going to 
accept that in our groups or not.  

45 Inst.:  Community? Jo, you have something to add to that? 
46 Jo:  No, yeah on Friday we asked should we be allowed to do that? My opinion is that 

if we don’t allow ourselves to do that we aren’t going to get very far. But we can 
be creative about it, I don’t know. I don’t really have a problem with it.  

47 Inst.:  Ok, Emory? 
48 Emory:  Um after thinking about it for a long long while uh I came to the conclusion that 

in group theory, which is a different class, we weren’t allowed to do most of these 
axioms but we were allowed to do left multiplication and right multiplication and 
etc. So in my mind, it’s more fundamental than the axioms that we’re assuming, 
just because otherwise most of the mathematics, all the fields mathematics still 
carries over to group theory. Um but the axioms that we accepted here, there are 
more of them then we’re allowed to start with in group theory. So my thinking, 
those operations, if those don’t hold true on both sides of the equals sign to start, 
then these axioms don’t really work either. So that’s my thought.  

49 Inst.:  And, go ahead Jo. 
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50 Jo:  Every time I look at inverse or anything like that I make sure to do it on the same 
side, like on the left like you did up there, um and then like commuting them, like 
taking the extra step to do that. Just so that I wasn’t like adding things willy nilly 
on like either side of each thing on the equals side. I guess, like adding that (-a) to 
the other side where it’d be a+c+(-a). Um, but. So I don’t know, I guess I did that 
just to be like ok I’m not totally stretching it.  

(more conversation among students) 
51 Emory:  ... with addition and subtraction, it’s like we’ve accepted that these operators 

exist. Before we came up with these axioms, the operators addition and 
subtraction had to exist first. Like you wouldn’t be able to do any of these axioms 
if you didn’t have addition or multiplication. And so addition means a+b=a+b, 
and if I just add another c to the end of both sides it has to be true, right? And so 
if you don’t accept that one, then I feel like you can’t even accept these axioms, 
because these axioms are about these operators. In the real numbers specifically, 
right? If you can’t accept that like why does a+b=b+a? How do you use that 
step? 

 
Both Jo and Emory shared their individual conceptions of how necessary and fundamental the 

operation of cancellation is for working with equations. In line (48), Emory justified his idea by 

comparing the beginnings of their class to that of group theory and that if group theory allowed 

cancellation with less than the field axioms, then they should be able to as well. Jo pointed out in 

line (50) that he was careful to invoke commutativity and stay mindful of how he was adding on 

both sides of the equation to make sure his argument is rigorous. In line (51), Emory comments 

on the relationship between the operators of addition and multiplication, and the field axioms. He 

claimed that these operators existed before the field axioms and that addition on both sides is a 

necessary aspect of those operators if one even wants to talk about the field axioms. This is a 

similar argument as is made in Section 4.3.2, and I note that Emory was correct, although his 

explanation did not convince his classmates.  

5.5.3.2 The students agree on a path forward 

The students continued discussing the validity of cancellation for the remainder of the class time 

and several students concluded that they should not use cancellation in the proof of Statement 1. 

Excerpt 7 below summarizes a class conversation in which Taylor and Ash agreed that if they 
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could prove Statement 1 without cancellation, then they could cite Statement 1 as justification 

for cancellation in future proofs. Furthermore, they believed that they could prove Statement 1 

this way because they had completed other proofs already that only manipulated one side of the 

equation.    

Transcript Excerpt 7 

52 Taylor:  … My sort of point was like we learn kind of, I’m just thinking back to whenever I 
learned what left and right like addition were on both sides, I think I learned that 
in algebra. It wasn’t like a thing that I knew innately... And I think that my little 
kid self had to learn like hey this is something that isn’t, like it doesn’t make sense 
intuitively.  

53 Ash:  Yeah, and I think these first four problems are what we do to then say yes we can 
do left and right cancellations.  

54 Taylor:  Yeah 
55 Ash:  It’s because of how we solved them without doing that so we can prove that it 

actually does work.  
56 Taylor:  And then I also think that there’s proofs that we can do where, like where we only 

need to use one side of the equation sign to finish it. Like number 2 we did the 
proof and there’s only one side of the equation. Um number 3, even though there 
is an equals sign, like you don’t change the zero on the right-hand side. Like you 
used all the axioms and kept everything on one side of the equation. So I think it’s 
definitely possible to keep proofs to trying to minimize or probably like avoid 
adding on both sides of the equations. 

 
The class continued to reiterate some of these ideas when Taylor said he had come up with a 

proof of Statement 1 that fit their class requirements, and was invited to the board to present the 

proof (see Figure 5-13). The class had a very positive response to Taylor’s proof and agreed that 

it sufficed as a correct proof of Statement 1 because it did not use any sort of addition or 

subtraction on both sides of the equation. I take the class’ formulation of what it meant to prove 

Statement 1 without cancellation, and that Statement 1 then provided the justification for 

cancellation in future proofs, as evidence that they had internalized the instructor’s expected 

sociomathematical norm for proof justification and choosing to detail exactly when they could 
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use particular features of algebra in their proofs regardless of their personal knowledge of the 

operations.    

 Notably, Taylor’s proof is very similar to the one Easton had given at the end of the previous 

class session. I do not know how Easton felt about this experience, whether he recognized the 

lack of ownership that was attributed to him, and whether it caused him to feel like his voice was 

under-heard in the classroom. This speaks to another potential inequitable experience that can 

occur IBL classrooms; students may need multiple times of seeing a proof before they recognize 

its value, and thus it may not be the first author of a proof who receives the most credit or 

ownership for their original thoughts. This concern attends to the critical axis of identity and 

power from Gutiérrez (2009).  

    
Figure 5-13: Taylor’s Proof of Statement 1 

 

5.5.3.3 The instructor summarizes the class’ experiences  

The instructor ended Day 3 with a summary of the work students had engaged in, and she drew 

attention to the discomfort that comes with rigorously investigating one’s beliefs, inside and 

outside of mathematics. 

Transcript Excerpt 8 
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57 Inst.:  Um. I feel like we’ve settled this but I’m not sure everyone feels settled on it. Like 
I feel like between these two, we’re at a point where we can add something to 
both sides of an equation. But my guess is what’s getting in the way, that the 
dissonance in your head, the cognitive dissonance, is that you have this model 
from algebra of an equals sign being a balance, when you learned algebra. And if 
you put something on one side, you put something on the other side to balance it 
out. We’re not challenging that model at all. Right? We’re still living in the space 
where that model works. But we are asking the question, why does that model 
work? Right? That’s a much harder question. And so my guess is that those of you 
who said this is making me uncomfortable, that this feels so detailed, um that the 
discomfort comes from having believed these “facts” for a very long time. 
Without proof. Right? My guess is that many of you have taken all of these as 
axiom. And that’s hard, to say maybe I don’t need to believe that without proof. 

 
I interpret this as the instructor summarizing why Statement 1 had been difficult to prove, 

namely because it went against students’ prior experiences and expectations of mathematics. The 

students were not suddenly believing that algebra was untrue or did not apply in their work, but 

rather they were asserting that their classroom needed to decide at every moment what they 

wanted to believe as true without proof, and what they needed to prove. This excerpt goes to 

show how intent the instructor was on leading a student-centered class and taking their concerns 

seriously. She did not step in to lead the class through whether cancellation was actually allowed 

by the field axioms, and let the students decide what mattered to them. This is further stressed by 

her use of the pronoun “we”, as she positioned herself as a member of the class community as 

opposed to an authority figure who could tell them the “right answer”.  

5.6 Conclusion, Limitations, and Avenues for Future Research 
 
5.6.1 Conclusion  
 

As noted in the literature review, previous studies have looked at norms (Cobb & Yackel, 

1996) and equity (Gutiérrez, 2009) in IBME classes. My research goal for this paper was to 

provide a detailed narrative of an IBL class’ experience that provides insight and raises new 

questions at the intersection of these two areas. The point of interest of this narrative was how 
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cancelling terms on both sides of the equals sign, which is valid by the definition of a binary 

operator and embedded in the definition of the field axioms, was not explicitly stated in the 

packet, and was thus rejected by the students as “true” in their classroom. Furthermore, the 

students negotiated amongst themselves that proving Statement 1 in a way that did not involve 

the LoC made it so that they could cite Statement 1 as justification for cancellation in future 

proofs. By choosing to not accept cancellation as true without justification, these students began 

to use mathematics as a system that they had control over. The class conversations in this 

narrative were important experiences because they forced students to come up against prior 

beliefs of mathematics being a pre-existing structure, and provided opportunities for students to 

take ownership over their mathematical work. I argue that we witnessed the inception and 

development of a sociomathematical norm (Cobb & Yackel, 1996) where students saw value in 

explicitly choosing together what to accept as mathematically “true” in their classroom. 

Furthermore, we saw growth in the types of social interactions that students were able to engage 

each other in (giving feedback on proofs, offering new ideas at the board, and debating the 

justifications used in class). I interpret all of this as being afforded by work on the instructor’s 

part to guide students towards seeing mathematics as a system full of choices that they have 

power and authority over, which was rooted in her choice to run a student-centered IBL 

classroom. 

Throughout the narrative, the instructor provided Sloan with multiple opportunities to engage 

in the critical axis of equity (Gutiérrez, 2009) by positioning her as a source of mathematical 

authority in the classroom. Sloan and her classmates were explicitly “involved in decision-

making on acceptance or rejection of mathematical knowledge presented during class” (Tang et 

al., 2017, p. 59). In Excerpt 2, the instructor let Sloan speak first about the issues regarding the 
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LoC, and only then did she back Sloan up with her personal story of making the same mistake, 

thus encouraging the class to join her in not assuming mathematical ideas without proof. She 

elaborated on Sloan’s ideas, and used herself as an example to equalize authority between herself 

and the students, emphasizing that they were in this learning process together through her 

communal word choice “let’s not do that”. In Transcript Excerpt 3, when Connor brought up the 

question of whether they can add on both sides of an equation, the instructor again refocused the 

conversation towards Sloan by asking her what the Law of Cancellation explicitly said. The 

instructor guided the class to focus on Sloan’s creation of the law and ensure that the use of the 

law was consistent with Sloan’s values and ideas. Throughout the data, we also saw evidence of 

students taking ownership over their ideas with voluntary presenters like Jordan, Easton, and 

Taylor. Furthermore, we saw students position each other as sources of mathematical authority in 

the classroom through their joint participation in conversations that did not include the 

instructor’s voice or guidance. All of these conversations between the students and instructor 

occurred at the level of whole class social interactions, and were thus opportunities for the 

students to establish and negotiate social norms regarding classroom participation. 

Overall, the most important takeaway I highlight from this narrative was that the instructor 

utilized Sloan’s idea of the Law of Cancellation and the class’ ensuing discussions about 

cancellation in their proofs as an opportunity to develop their sociomathematical norm (Cobb & 

Yackel, 1996) regarding the relationship between assumptions, truth, and justification in their 

classroom. These discussions were enriched by the fact that they were occurring in an IBL 

classroom and thus they provided students with opportunities to practice growing 

sociomathematical norms around how they positioned themselves and others as sources of 

mathematical authority – a major component of creating equity in the classroom through the use 
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of the critical axis (Gutiérrez, 2009). While I did comment on potentially inequitable occurrences 

in class as well, I see this narrative as offering a nuanced picture of how the development of 

social and sociomathematical norms at the beginning of the class term can be leveraged as 

opportunities to also focus on equity in IBME classrooms more broadly.  

5.6.2 Limitations and Future Directions  
 

One limitation of this study was that the transcript excerpts did not represent the full range of 

19 students in the classroom. IBME instructors must consider how to best encourage balance in 

student voices, helping quieter students speak up, while also recognizing that some students will 

feel less comfortable in a public discussion environment for a variety of personality reasons, not 

to mention the heightened discomfort that a student with a minoritized identity might feel (i.e., 

they may feel a stereotype threat more strongly while presenting and being corrected in front of 

their peers). As an observer, I saw a variety of engagement levels in the classroom and that the 

instructor made every attempt to allow students to participate in a way that was most comfortable 

for them, but I cannot be sure of every student’s experience over the term. An interesting future 

study would take a closer look at individual student experiences in conjunction with classroom 

observations throughout the first few weeks of class in order to better make use of the individual 

side of the interpretive framework and draw deeper connections between the individual and 

social perspectives of the framework, and equity, in the classroom.  

What happened in this class might have never occurred if the instructor had stepped in and 

verified whether or not the students could use cancellation in their proofs, and I am unsure from 

the classroom observation data as to whether the instructor caught on to the nuances of the 

mathematical issues at hand. IBME classes require on the spot navigation on the part of the 

instructor, and it can be difficult to respond to spontaneous student ideas. If Sloan had not made 
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her comment about the LoC, it’s entirely possible that the class would have been happy with the 

justification of adding (-a) to both sides by the additive inverse axiom and moved on from there. 

Furthermore, the students did not end this narrative with a precise understanding of binary 

operators, or the relationship between the LoC and Statement 1 as I discussed in Section 5.4.2 

and 5.4.3. As such, there was some content knowledge lost at the expense of running the student-

centered class. However, these statements were not particularly related to the advanced calculus 

content, and it is possible that the instructor chose to move on for the sake of class time, and the 

students were more than ready to move on as well after three days of discussion. However, the 

mathematics behind students’ conversations is still interesting in and of itself, and this study 

opens opportunities to continue studying students’ understanding of the field axioms, for 

example a teaching experiment that better leads students to understand the Law of Cancellation.   

The conversations in this class were possible due to students’ prior knowledge of algebra and 

the cognitive dissonance they encountered when they realized they could not just assume that 

algebra was true in their class. In this way, the first few statements in the packet provided an 

intellectual need (Harel, 2008) for students to both understand their axiomatic system fully and 

read their proofs carefully, habits which continued to serve them throughout the term. The 

instructor likened these first problems to the Karate Kid practicing tedious chores that seemed 

inconsequential at the time but were intentionally building foundational skills that he would draw 

on in his future tournaments. These statements were low-stakes and provided opportunities for 

students to negotiate and build things like social and sociomathematical norms with each other 

before engaging in more difficult advanced calculus content. An interesting future study could 

look at how the introductory curriculum in an IBME class could be used to leverage the sort of 

social and sociomathematical norm development seen in this paper.  
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Finally, IBME instructors may feel a tension between acclimating students into the broader 

established mathematical community and giving students the opportunity to develop their own 

mathematics. The instructor in this class let students spend almost three periods on one proof 

(they also completed proofs of Statements 2-4 with much less disagreement during this time). 

She felt strongly that any time she made a choice to step in she would be upsetting the delicate 

balance of growing student authority and confidence in the classroom. She wholeheartedly 

believed in running a “student-centered” classroom, and did not want students to see her as 

capable (or desiring) of stepping in to fix their mistakes. While it was beyond the scope of this 

paper to study the details or outcomes of this work on the part of the instructor, there are 

opportunities for future studies that track the progress of student’s experiences of mathematical 

authority throughout the term and the impact it has on the overall IBME classroom.  
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6 (Paper 2) Inquiry-Based Learning and Beyond: A Case Study of Rehumanizing 
Mathematics in Action 

 
(Submitted to the Journal of Humanistic Mathematics in April of 2021) 
 
Abstract: In this paper, I present an empirically grounded case study that considers how the 
dimensions of rehumanizing mathematics (Gutiérrez, 2018) can occur and develop in an inquiry-
based learning classroom, both through the structure of the course and through course elements 
that an instructor incorporated (such as a writing assignment that asked students to articulate a 
personal axiom). My evidence that the course engaged in rehumanization comes from student 
data at the end of the Spring 2020 term emphasizing how important this class was to them during 
the transition to remote learning due to COVID-19. I also employ the four pillars of inquiry-
based mathematics education (IBME) (Laursen & Rasmussen, 2019) to frame my understanding 
of the classroom structure I observed and contribute to larger conversations on equity in 
undergraduate mathematics education.   
 
Keywords: inquiry-based learning, rehumanizing mathematics, equity 

 
6.1 Introduction 
 

Laursen and Rasmussen (2019) have broadly characterized inquiry-based mathematics 

education (IBME) as consisting of four pillars: (1) students engage deeply with coherent and 

meaningful mathematical tasks, (2 students collaboratively process mathematical ideas, (3) 

instructors inquire into student thinking, and (4) instructors foster equity in their design and 

facilitation choices (p. 138). While there remains little doubt in the mathematics education 

community that IBME is in the best interest of our students (e.g., Freeman et al., 2014; Theobald 

et al., 2020), researchers are continuing to develop their understanding of the fourth IBME pillar 

regarding equity. Under the broad umbrella term of IBME, there are studies that claim inquiry-

based learning (IBL) classrooms have increased benefits for women and minority students 

(Laursen et al., 2014) as well as cautionary tales (Johnson et al., 2020) that equity is not a given 

in inquiry-oriented instruction (IOI)  classrooms. These contrasting research findings suggest that 

despite the fourth pillar of IBME on equity and theoretical connections between IBME and 

equity (see Tang et al.’s (2017) framework aligning Cook et al.’s (2016) characteristics of 
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inquiry and Gutiérrez’s (2009) definition of equity), there is a necessary but not sufficient 

relationship between IBME and equity. In other words, we as researchers may see the most 

potentially equitable environments for students as occurring in IBME classes, but just because an 

instructor runs an IBME class does not by itself guarantee an equitable environment for students. 

In this paper, I argue that in order to more fully realize the fourth IBME pillar, we need to look 

beyond definitions of equity, in favor of a more detailed picture, such as understanding how 

instructors attend to rehumanizing mathematics in their classrooms (Gutiérrez, 2018). Gutiérrez 

writes,  

Unlike “equity”, which can seem to represent a destination, “rehumanizing” is a 
verb; it reflects an ongoing process and requires constant vigilance to maintain 
and to evolve with contexts. Moreover, rehumanizing is an ongoing performance 
and requires evidence from those for whom we seek to rehumanize our practices 
that, in fact, the practices are felt in that way (Gutiérrez, 2018, p. 3). 
 

From Gutiérrez, I interpret that using a lens of rehumanization, as opposed to equity, can give 

teachers active, evidence based, equitable ways to engage students in the classroom. I provide 

several examples of how the eight dimensions of rehumanizing mathematics can appear through 

episodes across a semester-long inquiry-based learning (IBL), a type of IBME, undergraduate 

introductory Real Analysis class. I highlight how the IBL classroom structure supported 

rehumanizing mathematics, as well as ways in which the observed instructor went above and 

beyond IBL expectations to engage students in rehumanizing experiences. I argue that 

Gutiérrez’s language of rehumanizing mathematics provides a framework for investigating 

whether an IBL class provides equitable experiences for students, and that the dimensions of 

rehumanizing mathematics encourage teacher actions beyond what a traditional IBL class 

structure necessitates. My evidence for the overall equitable experience of students in this class 

is demonstrated by data on how well the class handled the transition to remote learning during 
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the Spring 2020 term due to COVID-19, and how impactful the class was for students based on 

the final day of class and final interviews with students. In one of several similar comments that 

students offered in their final individual interviews, Taylor had this to say about the class: 

Taylor: This time was really rough with COVID, so I think this class kind of transitioned more 
towards emotional support and making sure people are there for each other. And this 
class is a very collaborative, integrated course where we all talked with each other, so I 
think that even emphasized the point of having emotional support and connection for 
each other… The other classes I had this term… were very quiet… the energy was very 
dead… So it kind of kept my sanity knowing that I could still come to this class and talk to 
people and joke around. It was nice to have that.  

 
In light of the positive experience of these students in this class through the transition to remote 

learning, I seek to address the following research questions: 

1)  In what ways did the instructor use the IBL class structure, and add elements beyond the IBL 
class structure, to promote dimensions of rehumanizing mathematics with students? 

2)  How was the class’ engagement in rehumanizing mathematics reflected in the Spring 2020 
remote transition and the end of the term? 

 
Together, answering these questions will inform specific ways in which rehumanizing 

mathematics might exist within inquiry-based mathematics courses and promote new ways of 

how to facilitate an IBL style classroom in ways that align with the fourth pillar of IBME. This 

in turn addresses broader discussions on the relationship between equity and IBME classrooms. 

 
6.2 Literature Review and Theoretical Perspectives 

 
In this section, I explicate the two lens that informed my analysis of the classroom I 

observed. First, I consider the four pillars of IBME and their historical development along with 

examples of studies that emphasize each pillar. In order to better frame the classroom I observed, 

which used a type of IBME called inquiry-based learning (IBL), I also provide distinctions 

between IBME and IBL. Then I situate my work in relation to Gutiérrez’s construct of 

rehumanizing mathematics. I describe the relationship between equity and rehumanizing 
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mathematics, and the eight dimensions of rehumanizing mathematics in connection to both the 

IBME pillars and relevant mathematics education literature.  

6.2.1 Inquiry Based Mathematics Education 
 

The term IBME was developed to unite several strands of inquiry education, namely inquiry-

based learning (IBL) and inquiry-oriented instruction (IOI), under one definition. The instructor I 

observed identified herself as an inquiry-based learning instructor and is a member of the 

Academy of Inquiry-Based Learning. While IBL has a unique historical development in the 

mathematics education community, and this instructor’s classroom shared many qualities 

specific to IBL (see Methods section for a classroom description), the IBL community has more 

recently shifted to a “big tent” view of inquiry type learning and aligns their definition of IBL 

with the four pillars of IBME8. Thus, I use the four pillars of IBME as a lens to broadly 

understand the structure of the class and the instructor’s motivation for particular actions and 

activities during class time. In the remainder of Section 2.1, I provide explanations of the four 

IBME pillars, drawing on relevant literature to show how each pillar has been studied. In 

drawing on the IBME literature broadly, I look at studies under both the inquiry-oriented 

perspective and the inquiry-based learning perspective.  

6.2.1.1 Characterizing IOI and IBL 

Inquiry-oriented instruction (IOI) comprises a body of curriculum and research literature 

centered on design-based research (Cobb, 2000), Realistic Mathematics Education (Freudenthal, 

1991; Gravemeijer, 1999), and draws inspiration from Cobb and Yackel’s work on 

 
8 For example, the Academy of Inquiry Based Learning defines IBL using the four pillars of IBME on their website: 
http://www.inquirybasedlearning.org/. 
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sociomathematical norms (Cobb & Yackel, 1996). Laursen and Rasmussen (2019) describe IOI 

classrooms as follows, 

Visitors to IO classrooms would see students working in small groups on 
unfamiliar and challenging problems, students presenting and sharing their work, 
even if tentative, and whole-class discussions where students question and refine 
their classmates’ reasoning. The students’ intellectual work lies in creating and 
revising definitions, making and justifying conjectures and justifying them, 
developing their own representations, and creating their own algorithms and 
methods for solving problems (p. 134).  

 
Due to the origins of IOI in undergraduate mathematics education research, the majority of 

qualitative studies in IBME classrooms currently comes from IOI researchers and their curricula. 

For example, the National Science Foundation supported project Teaching Inquiry-Oriented 

Mathematics: Establishing Supports9 (TIMES) has reported on work related to the development 

and implementation of inquiry-oriented curricula within several mathematical domains 

(including abstract algebra, linear algebra, and differential equations). Within each domain, 

researchers have investigated work on student thinking, development and refinement of tasks and 

materials, and issues related to the effective implementation of such curricula in classrooms. In 

general, IOI can be seen as a particular characterization of IBME that has established curricula 

and ways of teaching (Kuster et al., 2018). 

Inquiry-based learning (IBL) developed along multiple parallel tracks among both 

mathematicians and practitioners who teach with active learning methods in their classrooms. 

Laursen and Rasmussen (2019) write, 

Visitors to IBL courses would see class work that is highly interactive, 
emphasizing student communication and critique of these ideas, whether through 
student presentations at the board or small group discussions. Whole-class 
discussion and debriefs are used to aid collective sense-making, and instructors 
may provide mini-lectures to provide closure and signposting. Instructors’ 

 
9 https://times.math.vt.edu/ 
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classroom role is thus shifted from telling and demonstrating to guiding, 
managing, coaching, and monitoring student inquiry (p. 136). 

 
The large variety of IBL style classes and the practitioner-centered nature of the space has 

encouraged studies such as large-scale quantitative work on student learning outcomes in IBL 

classrooms (e.g., Laursen et al., 2014), and personal accounts of teacher experiences in 

practitioner journals such as PRIMUS (e.g., K. Shannon, 2018). Thus, one goal of this paper is 

to provide a case study of an IBL classroom from a researcher’s perspective, which is somewhat 

lacking when compared to the substantial IOI literature base (e.g., Larsen, 2013; Rasmussen et 

al., 2006; Strand, 2016; Wawro et al., 2012).  

In uniting the overlapping goals of IOI and IBL, Laursen and Rasmussen (2019) describe 

IBME as classrooms that use active learning with "a longer-term trajectory that sequences daily 

tasks to build toward big ideas, to “reinvent or create mathematics that is new to [students],” 

and to “offer students and instructors greater opportunities to develop a critical stance toward 

previous, perhaps unquestioned, learning and teaching routines” (Laursen & Rasmussen, 2019, 

p. 133-134). They describe the four pillars of IBME as: (1) students engage deeply with 

coherent and meaningful mathematical tasks, (2) students collaboratively process mathematical 

ideas, (3) instructors inquire into student thinking, and (4) instructors foster equity in their 

design and facilitation choices (p. 138) (see Figure 6-1). I take these four pillars as my 

definition and characterization of IBME. I now describe each of these pillars individually and 

examine what evidence of each pillar can look like in an IBME classroom.  
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Figure 6-1: The Four Pillars of Inquiry-Based Mathematics Education10 

6.2.1.2 Pillars 1, 2: Deep Engagement in Rich Mathematics and Opportunities to Collaborate 

The first two pillars of IBME are (1) students engage deeply with coherent and meaningful 

mathematical tasks and (2) students collaboratively process mathematical ideas. These concepts 

first appeared as “twin pillars” in Laursen et al. (2014). In describing these pillars, Laursen & 

Rasmussen (2019) state that,  

… deep engagement occurs as students encounter, grapple with, and revisit 
important ideas over time, in and out of class. And, as students discuss, elaborate 
and critique these ideas together, they deepen their understanding and build 
communication skills, collaborative skills, and appreciation for diverse paths to 
solutions (p. 137).   

 
Thus, evidence of the first two pillars can come from classroom observations of students 

engaging in mathematics during class, and through reflection in student interviews as to how 

they do mathematics outside of class. In Ernst et al. (2017), the authors provide expository 

examples of these two pillars being used in an upper-level proof-based classes, a calculus class, 

and a pre-service teacher class. In Wawro et al. (2012), the authors examined student group work 

on an IOI linear algebra instructional sequence covering span and linear independence (the 

Magic Carpet Ride). The data given in the paper consists of excerpts from classroom transcripts 

 
10 Graphic as it appeared in the instructor’s syllabus, credited to Dr. Nina White. 
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and images of student group work on white boards. Since the focus of this paper was to describe 

students’ understanding of the mathematical content, this data is viewed as a window into 

students’ mathematical experiences in IBME classrooms. My study adds to the literature by 

addressing these same types of IBME classroom experiences, not with the focus of 

understanding how students experience the mathematical curriculum, but through a social lens of 

interpreting how these mathematical experiences contributed to students’ overall social, and 

rehumanizing, experiences in the classroom.  

6.2.1.3 Pillar 3: Instructor Inquiry into Student Thinking 

The third pillar of IBME considers how instructors inquire into student thinking. This pillar was 

introduced in Rasmussen and Kwon (2007), and I note that they also describe similar student 

focused pillars as in Section 6.2.1.1. This pillar focuses on how the instructor can support the 

first two student centered pillars by highlighting students’ mathematical contributions during 

class and helping to promote a sense of classroom community around creating mathematics 

together. Thus, evidence of this pillar can come from paying attention to how the instructor 

interacts with students during class and instructor reflections on the intentions of their in-class 

actions during interviews. In a follow-up piece to Ernst et al. (2017), Rasmussen et al. (2017), 

provided a series of instructor questions that target getting students to share their thinking, orient 

to and engage in others’ thinking, deepen their thinking, and build on and extend student ideas 

(p. 1308). In Dawkins et al. (2019), the authors detail the teaching goals of a professor and 

compare these to his students’ experiences in an IBL classroom. In particular, one of the teaching 

practices highlighted in this study was the instructor’s focus on providing “differentiated 

feedback”. Dawkins et al. write that the instructor “tried to provide minimally sufficient 

feedback so that students both remained challenged and retained ownership over their created 
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proofs” (p. 325). The data provided in Dawkins et al. (2019) consists of reflections from both the 

instructor and students on how these teaching practices were broadly attained over the term. My 

study adds to the literature by providing examples of this pillar occurring in the day-to-day 

activities of the classroom, and connections as to how this pillar interacts with the other pillars 

through the dimensions of rehumanization.  

6.2.1.4 Pillar 4: Instructor Fosters an Equitable Environment 

The fourth pillar of IBME tends to how instructors foster equity (see Section 6.2.2 for more on 

defining equity) in their design and facilitation choices. This pillar was added to the existing 

three pillars in Laursen and Rasmussen (2019). Several researchers have found positive links 

between IBME classrooms and equity, such as Laursen et al.’s (2014) work on how IBL 

classrooms impact course performance by women students. They found that "women in non-IBL 

courses reported substantially lower cognitive gains than did their male classmates", while in 

IBL classes, "women’s cognitive and affective gains were statistically identical to those of men, 

and their collaborative gains were higher" (Laursen et al., 2014, p. 411-412). However, more 

recent studies have dug deeper into whether there is a necessary and sufficient relationship 

between equity and IBME classrooms. Brown (2018) argues that we must intentionally pursue 

Equity Oriented Inquiry Based Learning (EO-IBL). She provides an instance of an IBL 

classroom in which students were told to form small groups in order to work on an assignment. 

A Hispanic female was left to the edges of a group of three male students and worked on her 

own without any recognition from the group. Brown calls this "the illusion of participation" and 

states 

Even if all IBL students are expected to advocate for their own participation it is 
not the case that all students are called on to do so (often again and again). More 
importantly, it is not the case that all will have cultural habitus, disposition, or 
identity that will support them in doing so (Brown 2018, p. 6). 
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Brown’s work suggests that even if IBL classrooms provide overall improvement for women 

and minorities, instructors need to be aware of the burdensome and inequitable actions that these 

same students might have to take in order to fully participate in class. Stone-Johnstone et al. 

(2019) voice a similar hypothesis, saying "we must not only be vigilant about increasing student 

engagement but also conscientious about the ways in which we engage different students" (p. 5). 

Finally, Johnson et al. found gendered differences in their work regarding an IOI classroom and 

"suspect[ed] that there are important instructional differences between IOI and IBL that may 

impact different groups differently [which includes] the routine use of student presentations in 

IBL classrooms" (Johnson et al. 2020, p. 7). My study addresses this literature by focusing on an 

IBL classroom that regularly employs student presentations, and I give concrete examples of 

ways in which the instructor provided different, rehumanizing, ways for students to engage in the 

classroom that I believe helped to create a more equitable classroom environment.  

6.2.2 Rehumanizing Mathematics 
 

I primarily employ Gutiérrez’s (2018) framework for rehumanizing mathematics to 

understand the instructor’s actions in the classroom. In particular, I consider how the instructor’s 

teaching actions were informed by the IBL class structure, and how she took additional actions 

of her own to create an equitable experience for her students, by utilizing the dimensions of 

rehumanizing mathematics as my theoretical lens. First, I distinguish the relationship I see 

between equity and rehumanizing mathematics, and I explain why I chose to use rehumanizing 

over equity as my lens for this work. Then I characterize both equity and the eight dimensions of 

rehumanization, providing connections between these concepts and the four pillars of IBME.  

Gutiérrez (2009) characterizes equity as operating on two axes: a dominant axis (access and 

achievement), and a critical axis (identity and power) (see Table 6-1). 
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Table 6-1: Characterization of Equity, Gutiérrez (2009) 

This characterization of equity provides a big picture view of what equity looks like in 

mathematics, through helping students “play the game” of mathematics as it is, via access and 

achievement, and by empowering students to “change the game” of what mathematics could be, 

via identity and power. Researchers have drawn connections from Gutiérrez’s work to IBME, 

most notably Tang et al. (2017) created a theoretical framework that put forth connections 

between each axis component and six qualities of inquiry-based instruction (Cook et al., 2016). 

Thus, I see this work as a relevant and useful way to frame equity and work around the fourth 

pillar of IBME. 

To this end, I have chosen Gutiérrez’s lens of rehumanizing mathematics over equity in order 

to create a more detailed picture of how an instructor might foster equitable actions in a 

mathematics classroom. Gutiérrez writes,  

Unlike “equity”, which can seem to represent a destination, “rehumanizing” is a 
verb; it reflects an ongoing process and requires constant vigilance to maintain 
and to evolve with contexts. Moreover, rehumanizing is an ongoing performance 
and requires evidence from those for whom we seek to rehumanize our practices 
that, in fact, the practices are felt in that way (Gutiérrez, 2018, p. 3). 
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From Gutiérrez, I interpret that rehumanizing mathematics, as opposed to equity, can give 

teachers actionable, evidence based, ways to encourage equitable experiences in the classroom.. 

As we will see in the descriptions below, several of these dimensions relate to the axes of equity 

and I see the dimensions as complementary to Gutiérrez’s (2009) characterization of equity. 

Note, this is not to say that there is any one-to-one correspondence between the dimensions of 

rehumanization and the axes of equity, but rather that the dimensions of rehumanization give 

some ideas and ways in which teachers can be actively working in their classrooms towards the 

overarching goals of equity.  

Gutiérrez (2018) lists eight dimensions of rehumanization: “(1) participation/positioning, (2) 

cultures/histories, (3) windows/mirrors, (4) living practice, (5) creation, (6) broadening 

mathematics, (7) body/emotions, and (8) ownership” (Gutiérrez, 2018, p. 4). Table 6-2 provides 

a brief overview of these dimensions, and I define each one along with clarifying examples in the 

remainder of this section. As we will see in the Results, some dimensions of rehumanizing 

mathematics fit well within the existing structure of an IBL classroom, and others take more 

explicit work on the part of an instructor beyond what a traditional IBL structure necessitates. 

Throughout this section I draw connections between these dimensions and the four pillars of 

IBME. Recall that the Academy of Inquiry-Based Learning defines IBL based on these four 

pillars as well, and I draw on them as the basis for my understanding of the IBL classroom 

structure I observed. Furthermore, I recognize that many of these dimensions are complementary 

and can influence each other. Thus, in the following theoretical descriptions and Results section I 

give my best definitions and categorizations of each episode while recognizing that one example 

may fall under multiple dimensions.  
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Table 6-2: Dimensions of Rehumanizing Mathematics, adapted from Gutiérrez (2018) 

6.2.2.1 Participation/Positioning and Living Practice 

The dimension of participation/positioning considers how students are participating and 

positioned within the classroom, and whether they are given opportunities to act as mathematical 

authorities. In particular, the dimension promotes a shifting of classroom authority from the 

teacher/text to the students. This language comes from positioning theory (Davies & Harre, 

1990) which views personal identity as flexible and capable of changing depending on how that 

person position themselves and how others position them in various situations. Authority has 
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also been well researched within mathematics education, in particular I note Langer-Osuna’s 

(2017) work on authority and identity in collaborative mathematics. My use and interpretation of 

this dimension is not necessarily to bring something new to light about the deep constructs that 

the dimension draws on, but more to recognize their combined benefit and use in an IBME 

classroom towards the purpose of rehumanizing mathematics, especially in tandem with other 

dimensions.  

A class that addresses the participation/positioning dimension of rehumanizing mathematics 

may create opportunities for students to participate in mathematical activity during class time or 

afford students authority over the legitimacy and value of the mathematical work being discussed 

in class. This dimension aligns with the second pillar of IBME where students have opportunities 

to collaborate (participation), and the third pillar in which the instructor focuses their time on 

inquiring into student thinking as opposed to explaining their own thinking (thus positioning 

students as mathematical authorities). I see this dimension as related to the equity axis 

component of access (student access to participation during class) and power (students are 

positioned as authority figures).  

Additionally, the dimension of living practice considers whether students experience 

mathematics as a dynamic process full of power dynamics, debate, and rule breaking (Gutiérrez, 

2018, p. 5). The first pillar of IBME focuses on students’ deep engagement in rich mathematics 

and, in an IBL classroom, students debate and create mathematics together, which affords 

opportunities to experience this dimension. For example, Dawkins (2014a) looked at the practice 

of defining in an inquiry-oriented undergraduate real analysis class, meaning that definitions 

were treated as “under construction” and students were “consistently discussing and negotiating 

these formal statements” (p. 89). Dawkins found differences among students’ “perceived frames, 
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roles, expectations, and values” (p. 101) depending on how they understood authority in the 

classroom and how they acculturated themselves into the mathematical practice of defining. 

While most, if not all, of the rehumanizing dimensions can be considered in tandem with each 

other, I see position/participation and living practice as being deeply valued in an IBME 

classroom. Furthermore, given students’ participation and positioning as mathematical authority 

figures in an IBL class, I interpret the dimension of living practice as related to the critical axis 

component of power (students get to dynamically engage in mathematics and use their 

mathematical authority to make choices in the classroom).  

6.2.2.2 Cultures/Histories and Windows/Mirrors 

The dimension of cultures/histories considers whether students’ cultures and histories are 

represented in the classroom through attending to the history of mathematics and the 

mathematical work of their ancestors. This could occur through acknowledgment of students’ 

prior knowledge, mathematics from other countries, ethnomathematics, or making connections 

between the roots of students’ pasts and the history of mathematics. The Journal of Humanistic 

Mathematics provides several examples of instructors attending to this dimension in their 

classrooms (e.g., Anderton & Wright, 2012; Lipka et al., 2019; Maxwell & Chahine, 2013). One 

relevant example of this dimension occurring in IBME classes is Matthew & Hodge’s (2016) 

piece on using IBL teaching techniques in a history of mathematics course. However, in general, 

the IBL class structure requires using carefully scaffolded theorem statements with little context, 

which creates a number of incompatibilities with the cultures/histories dimension (see Section 

6.4.1.8 for more details).  

While IBL classes may have some difficulty in exemplifying the cultures/histories 

dimension, they do provide ample opportunities in the windows/mirrors dimension. This 
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dimension considers whether students see mathematics through the different perspectives of their 

peers (windows) and themselves, by reflecting on their own mathematical work (mirrors). An 

important aspect of this dimension is that students can learn to appreciate, not just critique, the 

views of others around them. Wawro et al. (2012) provide a nice example of the windows aspect 

of this dimension, through sharing images of the board work of multiple small groups in class on 

a problem involving linear independence in the Magic Carpet Ride Problem. They write, “whole 

class discussion of the various approaches offered insight into [how] the students were thinking 

about linear combination[s] of the three vectors” (p .587). As an example of the mirrors aspect, 

Hassi and Laursen (2015) share ways that IBL classes provide students with self, cognitive, and 

social empowerment opportunities that can lead to transformative learning experiences. Under 

the self-empowerment section, they considered the role of agency and self-reflection in IBL. 

They write, “student-centered and collaborative IBL practices fostered students’ need and ability 

to be reflective in studying mathematics” (p. 326) and they share data excerpts of students’ meta-

reflections on what they learned about how they learn and do mathematics in an IBL class. Thus, 

IBL classrooms provide ways for students to both experience the mathematical thinking of those 

around them, and to reflect deeply on their own mathematical thinking process. 

None of the four IBME pillars address either of these dimensions, however one could 

consider the windows aspect within the second pillar on collaboration and the mirrors aspect 

within the first pillar on deep engagement in rich mathematics. I also view these dimensions as 

related to the equity axis component of identity (students come to see their identity, and those of 

their classmates, as relevant to the mathematics they are doing in class).  
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6.2.2.3 Creation and Ownership 

Creation considers a student’s autonomy and ability to do mathematics in ways that are 

consistent with their own values, and not simply a reproduction of work that has come before 

them (i.e., replicating a teacher or textbook). Again, in line with the first pillar of IBME, 

students’ deep engagement in rich mathematics, IBL classes are built around students developing 

their own solutions to problems without influence from outside resources like a textbook or a 

teacher. I see the dimension of creation as also relating to creativity, in that students’ coming up 

with ways to do mathematics in line with their values is often creative. Creativity is beginning to 

be studied in undergraduate mathematics education, notably with the Vol. 10 Issue 2: Special 

Issue on Creativity in Mathematics from the Journal of Humanistic Mathematics. In particular, 

Adiredja and Zandieh’s (2020) considered how individual and collective creativity in a linear 

algebra class speaks to ways that we might recognize creativity in a mathematics class. They 

write, “In this way, we focus on the potential for students’ creative products to reveal insights 

about their mathematical understanding, and also the way that mathematical analysis of these 

products might reveal insights into students’ creativity” (p. 46). In addition, I see this dimension 

as related to the critical axis component of identity (students have opportunities to create 

mathematics that reflects their individual identity and views of mathematics).  

Similarly, ownership promotes student experiences in mathematics as something they do 

from a place of internal motivation, as opposed for external reasons such as grades or teacher 

approval. Gutiérrez defines ownership as the dimension that recognizes joy and play in 

mathematics, or mathematics as a form of self-expression, which also aligns with the first pillar 

of IBME, students’ deep engagement in rich mathematics. In fact, several existing studies on 

IBME classrooms consider ownership an important outcome and facet of the experience. For 
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example, in Dawkins et al. (2019), they describe one of the instructor’s overarching learning 

goals as having students “learn to create their own mathematics” and that the instructor believed 

“having to create their own proofs gives students deeper understanding and ownership over what 

they learn” (p. 323). I see this dimension as related to the outcome ends of both the dominant and 

critical axes of equity: achievement (student success is viewed through an internal lens) and 

power (students have the power to do mathematics for themselves and for their own reasons).  

6.2.2.4 Broadening Mathematics and Body/Emotion 

The dimension of broadening mathematics considers whether students experience 

mathematics beyond the traditional realm of quantitative knowledge, i.e., experiencing 

mathematics in more qualitative ways through the humanities. A number of instructors have 

discussed their humanities-based projects in mathematics classes such as von Renesse and 

DiGrazia’s (2018) expository work on combining mathematics and writing in a first-year 

inquiry-based learning community, and Gordon’s (2019) work on broadening the mathematics 

curriculum by seeing students as artists and giving them “opportunities to appreciate the 

aesthetic dimension of mathematics” (p. 192). In particular, one way to broaden mathematics is 

through the dimension of body/emotion. Through this dimension, students are encouraged to use 

their senses and participate in mathematics as a full body experience, for example through 

“voice, vision, touch, and intuition” (p. 5). Note, there is no explicit connection between 

Gutiérrez’s use of the term ‘body’ and current research around embodied cognition (Nunez, 

1999), and I do not make any such connections in this work. Due to the nature and focus of my 

data collection, I tend primarily to focus on the emotion aspect of this dimension in my results. 

Affect (broadly understood as students’ emotions, moods, attitudes, motivation) has grown 

steadily as a research interest (for example the Educational Studies in Mathematics Vol. 63 
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Special Issue on Affect in Mathematics Education, 2006) but there are few examples studying 

affect in IBME classes. One example, Hassi and Laursen (2015), showed that IBL classes 

provided students with self, cognitive, and social empowerment opportunities that afforded 

transformative learning experiences and thus positive affective experiences. However, this is 

subtly different than considering actions the instructor took to use emotion as a way to engage 

during class in rehumanizing mathematics, as opposed to an outcome from being in an IBL 

classroom.  

Neither broadening mathematics nor body/emotion are explicitly addressed in the four pillars 

of IBME. I hypothesize that the dimension of body/emotion is related to the fourth pillar on 

fostering an equitable environment, since recognizing student emotion and drawing on other 

ways of ‘knowing’ is an important feature of an inclusive mathematical experience, but it is not 

explicitly stated or described as such in the defining IBME literature. I also see these two 

dimensions as related to the dominant axis component of access (students are given various 

access points to participate in class through activities that broaden mathematics).  

I find it important to acknowledge that Gutiérrez’s work focuses on raising the voices of 

Indigenous, Black, and Latinx students, which is not the goal of this paper, and it is not my 

intention to draw attention away from these important discussions. In particular, the dimension 

of cultures/history does not appear in the four pillars of IBME, and IBL classrooms in particular 

tend to remove all historical context from their materials in favor of students recreating the 

material themselves with little external input. I recognize that the dimension of cultures/histories 

is deeply important when considering our Black, Indigenous, and Latinx students whose cultures 

and histories in mathematics have been systematically discriminated against and pushed aside. 
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Thus, one concern and call for future research in this paper is to consider how this dimension 

could be more deeply integrated into IBME classrooms (see the Discussion section).  

Overall, I use Gutiérrez’s work to help reframe what active, evidence-based, equitable 

actions can look like in an IBL classroom. In addition, I find the lens of rehumanization to be 

deeply illuminating when interpreting the episodes provided throughout the Results section and 

understanding the end of term data on students’ positive class experiences. Thus, my goal is to 

extend Gutiérrez’s work in ways that explore what these dimensions can look like in practice, 

and to provide explanation as to the progress of this classroom community over an incredibly 

difficult term.   

6.3 Methods and Data Collection 
 
6.3.1 Classroom Context 
 

The professor that I observed, Dr. Miya11, is an active member of the Academy of Inquiry 

Based Learning, who has taught IBL courses for over twelve years. According to the syllabus, 

the purpose of the class is to “prov[e] all of those theorems you accepted as true back in 

calculus.” IBL classes can take on a variety of structures and so I provide some context as to the 

day-to-day operations of the class I observed. Prior to the remote transition, the class was 

designed as follows. Students were not given a textbook, instead they received packets 

containing definitions, axioms, and a list of theorems to prove in a specified order. Students 

worked through problems at their own pace and used a shared Excel spreadsheet to “claim” 

problems that they felt comfortable presenting in class. They were not supposed to use resources 

other than Dr. Miya’s office hours and each other. Class time was spent with a single student 

 
11 The pseudonym Miya references “Mr. Miyagi” from the Karate Kid. The instructor shared a clip from the Karate 
Kid on the first day of class and made references to herself as the Mr. Miyagi of the class multiple times. She saw 
herself as a guide to the students on a journey that they would not fully understand until they reached their final 
destination (much like the Karate Kid washing windows and painting houses to prepare for his karate tournament). 
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presenting their proof on a whiteboard and engaging in a collaborative process of revision with 

their peers. Dr. Miya primarily stayed silent during these conversations, and she carefully chose 

when to engage in conversation mediation, small group activities, or extended explanation of a 

topic. Grades were based on class participation, weekly homework, reflective journal pieces, and 

a final portfolio that combined mathematics and creative writing to summarize their classroom 

experience.   

During the second week of March 2020, colleges around the world made the decision to 

transition to remote learning due to the COVID-19 pandemic. The university in which this study 

took place is on the semester system and gave students and faculty two days off from school in 

between Week 9 and Week 10 (out of 16 total) to prepare for remote learning. After the 

emergency remote transition, the class had to develop a new way of maintaining their IBL 

structure. The professor opted to keep the original MWF class time for optional synchronous 

class sessions, although every class had full attendance – that is, while there were options for 

students to participate non-synchronously if needed, all of the students ended up participating 

synchronously online during the regular meeting time. Proofs were posted on a discussion board 

the day before class, where students had the option of posting comments on the work. Class time 

was spent with students explaining their proofs through a shared screen and discussing 

comments left on the online proof discussion boards. 

6.3.2 Data Collection and Analysis 
 

The data for this paper comes from a larger collection of classroom observations, individual 

student interviews, and interviews with Dr. Miya12. The mathematics department considers Real 

 
12 Due to the uniqueness of this class and the Spring 2020 term information, I have chosen not to disclose any other 
identifying information to protect participant identities. 
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Analysis a capstone class for their majors and it is considered to be one of the most difficult 

classes offered. The class had 19 students, mostly junior or senior math majors, and met for three 

hours a week over the course of a 16-week semester. I observed and video recorded every class, 

writing detailed fieldnotes and flagging specific episodes that would be worth returning to for 

video analysis. Five students were recruited for 3-4 individual interviews over the course of the 

term, during which they reflected upon and discussed their classroom experiences. I interviewed 

Dr. Miya four times as well, and during those interviews she talked about the challenges and 

rewards of teaching this class and her perspectives on classroom episodes that I had flagged.  

The main goal in analyzing this data was to explore notions of classroom community 

development over the course of the term. For the results reported in this paper, I drew on data 

that could illuminate what students remembered as important experiences over the term. I used 

final interviews with students and the instructor as a starting place, as these interviews were 

summative of the term. In particular, I analyzed interview questions where I asked students to 

recall moments in which they had affective experiences (for example, “What is a moment in 

class where you felt proud/frustrated/challenged?”) or were talking about any of the creative 

assignments from the term. Specifically, I coded student responses to these questions using the 

eight dimensions of rehumanizing mathematics as described in Section 6.2.2. I then turned to the 

classroom observation data for two types of analysis. First, I returned to any coded student 

interview segments that mentioned a specific classroom episode and transcribed that segment for 

data triangulation and to add further context to the student’s interview response. I then went 

through a number of classroom episodes that I had starred, such as creative assignment days or 

class episodes that had intense affective aspects, and coded these for the dimensions of 

rehumanizing mathematics as well. In particular, I coded the interview responses and classroom 
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episodes based on student language that fit the name or description of the dimension (i.e., 

“living”, “emotion”, “create”, “own”) or my best educated interpretation of the situation (i.e., if I 

had starred a classroom episode as the “participation/positioning” dimension, I explained how I 

was interpreting students being positioned or participating as mathematical authorities).   

I note that the dimensions of rehumanizing mathematics are not mutually exclusive, and in 

some cases a single episode carried traits of multiple dimensions. I used my best judgement and 

understanding of the dimensions to code for the strongest dimension present and make note of 

other contributing factors. In the following quote, the instructor was describing a moment in 

class where a student had come up with a new theorem and proof based off of a student’s proof 

presentation.  

Miya:  Um Parker, after her thing, she told me "oh yeah I joked to my brother that someday I 
would have a theorem named after me" and I was like "well did you take a picture of 
the board?!" cause her name was on the board. And she said no, and like Jo was 
absent that day or something, and I was like "Rose took a picture of it, I'm gonna get 
it for you so you can share it with your brother". And like that's meaningful. 

Int.: Mm-hmm. 
Miya:  That's an accomplishment that people I think, when you're a student you don't know 

what it means to have something named after you until it happens. And so I think it's 
a way to honor people's contributions in a way that is authentic. Right? That is 
something they contributed to the class that we may not have gotten otherwise. Um, 
you know I probably think too much about these things.  

 
When coding this segment, I saw three potential dimensions that could apply: participation/ 

positioning, ownership, and creation. This was an example that considered a student’s volunteer 

participation in the classroom, and how the instructor was positioning them as a mathematician 

by helping the student show her brother that she had a theorem named after her in class. 

However, participation and positioning happened so consistently throughout my dataset, that I 

had much stronger examples than this one to showcase the dimension. I also saw aspects of the 

dimensions of ownership, in that a student was motivated to come up with her own theorem and 
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the simple fact of naming it after her implied some level of ownership. Upon close consideration, 

I decided that while ownership was potentially occurring under the surface in this episode, I 

didn’t have the perspective of the student to know whether it brought her the sense of joy and 

satisfaction that is a clear indication of ownership and that was noticeable in other data excerpts. 

Ultimately, I decided that the dimension of creation was the strongest fit for this excerpt, 

especially when I considered the instructor’s words “… And so I think it's a way to honor 

people's contributions in a way that is authentic. Right? That is something they contributed to the 

class that we may not have gotten otherwise”. I understand the dimension of creation as allowing 

students to engage in mathematics in ways that fit their own values and bring unique 

contributions to the classroom, and the lens of rehumanizing mathematics helped me to articulate 

one way in which an instructor was manifesting this dimension within her classroom. Notably 

then, my process of coding was iterative and I had to go through the dataset multiple times as I 

cross-compared excerpts to make sure I was producing the clearest possible examples of each 

dimension of rehumanizing mathematics.  

After I completed coding for the dimensions of rehumanizing mathematics, I began to align 

the themes that arose from my coding with the IBL structure and the instructor’s facilitation of 

the course by connecting back to the four pillars of IBME as discussed in Section 6.1.1. For 

example, the excerpt above from the instructor interview emphasized a relation between the 

second pillar (students must have opportunities to collaborate) and how an instructor can pick up 

on those collaborations and frame them in ways that showcase students’ creations and 

contributions to the class in a worthwhile way. I kept detailed notes of these connections and 

used them primarily to assist in writing a Results section that used both the language of 

rehumanizing mathematics and the IBME pillars.  
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I do not claim that the episodes discussed in the Results provide a comprehensive set of ways 

in which rehumanizing mathematics appeared in the classroom or could appear in other 

classrooms, but rather they are a set of illustrative examples. Each example is given as both proof 

of existence of the dimension and as a concise, potent, best case example from my data 

collection and analysis.  

6.4 Results 
 

My initial interest in using a lens of rehumanizing mathematics came from a desire to 

understand what made this class such an appealing and effective learning environment for 

students throughout the emergency remote transition due to COVID-19. Overall, I found 

evidence that the remote transition for this class was successful and carried a significant amount 

of value to the students. For example, from one student’s final interview, consider Taylor’s 

reflection when I asked him to consider what he thought Dr. Miya’s overall goals for the class 

were.   

Taylor: To just think deeper, to not always to assume something to be true. I think we more 
explicitly wanted to become better proof makers, proofreaders. She wanted us to be 
better mathematicians after this class. I think that's more specifically really pertaining to 
math, but I guess more philosophically or just as a human person, just have empathy for 
people. This time was really rough with COVID, so I think this class kind of transitioned 
more towards emotional support and making sure people are there for each other. And 
this class is a very collaborative, integrated course where we all talked with each other, 
so I think that even emphasized the point of having emotional support and connection for 
each other… The other classes I had this term… were very quiet… the energy was very 
dead… So it kind of kept my sanity knowing that I could still come to this class and talk to 
people and joke around. It was nice to have that.  
 

This is just one quote that exemplifies what I saw across the data, namely a class that had 

developed impressive ways of managing the difficulties of COVID-19 by leveraging their 

classroom community. In this Results section, I aim to account for this phenomenon, using 

Gutiérrez’s rehumanizing framework to present data. In Section 6.5.1, I consider each dimension 
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of rehumanizing mathematics, and I provide corresponding episodes over the term that 

exemplify how the instructor went above and beyond the IBL structure to provide a 

rehumanizing experience for her students. In Section 6.5.2, I consider how these dimensions led 

overall to a successful remote transition and powerful final day of class for students.  

Importantly, I acknowledge that there were specific affordances of Dr. Miya’s identity 

(white, cis-gender, female) and position as a tenured faculty member that enabled her to take on 

and encourage some of these rehumanizing episodes that are not accessible to every college 

faculty member. Further, I acknowledge that not all students may have felt equally free to share 

and engage in these episodes; I recognize that there are complexities involved with inviting 

emotion, participation, creation, etc. in the classroom and this is certainly something that 

involves nuance and care on the instructor’s part. I hypothesize that some of this intentional 

instructor work occurred through personal e-mail communication and office hours with students, 

which was outside the scope of my data collection. However, I report on rehumanizing 

mathematics as something that was established in this particular classroom as a whole, and 

believe that this paper offers a useful case as we seek to understand how rehumanizing can be 

developed and explored in IBL classrooms. From analyzing student interviews, and class 

interactions, the data suggest that overall students were encouraged and uplifted by the episodes 

and examples that I share in this paper. 

6.4.1 Dimensions of Rehumanizing Mathematics 

6.4.1.1 Participation/Positioning 

The dimension of participation/positioning considers how students participate and position 

themselves and others within the classroom, and whether they are given opportunities to act as 

mathematical authorities. One way in which an IBL class can promote participation/positioning 



121 
 

is through the structure of class, where the majority of time is spent with students presenting 

their proofs at the board and receiving feedback from their peers. I provide a key example of how 

this worked in the class I observed, which captures both the high level of student participation in 

class, and a moment in which the instructor positioned a student, Sloan, as a mathematical 

authority figure. For context, this was the second day of proof presentations, and during the 

previous class, Sloan had offered what she called the “Law of Cancellation” to justify cancelling 

like terms on both sides of the equation in a proof. Classroom Excerpt 1 starts at the beginning of 

the second day, when Sloan retracts the Law of Cancellation because the use of the law did not 

match their IBL class expectations.  

Classroom Excerpt 1 

Miya:  Um anything for the good of the order? Sloan? 
Sloan:  When I talked about the cancellation law, I don’t know what I was talking about 

Wednesday. But y’all believed me and that was nice [students laugh]. But you can’t use 
it! 

Miya:  Right? Right, like we can’t do that. We could, we could establish a law of cancellation. 
And it can be whatever we want it to be. We could make up a law and call it Sloan’s 
Law or call it the Law of Cancellation. And then we could use it, that’s legit. But we 
can’t just write it down because the words came out of Sloan’s mouth. Like “oh it’s the 
law!” You said it with such authority that I was like “that must be true” (people laugh) 
Right? 

Sloan: No one said anything against it! 
Miya:  Yeah I was out on a run yesterday and I was like “did Sloan say law of cancellation?” 

Then I realized, and like I wrote it in my notes “by the law of cancellation”, I bet you did 
too!... I wrote it down and then I was thinking about it a day and a half later and was 
like, I have no idea what she was talking about. I accepted that as fact, right? Talk about 
accepting as true. I accepted it as true without actually looking like is that something 
we’re accepting as true? And it turns out, when I emailed Sloan she’s like “yeah we 
don’t have that thing”. So, I’m like “ok then we don’t have that thing”.  

 
In this excerpt, Dr. Miya positioned Sloan as an authority figure in several ways. First, she let 

Sloan bring up the mistake to the class herself, and later on referenced how she had emailed 

Sloan and asked for her opinion, as opposed to just telling her and the class that citing an 

unknown law was not allowed in their proofs. She also claimed that the class could make up a 
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law and attribute it to Sloan, and that Sloan had such an authoritative voice in the classroom that 

she, the instructor, had believed her without justification. Thus, while the IBL structure of the 

class may have facilitated Sloan’s initial suggestion of the Law of Cancellation during a proof 

presentation, the instructor navigated the conversations afterwards in ways that explicitly 

positioned Sloan and her classmates as mathematical authorities.   

As a secondary excerpt, I share part of a class conversation from later in the same class 

period in which a student named Connor questioned whether another proof was viable because it 

used addition on both sides of the equation, similar to the Law of Cancellation. I share this 

excerpt to point out that even on the second day of class, students were positioning each other as 

sources of authority who could decide whether or not proofs were acceptable in their classroom. 

In this case, Connor’s point was taken up by his classmates and they agreed that the proof was 

not viable due to its similarity to the Law of Cancellation. 

Classroom Excerpt 2 

Connor: So, after thinking about it, if we look at 1 in another way, a+b=a+c and then you 
basically use the Law of Cancellation. But if we think about the Law of Cancellation 
conversely, so we are cancelling an equal number of things on both sides, can we also 
add an equal number of things on both sides? Do we also need to prove that? 

Miya:  Can you come to the board and write down what we would need to prove? 
Connor: So basically, we would need to prove this line. (underlines line of proof)  
Jo:  Like do we need to prove if we’re able to do that 
Sloan:  That we can add to both sides 
Connor: Because we said we needed to prove that we can cancel on both sides, for this problem. 

So, do we also need to prove if we can add things on both sides? 
Sloan:  Oh no. 
 
This episode describes one example from the beginning of the term of the type of 

participation/positioning that occurred in the classroom. Again, I view this activity as being 

facilitated by the IBL structure of the class, notably it was already present on only the second day 

of class, given the requirement of having students present proofs at the board and give feedback 
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to their peers. However, I also interpret the instructor as going above and beyond the IBL 

structure in the way she explicitly positioned Sloan as a mathematical authority figure in the 

classroom in Classroom Transcript Excerpt 1. Thus, while the dimension of participation/ 

positioning fits well into the structure of an IBL class, it took explicit work on the part of the 

instructor to position students as mathematical authorities and make it in some sense a social 

norm of participation in class. For more detail on the students’ work with the Law of 

Cancellation, see Paper 1 (Chapter 5).  

6.4.1.2 Ownership 

The dimension of ownership focuses on students finding joy in doing mathematics for 

themselves, as opposed to doing mathematics for the external goals of grades, teacher approval, 

or to fulfill a major requirement. While the students I observed still had many of these external 

motivators, I argue that this dimension is inherent to the IBL structure by way of facilitating 

students to do mathematics on their own, with limited resources. In Interview Excerpt 1, from 

Ash’s first interview of the term, I asked what the most rewarding part of class was so far. In this 

excerpt I highlight how much enjoyment Ash got from doing math on her own, and that she saw 

solving problems as a reward in and of itself.  

Interview Excerpt 1 

Ash:  I love getting a problem. That's SO cool. I remember like two super distinct moments. 
One was when I was with Sloan, we were doing homework in like the first or second 
week. And we were both just like spit-balling ideas, and we figured it out! And it was 
so cool! Like we didn't have to ask anybody else, we didn't like look anything up, we 
just had an idea and started doing it and it was cool. And then the other day, me and 
Hayden, this was problem 13, me and Hayden and Jordan were all at Hayden’s house 
and we were doing problems, and it's the night before they were due, so we had to do 
them - 

Int.:   Mm-hmm. (laugh) 
Ash:  We had to get them. You know, and like Sloan said this idea, she was like "you know I 

think it's gotta be something with like a+1 because a is a and then plus 1 is strictly 
greater than a" and I was like "ok ok ok" and then I started like writing stuff down 
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and then I was like "oh my god I think I have it" like cool, and then we were all 
like "yeah that's gotta be it!", so that was cool. Because like I felt like I did it, but 
like I had, like the intuition was given to me by like communicating about it which 
was super cool. And I liked that because I feel like, I don't know in the real world you 
don't really have to do everything by yourself.  

 
This excerpt shows one way in which students can find ownership in an IBL class, namely 

through doing mathematics themselves and “getting a problem”, an activity that occurs outside 

of class time. Notably, on the first day of class, a student asked the instructor what her favorite 

part of this class was, and she expressed a similar sentiment to Ash’s interview response, and 

continued to encourage this sort of reaction from her students. I argue that this type of experience 

is a necessary consequence of the IBL class structure because students had to spend time out of 

class coming up with proofs for their presentation credit in class. Furthermore, the instructor set 

up the class with the requirement of using no outside resources, other than their peers and the 

instructor, which meant that students were developing these proofs primarily on their own, and 

sometimes with the help of their peers or the instructor. I see this decision and explicit 

encouragement on the instructor’s part as helping in promoting the students to see themselves 

and others to find joy through ownership of their mathematical content. 

6.4.1.3 Creation 

The dimension of creation considers whether students do mathematics in ways that align 

with their values and are not simply a reproduction of work from a textbook or a professor’s 

lecture. This fits into the structure of an IBL class where, again, students are creating proofs on 

their own without resources such as a textbook or lecture. However, I argue that Dr. Miya went 

beyond the IBL class structure to intentionally honor student creativity in class, by giving 

students credit for their unique mathematical ideas. For example, in Week 9, two weeks before 

moving online, after finishing a proof from the packet that “if a sequence is increasing and 
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bounded above, then it converges”, a student named Parker theorized that “if a sequence is 

increasing and bounded above, then it converges to its supremum”. The class worked together on 

the spot to prove the conjecture, and another student conjectured that a decreasing sequence, 

bounded below, converged to its infimum. Dr. Miya wrote down the proposed conjectures on the 

board using the names of the students who proposed them, for example “Parker’s Conjecture”, 

and referred to the conjectures by name from that point on. The following excerpt is from an 

interview with the instructor after this class period had occurred. I asked her about her reasoning 

behind this moment in class.  

Interview Excerpt 2 

Miya:  Um Parker, after her thing, she told me "oh yeah I joked to my brother that someday I 
would have a theorem named after me" and I was like "well did you take a picture of 
the board?!" cause her name was on the board. And she said no, and like Jo was 
absent that day or something, and I was like "Rose took a picture of it, I'm gonna get 
it for you so you can share it with your brother". And like that's meaningful. 

Int.: Mm-hmm. 
Miya:  That's an accomplishment that people I think, when you're a student you don't know 

what it means to have something named after you until it happens. And so I think it's 
a way to honor people's contributions in a way that is authentic. Right? That is 
something they contributed to the class that we may not have gotten otherwise. Um, 
you know I probably think too much about these things.  

 
In the excerpt, Dr. Miya shared her belief that adding students’ names to their ideas was meaningful 

and an important way to show that their creativity was valued in class. While this example also 

speaks to another way that Dr. Miya positioned students as mathematical authorities in class, or gave 

them ownership over the material, I use it primarily to highlight the dimension of creation. Not 

every IBL class using these materials would have the spontaneous moment of a student theorizing 

the exact claim shared above, and the instructor thought it was important to pick up on and 

emphasize these unique contributions in real time. In this way, the instructor valued creation beyond 

the IBL structure of the class, by recognizing the importance of giving students opportunities to 
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create and do mathematics of their own design and giving them credit for this work, in class and in 

front of their peers.  

6.4.1.4 Living Practice 

The dimension of living practice encourages showing mathematics as dynamic, with rules that 

can break, and dependent upon those interacting in the system. In some ways this can be part of the 

IBL class structure as students necessarily provide feedback, debate ideas, and experience the 

growth of their mathematical content knowledge together. However, I highlight an example in which 

I believe the instructor took the idea of living practice a step further by providing students with an 

opportunity to engage in a novel way with the creation of a definition. “Friend of a Set” was an 

instructor-led whole class activity with the end goal of defining the term limit point13, on the last day 

before transitioning to remote learning. This activity was based on, and occurred after, students 

watched a Youtube video14 of a similar nature where someone had people guess his rule for creating 

a sequence of numbers based off of the example “2, 4, 8” (the rule was simply that the numbers were 

in increasing order). The instructor posed the activity as asking the students to figure out her rule or 

definition of a “friend of a set” (i.e., a limit point). She started by giving a few examples, such as “7 

is a friend of the open interval (7,9)” and “4 is a friend of the closed interval [3,5]”. Students then 

offered more potential examples and the instructor would verify with a yes/no whether their example 

satisfied her definition, and she would also verify with a yes/no student guesses of her definition. 

What students found was that they were more apt to provide examples that fit their belief of what a 

“friend” was, as opposed to coming up with examples that went against their assumptions to test 

 
13 A point p is a limit point of a set M in the real numbers if every open interval containing p also contains a point 
of M different from p.  
14 Veritasium: Can You Solve This? https://www.youtube.com/watch?v=vKA4w2O61Xo 
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whether their beliefs were actually true, even after watching a video that demonstrated the same 

idea. In the excerpt below, Sloan reflects on what she took away from this class period.  

Interview Excerpt 3 
 
Sloan: Um but then I found myself, as we were playing the limit point game, of like coming up 

with questions that didn't break what we had previously, that didn't attempt to break what 
we had previously figured out about it. And so that was int-that was an interesting 
experience of being like "oh I can look in from the outside and be like break the rule, 
but then when it actually comes up to me creating questions that break the rule, like 
that's not my go to." 

Int.:  Mm-hmm. 
Sloan: Um my go to is to like, and that's the, like I mean that's what you do in hypothesis testing 

like in science. Is you continually do the same thing to see if you get the same result.  
Int.: Mm-hmm. 
Sloan: Which is an interesting difference between mathematics and the rest of STEM. But I 

guess they try to break the rule too, sometimes. Um. Yeah and so it's just interesting like 
the way that I generate questions is very much so like confirming what I already know.   

 
Here I interpret that Sloan was coming to view her process of learning new mathematics in a 

different way, through actively working against her internal confirmation bias and pushing the 

boundaries of her preconceived mathematical conceptions. Thus, I saw this class period as an 

example of the instructor working to shift student perspectives on what it means to do 

mathematics, that their job was to test the foundations of their knowledge, and that it was 

sometimes more useful to try and break the system than to try and reinforce their beliefs. This 

was an aspect of treating mathematics as a living practice that went beyond the IBL structure of 

the classroom; not every IBL class contains activities such as the one described above. It also 

served as an enjoyable break from the usual structure of proof presentations during class and the 

students seemed to enjoy working as a whole class to try and figure out the definition together, 

thus it provided a level of social bonding that was valuable towards community creation.  
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6.4.1.5 Body/Emotion 

The dimension of body/emotion focuses on valuing the senses and emotions in the 

classroom, as opposed to treating mathematics as a removed, logical experience. Through this 

dimension, students are encouraged to attend to these more intuitive measures of understanding 

to interpret mathematics and their classroom experiences. In my two examples, I focus primarily 

on the emotional piece of this dimension, and I note that neither body nor emotion are explicitly 

described in the IBME pillars or any descriptions of an IBL class structure.  

One way that Dr. Miya encouraged emotion in class was by emphasizing the importance of 

vulnerability and acknowledging one’s humanity. For example, her syllabus had a paragraph 

section titled “When Life Happens” that normalized recognizing and making space for one’s 

emotions and life events throughout the term. Dr. Miya also worked to model vulnerability by 

sharing relatable stories from her personal life. In an interview during Week Four, Ash reflected 

on how much she appreciated Dr. Miya’s stories and how it encouraged the students to be more 

vulnerable themselves. In Interview Excerpt 4, Ash reflects on Dr. Miya’s story of being 

horrified as a student-teacher while listening to a middle school teacher explain that the idea of 

multiplying two negative numbers making a positive number was justified by the concept that 

two wrongs make a right.  

Interview Excerpt 4 

Ash:  That was really cool, ‘cause, like, she opened up and was vulnerable about how she 
was feeling when she was our age sitting in on this other class. That was cool. So, 
things like that, where you show your vulnerability or she shows her vulnerability are 
super important to this style of class because it’s a super intense, intimidating class, 
in my opinion.  

 
Ash drew attention to an important point here, which is that the presentation focus of an IBL 

classroom requires an immense amount of vulnerability from students. We will see more of this 
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in Section 6.5.2, where Dr. Miya purposefully drew connections between her students’ ability to 

participate in academic vulnerability by presenting proofs at the board and personal vulnerability 

by sharing their inner-selves with their classmates. These two types of vulnerability were 

inseparable to Dr. Miya, and she saw promoting one as intrinsically supporting the other.  

To address another aspect of body/emotion, Dr. Miya emphasized laughter through every 

class. She encouraged her students to make jokes and told several funny stories herself. 

Furthermore, she used humor as a way to normalize how difficult the content material was for 

the students. Classroom Excerpt 3 comes from Week Seven of the term. While dealing with the 

difficulties of nested quantifiers, Parker commented on how the class was like “academic IBS” 

(irritable bowel syndrome), which received a large amount of laughter around the class and most 

of all from the instructor herself.  

Classroom Excerpt 3 

Parker: This class is like academic IBS.  
Emory: IBS? 
(students start laughing) 
Miya:  Did you just say… (doubles over laughing) 
Sloan:  That was awesome 
Ash:  That’s funny 
Jo:  What did you say? 
Miya:  So that’s going on Twitter. In about, as soon as I get back to my office. She said this class 

is like academic IBS. Tell us more about that. Tell us what IBS is for those in the crowd 
that don’t know what you mean by that.  

Parker: IBS is irritable bowel syndrome. So you’re in constant stomach pain but there’s nothing 
that sets it off that you can pin point, you can kind of just guess and avoid certain things. 
But like this class is like “well I’m just gonna avoid that one and like claim the others”, 
but then it just (smacks fist to hand) gets ya.  

Miya:  And then you’re doing like the ten-yard dash to the bathroom 
Parker: “what’s happening?!” 
Miya:  Yeah, so you don’t poop your pants.  
Jo:  That’s why I take bathroom breaks in this class actually.  
(laughter)  
Jo:  Yeah it’s a really good way for me to calm down.  
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In this excerpt, we saw the students and instructor using humor about bodily functions to make light 

of and normalize the difficulty of the mathematics they did in class. As in the “Friend of a Set” 

example from Section 6.5.1.4, humor was a way in which the class engaged in social bonding with 

each other. Thus, two ways in which the dimension of body/emotion were included in class was 

through Dr. Miya’s emphasis on vulnerability and laughter. Furthermore, Dr. Miya personally chose 

to spend class time this way; these actions were above and beyond the prescriptions of an IBL class 

structure.  

6.4.1.6 Broadening Mathematics 

The dimension of broadening mathematics focuses on providing students with opportunities to 

engage in mathematics beyond the traditional quantitative reasoning associated with mathematics. In 

other words, students participate in mathematics through qualitative activities such as reading, 

writing, and creating art. Like body/emotion, this dimension does not explicitly come through in the 

four pillars of IBME or any description of IBL class structures.   

Dr. Miya included several elements throughout class that helped students come to understand 

their individual identities and the mathematics through qualitative activities. For example, she had 

them make a collage of photos depicting their change “as an individual and as a student and scholar 

and human” over their college years, spent a day reinventing the “definition of a definition” as an if 

and only if statement using an activity about how to define a sandwich, and recreated the epsilon-

delta definition of continuity using an analogy to making pancakes (Adiredja, 2019). Her largest 

activity over the term was having students create a This I Believe essay. According to the This I 

Believe website15,  

This I Believe is an international project engaging people in writing and sharing 
essays describing the core values that guide their daily lives. Over 60,000 of these 

 
15 https://thisibelieve.org/ 
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essays, written by people from all walks of life, are archived here on our website, 
heard on public radio, chronicled through our books and television programming, 
and featured in weekly podcasts. The project is based on the popular 1950s radio 
series of the same name hosted by Edward R. Murrow.  

 
The original plan after writing these essays was for students to read them aloud to each other and 

friends/colleagues on campus through an open-mic night. However, COVID-19 interrupted these 

plans, and the students ended up reading their essays aloud to each other over video 

conferencing. Two example TIB statements from students are, “Life is worth living through a 

constant sense of achievement, being creative in exploring new territories, and generating 

energy from within” and “I believe that you are never too old to have a teddy bear sitting snugly 

on your bed amidst your pillows”. In terms of broadening mathematics, the students clearly saw 

Dr. Miya’s qualitative assignments as central to the class. When asked in her final interview 

about what she thought Dr. Miya’s goals were for the term, Hayden responded as shown in the 

following excerpt. 

Interview Transcript 5 

Hayden: I think she – I would imagine she wants us to teach us how to think critically about 
math and not just necessarily take things that were given and to just accept them as true. 
I also think she wants us to realize that math isn't always a way in which we... Like, the 
general idea of it, that there's other ways to look at math, which she did through the 
sandwich definition, this I believe statement, the curiosity cabinet. So, the creative 
representation of the semester. So, I think just different ways to look at mathematics. 
And I think just also how important it is to work in a collaborative environment, 
especially in this field, because oftentimes it's very hard for one person to get somewhere. 
You need to work in a collaborative environment, because other people view things 
differently than you do. That's not like a bad thing, it's just a different way of looking at 
things.  

 
I interpret Hayden as recognizing a theme around critically thinking about mathematics and the ways 

mathematics is interpreted, through more than just the mathematical content of the IBL packet, but 

also through the many qualitative activities. Thus, I see that Dr. Miya engaged her students in the 

dimension of broadening mathematics, through a variety of hands-on creative activities during the 
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term. I reiterate that this dimension is not integral to the IBL structure of the class, which only 

dictates the ways in which mathematics is done in class and social expectations in class. Thus, this is 

an example of a way that Dr. Miya went above and beyond the IBL structure of the class to provide 

a rehumanizing experience for her students. 

6.4.1.7 Windows/Mirrors 

The dimension of windows/mirrors focuses on students recognizing or being able to reflect on 

themselves (mirrors) in class, and to come to understand different perspectives by watching and 

learning from their peers (windows). As my example for this section, I focus more deeply on student 

work from the This I Believe essays explained in Section 6.4.1.6.  

In her second interview of the term, soon after the This I Believe assignment had been 

announced, I asked Hayden how she felt about writing her essay. Her response is below in Interview 

Excerpt 6.  

Interview Excerpt 6 

Hayden: I'm excited about it because I think one as a class of all math majors, I think it poses 
this opportunity to see how each of us thinks because I feel like this will definitely... 
Regardless of how personal you go into it with your story, I feel like it is a personal 
project because it shows... Stating something you believe without proof is a personal 
thing. It is going to be different for every person. People might believe the same 
things without proof, but everyone's going to have different things. And so I think that 
it allows us to look into how other math people think. And I think that's fascinating 
because we are very diverse and different group of people that all are in math and do 
math and think about math in very different ways. And so, I think the opportunity to 
do this, one in a math classroom, other than I don't know an English or a philosophy 
classroom, but two, together instead of just on our own, I think just helps strengthen 
the bond we have in the classroom and also just see how people work and think, 
which I think would be cool. 

 
From this excerpt, it is evident that Hayden was excited to write her essay, and that she recognized 

benefits from doing this qualitative assignment in a mathematics class. She saw this as an 

opportunity to think about mathematics differently and learn more about her classmates, thus giving 
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them another way to bond as a class (in other words, she anticipated engaging in the windows aspect 

of the windows/mirrors dimension). To highlight the mirrors aspect of this dimension, I share an 

excerpt from Parker’s final interview of the term. In Interview Excerpt 7, I asked Parker to reflect on 

the This I Believe essay experience and she commented on how one student essay impacted her the 

most.  

Interview Excerpt 7 
 
Parker: I've always been more interested in human communications. And so to have the this I 

believe papers read. Jose's really impacted me because I come from a similar 
background and I never knew that about him. And I just, even though we didn't talk, 
I just felt more connected to the class as a community because I finally knew that 
somebody understood where I was coming from. And especially because he has such 
great inputs, he just proved to me that somebody... It doesn't matter what background 
you come from, you can still do great things.  

 
In this excerpt, Parker was able to recognize her own experience in that of her classmate’s and 

importantly, it made her feel a greater sense of belonging to this classroom (thus engaging in the 

mirrors aspect of the windows/mirrors dimension). Listening to Jose’s This I Believe essay was 

impactful for Parker, doubly so given that she considered him to be a successful student in class. 

Hearing an experience similar to her own from a student she considered successful increased her 

belief in herself being capable of great mathematical work. Adding the This I Believe essay 

assignment to the class was completely outside of the IBL structure of the class and an intentional 

move by the instructor. In general, I interpret that it can be difficult for any class to engage in the 

windows/mirrors dimension through an activity such as the This I Believe essays because it takes a 

certain amount of vulnerability (see Section 6.4.1.5). Thus, I remind readers that these dimensions 

are highly interconnected and that by engaging in one dimension of rehumanizing mathematics, the 

instructor was often re-enforcing or promoting another dimension.  
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6.4.1.8 Cultures/Histories 

The dimension of cultures/histories considers whether students are able to witness the work of 

their ancestors and personal culture in mathematics, namely through history and attention to areas of 

learning such as ethnomathematics. This dimension did not appear prominently in my data 

collection, which I argue is a product of the structure of an IBL classroom in which the material is 

removed from any historical context. This is a major component to take into consideration when 

running an IBL classroom; the intense focus on student positioning as authorities/ownership/creation 

of mathematical content from a limited number of resources may promote several other dimensions 

of rehumanizing mathematics, but potentially at the expense of a lack of the cultures/histories 

dimension. Thus, I see a definite call and need for exploration on more ways in which instructors can 

balance the student-centered nature of an IBL classroom with influence and appreciation for various 

histories and cultures in mathematics, or potentially through more humanities-based projects like the 

This I Believe essays that focus on broader aspects of culture beyond one’s personal beliefs.  

However, a classroom that engages in seven out of eight dimensions in rehumanizing 

mathematics is still providing students with ample opportunities to reshape their relationship 

with mathematics and one could supplement a class such as this with one that addresses the 

cultures/histories dimension more fully, whether through teaching with primary historical 

sources (Barnett et al., 2016) or a class on the history of mathematics using a book such as The 

Crest of the Peacock: Non-European Roots of Mathematics. In Section 6.4.1 then, I have 

provided several examples of ways in which the combined IBL course structure and the 

instructor’s intentional actions created opportunities for students to engage in rehumanizing 

mathematics. 

6.4.2 COVID-19 and the End of the Term 
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In this section, I provide evidence that the students continued to engage in rehumanizing 

experiences during the remote transition due to COVID-19, and I aim to argue that their overall 

positive transition to remote learning was possible due to the extensive rehumanizing work they 

had done as a class throughout the first two-thirds of the term. In particular, I share three 

examples in which the students engaged in different aspects of rehumanization together. The 

goal of presenting these examples is to show how the class community developed over time and 

persisted even in the midst of the sudden changes brought on by COVID-19.  

6.4.2.1 Students’ Give Emotional Support to Each Other 

Approximately one week into remote teaching, Dr. Miya opened class with, “Friends, let’s 

check in. How are you doing?” A few students commented on some lighthearted aspects of their 

first week of staying home, and then Dr. Miya began to dig deeper by saying “let’s talk about 

peoples’ anxiety.” Jose, who had not been one to engage much in what I determined to be the 

body/emotion aspects of class, suddenly opened up about how stressed he was and his struggles 

with the transition to online college amidst the pandemic. His classmates responded with an 

immense amount of support, sharing their own stories of difficulties, trading phone numbers for 

homework help, and enjoying some fun conversations about life outside of class. Dr. Miya 

continued to encourage more and more conversation among the students, saying “What else do 

we need to talk about? It’s ok if we don’t get to any math today”, and in fact the students spent 

the entire class period providing emotional support to each other. In the excerpt below, Dr. Miya 

reflected on this day in an interview, discussing how it related to the overall class goal of 

becoming more vulnerable as a human through academic vulnerability. 

Interview Excerpt 8 

Miya:  So, Jose actually, um, reached out to me a couple days before that. And just said he was 
really struggling, and he had actually driven home to San Francisco to just see his family 
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because he was missing them, and he was just really struggling. And he kind of, he 
opened up with his frustrations about trying to learn online, which he is really struggling 
with. And trying to be a part of the class. And um I listened a lot. Um and my suggestion 
was that he reach out to his classmates, because my feeling was that um, that he -what he 
was expressing was not, that he was not alone in that. And at the time, he was not super 
comfortable doing that. Like he didn't, I was like "do you want me to ask a question, 
bring it up?"… Um, so while it was my suggestion, I didn't think he was actually going to 
speak. When I left my solo meeting with him, my impression was he didn't want to talk 
any more about it. So, I was really surprised when he like, bared his soul to his 
classmates. Like it really does surprise me. Because even though I had this conversation 
with him, I knew sort of that he was struggling and why he was struggling. Um my 
impression was that he did not want to let other people in. Like it was ok for him to talk 
to me about it, but he really did not want to admit to um personal struggles to his 
classmates. So, when he did it, I was really proud of him. Because for me, um what I 
heard from him was "I need you to be with me right now, and you can't be". 

Miya:  Um. I think this class, and I think part of what IBL does, is... It allows for students to 
understand vulnerability. So, when you're at the board presenting something um even if 
you're sure it's correct, you're in a vulnerable position. And so, the students have, over 
the course however many now twelve weeks, have gotten to understand because they've 
all done it, what it feels like to be in an academically vulnerable situation. And my feeling 
is that the reason that that's important is not for sort of long term academic vulnerability 
issues, but because my hope is that they can understand that being vulnerable as a human 
being is a way to grow as a human being. So, it's, and I think that's what Wednesday was 
about. Was we have created a community of trust around academic issues. I think it's 
more than that. Let's see. Is it more than that? And the answer was very much yes. 

 
I interpret the moment that Dr. Miya described as her choosing to use the impact of COVID-19 

to prioritize and strengthen the emotional well-being of her class (which I characterize as the 

dimension of body/emotion) by encouraging students to express their feelings in class. While 

many students were familiar with each other at the beginning of the term (as it was a class for 

juniors and seniors in a moderately sized department), she managed to create a unique space of 

vulnerability and graciousness that continued to grow over the term. Importantly, Dr. Miya saw 

this personal vulnerability as an outcome of the academic vulnerability that students had 

developed with each other through their proof presentations and collaborative work over the 

term. I hypothesize that all of the class’ work on the various dimensions of rehumanization paid 

off at this moment when a specific student needed the support of their classroom community. I 
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note that this is not to say every instructor should strive or push students to be vulnerable, and 

that great care must be taken towards a specific student’s need and comfort levels. This class had 

clearly reached a point where such discussions were comfortable, and the students responded 

extremely positively to Jose’s comments, which points to this episode being a powerful example 

of students engaging in the emotion dimension of rehumanization. 

6.4.2.2 Students’ Treat Each Other as Mathematical Authorities 

One major concern for the instructor with the transition to remote learning was how to run an 

IBL class in an online format, which she had never done before. However, I show in this section 

that even with the remote transition, the students continued to grow in the dimensions of 

rehumanizing mathematics around participation/positioning, ownership, and creation, by 

treating each other as mathematical authorities who were capable of creating new ideas during 

class. In particular, I explicate a day in Week 13 of the term where the instructor and I agreed 

that the students had fully developed a mathematical community among themselves. While it is 

beyond the scope of this paper to explicate all of the student conversations that occurred in this 

class period, I hope to give enough context to provide the reader with a sense of how invested the 

students were in their learning, without the professor’s leadership.  

At the beginning of the online transition, the instructor decided to make more use of the 

virtual learning platform by picking students to present problems a day early and have them post 

their proofs to the online platform so that others could read and leave comments before class 

began. The statement discussed in this example is “Prove that if a function f is continuous on 

[a,b] and there exists an x in (a,b) such that f(x) > 0, then there exists an open interval T, 

containing x, such that f(t) > 0 for all t in T”. First, the presenter student uploaded a version of 

his proof to the learning platform the night before class. Six students left comments and 
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questions on the proof before class began, which were then discussed during class time, and the 

presenter responded to everyone’s comments after class as well (see Figure 6-2 for an example). 

I note that the casualness of the conversations and inclusion of humor shows both the 

body/emotion of mathematics coming into play and provides some evidence of the level of 

comfort students had reached with each other in class.  

 
Figure 6-2: A student comment and response to Proof 65 

During class time, Dr. Miya facilitated the discussion by reading comments aloud, but primarily 

left the explanation of the comment and its resolution to the students. In particular, one student 

highlighted an error in the presenter’s proof in that his proof technique would not work if the x 

picked was the maximum of the function.  

Classroom Excerpt 4 

Easton: Yeah so, so line 6 states that there, there exists an n such that f(n) > f(x) and we can pick 
um, our uh, sequence such that, that while I mean, n isn’t even in the sequence, so we can 
just take a point such that, so this will not work if um if like x equals zero and the function 
is -x^2.  

Jo:  Can you say that interval one more time, Easton? 
Easton: So, so the, so a counter example 
Jo:       Ok 
Easton: to statement 6 (line 6) 
Jo:  uh huh 
Easton: Is the function f(x) = -x^2 +1,  
Jo:   Ok 
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Easton: Where x equals 0, at the point x equals 0.  
Jo:  Ok 
Easton: There doesn’t exist a point n around x that is greater than x.  
Jo:  Ok… So Easton you said if x is zero, um. Yeah. Ok. Cause you can’t find an f(n) such that 

it’s greater… Yeah that makes sense… Easton, do you think I could put something in 
there like, it could be like if f(x), if x is a maximum on the interval, pick an f, pick an n, 
like pick an f(n) that’s like less than f(x) but less than zero? Could I do something like 
that? To still be able to create an interval? 

 
At this point, the instructor personally messaged me saying, “They don’t need me anymore”. I 

interpreted this moment as her saying that the students were now capable of catching each 

other’s errors and discussing them on their own; they did not need her help anymore, she was an 

observer of the class like myself in many ways. The presenter did not have time to fix his proof 

in class but put up a revised version for his classmates by the next week that was met with full 

approval. In sum, this class period showed that the students continued to position each other as 

sources of mathematical authority and had gotten to a place in their class participation that the 

instructor felt like she was a secondary resource in the classroom. Furthermore, they were taking 

full ownership over their mathematical content before and during class, and able to create new 

mathematics together in the moment, in other words, they were working mathematicians.  

6.4.2.3 Students’ Share Their Experiences on the Last Day of Class  

On the last day of class, Dr. Miya asked students to bring some sort of creative summary of 

the term to share with their classmates. I share pieces from three such creative summaries that 

highlight aspects of the body/emotion dimension, and I interpret the students’ eager participation 

in this creative exercise as evidence that they had internalized the broadening mathematics 

dimension. Figure 6-3 shows part of a thank you letter that one student wrote, in which they 

thanked every student in the class individually for their unique contributions. I note that the 

student found different ways to compliment how every student in class helped them whether 

through providing a window into new reasoning, positioning each other as sources of 
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mathematical authority who can give feedback, or providing a positive and creative attitude 

during class. Finally, I note that reading a personalized thank you letter out loud to one’s entire 

class is a deep act of vulnerability and made several students in class cry and/or smile.  

 
Figure 6-3: Part of a student’s thank you letter 

 
Figure 6-4 shows part of a poem that a student wrote about their experiences in class. This 

student also had several stanzas that called each student out by name with their unique class 

contributions. However, I share just the final four lines of the poem as evidence of the deep love 

and care that this class community had for each other. This poem emphasizes both aspects of the 

body/emotion dimension that I described in Section 6.4.1.5: laughter and vulnerability.  

 

 
Figure 6-4: Part of a student’s poem 
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Finally, Figure 6-5 is a popular meme from the T.V. show The Office, in which two pictures are 

framed as different by the corporation, when the well-informed reader knows that they are in fact 

the same thing (in this case, both pictures are mathematical definitions of continuity used in an 

undergraduate Real Analysis course). Memes were highly encouraged by the instructor in the 

creative summaries, and several of the memes pertained to inside jokes established among the 

students that were representative of their unique experiences together. This Office meme in 

particular strikes me as an interesting way to engage in broadening mathematics through meme 

culture; only a Real Analysis level student would understand both statements in the picture as 

definitions of continuity and “get” the meme. Thus, memes broadened the ways these students 

did and shared mathematical knowledge, and in turn show each other the level of mathematical 

sophistication they had reached.  

 
Figure 6-5: A meme that was created and shared by a student 

 
6.4.3 Student Reflections in Final Interviews 
 

In this final section of Results, I share a number of student quotes from their final individual 

interviews that address what students felt they were taking away overall from their class 
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experience. Before each quote, I had asked students, “What will you take away from this course 

long term and remember in five years?”. Notably, none of the students talked about remembering 

specific Real Analysis content in five years, but instead they focused on how this class had larger 

lessons that they saw as tangible and important to the rest of their lives. I share each quote and 

provide some commentary on how I see dimensions of rehumanization reflected in their thoughts 

on the class. 

Interview Excerpt 9 

Ash: I feel like this class really focused on like who we were in Real Analysis, with all the 
extra little things we would do. And so, I would definitely take away that like, the math 
that I do is my math. And I can learn from so many other people, but at the end of the 
day it's me that's gonna produce something that's worthwhile for me… I think this class 
was great in like, I think I already said this, in like molding who we are as 
mathematicians.  

 
In this excerpt, I interpret Ash as taking away a deeper sense of ownership over the mathematics 

she created, and that this ownership was responsible for an overall growth in her sense of 

mathematical identity. Furthermore, I note that she answered the question in part using the 

pronoun “we” in “who we were in Real Analysis” and “molding who we are as mathematicians, 

indicating that she had established a sense of community with her peers in this classroom. 

Finally, Ash referenced “all the little things” at the beginning of her quote, by which I interpret 

she meant the added activities (like Friend of a Set and the This I Believe essay) Dr. Miya added. 

Thus, we have evidence that the intentional work of Dr. Miya to include activities beyond the 

necessity of an IBL structure were beneficial in providing Ash with a rehumanizing experience. 

Interview Excerpt 10 

Sloan: I mean, I think my biggest takeaway is that we need other people and we need other 
people to be successful and to be successful with us. If one of us is struggling, then all of 
us are, and we have responsibility as classmates and as peers to help each other when 
we're stuck and when people are asking us for help, which I think that's a super cool 
thing to be cultivated within a classroom, especially a mathematics classroom… And my 
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perception of when you would ask who I think is doing the best in the class, it changed 
throughout the semester because I was realizing that the people who were taking time to 
really listen to other people's questions, and address them or be like, "I had that same 
question. Can we talk about that?" Those were the people who were doing well in real 
analysis, which is not what I initially would have said… 

 
Here, I interpret Sloan as reflecting on the dimension of participation/positioning in class. 

Throughout the term she found herself changing her perceptions of what success looks like and 

what it takes to be successful in a mathematics class; namely that it takes participating in 

mathematics with your peers and positioning them as authorities that can both answer and ask 

questions that further mathematical understanding. Recall that the second pillar of IBME states 

that students have opportunities to collaborate with each other, and in this quote we see Sloan 

fully embracing this pillar and taking it as a large lesson into her future mathematical endeavors.  

Interview Excerpt 11 

Taylor: I think it was a very quirky class, it was very different. It's definitely one of the courses 
that I'll remember, when I think about math classes that I took. I think just saying 
about what we did, like being able to solve really simple proofs, makes it... When I talked 
to someone about this class and I try to maybe brag about why it's so interesting, I 
usually go on and be like, "We're trying to prove the basics of math, the things that we, 
you've taken math since you were a little kid and you understand, but we're trying to 
understand why that's true." Like why is x*0=0, or why -x actually equals -1*x. We know 
that's true, but like we have to show it. 

 
I interpret Taylor’s words as addressing both the first pillar of IBME, deep engagement in rich 

mathematics, and the rehumanizing dimension of living practice. In his quote, he emphasized 

what their class learned about proof and deductive reasoning in mathematics. He found personal 

empowerment through his new understanding of mathematics as something that could be 

rigorously proved and debated over with classmates; it was no longer a series of basic facts that 

one can just assume are true. I also note that he said he would definitely remember this course, 

which I take to mean that it had a significant impact on him.  
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Interview Excerpt 12 

Hayden: I feel like Dr. Miya is a human in the way she runs this class, is very much kind of put 
in me that it's okay to fail. It's okay to not know what you're doing. And it's okay to like 
ask for help, which is things that have not been super easy for me before. So, I think that 
that's a lesson that I took away from it, is she has a very open and home feeling 
environment, to where it's like, I don't have to have everything together here. It's 
completely okay to be like, I don't know what I'm doing. And I think that's an important 
lesson for all of us. And I think that's something that I'll hang on to for a while past this 
class.  

 
Finally, in Hayden’s excerpt, I interpret Dr. Miya as engaging in the fourth pillar of IBME 

regarding the fostering of an equitable environment, and attending to the body/emotion 

dimension of rehumanization through vulnerability. Hayden described Dr. Miya as human, 

which brings up an interesting question of whether other mathematics teachers run classes in a 

way that feels if not inhuman, then removed from humanity. Thus, this quote provides evidence 

of the work required in engaging a class in rehumanization; it is not something we can take for 

granted as happening in our classrooms.  

6.5 Discussion 
 
6.5.1 Summary of Results  
 

In this paper, I have presented an empirically grounded case study that contributes to the 

conversation of how the dimensions of rehumanizing mathematics can occur in an IBL 

classroom, and more broadly to IBME classrooms in general. To summarize this work, I recall 

my two research questions: 

1)  In what ways did the instructor use the IBL class structure, and add elements beyond the IBL 
class structure, to promote dimensions of rehumanizing mathematics with students? 

2)  How was the class’ engagement in rehumanizing mathematics reflected in the Spring 2020 
remote transition and the end of the term? 

 
In the first seven sections of 6.4.1, we saw several ways in which Dr. Miya encouraged the 

rehumanizing dimensions of participation/positioning, windows/mirrors, living practice, 
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creation, broadening mathematics, body/emotion, and ownership among her students. Some of 

these dimensions, like participation/positioning and creation, were embedded in the IBL 

structure of the class regarding student proof presentations. In these cases, we saw examples of 

how Dr. Miya leveraged the IBL format, such as when she helped students to work through the 

Law of Cancellation themselves in Section 6.5.4.1.1. Other dimensions, like windows/mirrors 

and broadening mathematics, were less informed by the IBL structure of the class. Here I shared 

examples of how Dr. Miya included extra class elements that addressed these areas such as the 

This I Believe essay, which offered an opportunity to engage in a level of personal vulnerability 

on par with students’ intense academic vulnerability with each other over the term. I also 

explored why the dimension of cultures/history did not appear in my data analysis and ways in 

which that might be problematic or explored in future IBL curriculums. In Section 6.4.2 I gave 

three examples of how the class exemplified dimensions of rehumanization during their 

transition to remote learning, as well as excerpts from students’ final individual interviews that 

explored ways in which the longevity of the class in their memory was deeply connected to 

rehumanizing experiences. 

Overall, I interpret that the range of activities and intentional facilitation choices that Dr. 

Miya put into her IBL class went above and beyond what is required of an IBL class structure 

(based on the four-pillar characterization of IBME) as well what most students are used to in 

their mathematics classes, IBL or not. Ultimately, Dr. Miya chose to confront the emotional 

burden of COVID-19 on the classroom by leaning on the dimensions of rehumanizing 

mathematics that I saw her build with students over the course of the term. There was more to 

this class than just Real Analysis content, over time they became a Real Analysis community. 

Dr. Miya’s focus on her students as mathematical authorities, as dynamic mathematicians, as 
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creative humanistic beings, coupled with a classroom full of laughter and vulnerability, brought 

about one of Gutiérrez’s main goals with rehumanizing mathematics, namely that “rehumanizing 

mathematics seeks to not only decouple mathematics from wealth, domination, and compliance 

(O’Neil 2016); it also recouples it with connection, joy, and belonging” (Gutiérrez, 2018, p. 4).   

There are several takeaways from this snapshot of one inquiry-based learning classroom and 

their experience with COVID-19. First, this case study emphasizes the importance of setting up 

norms and activities that promote rehumanizing mathematics early in the term, as they provided 

a sense of normalcy and support during a crisis such as the emergency shift to remote instruction. 

The findings suggest that the students’ overall experience was improved thanks to the work that 

the instructor had done throughout the term to create a classroom community. Second, this article 

offers some specific examples of ways that teachers can engage in the four pillars of IBME 

through rehumanization. Third, Dr. Miya provides us with several concrete examples that 

extended beyond what an IBL class structure provides to promote rehumanization. We saw 

specific ways in which an instructor explicitly sought to find ways for students to feel 

empowered, to be given authority, and to feel comfortable and confident in themselves as people 

and as mathematicians.  

6.5.2 Limitations and Future Directions 
 

As well as things went considering the COVID-19 emergency, and while the overall 

experience might have been positive for students, it was by no means a perfect example of equity 

in action. I certainly acknowledge this class has a much more nuanced story as to how these 

episodes were developed and experienced over term. Furthermore, Dr. Miya’s status as a tenured 

professor and the students’ being junior and senior mathematics majors in an already 

collaborative department, and a relatively small class size, made this class well-primed for the 
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rehumanization activities discussed here. And, although participation was incredibly rich for a 

percentage of the class pre- and post- transition, there were a handful of students who chose not 

to engage in the IBL structure fully. Thus, more work needs to be done looking at IBL 

classrooms, and IBME classrooms more broadly, to see how these dimensions can be developed 

in other environmental situations.  

Nonetheless, while the specifics of this particular case make it unique in some ways, I have 

provided an existence proof of what may be possible for an IBL classroom both in terms of 

reinforcing and adding layers of rehumanization to a mathematics class and in navigating 

unexpected trials and circumstances (in this case, the transition to remote instruction during 

COVID-19). In future studies, it would be beneficial to follow students’ journeys and growth 

after participating in a class with intentionally designed rehumanization activities, or follow an 

instructor’s reflections through multiple iterations of teaching a class that engages in 

rehumanization activities. As Gutiérrez says, “rehumanizing is a verb; it reflects an ongoing 

process and requires constant vigilance to maintain and to evolve with contexts” (Gutiérrez, 2018 

p. 3). Thus, I see this study as the beginning of a long journey to document and grow our 

understanding of rehumanizing mathematics in relation to IBME classrooms.  
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7 (Paper 3) Students’ Shifting Values and Norms on Proof in an IBL Real Analysis Course 
 
(Submitted to the International Journal of Research in Undergraduate Mathematics Education in 
May of 2021) 
 
Abstract: In this paper, I provide three examples of how students’ perceptions of proof shifted 
over the term in an inquiry-based learning undergraduate real analysis course. I rely on Dawkins 
and Weber’s (2017) theoretical framework for conceptualizing proof in terms of values, and 
norms that uphold those values. My work uses student data to exemplify, extend, and elaborate 
upon the framework and share how an inquiry-based learning classroom provided valuable 
opportunities for students to engage in proof activity that helps them internalize these proof 
values and norms. I also share instructor actions in the classroom that were instrumental in this 
process, as students recalled these moments specifically in final individual interviews where they 
were asked to reflect on what they had learned about themselves as mathematicians and their 
proof activity over the term.  
Keywords: proof, proof activity, proof frameworks, values, norms, inquiry-based learning, 
 
7.1 Introduction 

 
Reading, writing, interpreting, and creating proofs are all notoriously difficult activities for 

mathematics students to learn (Stylianou et al., 2015) and instructors to teach (G. Stylianides et 

al., 2017). Dawkins and Weber (2017) theorized that students do not come into class with the 

same proof values and norms as mathematicians and that these differences in belief can cause 

difficulty for students when learning how to participate in proof activity in ways that align with 

the broader mathematical community. To this end, Dawkins and Weber (2017) generated a 

theoretical framework that puts forth four proof values that mathematicians hold, and several 

norms that align with those values. Their goal here was to provide researchers a way to reframe 

students’ struggles with proof not as inherent to them or their mathematical abilities, but as a call 

to the mathematical community to unearth, identify, and explicitly promote proof values and 

norms in the classroom, in order to make proof a comprehensible activity for students.  

Inquiry-based learning (IBL) classrooms provide students opportunities to engage with 

mathematics material, and many advanced (300-400 level) undergraduate IBL classrooms offer 
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students opportunities to develop their own proof practice, as opposed to passively watching an 

instructor present proofs. In this paper, I provide data from an IBL undergraduate Real Analysis 

classroom that sheds light on how students’ perceptions of their proof activity shifted over the 

term, using Dawkins and Weber’s (2017) theoretical framework as a guide. My goal is to 

exemplify, extend, and elaborate upon the framework in the context of a real analysis classroom, 

thus demonstrating its effectiveness as a framework. Additionally, I share how the IBL structure 

provided valuable opportunities for students to engage in proof activity that helped them develop 

these proof values and norms. Finally, I show how the instructor’s actions in the classroom were 

instrumental in this process, as students’ recalled these moments specifically in final individual 

interviews when asked to reflect on what they had learned about themselves and their proof 

activity over the term. To this end, my research questions are the following: 

1)  How did shifts in students’ perceptions of proof at the end of the term exemplify, elaborate, 
or extend Dawkins & Weber’s (2017) theoretical framework on proof norms and values?   

 
2)  What facets of the IBL class structure and the instructor’s actions promoted these shifts in 

perceptions of proof among students? 
 
Together, these examples of classroom episodes, together with students’ reflections at the end of 

the term, bring a practical lens to Dawkins and Weber’s (2017) framework, and they extend 

contribute to the framework by highlighting more reasons why students may find it difficult to 

identify with the values and norms of mathematicians with regards to proof. 

7.2 Literature Review 
 

In Section 7.2.1, I position inquiry-based learning (IBL) within the larger framework of 

inquiry-based mathematics education (IBME) and provide a review of IBME literature to better 

frame the contributions of this study. Then, in Section 7.2.2 I define proof, proving, and proving 

practice, and define my approach to studying proof in the classroom at the socially-embedded 
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level. Finally, in Section 7.2.3 I provide context for the Real Analysis content addressed in this 

paper through examples of other studies that have also explored these areas.  

7.2.1 Relevant Literature and Characterization of Inquiry-Based Learning 
 

Overall, several large studies have shown that active learning environments, and IBL 

classrooms in particular, provide improved learning outcomes for mathematics students 

(Freeman et al., 2014; Laursen et al., 2014; Theobald et al., 2020). There are also studies that 

have taken a more fine-grain case study approach to capture student experiences in IBL 

classrooms. For example, Dawkins (2009) looked at the development of sociomathematical 

norms in a non-traditional (meaning it had elements of inquiry) undergraduate Real Analysis 

classroom. In his analysis, he found three clusters of sociomathematical norms around valuing 

visualization, mathematical communication, and developing mathematics (i.e., creating 

definitions). Other case studies include Hassi and Laursen’s (2015) work on students’ 

transformative experiences in IBL classrooms and Dawkins et al. (2019) case study of one IBL 

teacher’s goals in relation to students’ experiences. Notably, recent studies have pushed back on 

the notions of improved learning outcomes by suggesting that IBL classrooms do not necessarily 

guarantee more equitable outcomes for all students equally (Brown, 2018; Johnson et al., 2020; 

Stone-Johnstone et al., 2019).  

I use the four-pillar characterization of inquiry-based mathematics education (IBME) to 

define the IBL classroom structure I observed16. This term was created to unite several strands of 

inquiry-based teaching and research, including IBL. Notably, the Academy of Inquiry Based 

Learning17 uses this pillars to define IBL, signifying a large amount of overlap between the two 

 
16 (1) students engage deeply with coherent and meaningful mathematical tasks, (2) students collaboratively process 
mathematical ideas, (3) instructors inquire into student thinking, and (4) instructors foster equity in their design and 
facilitation choices (Laursen & Rasmussen, 2019, p. 138) 
17 http://www.inquirybasedlearning.org/ 
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terms. IBL itself developed along multiple parallel tracks among mathematicians and 

practitioners who teach with active learning methods in their classrooms. In this paper, I focus on 

how students engaged in deep rich mathematics through their proof activity (Pillar 1), and how 

the instructor inquired into student thinking (Pillar 3) through guided class activities that helped 

to support shifts students’ perceptions of their proof activity. Thus, this study contributes to the 

IBME literature by providing evidence of ways in which IBL classes afford students 

opportunities to engage in proof activity, a window into student experiences of proof activity in 

an IBL class, and practical activities that instructors could add to their IBME classroom to help 

promote proof norm development for students.  

7.2.2 Relevant Literature and Characterization of Proof 

7.2.2.1 Defining Proof 

Proof is a notoriously difficult practice for students to engage with (Stylianou et al., 2015; 

Weber, 2001), and researchers and mathematicians to define (Hanna, 1990; Harel & Sowder, 

2007a; Raman, 2003). I employ Czocher and Weber’s (2020) descriptive definition of proof as a 

cluster category, which they define as “a collection of properties that an object can satisfy to 

‘count toward’ category membership, but no single property is necessary or sufficient for 

category membership” (p. 59-60). Czocher and Weber’s categories include a proof as a 

convincing justification, a perspicuous justification, an a priori justification, a transparent 

justification, or a justification that has been sanctioned by the mathematical community. In this 

work, I focus on the categories “a priori justification” and “justification that has been sanctioned 

by the mathematical community”, from Czocher and Weber’s definition, and relate the broader 

mathematical community to the classroom level as described in Stylianides et al. (2017). Since 

my work focuses on the social context of proof activity, I additionally subscribe to Dawkins & 
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Weber’s definitions of proving as “the activity that a mathematician engages in to produce 

proofs” and proving practice as “the constellation of activities that a mathematician engages in 

with respect to proof, including producing proofs, presenting proofs to her colleagues, evaluating 

the proofs that her colleagues present to her, and appreciating, understanding, and learning from 

the proofs that she and her colleagues produce” (p. 124). Combined, these characterizations of 

proof, proving, and proving practice allowed me to analyze students’ shifts in perception of proof 

based on activities that occurred at the classroom level. 

7.2.2.2 Viewing Proof as a Socially-Embedded Activity 

Due to the nature of the IBL classroom and my data collection, I adopt the socially-

embedded view of proof from Stylianides et al. (2017). The goal of this perspective is to 

understand proof as it occurs within a social context, and to question how instruction engages 

students “in authentic mathematical activity of proving as it is practiced in the mathematical 

community” (p. 247).  

Studies from this perspective have found that “students’ perceptions of proof are largely 

shaped by regularities that students observe in their classroom” (p. 248), that the format of 

proofs can constrain how students reason in mathematics classes, that “mathematicians 

usually do not read proofs to gain certainty in theorems but to advance their mathematical 

agenda” (p. 248), and that students and secondary teachers often see proofs as primarily a 

conviction tool and not for explanation or communication. Stylianides et al. emphasize that 

research around “the role of proof within a classroom or mathematical community and how 

this role might be socially negotiated” (p. 248) is still relatively new. One study that took 

this perspective is Fukawa-Connelly (2012b), who categorized several social and 

sociomathematical norms from an Abstract Algebra class around student participation in 
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class proof presentations. These norms included presenter responsibilities (explaining and 

defending your work, responding to questions), audience responsibilities (reading carefully, 

convincing yourself, asking questions), and norms such as only using peer-validated 

knowledge, and working with others (p. 413). However, these norms pertained specifically 

to proof presentation, whereas my work considers norms that address broader values that 

mathematicians have when it comes to proof. Thus, my study adds to the literature by 

providing a new example and way of proof being studied in the context of student classroom 

activity, using a socially-embedded perspective. 

7.2.2.3 Proof Frameworks 

One way that students learn to create proofs that conform to the norms of the broader 

mathematical community is through the use of proof frameworks (Selden et al., 2018; 

Selden & Selden, 2013). They describe two aspects of a final written proof as the formal-

rhetorical part and the problem-centered part. They describe the first aspect as “the part of a 

proof that depends only on unpacking and using the logical structure of the statement of the 

theorem, associated definitions, and earlier results” (p. 308). The problem-centered part is 

“the part that does depend on genuine mathematical problem solving, intuition, and a deeper 

understanding of the concepts involved” (p. 308). In particular, Selden and Selden delineate 

between two types of problem-solving that occur when a student engages in proof activity: 

(1)  solving the mathematical problem that takes one from the hypotheses to the given 

conclusion, and (2) converting one’s informal solution into a formal proof (p. 310). In this 

paper, I contribute directly to the literature on proof frameworks by providing an example in 

the Results (Section 7.5.2) of how students’ utilized a proof framework for proofs using the 
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definition of convergence that had direct implications for their classroom norms on the 

relationship between formal proof and problem-solving.  

7.2.3 Relevant Literature and Characterization of Real Analysis 
 

Real Analysis, often introduced as advanced calculus at the undergraduate level, has been a 

popular context for studying students’ proving activity (e.g., Alcock & Weber, 2005; Lew et al., 

2016; Weber & Alcock, 2009) due to it being one of the first proof-based mathematics classes 

that students encounter. The class is also required of most undergraduate mathematics majors 

and as a prerequisite for mathematics graduate school programs, which heightens its importance 

as a field in which we need deeper understanding of how students learn, and thus how we can 

better teach, the material of the course.  

This paper uses examples of students’ interpretation and engagement with the following 

mathematical contexts: formal mathematical definitions, the epsilon-N definition of 

convergence, and statements with multiple quantifiers. While the examples that address these 

areas do so for the purpose of explaining how proof norms developed in the classroom, they also 

provide some insight into how students conceptualize these topics in Real Analysis. In the next 

three sections, I provide background literature to contextualize these three mathematical areas 

and how they have been studied.  

7.2.3.1 Formal Mathematical Definitions 

In Section 7.5.1, I explore how students’ perceptions of the relationship between formal 

definitions and their proof activity changed over the term. To contextualize that section, I 

provide some background literature and information related to students’ thinking about formal 

mathematical definitions. In explaining why students’ have difficulty transitioning to a class like 
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Real Analysis, which uses formal mathematical definitions, Alcock and Simpson (2002) write 

the following: 

… what eludes the students is the distinction between a dictionary definition as a 
description of pre-existing objects and a mathematical definition as the chosen basis 
for deduction, one which serves to determine the nature of the objects. (p. 33).  
  

In other words, mathematical definitions are difficult for students because the definitions have 

been constructed by mathematicians to determine the nature of certain categories of 

mathematical objects. . Furthermore, students are not necessarily privy to the process of 

construction of these definitions, which can make the use of such definitions feel ambiguous and 

disconnected from their reality. Several other researchers have also looked at defining as a 

mathematical activity (Zandieh & Rasmussen, 2010), and defining as a disciplinary practice 

(Rasmussen et al., 2015). While I do not focus on students’ use or interpretation of definitions as 

in the previously cited studies, understanding the nature of formal definitions and their use in 

proof was central to the class I observed.  

7.2.3.2 Sequence Convergence and the Range-First Perspective 

In Section 7.5.2, I discuss a classroom episode in which a student presented a proof that 

involved the ε-N definition of sequence convergence (see Figure 7-1), and I analyze the class’ 

subsequent conversations around how to construct proofs that use the definition properly. To 

frame this section, I now discuss literature on sequence convergence (particularly the epsilon-N 

definition).  

 
Figure 7-1: Epsilon-N definition of convergence as it appeared in class packet 
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Students’ understandings of limiting processes have been studied in depth (Adiredja, 2014; 

Adiredja & James, 2013; Bezuidenhout, 2001; Cottrill et al., 1996; Dawkins & Roh, 2016; Roh, 

2008; Roh & Lee, 2017; Tall & Vinner, 1981) due to the complexity of concurrently relating the 

domain (in the case of sequence convergence, the sequence index ‘n’) and the range (again in the 

case of sequence convergence, the error bound between the an element and the limit). Swinyard 

and Larsen (2012) found “that finding limit candidates and verifying limit candidates involve 

distinct mental processes” and they discuss “the need for students to shift from the x-first process 

used to identify limit candidates to a y-first process necessary for verifying that a given candidate 

is indeed a limit” (p. 466). 

This range-first perspective considers the interval of possible output values around the limit 

candidate (by choosing an epsilon), and then determines an index “N” value beyond which the 

outputs of the sequence fall within the designated interval, which can be counterintuitive for 

students (Swinyard, 2011). The range-first perspective has influenced several studies on limits 

and convergence in particular, such as Oehrtman et al. (2014), which looked at how two students 

reinvented the definition of sequence convergence using approximation schemes and concrete 

examples. Reed (2017) also used the range-first perspective to explain how one student, Kyle, 

made sense of the convergence of functions, nothing that the range-first perspective 

“transformed his understanding of point-wise convergence of functions” (p. 245).  

My aim in referencing these studies is to support the fact that understanding the definition of 

sequence convergence is difficult for students, and that in particular they can find it challenging 

to coordinate the relationship between the range (epsilon error-bound) and the domain (sequence 

index ‘n’). The focus of my study is on the way in which a particular classroom episode (and the 

elements of course design, instructional moves, and student interactions entailed in that episode) 
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supported shifts in students’ perceptions of proof. An understanding of the conceptual difficulties 

students can have with the definition of convergence may prove helpful to the reader when 

understanding the instructor’s actions in class and the distinctions drawn between epsilon and N.  

7.2.3.3 Statements using Multiple Quantifiers 

In Section 7.5.3, I share a classroom excerpt that emphasizes the placement of the quantifiers 

“for every epsilon > 0” and “there exists an a in A” in a theorem. Statements such as AE (for 

all… there exists) and EA (there exists… for all) are called multiple quantifier statements. 

Several studies have shown that students have difficulty interpreting statements with multiple 

quantifiers (e.g., Dubinsky & Yiparaki, 2000; Durand-Guerrier & Arsac, 2005). Additionally, 

researchers have designed tasks specifically to help students interpret statements with multiple 

quantifiers (e.g., Dawkins & Roh, 2016; Parr et al., 2018; Roh & Lee, 2011, Vroom, 2020a). 

Vroom (2020b) considered multiple quantifier statements in detail, specifically looking at the 

grammatical complexities students pay attention to when writing and interpreting multiple 

quantifier statements, and developed an instructional theory for supporting students “in learning 

about dynamic processes that are encoded with statements with multiple quantifiers” (p. 7), and 

how instructors might support students in refining their mathematical statement writing. In 

particular, Vroom considered how pedagogical content tools (Rasmussen & Marrongelle, 2006) 

can be used to leverage students’ progressive mathematizing when writing mathematical 

statements. Though my study does not necessarily add new insights to the multiple quantifier 

literature, it does emphasize ways in which students’ work with multiple quantifier statements 

can impact their perceptions of proof as a whole and I provide an example of the instructor 

utilizing pedagogical content tools in a similar way to Vroom (2020b)’s conceptual framework.  
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7.3 Theoretical Perspectives 
 

Given my socially-embedded perspective on proof, I employ Dawkins and Weber’s (2017) 

framework on proof values and norms to understand how students’ classroom proof practice 

developed over the term. Dawkins and Weber developed this framework theoretically, meaning 

without use of student data, as a way in which to help make sense of why numerous research 

studies have shown that it is difficult to “apprentice students into the mathematical practices 

associated with proof” (Dawkins & Weber, 2017, p. 123). Many students find proof problematic 

or confusing, and in their paper, Dawkins and Weber argue that these struggles stem from 

students not having adopted the values and norms of mathematicians. In this section, I begin by 

defining what Dawkins and Weber mean by both values and norms. Then I delineate the values 

and norms as discussed in Dawkins and Weber (2017) in Table 7-1. More detail on each of the 

norms pertinent to this paper will be discussed in the Results section.  

By proof values, Dawkins and Weber mean the axiology of the mathematical community, or 

the “shared values, goals, and principles that the discipline is trying to achieve in the theories that 

it produces” (Dawkins & Weber, 2017, p. 125). In general, values are assumed by the 

community without justification, and may not always be upheld or attained (for example, if the 

value is an unattainable ideal or in conflict with other values).  

Similarly, by proof norms, Dawkins and Weber mean the methodology of the mathematical 

community, or the “acceptable means for developing and justifying theories” (Dawkins & 

Weber, 2017, p. 125). Norms are meant to be expectations of practice that work to uphold 

values, in other words they facilitate activity and provide a roadmap which “allow practitioners 

to practice their craft without constantly evaluating the nature of their craft” (p. 126). Dawkins 

and Weber note that norms are most clearly recognizable when they have been breached and 
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through observation of how people identify, react to, and repair such breaches. They also note 

that there is an emergent distinction (Cobb & Yackel, 1996) between the individual and social 

levels of individual behavior and adherence to community norms. In other words, “one can 

distinguish an individual’s personal beliefs and expectations from what she perceives to be the 

values and norms of the community in which they participate” (p. 127).  

In Table 7-1, I provide the values and norms around proof as listed in the section headings of 

Dawkins & Weber (2017); the numbering of norms and values is specific to this paper for ease 

of discussion. I note that there are no norms associated with the fourth value. I provide a brief 

description of the norms as needed in the Results section and refer the reader to Dawkins & 

Weber (2017) for an in-depth description of each value and norm.  

 
Table 7-1: Proof Values and Norms, adapted from Dawkins & Weber (2017) 

 
I use this theoretical framework by Dawkins and Weber as my guiding theoretical perspective in 

this paper. In the methods section, I elaborate specifically how I used the framework to analyze 

my data, and my results focus on exemplifying and elaborating this framework. 
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7.4 Methods 
 

7.4.1 Data Site and Class Description 
 

The data for this paper comes from an inquiry-based learning, undergraduate real analysis 

(advanced calculus) classroom. The class consisted of 19 students18, at a small liberal arts 

college in the western United States. The professor had been teaching with IBL methods for over 

twelve years and is an active member of the Academy of Inquiry Based Learning. The title of the 

course was Real Analysis, and according to the class syllabus, the purpose of the class was to 

“prov[e] all of those theorems you accepted as true back in calculus.” Most of class time was 

spent with students at the board presenting proofs from a printed set of mathematical content that 

was given to the students on the first day. These presentations included time for feedback from 

peers and occasionally the instructor would step to the board to help students unpack a definition 

or question that emerged during discussion. Students spent time outside of class working alone 

or with peers on their proofs for class presentations.  

The printed materials given to the students were fairly sparse, beginning with the definition 

of the real numbers, the field axioms, a definition of subtraction and division, and a list of 

theorems to prove in numerical order. Because the theorems were listed in order, the expectation 

was that each proof could only be completed using the definitions, and proofs  given to that 

point. The IBL structure of the class meant that students were expected not to use any resources 

other than the provided definitions and axioms, the instructor’s office hours, and each other when 

writing their proofs. Final class grades were based on class participation, weekly homework 

 
18 The students were junior/seniors who were completing either a mathematics major or minor, or secondary 
mathematics education degree. 
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assignments of writing up proofs that were presented in class, two exams, and a portfolio that 

combined commentary on proofs done throughout the term with a final reflective essay.  

7.4.2 Data Collection 

7.4.2.1 Classroom Observations 

I observed the classroom every day of the term, taking detailed field notes of proofs as they were 

presented and any inferences I had about classroom interactions as they occurred. I also filmed 

the classroom with a single camera at the back of the room, focused on the front whiteboard 

where students would present proofs. I sat at the back of the classroom, near the professor, with 

the camera, and I did not interact with the students or instructor during class time. The rest of the 

classroom was set up into small table groups of four to five students. Occasionally, as I ran the 

camera, I would zoom out to capture whole class discussions more easily, but any small group 

discussions or side conversations between students and/or the instructor were not captured. In 

general, I used my fieldnotes as a guide to highlight certain video episodes that might benefit 

from further observation and transcribed these smaller portions for analysis.  

7.4.2.2 Individual Student Interviews 

In addition to the classroom observations, I completed 3-4 individual interviews with five 

students throughout the term. These students were picked from selection interviews that were 

advertised to the whole class based on their interest, availability, and diverse post-college plans. 

In the student interviews, I used a standardized interview guide (Patton, 2015 p. 344), so that 

each student was asked the same questions about their course experience. However, I left myself 

freedom to combine the guide with a more informal conversation approach (Patton, 2015 p. 342) 

that allowed me to probe deeper if I felt a student had more to say about a particular topic. I 

made this decision because I believed it likely that treating the interview as a jointly produced 
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conversation would help interviewees give more robust and honest answers about their 

classroom experiences. My interview questions were designed to draw out each individual’s 

experience of the classroom and how they interpreted others’ actions in class. Example interview 

questions included:  

- What are the most challenging parts of the class, if any? 
- What are the most rewarding parts of the class, if any? 
- How do you feel about presenting proofs in class? 
- How do you feel watching others present proofs in class? 
- How would you describe the students, professor, and classroom environment?  
 
I also recounted class episodes that I had observed to gain a secondary source of data and 

opinion on how those events were interpreted by other students in the class. In this paper, I focus 

primarily on students’ final interviews. In this interview I asked overarching questions for the 

entire term such as the following: 

- How has your perception of proof changed over the term, if at all? 
- How has your perception of yourself as a mathematician changed over the term, if at all? 
- What do you think the professor’s goals were for you all in this class? 
- What will you remember about this class in five years, if anything? 
 
All of the student interviews were audio recorded and transcribed for further analysis.  

7.4.3 Data Analysis 
 

Broadly, I used thematic analysis (Braun & Clarke, 2006) as my method of data analysis. 

Thematic analysis is “a method for identifying, analyzing, and reporting patterns (themes) within 

data” (p. 6) that works flexibly among various theoretical frameworks; however, a number of 

explicit choices need to be made as the researcher to clarify the purpose and direction of the 

analysis. For instance, my analysis is theoretical in that it was driven by my analytic interest in 

understanding students’ shifts in mindset about proof and was informed by the proof values and 

norms listed in Dawkins & Weber (2017), as opposed to an inductive, approach. I also describe 

my work as latent, as opposed to semantic, since the themes I identified went beyond the surface 
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level of the data and began to “examine the underlying ideas, assumptions, and 

conceptualizations – and ideologies – that are theorized as shaping or informing the semantic 

content of the data” (p. 13). I made this choice because I read and analyzed my data from the 

perspective of trying to draw conclusions about students underlying proof norms from their 

interview responses. Finally, I approached the data with a constructionist epistemology, as 

opposed to an essentialist/realist view, which means I considered that meaning and experience as 

socially produced, rather than inhering within the individuals. I choose this view because it 

coincided with how I interpreted the students’ interview answers within the socio-cultural 

context of their classroom and as indicative of norms occurring at the classroom level.  

With these distinctions in mind, I went through the six phases of thematic analysis: (1) 

familiarizing myself with the data, (2) generating initial codes, (3) searching for themes, (4) 

reviewing themes, (5) defining and naming themes, and (6) producing the result.  

I began familiarizing myself with the data by rereading all of the final individual student 

interviews, making note of any classroom episodes or earlier interviews in the term that students 

referenced in relation to proof, and I compiled this data as well for further analysis. Once I had a 

broad understanding of the data that I would be analyzing for this paper, I applied Dawkins and 

Weber’s proof norms as a coding system to use with students’ final interviews. I specifically 

chose the norms for my coding scheme because they related to behaviors of mathematicians that 

could be identified in the student interviews, as opposed to the proof values which are more 

philosophical in nature. Based on my rereading of the interviews, I decided to focus on two 

interview questions,  “How has your perception of yourself as a mathematician changed over the 

term, if at all?” and “How has your perception of proof changed over the term, if at all?”. From 

student responses, I coded for items such as students discussing definitions in proofs (Norm 1.1), 
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discussion of problem solving in relation to proof (Norm 2.2), and discussion around the types of 

justifications used in proofs (Norm 3.1 and 3.2). I also maintained a list of interesting student 

interview excerpts that did not fit into Dawkins and Weber’s existing theoretical framework and 

any of my interpretations or reflections on these excerpts. From this initial list of codes, I began 

developing and reviewing themes of how these norms related to students’ overall values of 

proof, such as students’ shifting use of definitions in proofs.  

Finally, I read across the broader set of student interviews and classroom observations that I 

had set aside to help triangulate and verify anything my students said in their final interviews 

with regards to proof. The classroom data in particular helped me to further define and name 

themes in relation to the impact of the IBL class structure and instructor’s actions on students’ 

shifts in perception of proof. In total, I developed three central themes discussed in Sections 

7.5.1, 7.5.2, and 7.5.3. Altogether, I went through several iterative rounds of re-reading 

interviews and observational data in comparison to what I had written, and iteratively refined 

these themes to produce the final result.   

7.5 Results 
 

Since I coded my data using Dawkins and Weber’s (2017) theoretical framework on proof 

values and norms, and since I view my findings in this paper as exemplifying, extending, and 

elaborating upon their framework, I have organized the results according to their three values. In 

Section 7.5.1, I consider Value 1 (Mathematical truth is a priori) and provide two examples that 

exemplify ways in which students attend to Norm 1.1 (Justification in proof must be based on 

stipulated definitions) in their proof writing. In Section 7.5.2, I consider Value 2 (Mathematical 

knowledge and justifications should be a-contextual and specifically be independent of time and 

author), and I elaborate on Norm 2.2 (A proof is an autonomous object, not a description of a 
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problem-solving process) by providing an example of how students came to recognize the 

distinction that Norm 2.2 represents. Finally, in Section 7.5.3, I elaborate on how the norms 

associated with Value 3 (Proofs should increase mathematicians’ understanding) may carry 

implicit difficulties for students as they debate what counts as “irrelevant”, “routine”, or 

“obvious” in their proofs.  

7.5.1 Relating Proofs and Definitions 
 

The first value in Dawkins and Weber’s (2017) framework is that mathematical knowledge is 

justified by a priori arguments. This value delineates one primary way in which mathematics 

differs from other areas in STEM – mathematicians value a priori knowledge, which Dawkins 

and Weber define as knowledge created independently of experience or empirical evidence. I 

focus on the first norm associated with this value, namely that justification in proof must be 

based upon stipulated definitions. 

In advanced calculus, the definitions often involve abstract concepts that cannot easily be 

visualized – indeed, this is one reason why proofs in advanced calculus can be difficult for 

students to digest. Instead, definitions are constructed to be representative of a particular 

mathematical construct or set of objects that relates to a larger mathematical system. Recall that 

the materials students received to work through contained axioms, definitions, and theorems to 

prove in a linear order, so a particular theorem could only be justified using material from earlier 

in the packet. Thus, students were required to engage with definitions consistently and had many 

opportunities to participate in Norm 2.1, justification in proof must be based upon stipulated 

definitions, which was central to the classroom’s proving activity. Due to the students’ advanced 

mathematical level, and the requirements of the class, it seems plausible that they had already 

established this norm in earlier classes and applied it regularly throughout the term. However, in 
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my data analysis, I found two ways that students reflected on definitions during their final 

interviews that illuminated nuanced aspects of this norm.  

7.5.1.1 Definitions require interpretation and consensus 

On the first day of class, Dr. Miya put a slide up at the front of the room stating “We Understand 

Calculus Well”19 and asked students to write open-ended questions about the statement (not 

yes/no questions) on Post-It notes. After five minutes, the students transitioned to working with 

their groupmates and the class as a whole to categorize and discuss their questions. They came 

up with questions such as “Who counts as ‘we’?”, “What does ‘well’ mean?”, and “How did we 

gain our understanding?” In her first interview, Dr. Miya described her purpose in doing this 

activity on the first day of class as wanting to start the class off in a way that aligned with the 

IBL structure. In other words, she expected students to be constantly questioning and probing the 

depths of their mathematical understanding and wanted the first activity of the term to be 

symbolic of that expectation. In his final interview, Taylor recalled this activity while reflecting 

on Dr. Miya’s goals for the class. 

Interview Excerpt 1 

Taylor: Kind of like how you understand what, like how you define something really changes 
how you're able to categorize things... If we really want to prove something, we all have 
to have the same consensus on a definition, we all have to understand the definitions 
the same way, and the axioms the same way. That came back to the beginning of the 
class, you know what the phrase that we did was like… We understand math well, or 
something like that, or calculus well. And it was just like how you define those words, 
changes how you interpret the meaning of the message. So that's the same with our 
proofs, like we need to understand the definitions really well. And we all have to come to 
the same consensus of what that definition means in order to prove something or to 
understand how a proof flows logically. 

 

 
19 The instructor cited the Question Formulation Technique for this idea: https://rightquestion.org/what-is-the-qft/ 

https://rightquestion.org/what-is-the-qft/
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In this quote, Taylor reflected on how definitions can have multiple interpretations and that 

to him, an important part of this class to him was that he learned the importance of making sure 

everyone understood and interpreted definitions in the same way. This level of scrutiny and 

appreciation for the purpose of definitions in one’s proving practice, and how others use 

definitions as well, reflects notable depth of insight for an undergraduate student. It is also 

remarkable that Taylor drew a connection between their classroom proof activity and the “We 

Understand Calculus Well” activity, providing evidence that the ways in which norms are set 

and presented at the beginning of the term can have a lasting impact on students. This episode 

provides insight into Norm 2.1, by showing a way in which the relationship between proofs and 

definitions became more salient for a student. Namely, this student considered his ability to write 

proofs as deeply reliant on his ability to interpret definitions in a way that was in consensus with 

his peers’ interpretations.   

7.5.1.2 Using definitions as a starting place when writing a proof 

In their final interviews, a major theme across the data was that after taking this class, students 

were more comfortable in taking the first steps to write a proof. As a prime example, I asked 

Hayden in her final interview how her perception of proof and writing proofs had changed over 

the term. Her response is seen in Interview Excerpt 2.  

Interview Excerpt 2 
 
Hayden: I feel like this is the first semester in which proof-writing has actually like got into my 

brain in a point that made sense. Like with discrete, I was like, okay, well, if I know how 
to start this, and then I would just kind of write until I figured out where I was trying to 
go and then would be like, yeah, I think that's where I want to go. Where now I sit down 
and I'm like, okay, what am I given and, what definitions go along with what I'm 
given, what axioms, how much information can I flesh out of what I'm given? And then 
I need to look back and see if the things we have previously proved that we know to be 
true, to see which one of those I can arrange in an order in which I can get to where I 
need to be. So for me, it finally made sense to sit down and be like, okay, here's the 
definitions I have. Where does this take me and kind of follow a road instead of just 
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being like, Oh, let me just kind of write like everything I think I know until I get to where 
I'm going to be, if that makes sense. 

 
For Hayden, this class was instrumental in growing her understanding of how to write a proof. In 

particular, she was able to focus in on the definitions and axioms as a starting place for a proof 

and to allow herself to follow those definitions, and any hypotheses of the theorem, to their 

necessary conclusions. Not only did Hayden recognize that proofs should depend on stipulated 

definitions, as Norm 2.1 suggests, but she also saw that definitions were a helpful place to begin 

one’s process when writing a proof. I note that Hayden’s use of definitions is also reminiscent of 

the formal-rhetorical part of a proof (Selden et al., 2018; Selden & Selden, 2013), which 

provides further evidence that the experiences afforded in an IBL classroom lend students 

opportunities to take on the proof norms and values of mathematicians.  

Overall, the rigorous proof-centered nature of the Real Analysis content was prime for 

students to develop experience with Value 1. One benefit of the IBL structure is that it provided 

students with multiple opportunities to engage in authentic proof activity and brought their 

perceptions of the relationship between definitions and formal proofs to be closer to the proof 

norms of the broader mathematical community. We also saw how the instructor’s activity, “We 

Understand Calculus Well”, at the beginning of the term supported this norm development; recall 

Taylor reflected on this activity and its connection the mathematical definitions in his final 

interview. This activity provided evidence that a proof norm can be addressed through non-

mathematical activities in ways that students’ recognize and value.  

7.5.2 Relating Proofs and Problem-Solving Processes 
 

The second value in Dawkins and Weber’s (2017) framework is that mathematical 

knowledge and justifications should be a-contextual and specifically be independent of time and 

author. This value follows from the first; an a priori argument should not need to reference a 
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particular author, time, or experience. Overall, the students I observed attended to this value but 

did not draw attention to it, and I hypothesize that they had internalized this norm to a point 

where they did not engage deeply with the value during class time (again, they were junior/senior 

level mathematics majors who had completed an introductory proof course and were used to 

writing proofs in line with Value 2). However, Norm 2.2, a proof is an autonomous object, not a 

description of a problem-solving process, did arise in final interviews as students considered how 

their understanding of proof had changed and what they would take away from the course. In the 

following section, I share an example of how students learned to separate their construct of proof 

from that of problem-solving, with a process that the instructor called pre-cognitive scratchwork, 

which I recognize as a proof framework (Selden & Selden, 2013).  

7.5.2.1 Pre-Cognitive Scratchwork 

In the fifth week of class, students began using the definition of convergence to prove that 

various sequences converge. Recall that the definition uses multiple quantifiers “for every” and 

“there exists”, along with the sequence index N, to determine a point in the sequence after which 

the terms are sufficiently close to the limit, L (see Figure 7-1).  

In the following excerpt, a student named Sloan had just finished writing her proof to show -

that �10𝑛𝑛−1
2𝑛𝑛+1

�
𝑛𝑛=1

∞
converges, and she had picked the limit L=5 (see Figure 7-2). She told her 

classmates that she was stuck and slightly confused in her proof about how to find a “big N”. The 

instructor stepped in and wrote down student suggestions at the board, and the class ultimately 

rewrote the equation 6
2𝑛𝑛+1

< ε  to find that 𝑛𝑛 > 3
𝜀𝜀 −

1
2
. 
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Figure 7-2: Sloan’s board work on Statement 34. 

 
This was one of the rare occasions in which the instructor led the class. Drawing on her prior 

experience of teaching this class multiple times, she seemed to anticipate this moment when 

students would begin working with the definition of convergence as one in which she would 

need to offer more guidance. In Class Excerpt 2, she offered this guidance by explaining a 

process she called “pre-cognitive scratchwork”. In particular, she identified Sloan’s board work 

as the pre-cognitive scratchwork necessary to find a “big N” used in the definition of 

convergence, and that after this work, the proof would be rewritten to follow the logic of the 

definition of convergence. In Figure 7-3, we see Dr. Miya’s board work of her proof for this 

problem.  

 
Figure 7-3: Dr. Miya’s board work on Statement 34 
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Dr. Miya’s proof started with the end of Sloan’s board work by first letting 𝜀𝜀 > 0, and then 

picking “big N” to be greater than the ceiling of  3𝜀𝜀 −
1
2
.  She then moved backwards through all of 

the algebra that the class and Sloan had completed to end back at Sloan’s first line, which is that 

𝜀𝜀 > |𝑎𝑎𝑛𝑛 − 5|, thus proving that 5 is the limit of the sequence. She talked about this seemingly 

backwards approach and the purpose of Sloan’s work in Classroom Excerpt 2.  

Classroom Excerpt 2 

Miya :  …This [her proof] doesn’t assume anything is less than epsilon, but has this weird like 
“where did you get that?”, and the answer is we got that by working out the problem 
backwards. Assuming what we wanted to prove, finding what N should be, and then 
sticking it in and proving that it works. And this step is super important because this is a 
proof in the right order. Start with epsilon, find big N, and show that beyond that point, 
we are always close, and close means within epsilon, of our limit. How’s that? Easton? 

Easton: I’ve always had a problem with this way of writing a proof 
Miya:  I know! 
Easton: Because we do things, we find the answer the only way we can, and then we pretend like 

we didn’t do it that way. 
Miya:  Yes and you mentioned a couple weeks ago that induction proofs feel like this to you. 
Easton: Yes. 
Miya:  And I remember you saying that and thinking “oh he’s in for it, it’s happening”. 
(class laughter) 
Miya:  So I agree with you, that it is a little disturbing cause this like comes from nowhere. And 

for that reason, when you are writing this up, it’s helpful to your reader to include your 
scratchwork. Put it before! Label it as “my pre-cognitive scratchwork”… You’re doing 
the only thing that you CAN do. Right? If Sloan hadn’t guessed on the limit of 5, we could 
not continue the proof. At some point we are making that leap of faith like in Indiana 
Jones. You are actually guessing something and seeing if it works.  

 
I find this episode to be especially illuminating as to how students might be uncomfortable with 

certain proof frameworks that are based on constructing the necessary values for the definition 

(such as the index “N” in sequential convergence proofs and “δ” in epsilon-delta continuity 

proofs). These processes can feel unfamiliar and contrived to students, as Easton points out in his 

line “we find the answer the only way we can, and then pretend like we didn’t do it that way”. 

Dr. Miya acknowledged this concern among her students, and then as a solution encouraged 
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them to share their problem-solving process with their classmates as part of their mathematical 

communication, as long as they separated it from their formal proof using the definition of 

convergence. Thus, pre-cognitive scratchwork allowed for the students was a concrete way to 

separate their two types of problem-solving into the mathematical problem solving and the 

formal proof writing. Overall, I see this example as one way of exemplifying why a-contextual 

proofs, which Dawkins and Weber cite as being valued by mathematicians, can be confusing for 

students, and one instructor’s solution to aid students in this transition to working with a-

contextual proofs.  

The students held on to this concept of pre-cognitive scratchwork for the remainder of the 

term, and several students reflected on it in their final interviews. I provide two examples below 

of student perspectives. First, Ash commented on how separating her problem-solving from 

proof writing helped her in the beginning stages of proof writing, similar to Hayden’s use of 

definitions in Section 7.5.1.2.  

Interview Excerpt 4 
 
Ash:  I think that I have gotten more comfortable in like where I begin. … And the pre-

cognitive scratchwork was a really big thing. Um I don't like to write things down if 
they're not right. And so trying things is so annoying. Because I just want to write it down 
and get on with it. But so, the pre-cognitive scratchwork seminar that we had in class 
was helpful, because now I start on like a blank piece of paper and I write down a 
bunch of stuff and a bunch of ideas before I actually start my proof. And that really 
helps a lot too.  

 
Ash found that by recognizing and separating her problem-solving from proof writing using the 

concept of pre-cognitive scratchwork, she was able to engage with a theorem more quickly and 

confidently than before this class. While Parker also recognized this distinction between 

problem-solving and proof writing, she took a different lesson away from the concept than Ash.  

Interview Excerpt 5 
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Parker: A lot of people, when they think of learning math, they think of somebody up at the board 

lecturing and taking down notes and you practice with homework. But I think the biggest 
thing, especially because I want to be a math teacher is math is so much more than just 
numbers and notes. It's also about discussing your thought process and embracing 
every part of your cognitive trail, not just the final product, especially when Dr. Miya 
started talking about the pre-cognitive scratch work and how important it is. And even 
though it feels like the proof, it's not, but it's still as important. 

 
Here, Parker saw the benefit of recognizing problem-solving as separate from proof in that being 

explicit about one’s problem-solving was important in terms of mathematical explanation and 

communication.  

In sum, I have elaborated on Value 2 by sharing a way in which the class brought about the 

use of Norm 2.2. During work on a proof using the epsilon-N definition of sequential 

convergence, the instructor leveraged a student’s question on how to finish their proof to 

introduce process she called “pre-cognitive scratchwork”. Overall, this data provides an example 

of how Dawkins and Weber’s framework can make sense of students’ proof difficulties (a-

contextual proofs might not be representative of their problem-solving process) and a potential 

solution to help students solidify the norm (by separating the problem-solving process from the 

proof via pre-cognitive scratchwork, proof framework (Selden & Selden, 2013) for proofs using 

the epsilon-N definition of sequential convergence). In Ash and Parker’s final interviews, we 

saw that this activity was impactful on their overall views of proof, particularly in how they 

began proof and how they saw formal proofs fitting into their proof activity as a whole. While 

the instructor’s use of pre-cognitive scratchwork was not an intrinsic feature of the IBL 

classroom structure, she did embody the student-centered experience of IBL by waiting to 

introduce the concept to students until they had an intellectual need (Harel, 2008) for it, as 

opposed to simply introducing pre-cognitive scratchwork as part of the material for the section.  
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7.5.3 Relating Proofs and Understanding 
 

The third value from Dawkins and Weber’s (2017) framework states that “mathematicians 

desire to increase their understanding of mathematics”. They comment that this value is 

sometimes at odds with the first value of wanting proofs to demonstrate a priori knowledge. A 

fully formal proof supplies all of the logical steps necessary and leaves less room to appeal to the 

mathematician’s intuition, leaving the proof in danger of being unreadable and supplying less 

understanding of the mathematics it is trying to convey. Thus, the norms that Dawkins and 

Weber write pertain to the choices that mathematicians make in their proofs to balance the needs 

of logical rigor and more intuitive arguments. These norms include omitting routine calculations, 

justifications, and irrelevant statements, typesetting the proof in conventional ways, and using 

conventional symbol choices. However, within the socially-embedded view of proof, it can be 

difficult for novice students to distinguish between what counts as “routine” or “irrelevant”, and 

what is a logical necessity in their proofs.  

In this section I provide an example that extends Dawkins and Weber’s third proof value, 

which is that it can be difficult for students to interpret what counts as personal preference or 

logical necessities when deciding how to write their proof for a reader’s understanding or how to 

give feedback on a peer’s proof. I begin by describing an activity from the first day of class. I 

then share an episode from class in which Dr. Miya referenced this activity, and I provide some 

insight from student interviews to show how impactful this moment was on them and their 

subsequent shift in proof values. 

7.5.3.1 Dear John Activity 

One of the students’ first assignments in class was to take an un-punctuated paragraph letter 

called “Dear John” and punctuate it in two different ways that changed the meaning of the 
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paragraph. Figure 7-4 shows two punctuated versions of the letter, the version on the left 

construes a meaning of ill-will towards John and the version on the right construes a meaning of 

love and appreciation for John.  

 
Figure 7-4: Two Versions of the Dear John Punctuation Activity 

Dr. Miya had students read versions of the letter aloud during class and emphasized that just 

as punctuation matters in their writing, clear communication and attention to detail would be an 

important part of their proof writing process throughout the term. The important part of this 

exercise was that it emphasized for students that things that might seem irrelevant, such as a 

comma or period, can actually change the meaning of an entire paragraph. This sort of attention 

to detail was especially important for the students to consider in an IBL class where they were in 

charge of providing mathematical material to their classmates as well as  confirming the validity 

of each other’s work as we will see in the next section.    

7.5.3.2 Distinguishing between formatting and logic 

In the third week of class, students began working with infimums and supremums in preparation 

for the definition of a limit. The classroom excerpt presented in this section uses the definition of 

the supremum of a set A (see Figure 7-5).  

 
Figure 7-5: Definition of supremum as it appeared in class packet 
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In the following classroom excerpt, Easton had just finished presenting a proof of the 

following statement: “Suppose a set A of the real numbers is bounded above. Show that for all 

ε > 0, there exists an a in A such that sup(A) – ε < a ≤ sup(A)”. At the end of his proof, Easton 

concluded with the statement: “Thus, sup(A) – ε < a < sup(A), for all ε > 0”. Dr. Miya then went 

to the board and wrote the opening and closing statements of Easton’s proof for the class to 

consider (see Figure 7-6), I note that she uses the symbol ∀ for “for all” and ∃ for “there exists” 

which were both familiar notation to the students. Again, this was one of the rare occasions in 

which Dr. Miya went to the board and led the class through an exercise, and I hypothesize that 

she predicted the students would need her guidance in recognizing the importance of where 

quantifiers are placed in mathematical statements based on years of teaching the course. This is 

an example of a generative alternative pedagogical content tool (Rasmussen & Marrongelle, 

2006), which helped Dr. Miya transition from a facilitator in the back of the classroom to 

assuming more responsibility for the mathematical content by taking two different student ideas 

and asking everyone to compare them. Rasmussen and Marrongelle write that generative 

alternatives offer “an occasion for students to provide explanations and justification for why they 

favored one option over another” and that “the mathematical agenda and students’ mathematical 

reasoning [are] furthered through student reflection on their own thinking and the explanations of 

others” (p. 415).  

 
Figure 7-6: Dr. Miya’s writing of Easton’s opening and closing proof statements 
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One notable difference between these two statements is the position of “for all epsilon greater 

than zero” which is at the beginning of the first statement and the end of the second statement. 

Dr. Miya asked students to discuss in their small groups any differences between the two 

statements that they saw. When she asked for responses, several students commented on how the 

first line used “≤ sup(A)” and the second line used “< sup(A)”. Dr. Miya asked students if they 

noticed any other differences between the two statements and got no responses. She then asked 

students to nominate someone in their small group to read both statements aloud to the entire 

group. After reading the statements aloud, a student commented that the second statement did not 

contain “there exists an a in A” and, when prompted by Dr. Miya, said that it should go at the 

beginning of the second statement. I emphasize this part of the class discussion to note that 

students did not attend to the position of “for all epsilon greater than zero” in either sentence, 

which drastically changes the mathematical meaning. To draw students’ attention to the 

importance of this difference, Dr. Miya introduced a new example using the set 𝐴𝐴 =

 {1 – 1
𝑛𝑛+1

| 𝑛𝑛 ∈ 𝑁𝑁}. Classroom Excerpt 5 starts with Dr. Miya walking students through different 

choices of epsilon and finding an element a such that sup(A) – ε < a < sup(A).  

Classroom Excerpt 5 

Miya:  So we know 1 = sup(A). Fantastic. Ok what if I say epsilon = ¼… what is an element of 
the set –  

Emory: 4/5 
Miya:  4/5. Is between [sup(A) – epsilon] and the supremum. Ok, are we good? Is there any 

other a? Um. 
Taylor: 5/6 
Miya:  5/6, 7/8, 99/100 and what have you. Is the supremum in the set? No. Okay so I take a step 

of length ¼. So if epsilon is ¼, then 4/5 is an a that will work. Because 4/5 is between ¾ 
and 1. Ok… What if epsilon is… pi/272? How might we find this guy? What are we 
looking for, what should this thing [a] look like? 

Sloan:  An element of the set. 
Miya:  And what do elements of the set look like? n/n+1. We could do this algebraically. 

100/101 works? Ok I’ll believe you. Will 4/5 work here? No. It’s too far to the left. Our 



181 
 

epsilon isn’t big enough to put 4/5 in between. Epsilon is how big our step is. This says 
(first statement), we pick an epsilon and then find an a that works. Jordan just got it, 
that’s my favorite moment, when a student is like “oh!”. This one says we pick our step 
size, and we find the a that goes with it. Jordan what does this (second statement). say? 

Jordan: It says you pick an a and that it works for all epsilon.  
Jose:  That’s not true.  
Miya:  Jose what are you saying is not true? 
Jose:  Because in our example, like 4/5 for epsilon, I don’t know how to word it correctly but 

I’m thinking it doesn’t work.  
Miya:  So, you’re right! It can’t be that way. You can’t find an a that works for all epsilon, 

unless the supremum is in the set. Then a is the supremum and it works for all epsilon, it 
doesn’t matter how far you walk to the left. But if supremum is not in the set, as you make 
epsilon smaller, you start excluding things from the set. Think back to punctuation and 
the Dear John letter. The only difference between this and this is where “for all epsilon 
greater than zero” sits. Position in the sentence is not commutative. Right? We can’t 
just put “for all epsilon greater than zero” at the end and have it mean the same thing 
as what it means at the beginning.  

 

 
Figure 7-7: Dr. Miya’s Example Using Multiple Quantifiers 

 
Dr. Miya started with picking smaller and smaller epsilons and showed that as smaller values for 

epsilon are chosen, the options for picking a member of the set, a, that satisfies the inequality 

sup(A) – ε < a < sup(A) become more limited (see Figure 7-7 for her board work). Through this 

process, she showed how the choice of set member a depended on the epsilon picked, and so the 

statement must begin with choosing the epsilon. As she explained this, several students had 
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breakthrough “a-ha” moments, such as Jordan and Jose as seen in the transcript. Dr. Miya 

reinforced this understanding by referring back to the Dear John activity (Section 7.5.3.1), 

stating that punctuation sentence structure mattered deeply in their class.  

I included this example from the classroom data because in their final interviews, several 

students reflected on a shift in their perspectives on writing proofs and how much choice is left 

up to the writer, whether that be formatting, typesetting, or sentence structure. In her second 

interview, Ash recalled this classroom episode with Easton’s proof.  

Interview Excerpt 6 
 
Ash:  Um I remember a moment in class when like Easton presented a proof and we talked 

about it the entire class. And we talked about the quantifiers and like what position they 
needed to be in. And um we came to the conclusion that Easton's last line needed to be 
written differently for the quantifiers to be in the right spot. And then I remember him 
saying, I remember him saying "oh that was just my preference, I know that it's 
supposed to be written that way but I just put it on the board like that". 

Int.:   Mmm. 
Ash:  And like that definitely happened. Um I feel like those are really weird moments for me. I 

don't really know how to respond. Cause part of me is like "did you really know? or like 
are you just saying that was your preference and you know what they're talking about? 
Or like, you know? Sometimes I feel like it's easier to like use "yeah it was my 
preference" instead of saying like "oh yeah you're right, the logic of my proof is 
confused".  

 
Here, Ash brought up an interesting point regarding the social dynamics of presenting in front of 

peers and that the word “preference” may be used to cushion against the embarrassment of 

writing an illogical statement on the board. This was an issue that the class had to navigate, and 

learn to read work carefully and delineate between what they personally thought were more 

intuitive or easy to understand proofs, and whether those proofs accurately represented the 

formal mathematics they were trying to convey. In a similar vein, Sloan also commented in her 

second interview on how this class had shifted her understanding of the difference between 

preference and logic. 
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Interview Excerpt 7 
 
Sloan: Yeah I think that, it's definitely more of a gray scale than black and white of preference 

and logic. Um, which makes it harder to decipher which one it is… And I think I'm 
learning that a lot of the things that I thought were preference were actually logic. Um, 
so now I'm a little, I'm like more open to people saying things. And I think when you're 
uncertain as to whether something's preference or logic it's better to say it.  

 
In particular, Sloan commented that the concept had become more of a gray scale for her, and 

that “things that I thought were preference were actually logic”. Interestingly, this shift in 

perspective had made her more open to hearing her classmates’ proofs and questioning whether a 

proof needs to be written a certain way. This was a natural consequence of the IBL structure, 

every student was coming to class with slightly different versions of proofs for the same problem 

and they had to spend a decent amount of time deciding whether the differences between their 

personal proof and the one being presented signified a logic error on someone’s part, a different 

approach to the problem, or a more formal/intuitive version of their own work.  

I have extended Value 3 by considering the difficulties involved in determining what a proof 

needs in order to be considered understandable. In particular, I questioned the intrinsic piece of 

the norms of this value by noting that students may have difficulty perceiving what “obvious” or 

“routine” pieces can be left out of a proof and furthermore how much choice is left to the proof 

writer when structuring the proof argument. I started with a classroom excerpt example of the 

instructor utilizing a generative example pedagogical content tool (Rasmussen & Marrongelle, 

2006), through juxtaposing two mathematical statements with multiple quantifiers in different 

orders. The goal of this generative example was to show students the importance of quantifier 

placement. In students’ interviews after this class period, Ash and Sloan reflected on how eye-

opening this moment was for them. Notably, it made them more aware of nuance in proof, the 

difference between proof writing preference and logical necessity, and made them feel more 
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open to being corrected by their peers. The IBL structure of this class was incredibly beneficial 

in developing this third value for students because it provided them opportunities to debate and 

engage in authentic discussion around what in a proof could be omitted or written in different 

ways. Since the students had no guidance from external resources such as a lecture or textbook it 

was up to them as a class to determine these qualities. Similar to Section 7.5.1, I shared another 

activity that the instructor gave at the beginning of the term, “Dear John”, which again points to 

the potential for instructor’s to develop proof norms through non-mathematical activities in deep 

and impactful ways for students. 

7.6 Limitations and Future Directions 
 

One large limitation of this study was that my observations of students proof activity was 

limited to the classroom in which they were mainly presenting or giving feedback on proofs. 

Much of students’ proof activity was occurring outside of the classroom either alone, in study 

groups, or in Dr. Miya’s office hours. Thus, one natural future direction for this work would be 

to observe students in more settings outside of the IBL classroom in order to develop a more 

well-informed picture of their proof presentations in class and to look for other ways in which 

their norms and values for proof might shift over the course of the term.   

In each section of the Results, we saw Dr. Miya provide activities that facilitated shifts 

students’ in proof perceptions at the end of the term. These were the “We Do Calculus Well” 

activity, the “Dear John” activity, the concept of “pre-cognitive scratchwork”, the generative 

example of comparing multiple quantifier statements, and the guided example of using the 

multiple quantifier statements with the set 𝐴𝐴 =  {1 – 1
𝑛𝑛+1

| 𝑛𝑛 ∈ 𝑁𝑁}. These activities were 

spontaneous for her and intuitively developed over years of teaching the course. Thus, one 

limitation of this study is the small case size and the question of whether the activities would 
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work with different instructors in other Real Analysis classrooms and whether different students 

would also experience these activities in ways that shift their perceptions of proof. However, 

another future direction for this study is to use these activities, and potentially others, in more 

Real Analysis classrooms with Dawkins & Weber’s framework as a guiding lens, with the 

explicit intention of having students reflect on this activities and whether they more generally 

promote shifts in students’ perceptions of proof from the beginning to end of term. 
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8 Conclusion 
 
8.1 Summary of Papers and Response to Overall Research Questions 
 

In the previous three chapters, I have shared three papers that emphasized different aspects of 

students’ experiences in an inquiry-based learning undergraduate advanced calculus classroom. 

Notably, this class was being taught by a highly experience instructor who was confident enough 

in her IBL teaching to include a number of humanistic or creative activities, sometimes 

spontaneously, into her classroom. Furthermore, she was able to help maintain the IBL structure 

of the course through the remote transition due to COVID-19 and facilitate a classroom space 

where students could continue to develop their classroom community. From this incredibly 

unique and powerful case study, my overall research questions were the following: 

 
1) In what ways did the IBL structure of the classroom influence and support interplay between 

the combined social and mathematical experiences of students in this classroom? 
 
2) In what ways did the instructor influence and support interplay between the combined social 

and mathematical experiences of students in this classroom? 
 
3) How, if at all, did the interplay between these combined social and mathematical experiences 

work to create an overall sense of classroom community? 
 
I now highlight a few ways in which my three papers addressed these overall research questions 

and summarize what I am taking away from my study as a whole.  

My first question concerned the impact of the IBL structure of the classroom on the social 

and mathematical experiences of the students I observed. Overall, I found that the set-up of 

having students work from a minimal set of materials, working with their peers and the 

instructor, and presenting proofs during class time afforded many unique opportunities. For 

instance, Sloan’s episode in Chapter 5 (Paper 1) with the Law of Cancellation occurred primarily 

because she was giving feedback to a peer’s proof presentation. This resulted in several 
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opportunities for the class to develop and negotiate their social and sociomathematical norms for 

the term (Cobb & Yackel, 1996). I also visited the Law of Cancellation in Chapter 6 (Paper 2), 

where I showed how this same episode could be viewed as an example of the 

participation/positioning dimension of rehumanizing mathematics (Gutiérrez, 2018). Several 

other dimensions were also accessible to the students via the IBL structure, such as creation (the 

class provided them opportunities to create proofs), and ownership (the class structure meant 

developing their own proofs outside of class). Finally, in Chapter 7 (Paper 3) I showed how the 

IBL structure of the class provided the fuel and necessity for students to engage authentically in 

proof activity, thus providing them several avenues by which to recognize and assimilate into the 

proof values and norms of the broader mathematical community. I see that the IBL structure of 

the class promoted an incredible amount of social activity between the students and professor, 

through the number of classroom discussions and interactions during proof presentations that I 

was able to capture in my data collection. Moreover, these social activities were all in the context 

of doing mathematics, and I argue that the IBL structure with the minimal set of materials 

promoted this social activity, as students were required to lean on each other to understand and 

create the mathematics as a class. In sum, my three papers have shown that the IBL structure of 

the classroom created a space for students to engage in mathematics as a social endeavor through 

their proof presentations, and in turn these social engagements helped students to develop further 

in their mathematical selves (through what I saw as their increased understanding of 

sociomathematical norms, proof values and norms, and dimensions of rehumanizing 

mathematics). 

My second question regarded the nature of the instructor, and how her actions and choices in 

the classroom impacted the social and mathematical experiences of the students I observed. First, 
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I acknowledge that she made the choice to run an IBL classroom and had a wealth of experience 

in IBL that made her an ideal instructor to observe. For instance, in Chapter 5 (Paper 1) with the 

Law of Cancellation episode, we saw several ways in which the instructor promoted the IBL 

student-centered nature of the classroom, and let the students come to their own conclusions on 

how to do the proofs, instead of stepping in and offering her own opinions. In Chapter 6 (Paper 

2), I provided a number of examples of ways that she went above and beyond the IBL structure 

of the classroom to infuse her course with aspects of the humanities (such as the This I Believe 

Essay) or other ways of coming to know the mathematical material (such as the Friend of a Set 

activity). In Chapter 7 (Paper 3), I also gave examples of how the instructor promoted certain 

proof values and norms in the classroom through added activities that went beyond the IBL 

packet materials (such as the Dear John letter activity, and the concept of pre-cognitive 

scratchwork). Together, these episodes show how the instructor supported the existing IBL 

structure (which I have already shown was impactful on students’ social and mathematical 

experiences) and extended the IBL structure into something more that offered a deeper level of 

social interaction and mathematical engagement among students.  

My third research question pertained to community development in the classroom as a result 

of these social and mathematical experiences. While none of my papers used a theoretical 

framework that explicitly studied community (such as Wenger’s communities of practice), I 

argue that by the end of the term, this classroom had developed into more than just a collection 

of students and an instructor; they had become a community. From my analysis, I argue that the 

biggest strength of teaching with IBL, or IBME methods in general, is that the social and 

mathematical experiences of the classroom occur concurrently. This reflexive relationship 

strengthens the bonds of the people within the classroom and enhances the boundaries of the 
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classroom into something distinct from the rest of their lives. Every time a student presented a 

proof, participated in a class discussion, or completed one of the instructor’s added activities, 

they were simultaneously doing mathematics and creating shared experiences with their peers. 

One of my main examples of this is the relationship between academic and personal 

vulnerability, which I discussed in Chapter 6 (Paper 2). Presenting proofs was an important 

aspect of the IBL structure that required an immense amount of academic vulnerability from 

students, as they shared their mathematical thinking with each other. Over time, these shared 

experiences built a level of personal vulnerability among students that were supported by the 

instructor as she shared her own vulnerability with students and attended to the body/emotion 

dimension of rehumanizing mathematics in her daily actions and activities such as the This I 

Believe essay. These mathematical and social experiences around vulnerability continued to 

build throughout the term, culminating in a powerful last day of class, as explored in Chapter 6 

(Paper 2). Furthermore, the narrative of Chapter 5 (Paper 1), the other dimensions of 

rehumanizing mathematics in Chapter 6 (Paper 2), and the shifts in students’ values and norms in 

Chapter 7 (Paper 2) all speak to the level of impact these students had on each other and the 

types of memories this classroom was capable of creating. In my personal experience, there are 

few undergraduate mathematics classrooms that attain such a memorable status among the hearts 

and minds of its’ students, and I fully attribute the growth of classroom community that I 

witnessed in my study to the students’ combined social and mathematical experiences that were 

afforded by the IBL structure and the intentional actions of the instructor.   

8.2 Limitations 
 

There were several limitations of my study that may have impacted the data collection and 

analysis that I was able to complete. In this section I consider limitations of the data collection, 
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the uniqueness of the classroom I observed, and the general limitations of qualitative case 

studies. 

The nature of the IBL structure meant that students were doing most of their proof activity 

outside of the classroom by themselves, with peers in study groups, or with the professor during 

office hours. I did not observe any of these locations and it is likely that experiences in these 

situations were a constant undercurrent to the classroom activity I observed. For example, I 

might have seen a student’s final proof presentation that was widely accepted by the class, but 

the design of my study did not allow me to know how much time they spent with the professor 

working out the proof, or how they got ideas from a peer and developed a deeper sense of shared 

mathematical authority with their classmates via their shared understanding of the proof. I did 

not interview the professor as frequently as I had originally hoped due to the tumultuous nature 

of the term. More interviews with the professor would have been a helpful source of data to 

triangulate my findings and get more insight into her teaching moves and other ways she was 

working “behind the scenes” to facilitate community and positive experiences for the students. 

Third, while COVID-19 provided an interesting twist to my data collection and I was able to 

witness a great deal of rehumanizing during the remote transition, it also meant that my end of 

term data was quite atypical compared to the usual run of this class. The students did not get to 

present their This I Believe essays at an open-mic night as past years had done, and the students 

did not progress as far mathematically as they might have otherwise. The remote transition also 

shifted the ways in which students participated during class time, and some students participated 

more or less after the transition.  

Many of this class’ unique aspects stemmed from the instructor I chose to observe. She 

developed the IBL mathematics materials, the humanistic activities, had extensive expertise in 
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teaching with IBL methods, and felt comfortable sharing her own humanity with students. One 

large limitation of my dissertation then, is that my focus on students’ social and mathematical 

experiences meant that I did not necessarily have the data to share the journey and experience of 

a highly skilled instructor. As IBME becomes more popular within the education community, we 

need stories such as her journey to IBL teaching and more insights into her day-to-day teaching 

decisions to help other instructors become more comfortable with IBME. I would not necessarily 

expect an instructor teaching with IBL methods for the first time to have had the mental space or 

desire to a) include spontaneous humanistic activities throughout the term on top of the already 

unpredictable nature of an IBL classroom or b) continue teaching with the IBL structure through 

the transition to remote learning. However, I am also not implying that the experiences of this 

classroom will automatically happen just because of an experience instructor As a whole, my 

dissertation has demonstrated what is possible in the best possible circumstances of an extremely 

experienced, motivated, and effective instructor, which does not undermine the results of the 

study, but is a limitation that might incorrectly imply that such work is easy or automatic for 

instructors. 

Finally, I acknowledge that this was a case study of one classroom and the results of my 

papers cannot necessarily be generalized to other IBL or IBME classrooms. In particular, the 

students in this class were highly familiar with each other and the professor before the beginning 

of the term. Additionally, many of them had experience with IBL teaching methods with this 

professor and others in the department (although not to the extremely scaffolded scale of the 

Real Analysis curriculum). Thus, I saw a fair amount of buy-in at the beginning of the term that 

other classrooms may not have had, which makes the likelihood of this study generalizing to 

other classrooms an unknown. Additionally, while COVID-19 was an interesting twist to my 
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data collection, and provided an amazing amount of depth to Paper 2 on rehumanizing 

mathematics, it made the class an even more unique case study and the results are not necessarily 

generalizable or indicative of other iterations of this instructor’s teaching.   

8.3 Future Directions 
 

Because I had so much data (an entire term’s worth of classroom data), I necessarily limited 

myself in what all I focused on and analyzed for this dissertation. However, there is opportunity 

for further investigation, both based on the papers I did write, and based on the remaining data I 

have not yet written about.  Each of my three papers offered multiple avenues for further 

research, many of them related to the limitations of this study. In this section, I summarize the 

future questions raised in each paper and relate them to my overall research questions. Then, I 

highlight some additional research investigations that seem promising based on my overall data 

collection. 

8.3.1 Future Directions Based on Each Paper 
 

In Paper 1, I considered how a future study could make better use of the entire interpretive 

framework and compare more of students’ individual experiences with the first few weeks of 

class to see how classroom norms (Cobb & Yackel, 1996) are developed, negotiated, and 

internalized. I also considered how the introductory curriculum could be more explicitly utilized 

to instigate norm development in the classroom; recall that the norm developing benefits of the 

Law of Cancellation episode seemed to happen primarily due to spontaneous student ideas. 

In Paper 2, I considered how a curriculum could be more intentionally designed with 

activities that are targeted towards specific aspects of rehumanizing mathematics (Gutiérrez, 

2018). I also considered ways in which the structure of inquiry-based learning can limit the ways 
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in which the dimension of cultures/histories can appear in the classroom, and I believe there are 

several opportunities for future researchers to address this current deficiency.   

In Paper 3, I expressed a desire to observe students in more settings outside of the IBL 

classroom in order to develop a more well-informed picture of their final proof presentations in 

class and to look for other ways in which their proof norms and values might shift over the 

course of the term.  I also considered a future study of a classroom that explicitly utilizes the 

instructor’s activities, and potentially others, for norm development, and having students reflect 

on this activities in interviews to study whether these activities more generally promote shifts in 

students’ perceptions of proof from the beginning to end of term. 

In sum, these future directions support and extend the overall research goals of this 

dissertation by providing more avenues by which to study students’ social and mathematical 

experiences in inquiry-based learning classrooms through intentional curriculum development 

that promotes norms, values, humanistic and social experiences, and mathematical experiences. I 

also would like to consider more varied types of data collection locations that could provide 

deeper insights into these experiences. 

8.3.2 Remaining Questions for This Dataset 

In addition to the questions that arose from the three papers I have presented in this 

dissertation; I have a number of future directions for remaining aspects of my data and ideas that 

arose more broadly during my data analysis. 

8.3.2.1 Easton and Emory. There were two students in this classroom, Easton and Emory, whose 

mathematical contributions were somewhat contentious at the beginning of the term. In 

particular, the level of detail and logic that they desired in their proofs, and their lengthy 

explanations of those details, were beyond the accepted classroom sociomathematical norms of 
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the time. I noticed an interesting arc throughout the classroom observation dataset, and the 

individual student interviews, of the classroom being in turns stymied, annoyed, frustrated, and 

eventually accepting of these students’ behavior during class as everyone worked together to 

develop their knowledge of Real Analysis. An interesting future paper would follow the arc of 

these two students and their social experiences in the classroom as the entire class navigated the 

specific types of feedback they were willing to accept during proof presentations.  

8.3.2.2 Mathematical Language Conventions. Due to the IBL packet materials being so sparse, 

and the large amount of freedom that students had in creating their proofs, there were a number 

of atypical and interesting conversations around language usage during the proof presentations. 

In particular, at the beginning of the term the students had a detailed conversation on whether 

there was a difference between starting a proof with the word “let”, “suppose”, or “assume” 

based on how the problem was stated. They also had an interesting and spontaneous class day 

spent of the definition of a definition, and the usage of the word “if” versus “if and only if” in the 

statement of a definition. An interesting future paper would look at these two episodes and more 

broadly across the dataset for other instances where the class picked up on mathematical 

distinctions that are not widely discussed in the current literature, thus providing educators with 

deeper knowledge of what novice proof writers might be paying attention to in their proof 

activity. 
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10 Appendices 
 
Appendix A. Term Schedule 
 

Week Location Topics Activities Interviews 
Week 1: 

Jan 13-Jan 19 In-Person Real Numbers 
We Understand 

Calculus Well, Dear 
John Letter 

 

Week 2: 
Jan 20 – Jan 26 In-Person Real Numbers Curiosity Cabinet  

Week 3: 
Jan 27- Feb 2 In-Person Real Numbers   

Week 4: 
Feb 3- Feb 9 In-Person Real Numbers 

Is a Hotdog a 
Sandwich? 

Definition Activity 

Ind. Interviews 1 (Ash, 
Hayden, Parker, Sloan, 

Taylor) 
Week 5: 

Feb 10 – Feb 16 In-Person Real Numbers   

Week 6: 
Feb 17 – Feb 23 In-Person Sequences and 

Convergence   

Week 7: 
Feb 24 – March 1 In-Person Sequences and 

Convergence Midterm Exam  

Week 8: 
March 2 – March 

8 
In-Person Sequences and 

Convergence  
Ind. Interviews 2 (Hayden, 

Parker, Sloan) 

Week 9: 
March 9 – March 

15 
In-Person Limit Points Veritasium Video  

 

Week 10: 
March 16 – 
March 22 

Virtual Limit Points  
 

Week 11: 
March 23 – 
March 29 

Virtual Limit Points This I Believe 
Essays 

Ind. Interviews 3 (Ash, 
Hayden, Parker, Sloan, 

Taylor)  
Week 12: 

March 30 – April 
5 

Virtual Functions and 
Continuity 

Epsilon-Delta 
Pancake Story 

 

Week 13: 
April 6 – April 12 Virtual Functions and 

Continuity   

Week 14: 
April 13 – April 

19 
Virtual Functions and 

Continuity  
 

Week 15: 
April 20 – April 

26 
Virtual Functions and 

Continuity  
 

Week 16: 
April 27 – May 3 Virtual Functions and 

Continuity 

Final Exam, Proof 
Portfolio, Creative 

Summaries 

Ind. Interviews 4 (Ash, 
Hayden, Parker, Sloan, 

Taylor) 
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Appendix B: Course Syllabus (Identifying Information Removed) 
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Appendix C: Class Materials 
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Appendix D: Student Selection Interview Protocol  
 
Introduction:  
Hello, thank you for taking the time to talk with me today. This interview is part of the study 
Mathematical Identity in Inquiry Based Learning Classrooms, in which I am doing research to 
learn more about student experiences’ in undergraduate mathematics inquiry-based learning 
classrooms. Today I am particularly interested in learning more about you and your history with 
mathematics. Everything that you tell me is confidential and I will not attach your name to 
anything that you say or tell anyone else at the university what you have told me. If I ask you 
anything that you do not feel comfortable answering please feel free to tell me that you do not 
want to answer that question. To ensure that you understand what the study involves, would you 
please tell me…  
What you think I am asking you to do? 
What the biggest risk to you might be if you participate in this interview?  
What remaining questions can I answer for you? 
 
Interview Questions: 
(These are the types of questions I expect to ask the selection interviewees) 
 
1. Is there any demographic information you are comfortable sharing with me that could be 
included in the study? This can include race, ethnicity, gender, sexual orientation, religion, 
socioeconomic status, or anything else you see as a relevant part of your personal identity.  
 
2.  In your opinion, have any of the demographic qualities you talked about above influenced 
your participation in mathematics classes? 
 
3. Can you tell me about a time when you were successful in mathematics? 
 
4. Can you tell me about a time when you had a frustration in mathematics? 
 
5. How would you characterize your experiences with mathematics so far? 
 
6. What is important to you in a mathematics class? 
 
7. How do you feel about doing mathematics at the board, in front of your classmates? 
 
8. What are you plans with regards to mathematics in the future, after college? 
 
9. Why are you taking this class?  
 
10. If you're a math major, why are you a math major? 
 
11. How would you describe the University of Portland math department? 
 
12. How would you describe the students in your mathematics classes so far? 
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13. What does it mean for someone to be good at mathematics? 
 
14. What are you most excited about for this class?  
 
15. What are you most nervous about for this class? 
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Appendix E. Student Interviews Protocol  
 
Introduction:  
Hello, thank you for taking the time to talk with me today. This interview is part of the study 
Mathematical Identity in Inquiry Based Learning Classrooms, in which I am doing research to 
learn more about student experiences’ in undergraduate mathematics inquiry-based learning 
classrooms. I am particularly interested in your classroom experience so far and thoughts on 
doing mathematics. Everything that you tell me is confidential and I will not attach your name to 
anything that you say or tell anyone else at the university what you have told me. If I ask you 
anything that you do not feel comfortable answering please feel free to tell me that you do not 
want to answer that question. To ensure that you understand what the study involves, would you 
please tell me…  
What you think I am asking you to do? 
What the biggest risk to you might be if you participate in this interview?  
What remaining questions can I answer for you? 
 
Interview Questions: 
(These are the types of questions I expect to ask the primary participants) 
 
1. Has this class been more or less like what you expected? How so? 
 
2. What are the most challenging parts of the class?  
 
3. What are the most rewarding parts of the class? 
 
4. How do you feel about presenting proofs in class?  
 
5. How do you feel watching others present proofs in class? 
 
6. How would you describe the students in this class? 
 
7. How would you describe the professor in this class? 
 
8. How would you describe the classroom environment? 
 
9. I noticed this (example) happen, what is your take on why this happened? 
 
10. Can you tell me more about… what happened during (example)? Your thoughts on this proof 
presentation? Why this presentation worked well? 
 
11. Can you give me an example of… students working well together? A classroom tension? An 
unexpected moment?  
 
12. Who do you think is doing well in this class? What are they doing that makes you think this?  
 
13. Are you doing these same traits that you mentioned earlier? 
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14. What makes a good mathematics student? 
 
After This I Believe Project 
 
1. What did you think of the This I Believe project? 
 
2. What are some ways this experience made you think differently about yourself, if at all? 
 
3. What are some ways this experience made you think differently your classmates, if at all? 
 
4. How do you connect the purpose of this project to MTH 401? 
 
End of Term Questions 
 
1. Has this class been more or less like what you expected or different?   
 
2. What do you think Dr. Miya’s goals were for the class to be now that you've finished it? What 
do you think her big purpose was? 
 
3. What would you say for you personally, what are your biggest takeaways from this class?  
 
4. What would you say your favorite part of class was over the term?  
 
5. What would you say your least favorite part of class was?  
 
6. What sort of changes in yourself do you think you've seen throughout this term, if anything? 
 
7. What have you learned about proofs this term, or how has your understanding of proofs 
changed over the term? 
 
8. How has your understanding of calculus changed? 
 
9. How has your understanding of mathematics as a field changed? 
 
10. How has your understanding of what it means to be a mathematician changed? 
 
11. Can you tell me about a time when you felt really proud of yourself in class?   
 
12. Can you tell me about a time when you felt frustrated in class? 
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Appendix F. Professor Interview Protocol 
 
Introduction:  
Hello, thank you for taking the time to talk with me today. This interview is part of the study 
Mathematical Identity in Inquiry Based Learning Classrooms, in which I am doing research to 
learn more about student experiences’ in undergraduate mathematics inquiry-based learning 
classrooms. I am particularly interested in your thoughts on the classroom dynamics over the 
past two weeks. I will ask you about general classroom activities and your perspectives on 
students in the classroom. Everything that you tell me is confidential and I will not attach your 
name to anything that you say or tell anyone else at the university what you have told me. Your 
data is primarily being used to triangulate and reflect on my own understandings of the 
classroom; it is not being used for analysis and presentation on its own. If I ask you anything that 
you do not feel comfortable answering please feel free to tell me that you do not want to answer 
that question. To ensure that you understand what the study involves, would you please tell me…  
What you think I am asking you to do? 
What the biggest risk to you might be if you participate in this interview?  
What remaining questions can I answer for you? 
 
Questions: 
(These are the types of questions I expect to ask of the professor. I will ask about a variety of 
students, general and primary participants so that the professor is unaware of who primary 
participants are.) 
 
1. How would you describe the classroom environment over the past two weeks? 
 
2. What changes have you noticed in the classroom over the past two weeks? 
 
3. Can you tell me more about… what happened during (example)? Your thoughts on this proof 
presentation? Why this presentation worked well? 
 
4. Can you give me an example of… students working well together? A classroom tension? An 
unexpected moment?  
 
5. I noticed this (example) happen, what is your take on why this happened? 
 
6. How would you describe Student (name) in class? 
 
7. What changes have you noticed in Student (name)? 
 
8. I noticed you did this (example) in class, what was your reasoning? How did you expect 
students to respond? Was it successful?  
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