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Abstract

We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two
known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2)
Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are
due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the
target protein’s neighborhood. We find good agreement of the model on 10 different network properties compared to
high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve
modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6
degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social
networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow
in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally
embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into
biological evolution.
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Introduction

We are interested in the evolution of protein-protein interaction

(PPI) networks. PPI network evolution accompanies cellular

evolution, and may be important for processes such as the

emergence of antibiotic resistance in bacteria [1,2], the growth of

cancer cells [3], and biological speciation [4–6]. In recent years,

increasingly large volumes of experimental PPI data have become

available [7–10], and a variety of computational techniques have

been created to process and analyze these data [11–18]. Although

these techniques are diverse, and the experimental data are noisy

[19], a general picture emerging from these studies is that the

evolutionary pressures shaping protein networks are deeply

interlinked with the networks’ topology [20]. Our aim here is to

construct a minimal model of PPI network evolution which

accurately captures a broad panel of topological properties.

In this work, we describe an evolutionary model for eukaryotic

PPI networks. In our model, protein networks evolve by two

known biological mechanisms: (1) a gene can duplicate, putting

one copy under new selective pressures that allow it to establish

new relationships to other proteins in the cell, and (2) a protein

undergoes a mutation that causes it to develop new binding or new

functional relationships with existing proteins. In addition, we

allow for the possibility that once a mutated protein develops a

new relationship with another protein (called the target), the

mutant protein can also more readily establish relationships with

other proteins in the target’s neighborhood. One goal is to see if

random changes based on these mechanisms could generate

networks with the properties of present-day PPI networks. Another

goal is then to draw inferences about the evolutionary histories of

PPI networks.

Results

We represent a PPI network as a graph. Each node on the

graph represents one protein. A link (edge) between two nodes

represents a physical interaction between the two corresponding

proteins. The links are undirected and unweighted. To model the

evolution of the PPI graph, we simulate a series of steps in time. At

time t, one protein in the network is subjected to either a gene

duplication or a neofunctionalizing mutation, leading to an altered

network by time tzDt. We refer to this model as the DUNE

(DUplication & NEofunctionalization) model.

Gene Duplication
One mechanism by which PPI networks change is gene

duplication (DU) [21–23]. In DU, an existing gene is copied,

creating a new, identical gene. In our model, duplications occur at

a rate d, which is assumed to be constant for each organism. All

genes are accessible to duplication, with equal likelihood. For
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simplicity, we assume that one gene codes for one protein. One of

the copies continues to perform the same biological function and

remains under the same selective pressures as before. The other

copy is superfluous, since it is no longer essential for the

functioning of the cell [24].

The superfluous copy of a protein/gene is under less selective

pressure; it is free to lose its previous function and to develop some

other function within the cell. Due to this reduced selective

pressure, further mutations to the superfluous protein are more

readily accepted, including those that would otherwise have been

harmful to the organism [25,26]. Hence, a superfluous protein

diverges rapidly after its DU event [27,28]. This well-known

process is referred to as the post-duplication divergence. Following [29],

we assume that the link of each such superfluous protein/gene to

its former neighbors is deleted with probability w. The post-

duplication divergence tends to be fast; for simplicity, we assume

the divergence occurs within the same time step as the DU. The

divergence is asymmetric [30,31]: one of the proteins diversifies

rapidly, while the other protein retains its prior activity. We delete

links from the original or the duplicate with equal probability

because the proteins are identical. As discussed in the supporting

information (SI), this is closely related to the idea of subfunctiona-

lization, where divergence freely occurs until redundancy is

eliminated (see SI text in File S1). In our model, w is an adjustable

parameter.

In many cases, the post-duplication divergence results in a

protein which has lost all its links. These ‘orphan’ proteins

correspond to silenced or deleted genes in our model. As discussed

below, our model predicts that the gene loss rate should be slightly

higher than the duplication rate in yeast, and slightly lower in flies

and humans.

We simulate a gene duplication event at time t as follows:

1a. Duplicate a randomly-chosen gene with probability dDt.

2a. Choose either the original (50%) or duplicate (50%), and

delete each of its links with probability w.

3a. Move on to the next time interval, time tzDt.

Neofunctionalization
Our model also takes into account that DNA can be changed by

random mutations. Most such mutations do not lead to changes in

the PPI network structure. However, some protein mutations lead

to new interactions with some other protein (which we call the

target protein). The formation of a novel interaction is called a

neofunctionalization (NE) event. NE refers to the creation of new

interactions, not to the disappearance of old ones. Functional

deletions tend to be deleterious to organisms [32]. We do not

account for loss-of-function mutations (link deletions) except

during post-duplication divergence because damaged alleles will,

in general, be eliminated by purifying selection. In our model, NE

mutations occur at a rate m, which is assumed to be constant. All

proteins are equally likely to be mutated.

How does the mutated protein choose a target protein to which

it links? We define a probability q that any protein in the network

is selected for receiving the new link from the mutant protein. To

account for the possibility of homodimerization, the mutated

protein may also link to itself [24,33]. Random choice dictates that

q~1=N (see SI).

Many PPI’s are driven by a simple geometric compatibility

between the surfaces of the proteins [34]. The simplest example is

the case of PPI’s between flat, hydrophobic surfaces [35], a type of

interaction which is very common [36]. These PPI’s have a simple

planar interface, and the binding sites on the individual proteins

are geometrically quite similar to one another. One consequence

of these similar-surface interactions is that if protein A can bind to

proteins B and C, then there is a greater-than-random chance that

B and C will interact with each other. We refer to this property as

transitivity: if A binds B, and A binds C, then B binds C. The

number of triangles in the PPI network should correlate roughly

with transitivity. As discussed below, the number of triangles (as

quantified by the global clustering coefficient) is about 45 times

higher in real PPI networks than in an equally-dense random

graph. This suggests that transitivity is quite common in PPI

networks. Another source of transitivity is gene duplication. If A

binds B, then A is copied to create a duplicate protein A’, then A’

will (initially) also bind B. If A interacts with A’, then a triangle

exists. However, duplication is unlikely to be the primary source of

transitivity; recent evidence shows that, due to the post-duplication

divergence, duplicates tend to participate in fewer triangles than

other proteins [37].

A concrete example of transitivity is provided by the evolution

of the retinoic acid receptor (RAR), an example of neofunctiona-

lization which has been characterized in detail [38]. Three

paralogs of RAR exist in vertebrates (RARa, b, and c), as a result

of an ancient duplication. The interaction profiles of these proteins

are quite different. Previous work indicates that RARb retained

the role of the ancestral RAR [38], while RARa and c evolved

new functionality. RARa has several interactions not found in

RARb. RARa has novel interactions with a histone deacetylase

(HDAC3) as well as seven of HDAC3’s nearest-neighbors

(HDAC4, MBD1, Q15959, NRIP1, Q59FP9, NR2E3, GATA2).

None of these interactions are found in RARb. The probability

that all of these novel interactions were created independently is

very low. RARa has 65 known PPI’s and HDAC3 has 83, and the

present-day size of the human PPI network is a little over 3000

proteins. Therefore, the chance of RARa randomly evolving novel

interactions with 7 of HDAC3’s neighbors is less than 1 in a

billion. This strongly suggests that when a protein evolves an

interaction to a target, it has a greater-than-random chance of also

linking to other, neighboring proteins.

How do similar-surface interactions affect the evolution of PPI

networks? First, consider how an interaction triangle would form.

Suppose proteins A and B bind due to physically similar binding

sites. Protein X mutates and evolves the capacity to bind A. There

is a reasonable chance that X has a surface which is similar to both

A and B. If so, protein X is likely to also bind to B, forming a

triangle. Denote the probability that two proteins interact due to a

simple binding site similarity by a. The probability that A binds B

(and X binds A) in this manner is a. Assuming these probabilities

are identical and independent, the probability that X binds B is a2.

So far, we have discussed transitivity as it affects the PPI’s in

which protein A is directly involved (A’s first-neighbors). We now

introduce a third protein to the above example, resulting in a

chain of interactions: protein A binds B, B binds C, but C does not

bind A. Protein X mutates and gains an interaction with A (with

probability a2). What is the probability that X will also bind C?

The probability that B binds C due to surface similarity is a. Thus,

X will bind C (A’s second-neighbor) with probability a3. In

general, the probability that X will bind one of A’s jth neighbors is

ajz1. We refer to this process as assimilation, and the ‘assimilation

parameter’ a is a constant which varies between species. As

discussed in SI, it is primarily mutliple-partner proteins which bind

to their partners at different times and/or locations which are

affected by this process; consequently, at most one link is created

by assimilation at the first-neighbor level, second-neighbor level,

etc. Assimilation is assumed to act on a much shorter time scale

Evolution of Protein-Protein Interaction Networks
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than duplication and neofunctionalization; in our model, it is

instantaneous.

Our hypothesized assimilation mechanism makes several

predictions that could be tested experimentally: (1) the probability

of a protein assimilating into a new pathway should be a2 (at the

first-neighbor level), a3 (at the second-neighbor level), and so on,

where a is a constant which varies between species; (2) weak,

nonspecific binding and planar interfaces should be overrepre-

sented in interaction triangles (and longer cycles) between non-

duplicate proteins; (3) competitive inhibitors should be overrepre-

sented in interaction triangles; and (4) domain shuffling should be

associated with assimilation. (See SI for discussion of (3) and (4).).

We simulate a neofunctionalization event at time t as follows:

1b. Mutate a randomly-chosen gene with probability mDt.

2b. Link to a randomly-chosen target protein.

3b. Add a second link to one of the target’s first-neighbor proteins,

chosen randomly, with probability a2.

4b. Add a link to one of the target’s second-neighbor proteins,

with probability a3, etc.

5b. Move on to the next time interval, time tzDt.

Model Simulation and Parameters
A flowchart of how PPI networks evolve in our model is shown

in Figure 1. To simulate the network’s evolution, one of the two

mechanisms above is used at each time step, using [39]. We call

each possible time series a trajectory. We begin each trajectory

starting from two proteins sharing a link (the simplest configura-

tion that is still technically a network). Each simulated trajectory

ends when the model network has grown to have the same total

number of links, K , as found in the experimental data, Kdata.

Here, we perform sets of simulations for three different organisms:

yeast (Saccharomyces cerevisiae), fruit flies (Drosophila melanogaster), and

humans (Homo sapiens). Because evolution is stochastic, there are

different possible trajectories, even for identical starting conditions

and parameters. We simulated 50 trajectories for each organism.

Our figures show the median values of each feature as a heavy

line, and individual trajectories as light lines.

For a given data set, the number of links (Kdata) is known. We

estimate the duplication rate d from literature values. There have

been several empirical estimates of duplication rates, mostly falling

within an order of magnitude of each other [27,40–42,42–45]. We

averaged together the literature values to estimate d for each

species (Table 1).

The quantity m is not as well known. Its value relative to d has

been the topic of considerable debate [24,46–48]. Although, in

principle, m is a measurable quantity, it has proven difficult to

obtain an accurate value, in part because the fixation rate of

neofunctionalized alleles varies with population size [49,50]. In the

absence of a consensus order-of-magnitude estimate, in our model,

we treat m as a fitting parameter. Consistent with the findings of

[51] and [46], our best-fit values of m are within an order of

magnitude of each other for yeast, fruit fly, and human networks.

Best-fit parameter values are given in Table 1.

Present-day Network Topology
One test of an evolutionary model is its predictions for present-

day PPI network topologies. Current large-scale PPI data sets have

a high level of noise, resulting in significant problems with false

positives and negatives [19,52]. To mitigate this, we compare only

to ‘high-confidence’ experimental PPI network data gathered in

small-scale experiments (see Methods). We computed 10 topolog-

ical features, quantifying various static and dynamic aspects of the

networks’ global and local structures: degree, closeness, eigenval-

ues, betweenness, modularity, diameter, error tolerance, largest

component size, clustering coefficients, and assortativity. 8 of these

properties are described below (see SI for others).

The degree k of a node is the number of links connected to it. For

protein networks, a protein’s degree is the number of proteins with

which it has direct interactions. Some proteins interact with few

other proteins, while other proteins (called ‘hubs’) interact with

many other proteins. Previous work indicates that hubs have

structural and functional characteristics that distinguish them from

non-hubs, such as increased proportion of disordered surface

residues and repetitive domain structures [53]. The high degree of

a protein hub could indicate that protein has unusual biological

significance [54]. The network’s overall link density is described by

its mean degree, SkT (Table 2). The degree distribution p(k) is the

probability that a protein will have k links. PPI networks have a

few hub proteins and many relatively isolated proteins. The heavy

tail of the degree distribution shows that PPI networks have

significantly more hubs than random networks have. Simulated

and experimental degree distributions are compared in Figure 2.

(For quantitative comparisons, see SI.).

Component refers to a set of reachable proteins. If any protein is

reachable from any other protein (by hopping from neighbor to

neighbor), then the network only has one component. If there is no

path leading from protein A to B, then A and B are in different

components. The fraction of nodes in the largest component (f1) is

a measure of network fragmentation (Table 2 and Figure S3). Note

that, although silent genes (proteins with no links) exist in real

systems, these genes do not appear in data sets consisting only of

PPI’s. Therefore, calculations of f1 for all models exclude orphan

proteins (proteins with k~0).

Gene loss, the silencing or deletion of genes, is known to play an

important role in evolution. The loss of a functioning gene will

damage an organism, making the gene loss unlikely to be passed

on. The exception is if the gene is redundant. Consistent with this

reasoning, evidence suggests that many gene loss events are losses

of one copy of a duplicated gene [30,55]. Although empirical

estimates of the gene loss rate varied considerably, a consistent

finding across several studies is that the rates of gene duplication

and loss are of the same order-of-magnitude [27,41,44]. This

broad picture is in good agreement with our model. In our model,

a gene is considered lost when it has degree zero. Our model

predicts that the ratio of orphan to non-orphan proteins is

1:6+0:4 in yeast, 0:58+0:06 in flies, and 0:67+0:09 in humans.

The gene loss rate has been previously estimated to be about half

the duplication rate in both flies and humans [27,44], consistent

with our model’s prediction.

The distance between nodes i and j is defined as the number

of node-to-node steps that it takes along the shortest path to get

from node i to j. The closeness centrality of a node i, ‘i, is the

inverse of the average distance from node i to all other nodes in

the same component. The diameter, D, of a network is the

longest distance in the network. Simulated closeness distributions

are compared to experiments in Figure 3. Interestingly, proteins

have about ‘six degrees of separation’, similar to social networks

[56,57]. The closeness distributions p(‘) have peaks around

1=‘&5{7.

Another property of a network is its modularity [58]. Networks

are modular if they have high densities of links (defining regions

called modules), connected by lower densities of links (between

modules). One way to quantify the extent of modular

organization in a network is to compute the modularity index,

Q [59,60]:

Evolution of Protein-Protein Interaction Networks
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Q:
1

K

XN

i,j

Aij{
kikj

K

� �
d(ui,uj), ð1Þ

where ki and kj are the degrees of nodes i and j, ui and uj

denote the modules to which nodes i and j belong, d(ui,uj)~1

if ui~uj and d(ui,uj)~0 otherwise, and Aij~1 if nodes i and j

share a link, and Aij~0 otherwise. Q quantifies the difference

between the actual within-module link density to the expected

link density in a randomly connected network. Q ranges

between {1 and 1; positive values of Q indicate that the

number of links within modules is greater than random. The

numerical value of Q required for a network to be considered

‘modular’ depends on the number of nodes and links and

method of computation. To calibrate baseline Q values given

our particular network data, we used the null model described

in [61]. Our non-modular baseline values are Q~0:603 for the

human PPI net, Q~0:590 for yeast, and Q~0:722 for flies (see

SI). As shown in Table 2, PPI networks are highly modular,

and our simulated Q values are in good agreement with those

of experimental data.

The clustering coefficient, Ci, for a protein i, is a measure of mutual

connectivity of the neighbors of protein i. Ci is defined as the ratio

of the actual number of links between neighbors of protein i to the

maximum possible number of links between them,

Figure 1. DUNE model flowchart. At each time step, the simulated network undergoes a duplication or neofunctionalization event. Red nodes/
links indicate nodes/links that have been created by duplication during the current time step. Green links indicate links that have been created by
neofunctionalization during the current time step. A dashed line indicates a duplicated link that has been deleted during the post-duplication
divergence. Only 3 neighbors are shown for the assimilation mechanism; however, the actual simulations included up to 20th neighbors. The
simulated network evolves until its number of links (K) meets or exceeds the number of links in the data (Kdata).
doi:10.1371/journal.pone.0039052.g001
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Ci~
# edges between neighbors of node i

ki(ki{1)
: ð2Þ

In a PPI network, clustering is thought to reflect the high

likelihood that proteins of similar function are mutually connected

[62]. The average (or global) clustering coefficient, SCT, quantifies

the extent of clustering in the network as a whole. As shown in

Table 2, PPI networks have large global clustering coefficient

values; the yeast PPI network, for example, has a value of SCT
which is 45 times higher than that of a random graph of equivalent

link density. In flies and humans, our simulated networks have

SCT values in excellent agreement with the data; in yeast, our

predicted value is slightly low.

A network is said to be ‘hierarchically clustered’ if the clustering

coefficient and degree obey a power-law relation, C~k{j [63]

(Figure S1), indicating that nodes are organized into small-scale

modules, and the small-scale modules are in turn organized into

larger-scale modules following the same pattern [64]. By plotting

each node’s clustering coefficient against its degree, we observed a

trend consistent with hierarchical clustering, although data in the

tail is very limited.

The betweenness of a node measures the extent to which it

‘bridges’ between different modules. Betweenness centrality, b, is

defined as:

bi:
# shortest paths passing through node i

# total shortest paths
: ð3Þ

Betweenness has been proposed as a uniquely functionally-

relevant metric for PPI networks because it relates local and global

topology. It has been argued that knocking out a protein that has

high betweenness may be more lethal to an organism than

knocking out a protein of high degree [65]. Betweenness

distributions are shown in Figure 4.

If a network’s well-connected nodes are mostly attached to

poorly-connected nodes, the network is called disassortative. A

simple way to quantify disassortativity is by determining the

median degree of a protein’s neighbors (n) as a function of its

degree (k). Previous work has found that yeast networks are

disassortative [61]. It has been argued that disassortativity is an

essential feature of PPI network evolution, and recent modeling

efforts have heavily emphasized this feature [66,67]. However, it

was noted by [68] that disassortativity may simply be an artifact

of the yeast two-hybrid technique, and [69] pointed out that

this trend is quite different among different yeast datasets, and

in some cases is completely reversed, resulting in assortative

mixing, where high degree proteins prefer to link to other high-

degree proteins. As shown in Figure 5 and Table S1, the

empirical data shows no evidence of disassortativity in flies or

humans, and even the trend in yeast is quite weak. This

conclusion is based solely on analysis of the empirical data, and

casts further doubt on the role of disassortative mixing in PPI

network evolution.

Comparisons of simulated and experimental eigenvalue spectra

and error tolerance curves are shown in SI (Figures S7 and S8). As

discussed in SI, the various per-node network properties we have

analyzed are largely uncorrelated (Figure S9).

Evolutionary Trajectories
We now consider the question of how PPI networks evolve in

time. The present-day networks show a rich-get-richer structure:

PPI networks tend to have both more well-connected nodes and

more poorly connected nodes than random networks have. In our

model, the rich-get-richer property has two bases: duplication and

assimilation. The equal duplication chance per protein means the

probability for a protein with k links to acquire a new link via

duplication of one of its interaction partners is proportional to k.

Likewise, the probability of a protein to receive a link from the

first-neighbor assimilation probability a is proportional to its

degree k. ‘Rich’ proteins get richer because the probability of

acquiring new links rises with the number of existing links.

First, we discuss two dynamical quantities for which experi-

mental evidence exists: the rate of gene loss, and the relation

between a protein’s age and its centrality. Gene losses in our model

correspond to ‘orphan’ proteins which have no interactions with

other proteins. As shown in Figure S3, the fraction of orphan

proteins grows quickly at first, then levels off. This is consistent

with the findings of [44]: in humans, while the overall duplication

rate is higher than the loss rate, when only data from the past 200

Myr are considered, the loss rate is slightly higher than the

Table 1. Network sizes and model parameters.

Ndata Kdata d m w a

Yeast 2170 3819 0.01 7.8661024 0.555 0.690

Fly 878 1140 0.0014 5.8961024 0.866 0.546

Human 3165 5547 0.0037 7.6261024 0.652 0.727

N and K are the numbers of proteins and links, respectively. (Kdata is used to
stop the simulation. Ndata is not used as a constraint.) d and m have units of per
gene per million years (Myr). w and a are probabilities (unitless). Kdata and d are
constraints from the data, while m, w, and a are adjustable parameters. We used
Monte Carlo simulations to optimize the parameter values, by minimizing the
total symmetric mean absolute percentage error values of the simulated versus
the experimental data (see SI). Our values of m are substantially lower than d

because m is the rate of mutations leading to the creation of a new PPI (rather
than being a simple mutation rate, which would be much higher).
doi:10.1371/journal.pone.0039052.t001

Table 2. Comparison of network features.

Q D f1 ÆCæ Ækæ

Yeast data 0.75 15 0.89 0.09 3.65

DUNE 0.74(7) 17(6) 0.8(1) 0.041(9) 4.0(8)

Vázquez 0.80(4) 21(5) 0.2(1) 0.045(5) 2.6(4)

Berg 0.518(4) 12.0(7) 0.990(3) 0.0027(9) 4.10(3)

RG 0.910(3) 36(3) 0.987(6) 0.475(8) 5.31(8)

MpK 0.58(6) 24(5) 1.000(2) 0.08(3) 4.4(6)

ER 0.588(8) 13.0(9) 0.995(2) 0.002(1) 3.5(6)

Fly data 0.86 23 0.73 0.10 2.93

DUNE 0.82(2) 20(2) 0.81(3) 0.09(1) 2.36(9)

Human data 0.75 15 0.88 0.08 3.69

DUNE 0.74(6) 17(2) 0.88(4) 0.09(1) 3.7(4)

Modularity Q, diameter D, fraction of nodes in the largest component f1 , global
clustering coefficient SCT, and SkT is the average degree of proteins the
largest component. ‘Data’ is the empirical data, ‘DUNE’ is the model described
here, ‘Vázquez’ is the duplication-only model of [29], ‘Berg’ is the link dynamics
model [85], ‘RG’ is random geometric [89], ‘MpK’ is the physical desolvation
model presented in [52], and ‘ER’ is an Erdös-Rényi random graph [90].
Simulated values are the median (+ standard deviation) over 50 simulations.
(See SI for details of each model’s setup and optimization.).
doi:10.1371/journal.pone.0039052.t002
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duplication rate. In our model, after the initial rapid expansion,

the rate of gene loss stabilizes relative to the duplication rate.

We define the ‘age’ of a protein in our simulation according to

the order in which proteins were added to the network. Our model

shows that a protein’s age correlates with certain network

properties. Consistent with earlier work [70–73], we find that

older proteins tend to be more highly connected. We plotted the

‘age index’ of a protein (the time step at which the protein was

introduced) versus its centrality scores. As shown in Figure S2, the

age index negatively correlates with degree, betweenness, and

closeness centralities: older proteins tend to be more central than

younger proteins. Figure S2 shows our model’s prediction that a

protein’s age correlates with degree, betweenness, and closeness

centrality. We confirmed this prediction by following the

evolutionary trajectories of individual proteins (Figure S4). These

results are consistent with the eigenvalue-based aging method

described in [73] (Figure S5). Phylogenetic protein age estimates

indicate that older proteins tend to have a higher degree [70,73],

which our model correctly predicts. Interestingly, the eigenvalue-

based scores are only modestly correlated with other centrality

scores (0.36 degree, 0.47 betweenness, and 0.10 closeness

correlations). Using the eigenvalue method in tandem with our

centrality-based method could provide stronger age-discriminating

power for PPI networks than either method alone.

The correlation between centrality and age suggests that static

properties of present-day networks may be used to estimate

relative protein ages. Suppose each normalized centrality score

(k’:k=max (k), ‘’:‘=max (‘), b’:b=max (b)) represents a

coordinate in a 3-D ‘centrality space’. We can then define a

composite centrality score (S) as S2:(k’)2z(‘’)2z(b’)2.

Do older proteins typically have different functions than newer

proteins? We classified S. cerevisiae proteins using the GO-slim gene

ontology system in the Saccharomyces Genome Database. As shown

in Figure S6, GO-slim enrichment profiles were somewhat different

between the oldest and youngest proteins (as measured by their S
values). Several categories which were more enriched for the oldest

proteins were the cell cycle, stress response, cytoskeletal and cell

membrane organization, whereas younger proteins were overrepre-

sented in several metabolic processes. Overall, the differences were

notdramatic, suggestingthatcellularprocessesgenerallyrequireboth

central and non-central proteins to function. Consistent with this,

ancient proteins tend to be centrally located with modules, as their

betweenness values gradually decline over time (Figure S4). The

roughly linear relation betweendegree andbetweenness also suggests

that ancient proteins do not occupy structurally ‘special’ positions

within the network, such as stitching together separate modules

(Table S1 and Figure S10). This may indicate that modules tend to

accumulate around the most ancient proteins, which act as a sort of

nucleus. Thus, ancient proteins are involved in all kinds of pathways,

because they have each nucleated their own pathway.

In contrast to the two dynamical quantities discussed so far,

most structural properties of PPI networks have only been

Figure 2. Degree centrality. Degree (k) distributions in human (green), yeast (blue), and fly (red). Heavy lines are the median values from 50
simulations, and light lines are results of individual simulations. Points represent high-confidence empirical data for each organism (see Methods).
Unless otherwise noted, color coding in the same in all plots. Quantitative comparisons between simulation and experiment (for DUNE and several
other models) are detailed in SI.
doi:10.1371/journal.pone.0039052.g002
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measured for the present-day network. Although our model

accurately reproduces the present-day values of these quantities,

there is no direct evidence that the simulated trajectories are

correct; rather, these are predictions of our model. Figure 6 shows

that both modularity Q and diameter D increase with time. These

are not predictions that can be tested yet for biological systems,

since there is no time-resolved data yet available for PPI evolution.

Time-resolved data is only currently available for various social

networks (links to websites, co-authorship networks, etc.). Inter-

estingly, the diameters of social networks are found to shrink over

time [74]. Our model predicts that PPI networks differ from these

social networks in that their diameters grow over time. In addition

to Q and D, we tracked the evolutionary trajectories of several

other quantities: the evolution of the global clustering coefficient,

the rate of signal propagation, the size of the largest connected

component (Figure S3), as well as betweenness and degree values

for individual nodes (Figure S4). See SI for details.

Discussion

The relevance of selection to PPI network evolution has been a

topic of considerable debate [75], particularly in the context of

higher-order network features, such as modularity. A number of

authors have argued that specific selection programs are required

to generate modular networks, such as oscillation between

different evolutionary goals [76–81]. However, previous work

has shown that gene duplication by itself, in the absence of both

natural selection and neofunctionalization, can generate modular

networks [82,83]. Consistent with the findings of [82,83],

modularity in our model is primarily generated by gene

duplications (Figure S11; see SI for sensitivity analysis). Unfortu-

nately, duplication-only models err in their predictions of other

network properties (Tables 2 and S2; Figure S12). A well-known

problem with duplication models is that they generate excessively

fragmented networks, with only about 20% of the proteins in the

largest component. This is in sharp contrast to real PPI networks,

which have 73% to 89% of their proteins in the largest

component. Neofunctionalization-only models have most of their

proteins in the largest component, but are significantly less

modular than real networks. As shown in Table 2, by modeling

duplication and neofunctionalization simultaneously, the DUNE

model generates networks which have the modularity found in

duplication-only models, while retaining most proteins in the

largest component. This lends support to the idea that gene

duplication contributes to the modularity found in real biological

networks, and that protein modules can arise under neutral

evolution, without requiring complicated assumptions about

selective pressures. This is consistent with recent experimental

work characterizing a real-world fitness landscape, showing that it

is primarily shaped by neutral evolution [84].

Previous estimates of NE rates in eukaryotes have varied widely,

generally falling in the range of 100 to 1000 changes/genome/

Myr [24,46,85], or on the order of 0.1 change/gene/Myr.

However, more recent empirical work has identified several

problems with the methods used to obtain these estimates,

suggesting that de novo link creation is much less common than

previously thought [48]. This is consistent with our model. The

best-fit values of our NE rate m are in the range of 10{5 to 10{4/

gene/Myr (Table 1), which in all three organisms are considerably

slower than the duplication rates d .

Biologically, many of the interactions created by our neofunc-

tionalization mechanism are expected to initially be weak, non-

functional interactions. The results of [86] suggest that strong

Figure 3. Closeness centrality. (A) Closeness (‘) distributions in human (green), yeast (blue), and fly (red). Heavy lines are the median values from
50 simulations, and light lines are results of individual simulations. (B) Examples of networks with low average closeness S‘T~0:06 (top; each node is
generally far away from most other nodes because there are no ‘short cuts’) and high average closeness S‘T~0:28 (bottom; the random connections
allow each node to be only a short distance from the other nodes). Note that both networks pictured here have the same number of nodes (N~100)
and roughly the same average degree (top: SkT~4, bottom: SkT~3:7).
doi:10.1371/journal.pone.0039052.g003
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functional interactions are correlated with hydrophobicity, which

in turn is correlated with promiscuity. We posit that initially weak,

non-functional interactions are an essential feature of PPI

evolution, as they provide the ‘raw material’ for the subsequent

evolution of functional interactions. If this reasoning is correct, one

consequence should be that hub proteins are, on average, more

important to the cell than non-hub proteins. This has been found

to be true: both degree [54] and betweenness centrality [65] have

positive correlations with essentiality, indicating that hub proteins

are often critical to the cell’s survival.

We have described here a model for how eukaryotic protein

networks evolve. The model, called DUNE, implements two

biological mechanisms: (1) gene duplications, leading to a

superfluous copy of a protein that can change rapidly under new

selective pressures, giving new relationships with other proteins

and (2) a protein can undergo random mutations, leading to

neofunctionalization, the de novo creation of new relationships with

other proteins. Neofunctionalization can lead to assimilation, the

formation of extra novel interactions with the other proteins in the

target’s neighborhood. Biological evidence suggests that this type

of mechanism exists. Our specific implementation is based on a

simple geometric surface-compatibility argument for the observed

transitivity in PPI networks. This is, of course, a heavily simplified

model of PPI network evolution, and there are many biological

factors which have not been included. However, our relatively

simple model shows good agreement with 10 topological

properties in yeast, fruit flies, and humans. One finding is that

PPI networks can evolve modular structures, just from these

random forces, in the absence of specific selection pressures. We

also find that the most central proteins also tend to be the oldest.

This suggests that looking at the structures of present-day protein

networks can give insight into their evolutionary history.

Methods

Genome-wide PPI screens have a high level of noise [19], and

specific interactions correlate poorly between data sets [52]. We

found that several large-scale features differed substantially between

types of high-throughput experiments (see SI). Due to concerns about

theaccuracyandprecisionofdataobtainedthroughhigh-throughput

screens, we chose to work with ‘high-confidence’ data sets consisting

only of pairwise interactions confirmed in small-scale experiments,

which we downloaded from the public HitPredict database [87]. We

found sufficient high-confidence data in yeast (S. cerevisiae), fruit flies

(D. melanogaster), and humans (H. sapiens).

All simulations and network feature calculations were carried

out in Matlab. Our scripts are freely available for download at

http://ppi.tinybike.net. We computed betweenness centralities,

clustering coefficients, shortest paths, and component sizes using

the MatlabBGL package. Modularity values were calculated with

the algorithm of [88]. All comparisons (except the degree

distribution) are between the largest connected components of

the simulated and experimental data.

Due to the human network’s somewhat larger size, most

dynamical features were calculated once per 50 time steps for the

Figure 4. Betweenness centrality. Betweenness (b) distributions in human (green), yeast (blue), and fly (red). Heavy lines are the median values
from 50 simulations, and light lines are results of individual simulations.
doi:10.1371/journal.pone.0039052.g004
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Figure 5. Assortativity. Median nearest-neighbor degree vs. degree in human (green), yeast (blue), and fly (red). Heavy lines are the median values
from 50 simulations, and light lines are results of individual simulations.
doi:10.1371/journal.pone.0039052.g005

Figure 6. Modularity and diameter. (A) Modularity Q and (B) diameter D are both predicted to grow with time in human (green), yeast (blue),
and fly (red). Light lines indicate the evolutionary trajectories of 50 individual simulations, and the heavy line is the median value. The modularity and
diameter of the empirical data are shown as dashed horizontal lines. Time traces occasionally do not start at t~0 because these simulations spend
the first few time steps in a completely disconnected state, so the dynamical quantities are undefined. (See Figure 9 for other dynamical plots.).
doi:10.1371/journal.pone.0039052.g006
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human network, but were updated at every time step in the yeast

and fly networks. For dynamical plots, the y coordinates of the

trend line are medians-of-medians. The amount of time elapsed

per time step (the x coordinate) varies between simulations. We

binned the time coordinates to the nearest 10 million years for

yeast and fly, and 25 million years for human. When multiple

values from the same simulation fell within the same bin, we used

the median value. We then calculated the median value between

simulations. Scatter plot trend lines are calculated in a similar way.

The trend line represents the median response variable (C, b, or ‘)
value over all nodes within a single simulation with degree k. The

y coordinate of the trend line is therefore the median (across 50

simulations) of these median response variables. This median-of-

medians includes all simulations that have nodes of a given degree.

Supporting Information

File S1 Supporting information text.

(PDF)

Figure S1 Hierarchical clustering. Median clustering coef-

ficient vs. degree in human (green), yeast (blue), and fly (red).

Heavy lines are the median values from 50 simulations, and light

lines are results of individual simulations.

(TIF)

Figure S2 Older proteins are more central. Simulations of a

protein’s age index (time since introduction into the network) vs.

degree (k), betweenness (b), and closeness (‘) centrality, for human

(green), yeast (blue), and fly (red). The oldest proteins are on the left in

this figure, and the proteins get younger moving to the right. There is

an approximately monotonic increase in centrality with age.

(TIF)

Figure S3 Dynamical features. Shown are the evolution of

(A) the largest component size, (B) the fraction of orphan proteins,

(C) the global clustering coefficient, and (D) the second-largest

eigenvalue of the walk matrix, in human (green), yeast (blue), and

fly (red). Light lines indicate the evolutionary trajectories of 50

individual simulations, and the heavy line is the median value.

Empirical data values are shown as a dashed line, where available.

(TIF)

Figure S4 Individual protein centrality scores. Evolution

of degree (A) and betweenness (B) for proteins introduced to the

network at different times in humans (top), yeast (middle), and flies

(bottom). The 1st protein (one of the two initial proteins) is shown

in red, the 6th protein in black, the 11th protein in blue, and the

101st protein in green. Curves are median values from 50

simulations.

(TIF)

Figure S5 Laplacian eigenvector participation. Elements

of the eigenvector of the Laplacian matrix (defined as K{A,

where K is a diagonal matrix with the degree of node i as element

Kii) associated with the largest eigenvalue vs. protein age index

(time of introduction) in the yeast simulation. Details of this

method are discussed in [73]. Heavy lines are the median values

from 50 simulations, and light lines are results of individual

simulations. The inset plot shows the trend line with a rescaled y-

axis.

(TIF)

Figure S6 GO-slim profiles. Shown are profiles for the 100

oldest and 100 youngest proteins, as measured by S-value, in the

yeast PPI network.

(TIF)

Figure S7 Walk matrix eigenvalues. Shown are eigenvalue

(l) distributions in human (green), yeast (blue), and fly (red). Heavy

lines are the median values from 50 simulations, and light lines are

results of individual simulations.

(TIF)

Figure S8 Error tolerance. Shown are error tolerance curves

in human (green), yeast (blue), and fly (red). Circles indicate

proteins deleted randomly, and squares indicate proteins deleted

starting with the most well-connected protein and removing

proteins in descending order.

(TIF)

Figure S9 Principal component analysis. Shown are the

factor loadingsandscoreson the first twoprincipal components.Data

scores are shown in red, and blue lines represent feature loadings.

(TIF)

Figure S10 Betweenness vs. degree. Shown are median

betweenness vs. degree values in human (green), yeast (blue), and

fly (red). Heavy lines are the median values from 50 simulations,

and light lines are results of individual simulations.

(TIF)

Figure S11 Sensitivity analysis. Heat maps represent

median values for 10 simulations per parameter combination of

the yeast network. Left: w and a are varied, d and m values are kept

fixed. Right: d and m varied, w and a kept fixed.

(TIF)

Figure S12 Model comparison. Comparison of five other

models to the yeast PPI network: Vázquez [29] (green), Berg [85]

(red), random geometric [89] (dark blue), MpK desolvation [52]

(purple), and ER random graph [90] (brown). For reference,

DUNE model results are shown as a black line. Dots represent

high-confidence experimental yeast data, and solid lines are

median values over 50 simulations.

(TIF)

Table S1 Scaling exponents. Distributional exponents

(p(k)*k{c, p(b)*b{b) were estimated using the maximum

likelihood method of [91]. Other exponents (C*k{j, b*ka,

n*k{d) were estimated using nonlinear regression. Due to the

relatively small sizes of the data sets, there is considerable

uncertainty in these estimates.

(PDF)

Table S2 SMAPE values. Symmetric mean absolute percent-

age error (SMAPE) of simulation versus experiment in yeast (Eq.

??). ‘E.T.’ is the error tolerance curve with random protein

removal, and ‘E.T. (k)’ is the error tolerance curve with highest-

degree proteins removed first. ‘DUNE’ is the model described

here, ‘Vázquez’ is the DU-only model of [29], ‘Berg’ is the link

dynamics model [85], ‘RG’ is random geometric [89], ‘MpK’ is

the physical desolvation model presented in [52], and ‘ER’ is an

Erdös-Rényi random graph [90]. For each comparison, the lowest

value is shown in bold.

(PDF)
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