Are Catfish Inspections an Administrative Barrier to Imported Fish?

> Kelly A. Davidson Dr. Jaclyn D. Kropp

Overview

"Catfish Wars" USDA Catfish Inspection Program Methodology Preliminary Results Discussion/Suggestions

Catfish Trade Disputes

Photo Source: New York Times, 2013

USDA Catfish Inspection Program

FSIS will visit production and processing facilities Exporting countries must prove equivalent standards

USDA Catfish Inspection Program

• Who is responsible?

USDA Catfish Inspection Program

• What is catfish?

Photo Source: Fishbase.org Joe Margiotta

 Agricultural Act of 2014
 "All fish of the order Siluriformes" MOU between FDA and USDA

Literature

- Duc, 2010
 - Equilibrium displacement model and time series analysis of import demand and export supply
 - U.S. antidumping duty on Vietnamese catfish and effects of the Byrd Amendment
- Sumner and Lee, 1997
 - Technical trade barriers such as inspections that add a percentage cost to production can be treated as an ad valorem tariff in EDM

Literature

- Kinnucan, 2003
 - Ex-ante analysis of U.S. anti-dumping duty on Vietnamese catfish
 - Equilibrium displacement model of import demand and domestic market
- Kinnucan and Myrland, 2002
 - Norway-EU salmon export tax agreement
 - Equilibrium displacement model

Model Assumptions

- Homogeneous product: catfish and catfish-like frozen fillets
 - Undifferentiated by supply source
- Law of one price
- Strictly separable from all other goods

Photo Source: http://www.campbellskitchen.com/

• US and Vietnam are large nations

Large Nation Trade Impact

EDM Equations

 $D = D(P_{US})$ $S = S(P_{US})$ $M_V = M_V(P_{US}, A_V)$ $M_R = M_R(P_{US}, A_R)$ $P_{US} = P_{US}(P_V, A_V) = P_V + A_V$ $D = S + M_V + M_R$

D, US demand S, US supply $M_{\rm V}$, Imports from Vietnam M_R , Imports from ROW $P_{\rm US}$, US price $P_{\rm V}$ Vietnamese price A_i, Percentage cost of compliance

Comparative Statics Log Differential Form

$$D^* = -\eta_{US} P_{US}^*$$

$$S^* = \varepsilon_{US} P_{US}^* + \varepsilon_{US,A} A_{US}^*$$

$$M_V^* = \varepsilon'_V P_V^*$$

$$M_R^* = \varepsilon'_R P_{US}^* + \varepsilon'_{R,A} A_R^*$$

$$P_{US}^* = (1 - \alpha_V) P_V^* + \alpha_V A_V^*$$

$$D^* = k_{US} S^* + k_V M_V^* + k_R M_V^*$$

*Represents change (dX/X)

η, ε are respective elasticities

$$\alpha = A_V / (1 + A_v)$$

 $k_i = M_i / D$

U.S. Catfish Imports by Country, 2014

Assume US and ROW will not be affected by the change in compliance cost $A_{R}^{*}, A_{US}^{*} = 0$

Simulation bounds for the change in compliance cost for Vietnam Low: 10% Medium: 50% High: 100%

		LOW	MEDIUM	HIGH
Elasticity of Demand	η_{us}	0.71	1.42	2.13
Elasticity of Supply	ε _{us}	0.73		
Export Elasticity Vn	ε _V	1.0	2.0	3.0
Export Elasticity ROW	ε _R	2	6	10
% Change in Compliance Cost	A*	0.10	0.50	1.0
% Change in US Price	P [*] _{US}	0.005	0.11	0.34
% Change in Vn Price	P^*_{V}	-0.004	-0.09	-0.31
% Change in US Demand	D*	-0.004	-0.15	-0.74
% Change in US Supply	S*	0.004	0.08	0.25
% Change in Imports from Vietnam	M^*_{V}	-0.004	-0.18	-0.92
% Change in Imports from ROW	M_{R}^{*}	0.01	0.63	3.47

Further Research

- Welfare analysis
 - Per-unit cost vs. percentage increase
 - Prohibitive case
 - Changes in cost to US and ROW
 - Demand changes (substitution to tilapia, safety preferences)
- Estimation of elasticities data?
 - Production costs for Vietnam
 - Compliance costs
- Is shrimp next in the food safety regulation change?

Thank you!

Literature

- Asche, 2001
 - Analysis of U.S. Anti-dumping Duty on Norwegian Salmon by testing for structural breaks in price
- Brambilla, Porto, Tarozzi, 2010
 - Household-level analysis of U.S. antidumping duties on Vietnamese catfish
 - Year and household fixed-effects

Inspection Cost Trade Theory

