Carlos C. Sanz for the degree of \qquad Master of Science
in \qquad Chemical Engineering presented on March 15, 1985.

Title: Strategies for Process Flowsheeting
Abstract approved: Redacted for privacy

Two packages of subroutines were developed to perform material balances on chemical processes using the simultaneous modular approach and the equation-based approach. The performances of these packages were compared for five different processes under at least two conditions: one with no design specifications, and one with two or more design specifications.

The equations arising from chemical process simulation using the simultaneous modular approach and equation-based approach are nonlinear. Therefore, two subroutines were developed to solve systems of nonlinear equations using a modification of Powell's dogleg method as proposed by Chen and Stadtherr. One of the nonlinear solver subroutines uses sparse matrix techniques and updates the Jacobian through Schubert's formula. The other uses full matrix techniques and the Jacobian is updated through Broyden's formula. Both subroutines were tested with five problems and the results compared.

The results obtained with the two packages of subroutines and the nonlinear solver subroutines compared well with similar problems from the open literature.

Strategies for Process Flowsheeting

by

Carlos C. Sanz

A THESIS
submitted to
Oregon State University
in partial fulfillment of the requirements for the degree of

Master of Science

Completed March 15, 1985
Commencement June 1985

Redacted for privacy

Chairman of Chemical Engineering Department

Redacted for privacy

Dean of Graduat $/$ /school

Date thesis is presented \qquad
Typed by Meredith Turton for

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to Dr. Aydin Konuk for his guidance and help throughout this work and, most importantly for his friendship.

For the financial support, I am indebted to the Chemical Engineering department (Teaching Assistantship, 1983-84) and to Itau S.A. Planejamento e Engenharia (Scholarship, 1982-85). I am also indebted to Milne Computer Center; without the grant they awarded to me I could not perform the extensive computer work required by this thesis.

I am thankful to all my professors at Oregon State University -- Dr. J. Frederick, Dr. L. Garrison, Dr. J. Knudsen, Dr. O. Levenspiel, Dr. R. Mrazek and Dr. C. Wicks -- for sharing part of their knowledge with me. In addition, I am thankful to Dr. K.L. Levien for the numerous suggestions, and the effort he put forth in getting this thesis in shape!

Finally, and most importantly, I am indebted to my parents, Cesar and Margarita, my parents in the U.S.A., Dorothy and Carlo Rocca, and (yes, I took my vitamins) to Angela, for their understanding, patience and love throughout the course of this study. Certainly the telephone company will miss me.

TABLE OF CONTENTS

Page
INTRODUCTION 1
I. BACKGROUND 3
The Sequential Modular Approach 3
The Simultaneous Modular Approach 13
The Equation-Based Approach 16
II. SOLVING SETS OF NONLINEAR EQUATIONS 25
Successive Substitution Method 25
Wegstein's Method 26
Newton-Based Methods 34
Implementation of MPDLM1 and MPDLM2 42
Performance of MPDLM1 and MPDLM2 52
III. IMPLEMENTATION OF SIMD AND EQSS 59
SIMO Library 59
Subroutines to Solve Nonlinear Equations 60
Equipment Modules 63
Support Subroutines 64
Interconnection of the Subroutines 69
Example III-1 69
EQSS Library 78
Equipment Modules 78
Support Subroutines 87
Interconnection of the Subroutines 92
Page
IV. PERFORMANCE OF EQSS AND SIMO 96
IV-1 Cavett's Four Flash-Unit Problem 98
IV-2 Ammonia Plant Simulation 105
IV-3 Ethanal Production 113
IV-4 Nitric Acid Plant 127
IV-5 Gasoline Recovery 140
Final Remarks on Chapter IV 148
v. CONCLUSIONS 150
Future Work 151
BIBLIOGRAPHY 154
APPENDICES
Appendix A 157
Appendix B 162
Appendix C 175

LIST OF TABLES

Tables Page
II-1 Performance of Nonlinear Solvers (Number of 55 Functions Evaluations)
II-2 Initial Values and Solution of the 3 Effect 57 Evaporator Problem
III-1 Possible Initial Guesses for Example III-1 70
III-2 Values of Vector ID for a Given Equipment 88 Module
IV-1 Summary of Test Problems 98
IV-2 Feed Composition and K-Values Used in Cavett's 100 Problem
IV-3 Results for Cavett's Problem 101
IV-4 Main Programs Used to Simulate Cavett's Problem 103
IV-5 Solution of Cavett's Problem 104
IV-6 Feed and K-Values for the NH_{3} Plant Problem 107
IV-7 Results for the NH_{3} Plant Problem 108
IV-8 $\begin{aligned} & \text { Main Programs Used to Simulate the } \\ & \text { Problem }\end{aligned} \mathrm{NH}_{3}$ Plant 109
IV-9 Solution of the NH_{3} Plant Problem 110
IV-10 Results for the NH_{3} Plant Problem with One 111 Design Specificatión
IV-11 Sequential Iterations Required by SECNEW 112
$\begin{array}{ll}\text { IV-12 } & \begin{array}{l}\text { Solution of the } \\ \text { Design } \\ \text { Dpecificationn }\end{array}\end{array}$ 114
IV-13 Main Programs Used to Simulate the NH_{3} plant 115
IV-14 Results for the Ethanal Plant Problem 119
IV-15 Main Programs Used to Simulate the Ethanal 120 Plant Problem
IV-16 Solution of the Ethanal Plant Problem 121
IV-17 Results for the Ethanal Plant Problem with 122 One Design Specification
IV-18 Main Programs Used to Simulate the Ethanal Plant 123 Problem with One Design Specification
IV-19 Solution of the Ethanal Plant Problem with One 124 Design Specification
IV-20 K-Values and Main Program Used to Simulate the 125 Modified Ethanal Plant Problem
IV-21 Solution of the Modified Ethanal Plant Problem 126
IV-22 Results for the Modified Ethanal Plant Problem 127
IV-23 Reactions in the Nitric Acid Plant Problem 130
IV-24 Separation Fractions as Percent of Individual 130 Input Flow Rate
IV-25 Results for the Nitric Acid Plant Problem 131
IV-26 Main Programs Used to Simulate the Nitric Acid 132 Plant Problem
IV-27 Solution of the Nitic Acid Plant Problem 133
IV-28 Results for the Nitric Acid Plant Problem with 134 One Design Specification
IV-29 Main Programs Used to Simulate the Nitric 135
Acid Plant Problem with One Design Specification
IV-30 Solution for the Nitric Acid Plant Problem with 136 One Design Specification
IV-31 Design Specifications for the Nitric Acid Plant 137 Problem
IV-32 Results for the Nitric Acid Plant Problem with 137 Seven Design Specifications
IV-33 Main Program Used to Simulate the Nitric Acid 138
Plant Problem with Seven Design Specifications
Table Page
IV-34 Results for the Gasoline Recovery Problem 142
IV-35 Main Programs Used to Simulate the Gasoline 143 Recovery Problem
IV-36 Solution for the Gasoline Recovery Problem 144
IV-37 Results for the Gasoline Recovery Problem with 142 One Design Specification
IV-38 Main Programs Used to Simulate the Gasoline 146 Recovery Problems with One Design Specification
IV-39 Solution for the Gasoline Recovery Problem 147 with One Design Specification
IV-40 Iteration Ratios 148
IV-41 CPU-Time Ratios 149
Appendix B
B-1 Correction Step as a Function of λ 166
B-2 Results for the System of Equations (12) 174

LIST OF FIGURES

Figure		Page
I-1	Example of Simple Modules for the Sequential Modular Approach	4
I-2	Simple Flowsheet	5
I-3	Simple Flowsheet with a Recycle Stream	7
I-4	Block Diagram of the Strategy Used to Simulate Processes with Design Specifications	11
I-5	Jacobian of the System of Equations I-8a through I-8p	20
II-1	Successive Substitution Method: Block Diagram and Graphical Representation	27
II-2	The Wegstein Method: Block Diagram	29
II-3	The Wegstein Method: Graphical Representation	30
II -4a	```Results for Wegstein's Method with Cavett's Problem```	32
II-4b	Results for Wegstein's Method with Cavett's Problem	33
II-5	The Newton-Raphson Method: Block Diagram	36
II-6	Ammonia Plant Block Diagram	44
II-7	Typical Jacobian Generated when Solving Nonlinear Equations Arising from the Simultaneous Modular Approach	46
II-8	Typical Jacobian Generated when Solving Nonlinear Equations Arising from the Equation-Based Approach	47
II-9	Block Diagram of the Modified Newton-Raphson Method Used in This Work	53
II-10	Block Diagram of the 3 Effect Evaporator Problem	56
III-1	Graphical Representation of the Method Used in SECNEW to Solve Nonlinear Equations	62

Figure Page
III-2 Graphical Representation to the Subroutine 65 Used with the Simultaneous Modular Approach
III-3 Example of a Data File Used with SIMO 66
III-4 Block Diagram of Example III-1 71
III-5 Hierarchy of SIMO Subroutines 76
III-6 Most Important Operations Performed by SIMO 77 for Example III-1
III-7 Example of a Data File Required by SREAD 89
III-8 Flow of Information Inside EQSS 93
IV-1 Block Diagram of Cavett's Problem 99
IV-2 Block Diagram of the Ammonia Plant 106
IV-3 Block Diagram of the Ethanal Plant 117
IV-4 Block Diagram of the Nitric Acid Plant 128
IV-5 Block Diagram of the Gasoline Recovery 141 Plant
Appendix B
B-1 Typical 2-Dimensional $P(\lambda)$ Curve in the 167 L-M Method
B-2 Typical Dogleg Approximation to the 168 $P(\lambda)$ Curve

STRATEGIES FOR PROCESS FLOWSHEETING

INTRODUCTION

Computer programs to simulate chemical processes are widely used in industry for a number of purposes. Important uses include: the design of new plants, optimization of new and existing plants and, more recently, optimal control of processes and the training of plant personnel.

The use of computer programs in the chemical industry started in the mid-fifties with programs written to perform mass and energy balances around single units, such as distillation columns, evaporators, flash drums, etc. As computers became faster and capable of greater storage, the programs written for single units were integrated to simulate entire processes.

The beginning of the widespread use of computers to simulate chemical processes started in the early sixties. At the same time, the literature in the area started to flourish; examples of it are today's "classical" articles by Rosen (1962) and Cavett (1963). During the sixties and seventies, the chemical industry invested heavily in this field. Today, there are thousands of articles in the open literature, and some journals are specific to this field. However, 90 percent of the articles are concerned with one specific solution method: the sequential modular approach.

Recently, two other approaches have received considerable attention: the equation-based approach and the simultaneous modular approach.

In this work, two packages of subroutines were developed to perform simulations of processes through the equation-based approach and the simultaneous modular approach. Another package of subroutines, SIMFLOW (Kayihan, 1979), was slightly modified and used to simulate processes through the sequential modular approach.

The aim of these packages is to serve as a teaching aid to sophomore-level stoichiometry classes, thus, only material balances are considered. In addition, we intend to verify some of the results reported in the literature on the performance of various simulation methods.

Chapter I presents a review of the three methods; the equation-based approach, the simultaneous modular approach, and the sequential modular approach. Chapter II presents the basic methods to solve systems of nonlinear equations. Chapter III presents the structure of the libraries developed for the equation-based approach and for the simultaneous modular approach. In Chapter IV, five test problems are solved using all three approaches and results are compared. Chapter V presents the conclusions and the future work. In addition, there are appendices with listings of all programs (libraries), a short description of a modification of an algorithm used to solve nonlinear equations, and the equations describing material balances used in the sequential modular approach.

CHAPTER I

BACKGROUND

The Sequential Modular Approach

The sequential modular approach uses a library of unit operations modules (subroutines) which perform material and energy balances. The modules are written so that each calculates its output stream(s) variables, given its input stream(s) variables and any other parameters required (see figure I-1).

To simulate an entire process, or a portion of it, all modules describing the process are executed one after the other, following a specific order. Figure I-2 shows a simple flowsheet which will exemplify how the sequential modular approach functions.

In the example shown in figure $I-2, F_{i}$ represents a vector of stream variables: total molar flow rate, mole fraction of each component, enthalpy, temperature and pressure. For each specific case studied, a subset of those variables will be used. In addition, each piece of equipment may require a set of equipment parameters. In the example of figure $I-2, \gamma_{I}$ is the conversion of a reactant and k_{j} is the equilibrium constant for the $j \underline{\text { th }}$ component in the flash drum. Assuming that γ_{I}, k_{J}, and F_{l} are known, our task is to calculate F_{2}, F_{3}, and F_{4}.

Both modules, reactor and flash, are written so that the output stream variables are calculated, provided that the input stream and equipment parameters are known. In our example, one would first

REACTOR

Figure I-1. Example of Simple Modules for the Sequential Modular Approach

FLASH

$$
\begin{aligned}
& Y_{i}=\text { CONVERSION } \\
& K_{i}=\text { EQUILIERIUM CONSTANT }
\end{aligned}
$$

Figure I-2. Simple Flowsheet
calculate stream F_{2} using the reactor module and then streams F_{3} and F_{4} using the flash module. It looks (and it is!) very simple because that is the natural order of calculations we would follow if we were to perform those calculations by hand. This characteristic of the sequential modular approach (following the natural order of calculations) is one of the main reasons for its popularity among process engineers. Given a process, it is easy to build a computer model of the entire process using 10-20 different modules.

What makes process simulation difficult are recycle streams. Figure I-3 shows a slight modification of the process from figure I-2. Now we have stream F_{4} as a recycle, and a mixer is added.

As in the previous example, stream F_{1}, γ_{I}, and k_{J} are known. However, none of the streams entering a module are fully known. Although stream F_{1} is specified, we cannot perform mixer calculations because stream F_{4} is not known.

One way to solve the problem would be to "guess" all stream variables F_{2}, perform reactor, flash, and mixer calculations and compare the guessed and calculated values of F_{2}. If the guessed value agrees with the calculated value (within a certain tolerance), the solution has been found. Otherwise, a new guess would be given. This routine continues until a solution is found. It is clear that the method is awkward. It is feasible only if there are a few components and one recycle stream. With two or more recycle streams and 10-15 components, the method is impossible. In the previous example, stream F_{2} is known as the tear stream. There are several

Figure I-3. Simple Flowsheet with a Recycle Stream
algorithms to choose the best tear stream; an excellent review may be found in Hlavacek (1977).

To overcome the problem of guessing new values, one has to remember that the process is described mathematically by a series of equations. In our example, we have:

$$
\begin{align*}
& F_{3}=\psi_{1}\left(F_{2}\right) \tag{I-la}\\
& F_{4}=\psi_{2 a}\left(F_{3}\right) \tag{I-lb}\\
& F_{5}=\psi_{2 b}\left(F_{3}\right) \tag{I-1c}\\
& F_{2}=\psi_{3}\left(F_{1}, F_{4}\right) \tag{I-ld}
\end{align*}
$$

Ψ_{1}, Ψ_{2}, and Ψ_{3} are functions relating output streams with input streams and equipment parameters. Clearly Ψ_{1}, Ψ_{2}, and Ψ_{3} are series of calculations performed by the reactor, flash and mixer modules. If we use equation I-la to eliminate F_{3} from equation I-1b, and equation I-lb to eliminate F_{4} from equation I-ld, we get:

$$
\begin{equation*}
F_{2}=\Psi_{3}\left(F_{1}, \Psi_{2 a}\left(\Psi\left(F_{2}\right)\right)\right) \tag{I-2a}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{2}=\psi_{4}\left(F_{1}, F_{2}\right) \tag{I-2b}
\end{equation*}
$$

Equation I-2b is actually a set of nonlinear equations, called stream connection equations, which can be solved using various methods. Most commercial programs using the sequential modular approach use the method proposed by Wegstein (1958). Wegstein's method is very popular because, to use the method, the equation
being solved must be in the form of $X=F(X)$; the stream connection equations are naturally in this form. In addition, the method converges quickly to the solution, provided that the system of equations has only mild nonlinearities, and each equation of the system is dominated by one variable (Westerberg et al., 1979).

The drawback of Wegstein's method appears when the simulation is a "controlled" simulation (or, simulation with constraints). In a controlled simulation, we allow one or more variables to be "free" to meet some design specification. Let us suppose that we want the flow rate (W) in the vector of variables F_{4} to be equal to some value C. To meet this specification, γ_{I} is a free variable. Now the system of equations becomes:

$$
\begin{align*}
& F_{3}=\Psi_{1}\left(F_{2}, \gamma_{r}\right) \tag{I-3a}\\
& F_{4}=\Psi_{2 a}\left(F_{3}\right) \tag{I-3b}\\
& F_{5}=\Psi_{2 b}\left(F_{3}\right) \tag{I-3c}\\
& F_{2}=\Psi_{3}\left(F_{1}, F_{4}\right) \tag{I-3d}\\
& W=\Psi_{4}\left(F_{2}, \gamma_{I}\right)=c \tag{I-3e}
\end{align*}
$$

The system is reduced to:

$$
\begin{equation*}
F_{2}=\psi_{5}\left(F_{1}, F_{2}, \gamma_{r}\right) \tag{I-4a}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{2}=\psi_{5}\left(F_{2}, \gamma_{r}\right) \text { for specified } F_{1} \tag{I-4b}
\end{equation*}
$$

and

$$
\begin{equation*}
W=\Psi_{4}\left(F_{2}, \gamma_{r}\right)=C \tag{I-4C}
\end{equation*}
$$

Wegstein's method can be applied to equation I-4b, stream connection equations; however, equation I-4c, the design specification equation, is not in the form required by Wegstein's method, that is, $X=F(X)$.

To overcome this problem, two levels of iterations are used. One is internal, and the free variable γ_{r} is assumed known. The other is external, and γ_{I} is manipulated in order to satisfy equation I-4c. Typically, two different nonlinear solver subroutines are used. For example: equation I-4c will be solved using the secant method and equation I-4b using Wegstein's method. A block diagram of this strategy is shown in figure I-4.

The internal level of iterations solves stream connection equations using Wegstein's method where the unknowns are the tear variables. The external level solves design specifications equations (in the example, γ_{I} is the unknown) using the secant method.

Actually Wegstein's subroutine solves a series of different simulation problems without constraints; each problem has a specific value for γ_{r} updated by the external secant iterations. If Wegstein's method performs an average of M iterations per secant iteration to converge the tear stream, and the secant subroutine performs K iterations for the convergence of the design variable, the total number of flowsheet evaluations will be $L=M * K$.

Figure I-4. Block Diagram of the Strategy Used to Simulate Process with Design Specifications

Depending on the complexity of the process and the initial guesses given, the total number of flowsheet evaluations may be prohibitively high.

Another approach used is to insert a control module. The control module behaves like a PID controller. The set point of the control module will be the design specification imposed on the system. After each iteration, the control module checks the error. Depending on the error's magnitude, the control module will change the manipulated variable (free variable) according to pseudo-PID parameters used. More details about the control module may be found in Westerberg et al., 1979.

Although the handling of design constraints is difficult and time-consuming, the sequential modular approach for process simulation is widely used. As Chen (1982) pointed out, the main reasons for the success of the sequential modular approach are:

1. The computer model of the process and the actual flowsheet are closely related, and it is easy for the process engineer to write the program used by the computer.
2. Each module is written to "stand alone" so it can be thoroughly tested, and the module can be very efficient and robust.
3. Special programs for the different types of equipment or nonstandard equipment can be easily incorporated into the package of subroutines.
4. It is very easy to implement; it does not require much computer storage (besides that required by each module).

A more complete overview of the sequential modular approach may be found in Westerberg et al. (1979) and Myers et al. (1976).

The Simultaneous Modular Approach

The simultaneous modular approach, as it will be defined in this work, does not differ much from the sequential modular approach. The modules used will be the same modules used in the sequential modular approach. However, the Newton-Raphson method (or a modification of it) will be used to solve the set of nonlinear equations.

In order to use the Newton-Raphson method, the set of nonlinear equations should be in the form

$$
\begin{equation*}
G(x)=0 \tag{I-5}
\end{equation*}
$$

For example, to solve equations I-4b and I-4c, one simply rearranges these equations to:

$$
\begin{align*}
& G_{1}\left(F_{2}, \gamma_{I}\right)=F_{2}-\psi_{5}\left(F_{2}, \gamma_{I}\right)=0 \tag{I-5a}\\
& G_{2}\left(F_{2}, \gamma_{I}\right)=c-\psi_{4}\left(F_{2}, \gamma_{I}\right)=0 \tag{I-5b}
\end{align*}
$$

Now both equations can be solved using the Newton-Raphson method, and only one nonlinear solver subroutine will be used. It is easy to see that we can add any constraint to the problem, provided that the constraint has a physical meaning. In short,
stream connection equations (I-5a) and design specifications (I-5b) are solved simultaneously, instead of using two levels of calculations. It should be emphasized that the unknowns in equation I-5a (stream connection equations) are the tear variables. The non-tear stream variables do not appear as unknowns in equation I-5a.

Let μ be a vector of equipment parameters, C a vector of constraints, and T a vector of tear streams. With the simultaneous modular approach, any process simulation is arranged to be the solution of a set of nonlinear equations in the form:

$$
\begin{equation*}
G\left(T_{i}, \mu_{k}, C_{k}\right)=0 \tag{I-6}
\end{equation*}
$$

This approach was successfully used by Perkins (1979) and Chen (1982). They report promising results in general simulations (controlled or not). Moreover, Chen also reports good results in optimization problems. The literature, at least the open literature, does not report any commercial program using the approach. Some authors mention that ASPEN (MIT and DOS) gives the option of using the approach. Unfortunately, thus far there are no articles in the literature about that feature.

It must be pointed out that the use of the Newton-Raphson method for process simulation is not new. Cavett (1963) presented a few examples using the approach; none of them were controlled simulations. Furthermore, there is some controversy about the use of the name "simultaneous modular." Perkins (1979) presents the method as sequential modular with a different method to improve

Convergence. Chen (1982) presents the same method as Perkins as the simultaneous modular approach. On the other hand, westerberg et al. (1979) formulate the simultaneous modular approach in a different manner. They present the approach as it was first suggested by Rosen (1962). In that approach, each equipment module has two different versions. One is the rigorous model, and the other is a simple model which approximates the rigorous model. The simple model relates each output value approximately to linear combinations of all input values. For example, the flash unit of figure I-3 would be approximated by:

$$
\begin{align*}
& F_{4}=a_{43} F_{3} \tag{I-7a}\\
& F_{5}=a_{53} F_{3} \tag{I-7b}
\end{align*}
$$

In a simulation, one would start guessing all $a_{i j}$ and then solving a linear system of equations. Using the example of figure I-3, the linear system to be solved is:

$$
\begin{align*}
& F_{2}-F_{4}=F_{1} \\
& F_{3}-a_{32} F_{2}=0 \tag{I-8}\\
& F_{4}-a_{43} F_{3}=0 \\
& F_{5}-a_{53} F_{3}=0
\end{align*}
$$

Assuming that F_{1} (feed to the mixer) is known, the system of linear equations I-8 is easily solved. Using the rigorous model of each piece of equipment and the F_{i} variables just found, one
recalculates all $a_{i j}$. If the recalculated values are essentially equal to the ones previously guessed, a solution has been found; if not essentially equal, all $a_{i j}$ are updated again and the linear system I-8 is again solved. This procedure would continue until a solution is found.

This method did not meet with much success because the linear approximation is poor for some of the equipment. The linear model cannot predict, for example, the influence of an inlet stream temperature on the output streams of a flash drum. Some authors (Mahelec et al., 1979) used a strategy similar to that of Rosen, but used difference split-fraction models; they reported good results with this approach. It should be noted that if one increases the complexity of the "simple" modules, this approach will tend towards Newton's method. Newton's method linearizes all functions around a certain point in each iteration, but all interaction between the variables will be accounted for.

Also in Rosen's approach, each stream is a tear stream, whereas in the approach used in this work, we use blocks of equipment with the least possible number of tear streams. The fundamental differences between Rosen's approach and the approach used in this work are the number of streams torn and the model used to approximate the rigorous model (or blocks of equipment).

The Equation-Based Approach

In the equation-based approach, all equations describing the process are solved simultaneously. Let us consider again the simple
flowsheet of figure I-3. We will assume that there are only 3 components and that the reaction in the reactor is: $A+2 B \rightarrow 3 C$. Subscripts $j=1,2$, and 3 will be used for components A, B, and C, respectively. In addition, W_{i} is the total flow rate of stream i (mol/ hr), $X_{i j}$ is the mole fraction of the $j \frac{\text { th }}{}$ component in the i th stream, γ_{i} is the conversion with respect to the i th component, and k_{i} are the equilibrium constants in the flash drum. It should be noted that only mass balances will be considered. The system of equations is:

Mixer

$$
\begin{align*}
& w_{2}=w_{4}+w_{1} \tag{I-8a}\\
& x_{21}=\left(w_{1} x_{11}+w_{4} x_{41}\right) / w_{2} \tag{I-8b}\\
& x_{22}=\left(w_{1} x_{12}+w_{4} x_{42}\right) / w_{2} \tag{I-8c}\\
& x_{23}=1.0-x_{21}-x_{22} \tag{I-8d}
\end{align*}
$$

Reactor

Let a, b, and c be the stoichiometic coefficient of species A, B, and C; $r=W_{2} X_{21} \gamma_{1} /-a$
$W_{3}=W_{2}+r(c-a-b)$
$x_{31}=\left(w_{2} x_{21}+a r\right) / w_{3}$
$x_{32}=\left(w_{2} x_{22}+b r\right) / w_{3}$
$x_{33}=1-x_{31}-x_{32}$

Flash

$$
\begin{align*}
& w_{3} x_{31}=w_{4} x_{41}+w_{5} x_{51} \tag{I-8i}\\
& w_{3} x_{32}=w_{4} x_{42}+w_{5} x_{52} \tag{I-8j}\\
& w_{3} x_{33}=w_{4} x_{43}+w_{5} x_{53} \tag{I-8~K}\\
& x_{41}=k_{1} x_{51} \tag{I-81}\\
& x_{42}=k_{2} x_{52} \tag{I-8~m}\\
& x_{43}=k_{3} x_{53} \tag{I-8n}\\
& x_{41}+x_{42}+x_{43}=1 \tag{I-80}\\
& x_{51}+x_{52}+x_{53}=1 \tag{I-8p}
\end{align*}
$$

As there are 16 equations and 24 variables we have to specify 8 variables. The advantage of this approach is now clear. If we specify $w_{1}, x_{11}, x_{12}, x_{13}, \gamma_{1}, k_{1}, k_{2}$, and k_{3}, the problem is a simple simulation. If we specify $X_{51}, X_{52}, W_{5}, x_{41}, X_{42}, W_{1}, X_{11}$, and x_{12}, we have a design problem (or a controlled simulation). In the equation-based approach there are no distinctions between constrained or unconstrained problems. In addition, there is no need to search for a good tear stream as in the sequential modular or simultaneous modular. Also, it is well known that the sequential modular approach is very inefficient when there are more than 2 recycle streams and several constraints (Stadtherr and Wood, 1984). Again, the equation-based approach is immune to these problems.

The question that arises is, "Why isn't the equation-based approach widely used?" First, the execution time and the computer memory required can be prohibitive. A simple industrial simulation will have 5-10,000 equations. Some authors report simulations of complete chemical plants that would require the solution of 100,000 equations! Second, the industry has heavily invested in the development of the sequential modular approach. Why invest in a new method with so many challenges -- the solution of large systems of nonlinear equations -- when the sequential modular approach solves almost all industrial problems? Third, the sequential modular approach is user-friendly. It is easy for the process engineer to construct the sequence of modules that decribes a chemical process with the sequential modular approach. In addition, in the sequential modular approach, when the simulation fails valuable information can be obtained; in the equation-based approach, however, when a failure occurs, almost no useful information can be obtained.

Typically, a Newton-based approach is used to solve such large systems. Figure I-5 shows the structure of the Jacobian of the system of equations I-8a through I-8p; it is clear that the Jacobian is sparse. To speed up execution time, sparse matrix techniques must be used, not only to solve the linear system at each iteration, but throughout the nonlinear solver subroutine. The use of sparse matrix techniques will decrease both execution time and memory required by the program. Also, the linear system solver must use

Figure I-5. Jacobian of the System of Equations I-8a through I-8p
some reordering technique to minimize the creation of nonzero elements during Gaussian elimination.

Another point that should be considered is the evaluation of the Jacobian at every iteration. For systems of nonlinear equations, the Jacobian is usually evaluated numerically by forward differences; this procedure may be time-consuming. One way to reduce the problem is to evaluate the Jacobian once and then, instead of calculating the Jacobian numerically every iteration, one update the Jacobian using the information obtained from an increment given to each variable and the resultant variation in each function. Broyden (1965), Schubert (1970), and Broyden (1971) presented methods to update the Jacobian. The first is more suited to full matrix cases, and the second and third are more suited for sparse matrices. The literature is abundant in articles reviewing and comparing these three methods: Gallun and Holland (1980), Crowe (1984), Mah and Lin (1980), and Lucia (1982).

In addition to the use of sparse matrix techniques and the update of the Jacobian through Broyden's or Schubert's method, good initial values should be given to all variables. For small simulations, this will not be a problem, but when the simulation has 10,000 variables, some automatic procedure to initialize all variables must be incorporated. Good initial guesses are also required because Newton-based methods do not converge to a solution if the initial values of the variables are too far from the solution.

Unfortunately, there is no such method that guarantees a solution. A good improvement was suggested by Powell (1970); his method will be discussed in more detail in later chapters. Powell's method has received much attention lately, and the reviews are generally favorable. See, for example, Chen and Stadtherr (1981).

Today, at least five programs using the equation-based approach in various stages of development exist: SPEEDUP (Imperial College, U.K.), ASCEND II (Carnegie-Mellon), QUASILIN (University of Cambridge), FLOWSIM (University of Connecticut/Control Data), and SEQUEL (University of Illinois).

Recently, SPEEDUP went through a detailed evaluation in order to determine whether equation-based systems could be used effectively for process simulations. The evalution was carried out by Gupta and coworkers from Exxon Corporation and Prime Computer, Inc. In short, Gupta et al. compared the performance of SPEEDUP with the sequential modular program, COPE, used by Exxon. They report that SPEEDUP is not yet commercially competitive with the sequential modular approach. The evaluation was carried out using the following test problems:

1. Cavett problem (four flash drum problem)
2. Heat exchanger network
3. Five-stage absorber
4. Three tower separation
5. Steam system
6. Compressor network

The most relevant points in the evaluation were:

1. SPEEDUP proves that equation-oriented approach can solve large problems handled by a commercial sequential modular approach.
2. SPEEDUP demonstrates advantages of the equation-based architecture over the sequential modular approach.
3. The equation-based approach is well-suited for problems having a large number of design specifications (constraints) and it provides a flexible environment for solving new problems that cannot easily be solved with existing tools.
4. There is potential for efficient implementation of an optimization capability.
5. In some cases, it does not converge, unless good initial guesses are given.
6. It is relatively inefficient, especially for smaller problems.
7. It is difficult for users to determine the cause of divergence, when a simulation fails.

More details may be found in Gupta et al. (1984). Overall, the results obtained by Gupta et al. are exciting, to say the least. A comprehensive evaluation of the equation-based approach was
performed, and the key problems were detected. What makes it more important is that the evaluation was performed to see the commercial potential of an equation-based approach, by a typical user of process simulators (Exxon). The results obtained with SPEEDUP show that some of the challenges encountered in the equation-based approach were solved, and we can forecast the commercial use of the approach in the near future.

CHAPTER II

SOLVING SETS OF NONLINEAR EQUATIONS

As shown in the last chapter, every process simulation with recycle streams and/or design specifications requires the solution of a system of nonlinear equations. Most commercial sequential modular programs use Wegstein's method to solve the set of nonlinear equations. Some programs have the option of using a "blend" of Wegstein's method with the successive substitution method. Programs using the equation-based approach or the simultaneous modular approach generally use the Newton-Raphson method, or a modification of it. Before we present a modification of the Newton-Raphson method used in this work, we will briefly review the three methods mentioned above.

Successive Substitution Method

The use of the successive substitution method is quite simple. In a process simulation using the sequential modular approach, the set of nonlinear equations has the form:

$$
\begin{equation*}
x=F(x) \tag{II-1}
\end{equation*}
$$

where capital letters represent vectors or matrices. Starting with a set of initial guesses $x^{0}=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)^{\top}$, all functions f_{1}^{1}, $f_{2}^{1}, \ldots, f_{n}^{l}$ are evaluated at $x_{i} ; i=1$, n. If a convergence criteria is reached, typically

$$
\left|x_{i}^{k}-f_{i}^{k+1}\right| /\left|f_{i}^{k+1}\right| \leq \varepsilon
$$

where ε is the desired accuracy, the solution has been found. Otherwise, x_{i}^{0} replaced by f_{i}^{l} and another iteration is performed. The recurrence relation is:

$$
\begin{equation*}
x^{k+1}=F^{k}\left(x^{k}\right) \tag{II-2}
\end{equation*}
$$

where the superscript k denotes the iteration number. Figure II-1 shows a flowchart of the method and a graphical representation of a one-dimensional case.

The method of successive substitution is quite effective when each function f_{i} is dominated by one variable x_{i}. Convergence, however, is sometimes very slow. The major advantage is its simplicity; its disadvantages are that if more than one variable strongly influence one or more of the functions, the method may not converge or convergence may be very, very slow.

Wegstein's Method

Wegstein's method is a modification of Aitken's Δ^{2} method (Cavett, 1963). Wegstein's method, as the successive substitution method, is easy to implement.

Assuming that each function f_{i}, from the set of equations II-1, is a function of x_{i} alone, Wegstein's method extrapolates the new value of x_{i} along a straight line through two previous consecutive points. To initiate the method, two points are required to perform

Figure II-1. Successive Substitution Method: Block Diagram and Graphical Representation
the first iteration. For a given set of initial values, $x^{0}=\left[x_{1}^{0}\right.$, $\left.x_{2}^{0}, \ldots, x_{n}^{0}\right]^{\top}$ the easiest way to obtain the second set of points is by performing one successive substitution iteration. The recurrence relation for Wegstein's method is:

$$
\begin{equation*}
x_{i}^{k+1}=q_{i}^{k} *\left(f_{i}\left(x^{k}\right)\right)+\left(1-q_{i}^{k}\right) *\left(x_{i}^{k}\right) \tag{II-3}
\end{equation*}
$$

where

$$
\begin{align*}
q_{i}^{k} & =1 . /\left(1-s_{i}^{k}\right) \tag{II-4}\\
s_{i}^{k} & =\left(f_{i}\left(x^{k}\right)-f_{i}\left(x^{k-1}\right) /\left(x_{i}^{k}-x_{i}^{k-1}\right)\right. \tag{II-5}\\
i & =1,2, \ldots, N
\end{align*}
$$

and

$$
\begin{aligned}
x_{i}^{k} & =\left[x_{1}^{k}, x_{2}^{k}, \ldots, x_{N}^{k}\right]^{\top} \\
F_{i}^{k} & =\left[f_{1}\left(x^{k}\right), f_{2}\left(x^{k}\right), \ldots, f_{N}\left(x^{k}\right)\right]^{\top}
\end{aligned}
$$

Note that setting a_{i} equal to 1 is equivalent to performing one successive substitution iteration.

Figure II-2 shows a block diagram of the method and figure II-3 shows a graphical representation for a one-dimensional case.

Wegstein's method may converge quickly if each variable strongly influences a particular and unique function; otherwise the method will be very slow or it will not converge. In some cases, Wegstein's method may be very inefficient if the slope of the line

Figure II-2. The Wegstein Method: Block Diagram

Figure II-3. The Wegstein Method: Graphical Representation
between two consecutive points approaches one. In other words, if S_{i}^{k} from equation II-5 approaches one then q_{i}^{k} approaches $\pm \infty$; in practice q_{i}^{k} is constrained, typical constraint values on q_{i}^{k} are $[-10,+10] ;[-5,+5]$.

Some algorithms have the option of inserting one or more successive substitution iterations in between one or more of Wegstein's iterations. This "blend" of methods is quite effective in some cases.

A problem widely used to study the performance of nonlinear solvers is "Cavett's four flash drum." This hypothetical problem was idealized by Cavett (1963). We studied the performance of Wegstein's method with $0,2,4$ and 8 successive substitutions in between each Wegstein iteration. The results are shown in figure II-4a and II-4b. For purposes of comparison, we also present the results of the successive substitution method.

From the figures, it is easy to see that both extremes, i.e., Wegstein's alone and successive substitution alone, are quite slow to converge. Moreover, while Wegstein's method has an erratic behavior, the successive substitution is quite constant in reducing the error and in converging. The effect of introducing some successive substitution iterations is extremely beneficial for this problem. The best performance was obtained with 4 successive iterations in between each Wegstein iteration.

Figure II-4a. Results for Wegstein's Method with Cavett's Problem

Figure II-4b. Results for Wegstein's Method with Cavett's Problem

Newton-Based Methods

The original method is known as the Newton-Raphson ($N-R$) method, and it is an iterative procedure based upon a Taylor series expansion terminated after the first derivative.

For a given set of N nonlinear equations,

$$
\begin{equation*}
F(x)=0 \tag{II-6}
\end{equation*}
$$

it is desired to find the vector of unknowns $x^{*}=\left[x_{1}, x_{2}, \ldots\right.$, $\left.x_{n}\right]^{\top}$ which simultaneously satisfies the equation set II-6. The Newton-Raphson method consists of the repeated use of the equation,

$$
\begin{equation*}
J^{k_{p} k}=-F\left(x^{k}\right) \tag{II-7}
\end{equation*}
$$

where the superscript k indicates iteration number, J^{k} is an $N \times N$ matrix of partial derivatives (the Jacobian matrix)
P^{k} is an N-dimensional vector of correction steps,

$$
p^{k}=x^{k+1}-x^{k}=\left[p_{1}, p_{2}, \ldots, p_{n}\right]^{\top}
$$

and $F\left(X^{k}\right)$ is an N-dimensional vector of function values evaluated at x^{k},

$$
F\left(x^{k}\right)=\left[f_{1}\left(x^{k}\right), f_{2}\left(x^{k}\right), \ldots, f_{n}\left(x^{k}\right)\right]^{\top}
$$

Equation II-7 is solved for P^{k}, and the predicted solution vector for the next iteration is given by:

$$
\begin{equation*}
x^{k+1}=x^{k}+p^{k} \tag{II-8}
\end{equation*}
$$

Convergence to a solution set is achieved when

$$
\frac{\left|x^{k+1}-x^{k}\right|}{\left|x^{k+1}\right|} \leq \varepsilon
$$

where ε is the desired accuracy of solution. Alternatively, we could use as the convergence criteria

$$
\left\|F\left(X^{k}\right)\right\| \leq \varepsilon
$$

where || • || denotes the Euclidian norm of $F\left(X^{k}\right)$

$$
\left\|F\left(x^{k}\right)\right\|=\left[\sum_{i=1}^{N} f_{i}\left(x^{k}\right)^{2}\right]^{\frac{1}{2}}
$$

A block diagram of the method is shown in figure II-5. It should be noted that at each iteration the Jacobian matrix must be

Figure II-5. The Newton-Raphson Method: Block Diagram
supplied. Also, the linear system II-7 is solved at every iteration.

When the functions are not analytical, and/or the Jacobian is difficult to obtain, we may calculate the Jacobian numerically, by forward differences,

$$
\begin{align*}
& J_{i j}=\left[\frac{\partial f_{i}}{\partial x_{j}}\right]_{x^{k}} \simeq \frac{f_{i}\left(x^{k}+h\right)-f_{i}\left(x^{k}\right)}{|h|} \tag{II-9}\\
& i=1,2, \ldots, N ; j=1,2, \ldots, N
\end{align*}
$$

h is an N-dimensional vector defined as follows,

$$
\begin{aligned}
& h_{k}=0 \text { for } k \neq j \\
& h_{j}=\text { small positive number. }
\end{aligned}
$$

The calculation of the Jacobian by forward differences requires the evaluation of all N functions $N+1$ times.

The functions that occur in chemical process simulations are, in general, "expensive" to evaluate. In the simultaneous modular approach, a series of equipment modules will be evaluated in each iteration to obtain function values. In addition, some modules, for example a flash drum, perform iterative solutions internally. Besides the computational effort, care must be taken to avoid "round-off" errors. For instance, if the convergence criteria used in the module is ε (say, 10^{-4}), perturbing a variable by less than ε will probably result in a poor evalution of the Jacobian matrix.

An alternative to Newton-Raphson's method is the use of Broyden's method (Broyden 1965).

Broyden's method is a modification of the Newton-Raphson method. The first iteration is essentially the same as in Newton-Raphson; in the second and subsequent iterations the Jacobian is not evaluated at X^{k}, but it is updated using Broyden's secant updated formula,

$$
\begin{equation*}
J^{k+1}=J^{k}+\left(Y^{k}-J^{k} P^{k}\right)\left(P^{k}\right)^{\top} /\left(P^{k}\right)^{\top} P^{k} \tag{II-10}
\end{equation*}
$$

where

$$
y^{k}=F\left(X^{k}+P^{k}\right)-F\left(X^{k}\right)
$$

It is readily seen that no additional evaluations of functions are required, thus Broyden's algorithm is an attractive alternative to solving sets of nonlinear equations that occur in chemical process simulations. Actually, the use of the method in flowsheeting problems was suggested as early as 1966 (Rosen, 1966), and several other authors have either used the method or modifications of it in chemical process simulations (for example: Perkins (1979) and Mahalec et al. (1979)).

In general, Broyden's method will converge more slowly to a solution when compared with Newton-Raphson's. Dennis and Schnabel (1983), reported that at the solution, Broyden's update formula will generate a Jacobian with a relative error of approximately 1.1 percent when compared to the true Jacobian. Furthermore, the Jacobian as updated by Broyden's formula will have "fill-ins," that
is, some elements of the true Jacobian that are equal to zero will assume values other than zero when updated by Broyden's formula. Moreover, Broyden's method, similar to Newton-Raphson's, may not converge to a solution if the initial estimates of the solution are far from the actual solution.

An alternative to Broyden's update formula is Schubert's update formula. The method was first proposed by Schubert (1970), and later by Broyden (1971). Schubert's formula does not update elements which are known constants. The formula is:

$$
\begin{aligned}
& \left.j_{i}^{k+1}=j_{i}^{k}+\left(y_{i}^{k}-j_{i}^{k} T_{i}^{k}\right)\left(T_{i}^{k}\right)^{\top} \Lambda\left(T_{i}^{k}\right)^{T}\left(T_{i}^{k}\right)\right] \\
& i=1,2, \ldots, N
\end{aligned}
$$

where

$$
y_{i}^{k}=f_{i}\left(x^{k}+p^{k}\right)-f_{i}\left(x^{k}\right)
$$

and

$$
\begin{aligned}
j_{i}^{k}= & \text { row vector containing the elements of the } i \frac{\text { th }}{} \text { row } \\
& \text { of the Jacobian matrix } J \\
f_{i}= & i \text { th element of } F\left(X^{k}\right) \\
T_{i}^{k}= & \text { a column vector derived from } p^{k} \text { by setting to zero } \\
& \text { each element of } P_{i}^{k} \text { that corresponds to a known } \\
& \text { constant of } j_{i}^{k}
\end{aligned}
$$

In practice, T_{i}^{k} is set to zero only when an element of the Jacobian is zero. Any information about elements which are known constants but not equal to zero is disregarded.

When the Jacobian is sparse, Schubert's update formula is more attractive, since it does not create fill-ins and thus maintains the sparsity of the matrix. However, some authors (Mah and Lin (1980); Perkins and Sargent (1982)), reported unreliable results using the Schubert update formula in connection with the Newton-Raphson convergence algorithm.

As mentioned earlier, the Newton-Raphson method or nonlinear solver algorithms based on the N-R method (Broyden's or Schubert's methods) may diverge if the initial estimate of the solution is far from the actual solution. Because the N-R method is based on a local linearization of all functions by first order Taylor series expansions, the linearized functions are a good representation of the nonlinear functions when close to the solution, thus convergence is fast. Therefore, N-R based methods have good local convergence properties.

A priori we do not know the solution of a problem so there is no way to know how far from the solution the initial guessed values are. Although for chemical process simulation we can provide a good estimate of the solution-using very simple models or experience the number of failures of N-R based methods may still be rather high.

In recent years $N-R$ based methods have been used in conjunction with global methods for unconstrained optimization. The basic strategy of the global methods for unconstrained optimization is to solve the following problem:

$$
\begin{equation*}
\min R(X)=F(X)^{\top} F(X) \tag{II-13}
\end{equation*}
$$

Note that $R(X)=\|F(X)\|^{2}$. An iterative procedure would be to find correction steps P^{k} which, at each iteration, minimize the auxiliary function $R(X)$ until a minimum is reached. If at that minimum $R(X)=0$, the solution has been found. One of the drawbacks of the method is clear: $R(X)$ may converge to a local minimum where the minimization problem is satisfied, but it is not a solution of the system of nonlinear equations. On the other hand, it can be proven that at a local minimum that is not the solution required,

$$
J^{\top}(x) F(x)=0
$$

Since $R(X) \neq 0$, thus, $F(x) \neq 0, J(X)$ must be singular and since N-R based methods require the inverse of the Jacobian, they would also fail! Another point worth mentioning is that minimization methods have slow convergence properties, but, if no local nonzero minimum is reached, they will eventually converge to the solution of the equations, when it exists.

The Steepest Descent direction algorithm and LevenbergMarquardt algorithm (Broyden, 1970), are two popular methods for the solution of systems of nonlinear equations based on the minimization
of an objective function $R(X)$; they both have good global convergence properties.

In practice, minimization algorithms are used to drive the initial estimate vector X^{0} closer to the actual solution because these algorithms have good global convergence properties; then, the algorithm switches to N-R based methods, which have good local convergence properties.

A very popular algorithm with the properties mentioned in the last paragraph is due to Powell (1970). He proposed an hybrid algorithm based on the Levenberg-Marquardt method which showed excellent results. Later, Chen and Stadtherr (1981) proposed some modifications which improved Powell's method. In Appendix B there is a short review of Powell's algorithm and Chen and Stadtherr's modifications of Powell's method.

Implementation of MPDLM1 and MPDLM2

As part of this work, two subroutines were developed to solve systems of nonlinear equations. They both use Chen and Stadtherr's modification of Powell's method.

The need to have two versions of the same algorithm arises from the different characteristics of the Jacobian generated when solving sets of nonlinear equations using either the simultaneous modular approach or the equation-based approach. The first has a full Jacobian, only a few elements are equal to zero; the latter has a sparse Jacobian, only a few elements are different from zero.

To illustrate the characteristics of each approach, we will show the Jacobian generated by each in a typical simulation of an ammonia plant (figure II-6). In later chapters this problem will be presented in more detail. For now it is important to know that there are five components in each stream, five equipment modules (1 reactor, 1 mixer, 1 splitter and 2 flash drums), and the conversion of a reactant is given by the chemical equilibrium constant.

In the simultaneous modular approach there are 6 nonlinear equations being solved simultaneously: 5 stream connection equations and one constraint equation. The equations are:

$$
\begin{aligned}
& f_{i}\left(x, \gamma_{r}\right)=x_{i}-y_{i}\left(x, \gamma_{r}\right) \quad i=1,5 \\
& f_{6}\left(x, \gamma_{r}\right)=k-z\left(x, \gamma_{r}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
x= & {\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]^{\top} } \\
x_{i}= & \text { molar flow rate of the } i \frac{\text { th }}{} \text { component in the torn } \\
& \text { stream } \\
y_{i}= & \text { molar flow rate of the } i \frac{\text { th }}{} \text { component in the torn } \\
& \text { stream obtained after each pass in the flowsheet. } \\
& A \text { pass in the flowsheet } i \text { defined as the } \\
& \text { sequential evaluation of all equipment modules. } \\
& \text { The initial and final point of the sequential } \\
& \text { evaluation is the torn stream(} s) \\
\gamma_{r}= & \text { conversion of reactant } r
\end{aligned}
$$

Figure II-6. Ammonia Plant Block Diagram
$K=$ chemical equilibrium constant $=0.35$
$Z=$ a function of γ and $x_{i}, i=1,5$

The Jacobian generated by the simulation of the NH_{3} plant using the simultaneous modular approach is presented in figure II-7. It is clear that the Jacobian is nearly full.

To solve the same problem using the equation-based approach requires the solution of 50 simultaneous equations. The equations represent material balances around each piece of equipment. The Jacobian generated by the equation-based approach (figure II-8) had 182 nonzero elements. The full Jacobian has $50 \times 50=2500$ elements, so only 7.3 percent of the elements will be used throughout the nonlinear solver subroutines.

Knowing the characteristics of each approach, it was decided that Broyden's update formula would be more attractive for the simultaneous modular approach. For the equation based approach, Schubert's update formula was chosen. In addition, that subroutine uses sparse matrix techniques which enables it to store and operate on the nonzero elements only.

Subroutine MPDLMI is used with the simultaneous modular approach (Broyden's update formula) and MPDLM2 with the equationbased approach (Schubert's update formula).

Following the suggestion of several authors (Powell, 1970; Chen and Stadtherr, 1981; Dennis and Schnabel, 1983), the Jacobian and function values are scaled. A scaling matrix $D F$ is calculated so that the resulting scaled Jacobian (DF)(J) has the largest elements

Figure II-7. Typical Jacobian Generated When Solving Nonlinear Equations Arising from the Simultaneous Modular Approach

Figure II-8. Typical Jacobian Generated when Solving Nonlinear Equations Arising from the Equation-Based Approach
in each row equal to ± 1. The scaling of the Jacobian and functions was suggested to improve the accuracy and convergence of nonlinear solvers.

Sometimes the rate of convergence begins to slow considerably. This may happen because the Jacobian update by Schubert's or Broyden's formula is not a good approximation of the true Jacobian. In this case the Jacobian is re-evaluated by forward differences. Early tests with both subroutines showed that the Jacobian updated by secant formulas "degrades" after 15-20 iterations if the initial estimate of the solution is not good. To decide when to re-evaluate the Jacobian, we used the same procedure suggested by Chen and Stadtherr (1981). It consists of the following steps:

1. After each Jacobian evaluation by forward differences, set IFLAG $=0$.
2. After each iteration k, if $\left\|F\left(x^{k}+P^{k}\right)\right\|^{2} \geq 0.999\left\|F\left(x^{k}\right)\right\|^{2}$ set IFLAG = IFLAG + 1 Otherwise, IFLAG $=$ IFLAG -1 If IFLAG < 0, set IFLAG $=0$
3. Evaluate
$R_{1}=\left\|F\left(x^{k}+P^{k}\right)\right\|^{2} /\left\|F\left(x^{k-4}\right)\right\|^{2}$
$R_{2}=\left\|F\left(x^{k-4}\right)\right\| /\left\|F\left(x^{k-9}\right)\right\|$

The Jacobian is re-evaluated if:
a. Since last Jacobian evaluation $\left\|F\left(X^{k}+P^{k}\right)\right\|$ has been reduced by a factor of 2 and
b. IFLAG >3 or $R_{1}>R_{2}$

The parameters IFLAG, R_{1}, and R_{2} can be interpreted as a "measure" of the progress towards the solution. R_{1} "traces" the progress of the last iterations and R_{2} the progress of the 5 iterations before those. If IFLAG is greater than 3 , or R_{1} is greater than R_{2}, we are ensuring that the converge is quite slow before the Jacobian is re-evaluated. The first condition is used to ensure that we do not re-evaluate the Jacobian too often.

The parameter IFLAG is also used to check when the algorithm reached a local minimum, or when the convergence is too slow. If IFLAG is greater than $\operatorname{MAX}(10, N+4)$, where N is the number of equations, the subroutine stops and an error message is issued.

Besides the update formula, another difference between MPDLM1 and MPDLM2 is the method used to solve the linear system. MPDLM1 uses an LU decomposition of the Jacobian matrix. The LU factorization,

$$
J=L U
$$

where L is a lower triangular matrix and U an upper triangular matrix, is performed every time the Jacobian is calculated by forward differences. In subsequent iterations the L and U factors
are directly updated using Broyden's formula and Bennett's algorithm (Bennett, 1965).

The solution procedure for the set of linear equations is

$$
J^{k} P^{k}=-F\left(x^{k}\right)
$$

or

$$
L^{k} U^{k} P^{k}=-F\left(X^{k}\right)
$$

Define $U^{K} P^{k}=Y$ and solve

$$
L^{k_{Y}}=-F\left(X^{k}\right)
$$

for Y.
Then solve

$$
u^{k_{P} k}=Y
$$

for P^{k}.

For MPDLM2 we used subroutine SPAMAT (Rodrigues, 1979). This subroutine solves the linear system by a Gaussian elimination, and it uses sparse matrix techniques to store elements and perform operations. The sparse matrix technique consists in storing only nonzero elements in an $N \times M$ matrix B. The row positions of each nonzero element are stored in another $N \times M$ integer matrix IC, and the number of nonzero elements in each row is stored in an N-dimensional vector IZ. For example, assume that a Jacobian matrix 4×4 has the following configuration:

$$
J=\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

Using the sparse technique just described we would have:

$$
B(4 \times 2)=\left[\begin{array}{ll}
1 & 2 \\
3 & 0 \\
4 & 1 \\
5 & 0
\end{array}\right] \quad \operatorname{IC}(4 \times 2)=\left[\begin{array}{ll}
1 & 3 \\
2 & 0 \\
3 & 4 \\
5 & 0
\end{array}\right] \quad I Z(4)=\left[\begin{array}{l}
2 \\
1 \\
2 \\
1
\end{array}\right]
$$

The drawback of this fomulation is that we must know beforehand the maximum number of elements in one single row in order to set the second dimension of matrices B and IC.

The small size example shown above is for clarity. There will be an economy in storage requirements if,

$$
2(m * n)+n \leq n^{2}
$$

or

$$
(2 m+1) \leq n
$$

where m is the maximum number of nonzero elements in one single row. For example, assume that the maximum number of elements in a single row of a 200×200 matrix is 15 . The storage requirements would be $200 * 200=40,000$ for the full matrix. Using the sparse matrix technique just described, only $2 * 200 * 15+200=6200$ storage
positions would be required, or 15.5 percent of the full matrix storage requirements.

This is not the best sparse matrix technique, but, for the purpose of this work, it performed quite well. An excellent review of sparse matrix techniques associated with the solution of linear systems may be found in Duff (1977).

Thus far the most important features of MPDLMI and MPDLM2 have been discussed. Figure II-9 shows a block diagram of the algorithm. It does not include all details, however, Appendix C contains a printout of the source code for both subroutines.

Performance of MPDLM1 and MPDLM2

Both subroutines were compared with subroutine ZSPOW from IMSL. We solved 5 problems, four of them from the open literature and of ten used to compare the performance of nonlinear solvers. Some results from Chen and Stadtherr (1981) and Powell (1970) are available, so they are reproduced for comparison purposes. The fifth problem is the simulation of a system of 3 counter-current evaporators for Kraft black-liquor.
Problem l - Brown's Almost Linear Function (PBALF)

$$
\begin{aligned}
& F_{i}=x_{i}-11+\sum_{j=1}^{10} x_{i}=0 \quad i=1,9 \\
& F_{10}=1-\prod_{j=1}^{10} x_{j}=0
\end{aligned}
$$

Figure II-9. Block Diagram of the Modified Newton-Raphson Method Used in This Work
initial point: $x_{i}=0.5 ; i=1,10$
solution: $x_{i}=1 ; i=1,10$
Problem 2 - Powell's Badly Scaled Function (PPBSF)
$F_{1}=10,000 * x_{1} * x_{2}-1=0$
$F_{2}=\operatorname{EXP}\left(-x_{1}\right)+\operatorname{EXP}\left(-x_{2}\right)-1.0001=0$
initial point: $x_{1}=0 ; x_{2}=1$
solution: $x_{1}=.1098 * 10^{-4} ; x_{2}=9.106147$
Problem 3-Rosenbrock's "Banana" Function (PRBF)

$$
\begin{aligned}
& F_{1}=10.0 *\left(x_{2}-x_{1} * x_{1}\right)=0 \\
& F_{2}=1.0-x_{1}=0
\end{aligned}
$$

initial point: $x_{1}=-1.2 ; x_{2}=1.0$
solution: $x_{1}=1.0 ; x_{2}=1.0$
Problem 4 - Powell's Singular Function (TET)

$$
\begin{aligned}
& F_{1}=x_{1}+10 * x_{2}=0 \\
& F_{2}=\sqrt{5} *\left(x_{3}-x_{4}\right)=0 \\
& F_{3}=\left(x_{2}-2 * x_{3}\right)^{2}=0 \\
& F_{4}=\sqrt{10} *\left(x_{1}-x_{4}\right)^{2}=0
\end{aligned}
$$

$$
\text { initial point: } x=[3,-1,0,1]^{\top}
$$

solution: $X=[0,0,0,0]^{\top}$

Problem 5 - Kraft Black-Liquor Evaporator (KBLE)

The flow diagram is shown in figure II-10, initial values and solution are shown in table II-2.

The number of function evaluations, that is, the number of times the subroutine containing the nonlinear system was called, including evaluations used to obtain the Jacobian, are summarized in table II-1.

Table II-1. Performance of Nonlinear Solvers (Number of Function Evaluations)

Subroutine	Problem				
	PBALF	PPBSF	PRBF	TET	KBLE ${ }^{2 /}$
MPDLM	26	49	7	26	--
MPDLM2	37	26	26	91	11.619
ZSPOW	31	22	181	$110^{1 /}$	18.651
Chen Stadtherr	26	40	7	47	--
POWELL	--	223	28	--	--
1/ failed to solve					
2) only execution time available (CPU-sec)					

In general, the results obtained with MPDLM1, are superior, in terms of iterations required, when compared with the results of ZSPOW. In addition they are similar to those obtained by Chen and Stadtherr, as expected since the methods are the same. However,

Figure II-10. Block Diagram of the 3 Effect Evaporator Problem

Table II-2. Initial Values and Solution of the 3 Effect Evaporator Problem

WUNBER OF VARIABLES=54

THE SYSTEN TO BE CALEULATED, HITH INITIAL GUESSES ANI KNOUN VARIABLES UILL BE PRINTED NOU

STREAM	* flou rate (LB/H)	PRESSURE (PSIA)	remperature (DEGF)	SOLID CONTENT (LB/LB)	ENTHALPY (BTU/LB)
1	100000.0000	50.0000	282.0000	. 0000	1000.0000
2	100000.0000	20.0000	200.0000	. 0000	1000.0000
3	100000.0000	20.0000	200.0000	. 0000	1000.0000
4	100000.0000	10.0000	180.0000	. 0000	1000.0000
5	100000.0000	5.0000	. $1 \$ 0.0000$. 0000	1000.0000
6	10000.0000	20.0000	200.0000	. 0000	1000.0000
7	\$000.0000	5.0000	215.0000	.0000	1000.0000
8	100000.0000	. 0000	281.0020	. 0000	200.0000
9	90000.0000	. 0000	200.0000	. 0000	200.0000
10	100000.0000	.0000	227.9559	. 0000	200.0000
11	200000.0000	. 0000	193.2139	.0000	200.0000
12	400000.0000	. 0000	180.0000	.1500	143.4109
13	300000.0000	. 0000	180.0000	. 2000	140.1515
14	200000.0000	. 0000	180.0000	.3000	134.0580
15	100000.0000	.0000	180.0000	.4000	128.4722
16	94000.0000	. 0000	180.0000	.5000	

IF yOU Hant TO SIOP THE progran and Change inITIAL GUESSES ENTER 100 (AS ? APPEARS)
72

THE FOLLDUING VALUES OF A AND JA UILL BE USED

$\begin{aligned} & \operatorname{UA}(1)= \\ & J A(2)= \\ & W_{A}(3)= \end{aligned}$	$(1)=3000000.0$	$\begin{aligned} & Q(1)=100000000.0000 \\ & Q(2)=100000000.0000 \\ & B(3)=100000000.0000 \end{aligned}$			
	(2) $=4000000.0$				
	$3)=4000000.0$				
IHE CALCULATED VALUES FOR THE SYSTEX OF EVAPORATORS ARE					
STREAM	- flol pate (LB/H)	$\begin{gathered} \text { FRESSURE } \\ \text { (PSIA) } \end{gathered}$	tenferature (DEGF)	SOLID CONTEMT (LB/LB)	
					ENTHALPY (BTU/LB)
117222.7768		50.0000	281.0020		
2	92250.1028	24.4540	244.7940	.0000 .0000	1174.0713 1103.1579
3	77461.0763	24.4540	244.4758	. .0000	1163.15 .79 1162.9759
4	101511.8165	9.7773	215.5471	. .0000	1162.9958 1154.1407
5	111597.5336	5.0000	165.7888	. .0000	1154.1407 $i 132.7387$
5	5172.9735	24.4540	238.8440	. .0000	1132.7387 1160.1163
$?$	2142.8393	5.0000	187.1811	. 00000	1160.1163 1142.7860
8	117422.7788	. .0000	281.0020	. .0000	1142.7860 279.0025
9 10	112229.8032	. 0000	238.3440	. 2000	206.3440
10	97461.0763	. 0000	238.3449	. 0000	20.8440 906.8440
11	198972.3929	. 0000	192.1519	. .0000	-96.8440 160.919
12	400000.0000	.2000	180.0000	.0000 .1500	160.1519 143.4109
13	288402.4664	. 0000	165.7888	. 12080	143.4109 126.2325
14	196134.3636	. 0000	244.7940	. 3080	126.2325 192.2539
15	74622.5470	. 0000	215.5471	. 0341	192.2539
16	92477.7077	.0000	187.1311	. 6438	12.2.6591

$U A(1)=3000000.0000$	$O(1)=108624204.3010$
$U A(2)=4000000.0000$	$Q(2)=73187588.3397$
$U A(3)=4000000.0009$	$Q(3)=105452264.5423$

they are not identical and two possibilities exist for that disagreement; one is that a user given parameter, the "distance" between the initial guess and the actual solution, was not the same. That parameter plays an important role in the number of iterations required. The other possibility is an error in our coding of Chen and Stadtherr's algorithm.

The results of Powell with the problems PRBF and PPBSF, when compared with MPDLMl, confirm the improvement of Powell's algorithm by Chen and Stadtherr.

MPDLM2, using Schubert's update formula and sparse matrix techniques, had inferior performance when compared to MPDLMI. The reason for that is probably the simplification introduced in Schubert's update formula, i.e., treating only zeros as constants, instead of all known constants in the Jacobian. On the other hand, MPDLM2 solved problem TET, in which ZSPOW failed. In addition, MPDLM2 solved the evaporator problem in 60 percent of the execution time required by ZSPOW, which demonstrates the benefit of using sparse matrix techniques.

CHAPTER III

IMPLEMENTATION OF SIMO AND EQSS

In this chapter we will describe the implementation of SIMO (Simultaneous Modular Library) and EQSS (Equation Solving Simulation Library). A listing of the source code for both libraries is shown in Appendix C. It should be noted that both libraries use the same nomenclature for the flowsheet variables:

$$
\begin{aligned}
\operatorname{FLOW}(I)= & \text { Molar flow rate of the } I \frac{\text { th }}{} \text { stream (mol/unit of } \\
& \text { time) } \\
\operatorname{COMP}(I, L)= & \text { Mol fraction of } L \frac{\text { th }}{} \text { component in the } \\
& I \frac{\text { th }}{\text { s. }} \text { stream } \\
\operatorname{EQP}(I, J)= & J \text { th equipment parameter of the } I \frac{\text { th }}{\text { module }}
\end{aligned}
$$

Because of this, the modules from SIMO can be used to initialize varibles in EQSS, and the same input/output subroutines can be used for both approaches.

SIMO Library

This library is used to perform chemical process simulations using either the sequential modular approach or the simultaneous modular approach. There are 26 subroutines available, which can be organized in three major categories:

1. Nonlinear Equations Solvers
2. Equipment Modules

3. Support Subroutines

Subroutines To Solve Nonlinear Equations

There are seven nonlinear solver subroutines; five are one-dimensional (one equation in one unknown) and two are multi-dimensional (N equations in N unknowns). Each subroutine uses a different method of solution, so the user has the option of using the best method to solve specific problems. In addition to the seven nonlinear solvers, there is one subroutine to perform an LU (L lower triangular, U upper triangular) factorization of a general $N \times$ N matrix.

We will now proceed with a brief description of each subroutine. The nomenclature of several parameters common to some of the subroutines are:

NT - Total number of iterations allowed.
EPS - Desired accuracy (typical values $10^{-3}, 10^{-4}$).
X - An N-vector of initial guesses which are specified as input by the user; on output X Carries the best estimate of the solutions.

F - An N-vector of function values (Input/Output).
N - Number of equations.
K - User provided parameter to control the printing of iterations results; every k th iteration the results are printed.

SUBROUTINE NEWTON (X, N, EPS, SFNC, K) - Solves one nonlinear equation, $F(X)=0$, in one unknown using Newton's method. The user must provide SUBROUTINE SFNC $(X, F, F D)$, which calculates function values and derivative values at X (Kayihan, 1979).

SUBROUTINE INTHLV (XL, XR, $X, N T, F N C, K$) - Solves one nonlinear equation, $F(X)=0$, in one unknown using the interval-halving (half-interval) method. The user must specify left-hand (XL) and right-hand (XR) bounds on the root. In addition the user must provide FUNCTION FCN(X), which calculates function values at X (Kayihan, 1979).

SUBROUTINE SUCSUB (X, NT, EPS, FNC, K) - Solves one nonlinear equation, $X=F(X)$, in one unknown using the successive substitution method. The user should provide FUNCTION FNC (X) which calculates the value of $F(X)$ at X (Kayihan, 1979).

SUBROUTINE WEGSTN ($X, N T$, EPS, $F N C, K$) - Solves one nonlinear equation, $X=F(X)$, in one unknown using Wegstein's method. The user provides FUNCTION $\operatorname{FNC}(X)$ which calculates the value of $F(X)$ at X (Kayihan, 1979).

SUBROUTINE WEGSMD ($N, X, N T$, EPS, SUB, K) - Solves " N " nonlinear equations, $X=F(X)$, in " N " unknowns using Wegstein's method. The user must provide SUBROUTINE SUB (N, F, X) which calculates the value of $F(X)$ at X (Kayihan, 1979).

SUBROUTINE SECNEW (X, NT, EPS, SUB) - Solves one nonlinear equation, $F(X)=0$, in one unknown using the secant method. The first iteration is a Newton iteration, the following are secant approximations. Figure III-1 has a graphical representation of the

Figure III-1. Graphical Representation of the Method Used in SECNEW to Solve Nonlinear Equations
method. The user must provide SUBROUTINE SUB (X, F) which calculates function values of $F(X)$ at X.

SUBROUTINE MPDLM (FCN, X, F, N, B, NT, IDGT, MS) - Solves N nonlinear equations, $F(X)=0$, in N unknowns using Chen and Stadtherr modification of Powell dogleg method (see Chapter II and Appendix B). FCN is a user-written subroutine to calculate the values of the functions at X, B is a matrix with dimensions $N \times 32$. IDGT is the number of digits of accuracy required. MS is a userspecified parameter defined as follows:

$$
\begin{aligned}
M S= & 0 ; \text { no scaling of Jacobian and functions } \\
M S= & 2 ; \text { auto-scaling } \\
M S= & 3 ; \text { auto-scaling and the Jacobian of the system of } \\
& \text { equations is given externally through a user given } \\
& \text { subroutine JACOBI }(X, F, N, B) .
\end{aligned}
$$

SUBROUTINE FACLU (A, IP, N) - Factorization of the $N \times N$ matrix A into a product of a lower triangular matrix (L) and an upper triangular matrix (U). L has unit diagonal elements which are not stored. A is stored columnwise, in a vector of dimension N^{2}. IP, on output, contains a permutation vector of A (from "IBM Programmer's Manual," 1968).

Equipment Modules

There was no need to develop new equipment modules for the simultaneous modular approach because the source code of SIMFLOWS (Kayihan, 1979) was available. A few modifications were introduced
into SIMFLOWS in order to simulate more complex problems. The number of components allowed was increased from 7 to 19 . The number of equipment modules and streams allowed was increased from 20 to 30. In addition, the separator module was modified to allow three output streams instead of two output streams as it was originally developed.

The subroutines and their graphical representation can be found in figure III-2. The details of the modules are shown in Appendix A.

Support Subroutines

Support subroutines are used for input, output and to prepare the system of nonlinear equations for solution. For either approach, sequential or simultaneous modular, the user must provide one subroutine with the equipment modules describing the process in its sequential order of calculation. When using the simultaneous modular approach the subroutine must be named FSIS. The support subroutines are:

SUBROUTINE READ (NST, NEQ) - A subroutine to read "NST" stream variables and "NEQ" equipment parameters. The user provides in a data file all known stream variables, equipment parameters, as well as the initial guess(es) of the torn stream(s). A sample of a data file is presented in figure III-3 (Kayihan, 1979).

SUBROUTINE CHECKS (N 1) - A subroutine to check the consistency of stream variables of stream $N 1$. If a flow rate is lower or equal to zero, or the mole fractions do not add up to 1 , an error message is issued and the program stops (Kayihan, 1979).

Figure III-2. Graphical Representation of the Subroutines Used with the Simultaneous Modular Approach

Figure III-3. Example of a Datafile Used with SIMO

SUBROUTINE WRITES - This subroutine prints stream variables (Kayihan, 1979).

SUBROUTINE WRITEE - This subroutine prints equipment parameters (Kayihan, 1979).

SUBROUTINE WRITEX (LFIRST, LLAST) - This subroutine prints equipment parameters for modules LFIRST through LLAST.

SUBROUTINE SIMSO (I1, I2, I3, IP, NSIG) - A subroutine to solve mass balances using the sequential modular approach. If the problem has design constraints, subroutine SPEC must be used in conjunction with subroutine SIMSO. Parameters:

Il - Total number of streams torn.
I2(I) - Number of each stream torn $I=1$, I1.
I3 - Total number of design constraints.
IP - Printing Parameter. For $I P=1$ no printing of stream variables or equipment parameters before solution. For IP $=2$ stream variables are printed before solution. For IP $=3$ stream variables and equipment parameters are printed before solution.
NSIG - Number of digits of accuracy required for the solution.

SUBROUTINE SPEC (N3, NAME, NUE, NUP, NACO, NUS, NCO, VAL) - A subroutine to specify design constraints imposed to the problem. Parameters:

N3 - Total number of design constraints (max $=19$)
NAME (I) - Name of the modules which have equipment parameters manipulated. If a flowrate is manipulated, $\operatorname{NAME(I)-}$ 'FLOW;' I = 1, N3.

NUE(I) - Number of the module or flowrate specified in NAME(I), I $=1, N 3$.

NUP(I) - Number of the equipment parameter being manipulated. IF $\operatorname{EQP}(L, J)$ is manipulated $\operatorname{NUP}(I)=J . \operatorname{IF} \operatorname{NAME}(I)$ 'FLOW,' $\operatorname{NUP}(I)=0, I=1, N 3$.

NACO(I) - Name of constraint being imposed. There are only two possibilities 'FLOW' for molar flowrate or 'COMP' for composition. $\mathrm{I}=1, \mathrm{~N} 3$.

NUS(I) - Number of the stream which has the constraint $\operatorname{NACO}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N} 3$.
$\mathrm{NCO}(\mathrm{I})$ - Number of the component being specified. If a flow rate is specified $N C O(I)=0, I=1, N 3$.

VAL(I) - Numerical value of the design constraint, $I=1$, N3.

SUBROUTINE FCN (X, F, N) - This subroutine is used by subroutine MPDLM to evaluate function values at the tentative solution vector X.

SUBROUTINE TEARI ($X, F, I T, N$) - This subroutine assigns the values of X (from MPDLM) to the stream connection equations.

SUBROUTINE CONTI (X, F, IT, N) - This subroutine assigns the values of X (from MPDLM) to the manipulated equipment parameters or manipulated flowrates.

SUBROUTINE TEARO (X, F, IT, N) - This subroutine evaluates function values from stream connection equations.

SUBROUTINE CONTO (X, F, IT, N) - This subroutine evaluates function values from design constraint equations.

SUBROUTINE THREE (X, F, N, IP) - This subroutine performs three successive substitution iterations to initialize all stream variables.

Interconnection of the Subroutines

Subroutine MPDLM, the nonlinear solver subroutine, in its iterative procedure evaluates a tentative solution vector x, which is used to calculate function values. The variables in vector x correspond to the molar flowrate of each component in the torn stream(s) and to the manipulated variable used to meet some design specification. The function of subroutines TEARI and CONTI is to assign the variables of the vector x to the flowsheet variables, that is, each element of vector x is assigned to variables used by the equipment modules.

We will use a simple example to show the flow of information between the subroutines of SIMO. All compositions used are in mole percent.

Example III-1

A stream containing 50 percent of A and 50 percent B is to be separated into two streams, one containing 90 percent of A and the
other 90 percent of B. The block diagram of such a system is shown in figure III-4.

For this problem we choose stream 2 as the tear stream. The design constraints imposed for the problem are: $\operatorname{COMP}(3,1)=0.9$; $\operatorname{COMP}(6,2)=0.9$. The variables manipulated to meet that specification are $\operatorname{EQP}(2,1)$ and $\operatorname{EQP}(2,2)$.

To solve this problem the first step is to create a data file with all the known parameters and an initial estimate of the variables in the torn stream. Table III-1 shows one possibility of such values.

Table III-1. Possible Initial Guesses for Example III-1

STREAM	FLOW	$\operatorname{COMP}(\mathrm{I}, 1)$	$\operatorname{COMP}(\mathrm{I}, 2)$
1	100	. 5	. 5
2	1501/	.31/	.71/
3	--	--	--
4	--	--	--
5	--	--	--
6	--	--	--
MODULE	$\operatorname{EQP}(\mathrm{I}, 1)$	$\operatorname{EQP}(\mathrm{I}, 2)$	$\operatorname{EQP}(\mathrm{I}, 3)$
1	NR	NR	NR
2	.9-1/	11	NR
3	$N R$	0.5	0.5

NR - not required; $\underline{1 /}^{\text {- estimated }}$


```
FLOW(1)
    = 100
COMP (1,1)
= COMP(1,2) =0.5
SPLIT FRACTION
= EQP(3,2) =0.5
SEPARATION FRACTION = E@P(2,1); EQP(2,2) = ?
COMP}(3,1
\[
\operatorname{COMP}(6,2)
\]
\[
=0.9
\]
\[
=0.9
\]
```

Next the main program and Subroutine FSIS are created (FSIS with the modules in its sequential order of calculation),

SUBROUTINE FSIS (X, F, IT, N)

CALL SEPAR (2)
CALL SPLIT (3)
CALL MIXER (1)
RETURN
END

And the main program,

```
PROGRAM EXAMPLE
INTEGER NUE(2), NUP(2),NUS(2), NCO(2)
REAL VAL(2)
CHARACTER * 5, NAME(2), NACO(2)
Il = l
I2 = 2
I3 = 2
NAME(1) = ',SEPAR',
NAME(2) = 'SEPAR'
NACO(1) = 'COMP'
NACO(2) = 'COMP'
NNE(1) = 2
NNE(2) = 2
NUP(1) = 1
NUP(2) = 2
NUS(1) = 3
NUS(2) = 6
NCO(1) = 1
NCO(2) = 2
VAL(1) = 0.9
VAL(2) = 0.9
IP = 3
NSIG = 4
CALL SPEC(I3,NAME, NUE, NUP, NACO, NUS, NCO, VAL)
CALL SIMSO(I1, I2, I3, IP, NSIG)
CALL WRITES
CALL WRITEE
STOP
END
```

Subroutine SPEC sets up 7 vectors with all the information in a COMMON block, so the information can be shared by other subroutines.

The information given as CHARACTER (NAME and NACO) is coded into INTEGER type variables. Furthermore, SPEC also codes the type of modules containing manipulated parameters because the equipment parameters used by each module have different allocations. For instance, a reactor module (say, module 7) can have only the conversion of a reactant manipulated and that variable is stored at $\operatorname{EQP}(7,20)$. A splitter module does not use the first equipment parameter, $\operatorname{EQP}(\mathrm{I}, \mathrm{l})$. In short, the variables in the COMMON block are a numerical code of the design specifications, in this form it is easy to identify in which modules are the manipulated variables, and which equipment parameters are variables.

Subroutine SIMSO will first determine the total number of unknowns (and equations) that MPDLM will be solving. This task is rather easy because the number of variables in each torn stream is equal to the number of component flowrates of that stream; the number of design constraints is specified by the user. So, if there are two streams torn and 10 components in each stream and 3 design specifications, the total number of variables is $N=2 * 10+3=$ 23. In the example III-1, $N=1 * 2+2=4$.

The first $N C$ elements of X, NC being the number of components in each stream, are assigned to the molar flow rates of the first tear stream. The next NC elements of X are assigned to the molar flow rates of the second tear stream, etc. After the molar flow rates of all tear streams are assigned to x, the initial estimate of the manipulated variables are assigned to x.

Before MPDLM is called by SIMSO, three successive substitution iterations are performed. There are two reasons to do so. First, a check of the consistency of the initial guesses is performed. There is a possibility that the initial estimates will generate negative flow rates, or some unexpected results, so the three initial iterations "stabilize" the initial guesses. If some unexpected result is generated, the user has the option of terminating the run. Second, the successive substitution operations are used as a convenient way of checking that the number of equations and the number of unknowns are the same.

When MPDLM is called, the control of the program passes to this nonlinear solver subroutine, and it will either find a solution or fail to solve the problem. It is not rare to have a simulation fail either because the maximum number of iterations allowed is reached or the unknowns calculated by MPDLM during the iterations are infeasible. Infeasible situations include negative flow rates and values of split fractions, conversions of a reactant, or separation fractions outside the interval [0,1]. In either case, a new set of initial guesses is required.

Subroutine MPDLM is linked with the flowsheet through subroutine $F C N$. The sole purpose of $F C N$ is to evaluate function values at vector X during the iterations. $F C N$, in turn, will call the following subroutines: TEARI, CONTI, FSIS, TEARO and CONTO. As earlier discussed, TEARI and CONTI assign the values of X to $\operatorname{FLOW}(I), \operatorname{COMP}(I, J)$ and $\operatorname{EQP}(K, L)$. Now that the torn stream(s) and manipulated variables are defined, subroutine FSIS is called and one
pass over the flowsheet is performed. Next TEARO and CONTO evaluate function values. TEARO calculates the values of the residual functions of stream connection equations and CONTO calculates the values of the residual functions of design specification (constraints) equations. When MPDLM reaches the solution, the control of the program goes back to SIMSO, and from SIMSO to the user supplied main program.

A block diagram of the hierarchy of SIMO is presented in figure III-5. A block diagram of the most important operations performed by SIMO in the example III-1 is presented in figure III-6.

A feature introduced in SIMO is the possibility of introducing algebraic equations relating some flowsheet variables. For instance, assume that in the example of figure III-3, we would like to find a split fraction, ∂_{1}, which satisfies the following equation:

$$
\begin{equation*}
G\left(\partial_{1}\right)=(F \operatorname{LOW}(5))^{2}-\operatorname{FLOW}(4)=0 \tag{III-1}
\end{equation*}
$$

Equation III-1 is another constraint imposed on the problem. The following commands would be added to the main program of page 72.

```
N3 = 3
NAME(3) = 'SPLIT''
NACO(3) = 'USER'
NUE(3) = 3
NUP(3) = 2
NUS(3) = 0
NCO(3) = 0
VAL(3) = 0
```


Figure III-5. Hierarchy of SIMO Subroutines

Figure III-6. Most Important Operations Performed by SIMO for the Example III-1
and subroutine FSIS becomes:

```
SUBROUTINE FSIS (X, F, IT, N)
COMMON(S1) FLOW(30), ...
CALL SEPAR(2)
CALL SPLIT(3)
CALL MIXER(1)
F(IT) = FLOW(5) ** 2-FLOW(4)
IT = IT + I
RETURN
END
```


EQSS Library

This library of subroutines is used to perform chemical process simulations using the equation-based approach.

The general structure of EQSS is similar to the SIMO library. Actually some subroutines from SIMO are also used with EQSS. In a similar fashion as in SIMO, EQSS can be divided in three major categories:

1. Equipment Modules
2. Support Subroutines
3. Nonlinear Equations Solver

Equipment Modules

As in the simultaneous modular approach, each equipment module has a mathematical model of the material balances around that equipment. Although the equations are essentially the same, they are written in the form $F(X)=0$; in the simultaneous modular approach some algebraic manipulation had to be done in order to calculate output streams, given input streams and equipment
parameters. It was quite simple to generate the source code of the equipment modules as the equations are simple material balances. However, some decisions had to be made regarding the use of 1) molar flow rates of each species, or 2) total molar flow rate and mole fractions as the independent variables. Using the molar flow rate of each species may be attractive when simple simulations are performed, that is, simulations without design constraints. In this case almost all equations are linear, the exceptions being the flash module and, depending on the case, the reactor module.

Early tests with EQSS showed that the gain in having most of the equations linear was offset by the flash module. The equilibrium relations in a flash drum have the following form:

$$
\begin{equation*}
F(N)=y_{i}-k_{i} x_{i} \tag{III-1}
\end{equation*}
$$

where:

$$
\begin{aligned}
i & =\text { component index } \\
x_{i} & =\text { mole fraction of the liquid leaving the system } \\
y_{i} & =\text { mole fraction of the vapor leaving the system } \\
k_{i} & =\text { equilibrium constant for component } i \\
N & =\left(N_{v i}, N_{l i}\right)=\text { molar flow rate } \\
l & =\text { subscript indicating liquid phase } \\
v & =\text { subscript indicating vapor phase }
\end{aligned}
$$

In solving nonlinear systems using Newton-based approaches, the Jacobian of the system is required every iteration. The i th row of the Jacobian corresponding to equation III-1 would be:

$$
\begin{equation*}
J_{i}=\frac{\partial F_{i}(N)}{\partial N_{j}}=\frac{\partial\left(y_{j}-k_{j} x_{j}\right)}{\partial N_{j}} \tag{III-2}
\end{equation*}
$$

assuming that only three components are present, $i=1,3$

$$
\begin{equation*}
x_{i}=\frac{N_{l i}}{N_{11}+N_{12}+N_{13}} \tag{III-3a}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{i}=\frac{N_{v i}}{N_{v 1}+N_{v 2}+N_{v 3}} \tag{III-3b}
\end{equation*}
$$

Equation III-2 is equivalent to:

$$
\begin{equation*}
\frac{\partial F_{i}(N)}{\partial N_{j}}=\frac{\partial\left(y_{j}\right)}{\partial N_{j}}-\frac{\partial\left(k_{j} x_{j}\right)}{\partial N_{j}} \quad j=1,3 \tag{III-4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial\left(y_{i}\right)}{\partial N_{j}}=\frac{\partial\left[\frac{N_{v j}}{N_{v 1}+N_{v 2}+N_{v 3}}\right]}{\partial N_{j}} j=1,3 \tag{III-5}
\end{equation*}
$$

or

$$
\frac{\partial\left(y_{i}\right)}{\partial N_{j}}=\frac{N_{v 1}+N_{v 2}+N_{v 3}-N_{v j}\left(\sum_{k=1}^{3} N_{v k}\right)}{\left(N_{v 1}+N_{v 2}+N_{v 3}\right)^{2}} \quad k \neq j(\text { III-6) }
$$

Similarly,

where $k \neq j$

It is clear that the rows corresponding to equation III-2 are dense. For the equation-based approach we must explore the sparsity of the nonlinear system. The formulation using molar flow rates of individual components would create a row with 2 * NC elements for a flash drum. If k values are considered variables the number of elements goes to $2 * N C+1$. On the other hand, using total flow rates and mole fractions, only two elements per row are generated (three elements if k values are not constant).

In this work we will use total flow rates and mole fractions as independent variables.

We will now present equipment subroutines. The following nomenclature will be used.

$$
\begin{aligned}
W_{i} & =\text { molar flow rate of the } i \frac{t h}{} \text { stream (mole/unit of time) } \\
x_{i j} & =\text { mol fraction of the } j \frac{\text { th }}{} \text { component in the } i \frac{t h}{} \text { stream } \\
U_{i} & =i \frac{t h}{} \text { equipment parameter } \\
F(I) & =\text { numerical value of the } i \frac{\text { th }}{} \text { equation } \\
N C & =\text { number of components } \\
I T & =\text { internal counter }
\end{aligned}
$$

The equations will be written for the case of two components. The extension to NC components is straightforward.

SUBROUTINE SMIXER (NE, N, F, IT) - This subroutine simulates the mixing of up to 7 incoming streams. No equipment parameters are required.

$$
\begin{aligned}
& F(1)=W_{8} * x_{81}-\sum_{i=1}^{7} W_{i} * x_{i 1}=0 \\
& F(2)=W_{8} * x_{82}-\sum_{i=1}^{7} W_{i} * x_{i 2}=0 \\
& F(3)=1-x_{81}-x_{82}=0
\end{aligned}
$$

$$
\text { Total Number of Equations }=N C+1
$$

SUBROUTINE SFLASH (NE, N, F, IT) - This subroutine simulates an isothermal flash. There are NC equipment parameters: $U_{i}=k_{i}$ equilibrium constants.

$$
\begin{aligned}
& F(1)=W_{1} * x_{11}-W_{2} * x_{21}-W_{3} * X_{31}=0 \\
& F(2)=W_{1} * x_{12}-W_{2} * x_{22}-W_{3} * x_{32}=0 \\
& F(3)=X_{21}-k_{1} * x_{31}=0 \\
& F(4)=X_{22}-k_{2} * x_{32}=0 \\
& F(5)=1-X_{21}-X_{22}=0 \\
& F(6)=1-X_{31}-X_{32}=0 \\
& \text { Total Number of Equations }=2 * \text { NC }+2
\end{aligned}
$$ fractions.

SUBROUTINE SREACTOR (NE, N, F, IT) - This subroutine simulates a simple reactor. Equipment parameters are the stoichiometric coefficients and the conversion of a reactant.

Assume the conversion, U_{20}, is for component l, in addition U_{1} and U_{2} are the stoichiometric coefficients of components 1 and 2.

$$
\begin{aligned}
R & =W_{1} * x_{11} * U_{20} /\left(-U_{1}\right) \\
F(1) & =W_{2} * x_{21}-W_{1} * x_{11}-U_{1} * R=0 \\
F(2) & =W_{2} * x_{22}-W_{1} * x_{12}-U_{2} * R=0 \\
F(3) & =1-x_{21}-x_{22}=0
\end{aligned}
$$

$$
\text { Total Number of Equations }=N C+1
$$

SUBROUTINE SSPLIT (NE, N, F, IT) - This subroutine simulates a splitter. Up to 7 product streams may be specified. Equipment parameter: split fraction (up to 7).

Assume that stream 1 is split into two streams, 2 and 3. Then,

$$
\begin{aligned}
& F(1)=W_{1}-W_{2}-W_{3}=0 \\
& F(2)=W_{2}-W_{1} * U_{2}=0 \\
& F(3)=x_{11}-x_{21}=0 \\
& F(4)=x_{12}-x_{22}=0 \\
& F(5)=x_{11}-x_{31}=0 \\
& F(6)=x_{12}-x_{31}=0
\end{aligned}
$$

If equipment parameters are also variables, one more equation is required:
$F(7)=1-U_{2}-U_{3}=0$

Total Number of Equations $=L+2 *$ NC where L is the number of output streams.

The user has the option of inserting special purpose modules. The module must have the form

SUBROUTINE USER (NE, N, F, IT)

On input, IT is the number of the next equation. On output IT must be equal to $I T+N E Q$, where NEQ is the number of equations in the USER module. For example,

```
\(F(I T)=\) user equation 1
\(F(I T+1)=\) user equation 2
\(F(I T+2)=\) user equation 3
IT \(=I T+3\)
```


Support Subroutines

This block of subroutines are used to enter data, print results and prepare the system of nonlinear equations for solution. Four subroutines from SIMO are also used with EQSS: Subroutines READ, WRITES, WRITEE and WRITEX.

SUBROUTINES SREAD (NSTR, NEQ, NC) - This subroutine is used to identify equipment modules used in the simulation, as well as identifying which flowsheet variables are known constants or unknowns to be calculated. SREAD will assign values of O or 1 to vectors $\operatorname{IFK}(N), \operatorname{ICK}(N \times N)$ and $\operatorname{IEK}(N \times N)$. If a flow rate is a known constant, the corresponding element of IFK will be one. Similarly, ICK and IEK will be one if a composition or equipment parameter are a known constant. Otherwise, IFK, ICK and IEK will be assigned zero.

Another vector, NAME, will carry the name of each module used in the simulation. The parameters required by SREAD are:

NSTR - total number of streams
NEQ - total number of equipment modules
NC - number of components in each stream.

SREAD requires a data file; an example is shown in figure III-7. SUBROUTINE IDEN - This subroutine plays an important role in setting up the system of nonlinear equations. The subroutine has four major duties:

1. Identifies equipment modules and assigns to vector $\operatorname{ID}(\mathrm{I})$ the values shown in table III-2.

Table III-2. Values of Vector ID for a Given Equipment Module

th
Module

SPLITTER $\quad \operatorname{ID}(\mathrm{I})$
2. Vector $\operatorname{INOP}(I)$ is assigned the total number of streams entering and leaving the $I \frac{\text { th }}{}$ module. Matrix $\operatorname{ITOP}(I, J)$ is assigned the number of each stream leaving and entering the I th equipment module, $J=1$, $\operatorname{INOP(I)}$.

Figure III-7. Example of a Datafile Required by SREAD
3. Vector IEC(I) is assigned with the total number of unknown equipment parameters of the I th module. $\operatorname{IEK}(I, J)$ is assigned with the number of each unknown parameter of the Ith equipment, $J=1, \operatorname{IEC}(I)$.
4. When sequential iterations are used to generate initial estimates of all variables, some variables, which are known constants, may have their value changed by the sequential pass. When subroutine SREAD is called, it assigns to a matrix $\operatorname{CX}(I, J)$ the numerical values of known flow rates ($F \operatorname{LOW}(I)$) and known mole fractions $(\operatorname{COMP}(I, J))$. Subroutine IDEN reassigns the values of $\operatorname{CX}(I, J)$ to $\operatorname{FLOW}(I)$ and $\operatorname{COMP}(I, J)$. The use of sequential iterations to generate initial estimates of all variables will be treated in detail at the end of this chapter.

SUBROUTINE SIMMAN (NSIG, MS) - This subroutine serves as a "manager" of the library. First, it performs a scaling of all flow rates, by searching for the maximum flow rate, FMAX, and then dividing all flow rates by FMAX. Second, it checks the consistency of the system of nonlinear equations. If the number of equations and variables are not equal, an error message is printed and the program stops. If the system of equations is consistent, stream variables and equipment parameters with the known constants and initial guesses are printed.

Last, SIMMAN calls MPDLM, the nonlinear solver subroutine.

SUBROUTINE FCN (X, F, N) - This subroutine is used by MPDLM to pass the vector X, with tentative values to the solution, and to pass to MPDLM function values. FCN will call two other subroutines, VAROUT and FUVAL. In the following pages both subroutines will be described.

SUBROUTINE VARIN (X, IT) - This subroutine is used by SIMMAN to assign the initial guesses of flow rates, compositions and equipment parameter to the vector x. The variables are stored in x by equipment modules. For instance, module number 1 has 1 input stream and two output streams, say, streams 1,2 , and 3. Also there are 2 unknown equipment parameters and each stream has 3 components. Vector X will have the following variables assigned:

$$
\begin{aligned}
& X(1)=\operatorname{FLOW}(1) \quad X(5)=\operatorname{FLOW}(2) \quad X(9)=\operatorname{FLOW}(3) \\
& x(2)=\operatorname{COMP}(1,2) \quad x(6)=\operatorname{COMP}(2,1) \quad x(10)=\operatorname{COMP}(3,1) \\
& \begin{array}{lll}
X(3)=\operatorname{COMP}(1,2) & X(7)=\operatorname{COMP}(2,2) & X(11)=\operatorname{COMP}(3,2) \\
X(4)=\operatorname{COMP}(1,3) & X(8)=\operatorname{COMP}(2,3) & X(12)=\operatorname{COMP}(3,3)
\end{array} \\
& X(4)=\operatorname{COMP}(1,3) \quad X(8)=\operatorname{COMP}(2,3) \quad X(12)=\operatorname{COMP}(3,3) \\
& X(13)=\operatorname{EQP}(1,1) \\
& X(14)=\operatorname{EQP}(1,2)
\end{aligned}
$$

SUBROUTINE VAROUT ($\mathrm{X}, \mathrm{IT}, \mathrm{N}$) - This subroutine does exactly the opposite of VARIN. It assigns the values of X to the stream variables and equipment parameters.

SUBROUTINE FUVAL (F, IT, N) - FUVAL calls all equipment modules subroutines. Each equipment module subroutine will evaluate function values which will be stored in vector F and later on used by MPDLM.

Nonlinear Solvers Subroutine

The subroutine used to solve the nonlinear system is MPDLM which was described in the SIMO section. The only difference is that it uses sparse matrix techniques and Schubert's update formula. Details may be found in Chapter II.

SUBROUTINE SPAMA2 (N, IS, LB, X) - Solves a system of N linear equations. The source code of this subroutine was obtained from Rodriques (1979). It uses sparse matrix techniques to speed up execution time and save computer memory.

Interconnection of the Subroutines

Once the data file is created and the values read through subroutine SREAD, the next step is to call subroutine SIMMAN. This subroutine will first perform a scaling of the flow rates, then call subroutines IDEN, VARIN and FUVAL, check the consistency of the system, stop the program or print stream variables and equipment parameters, and then call MPDLM. Now the control of the program passes to the nonlinear solver subroutine. MPDLM will call subroutine FCN several times with tentative solution vectors. $F C N$ in turn calls subroutine VAROUT, which assigns the values of x to the stream variables and equipment parameters. Next, FCN calls FUVAL and all the function values are evaluated. FCN returns these function values to MPDLM.

A block diagram of the strategy is shown in figure III-8.
An important point that should be addressed is how to supply initial estimates of all variables.

Figure III-8. Flow of Information Inside EQSS

There are two possibilities. One is to supply the initial estimates in a data file through subroutine READ. The task is very simple if the problem has a few modules and a dozen streams. However, if there are several modules and streams, and the number of components is high the task is tedious and error prone.

The second possibility is to perform one sequential iteration. AS SIMO and EQSS have the same structure, and both use the same common block for the stream variables and equipment parameters, performing one sequential iteration in the system, that is, using the equipment modules from SIMO to evalute stream variables is an attractive alternative.

Nevertheless, the strategy has a serious drawback. The modules from SIMO required the complete definition of the input stream(s) and the required equipment parameters. Once the calculations are performed in a given module, all residual functions of that module when calculated by the equivalent module of EQSS are equal to zero. For instance, assume that we want to solve the problem of figure III-3 using EQSS, and we want to supply the initial guesses through SIMO subroutines. We would write a small subroutine with the equipment modules in its sequential order of calculation, and would supply an initial guess for the tear stream and unknown equipment parameters. The subroutine would be:

```
SUBROUTINE IGUESS
CALL SEPAR(2)
CALL SPLIT(3)
CALL MIXER(1)
RETURN
END
```

So, for a given set of initial guesses of stream 2 and equipment parameters $\operatorname{EQP}(2,1)$ and $\operatorname{EQP}(2,2)$, the separator module would calculate the values of streams 3 and 4. Those values are the exact solution of the separator module. With the values obtained for stream 4, the splitter module will calculate stream 5 and 6, which are the exact solution of the splitter equations. The same exact solution will be obtained with the mixer module. Of course, now stream 2 has different values than the initial guess, unless the initial guess was the solution. Besides the residual functions from the separator module, all other residual functions of the system were equal to zero.

The fact that most of the equations were mathematically satisfied, although the complete system was not, created unexpected results from MPDLM. Most of the times it would not converge. In a few occasions it would converge, but the number of iterations was excessively high.

To overcome this problem we introduced "errors" in all variables calculated by the sequential iteration. Truncating the values of the variables at the third or fourth decimal place was enough to solve all problems.

CHAPTER IV

PERFORMANCE OF EQSS AND SIMO

As discussed in previous chapters, the basic problem encountered in process simulation is the need to efficiently solve a set of nonlinear equations. In Chapter II we showed an algorithm to solve nonlinear equations which, we believe, is one of the most efficient available in the open literature.

The critical point is to define the measures used to compare different approaches to solve the equations of a chemical process simulation. In general, execution time plays an important role in commercial simulations, but, as computers become faster and cheaper, execution time will become less important. It is more important to have a simulator which will not fail to solve simple problems, or will not require several runs with different initial guesses to achieve convergence in a more complex problem.

In this work our basis for comparison will be first, the number of iterations required to solve a specific problem, and second, execution time.

Each approach (sequential modular, simultaneous modular or equation-based) uses a different subroutine to solve the set of nonlinear equations. The sequential modular approach uses Wegstein's method (subroutine WEGSMD) to solve problems without design specifications; if design specifications are part of the problem, subroutines WEGSMD and SECNEW are used. The simultaneous modular approach uses version 1 of subroutine MPDLM. The
equation-based approach uses version 2 of MPDLM (see Chapter II). For all three approaches the stopping criteria used in the nonlinear solver subroutine is the same, i.e., 1×10^{-4}, which means that each variable had a change smaller or equal to 1×10^{-4} between the last two iterations.

Five problems were simulated using the simultaneous modular approach (SIMO), the equation-based approach (EQSS) and for comparison, the sequential modular approach (SEQ). Four of the problems have at least two versions, one with 1 or more design specifications (constraints) and one without constraints.

Of the five problems, four are from the open literature (Cavett's four-flash drum problem, ammonia plant, nitric acid plant, and gasoline recovery); the remaining problem is a section of a 2 ethyl-hexanal plant in which ethanal is produced by the catalytic dehydrogenation of ethanol. The data for the ethanal plant was obtained from Elekeiroz do Nordeste Industria Quimica S.A. (Brazil) through the document EN-001-00-TU3-015.

In table IV-1 we summarize the problems simulated.

Table IV-1. Summary of Test Problems

	Number of Design Specifications		
Problem	EQSS	SIMO	SEQUENTIAL
Ammonia Plant	0,1	0,2	0,2
Nitric Acid Plant	7	$0,1,7$	0,1
Gasoline Recuperation	1	0,1	0,1
Ethanal Plant	$-\ldots$	0,1	0,1
Cavett Problem	0	0	0

It should be noted that only material balances are performed in either approach, and the influence of physical property calculations can not be analyzed. It is well known that physical property calculations account for a significant amount of computer's time in process simulation, however, there is no loss of generality in this work as all problems are set up in the same manner.

IV-1 Cavett's Four Flash-Unit Problem

This test problem was suggested by Cavett (Cavett, 1963). The problem has been used by several authors to compare the performance different tear streams sets on convergence. See, for example, Westerberg et al. (1979), Rosen and Pauls (1975), and Shachan and Motard (1974).

The block diagram of the process is presented in figure IV-1. Feed compositions and equilibrium constants (k-values) are presented in table IV-2.

Figure IV-1. Block Diagram of Cavett's Problem

Table IV-2. Feed Composition and K-Values Used in Cavett's Problem (Rosen and Pauls, 1977)

		K-Values				
Component	Mole Fraction	Flash 1	Flash 2	Flash 3	Flash 4	
N_{2}	0.0131	24.260	5.940	149.700	620.800	
CO_{2}	0.1816	4.640	1.510	21.100	72.300	
$\mathrm{H}_{2} \mathrm{~S}$	0.0124	2.030	0.890	8.280	27.100	
CH_{4}	0.1096	10.300	3.090	52.900	200.100	
Ethane	0.0876	2.660	1.000	11.200	39.300	
Propane	0.0838	0.943	0.502	3.290	10.800	
Isobutane	0.0221	0.445	0.310	1.340	4.220	
n-Butane	0.0563	0.342	0.246	0.990	3.070	
Isopentane	0.0289	0.164	0.155	0.417	1.220	
n-Pentane	0.0413	0.132	0.126	0.327	0.944	
n-Hexane	0.0646	0.051	0.064	0.107	0.290	
n-Heptane	0.0954	0.022	0.035	0.039	0.101	
n-Octane	0.0675	0.008	0.017	0.013	0.033	
n-Nonane	0.0610	0.004	0.009	0.005	0.012	
n-Decane	0.0304	0.002	0.005	0.002	0.004	
n-Undecane	0.0444	0.0008	0.003	0.0009	0.002	
Temperature (K)	-0	322	311	309	303	
Pressure (bar)	-0	9.6	56.2	4.39	1.91	

For this problem, streams 2 and 7 were chosen as tear streams. As initial estimates for the stream variables of the torn streams, we used the stream variables of the feed (stream l). Neither the tear streams, nor the initial estimates of streams 2 and 7 , are the best, but in simulations with all three approaches - sequential, simultaneous modular and equation based - the same set of initial conditions were used, thus a fair comparison could be made.

The results obtained are summarized in table IV-3.

Table IV-3. Results for Cavett's Problem

Method	ITER ${ }^{\text {²/ }}$	FEVAL ${ }^{\text {/ }}$	CPU-TIME ${ }^{\text {3/ }}$	\# EQ4/
EQSS	5	--	143.995	170
SIMO	6	43	21.167	32
SEQ	105	105	5.902	32

1/ Number of iterations performed by the nonlinear solver. For
EQSS and SIMD iterations were performed by MPDLM, for SEQ iterations were performed by WEGSMD or SECNEW.

Number of flowsheet evaluations.
3/ Execution time in a CDC CYBER 175; opt. $=0$.
4/ Number of equations being solved.
In Cavett's problem, the sequential modular approach was superior to the equation based approach and simultaneous modular approach in terms of execution time. However, in terms of iterations required for solution the equation based approach and the simultaneous modular were far superior. Unfortunately, EQSS is
rather slow to solve the linear system; the same happens with SIMD. But it is clear that only a few iterations are required to reach a solution.

The number of sequential iterations required by SIMO, 43, were used to perform the following operations: 3 iterations to initialize the problem, 32 iterations to evalute the Jacobian, and 8 sequential iterations required by MPDLM. In this case, the 32 flowsheet evaluations to obtain the Jacobian did not contribute significantly to the execution time. Roughly, 2.5 CPU were required to evaluate the Jacobian.

The main programs used for the three methods are listed in table IV-4. The solution of the problem is presented in table IV-5.

Westerberg et al. (1979) reported 73 sequential iterations to solve Cavett's problem with the sequential modular approach. Unfortunately, they did not report the initial estimates of the tear streams, or which procedure was used to initialize the variables. We believe our implementation of the sequential modular approach is correct, so the discrepancy in the number of iterations must be due to the initial estimate of the solution.

As it was earlier mentioned, Cavett's problem has been extensively used to evaluate process simulators. Chen (1982) reports that 5 iterations were required to solve Cavett's problem by the simultaneous modular approach using the same tear streams as in this work. However, the execution time Chen reports is 2.64 CPU-second, which is one order of magnitude smaller than the execution time obtained in this work. The computer used in Chen's

Table IV-4. Main Programs Used to Simulate Cavett's Problem: SCA - sequential modular approach ECA - equation-based approach SMCA - simultaneous modular approach

```
I
'PROGRAM SCAITAPES.TAPEG.OUTPUT=TAPEGI
    EXTERAMAL FSIS (TSESTAPEG.DUTPUT=IAPEGD
```



```
        COMMON 'MWEG/ NSEEO
        CNOM
        NEOL=0
        M
        N=32
        NI=300 
        CALL REAO(11.6)
    10
        OO IO I=1 '16. COMM
        M
    M(1+16)=FLOW(7)*COMP(7.I)
    20
```



```
    CALL WRITES
        \
C
SUBROUTINE FSIS(M.X,F)
    REAL K(M),F(M)
    M,
    MCMMON 位\/,NE.NEO
    COMMON NP,
    FLOw(2)=0
    00 10 I=1.,6
    \0 FLOW(2)=FLOW(2):X(1)
    10
    2 0
    0020,1=1=16
    COMP(2,1)=x(1)/FLOOW(2)
    CALLFLASHC!,
    CALL FLASHI
    CALC
    CALL MIXERIS)
    IFCITOIEEO
    CALL WRITES
    CALL WRITEE
    ELSE
    OO 30 1=1 ('6
30 F(1)=FLLOW(2)OCOMMP(2,1)
    c
    FLOw(7)=0
```

c
PROGRAM ECA(TAPES TAPEG. TAPEG)

 CALL FLASH(i) $\begin{array}{ll}\text { CALL } & \text { FLASH(2) } \\ \text { CALI } & \text { FLASH(} 3) \\ \text { CALL }\end{array}$ CALL
CALL
CALASH(CALL MIXERIG)
250 CALL MIXER
CONTINUE
CALL WRIJE CALL WRETES OO NOMFI:NS FLOW(1) $=15 / 100$
$0010 ~$


```
CALL SIMMANC2.2,
```

STOP
END
\mathbf{c}
\mathbf{C}

```
PGOGRAM SMCA(TAPE5.TAPEG)
INTEGER N2(2)
N1=2
N2(1)=2
N3=0
NP=3
N NSIG=4
CALL WAITES
STOP
```

\mathbf{c}
\mathbf{C}
\mathbf{C}
\mathbf{C}
SUBROUTINE FSIS(X.F.IT,N)
SUBROUTINE FSIS
REAL X(N)
CALL FLASHI N)

CALL
CALASH(
CALL
FLASH
CAL
CALL
FLASH

10

```
.16)
```

CALL FLASH(3)
CALL FLASH(4)
CALL MIXER(5)
CAII MIXER(6)
CALL FLASH(4)
CALL MIXER(5)
CALL MIXER(6)
RETURN

Table IV-5. Solution of Cavett's Problem

work and in this work are the same. The time required to evaluate the Jacobian, and the time required for one flowsheet evaluation are roughly the same in both works. However, the time required by Chen's nonlinear solver is 0.15 CPU -seconds; in this work 18 CPU-seconds, which is more than 100 times higher. Either there is a discrepancy in Chen's time units, or our implementation of the nonlinear solver is rather inefficient.

IV-2 Ammonia Plant Simulation

In this problem an ammonia production plant using the Haber process is simulated. The data required for that problem was taken from Myers and Seider (1976).

A block diagram of the process is presented in figure IV-2. The process is rather simple. The feed consists of hydrogen $\left(\mathrm{H}_{2}\right)$ and nitrogen $\left(\mathrm{N}_{2}\right)$ gas containing argon (Ar) and methane $\left(\mathrm{CH}_{4}\right)$ impurities. The reaction between hydrogen and nitrogen to obtain ammonia $\left(\mathrm{NH}_{3}\right)$ is performed using an iron catalyst at 200 atm and about $800^{\circ} \mathrm{K}$:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \neq 2 \mathrm{NH}_{3}
$$

The outlet from the reactor (REACTOR2) is cooled and it goes to a high pressure flash drum (FLASH3). The liquid from FLASH3 contains most of the ammonia, and the vapor contains unreacted gasses and impurities. The vapor stream from FLASH3 goes to a splitter (SPL5) where 2 percent of the vapor is purged. The liquid stream from FLASH3 is the input stream of a low pressure flash drum

Figure IV-2. Block Diagram of the Ammonia Plant
(FLASH4). The liquid stream from FLASH4 is almost pure ammonia, the vapor stream contains a small amount of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} which are recycled.

The feed composition, as well as the vapor liquid equilibrium constants for FLASH3 and 4, are presented in table IV-6.

Table IV-6. Feed and K Values for the NH_{3} Plant Problem

COMPONENT	MOLE FRACTION	MOLAR FLOW RATE	K-FLASH3	K-FLASH4
NH_{3}	0.0	0.0	0.06	0.28
$\mathrm{~N}_{2}$	0.24	24.0	105	2400
H_{2}	0.743	74.3	90	1750
Ar^{2}	0.006	0.6	100	1400
CH_{4}	0.011	1.1	33	500

The conversion of a reactant was not supplied, but the chemical equilibrium constant is given as $k=0.35$, or

$$
\begin{equation*}
0.35=\left(\mathrm{NH}_{3}\right)^{2} /\left[\left(\mathrm{N}_{2}\right)\left(\mathrm{H}_{2}\right)^{3}\right] \tag{IV-1}
\end{equation*}
$$

In using the sequential modular approach, the conversion of a reactant must be specified, so before the reactor module is called, the conversion γ is calculated by solving a nonlinear equation derived from equation IV-1 with the interval-halving method.

In the simultaneous modular approach and equation-based approach, equation IV-1 is included in the system of nonlinear equations, and the conversion γ becomes a manipulated variable, that is, another unknown.

The results obtained for this problem are summarized in table IV-7.

Table IV-7. Results for the NH_{3} Plant Problem

	ITER	FEVAL	CPU-TIME	\# EQ
EQSS	4	-	8.37	48
SIMO	4	15	1.454	6
SEQ	119	119	2.54	5

Table IV-8 presents the main program used for the three approaches; table IV-9 presents the solution of the problem.

It can be seen that the simultaneous modular approach achieved convergence in a few iterations and the execution time was the lowest of the three approaches. The number of equations was very small (6 equations), so the overhead of SIMO was quite small and it did not contribute substantially to execution time. However, MPDLM used 0.2935 CPU -seconds per iteration, whereas Wegstein's subroutine spent 0.021 CPU-seconds per iteration to solve the problem using the sequential modular approach.

EQSS solved the problem in a few iterations, however execution time was rather high. The execution time required to evaluate the Jacobian was approximately 1 CPU-second, so MPDLM used about 1.8 CPU-seconds per iteration. It should be mentioned that when the same problem was again solved using MPDLM, but the linear system was solved with a full matrix technique; the execution time jumped to 45

```
        MEOGGAM SENH3/TAPES,OUTPUT,TAPEGG
        M
        M,
```



```
        l
        N=S
        MPS=0 000 
    222,
```



```
        CALL WA1YES
    CALL WEGSMO(N X NT,EPS.FSIS,K)
```



```
        c
C
    SUQROUINE,FSISSMXIFI,FLOW(30)NC.CNAME(20),COMP(30.20)
```



```
        lol
    10
    20
    COMP(2, ()=x(b)/FLOW(2)
    FNI=FLOW(2)
```



```
    30
    \
C
    FUNCTION CONST(Y), (FI, ITOT
    COMMON
    *)
    A=EOK (F)(1)
    CONST=A
C
```

```
    l
    crlL readig 5,
    %
```



```
    VAL(1)=0
    IP=3 SPECIN3 NAME NUE,NLP NACO, NUS NCO. VAL, 
l
```



```
c
    M, (%)
    10
    S
C
```



```
MGETUN
```

Table IV-9. Solution of the NH_{3} Plant Problem

CPU-seconds. Thus, there was a considerable advantage in using sparse-matrix techniques in MPDLM, including SPAMAT, to solve the linear system. It is clear, however, that an even faster subroutine must be used for the equation-based approach to be competitive with the other methods.

The same problem was solved imposing a design specification on the flow rate of stream 9 (purge stream) equal to $10 \mathrm{~mole} / \mathrm{unit}$ of time. The split fraction in SPL5 was manipulated to meet this design specification.

To solve the design problem with the sequential modular approach, we used subroutine SECNEW to solve the design specification equation and Wegstein's method to solve stream connection equations. In the other two approaches little had to be changed other than entering a few parameters indicating that FLOW(9) is equal to 10 and $\operatorname{EQP}(5,2)$ was an unknown.

The number of iterations and execution time for the design problem are presented in table IV-10.

Table IV-10. Results for the NH_{3} Plant Problem with One Design Specification

	ITER	FEVAL	CPU-TIME	\# EQ
EQSS	5	--	10.077	50
SIMO	15	36	2.867	7
SEQ	5	471	8.61	6

A few comments are appropriate at this time. The absurd number of sequential iterations required by the sequential modular approach is a typical result of nested nonlinear solvers. To guarantee a maximum error of 1×10^{-4} in the outer loop (SECNEW), the inner loop (Wegstein) should not have an error greater than or equal to $1 x$ 10^{-4}. A few preliminary tests showed that one order of magnitude was enough, so the convergence criteria for the inner loop was set equal to 1×10^{-5}. Table IV-ll shows how the iterations were distributed.

Table IV-11. Sequential Iterations Required by SECNEW

SECNEW Iteration	Wegstein's Iterations
1	154
la (derivative)	9
2	110
3	133
4	40
5	34
	TOTAL

Wegstein's methods require a set of initial guesses at each iteration of SECNEW. For the first iteration, the user provides the set of initial estimates. The following iterations of SECNEW use the converged values of the torn streams variables of the previous iteration. For instance, the initial guesses for the stream
variables for the third iteration of SECNEW used the converged values of stream variables of the second iteration of SECNEW.

SIMO solved the problem in 15 iterations and it took 2.87 CPU-seconds for solution, 3 times faster than the sequential modular and almost 4 times faster than the equation based approach. Again, the equation based approach converged fast, but the execution time was too high.

The solution of the problem is presented in table IV-12, and the main programs in table IV-13.

IV-3 Ethanal Production

The dehydrogenation of ethyl alcohol to produce ethanal is a process used since the beginning of the century. Later, when petroleum feedstock became cheaper and abundant, ethylene was used as raw material. After the petroleum crises of the 1970's, dehydrogenation of ethanol became attractive to some countries where ethanol could be produced cheaply. Several countries, for example Brazil and India, use the process today.

The dehydrogenation of ethanol is performed over a copper catalyst at about 1 atm and $600^{\circ} \mathrm{K}$.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \neq \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2}
$$

Unfortunately, there are several other reactions in series and in parallel occuring in the reactor. Besides ethanal and hydrogen, acetic acid, ethyl acetate, higher aldehydes and alchohols (4 or more carbon atoms) and gases ($\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{C}_{3} \mathrm{H}_{8}$) are also obtained, in

Table IV-12. Solution of the NH_{3} Plant Problem with One Design
Specification

Table IV-13. Programs Used to Simulate the NH_{3} Plant Problem With One Design Specification: SCINH - sequential modular approach SMC2NH - simultaneous modular approach

```
c
    MPGGRAM SGNM(1apGS,TRPEG!
    COMMON
    NT=002
M2, WRLLEREADIO,5,
    %%
    M,
    CALL WRIES
l
    SSUROLTINE,SNEINFIG
    MEAL Y/5, (HST
    MN=300
    \0. (%)
    M,
l
```



```
\
```



```
        MCONSTFA-B•者
C
    MROGAM SMC 2NHMTAPE5.FAPEG)
c
CALL NEAOIS.S1
C
```


small quantities. Some of the products, even at small quantities, have an attractive commercial value.

The entire process is presented in figure IV-3. Although the dehydrogenation of ethanol is performed in a single reactor, we could not simulate the complex series of reactions in a single reactor module. We used three reactors in series, each of them performing the indicated reactions:

First Stage

$$
\begin{aligned}
& \text { ETHOL } \overrightarrow{ } \text { ETHAL }+\mathrm{H}_{2} \\
& \text { ETHOL }=\text { ethanol } \\
& \text { ETHAL }=\text { ethanal }
\end{aligned}
$$

Second Stage

$$
\begin{aligned}
& \text { ETHAL }+\mathrm{H}_{2} \mathrm{O} \xrightarrow{*} \mathrm{EE}+\mathrm{H}_{2} \\
& \mathrm{EE}=\text { acetic acid }
\end{aligned}
$$

Third Stage

```
4.66 ETHOL +0.508 ETHAL \(\underset{*}{ } .278 \mathrm{H}_{2} \mathrm{O}+1.534 \mathrm{EEE}+0.26+1\) ORG
    EEE = ethyl acetate
    ORG = higher alcohols and aldeydes
```

These are not the true stoichiometric coefficents; they will be used in this work because there is no precise information available about the reaction.

Figure IV-3. Block Diagram of the Ethanal Plant

A few comments about the process should be made. The conversion of ethanal is about 33 percent per pass. Separator 5 (SEPAR5) performs a rough separation of the components: stream 11 contains acetic acid and water, stream 10 contains gases $\left(\mathrm{H}_{2}, \mathrm{CO}_{2}\right.$, $\mathrm{CO}, \mathrm{C}_{3} \mathrm{H}_{3}$), ethanol and ethanal. The system containing MIX8 and 14 , SEPAR6 and 9 and SPL7 have the sole purpose of separating ethanal from hydrogen. The separation is quite difficult as ethanal has a low boiling point ($21^{\circ} \mathrm{C}$ at 1 atm). Separator 11 has three outlet streams: stream 22 as pure ethanal, stream 23 as ethyl acetate, and stream 24 with ethanol and water. Separator 1 removes the excess of water and a few impurities.

Although the block diagram of figure IV-3 is a simplification of the actual process, we could not solve the simulation of the process using the equation-based approach. The nonlinear subroutine was set up to a maximum of 200 simultaneous equations and this problem requires the solution of 216 equations. Unfortunately, even modifying all subroutines to accept 216 equations, we could not simulate the ethanal plant because we would reach the maximum allowed computer memory allocation for the type of account we had. As an alternative we decided to simulate this process for three different conditions: with no constraints, with one constraint, and with one constraint and two new equipment modules. The simulations were then solved with both the sequential and simultaneous modular approaches.

The execution time and iterations required for both methods in the case of the simple simulation (no design specifications) are summarized in table IV-14.

Table IV-14. Results for the Ethanal Plant Problem

	ITER	FEVAL	CPU-TIME	\# EQ
SIMO	2	22	2.422	16
SEQ	111	111	4.47	16

For this problem the tear streams were streams 3 and 13. The main programs may be found in table IV-15, and the solution of the problem in table IV-16.

It is easy to see that the simultaneous modular approach was far superior to the sequential modular approach. The execution time was almost halfed using SIMO, in addition only two iterations were required to reach a solution.

The same problem was solved imposing as a design specification the flow rate of the product equal to 65 (mole/unit of time) and specifying the conversion of Reactor 2 as a manipulated variable.

Table IV-17 summarizes the execution time and iterations required to solve the design problem.

Table IV-15. Main Programs Used to Simulate the Ethanal Plant Problem: SEN - sequential modular approach SMEN - simultaneous modular approach

```
    MPRGRAM,SEN(TAPESTTAPEG)
    MEAL X(16)
    CM,
```



```
        CAAL WRIIES
        N=16
        NT=200
    K=0
```



```
    NALH WEGSMD(NX)*NOMP(13.1)
```



```
    MARMAGHISK
        \M\mathrm{ CALL }
C
    lol
    MTMTHROT.
    FLOW (3)=0
```



```
    COMP(3, 1)=8(1),FLOM(B)
    20
```

 PRogam smenitapes, tapeg output=tapeg

$2(1)=3$
3
$3=0$
$=0$
$N 3=0$
$N 3=0$
$1 p=1 G=$
NS
NSIG=4 ${ }^{\text {NALL }}$ SIMSOINI N2.N3.IP.NSIGI

SALL
SIMSOI
WALI
WRITEE

SUBROUTINE FSIS(X.F.IT, N)
SUB ROUTINE FS
REAL XINE
CALL SEPAAI

CALL MIXEA(
RALIUR
ENO.

Table IV-16. Solution of the Ethanal Plant Problem

Table IV-17. Results for the Ethanal Plant Problem with One Design Specification

	ITER	FEVAL	CPU-TIME	\# EQ
SIMO	3	25	4.523	17
SEQ	7	435	12.983	17

Again the simultaneous modular approach was far better than the sequential modular approach. The execution time with SIMO was almost one-third that when using SIMO. The number of sequential iterations is only about 5 percent of the number with SEQ.

The main programs are presented in tables IV-18 and the solution is presented in table IV-19.

From table IV-19 it can be seen that the recycle stream 19 has a rather high flow rate. To reduce the flow rate, we will introduce two flash drums in series after separator 5. The idea is to reduce the amount of ethanal entering the separation area (SEPAR6 and 9). We will maintain the separation factors and we will impose the concentration of ethanal in stream 18 to remain the same, that is, $\operatorname{COMP}(18,2)=0.0191$. We will let the split fraction of splitter 13 be a manipulated variable to meet the design specification. The vapor-liquid equilibrium constants are shown in table IV-20, as well as the main program for the simultaneous modular approach. The solution of the problem may be found in table IV-21.

Again, the simultaneous modular approach was far better than the sequential modular approach. The execution time was about

Table IV-18. Main Program Used to Simulate the Ethanal Plant Problem with One Design Specification: SCIEN - sequential modular approach SMCIEN - simultaneous modular approach

```
c
    MROGRAM SGIENITAPES.TAPEG,
        MXYERNA!
        los=1 E-4
c
```



```
    MCALL WHi'IS
```



```
        CALL WHISES
M
        SUGROUTNE SUQ(NY'F(JO, ELOW(30).NC.CNAME(20) COMP(30, 20)
        ExTERNAL fS IS
```



```
        M=16
        lol
c
```



```
    COMON (f),
    & (0)
    2
```



```
c
```

Table IV-19. Solution of the Ethanal Plant Problem With One Design Specification

Table IV-20. K-Values and Main Program Used to Simulate the Modified Ethanal Plant Problem

COMPONENT	K-FLASH (15)	K-FLASH(16)
ETHOL	0.002	0.100
ETHAL	0.050	1.100
H_{2}	140.000	820.000
G	4.000	43.000

```
PROGRAM ENFLCO(TAPES,TAPES)
    CHARACTER*4, NAME, NACO
    INTEGER N2(2)
    CALL READ(30,16)
    N1=2
    N2(1)=3
    N2=1
    IP=3
    NSIG=
    NAME=SSPLI.
    NUE=13
    NUP =2
    NACO= 'COMP.
    NUS =18
    NCO=2
```



```
    CALL SPEC(NG,NAME NUE,NUP NACO
    CALL SIMSOIN
CALL
```

C
C
C
C

```
SUGROUTINE FSIS(X,F,IT,N)
REAL X(N),F(N)
CALL SEPAR(1)
CALL PEAC(2
call remac(a
CALL SEPAR(S)
CALL flashil5
Call flashilis
CALL SEPAR(E)
CALL SEPAR(6)
CALL MIXER(14)
GALL SEPAR(9)
CALL SPLIT(7)
CALL MIXER(8)
CALL MIXER(IO
CALL SEPAR(11)
CALLLMIXER(12
RETURN
```

Table IV-21. Solution of the Modified Ethanal Plant Problem

30 percent and the number of sequential flowsheet evaluations was about 6 percent in the simultaneous modular approach when compared with the sequential modular approach. Table IV-22 summarizes the results obtained.

Table IV-22. Results for the Modified Ethanal Plant Problem

	ITER	FEVAL	CPU-TIME	\# EQ
SIMO	14	55	9.95	17
SEQ	18	960	26.560	17

Furthermore, we had to provide better initial guesses, that is, closer to the solution to solve the problem with the sequential modular approach. The introduction of two flash drums increased the nonlinearities and was the main reason for the poor performance of the sequential modular approach.

IV-4 Nitric Acid Plant

The nitric acid plant problem was taken from Perkins (1975). A block diagram of the process is presented in figure IV-4.

This problem is very interesting because the way it was set up by Perkins, with 10 design constraints, it can be solved in less than 10 minutes using a hand calculator. Using any of the packages available - SIMO, EQSS or SIMFLOW - it would take a few hours to set up the problem (main program, data files, etc.). This problem teaches an important lesson about process simulation. It does not matter how complex a problem may look at first sight, a critical

Figure IV-4. Block Diagram of the Nitric Acid Plant
analysis of the problem must be done before we attempt to solve it. Computer packages are powerful tools if we fully understand what we want to simulate; otherwise, there is no use for them.

Perkins used this problem to show the performance of his implementation of a simultaneous modular simulator. It should be pointed out that he does not call his implementation simultaneous modular, but sequential modular with a different convergence module.

The process may be divided into three parts. First, is the production of hydrogen. This is done by Reactors 8, 9 and 10. The first reactor performs a stream reforming yielding hydrogen and oxygen,

$$
\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{H}_{2}}{ }+1 / 2 \mathrm{O}_{2}
$$

The second and third reactors perform an oxidation of methane as follows,

$$
\begin{aligned}
2 \mathrm{CH}_{4}+\mathrm{O}_{2} & \neq 2 \mathrm{CO}+4 \mathrm{H}_{2} \\
\mathrm{CH}_{4}+\mathrm{O}_{2} & \ddagger \mathrm{CO}_{2}+2 \mathrm{H}_{2}
\end{aligned}
$$

Second is the production of ammonia from nitrogen and hydrogen,

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

Third is the oxidation of ammonia yielding nitric acid,

$$
\mathrm{NH}_{3}+2 \mathrm{O}_{2} \stackrel{\mathrm{HNO}}{3}+\mathrm{H}_{2} \mathrm{O}
$$

Table IV-23 summarizes the reactions in the nitric acid plant

Table IV-23. Reactions in the Nitric Acid Plant Problem

REACTION	REACTOR	CONVERSION1/
$\mathrm{H}_{2} \mathrm{O} \not \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}$	8	$100 \%, \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CH}_{4}+\mathrm{O}_{2} \neq 2 \mathrm{CO}+4 \mathrm{H}_{2}$	9	$4.7 \%, \mathrm{O}_{2}$
$\mathrm{CH}_{4}+\mathrm{O}_{2} \neq \mathrm{CO}_{2}+2 \mathrm{H}_{2}$	10	$100 \%, \mathrm{O}_{2}$
$\mathrm{~N}_{2}+3 \mathrm{H}_{2} \neq 2 \mathrm{NH}_{3}$	13	$25 \%, \mathrm{~N}_{2}$
$\mathrm{NH}_{3}+2 \mathrm{O}_{2} \neq \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}$	3	$100 \%, \mathrm{NH}_{3}$

1/ Percentage conversion in relation to the indicated reactant.

The separation fractions in each separator are presented in table IV-24.

Table IV-24. Separation Fractions as Percent of Individual Input Flow Rate

| SEPAR | N_{2} | H_{2} | O_{2} | CH_{4} | NH_{3} | HNO_{3} | $\mathrm{H}_{2} \mathrm{O}$ | CO | CO_{2} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 100 | - | - | -- | - | - | -- | -- |
| 5 | - | -- | - | -- | -- | 100 | 100 | -- | -- |
| 6 | 93.6 | -- | 91.3 | - | - | - | - | - | -- |
| 11 | - | - | -- | -- | - | - | - | 100 | 100 |
| 14 | 100 | 99 | - | -- | 100 | - | - | - | - |

The simulation of the nitric acid plant without design specifications was performed using the conversions shown in table IV-23, separation factors shown in table IV-24, and stream 18 was chosen as the tear stream.

The execution time and number of iterations for the simulation without constraints is presented in table IV-25.

Table IV-25. Results for the Nitric Acid Plant Problem

	ITER	FEVAL	CPU-TIME	\# EQ
EQSS	2	-	38.405	190
SIMO	2	15	1.297	9
SEQ	45	45	2.012	9

The number of sequential iterations in the simultaneous modular approach was about 30 percent of the number required by the sequential modular approach. The execution time was about 60 percent of the time required by the simultaneous modular. Again the equation based approach converged quickly but the execution time was high.

The main programs are shown in table IV-26 and the solution in table IV-27.

Another version of this problem was solved imposing the concentration of nitrogen in stream 18 equal to 0.25 . The separation factor of N_{2} in separator 6 was used as a manipulated variable. The results are summarized in table IV-28.

Table IV-26. Main Programs Used to Simulate the Nitric Acid Plant:
SNO - sequential modular approach
SMNO - simultaneous modular approach
ENO - equation-based approach

c
c
c
c

PROGRAM ENOTIAPES TAPEG IAPEES

 CALCALL
CASIS
CAL
FSS
FS

100 C

```
lol
```


Table IV-27. Solution of the Nitric Acid Plant Problem

Table IV-28. Results of the Nitric Acid Plant Problem with One Design Specification

	ITER	FEVAL	CPU-TIME	\# EQ
EQSS	2	-	38.01	190
SIMO	2	16	1.685	10
SEQ	3	255	6.732	10

Again, the simultaneous modular approach was far better than the sequential modular approach. Compared with SEQ, the execution time if SIMO was about 30 percent and the number of sequential iterations about 6 percent. The execution time in the equation based approach was again rather high, although it did converge in two iterations. In addition, there is no significant difference in the execution time of EQSS when comparing the problem with one design specification and without design specification. In the equation based approach, when we specify one variable as fixed and allow a corresponding parameter to be a variable we can expect this behavior, that is, the same execution time.

Table IV-29 presents the main programs of the HNO_{3} plant with one design specification and table IV-30 the solution of the problem.

The last HNO_{3} plant simulation problem had 7 design specifications. Because of the large number of constraints, we did not attempt to solve the problem with the sequential modular approach, it was solved only with the simultaneous modular approach and with the equation based approach.

Table IV-29. Main Programs Used to Simulate the Nitric Acid Plant Problem with One Design Specification: SCINO - sequential modular approach SMCINO - simultaneous modular approach

Table IV-30. Solution of the Nitric Acid Plant Problem with One Design Specification

Table IV-31 is a list of the design specifications and manipulated variables.

Table IV-31. Design Specifications for the Nitric Acid Plant Problem

_ Design Specification	Variable Manipulated
$\operatorname{FLOW}(6)=3.174$	$\operatorname{EQP}(6,1)$ (SEPARATOR)
$\operatorname{COMP}(6,5)=0.7$	$\operatorname{EQP}(6,2)$ (SEPARATOR)
$\operatorname{COMP}(7,1)=0.992$	$\operatorname{EQP}(9,20)($ REACTOR)
$\operatorname{COMP}(9,2)=0.01$	FLOW(1) (Feed)
$\operatorname{COMP}(15,9)=0.0$	FLOW(4) (Feed)
$\operatorname{COMP}(16,7)=0.91$	FLOW(10) (Feed)
$\operatorname{COMP}(18,1)=0.25$	FLOW(11) (Feed)

For this problem the initial guesses were taken as ± 10 percent of the solution value, that is, each variable of the solution vector was multiplied by 0.9 or 1.1.

The results obtained are presented in table IV-32; the main program for SIMO is presented in table IV-33.

Table IV-32. Results for the Nitric Acid Plant with Seven Design Specifications

	ITER	FEVAL	CPU-TIME	\# EQ
EQSS	2	-	59.259	190
SIMO	11	68	11.894	16

Table IV-33. Main Program Used to Simulate the Nitric Acid Plant Problem with Seven Design Specifications

 PROGRAM SMCTNOI INPUT, TAPES, TAPE6,
 REAL VAL(10)
 INTEGER NUE (10), NUP(10), NUS (10), NCO (10)
 CHARACTER*4 NAME (10), NACO(10)
 CALL READ (23, 14
 $N 1=1$
$N 2=18$
$N 3=7$
$1 P=3$
NSIG=
NAME (1) ='SEPA
NUE (1)=6
NUP (1)=2
NACO (1)=-COATP
NUS $(1)=18$
$\mathrm{NCO}(1)=1$
$\forall A L(1)=0.25$
NAME(2) = SEPA
NUE $(2)=6$
NACO (2) ='COMP
$\operatorname{NUS}(2)=15$
NCO (2)=8
$\forall A L(2)=0.0$
NAME (3) = 'FLOW
$N \cup E(3)=4$
$N \cup P(3)=0$
NACO(3) =' COMP
$\mathrm{NUS}(3)=6$
$\mathrm{~N} C \mathrm{O}(3)=5$
NCO $(3)=5$
$\vee A L(3)=$
NAME (4) ='REAC
NUE (4) $=9$
$N \cup P(4)=20$
NACO(4) $=$ COMP
NUS (4) $=16$
$\mathrm{NCO}(4)=7$
$\operatorname{VAL}(4)=91$
NAME (5) = 'FLOW
NUE (5) $=10$
$\mathrm{NUP}(5)=0$
$\mathrm{NACO}(5)=\mathrm{COMP}$
NUS (5) $=9$
$\operatorname{NCO}(5)=2$
$\operatorname{VAL}(5)=0 \quad 0 i$
NAME (6) ='FLOW
$\mathrm{NAME}(6)=1$
$\mathrm{NUP}(6)=0$
$\operatorname{NACO}(6)={ }^{\prime} \operatorname{COMP}$
NUS (6)=7
NCO (6) $=1$
$\operatorname{NAL}(\mathrm{G})=0 \quad 992$
NAME(7) = 'FLOW
NUE (7) $=1$
NUP $(7)=0$
NACO $(7)=$ FLOW
$\operatorname{NUS}(7)=6$
$\operatorname{NCO}(7)=0$
$\mathrm{NCO}(7)=0$
NCD $(7)=0$
$\operatorname{VAL}(7)=3 \quad 174$
CALL SPECIN3 NAME NUE. NUP, NACO. NUS NCO, VAL
CALL SIMSO(NI N2 N3,IPNSIGI
CALL WRITES
CALL WRITEE
STOP
END
C
0
c
c
SUBROUTINE FSIS: X.F.IT.N)
REAL X(N) FAN
CALL REAC:
CALL SEPAR(
CALL REAC!
CALL REAC!
CALL SEPAR
CALL SEPAR
CALL MIXER
CALL REAC
CALG REAC: 9
CALL REAC:10;
CALL SEPAR(i)
CALG SEPARE 4;
CALLUR
ENO

The equation-based approach converged in a few iterations, whereas the simultaneous modular approach took almost 5 times more iterations than the equation-based approach. In terms of execution time, the simultaneous modular approach was far better. This problem shows that when the number of design specifications increases, the simultaneous modular approach requires more iterations, 4 or 5 times more, than the equation-based approach.

The same problem (seven design specifications), but with a better set of initial guesses, i.e., in the range of ± 2 percent of the actual solution, required 16 iterations (55 sequential iterations) in the simultaneous modular approach, and 2 iterations in the equation-based approach. The execution time was about 7 CPU-seconds for SIMO and about 40 CPU-seconds for EQSS. The equation-based approach maintained the trend of 2-3 iterations to solve the problem as well as the simultaneous modular approach with 11-16 iterations.

In time, there is no discrepancy in the results obtained with the simultaneous modular approach. The first set of initial guesses required 11 iterations of MPDLM with 68 sequential iterations. The sequential iterations are distributed as follows:

3 - initialize the simulation
51 - initial evaluation of the Jacobian and two re-evluations of the Jacobian

14 - required by MPDLM

The second set of initial guesses required 16 iterations of MPDLM and 55 sequential iterations distributed as follows:

3 - initialize the simulation
34 - initialize evaluation of the Jacobian and one re-evalution of the Jacobian

18 - required by MPDLM

The extra re-evaluation of the Jacobian required by the first set of initial guesses increased the execution time, because the Jacobian matrix is factored every time the Jacobian is evaluated. On the other hand, the better approximation of the Jacobian obtained from that re-evaluation allowed the first system to converge in fewer iterations of MPDLM (ll against 16).

IV-5 Gasoline Recovery

This test problem was taken from Reklaitis (Reklaitis, 1983), it is problem 5-36, page 368.

A block diagram of the process is shown in figure IV-5.
The input gas stream has several hydrocarbons (from Cl to $\mathrm{C9}$) which will be stripped of gasoline range components with decane. It is known the split fraction of splitters 1 and 9 are known equal to 0.75 and 0.264 , respectively.

This problem is regarded as a challenge to process simulators when energy balances and physical property calculations are performed. However, because in this work only material balances are performed there was little challenge to either approach used.

Figure IV-5. Block Diagram of the Gasoline Recovery Problem

The execution time and number of iterations are presented in table IV-34.

Table IV-34. Results for the Gasoline Recovery Problem

	ITER	FEVAL	CPU-TIME	\# EQ
EQSS	4	-	81.320	187
SIMO	5	20	3.146	10
SEQ	3	3	0.916	10

Surprisingly, the number of iterations required by the equation based approach and by the simultaneous modular approach were higher than the sequential modular approach.

The main programs used are presented in table IV-35, the solution is presented in table IV-36.

The design version of the problem has the flow rate of stream 19 fixed and equal to 72 (moles/unit of time) and the split fraction of SPL9 is a manipulated variable. The results are summarized in table IV-37.

Table IV-37. Results for the Gasoline Recovery Problem with One Design Specification

	ITER	FEVAL	CPU-TIME	\# EQ
EQSS	4	-	82.856	188
SIMO	2	17	1.908	11
SEQ	4	35	1.573	11

Table IV-35. Main Programs Used to Simulate the Gasoline Recovery Problem

```
PROGRAM SC8(TAPES TAPEG)
COMMON SITTY ICO
MEAL X(10),Y(10)
CALL READ(19, 10
l
x(13)=175
x(4)=175
```



```
l
l
N=10
ICO=-1
NT=100
```



```
CALL WRITES DXX, "EQUIPAMENT PARAMETERS",I)
CALL WRITES
CALL WEGSMD(N,X,NT,EPS,FSIS,K)
WRITE(6,1O) ICO
FRIMMAT,'IOX."CONVERGENCE ACHIEVED IN".I4." ItTERATIONS ".l)
CALL WRITES
l
C
    SUBROUTINE FSIS(M,X,F)
    SUBROUTINE FSI
    COMMON /SI/,NS,NSTR(30),FLOW(30),NC,CNAME(20), COMP(30, 20)
    COMMON/ITT/ICO
    FCO=1CO+1
    MO
    |
    2
    COMP(1=1,M
    CALL SEPAR(S)
    CALL SEPAR(8),
    CALL SPLIT(9)
    CALL SPLIT(G)
    CALL SPLIT(1)
    CALL SEPAR(5)
    CALL SEPAR(7)
    3 DO(1)=FL=1,M
    M R(1)=F
PROGRAM SCB(TAPES.TAPEG)
CALL WRITES
CALL WEGSMD(N. 
END
```

PROGRAM SMCB(TAPE 5 TAPE6)
CHARACTER*4. NAME, NACO
CHARACTER*4.NAME
CALL READ $(1 \dot{s} .10)$
CALL
$11=1$
$12=11$
$13=0$
$1 P=3$
IP $=3$
$N S I G=4$
SIMSO(II, I2.I3.IP.NSIG) WRITES
CALL
STOP
END

```
SUQROUTINE FS 
REAL X(N),F(N)
CML
CALL SEPAR(10)
CALL SPLIT(G)
GALL MPLER(1)
CALL SEPAR(3)
CALL MIXER(4)
CALL MIXER(4)
CALL SEPAR(5)
RETURN
```

SUEROUTINE FSIS (X,F,IT,N)
END
PROGRAM ECB(TAPES. TAPEG. TAPEG)
CALL READ (19.10)
CALL SREAD (19.10.10
CALL SREAD (19.10
CALL
CALL
STOP SIMMAN(3.2)
STOP
STOP
END
SU日ROUTINE FSIS
CALL SEPAR(8)
CALL SEPAR(10)
CALL SEPAR(7)
CALL SPLIT(9)
CALL SPLIT
CALL MIXER(2)
CALL SEPAR
CALL MIXER(4)
CALL SEPAR(5)
CALL MIXER(6)
REJURN
END

Table IV-36. Solution for the Gasoline Recovery Problem

The simultaneous modular approach had fewer iterations required than the sequential modular and equation based approach. The execution time was better with the sequential modular approach. The main programs for the simultaneous modular and sequential modular approach are presented in table IV-38; the solution of the problem is in table IV-39.

Table IV-38. Main Program Used to Simulate the Gasoline Recovery Problem with One Design
Specification

Table IV-39. Solution for the Gasoline Recovery Problem with One Design Specification

Final Remarks on Chapter IV

All results obtained are summarized as ratios; table IV-40 presents iteration ratios, table IV-4l presents CPU-time ratios.

Table IV-40. Iteration Ratios

		SIMO ${ }^{1 /}$	SEQ $1 /$	SIMO ${ }^{2 /}$	SEQ ${ }^{2 /}$
	A	. 617	0.093	ND	ND
EQSS	B	. 882	0.039	ND	ND
	C	. 467	0.111	ND	ND
	A	1	0.131	1	0.104
SIMO	B	1	0.05	1	0.3
	C	1	0.971	1	0.069
$1 /$	Total number SECNEW)	of itera	ns of	nonline	solver
2/ Total number of flowsheet evaluations					
A - all problems					
B - only problems with no design specifications					
C - only problems with one or more design specification					
ND-	not defined				

The ratios are defined as the number of iterations of the horizontal entry divided by the number of iterations of the vertical entry.

Table IV-41. CPU Time Ratios

	SIMO	SEQ	SEQ $/ /$
A	10.216	14.214	-
EQSS B	10.113	17.177	-
C	10.368	10.445	-
A	1	0.697	0.439
SIMO B	1	1.851	0.820
C	1	0.372	0.372

without Cavett problem

It can be seen from table IV-40 that the equation-based approach had the best convergence performance. In the case of problems with one or more constraints the equation-based approach requires half of the iterations required by SIMO and 10 percent of those required by SECNEW.

The true comparison between SIMO and the sequential modular approach is in the total number of flowsheet evalutations. SIMO requires about 7 percent of the iterations required by the sequential modular approach for constrainted problems, about 30 percent for problems without constraints and 10 percent overall.

It is clear that the equation-based approach has the worst performance of the three methods in terms of execution time. The simultaneous modular approach performed best with design constraints, but without design constraints only marginal benefits were achieved.

CHAPTER V

CONCLUSIONS

The implementation of Chen and Stadtherr's modification of Powell's dogleg method proved to be an efficient alternative to solve systems of nonlinear equations. When used to solve nonlinear systems arising from chemical process simulations it was very reliable, even with poor initial guesses.

The equation based approach is an attractive alternative for chemical process simulations. However, in order to have the equation-based approach attractive for commercial applications, better algorithms to solve the set of linear equations must be incorporated. In addition, the Jacobian evaluation must be optimized. Knowing the modules which will be used in the simulation, it is easy to know the structure of the Jacobian; therefore, there is no need to perturb all variables to evaluate the Jacobian matrix by forward differences, only the ones that affect a given equation.

The simultaneous modular approach is better than the sequential modular approach for controlled simulations, that is, for simulations with design specifications.

The findings in this work are applicable to simulations where only material balances are performed. The results with simultaneous mass and energy balances, and physical properties estimation may result in different conclusions. However, we expect better performance of the equation-based approach and simultaneous modular
approach when compared with the sequential modular approach. We expect that behavior because the execution time for each flowsheet pass will be higher when physical properties and energy balances are performed. In addition, we expect a significant increase in the severity of nonlinearities which will affect Wegstein's method performance.

The findings of this work agreed with results presented in the open literature regarding the three methods: the sequential modular, simultaneous modular and equation-based approach. However, the results of this work also indicate that much more research must be done with the equation-based approach.

Finally, two libraries of subroutines were developed, SIMO and EQSS, which provide powerful teaching aids for undergraduate level stoichiometry classes.

Future Work

It became quite clear while this work was in progress that the main problem associated with the simultaneous modular approach and equation based approach is the effective solution of a system of nonlinear equations. A few areas must be further researched; namely:

1. The evaluation of the Jacobian accounts for a significant amount of execution time. It would be interesting to have the Jacobian coded analytically. Although the task is tedious, it is feasible. We must remember that material
and energy balance equations have the same form for all equipment modules, that is, output $=$ input + accumulation. Therefore, there is no need to code the analytical Jacobian in the case of material and energy balances equations for each module, a general subroutine would do it. If the analytical Jacobian is not expensive to evaluate it would be preferable to evaluate the Jacobian every iteration rather than to update it by secant formulas.
2. Although the results obtained with Schubert's update formula were fairly good, it would be interesting to analyze the effect of maintaining all known constant Jacobian elements, not just the zeros. In Chapter II we presented Schubert's update formula and we mentioned that in practice we hold as constants only the elements equal to zero. The question that should be answered is what is the gain, if any, of not updating all known constants, but only the ones equal to zero. This question is very important because some authors (for example, Lucia, 1982) reported unreliable results using Schurbert's update formula. Were the unreliable results due to Schubert's formula, or due to simplifications introduced to Schubert's update formula?
3. EQSS and SIMO should perform energy balances. As teaching aids, SIMO and EQSS fulfill the purpose of showing the performance of different approaches to solve process
flowsheets. On the other hand, the type of simulations that can be performed with SIMO and EQSS are rather simple, and their use in research is limited. Introducing energy balances and physical properties calculations would enable SIMO and EQSS to solve more complex problems.
4. A weak point in EQSS is the solution of the linear systems every iteration. A better (more efficient) subroutine must be incorporated to solve the linear system. There are several such algorithms published in the open literature. Unfortunately, our choice was not the best.

BIBILOGRAPHY

Bennett, J.M., "Triangular Factors of Modified Matrices." Numer. Math. 7, 217 (1965).

Broyden, C.G., "A Class of Methods for Solving Nonlinear Simultaneous Equations." Math. Comp. 19, 577 (1965).

, "The Convergence of an Algorithm for Solving Sparse
Nonlinear Systems." Math. Comp. 25, 114 (1971).

Cavett, R.H., "Application of Numerical Methods to the Convergence of Simulated Processes Involving Recycle Loops." Amer. Petroleum Inst. Preprint No. 04-63 (1963).

Chen, H.S. and Stadtherr, M.A., "A Modification of Powell's Dogleg Method for Solving Systems of Nonlinear Equations." Comput. Chem. Eng. 5, 143 (1981).

Chen, H.S., "Computational Strategies for Chemical Process Flowsheeting and Optimization." Ph.D. Thesis, University of Illinois, Urbana (1982).

Crowe, C.M., "On a Relationship Between Quasi-Newton and Dominant Eigen Value Methods for the Numerical Solution of Nonlinear Equations." Comput. Chem. Eng. 8, 35 (1984).

Dennis, Jr., J.E., and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, list ed. (1983).

Duff, I.S., "A Survey of Sparse Matrix Research." Proc. of the IEEE 4, 500 (1977).

Gupta, P.K., Lavoie, R.C., and Radcliffe, R.R., "An Industry Evaluation of SPEEDUP." 1984 Annual Meeting of the A.I.Ch.E., San Francisco.

Gallun, S.E., and Holland, C.D., "A Modification of Broyden's Method for the Solution of Sparse Systesm - With Applications to Distillation Problems Described by Nonideal Thermodyanamic Functions." Comput. Chem. Eng. 4, 93 (1980).
Hlavacek, V., "Analyses of a Complex Plant - Steady State and Transient Behavior." Comput. Chem. Eng. 1, 75 (1977).
Kayihan, F., "SIMFLOWS: Simplified Modular Flowsheet Simulator." Chemical Engineering Department, Oregon State University, Rev. 2 (1979).

Lucia, A., "Some Results for one Iterated Projection of the Symmetric Schubert Update." Comput. Chem. Eng. 6, 283 (1982).
Mah, R.S.H., and Lin, T.C., "Comparison of Modified Newton's Methods." Comput. Chem. Eng. 4, 75 (1980).

Mahelec, V., Kluzik, H., and Evans, L.B., "Simultaneous Modular Algorithm for Steady-State Flowsheet Simulation and Design." Presented at 12th Symposium on Computer Applications in Chemical Engineering, CACE 79, Montreux (1979).

Motard, R.L., Shacham, M. and Rosen, E.M., "Steady State Process Simulation." AIChE J. 3, 417 (1975).

Myers, A.L., and Seider, W.D., Introduction to Chemical Engineering and Computer Calculations. Prentice-Hall, lst ed. (1976).
Perkins, J.D., "Efficient Solution of Design Problems Using a Sequential-Modular Flowsheeting Program." Comput. Chem. Eng. 3, 375 (1979).

Perkins, J.D., and Sargent, R.W.H., "SPEEDUP: A Computer Program for Steady-State and Dynamic Simulation and Design of Chemical Processes." Selected Topics on Computer-Aided Process Design and Analyses. CEP Symposium Series, A.I.Ch.E., New York (1982).

Powell, M.J.D., "A Hybrid Method for Nonlinear Equations." Numerical Methods for Nonlinear Algebraic Equations, P. Rabinoiwitz (ed.), Gordon and Breach, New York (1970).

Reklaitis, G.V., Introduction to Material and Energy Balances. John Wiley and Sons, lst ed. (1983).

Rodrigues, A.F., "Solucao de Sistemas Esparsos de Equacoes Algebricas Lineares por Metodos Diretos." M.S. Thesis, Escola Politecnica da Universidade de Sao Paulo, Brazil (1979).

Rosen, E.M., "A Machine Computation Method for Peforming Material Balances." Chem. Eng. Progress 58, 69 (1962). , "A Review of Quasi-Newton Methods in Nonlinear Equation Solving and Unconstrained Optimization." Proc. 21st ACM National Meeting, Washington D.C. (1966).

Rosen, E.M., and Pauls, A.C., "Computer Aided Chemical Process Design." Comput. Chem. Eng. 1, 11 (1977).
Schubert, L.K., "Modification of a Quasi-Newton Method for Nonlinear Equations With a Sparse Jacobian." Math. Comp. 25, 27 (1970).

Stadtherr, M.A., and Wood, E.S., "Sparse Matrix Methods for Equation-Based Chemical Process Flowsheeting - I." Comput. Chem. Eng. 8, 9 (1984).

Ibid. Part II, Comput. Chem. Eng. 8, 19 (1984).
Wegstein, J.H., "Accelerating Convergence of Iterative Processes." Commun. Assoc. Computing Machinery 6, 9 (1958).

Westerberg, A.W., Hutchinson, H.P., Motard, R.L., and Winter, P., Process Flowsheeting, Cambridge University Press, Cambridge (1979).

APPENDICES

Appendix A

Solution Equations

In this appendix we will show the equations solved in each equipment module used by the sequential and simultaneous modular approach.

In either approach the input stream variables and equipment parameters are known. The following nomenclature will be used:

$$
\begin{aligned}
x_{i j}= & \text { mole fraction of the } j \frac{\text { th }}{} \text { component in the } \\
& i \text { th } \text { stream }
\end{aligned}
$$

$N_{i}=$ total molar flow rate of the $i \frac{\text { th }}{}$ stream
$\partial_{k}=k$ th split fraction
$\beta_{i}=$ separation fraction of the i th component
$\mu_{i}=$ stoichiometric coefficient of the in component
$\gamma_{k}=$ conversion of the k th reactant
$k_{i}=$ liquid-vapor constant of the i th component

SPLITTER
n components
L streams out (max 7)
l stream in

Equipment parameter: split fraction ∂_{k}

$$
\begin{aligned}
& \partial_{k}=\frac{N_{k}}{N_{1}} \\
& N_{k}=\partial_{k} N_{1} \quad k=2, L \\
& x_{k j}=x_{i j} \\
& k=2, L ; j=1, n
\end{aligned}
$$

MIXER
n components
L input streams (up to 7)
1 output stream

Equipment parameters: none

$$
\begin{aligned}
N_{4} & =\sum_{k=1}^{3} N_{k} \\
x_{4, j} & =\frac{\sum_{k=1}^{3} N_{k} x_{k, j}}{N_{4}} \quad j=1, n
\end{aligned}
$$

n components
L output streams (up to 3)
1 input stream

Equipment parameters: $\beta_{j}=\frac{N_{2} x_{2, j}}{N_{1} x_{1, j}} \quad j=1, n$

$$
\begin{aligned}
N_{3} & =N_{1} \sum_{j=1}^{n}\left(1-B_{j}\right) x_{1, j} \\
N_{2}=N_{1}-N_{3} & \\
x_{2, j}=\frac{B_{j} N_{1} x_{1 j}}{N_{2}} & j=1, n \\
x_{3, j}=\frac{N_{1} x_{1, j}-N_{2} x_{2, j}}{N_{3}} & j=1, n
\end{aligned}
$$

REACTOR
n components
$\mu_{i}=$ stoichiometric coefficients

- reactant
(+ product
(0) inert

Equipment parameters: $\gamma_{k}=\frac{N_{1} x_{1 k}-N_{2} x_{2 k}}{N_{1} x_{1 k}}$

Conversion of the k reactant

Define $\quad I=\frac{N_{1} x_{1 k} \gamma_{k}}{-\mu_{k}} \quad$ extent of reaction

$$
\begin{aligned}
N_{2} & =N_{1}+r \sum_{j=1}^{n} N_{j} \\
x_{2 j} & =\frac{N_{1} x_{1 J}+r \mu_{j}}{N_{2}}
\end{aligned}
$$

FLASH (Isothermal) n components
2 ouput streams
1 input stream

Equipment parameter: $k_{j}=\frac{x_{2 j}}{x_{3 j}} \quad j=1, n$
Define $\quad \alpha=\frac{N_{3}}{N_{1}}$

Solve

$$
\sum_{i=1}^{n} \frac{x_{l i}}{1-\alpha\left(1-1 / k_{i}\right)}-1=0
$$

for α

$$
\begin{aligned}
& N_{3}=\alpha N_{1} \\
& N_{2}=N_{1}-N_{3} \\
& x_{2, J}=\frac{x_{1 J}}{1-\alpha\left(1-1 / k_{j}\right)} \quad J=1, n \\
& x_{3, J}=\frac{x_{2, J}}{k_{J}} \quad J=1, n
\end{aligned}
$$

APPENDIX B

Chen and Stardtherr Modification of Powell's Dogleg Method

to Solve Sets of Nonlinear Equations

In this appendix we will try to show how Chen and Stadtherr's algorithm functions. The references for this appendix are: Powell (1970), Broyden (1965), and Chen and Stadtherr (1981).

We will now present a brief review of methods for solving nonlinear equation, which are relevant to understand the algorithm.

Consider the solution of N nonlinear equations in N unknowns. We aim at the determination of the vector x^{*} such that

$$
\begin{equation*}
F\left(x^{*}\right)=0 \tag{1}
\end{equation*}
$$

where F, X, and 0 are $N^{\text {th }}$ order vectors.
Several iterative procedures to determine X^{*}, solution vector of (1), have the general form:

$$
\begin{equation*}
x^{i+1}=x^{i}-H_{F}^{i_{F}} T^{i} \tag{2}
\end{equation*}
$$

where:

$$
\begin{aligned}
i & =\text { iteration number } \\
X^{i} & =i \text { th estimate of the solution } \\
F^{i} & =\text { function values at } X^{i} \\
T^{i} & =\text { scaling factor } \\
H^{i} & =\text { depends on the method used }
\end{aligned}
$$

To follow the convergence towards the solution, the euclidian norm of the functions is traced.

$$
\begin{equation*}
S(x)=\sum_{J=1}^{N}\left(F_{J}^{i}(x)\right)^{\frac{1}{2}}=\left\|F^{i}(x)\right\| \tag{3}
\end{equation*}
$$

When a vector X^{*} reduced the euclidian norm to a determined small value ∂, we accept X^{*} as the solution to the system (1). Thus, X^{*} is a solution if,

$$
\begin{equation*}
\left\|F^{i}\left(X^{*}\right)\right\| \leq \partial \tag{4}
\end{equation*}
$$

It is desirable that at each iteration the euclidian norm of $F(X)$ is reduced, so we would like that

$$
\begin{equation*}
\left\|F^{i+1}(x)\right\| \leq\left\|F^{i}(x)\right\| \tag{5}
\end{equation*}
$$

In the Newton-Raphson method H^{i} is chosen to be the inverse of the Jacobian of $F(X)$. Equation (2) becomes

$$
\begin{equation*}
x^{i+1}=x^{i}-\left(J^{i}\right)^{-1} F^{i} \tag{6}
\end{equation*}
$$

and $T^{i}=1$.
In the steepest descent method H^{i} is chosen to be $\left(J^{i}\right)^{\top}$. The method is based on finding a minimum of $Z(X)=F(X)^{\top} F(X)$. The gradient of $Z(X)$ is $2 J^{\top} F(x)$ and the steepest descent direction of $Z(X)$ is -grad $Z(X)$. So if we choose H^{i} to be $\left(J^{i}\right)^{\top}$ equation (2) becomes

$$
\begin{equation*}
x^{i+1}=x^{i}-\left(J^{i}\right)^{\top} F\left(x^{i}\right) T^{i} \tag{7}
\end{equation*}
$$

If we choose T^{i} properly $Z(X)$ will be reduced every iteration. Note that $Z(X)=S(X)^{2}=\left\|F^{i}(X)\right\|^{2}$. The method may fail to solve (1) if a local minimum, different than the solution vector X^{*}, is reached. It can be shown that at the minimum

$$
J^{\top} F(X)=0
$$

since its not a zero minimum $F(X) \neq 0, J^{\top}$ must be singular. This is not a serious drawback, as several algorithms, for example the Newton-Raphson method, require J^{-1}. However, if such local minimum is not reached, the steepest descent algorithm will eventually reach the zero minimum. It has been found that the steepest descent algorithm is rather slow.

Another iterative method used is the Levenberg-Marquardt. In this method $H^{i}=\left(J^{i}\right)^{\top} J^{i}+\lambda^{i} I^{-1}\left(J^{i}\right)^{\top}$ and T_{i} is set equal to 1 . The parameter λ^{i}, Levenberg-Marquardt parameter, is chosen to be always greater than or equal to zero. Equation (2) becomes

$$
\begin{equation*}
x^{i+1}=x^{i}-\left(J^{i}\right)^{\top} J^{i}+\lambda^{i} I{ }^{-1}\left(J^{i}\right)^{\top} F^{i} \tag{8}
\end{equation*}
$$

A few comments are in order at this time. If we set $\lambda^{i}=0$, equation (8) reduces to equation (6), the Newton-Raphson method. If we let λ^{i} big enough, equation (8) reduces to equation (7), the steepest descent algorithm, where $T^{i} \simeq\left(\lambda^{i} I\right)^{-1}$. It can be shown that equation (5) is satisfied with a proper choice of $\lambda^{i} \quad 0$.

It is important to note that if $\lambda^{i} \quad 0$, the inverse matrix in (8) will always exist, which eliminates the drawback of the other algorithm, a singular Jacobian. However, as in the steepest descent
algorithm, the L-M algorithm may find a local minimum in which $\|F(x)\| \neq 0$.

An important feature of the L-M algorithm is that, depending on the value of λ^{i}, it has good global convergence properties, as the steepest descent direction method or good local convergence property, as Newton-Raphson method.

Let us rewrite equation (8) in the following manner:

$$
\begin{equation*}
x^{i+1}=x^{i}+p^{i} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
P^{i}=\left\{\left(J^{i}\right)^{\top}\left(J^{i}\right)+\lambda^{i} I\right]^{-1}\left(J^{i}\right)^{T} F^{i} \tag{10}
\end{equation*}
$$

and P^{i} is a correction step which value is chosen as to satisfy equation (5). Clearly, $\mathrm{P}^{\mathrm{i}}=\mathrm{f}\left(\lambda^{\mathrm{i}}\right)$, and the problem now is to find λ_{i}, so as to satisfy equation (5). As λ^{i} may assume any value in the interval $(0,+\infty)$ we will have to assume several values of λ and check whether equation (5) is satisfied or not.

To exemplify the procedure, consider the following system of equations:

$$
\begin{align*}
& f_{1}(x)=x_{1}^{2}+x_{2}^{2}-5=0 \tag{11}\\
& f_{2}(x)=2 x_{1}+x_{2}-4=0
\end{align*}
$$

Let $X^{1}=(1,1)^{\top}$, thus $F^{1}(X)=(-3,-1)^{\top}$ and the Jacobian is:

$$
J=\left[\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right]
$$

Table B-l shows several values of P^{l} as a function of λ^{l}.

Table B-1. Correction step as a Function of λ

	P_{i}	P_{2}^{i}
0.0	-0.50	2.00
0.5	0.19	1.07
1.0	0.33	0.83
5.0	0.40	0.46
10.0	0.33	0.33

The L-M curve is shown in figure B-1. To obtain the curve a linear system had to be solved for each value of λ considered. Clearly, this procedure is time consuming as the number of equations in the system increases. Powell approximates the L-M curve by a broken curve as shown in figure $B-2$. The curve $\overrightarrow{B C}$ was obtained through the steepest descent direction of $S(X)=\|F(X)\|$. As it was previously discussed, as λ increases the L-M equation (8) tends towards the steepest descent direction, so the direction of $\overrightarrow{B C}$ is the steepest descent direction given by $G=-\operatorname{grad} S(X)=-J^{\top} F$ in the example,

$$
G=\left[\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
+3 \\
+1
\end{array}\right]=\left[\begin{array}{l}
8 \\
7
\end{array}\right]
$$

and

$$
\begin{equation*}
P^{S}=\overline{A B}=\mu G \tag{12}
\end{equation*}
$$

Figure B-1. Typical 2-Dimensional $P(\lambda)$ Curve in the L-M Method

Figure B-2. Typical Dogleg Approximation to the $P(\lambda)$ Curve
where

$$
\begin{align*}
\mu & =\frac{\|G\|^{2}}{\|J G\|^{2}} \tag{13}\\
\mu & =\frac{\left(8^{2}+7^{2}\right)}{\left(30^{2}+23^{2}\right)}=0.079076 \\
\overline{A B} & =0.79076\left[\begin{array}{l}
8 \\
7
\end{array}\right]
\end{align*}
$$

For $\lambda=0, P(\lambda)$ is just the correction step given by $N-R$ algorithm so that

$$
\begin{aligned}
& \lambda=0 ; \overrightarrow{B C}=P(\lambda) \\
& P^{N}=P(\lambda)=-J^{-1} F=[-0.5 ; 2]^{\top}
\end{aligned}
$$

Now the broken line ABC (dogleg) is completely described and, as seen in figure B-2, it well represents the L-M curve. The advantage of using Powell's dogleg curve to approximate the L-M curve is that only one linear system was solved, the N-R correction step.

In order to solve the system of equations (ll), it would be interesting if after each iteration we could reduce the value of $\|F\|$, in other words, we want equation (3) to be satisfied every iteration. Let us consider a trust region Δ which represents the distance between x_{i} and x^{*} (the solution vector). One of the good characteristics of Newton's method is that it converges fast nearby the solution, and one good characteristic of the L-M method is that
for a sufficiently large λ equation (5) is satisfied. The parameter Δ will be used to determine the correction step through the following algorithm.

Use:

$$
\begin{gathered}
P^{N} \text { if } \Delta \geq\left\|P^{N}\right\| \\
p^{S} \text { if } \Delta \leq\left\|P^{S}\right\| \quad \text { (N-R step) } \\
\text { If }\left\|P^{N}\right\|<\Delta<\left\|P^{S}\right\| \text { we will use the intersection of the }
\end{gathered}
$$ broken line (dogleg) with the circle of radius Δ.

$$
P=\alpha P^{N}+(1-\alpha) P^{S}
$$

where
$\alpha=\frac{\Delta^{2}-\left\|P^{S}\right\|}{\left.\left.\left(P^{N}-P^{S}\right)^{\top} P^{S}+\left[\left(P^{N}\right)^{\top} P^{S}-\Delta^{2}\right)^{2}+\left(\left\|P^{N}\right\|^{2}-\Delta^{2}\right)\left(\Delta^{2}-\left\|P^{S}\right\|^{2}\right)\right)^{\frac{1}{2}}\right]}$

In this case we will keep the good convergence properties of the L-M algorithm. To illustrate the procedure let us use again the system of equations (11) and assume that $\Delta=\sqrt{2}$.

$$
\begin{aligned}
& \left\|P^{N}\right\|=2.0615 \\
& \left\|P^{S}\right\|=0.8406
\end{aligned}
$$

so

$$
\left\|p^{N}\right\| \Delta \quad\left\|P^{S}\right\|
$$

and

$$
P^{N S}=(-0.04085 ; 1.413624)^{\top}
$$

The next step in the algorithm is to update Δ. We want Δ as large as possible because we want to decrease \|F \| in every iteration, without taking too small steps. If Δ is too small the number of iterations required is prohibitive.

Chen and Stardtherr suggest the following procedure. If the Jacobian is new, use:

$$
\Delta=\left\|P^{i}\right\| \max (0.1, \lambda)
$$

where

$$
\lambda=\frac{-b}{2 a}
$$

and

$$
\begin{aligned}
& a=s^{*}-s-2\left(F^{i}\right)^{\top} J^{i} P^{i} \\
& b=2\left(F^{i}\right)^{\top} J^{i} p^{i} \\
& s^{*}=\left\|F\left(X^{i}+P^{i}\right)\right\|^{2} \\
& s=\| F\left(X^{i} \|^{2}\right.
\end{aligned}
$$

Otherwise, evaluate d_{m},

$$
\begin{aligned}
& d m=s-s^{*}-0.1\left(s-\|q\|^{2}\right) \\
& q=F\left(x^{i}\right)+J^{i_{P} i}
\end{aligned}
$$

if $d_{m}<0$ set

$$
\Delta=0.5\left\|P^{i}\right\|
$$

if $d_{m} \geq 0$

$$
\begin{aligned}
& \lambda^{2}=1+\frac{d_{m}}{\sigma_{p}+\left(\sigma_{P}^{2}+d_{m} \sigma_{s}\right)^{\frac{1}{2}}} \\
& \sigma_{P}=\sum_{J=1}^{n}\left|f_{j}\left(x^{i}+p^{i}\right)\left[\left(f_{j}\left(x^{i}+p^{i}\right)\right)-a_{S}\right]\right| \\
& \sigma_{S}=\sum_{j=1}^{n}\left[f_{j}\left(x^{i}+p^{i}\right)-q_{j}\right]^{2}
\end{aligned}
$$

The new Δ is defined as follows:

- set TFLAG = l if the Jacobian is new or whenever Δ is reduced.
- calculate λ and find $M V=\min (2, \lambda, T F L A G)$
- reset TFLAG $=\lambda / \mathrm{MV}$
$-\operatorname{set} \Delta=M V\left\|P^{i}\right\|$

Other features of Chen's and Startherr algorithm are:

- Check for slow convergence or nonconvergence. This check is done because the algorithm may converge to a local minimum and no progress is done towards the solution. If the check shows slow convergence of nonconvergence the
program stops and a different set of initial guesses is required.
- The update of the Jacobian through secant formulas "degrades" as the number of iterations increases. When the Jacobian is not making good progress, it is reevaluated through finite differences.

What was exposed so far are the basic ideas behind Chen and Stadtherr's modification of Powell's dogleg method. The following references will cover in more details the dogleg method and its modifications: Powell (1970), Broyden (1970), Chen and Stardtherr (1981).

If anyone wants to work out the system of equations (7), table A-2 shows some results.

Table B-2. Results for the System of Equations (12)

ITERATION	1	2	3		
X_{1}	1.0	0.9591	1.0849		
X_{2}	1.0	2.4136	1.8301		
F_{1}	-3.0	1.7455	-0.4737		
F_{2}	-1.0	0.3319	-0.0001		
Δ	$\sqrt{2}$	1.1007			
P_{1}	-0.04095	0.1258			
P_{2}	1.4136	-0.5835			
$\\|P\\|$	2.0	0.3563			
$\\|F\\|$	3.16	1.7768	0.2244		
α	0.5946	--			

APPENDIX C

Subroutine Listing

LIBRARY

lot
lot $10=3$
ELLSE

c \quad stontinue

GO 10 2
ELSE
END


```
    OO 30 I=1.NE
```



```
    \begin{tabular}{l}
\(1 \begin{array}{l}110 \\
1 \\
1 \\
2\end{array}=20\) \\
\hline
\end{tabular}
```



```
    GO to
ELSE
ENDIF
    31 CONTINUE, EQY, Gu to 30
    32 IEK 32 L 1,1 iECH1,
30 CONTINUE
```



```
50 CONTINUE
```



```
-
    60 CONTINUE
```



```
- 60 To a
    70 CONTINUE
```



```
\(\stackrel{c}{c}\)
    BO CONIINUE
    95 INOP CONTINUE
```



```
c 90 cournas
```



```
    IFIEQR1K. 20, EU 3, GO TO 95
```



```
    STOP
COMTINE
RETURN
ENO
\(c\)
\(c\)
\(c\)
\(c\)
subroutine simanninsig.ms,
```


$\stackrel{c}{c}$

${ }_{\mathrm{c}}^{\mathrm{c}}$

120 N

WRITETG 2O2
CAL WRITES
CALL WRITEE
200 FORMATISS.

$202{ }^{2}$ formatis ${ }^{2}$

Return
ENO

c
c
c
c
c
subroutine fenix.f.n

```
MEAL X(N),F(N)
MRENO
```


COMMON $\substack{\text { REFL } \\ I I=1}$ Fin

c 00 I K=1. Ne

30 GAL TO SaEACIKNF.11
GO to I

RETURN
END

REAL XIN INTEGER ITERIJOI

c

105 CO
OO:11! $1=1$ N

II CONTINUE
OO CONTSNE
c

200
RENUHAN
ENO
c
C
C
C

REAL XI' 1 ITEGER ITEHIJO

105


```
loo continue
    Tf(iectri eq 0) go to
        OOCNK.20,=11
    200
    M
    \MCON1
c
```



```
    REAL F,
```



```
    lol
    ML2=FLOWML2)*COMP(L2 
    lol
    2,
    M
C
    SUPGOUTINE,SM1XERINENNF:GI)
    REAL F(N)
    Sum:O
    l
```



```
    2SUMSUM-FL
```



```
    &NETUR
C
    SURROUTNE SREACNE NF, (T)
```

```
    F111:F1, SJMZ
    MLSEM+2
    l
    SNO
```



```
    %
    SUM\1= =0
    LG=IEGPiNE,B!
    SOM\1SFLOW,L,
```



```
    Sum(!)=SMJ;),
    2 FHM= SONHM
    IT:15+1
    DO 3 I=2,L8
```



```
F(ITEC(NE)EGOU, GO TO 5
5. CONITH'{
    REFUP
    EMBFOUI INE HELDINSI NEQ
    *)
    C1=0
MEAOLS5, 2, {FNAME4I1 1=18:,
50
```



```
10
```



```
M,
& FORMATI'
```



```
COM
COMMON
E:PS=1OOE-05
FNIEFLOWIN:I
FEEO=FN!
```


c
c
c
c

MPDLM

VERSIOH 2

initiatize parameiehs

ELSEIF

ogit=sartidot)
hu is the machine epston

Do $\begin{gathered}3 \\ \text { CGI } \\ 1=1 \\ =1\end{gathered}$

evidation of mie jacobtan

MS $=2$
ELSE
ENO $1 F$
C 100

2FABSIf
IN N $1==0$
$12(1)=0$

CRCJJJGE:C THEW

```
(1)1
    M
    (1)/ CONINUE
        ELSEG
        M,
        PA=MAX (1,AMPA
        MEMP= M:1,
        KN=X(1)+PAA
        M,
        M,
        F(ABS(FNL\:'1 IE-14) FNI
        *)
        C
```



```
        MNZC=12NLAO
```



```
        MCNINZ,
c
C
    11=0
        cale ARRIINI
        M,
c
scal ing of the functiuns
    MFIMS EQ2N IMEN
    M,
```



```
    15 OFMIN=1/MOM'S
    CONHIN
    ENOIF N-N
    CM11=0
    *)
    20)}\begin{array}{l}{8,15=2}\\{18=N}
    M&=N
        calculate inithe sief buuno
    HOMC=EJCNNXN, 'IEN
    OMO=EICNIXN'N
    MELD=HOLD'IR'IGU
    MLSt
c
    OOgM=1NN:N⿱⿱亠䒑日心十
C
150 combame
```


call spamazin is ibph
 PRINT
SLON
ELSE
END
$1 S$
calculate correction step ipk：

160 PCIOEUCN（PKN：

 ELSE
ENDIF

c^{23}
$P C A=E U C N 1 P S$
$P C S=P C 4 * P C A$


```
        ME?"P
```



```
    PE5=DE!PAOES!A
    M,
```



```
    CCONIEEUCNTPKN
    evalijatlon uF Fixkopk
```



```
    DG1 x=EUCNIXN!"
    l
c-call fcmix.fnN
    PGi=EUCNIFNGN: MNO FOL IT DGIX, HEN
    MHMA=1CON
    RE:MUR
*
```



```
    MNABSIFNIM!!
    GGZ EUCNCFNN,
    &G3=EUCN(F
    SK=PG3+PG3,Sk.0 999,M TMEN
```



```
    MLSE
```



```
    M,
    MPINT,
    MESEE
        CHECR WIEDHERA NEWGGAQAI
        IFIFIAG IS= IO 1 AEAND..
        lol
    HOM 40 1=1:9
    40 CG(O=CG11:',
c
MNS=PG2,
    lol
    ELSE
    *)
    ENOIF
C IFISk, #Sk, (i, 10.4,
```


ufoate detia

c DELTA=PCi+PH

TDELL
EEE
ENDIF

CoO IO 200
ELSE
DO $441=1 \mathrm{~N}$
45

PHG=EUCNIGNS

IFIDM LLTOI THEN
OELTA=CIM
TAU=1
ELLSE
STP
PD

ENO I

c
c
c

IFISKI LTSK AND IOEL EQ O, then 10EL:
ELEE
ENDIF


```
c) ENI) 1
```

 20
    ```
```

 75
    ```
    55




```

```
        OMG=DF1/D
```

```
        OMG=DF1/D
        l
```

```
        l
```

```


```

```
        MOC 215 1=1N
```

```
        MOC 215 1=1N
    M
```

 M
    ```


```

 l
    ```
```

```
        l
```

```


```

 l
    ```
        l
    ENO
```

```
    ENO
```

```


```

```
        FUNCTION EUCNT, S
```

```
        FUNCTION EUCNT, S
    REAL
    REAL
    M
    M
    MONTN
    MONTN
    Sugroutine SFmumzin.is 1e x:
```

```
    Sugroutine SFmumzin.is 1e x:
```

```


```

```
    M,
```

```
    M,
    N Numste iot Equaliuns belmg; solveu
```

```
    N Numste iot Equaliuns belmg; solveu
```

```




```

```
        SN
```

```
```

```
        SN
```

```




```

 MSIEHAN ISHAGGLO
    ```
```

 MSIEHAN ISHAGGLO
    ```
\(\stackrel{〔}{¢}\)


\(\underset{\mathrm{c}}{\mathrm{C}}\)

    \(1001,1=1\)
00
\(19(1)=1\)
\(180(1)=0\)

\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
\(205 \begin{aligned} & A M=A 11 \\ & D O \\ & N Z=1 N Z 11 \\ & 0.1\end{aligned}\)

c
TOL=EPS:ABS (AM)


    \(1=12112\)
\(1=1=111=0\)
\(A M=0\)
\(M 2=115\)
    \(A M=0\)
\(N 2=1,1 F\)





    (CONTINLE
IFTABSAM) GT ton, Go ro 12
GOTO 101
    \(2 \begin{gathered}\mathrm{GO} \text { TO } 101 \\ \mathrm{~N}=\mathrm{N}=1\end{gathered}\)


    比:







\(\mathrm{c}^{2}\)
\({ }_{c}^{c}\)




```

 LJLELJ
 ELSE
ENDIF

```




```

c

```


```

 CiJMUL:
    ```

```

 \({ }_{89} \begin{gathered}\text { EN } \\ \text { EN } \\ \text { CO }\end{gathered}\)
    ```


```

 8) CONTINUE:
    ```



```

 23 CONTMNE
 101 NJ $=1 \times 121$

```

```

 lhange nows
 15 NZ =1NZ: 1 IN
    ```


```

 13
    ```




```

 4 \(A=A 11=0\)
 CFILEGT G300: THEN
    ```


\(\stackrel{C}{C}\)
\begin{tabular}{l}
c \\
c \\
c \\
\hline
\end{tabular}


\begin{tabular}{l}
c \\
c \\
c \\
\hline
\end{tabular}
eliminatiun of one row


c
c
c



                change rows

303







\(\stackrel{c}{c}\)
5

        1FINZ
WRITE
STSE
ELSE
ENOIF
\(\stackrel{c}{c}\)
\(52 \begin{gathered}k \\ k \\ k \\ k\end{gathered}\)
    \(\mathrm{KO} \mathrm{S}^{2} \mathrm{~K}_{\mathrm{K}}=2 \mathrm{Nz}\)

        CON
\(k 1=0\)
\(1 N 211\)
\(15=12\)
15

cc

    WRITE
STOP
ENE
ENR \(1 F\)
( 4 (1) \(k 1)=x_{1} k\)




```

 SM1OP
    ```


```

 20 CONTINUE
    ```

```

0000
999 LCI=1,
N1=N-1, =1 N1,
M,
M=18M(tC

```


```

 IFGC1GT 1.C2, co to 100
 Mz=AB(LC\,'
 luo conimalig
 C
901 J=12(N)
*)
o conimjuk'
32 GO 10 150

```

```

 M=12(180)
 NK
    ```


```

 OCONTNUE,N
 Ma=12&11
 C
Subrouttime akkting

```

```

 SM,
    ```

```

 COMMON SPY' (NN'200)
 CommuN {1F
 c 30 1PTII:
c }\mp@subsup{}{}{10

```






```

c I CONIINU

```
c I CONIINU
    \(12 \operatorname{ligs}_{k=N}\)
```

 \(12 \operatorname{ligs}_{k=N}\)
    ```






```

 0 10 M=1.N
    ```
```

 SIIN LIFHARY
    ```





```

 Subroutine secnewix.nt eps sub)
 SUBROUTINE
 REAL GMON
DO I $1=1.10$
REO
OO $1: 1=1,10$
GT $1=0$
GTI
NT
calculate oerivative
$5 \underset{f}{C A L L} \operatorname{SUR}(x, F)$

```

```

 HASEPS \(+10^{0} \times{ }^{0} 078\)
    ```

```

 10 KN
    ```



```

 RE TUUN
 ELSE
ENIF
EN

```





```

 WIIABSIFODER/FN
 NTF=NTTH:
NTFNTTAI NTI THE
IFINTTGI

```


```

 Slop
 ELSE
ENOIF
ENO

```

```

 GM10
 $1 F 1 A G=0$
I

```




```

 \(x=X N\)
 $X N=X N-F N / D E R$
$==F N$

```





\section*{SIIV LIRFARY}



```

subroutine secnemix nt eps sub)
Mo \quad GAOM
GTI $=1=1.10$
calculate derivaitive

```





```

Ni=NTTM
RENER
$W=F N+F N$
$W_{3}=F+F$
$1 F(W 2 L T$

```

```

ICON
ENOIF
ENON.
N

```


```

Slop
ELSE
ENO IF
EN

```

```

$1 F 1 A C=0$
1FAN
VAH

```

```

ND:

```

```

XNVXN-FN/DE
K=F N
GO TO 10
c
c
c

```
```

```
SUBROUTINE NEWIONIX NT EPS SFNC K
```

```
```

```
SUBROUTINE NEWIONIX NT EPS SFNC K
```

```

```

sfnc

```




```

25
50
60

```

```

0
$0, j+1$
$=100$
$n=1$

```


```

=

```




```

c
c
c
c
SUBROUTINE INTHIVIXL.XR.X.N.FNC.K

```






```

FNC THE NAME DF THE FUNCTION THATCALCU

```

```

$F L=F N C(X L)$
$F B=N C(X R)$
EFN

```









    \(100{ }^{\mathrm{C}} \mathrm{C}\)


C
C
C
C
    Subroutine sucsubix nt.eps.fnc.k.

    \(\times \quad\) INIIIAL GUESS OF THE SOLUITON ON INPUT, BUI UE





50

    \(0=0\)
\(j=100\)
0



    \(100 \stackrel{J}{w}\)




C
C
C


subroutine wegsinix.ntefs.fnc k,





        \(=0\) (6.25) I XL, FL.XR,FR

ENU
        .




c. 50
    \(50 \begin{aligned} & \mathrm{J}=0 \\ & \times 1=\end{aligned}\)



    \(\mathbf{F} 2=F N C(x)\)
\(\times 2 M 1=\times 2-x)\)








    100

    120 Sis


\(c\)
\(c\)
\(c\)
\(c\)
    Subruutine wegsmdin.k.nteps sub.k




    NT
KPs
EUB
SUB







    ifinseg tit or nseg gi ieia, nseq-o
    \(k L=0\)


c 50
\(50 \begin{aligned} & j=0 \\ & 00 \\ & x\end{aligned}:=1 \mathrm{~N}\)



KL=0

c
suand.x2..2
\(K L=K L+1\)
\(1 F 1 K L G T\)
\(K L=0\)
Kitent then


\(80 \stackrel{\mathrm{x}}{\mathrm{K}} \mathrm{E}\)





\section*{XOEN=X1:}

85

180
\(195 \times 2195=1=1 ;\)

\(x 11=\times 211\)
9010120
Conit

100 WRATE(E,25) \(1 \times(\times 211), 1=1, N\) )



subroutine kegidnst neq)

Nst Numer or ireaws Maximu of io is tiow in ifyimaition
 CAN BE LEFT BLANK
 ACCOROING TO THE FORMAT GIVEN BELOW
A MAXIMUM OF 20 UNTS ARE ALOWED IN SIS SIEM



stream variagles are entered in ihe foltowing unieh


WHERE

THIS HELPS TO ENTER OAIA INA SEGUENHIAG GRLE
COMPII, OOES NOT CHECK UNITS THEREFORE, UNITS MUST BE KEPT
COMP(I.J)
```

UNSPECIFIEO STREAM VARIABLES AFE CALCUIAYED

```
furmatimg for each line is
112 FB 2 10F7 +1
equipment parameters

\begin{tabular}{|c|c|c|}
\hline NE \(\frac{1}{2}\) &  & \\
\hline INE 3 &  & EPPi, 20 ) \\
\hline &  & IEQPI \({ }^{\text {a }}\) \\
\hline Ne \({ }_{\text {Ne }}\) & NEGPP12, EGMAME & \\
\hline NE \({ }^{\text {N }}\) &  & Eapizios \\
\hline INE \({ }^{\text {a }}\) & EEQPİ.1) TEQPI2.2) & IEQP(2) \\
\hline
\end{tabular}

 EQPIINI FLASH SEPAFAIOR REACTOR SPLITIER

spectification df parameters for each module
FLASH

sepirator


    heacion

路


splitter



MIXER









    \(11=0\)
\(N S=N S T\)


\(50^{3} \stackrel{\text { w }}{\text { F }}\)
504





RORMA
RETURN
END


```

 Ek
 EK
 x_{1}
$\times 2$
x_{3}
FEED
VAPO
FLI
lia molat (TQuid fiowhate ccalculateo

```

```

$\mathrm{NT}=200$
$\mathrm{AD}=1$
$A 0=100$
$E P S=1,0 E-05$
$N 1=1 E O P E N(1)$

```

```

 \(10 \stackrel{\substack{\mathrm{E} \\ \mathrm{K} \\ \mathrm{N}}}{\mathrm{N}}\)
 \(50 \stackrel{F}{\mathrm{~F}} \mathrm{~F}\)
 \(0 \underset{F \neq E-1}{C O N T}\)
 \(A N=A-F / F D\)
 $A F=A B S I A N-A)$ II EPS, Go To 200
$A=A N$
$100 \begin{gathered}\text { CONTINUE } \\ \text { WRITE } \\ \text { WR }\end{gathered}$

```


```

 CALN WHTPAR
 CALL WHIT
CALL WRITEE
STOP
$200 \stackrel{S}{S}$

```


```

 CALL WRITES
 CALL
SOP WRITE
SOP
205
210

```


```

 eneturn
 $\stackrel{c}{c}$

```
Subrciuline separin,



Ni=IEGPIN,

F

40
loo continue

\(\operatorname{pog}_{k=0} 2051=2.3\)
\(K=0\)
\(1 F 11\)
00
00
\(205 Q_{3}=1, N=10\)
\(c^{205}\)

 \(00215,1=2\)
\(K=1 E Q P(N, I)^{4}\)
21
RETUAN
ENO
subroutine reacint
A Subroutine io calculate Me material balances aruunu a REACTOR WITH EDUIPMENTUNITNUMAER = N THE SIOICHIOMETAIC COEFICIENIS ANDTHE CUNVERSIONFBACTIGN MUSTALL AE


    GAMMAK \(=\) EAP
K=IEOP
SK \(=E Q P\) (N \(K\)




CALL WR1ES
CAL
STOP WHYEE
STOP

20


NA \(=1 E G P\) IN
CAL
FNI CHECKS (NI


PRINT W'T TARSAMETERS AT THE TIME OF THE ERROR
CALL WRIEE
CALL WITES
CALL WRITEE
STOP


FLOW(NJ) EEGP(N JITFNI
S=S+FLOW(NJ)
20


PRINT* *PA
CALL WRHES
CALL WRITEE
\begin{tabular}{c} 
SALO \\
So \\
\(\substack{\text { SENOU } \\
\text { ENO }}\) \\
\hline
\end{tabular}






 \(\substack{\text { REN } \\ \text { ENO }}\)

\section*{}




50


STOR GT io ANO Li EQ I) GO to 50

subroutine whitee
comonoutine to wrtite the equipment parameters


30, Formar, 14x

\begin{tabular}{l}
C \\
C \\
C \\
\hline
\end{tabular}
\({ }_{C}^{C}\) C a sugroutine to write the siream variabies






c
C
C
c
c
Subrourine whtexul.tz
a subroutine to write the equipment pahameters




Hourine simsoin. 12.i3.IP.NSIG

11
1211)
total number of streams torn
number of each stream torn \(11=1,11\)
13 Total number of constrains

 oesiafo accuract of solution



OIMENSION
\(1 \mathrm{NF}, 2\)
\(M S=2\)
1 TMAX \(=300\)
\(N=11\)
\(N=13\)
\(N=N C: 11+N 3\)
\(N D(1)\)


\(k=0 \quad 1=1+N C+11 . N\)
\(00^{2}=k+1\)

\({ }_{3}{ }_{3}\) CONTINUE
c call threeix.f.n.ipi
c Call mpolmificn x.f.n. wk, itmax, nsig ms,


 \begin{tabular}{c} 
RE TUAR \\
ENO \\
\hline
\end{tabular}
C
C
c
c
    phoblem
n3 rutal numeer of constrains imax (if lat
1=1.N3
NAMEII) NAME MF IME MOUULES WHTCH HAVE EGHIPHENIPPABCAEIEHS
nue(1) number of nooule or flow rate
```



```
Nus(1) number of the stream which nas the comsingin naco,1,
```



```
val(I) numehtcal value of lhe constrain
INIEGER NGE(N3), nup(N3) NuS(N3) NCOIN3,
CHARACER:4.NAHE(N3), NACOINO
```



```
OO I I=1:N3
IFINAME(I) EQ SHII', HEN
NG(1)=1
tf(name(1) eq beme') then
NG(I)=3
IF(NAME(1) EQ SEPA:, thEN
N(%)
GO TO
ELSGENAE(1) Eq FIOW.' IMEN
N6(1)=4
N(%RII!=FLOW Rate
```



```
M,
NOO MO
c IFINAmE(1) EQ uSE2', then
l
MRITE!6.100/N,ME:")
```



```
    \(0021=1\), N3
    1Finacoil) EQ Flow', then
```



```
    IF (NaCO(I) EQ COMP - THEN
```



```
    NACD) \(=1000\)
    GO TO
EHE
WhITEI6.100inaCOM11
    ENOIF
ENDIF
ENDIF
2 continue
```



```
    - a Ifin7illeg a) Ihen
```



```
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
    subroutine finix.f Ni
```



```
        acm
```



```
C
    CALL FSISIXFHNN
Subroumane reari and conti are used to asitign the valules
    SMGROUTINE TEAFO ANO CONTO are uSED 1O CaCliglale
    SUROULINE TEARLIX;FIT.NI
    L,
    M心=1T
    MO,
```



```
    COMP, K=1,NC
    M
C
```



```
c
    00 M,N:|=N
    2MC2,L=LNC
```



```
    3M=INH1
c
```



```
    l
c DONENION x
C S S=0 (1)
    LGOP{N4{
```


$1 \begin{gathered}\text { CONTIN } \\ \text { RENURN } \\ \text { END }\end{gathered}$
C
c
c
c

$\underset{\substack{\text { REIURN } \\ \text { ENO }}}{ }$
c
c
c
c
subroutine threkix fantip)

IMENSION XIN) F(N)
c COMMON /ITT/LI

10 c
$11=1$
0020
$1=N 2(1)$

c

cal walite
GO to 80
GALT
60 cal watit

MPDLM
 $$
\text { VFRSION } 1
$$

```
l
```



```
        M,
        REAL Q(150)DIA,
c
```



```
        l:
        ELSEE=10
MF(mS NE N'THE
    MOD:N
```



```
C 的的=1,
C
    HJ IS THE MAC
C IM=MAXCIO.(N.A.)
```



```
c
```



```
c
        NO:O1=1:N
        NO 10, =1, N
        MAA=PA1,PA3
        MEMP= (1)PPAA
        MAA=XU-TEMP
        CKLEFFNNX
        l
c'
    cinminue
    {1F=0
emluafiun or ihe jacueian
    6 continue
```

```
    JFLAGG=1
        calcuibie tinital siep gounl
        (ICON EQ a) wen
        M,ICONEERO
        PG2=M1N(PG1 OVA',
        CLSE
    c 1F(MS EO 2, lM
        1F(MS EO2N
        MOLOD O
```



```
        c
            calculate search siep
```



```
    M0,
c
```



```
        WFIIE(9.900)(UIAIHI=1, N',
```



```
    M,
```



```
        decompose jacoeian into l.u factors
        call facluib ip.n
```



```
las CONHINLEELTA
c Delhol=delta 
```



```
    M
    01 FAC=FAC:GM1;J,HGUS
        M,
    M5,
    M,
C
    {
    MR=D
    MRN=1/2
C
```



```
    MOMO=0
```



```
    415 00 415 El=1,N
```



```
    MC2=EUCN1G_N
```



```
    OO
    421 OOM, 421 I=1:N-1
```



```
    42%
    PC4=ESCI!⿱一⿻口⿰丨丨女刂
        M
        MCS=PC4 PPC
    PC4=EUCN(FS N)
        lol
    MO2DE1TA/PC2
    25 PK1,=PD2
    evaluation uf alfa
        ME1:PC1PPG
        MEE3=0
        M,
        PEG=PEA+PKHCLPST
        PE5=DELTAPOEL,M,
        PE6=(PE\-PES),\PE5-PE2\cdots1,
        M,
    27 DD 2? I=1NN
    29 CONIINUENPGMN:
c
            evaluation uF f(xktpa,
```



```
    30 CONTN
    CONHNUE
        SCE=EUCNCXNY,
        SGGF=SQRICOTM,
```



```
        MTMAK=
```



```
C
    M
30
```

c
c
c
c

 PG2=EUCN \(A N N\)
 PG3 $=$ EUCNIF N

SSS=SSS
STOP
ELSE
ENOIF
Check whet mer â new ealuation
of the jacobian is needed
IFLAG $=0$
DO
0,

c

c
c
C
C
c
c

$P G 21=P G 2$
$P 1: A B S I P G 2$

Ififlag eontano ipny
rfiskily Sk, Go ro 47

c
c
c
c
c

update delta

OO $4351=2$. N

C Jfijflageq anis ski ge ski then

$B L=2,+日 L$
$C_{1}=5 K$


```
        M,
        MFH{=0
        MF1IRU
    44 OOM, &&FI=1,N
        M,HA=EUCNIAN)
        l
        MAU=1
        M, M1R&EEU', lluN
        M,
    M,
```



```
        M AME=SNRT:, DH/PJA,'
        M,
        MEMLANAMOPC!
        MENOEL
    200 CONTNHE
    {
c
```



```
    900)
        MFISK1LY SK ANLIOELEOOM MEN
    CNOLSE
```



```
    MR1IE(9G900:PKMOM, I=IN
    51 OO 5! 1=1,
```



```
    ENNOIFIG.900HUN1:1,N
```



```
    Gin的IRIN":
```



```
    c bo continue
    P IS \(=1=0\)
```



```
    c 62
```



```
\({ }_{c}^{c}\)
```



```
    \(\mathrm{K}=\mathrm{J}\)
10 O
66
```



```
co ro 150
300 continue
```



```
    STIUN
EHO
000000
```

```
C
nono
    subadutine fmetura lP.N
    THIS SUBHOUIINE FACTORS MAIRIX A INNO A FHOCNCI
    from IGM,MRGURAMMER'S MANMAL
    USAGE A IS MIEMAINIX WHHCHCONEWNAIS NO FACIURISE
        A IS IHE MAINIX WHHCH'GNE WNNIS NO FACIURIS 
    MEAL AIN:NINEMISU,
    computaliol' Of wetghts fur egulligrallom
    Mo 20 M=1.N
```



```
    M(A)
    MRINRIE O) MREN IN THE INPUI MATRIM IS NUIL
    20
    20 PER!いい=1 \
        MOM100, 1=1N
        l
            computatiun of bhe ith coluan of L
        OU 50 k=1N
    MP=&AK\1,
    25
    Mo 30.j=1 16:1
```



```
(K 1)=0
```



```
C permutatom of or news it memylamele
```



```
    \」=1
    mu\=1p(1.)
```

