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STRATEGIES FOR PROCESS FLOWSHEETING

INTRODUCTION

Computer programs to simulate chemical processes are widely

used in industry for a number of purposes. Important uses include:

the design of new plants, optimization of new and existing plants

and, more recently, optimal control of processes and the training of

plant personnel.

The use of computer programs in the chemical industry started

in the mid-fifties with programs written to perform mass and energy

balances around single units, such as distillation columns,

evaporators, flash drums, etc. As computers became faster and

capable of greater storage, the programs written for single units

were integrated to simulate entire processes.

The beginning of the widespread use of computers to simulate

chemical processes started in the early sixties. At the same time,

the literature in the area started to flourish; examples of it are

today's "classical" articles by Rosen (1962) and Cavett (1963).

During the sixties and seventies, the chemical industry invested

heavily in this field. Today, there are thousands of articles in

the open literature, and some journals are specific to this field.

However, 90 percent of the articles are concerned with one specific

solution method: the sequential modular approach.

Recently, two other approaches have received considerable

attention: the equation-based approach and the simultaneous modular

approach.
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In this work, two packages of subroutines were developed to

perform simulations of processes through the equation-based approach

and the simultaneous modular approach. Another package of

subroutines, SIMFLOW (Kayihan, 1979), was slightly modified and used

to simulate processes through the sequential modular approach.

The aim of these packages is to serve as a teaching aid to

sophomore-level stoichiometry classes, thus, only material balances

are considered. In addition, we intend to verify some of the

results reported in the literature on the performance of various

simulation methods.

Chapter I presents a review of the three methods; the

equation-based approach, the simultaneous modular approach, and the

sequential modular approach. Chapter II presents the basic methods

to solve systems of nonlinear equations. Chapter III presents the

structure of the libraries developed for the equation-based approach

and for the simultaneous modular approach. In Chapter IV, five test

problems are solved using all three approaches and results are

compared. Chapter V presents the conclusions and the future work.

In addition, there are appendices with listings of all programs

(libraries), a short description of a modification of an algorithm

used to solve nonlinear equations, and the equations describing

material balances used in the sequential modular approach.
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CHAPTER I

BACKGROUND

The Sequential Modular Approach

The sequential modular approach uses a library of unit

operations modules (subroutines) which perform material and energy

balances. The modules are written so that each calculates its

output stream(s) variables, given its input stream(s) variables and

any other parameters required (see figure I-1).

To simulate an entire process, or a portion of it, all modules

describing the process are executed one after the other, following a

specific order. Figure 1-2 shows a simple flowsheet which will

exemplify how the sequential modular approach functions.

In the example shown in figure 1-2, Fi represents a vector of

stream variables: total molar flow rate, mole fraction of each

component, enthalpy, temperature and pressure. For each specific

case studied, a subset of those variables will be used. In

addition, each piece of equipment may require a set of equipment

parameters. In the example of figure 1-2, yr is the conversion of a

threactant and k is the equilibrium constant for the in

the flash drum. Assuming that yr, kj, and F1 are known, our task is

to calculate F2, F3, and F4.

Both modules, reactor and flash, are written so that the output

stream variables are calculated, provided that the input stream and

equipment parameters are known. In our example, one would first
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3

SEPARATOR

F= STREAM VARIABLES

U-= EQUIPMENT PARAMETERS

REA C TOR

Figure I-1. Example of Simple Modules for the Sequential Modular
Approach
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Figure 1-2. Simple Flowsheet
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calculate stream F2 using the reactor module and then streams F3 and

F
4

using the flash module. It looks (and it is!) very simple

because that is the natural order of calculations we would follow if

we were to perform those calculations by hand. This characteristic

of the sequential modular approach (following the natural order of

calculations) is one of the main reasons for its popularity among

process engineers. Given a process, it is easy to build a computer

model of the entire process using 10-20 different modules.

What makes process simulation difficult are recycle streams.

Figure 1-3 shows a slight modification of the process from figure

1-2. Now we have stream F
4

as a recycle, and a mixer is added.

As in the previous example, stream F1, yr, and kJ are known.

However, none of the streams entering a module are fully known.

Although stream F1 is specified, we cannot perform mixer

calculations because stream F
4

is not known.

One way to solve the problem would be to "guess" all stream

variables F2, perform reactor, flash, and mixer calculations and

compare the guessed and calculated values of F2. If the guessed

value agrees with the calculated value (within a certain tolerance),

the solution has been found. Otherwise, a new guess would be given.

This routine continues until a solution is found. It is clear that

the method is awkward. It is feasible only if there are a few

components and one recycle stream. With two or more recycle streams

and 10-15 components, the method is impossible. In the previous

example, stream F2 is known as the tear stream. There are several
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F; F3

MIXER REACTOR

Figure 1-3. Simple Flowsheet with a Recycle Stream
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algorithms to choose the best tear stream; an excellent review may

be found in Hlavacek (1977).

To overcome the problem of guessing new values, one has to

remember that the process is described mathematically by a series of

equations. In our example, we have:

F
3

111

1
(F

2
)

F
4

41

2a
(F

3
)

F
5

LIJ

2b
(F

3
)

F
2

= tl13 (F F
4
)

(I-1c)

(I-1d)

l'
IP

2'
and 41

3
are functions relating output streams with input

streams and equipment parameters. Clearly X11, IIJ2, and IJ3 are series

of calculations performed by the reactor, flash and mixer modules.

If we use equation I-la to eliminate F3 from equation I-lb, and

equation I-lb to eliminate F
4

from equation I-1d, we get:

Or

F
2

= Ili

3
(F (IJ

2a (11J(F
2
)))

F
2

1.1J

4
(F F

2
)

(I-2a)

(I-2b)

Equation I-2b is actually a set of nonlinear equations, called

stream connection equations, which can be solved using various

methods. Most commercial programs using the sequential modular

approach use the method proposed by Wegstein (1958). Wegstein's

method is very popular because, to use the method, the equation
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being solved must be in the form of X = F(X); the stream connection

equations are naturally in this form. In addition, the method

converges quickly to the solution, provided that the system of

equations has only mild nonlinearities, and each equation of the

system is dominated by one variable (Westerberg et al., 1979).

The drawback of Wegstein's method appears when the simulation

is a "controlled" simulation (or, simulation with constraints). In

a controlled simulation, we allow one or more variables to be "free"

to meet some design specification. Let us suppose that we want the

flow rate (W) in the vector of variables F4 to be equal to some

value C. To meet this specification, yr is a free variable. Now

the system of equations becomes:

F3 =

F
4 =

F
5

F
2

411(F2,11.) (I-3a)

1112a(F3)
(I-3b)

ilj2b(F3)
(I-3c)

11)3(F1'F4)
(I-3d)

= t4(F2'ir)
(I-3e)

The system is reduced to:

F
2

= t11

5
(F F

2'
y
r
) (I-4a)

Or

F
2 5

(F
2'

y
r

) for specified F
1

(I-4b)
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4(F2'11.)
(I-4c)

Wegstein's method can be applied to equation I-4b, stream

connection equations; however, equation I-4c, the design

specification equation, is not in the form required by Wegstein's

method, that is, X = F(X).

To overcome this problem, two levels of iterations are used.

One is internal, and the free variable yr is assumed known. The

other is external, and yr is manipulated in order to satisfy

equation I-4c. Typically, two different nonlinear solver

subroutines are used. For example: equation I-4c will be solved

using the secant method and equation I-4b using Wegstein's method.

A block diagram of this strategy is shown in figure 1-4.

The internal level of iterations solves stream connection

equations using Wegstein's method where the unknowns are the tear

variables. The external level solves design specifications

equations (in the example, yr is the unknown) using the secant

method.

Actually Wegstein's subroutine solves a series of different

simulation problems without constraints; each problem has a specific

value for yr updated by the external secant iterations. If

Wegstein's method performs an average of M iterations per secant

iteration to converge the tear stream, and the secant subroutine

performs K iterations for the convergence of the design variable,

the total number of flowsheet evaluations will be L = M * K.



WEGSTEIN'S
i

SUBROUT /NEI I SOLVE
4B WITH
rytk

SECANT UP-
DATE
SUBROUTINE

11

Figure 1-4. Block Diagram of the Strategy Used to Simulate Process
with Design Specifications
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Depending on the complexity of the process and the initial guesses

given, the total number of flowsheet evaluations may be

prohibitively high.

Another approach used is to insert a control module. The

control module behaves like a PID controller. The set point of the

control module will be the design specification imposed on the

system. After each iteration, the control module checks the error.

Depending on the error's magnitude, the control module will change

the manipulated variable (free variable) according to pseudo-PID

parameters used. More details about the control module may be found

in Westerberg et al., 1979.

Although the handling of design constraints is difficult and

time-consuming, the sequential modular approach for process

simulation is widely used. As Chen (1982) pointed out, the main

reasons for the success of the sequential modular approach are:

1. The computer model of the process and the actual flowsheet

are closely related, and it is easy for the process

engineer to write the program used by the computer.

2. Each module is written to "stand alone" so it can be

thoroughly tested, and the module can be very efficient

and robust.

3. Special programs for the different types of equipment or

nonstandard equipment can be easily incorporated into the

package of subroutines.
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4. It is very easy to implement; it does not require much

computer storage (besides that required by each module).

A more complete overview of the sequential modular approach may

be found in Westerberg et al. (1979) and Myers et al. (1976).

The Simultaneous Modular Approach

The simultaneous modular approach, as it will be defined in

this work, does not differ much from the sequential modular

approach. The modules used will be the same modules used in the

sequential modular approach. However, the Newton-Raphson method (or

a modification of it) will be used to solve the set of nonlinear

equations.

In order to use the Newton-Raphson method, the set of nonlinear

equations should be in the form

G(x) = 0 (I-5)

For example, to solve equations I-4b and I-4c, one simply

rearranges these equations to:

G
1
(E

2'
y
r

) = F
2

- 4)

5
(F

2

G2(E2,yr) = C - q4( 29Yr) =

= 0

0

Now both equations can be solved using the Newton-Raphson

method, and only one nonlinear solver subroutine will be used. It

is easy to see that we can add any constraint to the problem,

provided that the constraint has a physical meaning. In short,
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stream connection equations (I-5a) and design specifications (I-5b)

are solved simultaneously, instead of using two levels of

calculations. It should be emphasized that the unknowns in equation

I-5a (stream connection equations) are the tear variables. The

non-tear stream variables do not appear as unknowns in equation

I-5a.

Let p be a vector of equipment parameters, C a vector of

constraints, and T a vector of tear streams. With the simultaneous

modular approach, any process simulation is arranged to be the

solution of a set of nonlinear equations in the form:

G(Ti,pk,Ck) = 0 (I-6)

This approach was successfully used by Perkins (1979) and Chen

(1982). They report promising results in general simulations

(controlled or not). Moreover, Chen also reports good results in

optimization problems. The literature, at least the open

literature, does not report any commercial program using the

approach. Some authors mention that ASPEN (MIT and DOS) gives the

option of using the approach. Unfortunately, thus far there are no

articles in the literature about that feature.

It must be pointed out that the use of the Newton-Raphson

method for process simulation is not new. Cavett (1963) presented a

few examples using the approach; none of them were controlled

simulations. Furthermore, there is some controversy about the use

of the name "simultaneous modular." Perkins (1979) presents the

method as sequential modular with a different method to improve
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convergence. Chen (1982) presents the same method as Perkins as the

simultaneous modular approach. On the other hand, Westerberg et al.

(1979) formulate the simultaneous modular approach in a different

manner. They present the approach as it was first suggested by

Rosen (1962). In that approach, each equipment module has two

different versions. One is the rigorous model, and the other is a

simple model which approximates the rigorous model. The simple

model relates each output value approximately to linear combinations

of all input values. For example, the flash unit of figure 1-3

would be approximated by:

F
4

= a
43

F
3

F
5

= a
53

F
3

In a simulation, one would start guessing all aij and then solving a

linear system of equations. Using the example of figure 1-3, the

linear system to be solved is:

F2 F4 = F
1

F3 - a32F2 = 0

(I-8)

F4 - a43F3 = 0

F5 - a53F3 = 0

Assuming that F1 (feed to the mixer) is known, the system of

linear equations 1-8 is easily solved. Using the rigorous model of

each piece of equipment and the Fi variables just found, one
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recalculates all aid. If the recalculated values are essentially

equal to the ones previously guessed, a solution has been found; if

not essentially equal, all aij are updated again and the linear

system I-8 is again solved. This procedure would continue until a

solution is found.

This method did not meet with much success because the linear

approximation is poor for some of the equipment. The linear model

cannot predict, for example, the influence of an inlet stream

temperature on the output streams of a flash drum. Some authors

(Mahelec et al., 1979) used a strategy similar to that of Rosen, but

used difference split-fraction models; they reported good results

with this approach. It should be noted that if one increases the

complexity of the "simple" modules, this approach will tend towards

Newton's method. Newton's method linearizes all functions around a

certain point in each iteration, but all interaction between the

variables will be accounted for.

Also in Rosen's approach, each stream is a tear stream, whereas

in the approach used in this work, we use blocks of equipment with

the least possible number of tear streams. The fundamental

differences between Rosen's approach and the approach used in this

work are the number of streams torn and the model used to

approximate the rigorous model (or blocks of equipment).

The Equation-Based Approach

In the equation-based approach, all equations describing the

process are solved simultaneously. Let us consider again the simple
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flowsheet of figure 1-3. We will assume that there are only 3

components and that the reaction in the reactor is: A + 28 -4- 3C.

Subscripts j = 1, 2, and 3 will be used for components A, B, and C,

respectively. In addition, Wi is the total flow rate of stream i

th
(ff101/11r),Xijis the mole fraction of the in the

th
itistream,yiis the conversion with respect to the

and ki are the equilibrium constants in the flash drum. It should

be noted that only mass balances will be considered. The system of

equations is:

Mixer

W
2

= W
4

+ W1 (I-8a)

X21 (W1X11 W4X41)/W2
(I-8b)

X22 (W1X12 W4X42)/W2
(I-8c)

X
23

= 1.0 - X
21 X22

(I-8d)

Reactor

Let a, b, and c be the stoichiometic coefficient of

species A, B, and C; r
= W 2X21.Y

1.
/
-a

W3 = W2 + r(c - a - b) (I-8e)

X31 (W2X21 + ar)/W
3

(I-8f)

X32 (W 2 X22
+ br)/W

3
(I-8g)

X
33

= 1 - X
31

- X
32

(I-8h)



Flash

=

=

+

+

= W
4
X
41

=
4
X
42

= W4X43

k
1
X
51

k2X52

k3X53

X
42

+

X
52

+

+

+

+

X
43

X
53

W
5
X
51

W
5
X
52

W5X53

= 1

1
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(I-8i)

(I-8j)

(I-8k)

(I-81)

(I-8m)

(I-8n)

(I-8o)

(I-8p)

W
3
X
31

W
3
X
32

W3X33

X
41

X42

X43

X
41

X
51

As there are 16 equations and 24 variables we have to specify 8

variables. The advantage of this approach is now clear. If we

specify W1, X11, X12, X13, yi, k1, k2, and k3, the problem is a

simple simulation. If we specify X51, X52, W5, X41, X42, W1, X11,

and X12, we have a design problem (or a controlled simulation). In

the equation-based approach there are no distinctions between

constrained or unconstrained problems. In addition, there is no

need to search for a good tear stream as in the sequential modular

or simultaneous modular. Also, it is well known that the sequential

modular approach is very inefficient when there are more than 2

recycle streams and several constraints (Stadtherr and Wood, 1984).

Again, the equation-based approach is immune to these problems.
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The question that arises is, "Why isn't the equation-based

approach widely used?" First, the execution time and the computer

memory required can be prohibitive. A simple industrial simulation

will have 5-10,000 equations. Some authors report simulations of

complete chemical plants that would require the solution of 100,000

equations! Second, the industry has heavily invested in the

development of the sequential modular approach. Why invest in a new

method with so many challenges -- the solution of large systems of

nonlinear equations -- when the sequential modular approach solves

almost all industrial problems? Third, the sequential modular

approach is user-friendly. It is easy for the process engineer to

construct the sequence of modules that decribes a chemical process

with the sequential modular approach. In addition, in the

sequential modular approach, when the simulation fails valuable

information can be obtained; in the equation-based approach,

however, when a failure occurs, almost no useful information can be

obtained.

Typically, a Newton-based approach is used to solve such large

systems. Figure 1-5 shows the structure of the Jacobian of the

system of equations I-8a through I-8p; it is clear that the Jacobian

is sparse. To speed up execution time, sparse matrix techniques

must be used, not only to solve the linear system at each iteration,

but throughout the nonlinear solver subroutine. The use of sparse

matrix techniques will decrease both execution time and memory

required by the program. Also, the linear system solver must use
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some reordering technique to minimize the creation of nonzero

elements during Gaussian elimination.

Another point that should be considered is the evaluation of

the Jacobian at every iteration. For systems of nonlinear

equations, the Jacobian is usually evaluated numerically by forward

differences; this procedure may be time-consuming. One way to

reduce the problem is to evaluate the Jacobian once and then,

instead of calculating the Jacobian numerically every iteration, one

update the Jacobian using the information obtained from an increment

given to each variable and the resultant variation in each function.

Broyden (1965), Schubert (1970), and Broyden (1971) presented

methods to update the Jacobian. The first is more suited to full

matrix cases, and the second and third are more suited for sparse

matrices. The literature is abundant in articles reviewing and

comparing these three methods: Gallun and Holland (1980), Crowe

(1984), Mah and Lin (1980), and Lucia (1982).

In addition to the use of sparse matrix techniques and the

update of the Jacobian through Broyden's or Schubert's method, good

initial values should be given to all variables. For small

simulations, this will not be a problem, but when the simulation has

10,000 variables, some automatic procedure to initialize all

variables must be incorporated. Good initial guesses are also

required because Newton-based methods do not converge to a solution

if the initial values of the variables are too far from the

solution.
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Unfortunately, there is no such method that guarantees a

solution. A good improvement was suggested by Powell (1970); his

method will be discussed in more detail in later chapters.

Powell's method has received much attention lately, and the reviews

are generally favorable. See, for example, Chen and Stadtherr

(1981).

Today, at least five programs using the equation-based approach

in various stages of development exist: SPEEDUP (Imperial College,

U.K.), ASCEND II (Carnegie-Mellon), QUASILIN (University of

Cambridge), FLOWSIM (University of Connecticut/Control Data), and

SEQUEL (University of Illinois).

Recently, SPEEDUP went through a detailed evaluation in order

to determine whether equation-based systems could be used

effectively for process simulations. The evalution was carried out

by Gupta and coworkers from Exxon Corporation and Prime Computer,

Inc. In short, Gupta et al. compared the performance of SPEEDUP

with the sequential modular program, COPE, used by Exxon. They

report that SPEEDUP is not yet commercially competitive with the

sequential modular approach. The evaluation was carried out using

the following test problems:

1. Cavett problem (four flash drum problem)

2. Heat exchanger network

3. Five-stage absorber

4. Three tower separation
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5. Steam system

6. Compressor network

The most relevant points in the evaluation were:

1. SPEEDUP proves that equation- oriented approach can solve

large problems handled by a commercial sequential modular

approach.

2. SPEEDUP demonstrates advantages of the equation-based

architecture over the sequential modular approach.

3. The equation-based approach is well-suited for problems

having a large number of design specifications

(constraints) and it provides a flexible environment for

solving new problems that cannot easily be solved with

existing tools.

4. There is potential for efficient implementation of an

optimization capability.

5. In some cases, it does not converge, unless good initial

guesses are given.

6. It is relatively inefficient, especially for smaller

problems.

7. It is difficult for users to determine the cause of

divergence, when a simulation fails.

More details may be found in Gupta et al. (1984). Overall, the

results obtained by Gupta et al. are exciting, to say the least. A

comprehensive evaluation of the equation-based approach was
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performed, and the key problems were detected. What makes it more

important is that the evaluation was performed to see the commercial

potential of an equation-based approach, by a typical user of

process simulators (Exxon). The results obtained with SPEEDUP show

that some of the challenges encountered in the equation-based

approach were solved, and we can forecast the commercial use of the

approach in the near future.
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CHAPTER II

SOLVING SETS OF NONLINEAR EQUATIONS

As shown in the last chapter, every process simulation with

recycle streams and /or design specifications requires the solution

of a system of nonlinear equations. Most commercial sequential

modular programs use Wegstein's method to solve the set of nonlinear

equations. Some programs have the option of using a "blend" of

Wegstein's method with the successive substitution method. Programs

using the equation-based approach or the simultaneous modular

approach generally use the Newton-Raphson method, or a modification

of it. Before we present a modification of the Newton-Raphson

method used in this work, we will briefly review the three methods

mentioned above.

Successive Substitution Method

The use of the successive substitution method is quite simple.

In a process simulation using the sequential modular approach, the

set of nonlinear equations has the form:

X = F(X) (II-1)

where capital letters represent vectors or matrices. Starting with

o oa set of initial guesses X° (x1, X2, ..., x0r1)T, all functions fl,

f
1 1

2,/frlareevaluatedatx..11 i. 1, n. If a convergence

criteria is reached, typically
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)( - f.1(4-1 I/ I f/:(+11 < e11 11,

where e is the desired accuracy, the solution has been found.

Otherwise, x° replaced by fl and another iteration is performed.

The recurrence relation is:

X
k+1

= F
k
(X

k
)

Where the superscript k denotes the iteration number. Figure II-1

shows a flowchart of the method and a graphical representation of a

one-dimensional case.

The method of successive substitution is quite effective when

eachfunctionf.isdominatedbyonevariable xi. Convergence,

however, is sometimes very slow. The major advantage is its

simplicity; its disadvantages are that if more than one variable

strongly influence one or more of the functions, the method may not

converge or convergence may be very, very slow.

Wegstein's Method

Wegstein's method is a modification of Aitken's A2 method

(Cavett, 1963). Wegstein's method, as the successive substitution

method, is easy to implement.

Assuming that each function fi, from the set of equations II-1,

isafunctionex.alone, Wegstein's method extrapolates the new

valueofx.along a straight line through two previous consecutive

points. To initiate the method, two points are required to perform
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the first iteration. For a given set of initial values, X° = [x°1,

x2, x
o ]T

the easiest way to obtain the second set of points

is by performing one successive substitution iteration. The

recurrence relation for Wegstein's method is:

where

and

k
x.

+1
q.k*(f.(X

k
)) + - qik ) * (xi)

(21/ = 1.7(1 - Si)
i

k-1 k k-1= (fi(X
k
) - fi(X Mx. - x. )Si

a.

i = 1, 2, ..., N

Xk k k k TXi = [xi, x2, ..., xN ]

F. = [ f
1
(X

k)

'

f
2
(X

k)" f
N
(X
k)]T

Note that setting qi equal to 1 is equivalent to performing one

successive substitution iteration.

Figure 11-2 shows a block diagram of the method and figure 11-3

shows a graphical representation for a one-dimensional case.

Wegstein's method may converge quickly if each variable

strongly influences a particular and unique function; otherwise the

method will be very slow or it will not converge. In some cases,

Wegstein's method may be very inefficient if the slope of the line
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Figure 11-3. The Wegstein Method: Graphical Representation
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between two consecutive points approaches one. In other words, if

.from equation 11-5 approaches one then q. approaches ± co; inSi

practice qi is constrained, typical constraint values on
qi

are

[-10, +10]; [-5,+5].

Some algorithms have the option of inserting one or more

successive substitution iterations in between one or more of

Wegstein's iterations. This "blend" of methods is quite effective

in some cases.

A problem widely used to study the performance of nonlinear

solvers is "Cavett's four flash drum." This hypothetical problem was

idealized by Cavett (1963). We studied the performance of

Wegstein's method with 0, 2, 4 and 8 successive substitutions in

between each Wegstein iteration. The results are shown in figure

II-4a and II-4b. For purposes of comparison, we also present the

results of the successive substitution method.

From the figures, it is easy to see that both extremes, i.e.,

Wegstein's alone and successive substitution alone, are quite

slow to converge. Moreover, while Wegstein's method has an erratic

behavior, the successive substitution is quite constant in reducing

the error and in converging. The effect of introducing some

successive substitution iterations is extremely beneficial for this

problem. The best performance was obtained with 4 successive

iterations in between each Wegstein iteration.
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Newton-Based Methods

The original method is known as the Newton-Raphson (N-R)

method, and it is an iterative procedure based upon a Taylor series

expansion terminated after the first derivative.

For a given set of N nonlinear equations,

F(X) = 0 (II-6)

it is desired to find the vector of unknowns X
*

= [x
1,

x2, ..

xn]T which simultaneously satisfies the equation set 11-6. The

Newton-Raphson method consists of the repeated use of the equation,

JkPk = (X
k
)

where the superscript k indicates iteration number, J k
is an N x N

matrix of partial derivatives (the Jacobian matrix)

k=

3f
1

aft

a xi ax
n

af
n 9?

n

3 xi axn
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Pk is an N-dimensional vector of correction steps,

P
k

= X
k+1

- X
k

= [pl, p2, p]
T

and F(Xk) is an N-dimensional vector of function values evaluated at

X ,

F(X
k

) = [f
1
(X

k
)

'

fn(xk)] T

Equation 11-7 is solved for andand the predicted solution

vector for the next iteration is given by:

X
k+1

= Xk + Pk

Convergence to a solution set is achieved when

xk+1 - xk I

<E

where c is the desired accuracy of solution. Alternatively, we

could use as the convergence criteria

II F(xk)D

where
II II denotes the Euclidian norm of F(X

k
)

II F(Xk)
II

= fi(Xk)2]1

i=1

A block diagram of the method is shown in figure 11-5. It

should be noted that at each iteration the Jacobian matrix must be



36

GIVEN

K=O

II1OIMOIIir
EVALUATE
JACOBIAN

k

V
SOLVE

LINEAR S (S-
TEM
jk pk._Fk

vir

CXk

+I

=Xk)

(E VA L UAT

,)

Figure 11-5. The Newton-Raphson Method: Block Diagram



37

supplied. Also, the linear system 11-7 is solved at every

iteration.

When the functions are not analytical, and/Or the Jacobian is

difficult to obtain, we may calculate the Jacobian numerically, by

forward differences,

J.. =

3f.

ax .

Xk

f.
1

(X
k

+ h) - fi(X
k

)

i = 1, 2, ..., N; j = 1, 2, N

h is an N-dimensional vector defined as follows,

h
k

0 for k j

h.=snall positive number.

The calculation of the Jacobian by forward differences requires

the evaluation of all N functions N + 1 times.

The functions that occur in chemical process simulations are,

in general,
"
expensive" to evaluate. In the simultaneous modular

approach, a series of equipment modules will be evaluated in each

iteration to obtain function values. In addition, some modules, for

example a flash drum, perform iterative solutions internally.

Besides the computational effort, care must be taken to avoid

"round -off" errors. For instance, if the convergence criteria used

in the module is c (say, 10-4), perturbing a variable by less than 6

will probably result in a poor evalution of the Jacobian matrix.
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An alternative to Newton-Raphson's method is the use of

Broyden's method (Broyden 1965).

Broyden's method is a modification of the Newton-Raphson

method. The first iteration is essentially the same as in

Newton-Raphson; in the second and subsequent iterations the Jacobian

is not evaluated at X , but it is updated using Broyden s secant

updated formula,

where

J
k+1

= J
k

(Y
k

JkPk )(P
k
)

T
/ (P

k)T
Pk

Y
k

= F(X
k
+ P

k
) - F(X

k
)

It is readily seen that no additional evaluations of functions

are required, thus Broyden's algorithm is an attractive alternative

to solving sets of nonlinear equations that occur in chemical

process simulations. Actually, the use of the method in

flowsheeting problems was suggested as early as 1966 (Rosen, 1966),

and several other authors have either used the method or

modifications of it in chemical process simulations (for example:

Perkins (1979) and Mahalec et al. (1979)).

In general, Broyden's method will converge more slowly to a

solution when compared with Newton-Raphson's. Dennis and Schnabel

(1983), reported that at the solution, Broyden's update formula will

generate a Jacobian with a relative error of approximately 1.1

percent when compared to the true Jacobian. Furthermore, the

Jacobian as updated by Broyden's formula will have "fill-ins," that
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is, some elements of the true Jacobian that are equal to zero will

assume values other than zero when updated by Broyden's formula.

Moreover, Broyden's method, similar to Newton-Raphson's, may not

converge to a solution if the initial estimates of the solution are

far from the actual solution.

An alternative to Broyden's update formula is Schubert's update

formula. The method was first proposed by Schubert (1970), and

later by Broyden (1971). Schubert's formula does not update

elements which are known constants. The formula is:

where

and

k+1 k .k k
1 1

Ji = J. (Y. J.
1 Ti)

.

i = 1, 2, ..., N

Y = fi(X
k

+ P
k
) - fi(X

k
)

1;)T/[(1-1.1.)T(Tki)]

k .thJ. = row vector containing the elements of the row

of the Jacobian matrix J

fl
.th

. element of F(X
k

)

Ti = a column vector derived from P by setting to zero

eachelementofPlat corresponds to a known

constant of j.
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Inpractice,T.is set to zero only when an element of the

Jacobian is zero. Any information about elements which are known

constants but not equal to zero is disregarded.

When the Jacobian is sparse, Schubert's update formula is more

attractive, since it does not create fill-ins and thus maintains the

sparsity of the matrix. However, some authors (Mah and Lin (1980);

Perkins and Sargent (1982)), reported unreliable results using the

Schubert update formula in connection with the Newton-Raphson

convergence algorithm.

As mentioned earlier, the Newton-Raphson method or nonlinear

solver algorithms based on the N-R method (Broyden's or Schubert's

methods) may diverge if the initial estimate of the solution is far

from the actual solution. Because the N-R method is based on a

local linearization of all functions by first order Taylor series

expansions, the linearized functions are a good representation of

the nonlinear functions when close to the solution, thus convergence

is fast. Therefore, N-R based methods have good local convergence

properties.

A priori we do not know the solution of a problem so there is

no way to know how far from the solution the initial guessed values

are. Although for chemical process simulation we can provide a good

estimate of the solution-using very simple models or experience -

the number of failures of N-R based methods may still be rather

high.
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In recent years N-R based methods have been used in conjunction

with global methods for unconstrained optimization. The basic

strategy of the global methods for unconstrained optimization is to

solve the following problem:

min R(X) = F(X)T F(X) (II-13)

Note that R(X) = yI F(X) II 2. An iterative procedure would be

to find correction steps Pk which, at each iteration, minimize the

auxiliary function R(X) until a minimum is reached. If at that

minimum R(X) = 0, the solution has been found. One of the drawbacks

of the method is clear: R(X) may converge to a local minimum where

the minimization problem is satisfied, but it is not a solution of

the system of nonlinear equations. On the other hand, it can be

proven that at a local minimum that is not the solution required,

J
T
(X) F(X) = 0

Since R(X) X 0, thus, F(X) X 0, J(X) must be singular and since

N-R based methods require the inverse of the Jacobian, they would

also fail! Another point worth mentioning is that minimization

methods have slow convergence properties, but, if no local nonzero

minimum is reached, they will eventually converge to the solution of

the equations, when it exists.

The Steepest Descent direction algorithm and Levenberg-

Marquardt algorithm (Broyden, 1970), are two popular methods for the

solution of systems of nonlinear equations based on the minimization
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of an objective function R(X); they both have good global

convergence properties.

In practice, minimization algorithms are used to drive the

initial estimate vector X° closer to the actual solution because

these algorithms have good global convergence properties; then, the

algorithm switches to N-R based methods, which have good local

convergence properties.

A very popular algorithm with the properties mentioned in the

last paragraph is due to Powell (1970). He proposed an hybrid

algorithm based on the Levenberg-Marquardt method which showed

excellent results. Later, Chen and Stadtherr (1981) proposed some

modifications which improved Powell's method. In Appendix 8 there

is a short review of Powell's algorithm and Chen and Stadtherr's

modifications of Powell's method.

Implementation of MPOLM1 and MPDLM2

As part of this work, two subroutines were developed to solve

systems of nonlinear equations. They both use Chen and Stadtherr's

modification of Powell's method.

The need to have two versions of the same algorithm arises from

the different characteristics of the Jacobian generated when solving

sets of nonlinear equations using either the simultaneous modular

approach or the equation-based approach. The first has a full

Jacobian, only a few elements are equal to zero; the latter has a

sparse Jacobian, only a few elements are different from zero.
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To illustrate the characteristics of each approach, we will

show the Jacobian generated by each in a typical simulation of an

ammonia plant (figure 11-6). In later chapters this problem will be

presented in more detail. For now it is important to know that

there are five components in each stream, five equipment modules (1

reactor, 1 mixer, 1 splitter and 2 flash drums), and the conversion

of a reactant is given by the chemical equilibrium constant.

In the simultaneous modular approach there are 6 nonlinear

equations being solved simultaneously: 5 stream connection

equations and one constraint equation. The equations are:

f.1 (X,y
r 1 1

) = x. - y.(X,y
r

) i = 1,5

f6(x9Yr)

where

X

xi

=

=

Yi =

K - Z(X,Yr)

,X
2
,X
3
,X

4
,X
5J

iT

.th
molar flow rate of the component in the torn

stream

.th
molar flow rate of the I-- component in the torn

stream obtained after each pass in the flowsheet.

A pass in the flowsheet is defined as the

sequential evaluation of all equipment modules.

The initial and final point of the sequential

evaluation is the torn stream(s)

= conversion of reactant r



AMMONIA
PRODUCTION

PURGE

FEED

CLASH

4

MIX

SP
5

FLASH

1--)(-10(11E ACTO
3

\TEAR STREAM

PRODUCT

Figure 11-6. Ammonia Plant Block Diagram



45

K = chemical equilibrium constant = 0.35

Z = a function of y and xi, i = 1,5

The Jacobian generated by the simulation of the NH3 plant using

the simultaneous modular approach is presented in figure 11-7. It

is clear that the Jacobian is nearly full.

To solve the same problem using the equation-based approach

requires the solution of 50 simultaneous equations. The equations

represent material balances around each piece of equipment. The

Jacobian generated by the equation-based approach (figure 11-8) had

182 nonzero elements. The full Jacobian has 50 x 50 = 2500

elements, so only 7.3 percent of the elements will be used

throughout the nonlinear solver subroutines.

Knowing the characteristics of each approach, it was decided

that Broyden's update formula would be more attractive for the

simultaneous modular approach. For the equation based approach,

Schubert's update formula was chosen. In addition, that subroutine

uses sparse matrix techniques which enables it to store and operate

on the nonzero elements only.

Subroutine MPDLM1 is used with the simultaneous modular

approach (Broyden's update formula) and MPDLM2 with the equation-

based approach (Schubert's update formula).

Following the suggestion of several authors (Powell, 1970; Chen

and Stadtherr, 1981; Dennis and Schnabel, 1983), the Jacobian and

function values are scaled. A scaling matrix DF is calculated so

that the resulting scaled Jacobian (DF)(J) has the largest elements
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in each row equal to ±1. The scaling of the Jacobian and functions

was suggested to improve the accuracy and convergence of nonlinear

solvers.

Sometimes the rate of convergence begins to slow considerably.

This may happen because the Jacobian update by Schubert's or

Broyden's formula is not a good approximation of the true Jacobian.

In this case the Jacobian is re-evaluated by forward differences.

Early tests with both subroutines showed that the Jacobian updated

by secant formulas "degrades" after 15-20 iterations if the initial

estimate of the solution is not good. To decide when to re-evaluate

the Jacobian, we used the same procedure suggested by Chen and

Stadtherr (1981). It consists of the following steps:

1. After each Jacobian evaluation by forward differences, set

IFLAG = O.

2. After each iteration k, if

F(Xk Pk)
2

0.999 11 F(Xk) 11 2

set

IFLAG = IFLAG + 1

Otherwise, IFLAG = IFLAG - 1

If IFLAG < 0, set IFLAG = 0

3. Evaluate

R1 = II F(Xk
pk) 2

/ 11 F(Xk-4) k 2

R2 F(Xk-4) N / II F(Xk -9) H

The Jacobian is re-evaluated if:
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a. Since last Jacobian evaluation

II F(Xk Pk) d has been reduced by a factor of 2

and

b. IFLAG > 3 or R
1
> R

2

The parameters IFLAG, R1 and R2 can be interpreted as a

'measure" of the progress towards the solution. Ri "traces" the

progress of the last iterations and R2 the progress of the 5

iterations before those. If IFLAG is greater than 3, or Ri is

greater than R2, we are ensuring that the converge is quite slow

before the Jacobian is re-evaluated. The first condition is used to

ensure that we do not re-evaluate the Jacobian too often.

The parameter IFLAG is also used to check when the algorithm

reached a local minimum, or when the convergence is too slow. If

IFLAG is greater than MAX (10, N+4), where N is the number of

equations, the subroutine stops and an error message is issued.

Besides the update formula, another difference between MPOLM1

and MPDLM2 is the method used to solve the linear system. MPDLM1

uses an LU decomposition of the Jacobian matrix. The LU

factorization,

J = LU

where L is a lower triangular matrix and U an upper triangular

matrix, is performed every time the Jacobian is calculated by

forward differences. In subsequent iterations the L and U factors
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are directly updated using Broyden's formula and Bennett's algorithm

(Bennett, 1965).

The solution procedure for the set of linear equations is

JkPk (X
k

)

Or

Lkukpk 4.(xk)

Define UkPk = Y and solve

L
k
Y = -F(X

k
)

for Y.

Then solve

k k
U P = Y

for P
k

.

For MPDLM2 we used subroutine SPAMAT (Rodrigues, 1979). This

subroutine solves the linear system by a Gaussian elimination, and

it uses sparse matrix techniques to store elements and perform

operations. The sparse matrix technique consists in storing only

nonzero elements in an N x M matrix B. The row positions of each

nonzero element are stored in another N x M integer matrix IC, and

the number of nonzero elements in each row is stored in an

N-dimensional vector IZ. For example, assume that a Jacobian matrix

4 x 4 has the following configuration:
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1 0 2

0 3 0 0
3

0 0 4 1

0 0 0 5_

Using the sparse technique just described we would have:

1 r 1 2

3 0 2 0 1
B(4x2) = IC(4x2) IZ(4)

4 1 3 4 2

5 0 5 0 1

The drawback of this fomulation is that we must know beforehand

the maximum number of elements in one single row in order to set the

second dimension of matrices B and IC.

The small size example shown above is for clarity. There will

be an economy in storage requirements if,

Or

2(m * n) + n < n
2

(2m + 1) <n

where m is the maximum number of nonzero elements in one single row.

For example, assume that the maximum number of elements in a single

row of a 200 x 200 matrix is 15. The storage requirements would be

200 * 200 = 40,000 for the full matrix. Using the sparse matrix

technique just described, only 2 * 200 * 15 + 200 = 6200 storage
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positions would be required, or 15.5 percent of the full matrix

storage requirements.

This is not the best sparse matrix technique, but, for the

purpose of this work, it performed quite well. An excellent review

of sparse matrix techniques associated with the solution of linear

systems may be found in Duff (1977).

Thus far the most important features of MPDLM1 and MPDLM2 have

been discussed. Figure 11-9 shows a block diagram of the algorithm.

It does not include all details, however Appendix C contains a

printout of the source code for both subroutines.

Performance of MPDLM1 and MPDLM2

Both subroutines were compared with subroutine ZSPOW from IMSL.

We solved 5 problems, four of them from the open literature and

often used to compare the performance of nonlinear solvers. Some

results from Chen and Stadtherr (1981) and Powell (1970) are

available, so they are reproduced for comparison purposes. The

fifth problem is the simulation of a system of 3 counter-current

evaporators for Kraft black-liquor.

Problem 1 - Brown's Almost Linear Function (PBALF)

10

F. = x. - 11 + x. = 0 i = 1,9

=IJ

10

F
10

= 1 - fl x. = 0
j=1
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GIVEN

X kJ K=0

1
EVALUATE
JACOB I ,411

jk

SCALE
FUN CT I ONS

SOLVE
k k

USE
PO NELL'S
METHOD
FOR pk

EVALUATE

Fic*1

YES

sc+1

X
k k

=

K=K+1

UPDATE
JACOBI AN

SOLUTION
FOUND

NO

Figure 11-9. Block Diagram of the Modified Newton-Raphson Method
Used in This Work
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initial point: xi = 0.5; i = 1,10

solution: xi = 1; i = 1,10

Problem 2 - Powell's Badly Scaled Function (PPBSF)

F1 = 10,000 * xi * x2 - 1 = 0

F
2

= EXP( -x1) + EXP(-x2) - 1.0001 = 0

initial point: x1 = 0; x2 = 1

solution: xi = .1098 * 10
-4

; x2 = 9.106147

Problem 3 - Rosenbrock's "Banana" Function (PRBF)

= 10.0 * (x2 - xi * xi) = 0

F
2

= 1.0 - x
1

=

initial point: xi = -1.2; x2 = 1.0

solution: x
1 '

1.0. x
2

= 1.0

Problem 4 - Powell's Singular Function (TET)

F
1

= x
1
+ 10 * x

2
= 0

F
2

= 17.5 * (x3 - x4) = 0

F3 = (x2 - 2 * x3)2 = 0

F4 = 1/7.0- * (x1 - x4)2 = 0

initial point: X = [3,-1,0,1] T

7solution: X = L0,0,0,0jT
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Problem 5 - Kraft Black-Liquor Evaporator (KBLE)

The flow diagram is shown in figure II-10, initial values and

solution are shown in table 11-2.

The number of function evaluations, that is, the number of

times the subroutine containing the nonlinear system was called,

including evaluations used to obtain the Jacobian, are summarized in

table II-1.

Table II-1. Performance of Nonlinear Solvers (Number of Function
Evaluations)

Subroutine

Problem

PBALF PPBSF PRBF TET KBLE /

MPOLM1 26 49 7 26

MPOLM2 37 26 26 91 11.619

ZSPOW 31 22 181 1101 18.651

Chen

Stadtherr 26 40 7 47

POWELL 223 28

1/ failed to solve

2/
only execution time available (CPU-sec)

In general, the results obtained with MPOLM1, are superior, in

terms of iterations required, when compared with the results of

ZSPOW. In addition they are similar to those obtained by Chen and

Stadtherr, as expected since the methods are the same. However,



Figure II-10. Block Diagram of the 3 Effect Evaporator Problem
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Table 11-2. Initial Values and Solution of the 3 Effect Evaporator
Problem

NUMBER OF VARIABLES=54

THE SYSTEM TO BE CALCULATED,GITN INITIAL GUESSES AND
KNOUN VARIABLES GILL BE PRINTED NOG

STREAM B FLOG RATE
(LB/N)

PRESSURE

tPSIA)
TEMPERATURE

( DEG F)
SOLID CONTENT

(18/111)

ENTHALPY
(BTU/LB)

1 100000.0000 50.0000 282.0000 .0000 1000.0000
2 100000.0000 20.0000 200.0000 .0000 1000.0000
3 100000.0000 20.0000 200.0000 .0000 1000.0000
4 100000.0000 10.0000 180.0000 .0000 1000.0000
5 100000.0000 5.0000 140.0000 .0000 1000.0000
6 10000.0000 20.0000 200.0000 .0000 1000.0000
7 5000.0000 5.0000 211.0000 .0000 1000.0000
8 100000.0000 .0000 281.0020 .0000 200.0000
9 90000.0000 .0000 200.0000 .0000 200.0000

10 100000.0000 .0000 227.9559 .0000 200.0000
11 200000.0000 .0000 193.2139 .0000 200.0000
12 400000.0000 .0000 180.0000 .1500 143.4109
13 300000.0000 .0000 180.0000 .2000 140.1515
14 200000.0000 .0000 180.0000 .3000 134.0580
15 100000.0000 .0000 180.0000 .4000 128.4722
16 94000.0000 .0000 180.0000 .5000 123.3333

IF YOU 6ANT TO STOP THE PROGRAM AND CHANGE INITIAL
GUESSES ENTER 100 (AS 1? APPEARS)

92

THE FOLLDUING VALUES OF 0 AND UA GILL BE USED

BTU/HF BTU[Lb
UA(1)4 3000000.0000 0(1)=100000000.0000
014(214 4000000.0000 0(2)=100000000.0000
114113)4 4000000.0000 0(3)=100000000.0000

THE CALCULATED VALUES FOR THE SYSTEM OF EVAPORATORS ARE:

STREAM 4 FLOG RATE

(LB/H)
PRESSURE

(PS/A)
TEMPERATURE

( DEG F)
SOLID CONTENT

(LB/LB)
ENTHALPY
(BTU /LB)

1 117422.7768 50.0000 281.0020 .0000 1174.07132 92268.1028 24.4540 244.7940 .0000 1163.15793 97461.0763 24.4540 244.4758 .0000 1162.97584 101511.8165 9 .7773 215,5471 .0000 1154.14075 /11597.5336 5.0000 165.7888 .0000 1132.7187
6 5192.9715 24.4040 218,8440 .0000 1160.11637 2142.8373 5.0000 187.1811 .0000 1142.78600 117422.7768 .0000 281.0020 .0000 240.00209 112229.8032 .0000 238,3440 .0000 206.844010 77461.0761 .0000 238.8440 .0000 206.844011 190972.8929 .0000 '12.1519 .0000 160.151912 400000.0000 .0000 180.0000 .1500 143.410913 288402.4664 .0000 165.7888 .2080 126.212514 196114.3636 .0000 244.7940 .3059 172.253715 94622.1470 .0000 215.5471 .6341 145.169116 92479.7077 .0000 187.1811 .6488 122.0534

UA11)4 3000000.0000 0(1)4108624204.8010
U4(214 4000000.0000 2(2)4 93187588.1197
UA(3)4 4000000.0000 01114105452264.5421



58

they are not identical and two possibilities exist for that

disagreement; one is that a user given parameter, the "distance"

between the initial guess and the actual solution, was not the same.

That parameter plays an important role in the number of iterations

required. The other possibility is an error in our coding of Chen

and Stadtherr's algorithm.

The results of Powell with the problems PRBF and PPBSF, when

compared with MPDLM1, confirm the improvement of Powell's algorithm

by Chen and Stadtherr.

MPDLM2, using Schubert's update formula and sparse matrix

techniques, had inferior performance when compared to MPDLM1. The

reason for that is probably the simplification introduced in

Schubert's update formula, i.e., treating only zeros as constants,

instead of all known constants in the Jacobian. On the other hand,

MPDLM2 solved problem TET, in which ZSPOW failed. In addition,

MPDLM2 solved the evaporator problem in 60 percent of the execution

time required by ZSPOW, which demonstrates the benefit of using

sparse matrix techniques.
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CHAPTER III

IMPLEMENTATION OF SIMO AND EQSS

In this chapter we will describe the implementation of SIMO

(Simultaneous Modular Library) and EQSS (Equation Solving Simulation

Library). A listing of the source code for both libraries is shown

in Appendix C. It should be noted that both libraries use the same

nomenclature for the flowsheet variables:

thFLOW(I) = Molar flow rate of the I--- stream (mol/unit of

time)

COMP(I,L) = Mol fraction of 1.-11 component in the

0 stream

EQP(I,J) = Pl equipment parameter of the 0 module

Because of this, the modules from SIMO can be used to

initialize varibles in EQSS, and the same input /output subroutines

can be used for both approaches.

SIMO Library

This library is used to perform chemical process simulations

using either the sequential modular approach or the simultaneous

modular approach. There are 26 subroutines available, which can be

organized in three major categories:

1. Nonlinear Equations Solvers

2. Equipment Modules
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3. Support Subroutines

Subroutines To Solve Nonlinear Equations

There are seven nonlinear solver subroutines; five are

one-dimensional (one equation in one unknown) and two are

multi-dimensional (N equations in N unknowns). Each subroutine uses

a different method of solution, so the user has the option of using

the best method to solve specific problems. In addition to the

seven nonlinear solvers, there is one subroutine to perform an LU (L

lower triangular, U upper triangular) factorization of a general N x

N matrix.

We will now proceed with a brief description of each

subroutine. The nomenclature of several parameters common to some

of the subroutines are:

NT - Total number of iterations allowed.

EPS - Desired accuracy (typical values 10-3, 10-4).

X - An N-vector of initial guesses which are

specified as input by the user; on output X

carries the best estimate of the solutions.

F - An N-vector of function values (Input/Output).

N - Number of equations.

K - User provided parameter to control the printing of

iterations results; every kth iteration the

results are printed.
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SUBROUTINE NEWTON (X, NT, EPS, SFNC, K) - Solves one nonlinear

equation, F(X) = 0, in one unknown using Newton's method. The user

must provide SUBROUTINE SFNC (X,F,FD), which calculates function

values and derivative values at X (Kayihan, 1979).

SUBROUTINE INTHLV (XL, XR, X, NT, FNC, K) - Solves one

nonlinear equation, F(X) = 0, in one unknown using the

interval-halving (half-interval) method. The user must specify

left-hand (XL) and right-hand (XR) bounds on the root. In addition

the user must provide FUNCTION FCN(X), which calculates function

values at X (Kayihan, 1979).

SUBROUTINE SUCSUB (X, NT, EPS, FNC, K) - Solves one nonlinear

equation, X = F(X), in one unknown using the successive substitution

method. The user should provide FUNCTION FNC(X) which calculates

the value of F(X) at X (Kayihan, 1979).

SUBROUTINE WEGSTN (X, NT, EPS, FNC, K) - Solves one nonlinear

equation, X = F(X), in one unknown using Wegstein's method. The

user provides FUNCTION FNC(X) which calculates the value of F(X) at

X (Kayihan, 1979).

SUBROUTINE WEGSMD (N, X, NT, EPS, SUB, K) - Solves "N"

nonlinear equations, X = F(X), in "N" unknowns using Wegstein's

method. The user must provide SUBROUTINE SUB(N, F, X) which

calculates the value of F(X) at X (Kayihan, 1979).

SUBROUTINE SECNEW (X, NT, EPS, SUB) - Solves one nonlinear

equation, F(X) = 0, in one unknown using the secant method. The

first iteration is a Newton iteration, the following are secant

approximations. Figure III-1 has a graphical representation of the
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Figure III-1. Graphical Representation of the Method Used in SECNEW
to Solve Nonlinear Equations
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method. The user must provide SUBROUTINE SUB (X,F) which calculates

function values of F(X) at X.

SUBROUTINE MPDLM (FCN, X, F, N, 8, NT, IDGT, MS) - Solves N

nonlinear equations, F(X) = 0, in N unknowns using Chen and

Stadtherr modification of Powell dogleg method (see Chapter II and

Appendix B). FCN is a user-written subroutine to calculate the

values of the functions at X. B is a matrix with dimensions N x 32.

IDGT is the number of digits of accuracy required. MS is a user-

specified parameter defined as follows:

MS = 0; no scaling of Jacobian and functions

MS = 2; auto-scaling

MS = 3; auto-scaling and the Jacobian of the system of

equations is given externally through a user given

subroutine JACOBI (X, F, N, B).

SUBROUTINE FACLU (A, IP, N) - Factorization of the N x N matrix

A into a product of a lower triangular matrix (L) and an upper

triangular matrix (U). L has unit diagonal elements which are not

stored. A is stored columnwise, in a vector of dimension N
2

. IP,

on output, contains a permutation vector of A (from "IBM -

Programmer's Manual," 1968).

Equipment Modules

There was no need to develop new equipment modules for the

simultaneous modular approach because the source code of SIMFLOWS

(Kayihan, 1979) was available. A few modifications were introduced
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into SIMFLOWS in order to simulate more complex problems. The

number of components allowed was increased from 7 to 19. The number

of equipment modules and streams allowed was increased from 20 to

30. In addition, the separator module was modified to allow three

output streams instead of two output streams as it was originally

developed.

The subroutines and their graphical representation can be found

in figure 111-2. The details of the modules are shown in Appendix A.

Support Subroutines

Support subroutines are used for input, output and to prepare

the system of nonlinear equations for solution. For either

approach, sequential or simultaneous modular, the user must provide

one subroutine with the equipment modules describing the process in

its sequential order of calculation. When using the simultaneous

modular approach the subroutine must be named FSIS. The support

subroutines are:

SUBROUTINE READ (NST, NEQ) - A subroutine to read "NST" stream

variables and "NEQ" equipment parameters. The user provides in a

data file all known stream variables, equipment parameters, as well

as the initial guess(es) of the torn stream(s). A sample of a data

file is presented in figure 111-3 (Kayihan, 1979).

SUBROUTINE CHECKS (N1) - A subroutine to check the consistency

of stream variables of stream Nl. If a flow rate is lower or equal

to zero, or the mole fractions do not add up to 1, an error message

is issued and the program stops (Kayihan, 1979).
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SUBROUTINE
NAME

FLASH

MIXER

REAC
REACTOR

ATO SEPAR

SRLITP7P *1; SPLIT

Figure 111-2. Graphical Representation of the Subroutines Used with
the Simultaneous Modular Approach
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C
C
ETHANAL PRODUCTION
121234567812345671234587i23456712345671234567123456712345671234567123456712345
8 ETHOL ETHOL H2O EE EEE H2 G ORG
1 263.77 .2616 7384
2 39 1847 0266 03830 90590 00000 01830 .00000 00000 01090
3 1000. 20000 00000 70000 00010 .00000 00000 00000 09900
4
5
6 388 .4779 1685 1476 1701 0005 0044 0068 023
7
B
9
0

1

2
3 6000. .0108 0606 9080 0000 0000 0006 0000 0000
4
5
6
7
8
9

20
21
22
23
24
25
26
123456781234567812345678123456781234567812345678123456781234567812345678i23456

1 SEPAR
1 0. 0 05467 O.
O 0 0 94251 I

3 4 6 5 3
2 REAC
-1

4 7
3 REAC

7 8
4 REAC

-4.666 - 5075 0 277778 0. 1 5341 0 0 2

8 9
5 SEPAR

O 04051 0 76344 0 0 0
O 95949 0 23656 0 98817 0 08

1 I

1

9 10 12 11 3
6 SEPAR

O 0 0273 0 0 0 t 0
O 0 0 0 0 0 0 0
13 14 15
7 SPLIT
0 8883 1117
0

16 19 20
8 MIXER

2

2

O.
0
10 18 19 13 3

9 SEPAR
0. 0 0 0. 0. 0 1 0 1 0 0 0
0.

16 17 18
10 MIXER

0
0

2 12 20 21 3
11 SEPAR
O 0 9764 0. 0. 0. 0 0 0
O 9936 0 0 9948 1 0 0 0 0 2581
21 22 24 23 3

12 MIXER
0
0.
1 24 3 2

13 SPLIT
7333 2667

0
6 25 26 2

Figure 111-3. Example of a Datafile Used with SIMO

27971

02591

02817
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SUBROUTINE WRITES - This subroutine prints stream variables

(Kayihan, 1979).

SUBROUTINE WRITEE - This subroutine prints equipment parameters

(Kayihan, 1979).

SUBROUTINE WRITEX (LFIRST, LLAST) - This subroutine prints

equipment parameters for modules LFIRST through LLAST.

SUBROUTINE SIMSO (II, 12, 13, IP, NSIG) - A subroutine to solve

mass balances using the sequential modular approach. If the problem

has design constraints, subroutine SPEC must be used in conjunction

with subroutine SIMSO. Parameters:

- Total number of streams torn.

I2(I) - Number of each stream torn I = 1, Il.

13 - Total number of design constraints.

IP - Printing Parameter. For IP = 1 no printing of stream

variables or equipment parameters before solution.

For IP = 2 stream variables are printed before

solution. For IP = 3 stream variables and equipment

parameters are printed before solution.

NSIG - Number of digits of accuracy required for the

solution.

SUBROUTINE SPEC (N3, NAME, NUE, NUP, NACO, NUS, NCO, VAL) - A

subroutine to specify design constraints imposed to the problem.

Parameters:
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N3 - Total number of design constraints (max = 19)

NAME(I) - Name of the modules which have equipment parameters

manipulated. If a flowrate is manipulated, NAME(I) -

'FLOW;' I = 1, N3.

NUE(I) - Number of the module or flowrate specified in

NAME(I), I = 1, N3.

NUP(I) - Number of the equipment parameter being manipulated.

IF EQP(L,J) is manipulated NUP(I) = J. IF NAME(I) -

'FLOW,' NUP(I) = 0, I = 1, N3.

NACO(I) - Name of constraint being imposed. There are only two

possibilities 'FLOW' for molar flowrate or 'COMP' for

composition. I = 1, N3.

NUS(I) - Number of the stream which has the constraint

NACO(I), I = 1, N3.

NCO(I) - Number of the component being specified. If a flow

rate is specified NCO(I) = 0, I = 1, N3.

VAL(I) - Numerical value of the design constraint, I = 1, N3.

SUBROUTINE FCN (X, F, N) - This subroutine is used by

subroutine MPDLM to evaluate function values at the tentative

solution vector X.

SUBROUTINE TEARI (X, F, IT, N) - This subroutine assigns the

values of X (from MPDLM) to the stream connection equations.

SUBROUTINE CONTI (X, F, IT, N) - This subroutine assigns the

values of X (from MPDLM) to the manipulated equipment parameters or

manipulated flowrates.
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SUBROUTINE TEARO (X, F, IT, N) - This subroutine evaluates

function values from stream connection equations.

SUBROUTINE CONTO (X, F, IT, N) - This subroutine evaluates

function values from design constraint equations.

SUBROUTINE THREE (X, F, N, IP) - This subroutine performs three

successive substitution iterations to initialize all stream

variables.

Interconnection of the Subroutines

Subroutine MPDLM, the nonlinear solver subroutine, in its

iterative procedure evaluates a tentative solution vector X, which

is used to calculate function values. The variables in vector X

correspond to the molar flowrate of each component in the torn

stream(s) and to the manipulated variable used to meet some design

specification. The function of subroutines TEARI and CONTI is to

assign the variables of the vector X to the flowsheet variables,

that is, each element of vector X is assigned to variables used by

the equipment modules.

We will use a simple example to show the flow of information

between the subroutines of SIMO. All compositions used are in mole

percent.

Example III-1

A stream containing 50 percent of A and 50 percent B is to be

separated into two streams, one containing 90 percent of A and the
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other 90 percent of B. The block diagram of such a system is shown

in figure 111-4.

For this problem we choose stream 2 as the tear stream. The

design constraints imposed for the problem are: COMP(3,1) = 0.9;

COMP(6,2) = 0.9. The variables manipulated to meet that

specification are EQP(2,1) and EQP(2,2).

To solve this problem the first step is to create a data file

with all the known parameters and an initial estimate of the

variables in the torn stream. Table III-1 shows one possibility of

such values.

Table III-1. Possible Initial Guesses for Example III-1

STREAM FLOW COMP(I,1) COMP(I,2)

1 100 .5 .5

2
1/150 1/.3 1.7/

3

4

5

6

MODULE EQP(I,1) EQP(I,2) EQP(I,3)

1 NR NR NR

2
31/ 1/.1 NR

3 NR 0.5 0.5

/NR - not required;
1

- estimated
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SEPAR
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FLOW(1)

COMP(1,1)
SPLIT FRACTION
SEPARATION FRACTION =
COMP(3,1)
COMP(6,2)
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390% A

100

COMP(1,2) = 0.5
EQP(3,2) = 0.5
EQP(2,1); EQP(2,2) =
0.9
0.9

Figure 111-4. Block Diagram of Example III-1
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Next the main program and Subroutine FSIS are created (FSIS

with the modules in its sequential order of calculation),

SUBROUTINE FSIS (X, F, IT, N)
CALL SEPAR (2)
CALL SPLIT (3)
CALL MIXER (1)
RETURN
END

And the main program,

PROGRAM EXAMPLE
INTEGER NUE(2), NUP(2), NUS(2), NCO(2)
REAL VAL(2)
CHARACTER * 5, NAME(2), NACO(2)

= 1
12 = 2
13 = 2
NAME(1) = 'SEPAR'
NAME(2) = 'SEPAR'
NACO(1) = 'COMP'
NACO(2) = 'COMP'
NUE(1) = 2
NUE(2) = 2
NUP(1) = 1
NUP(2) = 2
NUS(1) = 3
NUS(2) = 6
NC0(1) = 1
NC0(2) = 2
VAL(1) = 0.9
VAL(2) = 0.9
IP = 3
NSIG = 4

CALL SPEC(I3,NAME, NUE, NUP, NACO, NUS, NCO, VAL)
CALL SIMSO(I1, 12, 13, IP, NSIG)
CALL WRITES
CALL WRITEE
STOP
END

Subroutine SPEC sets up 7 vectors with all the information in a

COMMON block, so the information can be shared by other subroutines.
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The information given as CHARACTER (NAME and NACO) is coded into

INTEGER type variables. Furthermore, SPEC also codes the type of

modules containing manipulated parameters because the equipment

parameters used by each module have different allocations. For

instance a reactor module (say, module 7) can have only the

conversion of a reactant manipulated and that variable is stored at

EQP(7,20). A splitter module does not use the first equipment

parameter, EQP(I,1). In short, the variables in the COMMON block

are a numerical code of the design specifications, in this form it

is easy to identify in which modules are the manipulated variables,

and which equipment parameters are variables.

Subroutine SIMSO will first determine the total number of

unknowns (and equations) that MPDLM will be solving. This task is

rather easy because the number of variables in each torn stream is

equal to the number of component flowrates of that stream; the

number of design constraints is specified by the user. So, if there

are two streams torn and 10 components in each stream and 3 design

specifications, the total number of variables is N = 2 * 10 + 3

23. In the example III-1, N = 1 * 2 + 2 = 4.

The first NC elements of X, NC being the number of components

in each stream, are assigned to the molar flow rates of the first

tear stream. The next NC elements of X are assigned to the molar

flow rates of the second tear stream, etc. After the molar flow

rates of all tear streams are assigned to X, the initial estimate of

the manipulated variables are assigned to X.
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Before MPDLM is called by SIMSO, three successive substitution

iterations are performed. There are two reasons to do so. First, a

check of the consistency of the initial guesses is performed. There

is a possibility that the initial estimates will generate negative

flow rates, or some unexpected results, so the three initial

iterations "stabilize" the initial guesses. If some unexpected

result is generated, the user has the option of terminating the run.

Second, the successive substitution operations are used as a

convenient way of checking that the number of equations and the

number of unknowns are the same.

When MPDLM is called, the control of the program passes to this

nonlinear solver subroutine, and it will either find a solution or

fail to solve the problem. It is not rare to have a simulation fail

either because the maximum number of iterations allowed is reached

or the unknowns calculated by MPDLM during the iterations are

infeasible. Infeasible situations include negative flow rates and

values of split fractions, conversions of a reactant, or separation

fractions outside the interval [0,1]. In either case, a new set of

initial guesses is required.

Subroutine MPDLM is linked with the flowsheet through

subroutine FCN. The sole purpose of FCN is to evaluate function

values at vector X during the iterations. FCN, in turn, will call

the following subroutines: TEARI, CONTI, FSIS, TEARO and CONTO.

As earlier discussed, TEARI and CONTI assign the values of X to

FLOW(I), COMP(I,J) and EQP(K,L). Now that the torn stream(s) and

manipulated variables are defined, subroutine FSIS is called and one
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pass over the flowsheet is performed. Next TEARO and CONTO evaluate

function values. TEARO calculates the values of the residual

functions of stream connection equations and CONTO calculates the

values of the residual functions of design specification

(constraints) equations. When MPDLM reaches the solution, the

control of the program goes back to SIMSO, and from SIMSO to the

user supplied main program.

A block diagram of the hierarchy of SIMO is presented in figure

111-5. A block diagram of the most important operations performed

by SIMO in the example III-1 is presented in figure 111-6.

A feature introduced in SIMO is the possibility of introducing

algebraic equations relating some flowsheet variables. For

instance, assume that in the example of figure 111-3, we would like

to find a split fraction, 31, which satisfies the following

equation:

G(31) (FLOW(5))2 - FLOW(4) = 0 (III-1)

Equation III-1 is another constraint imposed on the problem.

The following commands would be added to the main program of

page 72.

N3 = 3
NAME(3) = 'SPLIT'
NACO(3) = 'USER'
NUE(3) = 3
NUP(3) = 2
NUS(3) = 0
NC0(3) = 0
VAL(3) = 0
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Figure 111-5. Hierarchy of SIMO Subroutines



Enter initial values
(READ)

Identify torn streams
constraints and mani-
oulated variables.

Provide initial guesses
to ,J.PDLYi

Y(1)=FLOW(2)*CUP(2,1)
Y(2)=FLOW(2)*CaAP(2,2)
Y(3)=0.5=EQP(2,1)
Y(4)= 0.5 =EQP(2,2)

V
Perform 3 sequential
iterations
(THREE)

Call APDLii
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Call FCN

Solution found. Return
to SflSO

FLOW(2) =-- X(1) +Y(2)
007[P(2,1)=-- X(1)/FLOW(2)
00.:P(2,2)= Y(2)/FLOW(2)
(TEARI)

EQP(2,1)=
EQP(2,2) =Y(4)
(CO:TTI)

Call FSIS

CCX,IP(6,2)-0.9
F(4)= CUP(3,1)-0.9
(CONTO)

F(1)=FIOW(2)*C0P(2,1)-X(1)
F(2)=FL0W(2)*C07:P(2,2)-Y(2)
(TEARO)

Figure 111-6. Most Important Operations Performed by SIMO for the
Example III-1



and subroutine FSIS becomes:
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SUBROUTINE FSIS (X, F, IT, N)
COMMON(S1) FLOW(30),
CALL SEPAR(2)
CALL SPLIT(3)
CALL MIXER(1)
F(IT) = FLOW(5) ** 2 - FLOW(4)
IT = IT + 1
RETURN
END

EQSS Library

This library of subroutines is used to perform chemical process

simulations using the equation-based approach.

The general structure of EQSS is similar to the SIMO library.

Actually some subroutines from SIMO are also used with EQSS. In a

similar fashion as in SIMO, EQSS can be divided in three major

categories:

1. Equipment Modules

2. Support Subroutines

3. Nonlinear Equations Solver

Equipment Modules

As in the simultaneous modular approach, each equipment module

has a mathematical model of the material balances around that

equipment. Although the equations are essentially the same, they

are written in the form F(X) = 0; in the simultaneous modular

approach some algebraic manipulation had to be done in order to

calculate output streams, given input streams and equipment
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parameters. It was quite simple to generate the source code of the

equipment modules as the equations are simple material balances.

However, some decisions had to be made regarding the use of 1) molar

flow rates of each species, or 2) total molar flow rate and mole

fractions as the independent variables. Using the molar flow rate

of each species may be attractive when simple simulations are

performed, that is, simulations without design constraints. In this

case almost all equations are linear, the exceptions being the flash

module and, depending on the case, the reactor module.

Early tests with EQSS showed that the gain in having most of

the equations linear was offset by the flash module. The

equilibrium relations in a flash drum have the following form:

where:

F(N) = yi kixi (III-1)

component index

x..mole fraction of the liquid leaving the system

yi = mole fraction of the vapor leaving the system

ki = equilibrium constant for component i

N = (N
vi' Nit) = molar flow rate

1 = subscript indicating liquid phase

v . subscript indicating vapor phase

In solving nonlinear systems using Newton-based approaches, the

thJacobian of the system is required every iteration. The of

the Jacobian corresponding to equation III-1 would be:
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assuming that only three components are present, i = 1,3

and
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Equation 111-2 is equivalent to:.
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(III-3a)

(III-3b)

j = 1,3 (III -4)

j = 1,3 (III-5)

3

a(y.) N +Nv+Ny3 vj
-N. ( k)yl 2

_ k=1 v
WI.

J
(N

yl
+ N

y2
+ N

v3
)2

k X j (III -6)
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3

-
3(kJ xJ ) [N11

+ +
-N

lj
(

k=1
Ni' )]

(III -7)
aNj

,2
UV

11
+ N

12
+ N

13
)

Where k X j

It is clear that the rows corresponding to equation 111-2 are

dense. For the equation-based approach we must explore the sparsity

of the nonlinear system. The formulation using molar flow rates of

individual components would create a row with 2 * NC elements for a

flash drum. If k values are considered variables the number of

elements goes to 2 * NC + 1. On the other hand, using total flow

rates and mole fractions, only two elements per row are generated

(three elements if k values are not constant).

In this work we will use total flow rates and mole fractions as

independent variables.

We will now present equipment subroutines. The following

nomenclature will be used.

Wi 1
.th= molar flow rate of the -- stream (mole/unit of time)

xij .h .thmol fraction of the component in the stream

U. =
.th

equipment parameter

F(I) = numerical value of the i21-- equation

NC = number of components

IT = internal counter
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The equations will be written for the case of two components.

The extension to NC components is straightforward.

SUBROUTINE SMIXER (NE, N, F, IT) - This subroutine simulates

the mixing of up to 7 incoming streams. No equipment parameters are

required.

F(1)

F(2)

F(3)

=

=

=

7

W
8

* X
81

-
.

1=1

7

-W
8

* X
82

i =l1=1

1 - X
81

- X
82

8

W. * X. = 0
11

1
W. * X1.

2 = 0

0

Total Number of Equations = NC + 1

0

SUBROUTINE SPLASH (NE, N, F, IT) - This subroutine simulates

an isothermal flash. There are NC equipment parameters: Ui = ki

equilibrium constants.
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U2HKI ; K2)

F(1) = W
I
* X

II
- W

2
* X

21
- W

3
* X

31 = 0

F(2) = W
1

* X
12

- W
2

* X22 - W
3

* X
32

= 0

F(3) = X
21

- k
1
* X

31
= 0

F(4) = X
22

- k
2

* X
32

= 0

F(5) = 1 X21 X22
0

F(6) = 1 - X31 - X32 = 0

Total Number of Equations = 2 * NC + 2

SUBROUTINE SSEPAR (NE, N, F, IT) - This subroutine can for

example simulate a simple distillation column. There are NC or 2 *

NC equipment parameters (2 or three output streams): separation

fractions.



F(1) = W
1

* X
11

* U
1
- W

2
* X

21
= 0

F(2) = W
1

* X
12 * U 2 W 2 * X22 =

0

F(3) = W
1
* X

11
W
2

* X
21

- W
3
* X

31
= 0

F(4) = W
1
* X

12 W 2 * X22 W 3 * X32

F(5) 1 X21 X22

F(6) = 1 - X
31

- X
32

= 0

W2 * X2i
Ui . =

84

W1 * Xli

Total Number of Equations = 2 * NC + 2

SUBROUTINE SREACTOR (NE, N, F, IT) - This subroutine simulates

a simple reactor. Equipment parameters are the stoichiometric

coefficients and the conversion of a reactant.
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Assume the conversion, U20, is for component 1, in addition U
1
and

U
2 are the stoichiometric coefficients of components 1 and 2.

R

F(1)

F(2)

F(3)

=

=

=

=

W1 * X11 * U20/(-U 1 )

- U1 * RW2 * X21 W1 * X11

W2 * X22 W1 * X12 U2 * R

1 X21 X22 =
0

=

=

0

0

Total Number of Equations = NC + 1

SUBROUTINE SSPLIT (NE, N, F, IT) - This subroutine simulates a

splitter. Up to 7 product streams may be specified. Equipment

parameter: split fraction (up to 7).
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Assume that stream 1 is split into two streams, 2 and 3. Then,

F(1) = W
1
- W

2
- W

3
= 0

F(2) = W2 - WI * U2 = 0

F(3) X11 X21 =
0

F(4) = X12
X22 =

0

F(5) = X11 - x31 = 0

F(6) X12 X31 =

If equipment parameters are also variables, one more equation

is required:

F(7) = 1 - U2 - U3 =

Total Number of Equations = L + 2 * NC where L is the

number of output streams.

The user has the option of inserting special purpose modules.

The module must have the form
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SUBROUTINE USER (NE, N, F, IT)

On input, IT is the number of the next equation. On output IT must

be equal to IT + NEQ, where NEQ is the number of equations in the

USER module. For example,

F(IT) = user equation 1

F(IT + 1) = user equation 2

F(IT + 2) = user equation 3

IT = IT + 3

Support Subroutines

This block of subroutines are used to enter data, print results

and prepare the system of nonlinear equations for solution. Four

subroutines from SIMO are also used with EQSS: Subroutines READ,

WRITES, WRITEE and WRITEX.

SUBROUTINES SREAD (NSTR, NEQ, NC) - This subroutine is used to

identify equipment modules used in the simulation, as well as

identifying which flowsheet variables are known constants or

unknowns to be calculated. SREAD will assign values of 0 or 1 to

vectors IFK(N), ICK(N x N) and IEK(N x N). If a flow rate is a

known constant, the corresponding element of IFK will be one.

Similarly, ICK and IEK will be one if a composition or equipment

parameter are a known constant. Otherwise, IFK, ICK and IEK will be

assigned zero.

Another vector, NAME, will carry the name of each module used

in the simulation. The parameters required by SREAD are:
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NSTR - total number of streams

NEQ - total number of equipment modules

NC - number of components in each stream.

SREAD requires a data file; an example is shown in figure 111-7.

SUBROUTINE IDEN - This subroutine plays an important role in

setting up the system of nonlinear equations. The subroutine has

four major duties:

1. Identifies equipment modules and assigns to vector ID(I)

the values shown in table 111-2.

Table 111-2. Values of Vector ID for a Given Equipment Module

Ith Equipment
Module

ID(I)

SPLITTER 1

MIXER 2

REACTOR

SEPARATOR 4

FLASH 5

USER 6

2. Vector INOP(I) is assigned the total number of streams

th
entering and leaving the I-- module. Matrix ITOP(I,J) is

assigned the number of each stream leaving and entering

the I. equipment module, J = 1, INOP(I).



89

C
C
C
X12XXxi2X01020304050807080910111Iiitlil

2 I 1iIi(lf it 1

3
4
5
6
7
8
9
0

2
3
4
5
6
7
8 1

9
12XAAAAAX01020304050607080910

1 SPLIT i
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3 SEPAR 1

4 MIXER
5 SEPAR
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7 SEPAR 1111
8 SEPAR III'
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(10 SEPAR 1 13

0
1

C
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C

Figure 111-7. Example of a Datafile Required by SREAD



90

3. Vector IEC(I) is assigned with the total number of unknown

equipment parameters of the 112 module. IEK(I,J) is

assigned with the number of each unknown parameter of the

422i equipment, J = 1, IEC(I).

4. When sequential iterations are used to generate initial

estimates of all variables, some variables, which are

known constants, may have their value changed by the

sequential pass. When subroutine SREAD is called, it

assigns to a matrix CX(I,J) the numerical values of known

flow rates (FLOW(I)) and known mole fractions (COMP(I,J)).

Subroutine IDEN reassigns the values of CX(I,J) to FLOW(I)

and COMP(I,J). The use of sequential iterations to

generate initial estimates of all variables will be

treated in detail at the end of this chapter.

SUBROUTINE SIMMAN (NSIG, MS) - This subroutine serves as a
1111

manager" of the library. First, it performs a scaling of all flow

rates, by searching for the maximum flow rate, FMAX, and then

dividing all flow rates by FMAX. Second, it checks the consistency

of the system of nonlinear equations. If the number of equations

and variables are not equal, an error message is printed and the

program stops. If the system of equations is consistent, stream

variables and equipment parameters with the known constants and

initial guesses are printed.

Last, SIMMAN calls MPDLM, the nonlinear solver subroutine.
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SUBROUTINE FCN (X, F, N) - This subroutine is used by MPDLM to

pass the vector X, with tentative values to the solution, and to

pass to MPDLM function values. FCN will call two other subroutines,

VAROUT and FUVAL. In the following pages both subroutines will be

described.

SUBROUTINE VARIN (X, IT) - This subroutine is used by SIMMAN to

assign the initial guesses of flow rates, compositions and equipment

parameter to the vector X. The variables are stored in X by

equipment modules. For instance, module number 1 has 1 input stream

and two output streams, say, streams 1, 2, and 3. Also there are 2

unknown equipment parameters and each stream has 3 components.

Vector X will have the following variables assigned:

X(1) = FLOW(1) X(5) = FLOW(2) X(9) = FLOW(3)
X(2) = COMP(1,2) X(6) = COMP(2,1) X(10) = COMP(3,1)
X(3) = COMP(1,2) X(7) = COMP(2,2) X(11) = COMP(3,2)
X(4) = COMP(1,3) X(8) = COMP(2,3) X(12) = COMP(3,3)

X(13) = EQP(1,1)
X(14) = EQP(1,2)

SUBROUTINE VAROUT (X, IT, N) - This subroutine does exactly the

opposite of VARIN. It assigns the values of X to the stream

variables and equipment parameters.

SUBROUTINE FUVAL (F, IT, N) - FUVAL calls all equipment modules

subroutines. Each equipment module subroutine will evaluate

function values which will be stored in vector F and later on used

by MPDLM.
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Nonlinear Solvers Subroutine

The subroutine used to solve the nonlinear system is MPOLM

which was described in the SIMO section. The only difference is

that it uses sparse matrix techniques and Schubert's update formula.

Details may be found in Chapter II.

SUBROUTINE SPAMA2 (N, IS, LB, X) - Solves a system of N linear

equations. The source code of this subroutine was obtained from

Rodrigues (1979). It uses sparse matrix techniques to speed up

execution time and save computer memory.

Interconnection of the Subroutines

Once the data file is created and the values read through

subroutine SREAD, the next step is to call subroutine SIMMAN. This

subroutine will first perform a scaling of the flow rates, then call

subroutines IDEN, VARIN and FUVAL, check the consistency of the

system, stop the program or print stream variables and equipment

parameters, and then call MPDLM. Now the control of the program

passes to the nonlinear solver subroutine. MPDLM will call

subroutine FCN several times with tentative solution vectors. FCN

in turn calls subroutine VAROUT, which assigns the values of X to

the stream variables and equipment parameters. Next, FCN calls

FUVAL and all the function values are evaluated. FCN returns these

function values to MPDLM.

A block diagram of the strategy is shown in figure 111-8.

An important point that should be addressed is how to supply

initial estimates of all variables.
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There are two possibilities. One is to supply the initial

estimates in a data file through subroutine READ. The task is very

simple if the problem has a few modules and a dozen streams.

However, if there are several modules and streams, and the number of

components is high the task is tedious and error prone.

The second possibility is to perform one sequential iteration.

As SIMO and EQSS have the same structure, and both use the same

common block for the stream variables and equipment parameters,

performing one sequential iteration in the system, that is, using

the equipment modules from SIMO to evalute stream variables is an

attractive alternative.

Nevertheless, the strategy has a serious drawback. The modules

from SIMO required the complete definition of the input stream(s)

and the required equipment parameters. Once the calculations are

performed in a given module, all residual functions of that module

when calculated by the equivalent module of EQSS are equal to zero.

For instance, assume that we want to solve the problem of figure

111-3 using EQSS, and we want to supply the initial guesses through

SIMO subroutines. We would write a small subroutine with the

equipment modules in its sequential order of calculation, and would

supply an initial guess for the tear stream and unknown equipment

parameters. The subroutine would be:

SUBROUTINE IGUESS
CALL SEPAR(2)
CALL SPLIT(3)
CALL MIXER(1)
RETURN
END
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So, for a given set of initial guesses of stream 2 and equipment

parameters EQP(2,1) and EQP(2,2), the separator module would

calculate the values of streams 3 and 4. Those values are the exact

solution of the separator module. With the values obtained for

stream 4, the splitter module will calculate stream 5 and 6, which

are the exact solution of the splitter equations. The same exact

solution will be obtained with the mixer module. Of course, now

stream 2 has different values than the initial guess, unless the

initial guess was the solution. Besides the residual functions from

the separator module, all other residual functions of the system

were equal to zero.

The fact that most of the equations were mathematically

satisfied, although the complete system was not, created unexpected

results from MPOLM. Most of the times it would not converge. In a

few occasions it would converge, but the number of iterations was

excessively high.

To overcome this problem we introduced "errors" in all

variables calculated by the sequential iteration. Truncating the

values of the variables at the third or fourth decimal place was

enough to solve all problems.



96

CHAPTER IV

PERFORMANCE OF EQSS AND SIMO

As discussed in previous chapters, the basic problem

encountered in process simulation is the need to efficiently solve a

set of nonlinear equations. In Chapter II we showed an algorithm to

solve nonlinear equations which, we believe, is one of the most

efficient available in the open literature.

The critical point is to define the measures used to compare

different approaches to solve the equations of a chemical process

simulation. In general, execution time plays an important role in

commercial simulations, but, as computers become faster and cheaper,

execution time will become less important. It is more important to

have a simulator which will not fail to solve simple problems, or

will not require several runs with different initial guesses to

achieve convergence in a more complex problem.

In this work our basis for comparison will be first, the number

of iterations required to solve a specific problem, and second,

execution time.

Each approach (sequential modular, simultaneous modular or

equation-based) uses a different subroutine to solve the set of

nonlinear equations. The sequential modular approach uses

Wegstein's method (subroutine WEGSMD) to solve problems without

design specifications; if design specifications are part of the

problem, subroutines WEGSMD and SECNEW are used. The simultaneous

modular approach uses version 1 of subroutine MPDLM. The
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equation-based approach uses version 2 of MPDLM (see Chapter II).

For all three approaches the stopping criteria used in the nonlinear

solver subroutine is the same, i.e., 1 x 10-4, which means that each

variable had a change smaller or equal to 1 x 10-4 between the last

two iterations.

Five problems were simulated using the simultaneous modular

approach (SIMO), the equation-based approach (EQSS) and for

comparison, the sequential modular approach (SEQ). Four of the

problems have at least two versions, one with 1 or more design

specifications (constraints) and one without constraints.

Of the five problems, four are from the open literature

(Cavett's four-flash drum problem, ammonia plant, nitric acid plant,

and gasoline recovery); the remaining problem is a section of a 2

ethyl-hexanal plant in which ethanal is produced by the catalytic

dehydrogenation of ethanol. The data for the ethanal plant was

obtained from Elekeiroz do Nordeste Industria Quimica S.A. (Brazil)

through the document EN-001-00-TU3-015.

In table IV-1 we summarize the problems simulated.
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Table IV-1. Summary of Test Problems

Number of Design Specifications

Problem EQSS SIMO SEQUENTIAL

Ammonia Plant 0,1 0,2 0,2

Nitric Acid Plant 7 0,1,7 0,1

Gasoline Recuperation 1 0,1 0,1

Ethanal Plant 0,1 0,1

Cavett Problem 0 0 0

It should be noted that only material balances are performed in

either approach, and the influence of physical property calculations

can not be analyzed. It is well known that physical property

calculations account for a significant amount of computer's time in

process simulation, however, there is no loss of generality in this

work as all problems are set up in the same manner.

IV-1 Cavett's Four Flash-Unit Problem

This test problem was suggested by Cavett (Cavett, 1963). The

problem has been used by several authors to compare the performance

different tear streams sets on convergence. See, for example,

Westerberg et al. (1979), Rosen and Pauls (1975), and Shachan and

Motard (1974).

The block diagram of the process is presented in figure IV -l.

Feed compositions and equilibrium constants (k-values) are presented

in table IV-2.
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Figure IV-1. Block Diagram of Cavett's Problem
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Table IV-2. Feed Composition and K-Values Used in Cavett's Problem
(Rosen and Pauls, 1977)

Component Mole Fraction

K-Values

Flash 1 Flash 2 Flash 3 Flash 4

N
2 0.0131 24.260 5.940 149.700 620.800

CO
2 0.1816 4.640 1.510 21.100 72.300

H
2
S 0.0124 2.030 0.890 8.280 27.100

CH
4 0.1096 10.300 3.090 52.900 200.100

Ethane 0.0876 2.660 1.000 11.200 39.300

Propane 0.0838 0.943 0.502 3.290 10.800

Isobutane 0.0221 0.445 0.310 1.340 4.220

n-Butane 0.0563 0.342 0.246 0.990 3.070

Isopentane 0.0289 0.164 0.155 0.417 1.220

n-Pentane 0.0413 0.132 0.126 0.327 0.944

n-Hexane 0.0646 0.051 0.064 0.107 0.290

n-Heptane 0.0954 0.022 0.035 0.039 0.101

n-Octane 0.0675 0.008 0.017 0.013 0.033

n-Nonane 0.0610 0.004 0.009 0.005 0.012

n-Decane 0.0304 0.002 0.005 0.002 0.004

n-Undecane 0.0444 0.0008 0.003 0.0009 0.002

Temperature (K) 322 311 309 303

Pressure (bar) 9.6 56.2 4.39 1.91
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For this problem, streams 2 and 7 were chosen as tear streams.

As initial estimates for the stream variables of the torn streams,

we used the stream variables of the feed (stream 1). Neither the

tear streams, nor the initial estimates of streams 2 and 7, are the

best, but in simulations with all three approaches - sequential,

simultaneous modular and equation based - the same set of initial

conditions were used, thus a fair comparison could be made.

The results obtained are summarized in table IV-3.

Table IV-3. Results for Cavett's Problem

Method rnER1/ FEVAL2/ CPU-TIME
2/

+ EQ4/

EQSS 5 143.995 170

SIMO 6 43 21.167 32

SEQ 105 105 5.902 32

-V Number of iterations performed by the nonlinear solver. For
EQSS and SIMO iterations were performed by MPDLM, for SEQ
iterations were performed by WEGSMD or SECNEW.

-a/ Number of flowsheet evaluations.

2/ Execution time in a CDC CYBER 175; opt. = O.

4/
Number of equations being solved.

In Cavett's problem, the sequential modular approach was

superior to the equation based approach and simultaneous modular

approach in terms of execution time. However, in terms of

iterations required for solution the equation based approach and the

simultaneous modular were far superior. Unfortunately, EQSS is
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rather slow to solve the linear system; the same happens with SIMO.

But it is clear that only a few iterations are required to reach a

solution.

The number of sequential iterations required by SIMO, 43, were

used to perform the following operations: 3 iterations to

initialize the problem, 32 iterations to evalute the Jacobian, and 8

sequential iterations required by MPDLM. In this case, the 32

flowsheet evaluations to obtain the Jacobian did not contribute

significantly to the execution time. Roughly, 2.5 CPU were required

to evaluate the Jacobian.

The main programs used for the three methods are listed in

table IV-4. The solution of the problem is presented in table IV-5.

Westerberg et al. (1979) reported 73 sequential iterations to

solve Cavett's problem with the sequential modular approach.

Unfortunately, they did not report the initial estimates of the tear

streams, or which procedure was used to initialize the variables.

We believe our implementation of the sequential modular approach is

correct, so the discrepancy in the number of iterations must be due

to the initial estimate of the solution.

As it was earlier mentioned, Cavett's problem has been

extensively used to evaluate process simulators. Chen (1982)

reports that 5 iterations were required to solve Cavett's problem by

the simultaneous modular approach using the same tear streams as in

this work. However, the execution time Chen reports is 2.64

CPU-second, which is one order of magnitude smaller than the

execution time obtained in this work. The computer used in Chen's



Table IV-4. Main Programs Used to Simulate Cavett's Problem: SCA - sequential modular approach
ECA - equation-based approach

SMCA - simultaneous modular approach

PROGRAM ScA(TAPES.TAPE6,OuTPuT=TARE61
EXTERNAL FSIS
COMMON /SI/ NS NSTR(301,FLOwl301,NC,CNAME4201.COMP130.20)
COMMON /El/ NE.NEOP120),EONAmE(201,EQP420.20),1E0P(20,61
COMMON /MWEG/ NSECI
COMMON /P3I/ 1107
REAL X(321,F132)
1701=0
NSE0=450
N=32
NT=300
EPS=I E-4
K=0
CALL READ(I1,61
DO 10 1=1,16
X(1)=FLOW(21COmP(2,1)

ID x(141e) .rLow171C0mP(7.1)
CALL WEGSmD(N,X,NT,EPS FSIS,K)
WRITE(6,201 1TOT

20 FORmAT(//,5x,°CONvERGENCE ACHIEVED IN ",14 - ITERATIONS ",//)
CALL WRITES
CALL WRITEE
STOP
ENO

C C
C CC
C

C

SUBROUTINE FSIS(m.x.F1
REAL Xlm),F(M)
COMMON /SI/ NSoNSTR130) FLOw,30),NC.CNAME1201 COMP(30 201
COMMON /El/ NE,NEOP(201 EONAmEl20),E0P120,20) lEOP(20 8)
COMMON /P31/ !TUT
ITOT=ITOT.1
FLOw121=0
FLOW(7)=0
00 10 1=1,16
FLOw(2)=FLOw121x(I)

10 FLOw(7)=FLOw(71x(14161
DO 20 1=1,16
COmP(2,11=XIII/FLOW(2)

20 comP(7,1).x(i16)/FLowl7)
CALL FLASH111
CALL FLASH)2)
CALL FLASH(3)
CALL FLASH(4)
CALL MIXER(5)
CALL MIXER(6)
IF(ITOT Ell 11 THEN
CALL WRITES
CALL WRITEE
ELSE
ENDIF
DO 30 1=1,16
F111=FLOW(21.cOmPt2,11

30 F(1.16)=FLOw(71COMP(7,11
RETURN
END

C
C
C
C

PROGRAM ECA(TAPE5 TAPE6.TAPE6)
COMMON /SP/ NS,NSTR(30),FLOwt30),NC,cNAmE(20, COMPI3O 20,
COMMON /El/ NE,NEOP(20).EONAmE120),E0P(20 20) IEOPI20.81
CALL READ111.61
CALL SREAD(11.6,16)
DO 250 IF=1,3
CALL FLASH(?)
CALL FLASM(21
CALL FLASH(31
CALL FLASH(4)
CALL MIXER(6)
CALL MIXER(6)

250 CONTINUE
CALL WRITES
DO 10 I=1.NS
IS=NINT(100*FLOw(111
FLOW(I) =IS /100
00 10 L=1,NC
IS=NINT(COmP11,11.100001
COmP(I,L)=1S/10000

10 CONTINUE
CALL SlmmAN12.21
STOP
END

PROGRAM SMCA(TAPE5,TAPE6)
INTEGER N2(2)
CALL READ(11,61
N1=2
N2(11=2
N2(21=7
N3=0
IP=3
NSIG=4
CALL SIMSO(Ni,N2,N3,11..NSIG)
CALL WRITES
CALL WRITEE
STOP
END

SUBROUTINE FSIS(X.F,IT,N)
REAL X(N),F(N)
CALL FLASH(1)
CALL FLASH(2)
CALL FLASH(3)
CALL FLASH(4)
CALL MIXER(5)
CALL MIXER(6)
RETURN
END
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Table IV-5. Solution of Cavett's Problem

STREAM VARIABLES
NSTR FLOW N2 CO2 H2S CH4 C2H6 C3H8 IBUT MEIJI IPENT NHENT

1 3452.10 .0131 1816 0124 1096 0876 0838 221 0563 0289 0413
2 5595 16 .0091 1799 .0178 0856 .1112 .1810 394 .0831 0264 0347
3 2279.66 0210 3363 0255 1841 .1764 .1747 227 0388 0066 0071
4 3313 50 0009 0725 .0126 0179 .0663 1853 510 1136 0400 0537
5 1703 51 0265 3676 0247 2221 7764 1397 145 0219 0028 0026
6 376 15 0045 2435 0278 0719 .1764 2783 468 0890 0178 0204
7 3988 76 0007 0645 0122 .0153 0622 2075 634 1410 0445 0572
8 1566.91 .0018 1530 0262 0378 1391 3594 749 1401 0241 0254
9 2421 85 0000 0072 .0032 0007 .0124 1092 559 1415 0577 0778

10 673.26 0000 0252 0104 .0026 0419 3167 1245 2758 0663 0746
11 1748.59 0000 0003 0004 0000 0011 .0293 0295 0898 0544. 0790

STREAM VARIABLES
NSTR FLOW N-HEX N-HEP N-OCT N-NON N-DEC N-UNO
3452.10 0646 0954 0675 0610 .0304 0444

2 5595 16 .0442 0612 0422 0379 0188 0274
3 2279 66 0037 0022 0006 0003 0001 0000
4 3315.50 0720 1018 0709 0637 0317 0463
5 1703 51 .0008 0003 0000 0000 0000 .0000
6 576.)5 0122 0080 0021 0010 0002 0000
7 3988 76 0661 0878 0596 0532 0264 0385
8 .1566 91 0109 0055 0013 .0004 0001 000)
9 2421.85 1018 14;1 0974 0873 .0434 0633

10 673 26 0368 0190 0044 0014 0002 0002
II 1748 59 1268 1881 1332 1204 0600 0877

EQUIPMENT PARAMETERS (2 X ECIP(1,2))/IEQP(I

MODULE 4 1 1) - FLASH
24 260 4 640 2 030 10 300 2 660 943 445 342 164 134

051 022 008 004 002 000 000 000 000 200
2 3 4 0 0 0 0 0

MODULE # ( 2) - FLASH
5 940 I 510 .890 3 090 ( 000 502 310 246 165 120

064 035 017 009 005 003 000 000 000 000
3 5 6 0 0 0 0 0

MODULE # 1 3) - FLASH --
149.700 21 100 8 280 52 090 11 200 3 290 1 340 990

107 039 013 005 002 001 000 000
7 8 9 0 0 0 0 0

417 327
000 000

MODULE # ( 4) - FLASH
620 800 72.300 27 100 200.100 39.300 10.800 4.220 3.070 1.220 944

.290 .101 .033 .012 .004 .002 .000 000 000 000
9 10 1) 0 0 0 0 0

MODULE # ( 5) = MIXER
000 .000 000 000 .000 000 000 000 000 000
000 000 000 030 000 030 000 000 000 000

4 10 0 0 0 0 7 2

MODULE # ( 6) - MIXER
000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 .000 000

6 8 0 0 0 2 3
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work and in this work are the same. The time required to evaluate

the Jacobian, and the time required for one flowsheet evaluation are

roughly the same in both works. However, the time required by

Chen's nonlinear solver is 0.15 CPU-seconds; in this work 18

CPU-seconds, which is more than 100 times higher. Either there is a

discrepancy in Chen's time units, or our implementation of the

nonlinear solver is rather inefficient.

IV-2 Ammonia Plant Simulation

In this problem an ammonia production plant using the Haber

process is simulated. The data required for that problem was taken

from Myers and Seider (1976).

A block diagram of the process is presented in figure IV-2.

The process is rather simple. The feed consists of hydrogen (H2)

and nitrogen (N2) gas containing argon (Ar) and methane (CH4)

impurities. The reaction between hydrogen and nitrogen to obtain

ammonia (NH3) is performed using an iron catalyst at 200 atm and

about 800°K:

N
2

+ 3H
2

* 2NH
3

The outlet from the reactor (REACTOR2) is cooled and it goes to

a high pressure flash drum (FLASH3). The liquid from FLASH3

contains most of the ammonia, and the vapor contains unreacted

gasses and impurities. The vapor stream from FLASH3 goes to a

splitter (SPL5) where 2 percent of the vapor is purged. The liquid

stream from FLASH3 is the input stream of a low pressure flash drum
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Figure IV-2. Block Diagram of the Ammonia Plant
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(FLASH4). The liquid stream from FLASH4 is almost pure ammonia, the

vapor stream contains a small amount of N2, H
2

and NH
3

which are

recycled.

The feed composition, as well as the vapor liquid equilibrium

constants for FLASH3 and 4, are presented in table IV-6.

Table IV-6. Feed and K Values for the NH
3

Plant Problem

COMPONENT MOLE FRACTION MOLAR FLOW RATE K-FLASH3 K-FLASH4

NH
3

0.0 0.0 0.06 0.28

N
2 0.24 24.0 105 2400

H
2 0.743 74.3 90 1750

Ar 0.006 0.6 100 1400

CH
4 0.011 1.1 33 500

The conversion of a reactant was not supplied, but the chemical

equilibrium constant is given as k = 0.35, or

0.35 = (NH3)2/ EN2)(H2)
3

] (IV-1)

In using the sequential modular approach, the conversion of a

reactant must be specified, so before the reactor module is called,

the conversion y is calculated by solving a nonlinear equation

derived from equation IV-1 with the interval-halving method.

In the simultaneous modular approach and equation-based

approach, equation IV-1 is included in the system of nonlinear

equations, and the conversion 'y becomes a manipulated variable, that

is, another unknown.
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The results obtained for this problem are summarized in table

IV-7.

Table IV-7. Results for the NH
3

Plant Problem

ITER FEVAL CPU-TIME * EQ

EQSS 4 8.37 48

SIMO 4 15 1.454 6

SEQ 119 119 2.54 5

Table IV-8 presents the main program used for the three approaches;

table IV-9 presents the solution of the problem.

It can be seen that the simultaneous modular approach achieved

convergence in a few iterations and the execution time was the

lowest of the three approaches. The number of equations was very

small (6 equations), so the overhead of SIMO was quite small and it

did not contribute substantially to execution time. However, MPDLM

used 0.2935 CPU-seconds per iteration, whereas Wegstein's subroutine

spent 0.021 CPU-seconds per iteration to solve the problem using the

sequential modular approach.

EQSS solved the problem in a few iterations, however execution

time was rather high. The execution time required to evaluate the

Jacobian was approximately 1 CPU-second, so MPDLM used about 1.8

CPU-seconds per iteration. It should be mentioned that when the

same problem was again solved using MPDLM, but the linear system was

solved with a full matrix technique; the execution time jumped to 45



Table IV-8. Programs Used to Simulate the NH3 Plant Problem: SENH3 - sequential modular approach
SMNH - simultaneous modular approach
ENH - equation-based approach

PROGRAM SENH3()ApES,UuTPuT TAPE6/
EXTERNAL FSIS
COMMON /p31/ F)b).FNI.ITOT
REAL 0151
ITOT=0
CALL READ19.5,
NT=200
N=5
EPS=0 0001
K=0
X11) =150
X(2I=700
X(3)=50
X(4)=50
X(51=50
WRITE)6.2221

222 FORMAT)/ 10x," INITIAL ESTIMATES OF TORN STREAMS AND ",
/100, EQUIPAmENT PARAMETERS "./)

CALL WRITES
CALL WRITEE
CALL WEGSMO(N NT,EPS.FSIS,K)
WRITE(6,101 (TOT

10 FORMAT(//5x "CONVERGENCE ACHIEVED IN ITERATIONS",//)CALL WRITES
CALL WRITEE
STOP
END

C
C
C
C

SUBROUTINE FSIS(M X,F1
COMMON /S)/ NS NSTR1301.FLOW(301,NC,CNAME(201.COMPL30.201
COMMON /El/ NE. NEOP(201,EONAME1201,E0P120,201,1EQP(20,9)
REAL 0(m),F11,11
COMMON /P3I/ Filb),FNI,ITOT
EXTERNAL CONST
ITOT=ITOr.i
FLOw(21=-0
DO 10 1=1 5

10 FLOW(2)=FLOw)2),,,,I,
DO 20 1=1,5
COmP12,I)=X11)/FLOw121

20 F1(1) =x(1)
FN1=FLOW(2)
YL=0
YR=AMINi(fltk) Ft,21/3 1

CALL INTHLvILL YR,y,20 CONST 0)
EqP(2 201=0/F)11
CALL NEAC121
CALL FLASH13(
CALL FLASH(41
CALL SPLIT151
CALL MIXER())
00 30 1=1,5

30 F111=FLOW(21 1COmpt2 I

RETURN
END

C
C
C
C

FUNCTION CONST(V)
COMMON /1'3i/ F(51,FNI.110T
ECIK=0 35
FT=FN1-2 .T
A=EUK1(F111 Y(1(F)21-3 '0)..3
9=FTY(F131.2 (Y1
CONST=A-8(0
RETURN
END

C
C

C
C
C
C

C

C
C

2

PROGRAM SmNilkYLPE5 TAPER)
CHARACTER14 NAME12, NAC0(2)
INTEGER NUE(2) NuP(21.NUS121 NC0121
REAL VAL12)

CALL READI9 51
N1=1
N2.2
N3=1
NSIG=4
NAKIE)11='uSE2'
NUE())=2
NUP(I) =20
NAC0(1)E'USER.
NuS111=0
NC0(11=0
VAL(11=0

IF=3
CALL SPEC)N3 NAME NUE NUP.NACO NUS. NCO. vAL1
CALL SIMSO(N1 N2 N3,IP.NSIG1
CALL WRITES
CALL WRITEE
STOP
END

SUBROUTINE ES1S)x F IT. NI
COMMON /S)/ NS NS1R1301,FLOw(301 NC.C1,0,4E(20).CONF130 201
DIMENSION TIN) FIN)
CALL REAc(2)
F1=COLIP(3 3),COmp13,31
F2=COmP(3 2) "3
FIITI=F1/1COmP(3 i))F21-0 35
CALL FLASH(3)
CALL FLASH(41
CALL SPLIT451
CALL MIXER)))
RETURN
ENO

PROGRAM ENHITAPE5 TAPE9.TAPE61
COMMON /S1/ NS,NSTRI30),FLOw(301,NC,CNAmE(201,COMP130,20)
COMMON /El/ NE , NEQP 20 ) , EqNAME ( 20 1 , ECIP) 20, 20 , I ECIP ( 20 .8 ICALL READ(9 6)
CALL SREAD19,6,5)
CALL REAC(21
CALL FLASH13)
CALL FLASH141
CALL SPLIT(5)
CALL MIXER)))
00 10 I=1.NS
OD 10 Lx1,14C
S=COMP1I,L1.200
L1=NINT(S)
COMP(I,L)=L1/200

10 CONTINUE
CALL SIMMANI4 2)
STOP
END

5UMHOUTINE USERI( NN.N.F,IT)
COMMON /SI/ NS. NSTR(30),FLOW1301,NC.CNAME(20).COMPI30,201
COMMON /El/ NE. NEOP( 20),EQNAmE1201,EqP(20,20),IEOP(20.81
REAL F(N)
F1/7)=COMP(3.3,COmP( 3,3)/ICOmP13,1).COMP13,2) *3)-0 35
17=11,1
RETURN
END
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Table IV -9. Solution of the NH
3
Plant Problem

STREAM VARIABLES
NSTR FLOW N2

100 00 2400
H2
7430

NH3
0000

AR
0060

CH4
0110

2 788 58 1735 6674 0520 0380 0691
3 745 20 1545 6189 1132 0402 0732
4 701.95 1639 6566 0593 0427 0775
5 43 25 0016 0073 9884 0004 0023
6 .66 0991 .4587 2798 0266 1357
7 42 58 0000 0003 9994 0000 0003
8 687 91 1639 .6566 0593 0427 0775
9 14 04 1639 6566 0593 0427 0775

EQUIPMENT PARAMETERS (2 X EQP(I,J))/IEQP(I,J)

MODULE # ( 1) - MIAER
000 000 000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 000

1 8 6 0 0 0 2 3

MODULE , ( 2) - REACTOR
-1 000 -3.000 2 000 000 000 000 000 000 000 000

000 000 000 000 000 000 000 000 000 159
2 3 1 0 0 0 o 1

MODULE # ( 3) = FLASH
105.000 90.000 060 100.000 33 000 000 000 000 000 000

000 000 000 000 000 000 000 000 000
3 4 5 0 0 0 0 0

MODULE # ( 4) - FLASH
2400 0001750 000 2801400 000 500 000 000 000 000 000 000

000 000 000 000 000 000 000 000 000 000
5 6 7 0 0 0 0 0

MODULE # ( 5) = SPLITTER
000 .020 980 000 .000 000 000 000 000 000000 000 000 000 000 000 000 000 000 0004 9 8 0 0 0 0 2
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CPU-seconds. Thus, there was a considerable advantage in using

sparse-matrix techniques in MPDLM, including SPAMAT, to solve the

linear system. It is clear, however, that an even faster subroutine

must be used for the equation-based approach to be competitive with

the other methods.

The same problem was solved imposing a design specification on

the flow rate of stream 9 (purge stream) equal to 10 mole/unit of

time. The split fraction in SPL5 was manipulated to meet this

design specification.

To solve the design problem with the sequential modular

approach, we used subroutine SECNEW to solve the design

specification equation and Wegstein's method to solve stream

connection equations. In the other two approaches little had to be

changed other than entering a few parameters indicating that FLOW(9)

is equal to 10 and EQP(5,2) was an unknown.

The number of iterations and execution time for the design

problem are presented in table IV-10.

Table IV-10. Results for the NH
3
Plant Problem With One Design

Specification

ITER FEVAL CPU-TIME * EQ

EQSS 5 10.077 50

SIMO 15 36 2.867 7

SEQ 5 471 8.61 6
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A few comments are appropriate at this time. The absurd number

of sequential iterations required by the sequential modular approach

is a typical result of nested nonlinear solvers. To guarantee a

maximum error of 1 x 10
-4

in the outer loop (SECNEW), the inner loop

(Wegstein) should not have an error greater than or equal to 1 x

10
-4

. A few preliminary tests showed that one order of magnitude

was enough, so the convergence criteria for the inner loop was set

equal to 1 x 10
-5

. Table IV-11 shows how the iterations were

distributed.

Table IV-11. Sequential Iterations Required by SECNEW

SECNEW Iteration Wegstein's Iterations

1 154

la (derivative) 9

2 110

3 133

4 40

5 34

TOTAL 471

Wegstein's methods require a set of initial guesses at each

iteration of SECNEW. For the first iteration, the user provides the

set of initial estimates. The following iterations of SECNEW use

the converged values of the torn streams variables of the previous

iteration. For instance, the initial guesses for the stream
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variables for the third iteration of SECNEW used the converged

values of stream variables of the second iteration of SECNEW.

SIMO solved the problem in 15 iterations and it took 2.87

CPU-seconds for solution, 3 times faster than the sequential modular

and almost 4 times faster than the equation based approach. Again,

the equation based approach converged fast, but the execution time

was too high.

The solution of the problem is presented in table IV-12, and

the main programs in table IV-13.

IV-3 Ethanal Production

The dehydrogenation of ethyl alcohol to produce ethanal is a

process used since the beginning of the century. Later, when

petroleum feedstock became cheaper and abundant, ethylene was used

as raw material. After the petroleum crises of the 1970's,

dehydrogenation of ethanol became attractive to some countries where

ethanol could be produced cheaply. Several countries, for example

Brazil and India, use the process today.

The dehydrogenation of ethanol is performed over a copper

catalyst at about 1 atm and 600°K.

CH
3
CH

2
OH t CH

3
CHO + H

2

Unfortunately, there are several other reactions in series and

in parallel occuring in the reactor. Besides ethanal and hydrogen,

acetic acid, ethyl acetate, higher aldehydes and alchohols (4 or

more carbon atoms) and gases (CO, CO2, C3H8) are also obtained, in



114

Table IV-12. Solution of the NH
3 Plant Problem with One Design

Specification

STREAM VARIABLES
NSTR FLOW N2 H2 NH3 AR CH41 100.00 .2400 7430 .0000 .0060 .01102 1054.05 1456 .6466 .0538 .0548 .09923 1008.77 .1297 .6083 .1011 .0572 .10364 963.32 .1358 6367 .0593 .0599 .10845 45.45 .0013 .0071 .9877 .0006 .00336 73 .0783 4245 .2798 .0356 .18177 44.72 .0000 0002 .9993 .0000 .00048 953.32 1358 6367 .0593 .0599 .10849 10.00 .1358 .6367 .0593 .0599 .1084

EQUIPMENT PARAMETERS. (2 X EQP(I,J)1/IEQP(I,J)

MODULE # ( 1) = MIXER.000 .000 .000 .000 .000 .000 000 000 000 .000
.000 000 .000 .000 000 000 000 000 .000 000
1 8 6 0 0 0 2 3

MODULE # ( 2) = REACTOR-1.000 -3.000 2.000 .000 .000 000 000 000 000 000
000 .000 .000 W30 .000 .000 000 000 147

2 3 ,(300
1 0 0 0 1

MODULE # ( 3) = FLASH105.000 90.000 060 100.000 33.000 .000 000 000 000 000
000 000 000 030 000 .000 .000 .000 000 000

3 4 5 0 0 0 0 0
MODULE # ( 4) - FLASH2400.0001750.000 .2801400.000 500.000 .000 .000 000 000 .000

000 .000 000 .000 .000 .000 000 .000 000 .000
5 6 7 0 0 0 0 0

MODULE # ( 5) - SPLITTERcoo .010 .990 000 000 000 .000 000 000 .000
000 COO M30 000 000 000 000 000 000

4 9 8 0 0
0000

C
C



Table IV-13. Programs Used to Simulate the NH, Plant Problem With One Design Specification:
SC1NH - sequential modular apprdach
SMC2NH - simultaneous modular approach

PROGRAM SciNlulApE5.TAPER1
EXTERNAL Sob
COMMON /P31/ T1151.1N1.1TOT
1101=0
EPS.) E
NT=50
X=0 02
CALL REA019 51
WRITE16,2221

222 FORmA11/ 10x. INITIAL ESTIMATES OF TORN STREAMS AND-.
/.10x. ECluIPAmEN1 PARAMETERS "./1

CALI. WRITES
CALL WRIIEE
CALL SECNEwix,NI,EPS,SUBI
WR11E(6(0) NI ITOT

10 FORmA11//,5x."CONVERGENCE ACHIEVEO IN ".14.. ITERATIONS".
1 / .50. "NUMBER OF FLOWSHEET EVALUATIONS= ".1A, //I
CALL WRITES
CALL WRIIEE
STOP
ENO

C
C

C

FUNCTION CONST1Y)
COMMON /P3I/ F151,FN1,1101
Ec(=-0 35
FT=FN1-2 1
A=E0KIF(1),IF(21 -3
B=FT41F131.2 T1
CONST.A-138
RETURN
END

C
C
C PROGRAM SmC2NRITAPE5.1APE61C CHARACIER.4NAmE121,NAC0121SUBROUTINE SokilxF1 INTEGER NuE121,NUP121.NUS121.NC0121COMMON /SI/ NS.NSTR130) FLow1301NC,CNAmE1201.COmP130.201 REAL VAL121COMMON /El/ NE.NEOP1201 FONAmE1201,EQP120.201,1E0P120,81

REAL Y151 CALL REA049.51EXTERNAL. TsiS NI=INT=300 N2=2N.5
EPS.1 E-5 N3.2
X.0

LIM2'1100 10 1=1.5 1='USE2'
NUET11=2(0 T(1)=FLOw121COmP12,11
NUP111.20EQP(5.2) =x
NAC43111.'USER'EC1P15.31.1 x

CALL WEGSmo4N.Il,N1,EPS FS1S KI NUS111.0
F=FLOW191-10 0 NC0111.0
RETURN

C
VAL111=0

END
C NAME121='SPLIT
C NUEI22=5
C NUP121=2
C NAC0121.'FLOW'

SUBROUTINE FSISIMXF1 NUS121 .9
COMMON /SI/ NS.NSIR1301,FLOW1301NC,CNAME1201 COMFp14,01:101
COMMON /El/ NE NEOP1201,ECINAmE1201.EQP4.20,201 1E0 VLIn10

IP=3REAL X1141,F1M1
CALL SPECIN3.NAME,NUE.NUP,NACO.NUS NCO,VAL1COMMON /P31/ 11151.FNIATOT CALL SIMSOINI,N2,N3.1P,NSIG)EXTERNAL CONST CALL WRITESITOT=1T01.1
CALL WIT/TEE

2.11421P

FLOW121=0
DO 10 1=1,5

10 FLOW121=FLOw,2)x111
DO 20 1.1,5
COmP12,11=x11)/Ftow121

20 F1111=0111
FNI=FLOW121
Y=O
YR=Am1N1IF,1),F1121/3 1

LOP) 20 CoNsT 01
ECIP12.201=1/F1111
CALL REAC121
CALL FLASH13,
CALL SFLASM141CALL PL1115,
GAIL MIXER111
DO 30 1=1,5

30 8III=FLOw121.00 Mp12,11
RETURN
ENO

SUBROUTINE FSISIA,F.11.N1
COMMON /51/ NS,NSTR1301.FLOw4301 NC CNAME1201 COMP130 201
DIMENSION kliST,F4N1
CALL REAC121
FI=COMP13.31,COMP13.31
F2=COmP13,213
FIITI=F1/1COmP13.116F21-0 35
CALL FLASM131
CALL FLASH141
CALL SPLIT151
CALL MIXER) I)
RETURN
END
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small quantities. Some of the products, even at small quantities,

have an attractive commercial value.

The entire process is presented in figure IV-3. Although the

dehydrogenation of ethanol is performed in a single reactor, we

could not simulate the complex series of reactions in a single

reactor module. We used three reactors in series, each of them

performing the indicated reactions:

First Stage

ETHOL + ETHAL + H
2

ETHOL = ethanol
ETHAL = ethanal

Second Stage

ETHAL + H2O + EE + H
2

EE = acetic acid

Third Stage

4.66 ETHOL + 0.508 ETHAL F .278 H2O + 1.534 EEE + 0.26 + 1 ORG

EEE = ethyl acetate

ORG = higher alcohols and aldeydes

These are not the true stoichiometric coefficents; they will be

used in this work because there is no precise information available

about the reaction.
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A few comments about the process should be made. The

conversion of ethanal is about 33 percent per pass. Separator 5

(SEPAR5) performs a rough separation of the components: stream 11

contains acetic acid and water, stream 10 contains gases (H2, CO
2'

CO, C3H3), ethanol and ethanal. The system containing MIX8 and 14,

SEPAR6 and 9 and SPL7 have the sole purpose of separating ethanal

from hydrogen. The separation is quite difficult as ethanal has a

low boiling point (21°C at 1 atm). Separator 11 has three outlet

streams: stream 22 as pure ethanal, stream 23 as ethyl acetate, and

stream 24 with ethanol and water. Separator 1 removes the excess of

water and a few impurities.

Although the block diagram of figure IV-3 is a simplification

of the actual process, we could not solve the simulation of the

process using the equation-based approach. The nonlinear subroutine

was set up to a maximum of 200 simultaneous equations and this

problem requires the solution of 216 equations. Unfortunately, even

modifying all subroutines to accept 216 equations, we could not

simulate the ethanal plant because we would reach the maximum

allowed computer memory allocation for the type of account we had.

As an alternative we decided to simulate this process for three

different conditions: with no constraints, with one constraint, and

with one constraint and two new equipment modules. The simulations

were then solved with both the sequential and simultaneous modular

approaches.



119

The execution time and iterations required for both methods in

the case of the simple simulation (no design specifications) are

summarized in table IV-14.

Table IV-14. Results for the Ethanal Plant Problem

ITER FEVAL CPU-TIME EQ

SIMO 2 22 2.422 16

SEQ 111 111 4.47 16

For this problem the tear streams were streams 3 and 13. The

main programs may be found in table IV-15, and the solution of the

problem in table IV-16.

It is easy to see that the simultaneous modular approach was

far superior to the sequential modular approach. The execution time

was almost halfed using SIMO, in addition only two iterations were

required to reach a solution.

The same problem was solved imposing as a design specification

the flow rate of the product equal to 65 (mole/unit of time) and

specifying the conversion of Reactor 2 as a manipulated variable.

Table IV-17 summarizes the execution time and iterations

required to solve the design problem.



Table IV-15. Main Programs Used to Simulate the Ethanal Plant Problem:
SEN - sequential modular approach
SMEN - simultaneous modular approach

PROGRAM sEL(TApA5,1ApA6) PROGRAM SmENCIAFES.TAPE6.0uTPuT=TAPE6)
COMMON /S1/ NS,NSTR1301,FlOW130),NC.CNAmA1201,COmP130,201 REAL VAL131
COMMON /El/ NE,NEOP1201.ECINAmE1201.EQP120.201,1EQP120,6) INTEGER NUE131.NUP13),Nu513).NC013).N2131
REAL 8116) COARACTER4.NAME131,NAC0131
EXTERNAL PSIS CALL REA0(26. 14)
COMMON /P31/ ITOT N1=2
CALL READ126.14) N2(11)=3

WRITE(6,222) N212)=13
222 FORMAT) / ,10x." INITIAL ESTIMATES OF TORN STREAMS AND N3=0

10x,.EQUIPAmENT PARAMETERS", /) IP=3

CALL WRITES NSIG=4
CALL WRITEE CALL SIMSOINI.N2.N3.1P.NsIG1
11'01=0

CALL WRITES
N=16 CALL WRITEE
01,200 STOP
EPS=1 E-4 END
X=0
DO 20 1=1.8 SUBROUTINE FSISIX.F,IT.N1
X(11=FLow13)cOmP13.11 REAL XINI,FINI

20 X11.6)=FLOW1131.COmP113.1) CALL SEFAR111
CALL WEGSMD1N x NT.EPS.FSIS,K1 CALL RAAC121
wRITE16,101 1TOI CALL REAC131

10 FoRmAT(//.5X..CONVERGENCE ACNIEvED iN ITERATIONS ", /) CALL REACI4)
CALL WRITES CALL SAFARIS)
CALL WRITEE CALL SEpAR161
STOP CALL SPLITI131
END CALL MIAAR1141

C
CALL SEPAR(91

C
CALL SPLIT)?)

C
CALL MIXERIBI

C
CALL MIXER110)

S(/BROMINE FSIS(m,X,x) CALL SEPARII1)
REAL Xlm).F4N) CALL MIAARI121
COMMON /SI/ NS,NSTR1301.FLOW(301.NC,CNAME120),COmPt30.201 RETURN
COMMON /El/ NE.NEQP1201.EQNALtE1201,A0p120.201.IECIPI20,61 ENO.
COMMON /P31/ ITOT
ITOTAITOT*I
FLOW131=0
FLOw1131.0
DO 10 1=1.6
FLOW13I=FLOW131.8(11

10 FLOW)13)=FLOW1131.811.81
DO 20 1=1,8
COmP(3,I) =X111/FLOW131

20 COMP113,11=x11.61/FLOW1131
CALL SERAR41)
CALL REAC(2)
GALL REAC13I
CALL REAC141
CALL SEPAA(5I
CALL SEpA13161
CALL SPLIT((3)
CALL MITERI14)
CALL SEpAR191
CALL SPLIT)?)
CALL MixE13181
GAIL MIxER110)
CALL SEPAR111)
CALL MIxER1131
IF)I10I EQ 11 THEN
CALL WRITES
CALL WRITEE
ELSE
ENDIF
DO 30 1=1,8
F11)=FLOW131cOmP13.1)

30 F(1.8)=FLOW(13)COmP(13 11
RETURN
ENO
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Table IV-16. Solution of the Ethanal Plant Problem

NSTR FLOW ETMOL ETHAL H2O EE EEE H2 G ORG
1 263.77 .2616 0000 .7384 0000 .0000 0000 0000 .0000
2 39.18 .0266 0383 .9059 .0000 .0183 0000 .0000 .01093 1114.96 .2063 .0000 .7929 .0004 .0000 .0000 .0000 .00034 278.36 .8264 0000 1738 .0000 .0000 0000 .0000 .00005 2.86 .0000 .0000 .8713 .0000 .0000 .0000 .0000 .1287
6 833,74 .0000 .0000 .9994 .0006 .0000 0000 .0000 .0000
7 342.70 .4835 .1877 .1410 0000 .0000 .1877 .0000 .00008 342.70 .4835 .1829 .1362 .0049 .0000 .1929 .0000 .00009 340,53 .4728 .1826 .1376 .0049 .0045 .1938 .0006 .0029
0 120.19 .0543 3949 .0000 .0000 .0000 .5492 .0017 .0000
1 2.09 .0000 0000 .2658 .7342 .0000 .0000 .0000 .0000
2 218.26 .7079 .0674 2125 .0006 .0070 .0000 .0000 .00463 6034.82 .0097 .0724 .9064 .0005 .0000 .0109 .0000 .00004 78.13 .0000 .1526 .0000 .0000 .0000 .8448 .0026 .00005 5956.69 .0098 .0713 .9183 .0006 .0000 .0000 .0000 0000
6 689.51 .0000 .0173 .8862 .0005 .0000 .0957 0003 .00007 66.21 .0000 .0000 .0000 .0000 .0000 .9970 0030 .00008 623.30 .0000 .0191 9803 .0006 .0000 .0000 0000 00009 5291.33 .0098 .0713 .9183 .0006 .0000 .0000 0000 .000020 665.36 .0098 .0713 .9183 .0006 .0000 .0000 0000 0000

21 922 80 .1756 0690 7509 0005 .0024 .0000 .0000 001522 62.16 .0000 1.0000 .0000 .0000 .0000 0000 0000 .000023 9.45 .1097 .1589 .3811 .0000 .2382 .0000 .0000 112024 851.19 .1892 0000 8098 .0006 .0000 .0000 0000 .000425 611.38 .0000 .0000 .9994 .0006 0000 0000 .0000 .000026 222.36 .0000 .0000 .9994 .0006 .0000 .0000 .0000 .0000

EQUIPMENT PARAMETERS: (2 X EQP(I,J))/IEQP(I.J)

MODULE # ( 1) - SEPAR1.000 .000 055 .000 000 000 000 000 000 000.000 .000 943 1.000 .000 .000 000 .000 000 0003 4 6 5 0 0 0 3

MODULE # ( 2) - REAC-1.000 1 000 000 .000 .000 1.000 000 000 000 000000 .000 000 000 .000 .000 000 000 000 2804 7 0 0 0 0 0 1

MODULE # ( 3) - REAC
000 -1 000 -1 000 1.000 .000 1.000 .000 000000 000 000 000 000 000 000 000

7 8 0 0 0 0 0 2

000 .000
000 026

MODULE # ( 4) - REAC-4.688 - 508 278 .000 1.534 .000 200 1 000 .000 000000 000 000 .000 .000 .000 000 000 000 0288 9 0 0 0 0 0

MODULE # ( 5) - SEPAR
041 763 000 000 000 1 000 1 000 000 000 000959 237 988 080 1 000 .000 000 1 000 000 0009 10 12 II 0 0 0 3

MODULE # ( 6) - SEPAR000 .027 000 000 000 1 000 1 000 000 000 000000 000 000 000 000 .000 000 000 000 00013 14 15 0 0 0 0 0

MODULE # ( 7) - SPLIT
000 .888 112 .000 000 000 000 000 000 000000 .000 000 000 000 000 000 000 000 00015 19 20 0 0 0 0 2

MODULE # ( 8) - MIXER
000 .000 000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 00010 18 19 0 0 0 13 3

MODULE # ( 9) - SEPAR
000 .000 000 000 000 1 000 1 000 000 000 000000 000 000 000 000 000 000 000 000 00016 17 18 0 0 0 0 0

MODULE # (10) - MIXER
000 000 000 .000 000 000 000 000 000 000000 .000 000 000 000 000 000 .000 000 0002 12 20 0 0 0' 21 3

000
994

976 000
000 995

MODULE # (11) - SEPAR
000 000 000 .000

1.000 000 .000 000
21 22 24 23 0 0 0 3

000 000 000
258 000 000

MODULE.# (12) - MIXER
000 .000 000 .000 000 .000 000 .000 000 000000 .000 000 000 000 000 .000 000 .000 00024 0 0 0 0 3 2

MODULE # (13) = SPLIT000 .733 267 .000 .000 000 000 .000 000 .000000 000 000 .000 000 .000 000 .000 .000 .0006 25 26 0 0 0 0 2

MODULE # (14) - MIXER
000 .000 000 000 .000 000 000 .000 000 000000 000 000 000 000 .000 000 000 000 00014 25 0 0 0 0 16 2



122

Table IV-17. Results for the Ethanal Plant Problem with One Design
Specification

ITER FEVAL CPU-TIME * EQ

SIMO 3 25 4.523 17

SEQ 7 435 12.983 17

Again the simultaneous modular approach was far better than the

sequential modular approach. The execution time with SIMO was

almost one-third that when using SIMO. The number of sequential

iterations is only about 5 percent of the number with SEQ.

The main programs are presented in tables IV-18 and the

solution is presented in table IV-19.

From table IV-19 it can be seen that the recycle stream 19 has

a rather high flow rate. To reduce the flow rate, we will introduce

two flash drums in series after separator 5. The idea is to reduce

the amount of ethanal entering the separation area (SEPAR6 and 9).

We will maintain the separation factors and we will impose the

concentration of ethanal in stream 18 to remain the same, that is,

COMP(18,2) = 0.0191. We will let the split fraction of splitter 13

be a manipulated variable to meet the design specification. The

vapor-liquid equilibrium constants are shown in table IV-20, as well

as the main program for the simultaneous modular approach. The

solution of the problem may be found in table IV-21.

Again, the simultaneous modular approach was far better than

the sequential modular approach. The execution time was about



Table IV-18. Main Program Used to Simulate the Ethanal Plant Problem with One Design Specification:
SC1EN - sequential modular approach
SMC1EN - simultaneous modular approach

C
PROGRAM SMCIENITAPES.TAPE6,OUTPUI=TAPE61PROGRAM SCiENITAPES,IAPE61 REAL VAL131COMMON /P31/ 1,01
INTEGER NUE131,NUP131.NUS131.NC0131,N2131EXTERNAL SUB
CmARACTER44,NAmE(31,NAC0131ITOT.0
CALL READ)26.I4)EPS=1 E-4
NI22NT=50
N2101=3X. 30
N2(21.13CALL HEAO(Z6.,41
N3=1C
NAMELI1='REAC'WRITE16,2221
NOE ( 1 1 .222 FORMAT) /.10X..4 INIIIAL ESTIMATES OF TORN STREAMS AND". NUP(11=20/,10x ' EQuIPANENT PARAMETERS ",/) NAC0111xFLOW'CALL WRITES
NUS111.22CALL WRITEE NC0(11.0CALL SECNEW1X,NT,EPS.SUBI VAL(11.65WRITE18 101 N1,110Y
1P.310 FORMA10/.5x.-CONVERGENCE ACHIEVED IN " 14," ITERATIONS". CAL"NUMBER OF FLOWS MEET EvALUATIONSA ".14/// CALL SPECIN3MAME.NuE.NUP.NACONuS,NCO.VALI

1

GALL WRITES
CALL SINSOINI.N2.N3,IP,NSIGICALL wAltEE
CALL. WRITESSTOP
CALL WRITEEEND
STOPC
ENDC

CC
SUBROUTINE FS1S1A,F,1T.N1C
REAL XINL.F(N/SUBROUTINE SuB1X.F1
CALL SEPAR111COMMON /SI/ NS.NSTR1301.FLOW.301.NC.CNAME120).COMP130.201
CALL REAC121COMMON /El/ NE.NEOP(201.ECINAmE1201,E0P120.201.1E0P120.8/
CALL REAC131REAL X1181
CALL REACI41EXTERNAL PSIS
CALL SEPARIS)00 10 1=1.8
CALL SEPARI81Y111=FLOW131.COMP13.11
CALL SPLI11131if) V11181.FLOW(131.COmPI13.11
CALL MIXERI141N.16
CALL SEPARIB1NI=300
CALL SPLIT(?)EPS=1 E-5
CALL MINER18)X -0
CALL MIXER110.EOP12,201,1
CALL SEPAIN111CALL WECSNDINY,NT.EPS.FSIS,61
CALL MIXER.121F.FLow122/-65 0
RETuRNRETURN
ENOENO

C
C
C
C

SUBROUTINE ES1S,m A.T1
REAL xlml.F1m1
COMMON /SI/ NS.NSIR(301,FLOw1301.NC,CNAmE1201.COMP(30.201
COMMON /El/ NE NEOP I 20 1 EONALLE 201, EDP( 20 , 20 )EOP( 20 ,f1 ICOMMON /P3I/ liOT
1201,11-01.1
FLOW(31.0
fLOWI13/x0
DO 10 1=1,8
FLOW431=FLOw131tx111

10 FLOW1131xFLOw1131,(11.6/
DO 20 1.1.8
COMP13.11=XIII/FLOW131

20 COMPII3A)=T(1,8)/FLOW(131
CALL SEPAR111
CALL REAC12)
CALL REAC131
CALL REAC(4)
CALL SEPAR)5)
CALL SEPAR(61
CALL SPLIT)131
CALL MISER(14)
CALL SEPAR191
CALL SPLIT)?)
CALL. MIkenIel
CALL MIXER110)
CALL SEPAR1111
CALL MIXER1121
DO 30 1=1.8
F111=FLOW131,COmPi3 11

30 F(1.61.FLOW1131lCOMPI13.11
RETURN
ENO

C
C
C
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Table IV-19. Solution of the Ethanal Plant Problem With One Design
Specification

STREAM VARIABLES
NSTR PLOW ETHOL ETHAL H2O EE EEE H2 G ORG
1 263.77 .2616 0000 .7384 .0000 .0000 .0000 .0000 .0000
2 39.18 .0266 0383 9059 .0000 .0183 .0000 .0000 .0109
3 1037.36 .1478 .0000 8515 .0005 .0000 .0000 .0000 .0002
4 201.60 .7605 0000 .2395 .0000 .0000 .0000 .0000 .0000
5 2.74 .0000 0000 .9108 .0000 .000o .0000 .0000 0894
6 833.03 0000 0000 9994 .0006 .0000 .0000 .0000 0000
7 268.67 .3210 2496 1797 0000 .0000 .2496 .0000 0000
8 268.67 .3210 .2432 .1733 .0065 .0000 .2561 0000 0000
9 267.54 .3132 .2432 .1745 .0065 .0030 .2572 .0004 .0019
O 121.99 .0278 .4072 0000 .0000 .0000 .5641 .0009 .0000
1 2.15 0000 0000 2568 .7432 .0000 .0000 0000 .0000
2 143.41 5607 1073 3218 0010 .0056 .0000 .0000 00363 6025.29 .0050 0759 9071 0006 .0000 0114 0000 0000
4 81.40 .0000 1533 .0000 0000 .0000 .8454 .0013 0000S 5943.89 .0051 0748 9195 .0006 .0000 .0000 0000 0000
6 692.26 0000 0180 8819 0006 .0000 0994 .0002 0000
7 68.91 .0000 0000 0000 .0000 .0000 9985 0015 0000
8 623.34 0000 0200 9794 0006 .0000 .0000 0000 .00009 5279.96 .0051 .0748 9195 0008 .0000 .0000 .0000 0000
20 663.93 .0051 0748 9195 .0006 .0000 .0000 .0000 .0000
21 846.52 .1002 .0786 .8176 0006 .0018 .0000 .0000 .0011
22 65.00 .0000 1.0000 0000 0000 .0000 .0000 0000 0000
23 7.93 .0685 1981 .4537 0000 .1911 .0000 .0000 .0886
24 773.59 .1090 .0000 8900 .0007 .0000 .0000 .0000 .0003
25 610.86 .0000 .0000 .9994 .0006 .0000 .0000 .0000 .0000
28 222.17 .0000 .0000 9994 .0006 .0000 .0000 .0000 .0000

EQUIPMENT PARAMETERS (2 X EQP(I,J))/IEQP(I.J)

MODULE # ( I) - SEPAR
1.000 .000 055 000 000 .000 .000 000 000 000000 000 943 I 000 030 .000 030 000 000 000
3 4 6 5 0 0 0 3

MODULE # ( 2) - REAC
- 1.000 1.000 000 000 .000 1.000 000 000 000 000

000 000 000 000 000 000 000 000 000 438
4 7 0 0 0 0 0 1

MOOULE # ( 3) - REAC
000 -1.000 -1 000 1.000 000 1 000 .000 .000 .000 000
000 .000 000 030 000 000 030 000 000 .026

7 8 2

MODULE # ( 4) - REAC
- 4.688 -.508 278 .000 1.534 000 .200 1 000 .000 000

000 .000 .000 .000 .000 .000 000 000 .000 .028
8 9 0 0 0 0 0

MODULE # ( 5) - SEPAR
041 .763 ' 000 .000 .000 1.000 1.000 000 000 000
959 237 988 .080 1 000 030 000 1.000 000 000

9 10 12 II 0 0 0 3

MODULE # ( 6) = SEPAR
000 .027 000 000 000 1,000 1.000 000
000 000 000 030 000 000 . 000 000

13 14 15 0 0 0

000
000

000
000

MODULE # ( 7) - SPLIT
000 888 112 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000

15 19 20 0 0 0 0 2

MODULE # ( 8) - MIXER
000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000

10 18 19 0 0 0 13 3

MODULE # ( 9) - SEPAR
000 000 000 000 000 1 000 1 000 000 000 000
000 000 000 000 000 000 000 000 000 000

16 17 18

MODULE # (10) - MIXER
000 000 .000 .000 000 .000 .000 000 .000 000
000 .000 000 000 .000 .000 000 000 000 000

2 12 20 0 0 0 21 3

000
994

21

976
000

22

000
995

24

MODULE # (11) = SEPAR
000 000 000 000 000 000 000

1 000 000 000 000 258 000 000
23 0 0 0 3

MODULE # (12) - MIXER
000 000 000 000 000 000 000 000 000 000000 .000 000 000 000 .000 000 000 .000 000

24 0 0 0 0 3 2

MODULE # (13) - SPLIT
000 .733 267 000 .000 000 000 000 000 000000 000 000 000 030 000 000 000 000 000fi 25 26 0 0 0 0 2

MODULE # (141 - MIXER
000 000 000 000 000 .000 000
000 000 000 000 000 000 000

14 25 0 0 0 0 16 2

000 000 000
000 000 000



Table IV-20. K-Values and Main Program Used to Simulate the
Modified Ethanal Plant Problem

COMPONENT K-FLASH(15) K-FLASH(16)

ETHOL 0.002 0.100

ETHAL 0.050 1.100

H
2

140.000 820.000

G 4.000 43.000

C
C
C
C

PROGRAM ENPLCO(TAPEE,TAPES)
CMARACTER.4,NAME,NACO
INTEGER N2(2)
CALL REA0(30,16)
N1=2
N2(I)=3
N2(2)=13
N3=1
IP=3
NSIG=4
NAME='SPLI'
NUE=13
NUP=2
NAC0='COMP'
Nus=la
NC0=2
VAL=0.019I
CALL SPEC(N3,NAmE NUE,NUP NACO,NUS.NCO,VAL)
CALL SIMSO(NI,N2,N3.IP,NSIG)
CALL WRITES
CALL WRITES
STOP
ENO

SUBROUTINE FSIS(X F,IT,N)
REAL X(N) FIN)
CALL SEPAR(1)
CALL REAC(2)
CALL REAC(3)
CALL REAC(4)
CALL SEPAR(S)
CALL FLASH(I5)
CALL FLASH(16)
CALL SEPAR(6)
CALL SPLIT(13)
CALL MIXER((4)
CALL SEPAR(9)
CALL SPLIT(7)
CALL MIXER(81
CALL MIXER(10)
CALL SEPAR(I1)
CALL MIXER) (21
RETURN
ENO

125



Table IV-21. Solution of the Modified Ethanal Plant Problem

STREAM vAR:488E5
NSTR FLOW ET.OL ETmAL 520 EE EEE .2 -

3431 263 77 2616 0000 7384 0000 0000 0000 0800 00002 39 18 0266 0383 9059 0000 0183 0000 0000 01093 613 75 3748 0000 6243 0003 0000 0000 0000 0006250 97 9165 0000 0835 0000 0000 0000 0000 00005 , 45 0000 0000 7457 0000 0000 0000 0000 25436 361 23 0000 0000 9994 0006 0000 0000 0000 00007 315 31 5255 2041 0664 0000 0000 2041 0000 00005 315 31 5255 988 0811 0053 0000 2083 0000 00009 313 985 0625 0053 0049 2108 0006 003210 120 19 0543 949 0000 0000 0000 5492 0017 0000t 77 0000 000 131' 8689 0000 0000 0000 000012 191 19 8080 795 1011 0007 0080 0000 0000 005213 1368 62 0009 732 aao, 0005 0000 0482 aoo, 000014 68 82 0000 381 0000 0000 0000 9591 0029 000015 1299 80 0009 719 9267 0005 0000 0000 0000 000016 203 44 0000 129 6613 0004 0000 3244 0010 000017 66 20 0000 000 0000 0000 0000 9970 0030 000018 137 24 0000 191 9803 0006 0000 0000 0000 000019 1154 61 0009 719 9267 0005 0000 0000 0000 000020 145 19 0009 719 9287 0005 0000 0000 0000 000021 418 98 3868 1520 4520 0005 0054 0000 0000 003422 62 16 0000 1 0000 0000 0000 0000 0000 0000 000023 6 84 1516 2196 1439 0000 3291 0003 0005 '54824 349 98 4601 0000 5363 0006 0000 0000 2000 001125 134 62 0000 0000 9994 0006 0000 0000 0000 000026 226 11 0000 0000 9994 0006 0000 0000 0000 000027 68 82 0003 0433 0000 0000 0000 2540 0024 000028 51 37 1286 8659 0000 0000 0000 0088 0006 000029 7 95 0147 9380 0000 0000 0000 0438 0035 000030 43 42 1471 8527 0000 0000 0000 0001 0001 0000
EQUIPMENT P4R4m5TERS ,2 A EOP(f

MODULE 11 SEPAR
I 000 COO 055 000 000 000 000 000 000 000000 000 943 1 000 000 000 000 000 000 0003 4 6 5 0 0 0 3

MODULE o 1 2, . RE4C-, 000
1 000 000 000 000 1 000 000 000 000 000000 000 000 000 000 000 000 000 000 280. 7 0 0 0 0 0

MODULE , 31 A 4643 -- -- -- ---000 -1 000 -, 000 1 000 000 1 000 000 000 000 000000 000 000 000 000 000 000 000 000 0267 8 0 0 0 0 0 2

MODULE 4, 1 41 4 8E40-4.888 - 508 278 000 f 534 000 200 1 000 000 000000 000 000 000 000 000 000 000 000 028a 9 0 0 0-

041
959

9

000
COO

10

14

MODULE 4 ( 51 - $6849763 000 000 000 1 000 1 000 000 000 000237 988 080 1 000 000 000 1 000 000 00012 I I 0 0 3 3

MODULE P I 81 . SEPAR027 000 000 000 I 000 1 000 000 000 000000 COO 000 000 000 000 000 000 00015 C 0 0 0 0

MODULE 71 SPLIT000 888 1,2 000 000 000 000 300 000 300000 000 000 000 000 000 000 000 000 00015 19 20 0 0 0

MODULE 4 k 81 4 MIXER000 000 000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 00027 18 '9 29 0 0 la a

MODULE 6 , 9) . SEPAR000 000 . 000 000 000. I 000. 1 300 300 000 000
6 7 6 0 0 0 0 0

000 000 000 000 000 000 000 300 000 0001 1

MODULE 0 110; 4 MIXER
000 000 000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 0002 12 20 30 0 0 21 4

MODULE o 111 . SEPAR000 976 000 300 000 000 300 300 000 000994 000 995
, 300 000 000 000 258 00C 00021 22 -4 23 0 0 0 a

MODULE II21 . MIXER000 300 000 000 000 000 300 300 300000 300 000 000 300 000 000 SSE 000 00024 0 0 0 0 3

MODULE 131 4 SPL:.000 273 577 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 0006 25 26 0 0 0 0

000
300

14

00C
300

25

MODULE .141 - MIXER
000 000 300000 000 000 00C

0 0

MODULE 0 15, z =1.48.302 050
, 300 , 000 , 300 ,40 000 4 000300 000 320 000 000 000 00010 77 38 0 0 0 0

MODULE 4 (!51 = 4,ASH'00 '00 ! COO 1 000
, 000 820 000 40 000.300 300 SOO 000 30C 30028 30 0 0 0

300

300
000

000
0.0

222
302
0.0

000
SEE

126
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30 percent and the number of sequential flowsheet evaluations was

about 6 percent in the simultaneous modular approach when compared

with the sequential modular approach. Table IV-22 summarizes the

results obtained.

Table IV-22. Results for the Modified Ethanal Plant Problem

ITER FEVAL CPU-TIME * EQ

SIMO 14 55 9.95 17

SEQ 18 960 26.560 17

Furthermore, we had to provide better initial guesses, that is,

closer to the solution to solve the problem with the sequential

modular approach. The introduction of two flash drums increased the

nonlinearities and was the main reason for the poor performance of

the sequential modular approach.

IV-4 Nitric Acid Plant

The nitric acid plant problem was taken from Perkins (1975). A

block diagram of the process is presented in figure IV-4.

This problem is very interesting because the way it was set up

by Perkins, with 10 design constraints, it can be solved in less

than 10 minutes using a hand calculator. Using any of the packages

available - SIMO, EQSS or SIMFLOW - it would take a few hours to set

up the problem (main program, data files, etc.). This problem

teaches an important lesson about process simulation. It does not

matter how complex a problem may look at first sight, a critical
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analysis of the problem must be done before we attempt to solve it.

Computer packages are powerful tools if we fully understand what we

want to simulate; otherwise, there is no use for them.

Perkins used this problem to show the performance of his

implementation of a simultaneous modular simulator. It should be

pointed out that he does not call his implementation simultaneous

modular, but sequential modular with a different convergence module.

The process may be divided into three parts. First, is the

production of hydrogen. This is done by Reactors 8, 9 and 10. The

first reactor performs a stream reforming yielding hydrogen and

oxygen,

H2O H
2

+ 1/2 0
2

The second and third reactors perform an oxidation of methane

as follows,

2CH
4

+ 0
2

"1: 2C0 + 4H
2

CH4 + 02 + CO2 + 2H
2

Second is the production of ammonia from nitrogen and hydrogen,

N
2

+ 3H
2

+ 2NH
3

Third is the oxidation of ammonia yielding nitric acid,

NH3 + 20
2

-4- HNO
3
+ H2O

Table IV-23 summarizes the reactions in the nitric acid plant
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Table IV-23. Reactions in the Nitric Acid Plant Problem

REACTION REACTOR CONVERSION1/

H2O : H
2

+ 1/20
2 8 100%, H2O

2CH
4

+ 0
2
: 2C0 + 4H

2 9 4.7%, 02

CH
4
+ 0

2
: CO

2
+ 2H

2 10 100%, 02

N
2

+ 3H
2

2NH3 13 25%, N2

NH
3

+ 20
2

--t- HNO
3

+ H2O 3 100%, NH3

1/
Percentage conversion in relation to the indicated reactant.

The separation fractions in each separator are presented in

table IV-24.

Table IV-24. Separation Fractions as Percent of Individual Input
Flow Rate

SEPAR N
2

H
2

0
2

CH
4

NH
3

HNO
3

H2O CO CO
2

1 100 100 --

5 100 100 --

6 93.6 -- 91.3 -- --

11
100 100

14 100 99 100

The simulation of the nitric acid plant without design

specifications was performed using the conversions shown in table

IV-23, separation factors shown in table IV-24, and stream 18 was

chosen as the tear stream.
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The execution time and number of iterations for the simulation

without constraints is presented in table IV-25.

Table IV-25. Results for the Nitric Acid Plant Problem

ITER FEVAL CPU-TIME # EQ

EQSS 2 38.405 190

SIMO 2 15 1.297 9

SEQ 45 45 2.012 9

The number of sequential iterations in the simultaneous modular

approach was about 30 percent of the number required by the

sequential modular approach. The execution time was about 60

percent of the time required by the simultaneous modular. Again the

equation based approach converged quickly but the execution time was

high.

The main programs are shown in table IV-26 and the solution in

table IV-27.

Another version of this problem was solved imposing the

concentration of nitrogen in stream 18 equal to 0.25. The

separation factor of N2 in separator 6 was used as a manipulated

variable. The results are summarized in table IV-28.



Table IV-26. Main Programs Used to Simulate the Nitric Acid Plant:
SNO - sequential modular approach
SMNO - simultaneous modular approach
ENO - equation-based approach

PROGRAM SNof,,PE5 PAPER/
PROGRAM SMNO1INput tAPE5 TAPE6rCOMMON /P3I/ 1101
CALL REA0121 PA,REAL V)9)

EXTERNAL FSIS
N1=1COMMON /Si/ NS NSIR1301.FLOWI301.NC,CNAME120..COmP130 201
02419COMMON /El: NE NEOP1201.EONAMEA201,E0P120.201 lEOPI20

6) N3=.01101,0
IP=3EPS=I E-4
NS1044CALL READ(23 II,
cAil. SIMSO.NI N2 NA IP SIG)4414500
CALL WRITES1449
STOPEPS=i E4
ENOK=0

DO 5 1=1.9
5 Y111=FLOW118,1COmPt16.11
CALL WEGSMo1N yNT .Eps Es/s.ki
WRITEI6 .101 tiot

SUBROUTINE FSISfx F IT Ni10 FORMAT(//.54 "CONVERGENCE ACHIEVED IN 14 .. ITERATIONS".//, REAL X1N1,F(NoCALL WRI1ES
CALL PEACII31CALL wnircc
CALL SEPAR(tiSTOP
CALL M1xER121ENO
CALL REACollC
CALL MIXER14,C
CALL SEPARI5iC
CALL SEPARI6,C
CALL M1AER,K,SUBROUTINE ESisiN.x.F)
CALL REAC(61COMMON /94/ NS NSTR1301.FLOW301.NC.CNAME1201 COmP130.20)
CALL REACI91COMMON /El/ NE NEOP1201.EONAME120).E0P120.201 1E0P120.61
CALL REACilOREAL XINI.FINI
CALL SEPARIII,COMMON /P31/ 1101
CALL SEPAR1141LT014110141
CAI'

MISER,
FLOW(I61=0

REIORNDO 00 1=1.9
ENO10 FLOW(11314FLowilal.xii,

DO 20 1=1.9
20 CAMP' )6,11 =3111 ;f

CALL REAC103,
CALL 5E4,11111
CALL MI4E13121
CALL
CALL MIXER)4)

PROGRAM ENoiTARE5.7ApE9 TAPES)CALL SEPARI51
CALL SEPARifil COMMON /SI/ NS NsTR1301 FLOW1301 NC.CNAmEJ201 COME,70 20rCALL MIXER()) COMMON /E1/ NE.NEOPI201 EONAmE4201.EOP120 20)

1E1'01120 6/CALL READ(23 IA1CALL REAC(El)
CALI. SREAD123 14 91CALL REAC19I
CALL FSISCALL REAC110)
CALF FSISCALI. SEPARIII,
CALL FSISCALL SEPAR1141

CCALL MIXER) 7)
00 100 I4i.NSDO 30 141.9
IS=NINT11001FLOw11,130 F111 =FLOW)16).comPlIS I)
FLOw411=15/100RETURN
00 100 L=I.NCENO
IS=ABSICOMP11,11,110000
COmPlf LI=IS/10000

100 CONTINUE
CALL SIMMAN12 2)
STOP
ENO

C
C
C
C

SUBROUTINE FSIS
CA)). REAc113)
CALI. SEPARII1
CALL SEPAR114,
CALL MIXEPI21
CALL REAL)))
CALL mIKERtAk
CALL SEPAR(5I
CALL SEPARi6i
CALL MITER(?)
CALL REAC(9I
CALL REAC(9,
CAI). REAC110,
CALL SEPAR11),
CALI. MIRERti21
RETURN
END
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Table IV-27. Solution of the Nitric Acid Plant Problem

STREAM VARIABLES
NSTR FLOW N2 02 NH3 HNO3 H2O CO CO2 CH4 H2
1 9 35 .7900 2100 .0000 0000 0000 0000 0000 0000 00002 10.30 .7170 1906 .0924 .0000 .0000 0000 0000 0000 00003 9.35 7900 0065 0000 1018 1018 0000 0000 0000 00004 1 27 0000 0000 0000 .0000 1.0000 0000 0000 0000 00005 10.62 6955 0057 0000 .0896 .2092 0000 0000 .0000 00006 3.17 .0000 0000 0000 .2999 .7001 0000 0000 0000 00007 7.45 .9918 0082 .0000 .0000 .0000 0000 0000 0000 .00008 6.97 .9920 0080 .0000 .0000 .0000 0000 0000 0000 00009 48 .9898 .0102 .0000 .0000 0000 0000 .0000 0000 .00000 38 0000 0000 0000 0000 0000 0000 0000 1.0000 0000
1 .71 0000 0000 0000 0000 1.0000 0000 0000 .0000 00002 1.57 3038 0031 0000 .0000 4528 0000 0000 2403 00003 1 92 .2477 1871 0000 0000 .0000 .0000 0000 .1959 36924 1.97 .2414 1737 .0000 0000 0000 0172 0000 1737 39405 2 31 2056 0000 0000 0000 0000 0146 1480 0000 6317s .38 0000 0000 .0000 .0000 .0000 0900 9102 0002 00007 1 94 2456 0000 0000 .0000 0000 0000 0000 0000 75448 6.77 2811 0000 0000 0000 0000 0000 0000 .0000 71899 5.82 2453 0000 1635 0000 0000 0000 0000 0000 591220 4 87 2932 .0000 0000 0000 0000 .0000 0000 0000 706821 95 0000 0000 1.0000 0000 0000 0000 0000 0000 000022 4.83 .2953 0000 .0000 .0000 0000 0000 0000 0000 704723 03 .0000 0000 .0000 0000 0000 .0000 0000 0000 1 0000

EQUIPMENT PARAMETERS (2 X EQP(I,J))/IEW4(I,J)

MODULE # 1) SEPAR
1 000 .000 000 .000 000 000 .000 1 000 1.000 .000000 .000 000 000 000 000 000 000 000 .00019 20 21 0 0 0 0 0

MODULE # ( 2) - MIXER000 000 000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 000
1 21 0 0 0 0 2 2

MODULE If ( 3) - REAC000 -2.000 -1 000 1.000 1 000 .000 000 000 000 000000 000 000 .000 .000 000 000 000 000 1 0002 3 0 0 0 0 0 3

MODULE # ( 4) - MIXER000. 000 000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 0003 4 0 0 0 0 5 2

MODULE * ( 5) SEPAR000 000 000 1.000 1 000 000 000 000 000 000000 000 000 000 000 CMO 000 030 000 0005 6 7 0 0 0 0 0

MODULE # ( 6) SEPAR936 919 000 000 000 000 000 000 000 000.000 .000 000 000 000 .000 000 000 000 0007 8 9

MODULE # ( 7) MIXER000 .000 000 000 000 .000 000 000 000 000000 000 000 .000 000 000 000 000 000 0009 10 1 1 0 0 0 12 3

MODULE * ( 8) - REACT000 500 000 000 -i 000 000 000 000 1 000 000000 000 000 .000 000 000 000 000 000 1 00012 13 0 0 0 0 0 5

MODULE * ( 9) - REACT000 -1.000 COO 000 000 2 000 000 -2 000 4 000 000000 000 000 000 000 000 000 000 000 04713 14 0 0 0 0 0 2

MODULE # (10) REACT --000 -1 000 000 .000 000 000 I 000 -1 000 2 000 000000 000 000 000 000 000 000 000 000 1 00014 15 0 0 0 0 0 2

MODULE # (11) - SEPAR000 1 000 000 000 000 ! 000 000 ) 000 COO 000000 000 000 000 000 000 000 000 000 000IS 16 17 0 0 0 0 0

MODULE * (12) - MIXER
000 000 000 000 000 .000 000 000 000 000000 000 000 000 000 000 000 000 000 00017 22 0 0 0 0 18 2

MODULE * (13) = REACT-1 000 000 2 300 000 000 000 000 000 -3 000 000000 000 000 000 000 000 000 000 000 25018 (9 0 0 0 0 0

MODULE * (14) - SEPAR
1 000 .000 000 000 000 000 000 000 990 000000 000 000 000 000 000 000 000 000 00020 22 22 0 0 0 0 0
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Table IV-28. Results of the Nitric Acid Plant Problem with One
Design Specification

ITER FEVAL CPU-TIME # EQ

EQSS 2 38.01 190

SIMO 2 16 1.685 10

SEQ 3 255 6.732 10

Again, the simultaneous modular approach was far better than

the sequential modular approach. Compared with SEQ, the execution

time if SIMO was about 30 percent and the number of sequential

iterations about 6 percent. The execution time in the equation

based approach was again rather high, although it did converge in

two iterations. In addition, there is no significant difference in

the execution time of EQSS when comparing the problem with one

design specification and without design specification. In the

equation based approach, when we specify one variable as fixed and

allow a corresponding parameter to be a variable we can expect this

behavior, that is, the same execution time.

Table IV-29 presents the main programs of the HNO3 plant with

one design specification and table IV-30 the solution of the problem.

The last HNO
3 plant simulation problem had 7 design

specifications. Because of the large number of constraints, we did

not attempt to solve the problem with the sequential modular

approach, it was solved only with the simultaneous modular approach

and with the equation based approach.



Table IV-29. Main Programs Used to Simulate the Nitric Acid Plant Problem with One Design
Specification: SCINO - sequential modular approach

SMCINO - simultaneous modular approach

PROGRAM SCINO,TAPE5.TAPE6I PROGRAM SMCINOtTAPES.TAPE61COMMON /MWEG/ NSEQ REAL VALI101EXTERNAL SUB COMMON /SI/ NS.NSTRI301.FLOW1301.NCLCNAmE1201 COmP,30COMMON /P31/ ITOT COMMON /El/ NE.NEOP1201.EONAmE1201.E0P120.201 lEOP120 80N$E0.0 INTEGER NUE(101.NUPf101.NUSI/0).NC0110)ITOT=0 CHARACTER4NAmEI 10 / NACOI 101NT=50 CALL REA0I23.14)EPS=1 E-4
X=0 93 NI.1CALL READt23 141
CALL SECNEW1x,NT EPS. N2.18SUB) N3.1wRITE(6 10) NI 110T IP.3if) FORmATI//.5x "CONVERGENCE ACHIEVED IN" 14," ITERATIONS". NSI0 =2

/ 5x .NUMBER OF FLOWSHEET EVALUATIONS = ".I4 //I
CALL WRITES NAME11).'SERA'

.CALL WRITES 6

STOP
NUEIIINUP11)=2

END NAC011).'COMP'
C NUSI11.18
C NC01111.1
C VAL11).0 25
C C

SUBROUTINE SUE11,, F) CALL SPECIN3.NAME.NUE,NUP,NACO.NUS.NCO,VALi
EXTERNAL FSIS CALL SIMSOINI,N2,N3.11P,NSIG)
COMMON /SI/ Ns NsTR130,,FLOwt301 NC.CNAmE(20,,COMP(30,201 CALL WRITES
COMMON /El/ NE. NEQP1201 EQNAME1201 E131.120 201 IECIPI20.81 CALL WRITEE
REAL Y191 STOP
NT=500 ENO
N=9
EPS=1 E-5
K=0
DO 5 1=1 9

5 Y11)=FLOW(18),COmP18.111 SUBROUTINE FSISIX,F,17,141
ECIP16.21=X REAL 141141,FINI
CALL WEGSMOIN Y, NT EPS,FS/S.KI CALL REACI13)
F=0 25-COMP119 11 CALL SEPAR111
RETURN CALL MIXER121
END CALL REACI3)

C CALL MIXER(41
C CALL SEPAR(5)
C CALL SEPARI8)
C CALL MIXER17)

SUBROUTINE FSis(N,x F, CALL REAC181
COMMON /SI/ NS. NSTR)301 FLOW(301 NC.CNAmE1.201 COMP130 201 CALL REACI91
COMMON /El/ NE NEOP1201 EQNAmE(20/ EQPI20.201 1E01'120 81 CALL REAC1101
REAL X(NI.FINI CALL SEPAR111)
COMMON /P3)/ ITOT CALL SEPARI14)ITOT=110I1 CALL MIXER(12)FLOW(181=0 RETURN
00 10 1 =1,9 END10 FLOW)181=FLOW()81X111
DO 20 1=1 9 L.

20 COUP) 8
CALL REAC1131
CALL SEPARII,
CALL MIXER12)
CALL REACI31
CALL mIxERIA,
CALL SEPARIS,
CALL SEPAR16)
CALL MIXERI71
CALL REAC181
CALL REAC19,
CALL REACI10,
CALL SEPARIII,
CALL SERAR1141
CALL MIXER( 12)
00 30 1=1 9

30 F111=FLOw(181ComPt 18 I,
RETURN
END
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Table IV-30. Solution of the Nitric Acid Plant Problem with One
Design Specification

STREAM VARIABLES
NSTR FLOW N2 02 NH3 HNO3 H2O 0 CO2 0,14 H29.35 _7900 2100 0000 0000 0000 000 0000 0000 0000
2 10.30 .7174 1907 0919 0000 0000 000 0000 0000 0000
3 9.35 7900 0077 0000 (012 .1012 000 0000 0000 0000
4 1 26 0000 0000 0000 0000 1 0000 000 0000 0000 0000
5 10 61 6961 0068 0000 0891 2080 000 0000 0300 0000
6 3 )5 0000 0000 0000 3000 7000 000 0000 0000 0000
7 7.46 9904 0096 0000 0000 0000 000 0000 0000 0000
8 6 98 9904 0096 0000 0000 0000 000 0000 0000 0000
9 48 .9899 0101 0000 0000 0000 000 0000 0000 0000
0 38 .0000 0000 0000 0000 0000 000 0000 1 0000 0000
1 71 0000 0000 0000 0000 1 0000 000 0000 0000 0000
2 1 56 3026 0031 0000 0000 4536 000 0000 2407 3000
3 t.92 2467 1874 0000 0000 0000 000 0000 1962 3697
4 1 97 2403 1739 0000 0000 0000 172 0000 [729 3946
5 2 31 2047 0000 0000 0000 0000 147 1462 3000 6325
6 .38 0000 0000 0000 .0000 0000 900 9100 0000 0000
7 1 93 2445 0000 0000 0000 0000 000 0000 0000 7555
8 7.57 2500 0000 0000 0000 0000 000 0000 0000 7500
9 6 62 2143 0000 1429 0000 0000 000 0000 0000 642920 5 67 2500 0000 0000 0000 0000 000 0000 0000 750021 95 0000 0000 1 0000 0000 .0000 000 0000 0000 000022 5 63 2519 0000 0000 .0000 .0000 000 0000 0000

'AL23 04 0000 0000 0000 0000 0000 000 0000 0000 1

EQUIPMENT PARAMETERS (2 x EPP(' J))/IECIP(I 31

MODULE # 111 - SEPAR
1 000 000 000 000 000 000 000 i 000 i 000 000000 000 000 000 000 000 000

o
000 000 000

19 20 21 0 0 0

MODULE 0 ( 2) - MIXER --
000 000 000 000 000 000 000 000 000 000010 000 O00 000 000 000 000 000 000 000

1 21 0 0 0 0 2 2

MODULE 0 ( 3) - REAC
000 -2 000 -1 000 I 000 1 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 1 000

2 3 0 0 0 0 0 3

MODULE , ( 4) - MIXER
000 000 000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 000

3 4 0 0 0 0 S 2

MODULE # ( 5) - SEPAR
000 000 000 I 000 1 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 000

5 6 7 0 0 0 0 0

MODULE # ( 8) - SEPAR
936 933 000 .000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 000

07 8 9 0 0 0

MODULE X ( 7) - MIXER
000 000 000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 000

9 (0 I I 0 0 0 12 3

MODULE # i 81 - REACT
000 .500 000 000 -1 000 000 000 000 1 000 306000 000 000 000 000 000 000 000 000 1 000

) 2 13 0 0 0 0 0 5

MODULE I 1 9) = REACT
000 -1 000 000 000 000 2 000 000 -2 000 4 000 ,,,,3000 000 000 000 000 000 000 300 000 047

(3 (4 0 0 0 0 0 2

MODULE 0 110) - REACT
000 -1 000 000 000 000 000 1 000 -1 000 000000 000 000 000 000 000 000 000 000

i 00014 (5 0 0 0 0 0 2

MODULE 0 (II) = SEPAR
000 I. 000 000 000 000 1 000 1 000 1 000 000 300000 000 000 000 000 000 000 000 000 000

15 16 (7 0 0 0 0 3

MODULE # (12) - MIXER
000 000 000 000 000 000 000 000 000 000
000 .000 000 000 000 000 000 000 000 000

17 22 0 0 0 0 ( 8 2

MODULE # (13) - REACT ---
-1 000 000 2.000 .000 000 000 000 000 -3 000 000

000 000 000 000 000 000 000 000 000 250
18 19 0 0 0 0 3 I

MODULE I (14) = SEPAR
1 000 000 000 000 000 000 000 000 990 000
000 000 000 000 000 000 000 000 000 000

20 22 23 0 0 0 0 0
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Table IV-31 is a list of the design specifications and

manipulated variables.

Table IV-31. Design Specifications for the Nitric Acid Plant
Problem

Design Specification Variable Manipulated

FLOW(6) = 3.174

COMP(6,5) = 0.7

COMP(7,1) = 0.992

COMP(9,2) = 0.01

COMP(15,9) = 0.0

COMP(16,7) = 0.91

COMP(18,1) = 0.25

EQP(6,1) (SEPARATOR)

EQP(6,2) (SEPARATOR)

EQP(9,20) (REACTOR)

FLOW(1) (Feed)

FLOW(4) (Feed)

FLOW(10) (Feed)

FLOW(11) (Feed)

For this problem the initial guesses were taken as ± 10 percent

of the solution value, that is, each variable of the solution vector

was multiplied by 0.9 or 1.1.

The results obtained are presented in table IV-32; the main

program for SIMO is presented in table IV-33.

Table IV-32. Results for the Nitric Acid Plant with Seven Design
Specifications

ITER FEVAL CPU-TIME # EQ

EQSS 2 59.259 190

SIMO 11 68 11.894 16



Table IV -33. Main Program Used to Simulate the Nitric Acid Plant
Problem with Seven Design Specifications

C

C

C
C

C

C

C

C

C

C

C

C
C

PROGRAM SMC7NO(INPuT,TAPE5,TAPE6/
REAL VAL(10)
INTEGER NUE(I0) NuP(10),NUS(10) NC0(10)
CHARACTER *4 NAME(10),NAC0(10)
CALL REA0(23,14)

NI=1
N2=I8
N3=7
IP=3
NSIG=4

NAME(1)='SEPA'
NUE(I)=6
NUP(1)=2
NAC0(1) ='COMP'
NUS(1)=18
NCO(1) =1
VAL(I)=0 25

NAmE(2).'sEpA.
NUE(2)=6
NUP(2)=I
NAC0(2)='COmP'
NUS(2)=15
NCO(2) =8
VAL(2)=0 0

NAME(3) ='FLOW'
NUE(3)=4
NUP(3)=0
NAC0(3)='COmP'
NUS(3)=6
NCO(3) =5
VAL(3)= 7

NAmE(4)='REAC'
NUE(4)=9
NUP(4)=20
NAC0(4)='ComP'
NUS(4)=I6
NCO(4) =7
vAL(4)= 91

NAME(5)='FLOW'
NUE(5)=10
NUP(5)=0
NAC0(5)='COmP'
NUS(5) =9
NCO(5) =2
VAL(5)=0 01

NAME(6) ='FLOW'
NUE(6)=11
NUP(6)=0
NAC0(6)='COmP'
NUS(6)=7
NCO(6) =1
VAL(6)=0 992

NAME(7)='FLOW'
NUE(7)=i
NuP(7)=0
NAC0(7)='FLOW'
NUS(7)=6
NCO(7) =0
VAL(7)=3 174

CALL SPEC(N3 NAME NUE.NUP,NACO.NUS NCO.VAL1
CALL SIMSO(Ni N2 N3,IP,NSIG)
CALL WRITES
CALL WRITEE
STOP
END

SUBROUTINE FSISiX.F. IT. N)
REAL X(N) F1N11
CALL REAC(131
CALL SEPAR(I
CALL MIxER(2
CALL REACC3t
CALL MIXER(4
CALL SEPAR(5
CALL SEP4R(6
CALL MIXER(7)
CALL REACt8i
CALL REACLE1
CALL REAC(10)
CALL SEPAR(1
CALL SEPAR(1 ;

CALL MIXER(121
RETURN
ENO

138
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The equation-based approach converged in a few iterations,

whereas the simultaneous modular approach took almost 5 times more

iterations than the equation-based approach. In terms of execution

time, the simultaneous modular approach was far better. This

problem shows that when the number of design specifications

increases, the simultaneous modular approach requires more

iterations, 4 or 5 times more, than the equation-based approach.

The same problem (seven design specifications), but with a

better set of initial guesses, i.e., in the range of ±2 percent of

the actual solution, required 16 iterations (55 sequential

iterations) in the simultaneous modular approach, and 2 iterations

in the equation-based approach. The execution time was about 7

CPU-seconds for SIMO and about 40 CPU-seconds for EQSS. The

equation-based approach maintained the trend of 2-3 iterations to

solve the problem as well as the simultaneous modular approach with

11-16 iterations.

In time, there is no discrepancy in the results obtained with

the simultaneous modular approach. The first set of initial guesses

required 11 iterations of MPDLM with 68 sequential iterations. The

sequential iterations are distributed as follows:

3 - initialize the simulation

51 - initial evaluation of the Jacobian and two
re-evluations of the Jacobian

14 - required by MPDLM
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The second set of initial guesses required 16 iterations of MPDLM

and 55 sequential iterations distributed as follows:

3 - initialize the simulation

34 - initialize evaluation of the Jacobian and one
re-evalution of the Jacobian

18 - required by MPDLM

The extra re-evaluation of the Jacobian required by the first

set of initial guesses increased the execution time, because the

Jacobian matrix is factored every time the Jacobian is evaluated.

On the other hand, the better approximation of the Jacobian obtained

from that re-evaluation allowed the first system to converge in

fewer iterations of MPDLM (11 against 16).

IV-5 Gasoline Recovery

This test problem was taken from Reklaitis (Reklaitis, 1983),

it is problem 5-36, page 368.

A block diagram of the process is shown in figure IV -5.

The input gas stream has several hydrocarbons (from Cl to C9)

which will be stripped of gasoline range components with decane. It

is known the split fraction of splitters 1 and 9 are known equal to

0.75 and 0.264, respectively.

This problem is regarded as a challenge to process simulators

when energy balances and physical property calculations are

performed. However, because in this work only material balances are

performed there was little challenge to either approach used.
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Figure IV-5. Block Diagram of the Gasoline Recovery Problem
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The execution time and number of iterations are presented in

table IV-34.

Table IV-34. Results for the Gasoline Recovery Problem

ITER FEVAL CPU-TIME EQ

EQSS 4 81.320 187

SIMO 5 20 3.146 10

SEQ 3 3 0.916 10

Surprisingly, the number of iterations required by the equation

based approach and by the simultaneous modular approach were higher

than the sequential modular approach.

The main programs used are presented in table IV-35, the

solution is presented in table IV-36.

The design version of the problem has the flow rate of stream

19 fixed and equal to 72 (moles/unit of time) and the split fraction

of SPL9 is a manipulated variable. The results are summarized in

table IV-37.

Table IV-37. Results for the Gasoline Recovery Problem with One
Design Specification

ITER FEVAL CPU-TIME # EQ

EQSS 4 82.856 188

SIMO 2 17 1.908 11

SEQ 4 35 1.573 11



Table IV-35. Main Programs Used to Simulate the Gasoline Recovery Problem

PROGRAM SC8(TAPES,TAPES)
COMMON /ITT/ ICO
REAL X(101,Y(10)
EXTERNAL FSIS
CALL READ(19.10)
X(1)=0
X(2)=175
X(3)=I75
K(4)=175
X(5)=I75
X(6)=175
X(7)=I75
X(8)=I75
X(9)=I75
X(10)=2100
N=I0
IC0=-1
NT=I00
EPS=1 E-4
K=0
WRITE(6,2221

222 FORMAT(/,10X," INITIAL ESTIMATES OF TORN STREAMS AND",
/_,10X,"EQUIPAMENT PARAMETERS"./)

CALL WRITES
CALL WRITEE
CALL WEGSMD(N,X,NT,EPS,FSIS,K)
WRITE(6,101 ICO

10 FORMAT(///,10X,"CONVERGENCE ACHIEVED IN ",I4," ITERATIONS "./)CALL WRITES
CALL WRITEE
STOP
END

SUBROUTINE FSIS(M,X,F)
REAL X(M),F(M)
COMMON /SI/ NS,NSTR(30),FLOW(30).NC,CNAME(20),COMP(30,20)
COMMON /ITT/ ICO
ICO=ICO*1
FLOW(II)=0
DO I I=1,M

I FLOW(11)=FLOW(111.X(I)
DO 2 1=1,M

2 COMP(11,I)=X(I)/FLOW(11)
CALL SEPAR(8)
CALL SEPAR(I01
CALL SPLIT(9)
CALL SPLIT())
CALL MIXER(2)
CALL SEPAR(3)
CALL MIXER(4)
CALL SEPAR(51
CALL SEPAR(7)
CALL MIXER(6)
00 3 I=1,M

3 F(1)=PLOW(11) .COMP(11.I)
RETURN
ENO

PROGRAM SMC8(TAPES,TAPE6)
CHARACTER*4.NAME,NACO
CALL READ(19,101
11=1
12=11
13=0
1P=3
NSIG=4
CALL SIMS0(11,12,13,1P,NSIG)
CALL WRITES
CALL WRITEE
STOP
END

SUBROUTINE FSIS(X,F,IT,N)
REAL X(N),F(N)
CALL SEPAR(8)
CALL SEPAR(I0)
CALL SEPAR(7)
CALL SPLIT(9)
CALL SPLIT(I)
CALL MIXER(2)
CALL SEPAR(3)
CALL MIXER(4)
CALL SEPAR(6)
CALL MIXER(6)
RETURN
END

PROGRAM EC8(TAPES,TAPE9,TAPE6)
CALL READ(19 10)
CALL SREAD(19,10.10)
CALL FSIS
CALL SIMMAN(3.21
STOP
END

SUBROUTINE FSIS
CALL SEPAR(8)
CALL SEPAR(I01
CALL SEPAR(7)
CALL SPLIT(91
CALL SPLIT(I)
CALL MIXER(21
CALL SEPAR(3)
CALL MIXER(4)
CALL SEPAR(51
CALL MIXER(6)
RETURN
END
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Table IV-36. Solution for the Gasoline Recovery Problem

STREAM VARIABLES
NSTR FLOW 01-14 C2H6 C3H8 C4H10 C5H12 C61-114 C7HI6 C8H18 C9H20 LEAN
1 653.84 5863 0413 0983 0550 0507 .0357 0426 0488 0431 00002 2556.00 0000 0000 0000 0000 0000 0000 0000 0000 0000 1.00003 1917.00 0000 0000 0000 0000 0000 0000 0000 0000 0000 I 00004 639.00 0000 0000 0000 0000 0000 .0000 .0000 0000 0000 1.00005 2570.84 .1491 0105 .0245 .0140 0129 .0091 .0109 0124 .0110 .74576 370 59 .8847 0472 0666 0013 0002 0000 0000 .0000 0000 00007 2200 25 0252 0043 0174 .0161 0150 0106 0127 .0145 0128 87138 3329.79 0169 0152 0986 .0349 0274 0110 0098 0101 .0086 76769 86.36 .6423 0971 .2063 .0241 0094 0001 0000 .0000 0000 02070 3243.43 0002 .0130 .0957 .0352 0279 0113 .0101 0103 0088 .7875
I 3781.93 .0002 0116 .0930 0478 0404 0192 0180 .0175 0134 .73882 724.13 0011 0606 4569 1772 .1388 .0568 .0455 0355 0200 01353 3057.80 .0000 .0000 0089 0188 0171 0103 0115 .0132 .0118 .91064 398.35 .0000 0002 .0426 1025 0925 0485 0462 0456 .0340 .58795 2659 46 0000 0000 0015 0061 0058 0048 0063 0084 0085 95906 490.54 0016 0837 5910 .1645 1187 0269 .0097 0032 0007 .00007 233.58 .0001 0122 1754 1854 1810 1197 1206 1034 0605 04198 93.43 0001 0122 .1754 .1854 1810 1197 .1206 .1034 0605 .04199 140.15 .0001 0122 1754 1854 7810 1197 1206 1034 0605 0419

EQUIPMENT PARAMETERS (2 X EQP(I,J))/IEQP(I.J)

MODULE 4 ( I) SPLIT000 .750 250 .000 .000 000 000 000 000 .000000 000 000 000 000 000 000 000 000 0002 3 4 0 0 0 0 2

MODULE 4 ( 2) MIXER000 .000 000 000 .000 000 .000 .000 000 .000000 000 000 000 000 000 000 .000 000 .000
1 3 0 0 0 0 5

MODULE N ( 3) SEPAR855 647 392 013 002 000 000 .000 000 000000 .000 000 000 000 000 .000 .000 000 0005 6 7

MODULE 4 ( 4) - MIXER
000 .000 000 .000 .000 000 .000 000 000 000000 .000 000 000 000 000 .000 000 .000 0004 7 is o 0 0 8 3

MODULE 4 ( 5) SEPAR986 166 054 018 009 000 000 .000 000 001000 000 000 000 000 000 000 000 000 00010

MODULE 4 ( 6) MIXER000 000 000 000 000 000 000 000 000 .000000 000 000 000 000 000 000 000 .000 0001 0 1 9 1 4 0 0 0 I I 3

MODULE N ( 7) SEPAR000 985 807 717 .706 614 524 450 375 084000 .000 000 000 000 000 000 000 000 .00013 14 15

MODULE N ( 8) - SEPAR
1 000 998 940 885 658 567 484 389 287 004000 000 000 000 000 000 000 000 000 00012 13 0 0 0 0 0

MODULE 4 ( 9) SPLIT000 .400 600 000 000 000 000 .000 000 000000 000 000 000 000 000 000 000 000 00017 18 19 0 0 0 0 2

MODULE 4 (10) SEPAR984 935 876 651 579 321 144 062 024 000000 000 000 000 .000 000 000 000 000 00012 16 17 0 0 0 0 0C
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The simultaneous modular approach had fewer iterations required

than the sequential modular and equation based approach. The

execution time was better with the sequential modular approach. The

main programs for the simultaneous modular and sequential modular

approach are presented in table IV-38; the solution of the problem

is in table IV-39.



Table IV-38. Main Program Used to Simulate the Gasoline Recovery Problem with One Design
Specification

C
C
C
C

C
C
C
C

PROGRAM SCICBITAPE5,tAPE61
COMMON /P31/ 1101
EXTERNAL SUB
ITOT=0
EPS.I E-4
N1=50
X= 4
CALL READ(19.101
wRITE(8,222)

222 FORMAT( /.'10X," INITIAL ESTIMATES OF TORN STREAMS ANO-,
/,10X," EQUIPAMENI PARAMETERS. ", /)CALL WRITES

CALL WRITEE
CALL SECNEWIA.NT,EPS,SUB1
WRITE18,101 NI,ITOT

tO FORMAT1//,5x,"CONVERGENCE ACHIEVED IN ",14." ITERATIONS"./ ,5X , "NUMBER OF FLOWSHEET EVALUATIONS=
" 14 /CALL WRITES

CALL WRITEE
STOP
ENO

SUBROUTINE SUBIA,F1
COMMON /Si/ NS,NSTR1301,FLOw1301,NC,CNAME120/.COMP130,201
COMMON /Et/ NE,NEOP( 201,EONAME120),ECIP120,201,1EQP120,01
REAL Y1101
EXTERNAL PSIS
DO 10 7=1,10

10 1111=FLOw111)*COMP(11,11
N=10
NT=200
EPS.' E-5
K=0
EQPIO.2/=x
EOPI9,31=0 -A
CALL WEGSmOIN Y.NT.EPS,FS1S,K1
F=FLOW1181-72 0
RETURN
END

SUBROUTINE FSISIM,x.F1
REAL XIMI,FINT
COMMON /SI/ NS,NSTR1301.FLOWI301.NC.CNAME1201,COMP130,201
COMMON tP31/ ICO
IC0=1C04(
FLOw111)=0
DO I 1.1,M

I FLOWIIII=FLOw(III.x111
DO 2 1=1,M

2 cOmP111,11=X111/FLOW1111
CALL SEPAR(S)
CALL SEPAR(101
CALL SPLIT(9)
CALL SPLIT())
CALL MIXER121
CALL SEPAR(3)
CALL MIXERI4)
CALL SEPAR(S)
CALL SEPAR(7)
CALL MIXER1E11
00 3 I=1,M

3 F(1)=FLOW1111=COmP111,1)
RETURN
END

C
C
C
C

PROGRAM SmCIC811ApE5,TAPE61
CHARACTER.4.NAME,NACO
CALI READ119,101
11=1
12.II
13.1

NAME="sPLI'
NUE=9
NUP=2
NAC0='FLOW'
NUS=(S
NCO.)
VAL=72
CALL SPEC113,NAmE,NUT4uP.NACO.NUS CO,VAL1CALL SIMS0111 12,13,
CALL WRITES
CALL WRITEE
STOP
END

SUBROUTINE FS1s1x,F,1T,N1
REAL 9INI,FIN1
CALL SEPAR1111
CALL SEPAR(101
CALL $EPAR(7)
CALL SPLIT(9)
CALL SPLIT(1)
CALL MIXER121
CALL SEPARI31
CALL MIXER141
CALL SEPAR151
CALL MIXER161
RETURN
ENO
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Table 1V-39. Solution for the Gasoline Recovery Problem with One
Design Specification

STREAM VARIABLES
NSTR FLOW CH4

653.84 5863
C2H6
0413

C3H8 C4H10 C5H12 C6H14 C7H16
0963 .0550 0507 0357 0428

C8H18
0488

C9H20
0431

LEAN
.00002 2556 00 0000 0000 0000 0000 .0000 0000 0000 0000 0000 1 0000

3 1917.00 0000 0000 0000 .0000 .0000 0000 0000 0000 0000 1 00004 639.00 .0000 0000 0000 0000 0000 0000 0000 0000 0000 1 00005 2570.84 1491 0105 0245 .0140 0129 .0091 0109 0124 0110 .7457
6 370.59 8847 0472 0666 0013 0002 0000 0000 0000 0000 00007 2200.25 0252 0043 0174 .0161 .0150 .0106 0127 0145 .0128 87138 3416.91 .0165 0154 .1115 0388 0304 0114 0098 0099 0084 7480
9 89 .97 .6165 0970 2299 .0264 0103 0001 0000 0000 0000 01990 3326.94 .0002 0132 .1083 .0391 .0309 0118 0101 .0101 0088 7677
1 3955.06 .0002 0117 .1051 0550 .0468 0219 0199 0186 .0137 7089
2 850.34 .0009 .0543 .4598 .1754 .1434 0578 .0448 0337 0183 .01153 3104.72 .0000 0000 .0080 0221 0204 .0121 0131 0145 0125 8973
4 427 44 .0000 .0002 .0469 .1150 1045 0540 .0498 0474 0340 .54815 2677 27 0000 0000 0018 0072 0070 0054 0072 0093 0090 9531
6 577.87 .0013 0747 .5931 .1681 .1223 0273 0095 .0031 .0006 00007 272.67 0000 .0110 .1775 .1911 1880 1224 .1197 .0987 0556 .03598 72.00 .0000 0110 .1775 1911 1880 .1224 .1197 .0987 0556 0359
9 200 67 0000 0110 1775 1911 1880 1224 1197 0987 0556 0359

EQUIPMENT PARAMETERS. (2 X EDP(I,U))/IECIP(I,J)

MODULE # ( 1) = SPLIT
000 750 250 000 000 000 .000 000 000 000000 000 000 000 000 000 CMO 000 000 000

2 3 4 0 0 0 0 2

MODULE # ( 2) - MIXER
000 000 .000 000 000 000 .000 .000 000 000000 000 000 .000 .000 000 000 000 .000 000

1 3 0 0 0 0 5 2

MODULE # ( 3) - SEPAR
855 647 392 .013 002 .000 .000 000 000 000000 000 000 000 000 000 000 000 000 000

5 6 7 0 0 0 0 0

MODULE # ( 4) - MIXER
000 000 .000 000 000 000 .000 000 000 000000 000 000 .000 .000 000 000 000 000 0004 7 16 0 0 0 8 3

MOOULE # ( 5) - SEPAR
986 166 354 018 009 000 000 .000 000 001000 000 000 000 1300 000 000 000 000 000

a 9 10 0 0 0 0 0

MODULE # ( 6) - MIXER
000 000 000 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 00010 19 14 0 0 0 1) 3

MODULE # ( 7) - SEPAR
000 985 807 717 706 614 524 .450 375 084000 000 000 .000 000 000 000 000 000 00013 14 15 0 0 0 0 0

MODULE # ( 8) = SEPAR
1 000 998 940 685 658 567 484 389 287 004000 000 000 000 000 000 000 000 000 000
11 12 13 0 0 0 0 0

MODULE # ( 9) - SPLIT
000 264 736 000 000 000 000 000 000 000000 000 000 000 000 000 000 000 000 00017 18 !9 0 0 0 0 2

MODULE # (10) - SEPAR
984 935 876 .651 579 321 144 062 024 000000 000 000 000 000 000 000 000 000 00012 16 17 0 0 0 0 0

C
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Final Remarks on Chapter IV

All results obtained are summarized as ratios; table IV-40

presents iteration ratios, table IV-41 presents CPU-time ratios.

Table IV-40. Iteration Ratios

1
SIMG

/ SEG /
SIMO--

2 2/

A .617 0.093 ND ND

MISS .882 0.039 ND ND

C .467 0.111 ND ND

A 1 0.131 1 0.104

SIMO 1 0.05 1 0.3

C 1 0.971 1 0.069

Total number of iterations of main nonlinear solver (MPDLM or

SECNEW)

2/
Total number of flowsheet evaluations

A - all problems

B - only problems with no design specifications

C - only problems with one or more design specifications

ND- not defined

The ratios are defined as the number of iterations of the

horizontal entry divided by the number of iterations of the vertical

entry.
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Table IV-41. CPU Time Ratios

SIMO SEQ SEQ1/

A 10.216 14.214

EQSS B 10.113 17.177

C 10.368 10.445

A 1 0.697 0.439

SIMO B 1 1.851 0.820

C 1 0.372 0.372

1/
without Cavett problem

It can be seen from table IV-40 that the equation-based

approach had the best convergence performance. In the case of

problems with one or more constraints the equation-based approach

requires half of the iterations required by SIMO and 10 percent of

those required by SECNEW.

The true comparison between SIMO and the sequential modular

approach is in the total number of flowsheet evalutations. SIMO

requires about 7 percent of the iterations required by the

sequential modular approach for constrainted problems, about 30

percent for problems without constraints and 10 percent overall.

It is clear that the equation-based approach has the worst

performance of the three methods in terms of execution time. The

simultaneous modular approach performed best with design

constraints, but without design constraints only marginal benefits

were achieved.
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CHAPTER V

CONCLUSIONS

The implementation of Chen and Stadtherr's modification of

Powell's dogleg method proved to be an efficient alternative to

solve systems of nonlinear equations. When used to solve nonlinear

systems arising from chemical process simulations it was very

reliable, even with poor initial guesses.

The equation based approach is an attractive alternative for

chemical process simulations. However, in order to have the

equation-based approach attractive for commercial applications,

better algorithms to solve the set of linear equations must be

incorporated. In addition, the Jacobian evaluation must be

optimized. Knowing the modules which will be used in the

simulation, it is easy to know the structure of the Jacobian;

therefore, there is no need to perturb all variables to evaluate the

Jacobian matrix by forward differences, only the ones that affect a

given equation.

The simultaneous modular approach is better than the sequential

modular approach for controlled simulations, that is, for

simulations with design specifications.

The findings in this work are applicable to simulations where

only material balances are performed. The results with simultaneous

mass and energy balances, and physical properties estimation may

result in different conclusions. However, we expect better

performance of the equation-based approach and simultaneous modular
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approach when compared with the sequential modular approach. We

expect that behavior because the execution time for each flowsheet

pass will be higher when physical properties and energy balances are

performed. In addition, we expect a significant increase in the

severity of nonlinearities which will affect Wegstein's method

performance.

The findings of this work agreed with results presented in the

open literature regarding the three methods: the sequential

modular, simultaneous modular and equation-based approach. However,

the results of this work also indicate that much more research must

be done with the equation-based approach.

Finally, two libraries of subroutines were developed, SIMO and

EQSS, which provide powerful teaching aids for undergraduate level

stoichiometry classes.

Future Work

It became quite clear while this work was in progress that the

main problem associated with the simultaneous modular approach and

equation based approach is the effective solution of a system of

nonlinear equations. A few areas must be further researched;

namely:

1. The evaluation of the Jacobian accounts for a significant

amount of execution time. It would be interesting to have

the Jacobian coded analytically. Although the task is

tedious, it is feasible. We must remember that material
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and energy balance equations have the same form for all

equipment modules, that is, output = input + accumulation.

Therefore, there is no need to code the analytical

Jacobian in the case of material and energy balances

equations for each module, a general subroutine would do

it. If the analytical Jacobian is not expensive to

evaluate it would be preferable to evaluate the Jacobian

every iteration rather than to update it by secant

formulas.

2. Although the results obtained with Schubert's update

formula were fairly good, it would be interesting to

analyze the effect of maintaining all known constant

Jacobian elements, not just the zeros. In Chapter II we

presented Schubert's update formula and we mentioned that

in practice we hold as constants only the elements equal

to zero. The question that should be answered is what is

the gain, if any, of not updating all known constants, but

only the ones equal to zero. This question is very

important because some authors (for example, Lucia, 1982)

reported unreliable results using Schurbert's update

formula. Were the unreliable results due to Schubert's

formula, or due to simplifications introduced to

Schubert's update formula?

3. EQSS and SIMO should perform energy balances. As teaching

aids, SIMO and EQSS fulfill the purpose of showing the

performance of different approaches to solve process
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flowsheets. On the other hand, the type of simulations

that can be performed with SIMO and EQSS are rather

simple, and their use in research is limited.

Introducing energy balances and physical properties

calculations would enable SIMO and EQSS to solve more

complex problems.

4. A weak point in EQSS is the solution of the linear systems

every iteration. A better (more efficient) subroutine

must be incorporated to solve the linear system. There

are several such algorithms published in the open

literature. Unfortunately, our choice was not the best.
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Appendix A

Solution Equations

In this appendix we will show the equations solved in each

equipment module used by the sequential and simultaneous modular

approach.

In either approach the input stream variables and equipment

parameters are known. The following nomenclature will be used:

.thxis = mole fraction of the sy-- component in the

SPLITTER

.th
stream

thN. .

total molar flow rate of the stream

th
a
k

= k-- split fraction

Si th= separation fraction of the

. it componentcoefficient of the component

th
Yk conversion of the k-- reactant

thk. .

liquid-vapor constant of the component

n components

L streams out (max 7)

1 stream in

2

3
Ni/Xij

4

157



Equipment parameter: split fraction 3k

Nk

ak
N
I

N
k k

N
1

k = 2, L

MIXER

= xxkj k = 2, L; j = 1, n

n components

L input streams (up to 7)

1 output stream

2

3

Equipment parameters: none

3

N
k

k=1

3

N x
k k,

= k=1 j = 1, n
X4, j

N4

N4 X4j
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SEPARATOR

NI, Xis

n components

L output streams (up to 3)

1 input stream

Equipment parameters: f3j
N

2
x

2,,1

N
1

x1,j

nnC

N3 N1 (1 - 13 .) x
1,3

.

J=1

N
2

= N1 - N3

x -2,j

B j N
1

x .1j

N2

N2,X2j

N31X3j

= 1, n

j =1, n
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REACTOR n components

pi = stoichiometric coefficients

EDreactant

(-1- product

(16) inert

Equipment parameters:
Tk

Conversion of the k reactant

N
Define r

1
x
lk

y
k

4k

N
2

= N1 + r
Sn

L Ni
J=1 J

N
1

x
1J

+ r 11 .

x2i

2

N
1

x
lk

- N
2

x
2k

N
1

x
lk

extent of reaction

FLASH (Isothermal) n components

2 ouput streams

1 input stream

N2IX2i
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Ni, Xis

1°' N21X 2j

N31X3j

Equipment parameter: Kj . = )( -

x3j

Define a

Solve

for a

n

N3

N1

xli
- 1 = 0

1=1 1 - a(1 - l/ki)

N3 - co:Nil

N2 = Ni - N3

x
2,J

=

= 1, n

x
1J

J = 1, n
1 - a(1 - 1/k.J )

x2 ,J
x - __z_
3,J

k
J

3=1, n
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APPENDIX B

Chen and Stardtherr Modification of Powell's Dogleg Method

to Solve Sets of Nonlinear Equations

In this appendix we will try to show how Chen and Stadtherr's

algorithm functions. The references for this appendix are: Powell

(1970), Broyden (1965), and Chen and Stadtherr (1981).

We will now present a brief review of methods for solving

nonlinear equation, which are relevant to understand the algorithm.

Consider the solution of N nonlinear equations in N unknowns.

We aim at the determination of the vector X such that

F(X *) = 0 (1)

Nthwhere F, X, and 0 are N-- order vectors.

Several iterative procedures to determine X *, solution vector

of (1), have the general form:

where:

X
i+1

= Xi - HiFiTi

i = iteration number

.th
X
i

= estimate of the solution

F1 = function values at X1

T
i

= scaling factor

H1 = depends on the method used

(2)
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To follow the convergence towards the solution, the euclidian

norm of the functions is traced.

N

S(X) = (F1J(X))2 = II F'(X) II (3)
J=1

When a vector X reduced the euclidian norm to a determined

small value a, we accept X* as the solution to the system (1).
*

Thus, X is a solution if,

II Fi(X*) II < a (4)

It is desirable that at each iteration the euclidian norm of

F(X) is reduced, so we would like that

II Fi+I(x) F1(x) II (5)

In the Newton-Raphson method Hi is chosen to be the inverse of

the Jacobian of F(X). Equation (2) becomes

i+1
X = Xi - (Ji)-1 Fi (6)

and Ti = 1.

In the steepest descent method Hi is chosen to be (J1 )T. The

method is based on finding a minimum of Z(X) = F(X)TF(X). The

gradient of Z(X) is 2JTF(X) and the steepest descent direction of

Z(X) is -grad Z(X) . So if we choose H1 to be (Ji)T equation (2)

becomes

X
i+1

=
xi (Ji)T F(xi)

(7)
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If we choose Ti properly Z(X) will be reduced every iteration.

Note that Z(X) = S(X) 2 = F1(X) 2. The method may fail to

solve (1) if a local minimum, different than the solution vector X,

is reached. It can be shown that at the minimum

J
T
F(X) = 0

since its not a zero minimum F(X) 0, J
T

must be singular. This is

not a serious drawback, as several algorithms, for example the

Newton-Raphson method, require J. However, if such local minimum

is not reached, the steepest descent algorithm will eventually reach

the zero minimum. It has been found that the steepest descent

algorithm is rather slow.

Another iterative method used is the Levenberg-Marquardt. In

this method Hi
(Ji)TJi xii -1(ji)T

and Ti is set equal to 1.

The parameter Xi, Levenberg-Marquardt parameter, is chosen to be

always greater than or equal to zero. Equation (2) becomes

X
i+1

X
i

- (J
i)TJi

+ XiI
-1

(J
i)TFi

(8)

A few comments are in order at this time. If we set Xi = 0,

equation (8) reduces to equation (6), the Newton-Raphson method. If

we let Xi big enough, equation (8) reduces to equation (7), the

steepest descent algorithm, where T
i
= (X

i
I)

-1
. It can be shown

that equation (5) is satisfied with a proper choice of X1
0.

It is important to note that if
X1

0, the inverse matrix in

(8) will always exist, which eliminates the drawback of the other

algorithm, a singular Jacobian. However, as in the steepest descent
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algorithm, the L-M algorithm may find a local minimum in which

Il F(x) 11 0.

An important feature of the L-M algorithm is that, depending on

the value of Xi, it has good global convergence properties, as the

steepest descent direction method or good local convergence

property, as Newton-Raphson method.

Let us rewrite equation (8) in the following manner:

where

. Xi + PiX
i+1

i 4(j1)T(ji) xiii71(ji)TFi

(9)

(10)

and P1 is a correction step which value is chosen as to satisfy

equation (5). Clearly, Pi = f(X'), and the problem now is to find

A1, so as to satisfy equation (5). As A' may assume any value in

the interval (0, +co) we will have to assume several values of A and

check whether equation (5) is satisfied or not.

To exemplify the procedure, consider the following system of

equations:

f
1
(X)

f
2
(X)

=

=

x
2

+ x
2

- 5 =
1 2

2x
1
+ x

2
- 4

0

0

(11)

Let X
1

(1,1)
T

, thus F
1
(X) -1)

T
and the Jacobian is:
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Table B-1 shows several values of P
1

as a function of X
1

.

Table B-1. Correction step as a Function of X

iX.
P1

P
2

0.0 -0.50 2.00
0.5 0.19 1.07
1.0 0.33 0.83
5.0 0.40 0.46
10.0 0.33 0.33

The L-M curve is shown in figure B-1. To obtain the curve a

linear system had to be solved for each value of X considered.

Clearly, this procedure is time consuming as the number of equations

in the system increases. Powell approximates the L-M curve by a

broken curve as shown in figure B-2. The curve BC was obtained

through the steepest descent direction of S(X) = II F(X)11. As it was

previously discussed, as A increases the L-M equation (8) tends

towards the steepest descent direction, so the direction of BC is

the steepest descent direction given by G = -grad S(X) = -JTF in the

example,

and

2 2 +3 S
G

2 I +I._

P = AB = MG (12)
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20

1.5 -

LO

0.5

\=0.0

X- 0.2

X- I .0

X -10.

X =20.

X = 100 .

-.5 O .5

Figure B-1. Typical 2-Dimensional P(X) Curve in the L-M Method
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Figure B -2. Typical Dogleg Approximation to the P(A) Curve



where
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II c 112

11 JG 112

(13)

(82 + 72)
= = 0.079076

(30
2
+ 23

2
)

[8
AB = 0.79076

7

For A = 0, P(A) is just the correction step given by N-R

algorithm so that

A = 0; BC = P(A)

P
N

= P(X) = -3
-1

F = [-0.5;2]
T

Now the broken line ABC (dogleg) is completely described and,

as seen in figure 8-2, it well represents the L-M curve. The

advantage of using Powell's dogleg curve to approximate the L-M

curve is that only one linear system was solved, the N-R correction

step.

In order to solve the system of equations (11), it would be

interesting if after each iteration we could reduce the value of

II F11, in other words, we want equation (3) to be satisfied every

iteration. Let us consider a trust region A which represents the

distancebetweehX.and X (the solution vector). One of the good

characteristics of Newton's method is that it converges fast nearby

the solution, and one good characteristic of the L-M method is that
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for a sufficiently large X equation (5) is satisfied. The parameter

6, will be used to determine the correction step through the

following algorithm.

Use:

PN PN

PS II PS II

(N-R step)

(Steepest Descent Step)

If II PN 11 < A < II PS II we will use the intersection of the

broken line (dogleg) with the circle of radius A.

where

P = a PN + (1 - a)P
s

A2 H ps H

1
(pN pS)TpS S- A2)2 H pN 112 A2)(A2 H pS112» 7 ]

In this case we will keep the good convergence properties of the L-M

algorithm. To illustrate the procedure let us use again the system

of equations (11) and assume that A = 1/7.

SO

II PN II = 2.0615

II PS II
= 0.8406

PN II A II PsH
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P
NS

. (-0.04085;1.413624)
T

The next step in the algorithm is to update A. We want A as

large as possible because we want to decrease II F II in every

iteration, without taking too small steps. If A is too small the

number of iterations required is prohibitive.

Chen and Stardtherr suggest the following procedure. If the

Jacobian is new, use:

where

and

A = H
p1

0 max (0.1,X)

A

-b

2a

a = S
*

- S - 2(F
i)TJiPi

b = 2(F
i)TJiPi

s* . II F(Xi + Pi) e

S = II F(xi 112

Otherwise, evaluate dm,

dm = S - S* - 0.1(S - 02)

= F(Xi) + JiPi
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if d
m

< 0 set

if d > 0
m

A = 0.511 Pi II

A2 1 +
d
m

1

a
P
+ (P2

+ d
m
a
s
)7

aP = I fJ (X

J=1
Pi) E(fj(Xi + Pi)) - qs]

a = [f.(Xl + Pi) - qj.12

J=1 J

The new A is defined as follows:

- set TFLAG = 1 if the Jacobian is new or whenever A is

reduced.

- calculate A and find MV = min(2,A,TFLAG)

- reset TFLAG = A/MV

- set A = MV II Pi II

Other features of Chen's and Startherr algorithm are:

Check for slow convergence or nonconvergence. This check

is done because the algorithm may converge to a local

minimum and no progress is done towards the solution. If

the check shows slow convergence of nonconvergence the
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program stops and a different set of initial guesses is

required.

The update of the Jacobian through secant formulas

"degrades" as the number of iterations increases. When

the Jacobian is not making good progress, it is

reevaluated through finite differences.

What was exposed so far are the basic ideas behind Chen and

Stadtherr's modification of Powell's dogleg method. The following

references will cover in more details the dogleg method and its

modifications: Powell (1970), Broyden (1970), Chen and Stardtherr

(1981).

If anyone wants to work out the system of equations (7), table

A-2 shows some results.



Table B-2. Results for the System of Equations (12)

ITERATION 1 2 3

X
1

1.0 0.9591 1.0849

X
2

1.0 2.4136 1.8301

F
1

-3.0 1.7455 -0.4737

F
2

-1.0 0.3319 -0.0001

A 1.1007

P
1

-0.04095 0.1258

P2 1.4136 -0.5835

11 2.0 0.3563

IV II 3.16 1.7768 0.2244

a 0.5946
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APPENDIX C

Subroutine Listing

S
LIBRARY

COMMON /sImii NAME(20)
COMMON /51M2: FF.(301,101(30.20) IEFI20 20, 110,'.:11
COMMON /SIM1: 101201 ICC1301 TEC120, I N) P)7)) cxlln

READ19.1, A
I FORmA1(A3)
00 2 I=1,NsIR

2 REALM 9 101 L IF 1,11 ( ICKIL. 3, 20)
READ19,11 A
DO 3 1=1 NFO

3
10
20

READ(9.20) L NAME,/ 20,
FORMATIIR.12 32.12.12.201121,
FORMAT112 4K,AS 15. 20)121)

DO 30 I=1.NSTR
IF1IFK111 EQ 11 C.11.201=EIOW(11
00 30 1.=(NC
IFi1c11.(1.L) EQ TT CEVI,L1=COMP) I

30 CONTINUE
C

REruRN
END

C
C
C
C

SUBROUTINE !DEN
COMMON /511 NS. NSTR130,.FLOW130) NC CNAmE1201 cOMV, IQ 20JCOMMON /E1/ NE.NEOP(201,EONAME120).E0P120.20,
CHARACTER'S NA IFOR120 8,

COMMON /SIMI/ NA1201
COMMON /SIM2' IFK130/.1C1T(30.20),1E1,120,20),1(0P120 /1
COMMON /S1103/ 101201.1CC1301,1EC120),INOP(201 C)130 201
DO I l=fNE
IFINA(I, EQ 'SPLIT') THEN
10111=1
GO 10 1

ELSE
1E1194111 EQ m1xER THEN
1011)=2
GO TC 1

ELSE
IF(NA(11 EQ 'REACT' OR NAZI) EQ 'REACT THEN
10(11,3
GO TO 1

ELSE
IFINAII) EQ 'SEPAR I THEN
1011,4
GO TO 1

ELSE
IFINA111 EQ 'FLASH') THEN
1011)-.TS
GO TO 1

ELSE
IF(NA(11 EQ 'USER!' OR NAM EQ "USER', THEN
10(11=5
00 TO I

ELSE
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
WRITE16.10, I NA)II

10 FORMAT! /.5K "CHECK SPELLING FOR MODUIF
.STOP

I

C
CONTINUE

DO 20 /.1,NS
ICC)I1=0
IFIIFK(1).ECI II FLOWIII,CSII 201

SUBROUTINE SREADINSTR,NEO.NC)
COMMON /SI/ NO.NS1(30),FLOW1301 MN.CNAME120i.COMF,30 2(
CHARACTERTS NAME

DO 21 L,1,NC
IFIICE11.1) EQ II !HEN
ICC( 1 1=10011111
COMPII.L1=C,1 t)
INOPIICCIIII=T
GO TO 21
ELSE
ENDIF

2! CONTINUE
IF,ICC(I) EQ 0) GO TO 20
DO 22 L=1 1007 I



22
20

ICK I 1)-1N0P,(.
CONFINuE

DO 30 1=1 ,NE
ECII)=0

REAL 112001 F(2001 wK16400)
EXTERNA1 FCN
COMMON isi/ NSTR N51(301.1)0w)30)mN CNAME(20) C0m1)111.1 :0.
COMMON /SIM2/ IF1,1301.10,130 20).1E6)20 20).1106120.71
COMMON /SIM3/ 104201.1CC1301 IECI201.1NOP(201.CO130.201

F(10(1) EQ 21 uo 10 30 C
1=1
2=NC

C
SH=0

F)1(3))) GE 41 GO 10 35
I =2 n1=111'4"17 FLOw(11=CX11.201
2=1E01)11 8Ii 100 IFIFLOWIII GT S01 SH=FLOW11)
F110111 EQ II GO TO 35 DO 110 1=1.NSTR
1=20 110 FLOW(I)=FLOW(I) /5H

35
2=20

CONTINUE
C

DO 30 1=1,NSTR
DO 31 L =L 1,12 30 1E11E1,111 EQ I/ CKtI 201=CX(1.201/SH
IF(IEK11.1.1 EQ 01 10EN C
IEC111=1ECII1f1
INOPIIEC(111=1

C
N=200

GO TO 3) CALL IOEN
ELSE CALL VARINtX II)
ENDIF CALL FUVAL(F,ITI N)

31 CONTINUE IF1IT EC) III) GO TO 120
IMECII) EU 00 GU TO 30
DO 32 L=1.1EC11 1

WRITE16,2001 IT,IT1
STOP

32 IEK11.1 1=INOPII I 120 N=IT-1
30 CONTINUE ITmAX=300

WRITET6,2011 N
DO 40 K =1 .NE WRITE16,2041 SH
GO TO (50.60 70 80 60 90) 1D,,

C
CALL WRITES
CALL WRITEE

50 CONTINUE
INOP(K)=IEOPto. 81f1

CALL MPOLM(FCN,XF N WK,ITMAx,NSIG MS)
WRITE16 2031 ITmAX

DO 110 1=1.1NOP)6, 203 FORMATIf)51,"NOMBER OF ITERATIONS ." 14 /

110 ITOP(K,11=1EQP(K.1) ,
, 0

GO TO 40 DO 300 1.1,1LISTR
C 300 FLOW11)=FLOW111(S0

60 CONTINUE WRITE(6,202I
INOP(K)=IEL1P1K 81.1
DO 120 1=2,IN06(6)

CALL. WRITES
CALL WRITEE

120 ITOPIX.11=1EOPIK 1-1 200 FORMAT1/.5X,"ERROR ON INPUT"./.5X.'NUMBER OF VARIABLES =- 13

ITOPIK11=IEOP(K 71 1 /.5X."NUMBER OF EQUATIONS=E,13./1
GO TO 40 201 FORMAT1/.51..NUMBER OF VARIABLES . .,I3

1
/,51 "THE SYSTEM TO BE SOLVED WILL BE PRINTED NOW

70 CONTINUE
INOP(KI=2

2
_,

202 FORMAT) /,5X."THE SOLUTION TO THE PROBLEM IS
DO 130 1.1.2 1 .' /)

130 ITOPIK,II=IEOP, I) 204 FORMAT1/.5X."ALL FLOW RATES HAVE A SCATTING
GO 10 40 1 /,5X,.FACTOR . .F10 4,/,

2
RETURN

60 CONTINUE ENO
INOP1K1 =3 C

95 CONTINUE
DO 140 1=1.1N0F(L)

C
C

140 1106(K.1)=1EQPiK I

GO TO 40
C

SUBROUTINE FCN)x,F NI

90 CONTINUE +E AL XIN1FIN)
INOP(K)=IEQP)K 81 CALL VAROUTIX.ITN)
1F(EOPIK 201 NE 11 GU 10 4)
DO 150 11=1 INOP1K1

CALL FUVALIF.IT.NI
RETURN

150 ITORIK,II1=1EQP(1) II) END
CO TO 40

41 IFIEQP(K.201 EU 2) GO TO 80
C
C

1100616 =2
1E1 E06)6,20) EQ 31 GO TO 95

C
C

WRITE(6,651 K. ,EQP(K 201 SUBROUTINE FUVA1IF 1T,N1
65 FORmA11/.5x "ERROR INPUT PAHAME IER" COMMON /SI/ NS NSTR(301,FLUW,30)NC.CNAmEi2Ui 001.11 "(40 /0)

2 /.58 .E.01,.) 12.",201 =".13.
3 /.5x.'SHOulD BE 1 2. OR 3 1k).

COMMON /E I/ NE NEW-11201,EONAmE120LEOP)20 20) 1E06)20 8)
COMMON /S1m2/ 166(301.106130.201,1E6120.201 iimp120 71

STOP COMMON /511,13/ 10(2131.1CC1301,1EC1201.1NOP(20,.08(30 201
40 CONTINUE REAL F(N)

RETURN IT=1
ENO

C DO I K =1. NE

C
C GO TO 110,20 30 40.50 601.1)3)1,1
C 10 CALL. SSPLITIF .1), F IT)

SUBROUTINE SimmALONSIG.M5)
C 20 2M0SMIxER, N.E .111
C THIS SuoRoul(NE PREPARES luE 5(SIEM Of GO TO I

C NONLINEAR EQUATIONS FOR 501011ON 30 CALL SREAC)K N F.11)
C GO TO I



40

50

60

CALL SSEPAR, N F II,
GO TO I

CALL SFLASoll, N F II)
GO TO I

CALL USER!, N 1 11)

C

C

100 CONTINUE

IFIIECiK) EU 0) uu TO I

ICK1K20)=11
I CONTINUE
RETURN

00 200 1=1,1ECiK1
L1=IEKTK I)

END X111)=ECIPIK LI)
C
C

200
I

11=17.1
CONTINUE

C
C

RETURN
END

SUBROUTINE vARTTUfiA AT N)
COMMON /SI/ NS NSIR1301,FLOw130),NC CNAmEi20) ET.11,30 201
COMMON /E12 NE NEQP1201,EONAmE1201 EQP120 20) 1E06120 8)
COMMON /S1M2/ IFKI30),ICKI30.20) IEK(20 20) 110P120 71 SUBROUTINE SFLAsuINENF,111
COMMON /SIM3/ 10i20),ICC1301.1EC1201.1NOP1201 CX130.2o) COMMON /SI/ NS,NS1R130),FLOW130) NC,CNAME,20) COmPlito 20.REAL 0 /N)
INTEGER ITER)30) COMMON /El/ NI,NEQP1201,EUNAmE(201,EQP120 201 1E0612(1

REAL FINI
8)

II,
DO 5 I=1,NS

SUM2=0
SUM3=0
LI=IECIPINE, 11ITER111=0 12=IECIPINE 21

5 IFIIFKIII EQ 1 AND ICC111 EQ NC) ITER,11 =1 L3=IEQPINE,31
DO 1 K=I,NE DO 1 1=1,NC

FLI=FLOWIL111COMPILI I)00 100 1=1,1NoPtK) FL2=FLOWIL21.COMPIT2,11
L1,--ITOP1K.I) FL3=FLOWIL3)+COMPIL3 IIIFIITER11.11 EU II GO TO IOU FIITIEFLI-FL2-FL3ITER1L11=1
1E11E1,111) EQ 1) GO 10 105

I II=11.1
00 2 1.1.NC

105

FLOWILI1=x(IT1
17=11,
CONTINUE

SUM2=SUM2.COMPIL2,11
SUM3=SUM3.COMPIL3,1)
F(ITI=COMP11.2 II-EQP1NE,I),COmp113 1)00 111 J=1 NC

L.ICKIL1 Ji
2 1T=IT.1
FIIII=1 -SUM2

IFIL E0 JI GO 10 F111-.1).1 -8.u.3
COMPILI.J1=011T1
11=11.1

IT=IT.2
RETURN

III
100

CONTINUE
CONTINUE C

END

C C
IFIIECtK1 EU LI) GO TO 1

DO 200 1, TEcto C
C

LI=IEKtic I) SUBROUTINE SMIKER1NE .N,F II)
ECIP(K.L11=xtii) COMMON /51/ NS,NSTR(301,FLOW1301NC.CNAME1201.COMP130 20)200

1

17=11-11
CONTINUE COMMON /E1/ NI,NEQP1201,EONAME1201,EQP120,201.1EQP120

REAL FIN)
81

RETURN L8.IEQPINE.8)
END L7=IEQpINE71

C SUM1=0
C DO I I.I.NC
C SUm1=SUmi.COmPti.7 11
C SUM=FLOWIL711COmPiL7 I)SUBROUI INE vi.RIN,A IT) 00 2 L =1, L8COMMON /51/ NS NOIR1301 FLOW,301 NC CNAmE,201 COL1P130 20) LI=IECIRINE LICOMMON /Eli NE NE06)20),EUNAmE120),TOP(20.20) 1E06120 81 2 SUM=SUM-FLOW11 II,COMP11 1,11COMMON /SIM2, IF1,130, ICK(30. 201 1E0,120 201 1)06(20 71

COMMON /S1m3/ 10)201 ICC1301 1E6201.1N061201 CK)30 201
I

FTIT)=Sum
IT=17.1

REAL X111 c(11:=1 -SUMI
INTEGER 11E14(30) IT=IT.I

IT, RETURN
ENO

00 5 I=1,NS CIIER111=0 C
5 IFI IFKI I) EL) 1 AND ICCI1) EQ NCI IIERt I o- t C

C C
DO I ',LIVE SUBROUTINE 5REAC1NE N,F.IT)
DO 100 I=1,1N0p,K) COMMON /SI/ NS. NSTRI301,FLOW130) NC.ENAmEI20, E0m6,30 201
L1=1706(1, II COMMON /ET/ NINE0)1201,ECINAME120),EQP(20,20) 1E06120 8)IFOITERIIII Fp I, DO 10 WO REAL FIN)
11E14(111=1 L8=1ECIPINE.81
IF1IFKILII EQ II I/O 10 105 LI=IEQPINE 1,
TIIT)=FLOWiLl I L2=IEQPINE,2)
Cx1LI 20) -IT SUm=0
IT=1111 R=FLOWILII.ComP,T 1,L811E061NE.20,/, -EUPINE1811

105 CONTINUE DO I 1=1,NC
DO I/O J=1 NC SUm=SUM.COMP1L2 1)
L=ICKILI,J) F1=FLOWILII1COmPiLl 11
IF1L EQ JI GO 10 110 F2=FLOW1L2).COMP(12,1)x(IT)=ComP,LI ,) F3=F2-FI
CA(LI,J)=1) 11111 =F3 -EQPiNE 1),F1 I,
IT=11.1

1 II=17.1 ....J

110 CONTINUE F,IT).1 SOm ....4



F(III.1 SO
$
W IT=IT.iE;II/ilci -umf RETURNIF(14 NE 0) 1HEN ENOFLITL-21=1-Sum4 C11=11.3

CELSE
C11=11c2
CENOIF

SUBROUTINE SSEPAR(NE.N,F,IT/RETURN
COMMON /SI/ NS NSIR130/ FLOW1301 NC CNAmEt201COMP130 201END
COMMON /E)/ NI.NEOP1201,ECINAME1201.EQP120,201,1E011120 B1SUBROUTINE SSP> MINE N F1I, REAL FIN/COMMON /SI/ NS NSTRI30).FLOW1301 NC CNAME1201 COmP130 201 SUM2=0COMMON /Ei/ NINEOPt20) EONAME1201.E01.120 201 1EQPI20 81 SUM3=0COMMON ISIM3/ 101201ACC1301.1EC1201,INOP120/ CX30 201 LI=IECIPINE.1,REAL FIN1.Sum18/ L2=1EOP1NE.2100 1 1=1.8 13=1EOP(NE.3)

1 SOm(11=0 DO 1 1=1.NC11=1E0111E1E i)
SUM2=SUM2.COM1111.2.1)113=1ECIPlNE,81
SUM3=SUM31COMPIL3.11SUM111=FLOW1Lil
FI=FLOWILW.COmPILI,11DO 2 1=2.1811 F2=FLOWIL21.COMP112.11SOM181=SUE081/E0P(NE I) F3=FLOWIL.311COMPIL3.1)13=1EQPINE.11
FIIT1NCI=FILEOPINE II-F2F2=F10w11.31
F11I1=FI-E2-F3SUM111=SUmI I, F2

1 IT=IT11F(111=5014111
IT=IT.E1C2 CONTINUE
F1111=1 -Sum217=1111
F)ITII1=1 -SUM)DO 3 1=2 18 IC=111212=1E011/NE.1/ RETURNFII /I =FLOWIL2I FLOWIL ilLEOP(NE.I END3 IT=IT., C

CDO 4 1= 2.1.81)
CL2=IEOPINE.1; CDO 4 1=1,NC

SUBROUTINE SSPLIfiNE.N F.11-/F111)=COmPlt I L)-COMP IL2.11
COMMON /SI/ NS.NSIR130).FLOW1301NC CNAmE1201 CuMp130 211,4 11=11.1
COMMON /Et/ NI.NEQP12131.EONAME1201,EQP120.20) 1E141,120 81
COMMON /SIm3/ 101201 ICC1301,IEC120/ANOP120, CX130 201IFIIECINE1 EQ 01 GO 10 5 REAL FINI,Sum481F(111=1 -SuM18/
DO 2 1=1.811=11, 2 SOM111=05 CONTINUE
11=1EOPINE 81RETURN
L2=1E0P(NE,1)END
DO 1 1=2 LI,/SUBROUIINE 1-1E2,0INSI .NE(21
SOm411=SUMIITLEOPINE.11DIMENSION FNAmE181
L3=1E0P1NE.IICOMMON /SI/ NS NS114130),FLOW130/ NC. CNAME(201 COMP110 20> FI=ECIPINE11/ELOw1t2,COMMON /Ft/ NE NEOP120).EONAME1201,EOP120.20/.IFOP120 81 F2=FLOW113/11,-0 CO 1 l=5 NCNS=NST
SUEMII=SOMMLCOmPIL3 L,NE'NEM
FIIIIFI/COmPIL2 1.1-F21C0m11113 LiREADI5 21 IFNAMEIT, 1=1 81.1D

1 IT=IT112 FORmAT184.101121
IFI1ECINE) EC, 01 GO 10 3WRITEI6.31 (FNAmEiJ 1=1 81 FTIT1=1 -SUM1 II3 FORmA111011/3% 8A101 11,11.150 LL=LL.I

3 CONTINUEIC=101ILL-ti, DO 4 1=2 Li,IE=101LL
FIITI=1 SUMIllREAD(5.30/ 1, ICub,,E(3, 3=1C lEo 4 'T./1+130 FORM/47112 8/, 101A5 2111 RETJRNDO 5 t=1 NS END5 READ15.101 NSIR111 FLOw111 (COmPll T J=1c ILI C10 PORMAT112 Fti 2 10F/ 41 CREAD15.151 10

C55 2000/11112f
CIFI NY GT 10 AND Lt. LC) 11 GO 10 51)

SUBROUTINE JAGOBI18.F .N1DO 20 1=1 NE
EXTERNAL USERI20 READ15 201 NEOP(1, FONAME111 1F011(1 201 'ILO1l I c. I B1 INTEGER 1111301 11030125 VORm01112,Ix A10 L 1008 3.1,1008 3./,818) REAL XINI.FINI FNI2001NC =NY.
COMMON /SI/ NS NS111130J.F108001 NC CNAmE1201 COH1130 :01RETURN
COMMON /El/ NE.NEQ111201 EQNAmE120/ EOP120,20/ 1E0E1120 81END
COMMON /51M2/ IFE1301,1CK130.201 1EK(20.20) ITOP120 11SUBROUTINE FiA5111N1
COMMON /51M3/ 101201 ICC1301.1ECI2O1,INOP1201 Cx130 201DIMENSION Ek1201 011201 12120, 531201
COMMON /5P2/ 1212001.81200, 701.111200/.1C1200 701COMMON /SI/ NS NSIRI301 FLOW1301 NC .CNAME(20i ctccp, .1 11=1COMMON /El/ NE NEOP1201 EQN.,mF12ULEOF/120 20> IEOP42 8 00 2 1=1.14N1=200

2 1211)=140=1 0
DO I I'' =1 NEEPS=1 0E-05
GO 10110,20 30 40.50 SRI I0111NILIEUPIN.1 1 10 CALL JSF011 IT,FNI=FLOW(NI, GO TO I I,FEED -FN)

20 CALL Jm8t1,11,
.....1

CALL CHFccs(rw IS=IEQPII 1,
CO



--)DLM
VERSION" 2

C
SUBROUTINE mADLETIFCN.K.F N 8 11mAx.10Gf.MS)

C A SUBROUTINE TO FIND THE SOLUIION OF N NONLINU-R
C EQUAIIONS OF THE FORM

C FIX1,02AN),.0
C TUE SUBROUTINE SEES A MODIFICE.IION Of ROWE, uo61t6
C METHOD AS PROPOSED BY CHEN AND STADTHERR IN COmP
C CMEM ENG .5 14311961,
C THERE WERE A FEW mODIFICATIONS IN THE mETHoO PROPOSEO
C BE CHEN AND STADIHERR THE MOST IMPORTANT OF -tv
C BEING THE oPDATE OF HIE JAC081AN SCHODERI 'S Mtloo0
C INSTEAD OF IVIRC),01N'S mEIHOD

C PARAMETERS

C FCN A SuL070011NE USED EVATOAIE 1-11NLII0Ns Ilt ,TIE
C SUBROUTINE MUST BE DECTAEF IN A ExTENNA1 STA7EN1
C IN THE CATTING PROGRAM THE SuBRODTINE ID BE IN
C THE FOB. SUBBOuTINE TcNIK F NI

A N vECIoR OF GUESSES ON !NED! wHILu
C ESTEC F I ED UV I HE USE IT ON OUTPUT I I S (HE BLSI
C E E OF THE SOL LI LION

C F A N (L I 017 will PASSES I TIE VAI o, 091
C T I uN uATED WI to THE vE I:I 014

C N NOmBER OF EQUATIONS BEING SOLVED )1 1m11LD ILL (uu,

C WE A WORE VECTOR OF DIMENSION 32,N

C ITmAX MAXIMUM NUMBER OF ITERATIONS ALLOwLD

C NsIO NumBER of OlGilS OF A,,CoNAcr

C MS PARAmEIER USED IO SPECI TuE oPlioN OF INC
C mS,0 NO ScAllING IS PERVORmED

(C;

Ms -2 ScAiLING iwE RECOMMEND TUE USE oT -Hlo -11 To,,
MS,3 IHE JACOBIAN WILL BE EvA1.UATE0 TH0011m.

C AN ExTERNA1 SUBROUTINE = JACOBITM,F N 81
C THE USER MUST PROVIDE 1HE SUB1760TINE fmE
C ROUTINE MUST USE THE COMMON BLOCK fASNO,
C COMMON BLOCK /AS NO/ SHOULD CONTAIN THE NUMLIL II 111 LILMETTI,,
C IN EACH ROW OF 0 (VECTOR 1(1111 ARRA. B HAs THE JACOBIAN ILL

C COMPRESSED FORM WHERE ONLY NON-ZENO ELEmENTs ,NL
C STONED ARRAY ICTI.LI CONTAINS TILE cOLLUMN OF THE
C LIM El EMENT OF 8
C
C
C COMMON BLOCK /SETA/ IS USED OE "PASS- I LIE P,,HMEIEN IN
C IR I AN ESTIMATIVE OF HOW FAN I ROM THE ACINAL SOLUTION
C THE INITIAL GUESSES ARE IR IS GIVEN AS A PERGENTAGE Ex
C IR=70 MEANS THAT THE ACTUAL SOLUTION IS IN , INIERVAT OF
C 9E0 7.x K-0 7fx DEFAULT VALUE IS 50,
C
C

C
C

C

C

C

C
C

C

C

C
C

C

COMMON /ASNO, 101200 321.1N212001
REAL XtNI.FIN BtN,321,0EI2001,PF12001 PS2001
REAL 012001 F1,7000.00191
COMMON /SP2, 1112001 0812110.701 U12001 ICCi200 /Or
REAL LAMB
COMMON /IPI/ IP12001
COMMON /SETA/ IR
IFIIR LT 0 OR IR GI 1001 IR=S0

INITIALIZE PARAMETERS

IFIMS NE II THEN
DO 1 I.1.N

I DF111=1
ELSE
ENDIF

DGT=1
DO 2 1=1,10GT

2 DGT=DGT/10

DOTI.SQRT1DGT)

HJ IS THE MACHINE EPSI ON

HJ=6 E-B
PAI=HJ*SORTII28
PA2=1 /126

IM.MAKI10,IN.410
ICON.°

DO 3 1=1.9
3 CGII1=I

IDEL.0

EVLOATION OF TILE JACOB IAN

J0,1=0
IFILAS GE 31 -MEN
JJJ=1
IFIMS EQ 41 JJJ=2
MS -2
ELSE
END IF

100 CONTINUE
CALL FCN1X F NI
DO 4 I=1,N
IFIABSIFIII, LI IF- 141 1,111=0
11,2111=0
IZTI1.0
')0 4 LKI TO
ICCII.LI=0
0011,LI=0
IFIL GI 321 GO TO 4

BII,L,=0
4 CONTINUE

IF(JJJ GE I i THEN
CALL JA0001)9. F, NI
00 101 1=1.N



IN2,1-12.1J
Do IOC C =1 IZtit
ICI I ,L)=i1L:11All

DO 103 1, N
WRIIE17.1051 IN/C l,
wRITEI7 10511 1CFI LC 1=1 16121I11
WNI1E17,104CCLIFI LI i=1 INZI111

IOC CONTINUE 103 CONTINUE
GO 10 102
ELSE
ENO IF 104

WRI1E17 .104. Fitt 1=1 NI
IFIJJJ EQ 21 510,
FORMAT110012 61

U0 10 1 =1 N
105 FORLAA11101121

HM0-.ALIStxi1F,
PA3.MAXIHmo P4,21 C

DELHOL=DEL1A
PA4.pAIFRA3 C SOLVE LINE SISTEMTEmPLX111
x0=X111+1,04 C

00 21 I=1,N
PA4.x0-1EMP
xlIF=x0 C

21 0111='FIIPIlo,
CALL FCN1M IN N,
II1F=TEMP
DO II L=I N CIFIABSIFNIL, LI 1E-14, FNILF CALL SPAMA21N 15 113.PKI
COF=FNILC-FFLF
IFIABSICDFI LI 1E 14) COF=0 C
CLIC=COE/PA4 CCJI=ABSICLICI
IFICJI LT 1 E 131 00 10 11

C
IF1IS EQ -II MENIFFABSII -CJ1, LI I E-4C CFC-CJC2cJi PRINT., THE JACOBIAN HAS A ZERO IN THE 01/1608.1

12ILI=12FL1F-1 PRINT',' CHANGE THE ORDER OF THE EQUATIONS'
INZIL1=1N2I1.I.F LB = '.L61CCIL.1211.»,1 STOP
ICIL,IN21L11=1 ELSEBIL,INZILII.CJC END IF

)1 CONTINuE 15=3
CO

C
CONTINUE

CALCULATE CORRECTION STEP 1PKI
102

C
CONTINUE

DO 7 I=1,8
C IFIABSIPK(111 LI IE 141 PKIII=0 0

11=0 7 Q111 =PKIII
C 160 PCI.EUCNIPK N

CALL ARR;INI
WRITE17.1061 ICON

IFLAG.-0
JELAG-.1

WRITE17.104I ICHL) L =1 NI
wRITE17.107, PCI DELTA

TALJ=I 106 FORMAT15x,.- U SOLUTION
C
C SCAT ING OF TICE F UNCT 11185 C

107 FORMAII5X.-PC1=..610 4."DELIA=..010 41

IF,MS EN 21 !HEN
IRV=0
IFIPCI LE DELIA, THEN

DO 15 1=1 ,N IRv=1
HOLO,0 0 GO TO 29

15
DO 16 L.I INZ,I,
IFFABS113(11 11 GI HOLO1 COCO- aSfdli tr1

ELSE
END IF

OFII1=1 'HMO C
IS CONfiNuE

ELSE 5
00 5 1=1 N
GII1=0

END IF C
DO 20 1=1 .N
Gil 1-.0

DO 22 1=1.61
DO 22 L=I INZFIF

FIII=F111FDF11,
121IF,INZFIFIJF1 C

22 GlIC11,111.GIICF1 L F1-1311 I FIll

20
DO 20 L=1,INZ111
BII .1z811 LII0FiII

PC2=EUCNI0,N,
PC3=PC2.1.C2

IS,2 DO 23 1.I.N
LA=N PSII1=0
PNJ=EQCNIF NI DO 23 L=1,INZFIF

C CA1CULAIE INIflpL SIFF FIQUNO C
23 PSIII=PS111.811 LIFOIICFI LI)

C PC4=EUCNIPS NI
IFI ICON EC) 0) !HEN PC5 =PC4 'PC4
HOLD.EUCN1x NJ PC6=PC3/PC5
HOID.HOLDIIR/IOU DO 24 1=1 N
DELIA ,MINIIIOLD, IOC 24 PSI I .G I 1 RCIL
ELSE ROI.EUCNIPS NI
DCA 1A=SEAPCH 'FFPOI LI DELIA, GU 10 28
END IF P02=DELTA/PC2

C 110 25 I = 1 N
DO 9 I.1 N
DO 9 L=1,1N2FIFFI

25 PF111=P021G,1,
GO TO 29

9
ICL11 F,ICF11-,1,
0611 I F-131 ipi I I F C

26 CONTINUE

C EVAL CIA1(011 OF ALFA

150 CoNIINuE
C

PEI=PCIIPCI



PE2-P111H0T1
PE3.0
PE4=0
DO 26 1=1 N
PE3=pE3.1pK)I pst11,,P511

26 PE4=PE41PFII,)PS(I)

41 411 F-Kfli 1=1,)11
47 CONTINUE

UPDATE DEL I,'

PES.DECIA4DELIA IFIJELAG ED I ANO SKI GE Al) THEN
PE6=IPEI.PE51.1PES PE2),IPE4,PE5.6(pE4-PE5) P112=0
PE7=SORITPE6) DO 42 1,1.N
ALFA7IPES-PE2..)PET,PE71 42 011)=0
PF1=11 -ALFA) DO 43 I=1,N
DO 27 151,N 00 43 151 1192)11

27 P1/111.-ALFA^PF11 ..PFI,PS(1) 43 G(IC(1.1.11.GIIC11 LI) Teti. L )E (I)
29 CONTINUE DO 6 1 =1.N

PCI=EUCNIPK N, 6 PH2=PH2T611),PKill
C LAMB=PH2/(SKT2 .pH2-SKI)
C EV AL NA FINN OF FORE/P) ) PH3=MAKI0 11 LAMB,
C DELIA=PCITF0-6

DO 30 1=1N C
30 X111511I)0.K.), 1F(SKI LI SIT AND )DEL EQ 01 THEN

DG7K=EuCNIX NI SEARCH=DELTA
HOLD.MAX(1 1361x, )DEL=I
DGTx.D(:T1OULD ELSE

C ENDIF
CALL FCNIX,EN N, C

C IFIDELTA IT OETHOL) TAU.I
P6I=EUCN1FN N, IF(PG2 GT I 1 51PG311 GO tO 160
IFIPGI LI DOTIAND t ITOGIA,IN GO TO 200
ITmAX.ICON ELSE
RETURN DO 44 1=1.N
EASE PH5=0
ENDIF DO 45 L=I 11,12(1)

45 PH5=PH5.1311 LI.PK41C11 LI,
DO 31 1.1.N 44 0(1).F(1),P115
IFIADS1FNII,) LI 1E 141 Fhl11.-0 0 PH6.EUCI910,N)

31 FNII)=FNIII.DFII) PH4.PH6IPH6
PG2=EuCNIFN N' DM.SK-SKI -0 1fiS PH41
PG3.EUCNIE NH 1F1DM LT 01 THEN
SK1.PG2IPG2 DELTA=PCl/2
SK.PG3.PG3 TAU=1
IFI SKI LT iSK)0 99911 THEN ELSE
11.11- 1 PIP.°
1E111 LT 01 11=0 PTS=0
ELSE DO 46 I=1.N
11.11+1 HOTD=FNIII-G111
ENDIF PTS.HOLD*HOLDTPTS
IF(IM LT III THEN PTPI=ABSIEN1111HOLD)
PRINT)" CONVERGENCE IS IOU SLOW 46 PTP=PTPTpTp;
PRINT', CHANGE INITIAL GUESSES ,' PJI=PTP.SORI)PIP*PIPTDMIPISi
SSS.SSS/PP LAMB=SCIRTII Dm/PJ11
STOP AMU=MINI2 LAMEI.TAU1
ELSE TAD=LAMEI/AMU
ENDIF DELTA=AMU.PC1

C IF(DELTA LI DE)11011 TAU.)
C CHECK woEIDER A NEW EATDAIRN ENDIF
C OF THE JACOBIAN IS NEEDED ENDIF
C IF )FLAG IS . 10 1 T.ANDT. C
C FIRE) AS DELN REDUCED BY A 200 CONTINUE
C FACTOR OF TWO A NEW JACOBIAN JELAC=0
C IS EVALUATED (RENEWED) WRITE17 1081 PC1 DELTA. SK .SKI
C 108 FORMATI5X,.PC1." GI5 6..DELTA.".G15 6 SK=. 15 6 'ST)." Git: K
C IFI ICON GT ITMAXI GO TO 300

IFIAU.0 ICON=ICON.I
DO 40 1=1.8 C
HOL D. CG I I l l , C

40 CG111=HOLD C
CGI91.-SK IFISK1 LI SK AND )DEL EC) 0) THEN

C SEARCH.DELTA
PNJ1=PG2 10E1.1
IF(PG2 LI 1E-14, PN,TII ELSE
IFIIPNJ/PNJI, GE 2 1 THEN ENDIF
IFIICON LT 10, THEN
1E111 GT 31 GO 10 100 C THE JACODIAN WILL BE UPDATE 8)
ELSE C SCHUBERT'S ALGORITHM
91.SF1/C0151
82.5011(0GT51/c1;l111 DO 50 1.1.N
1E181 GI R2) GO 10 100 DO 51 11=1 N
EQUIP 51 G1111.0
ELSE C
ENDIF IFIABS10111) ,1 HT )I 1111

C SSI=1
IFSITI LI ST, ,TO IN 4/ ELSE
DO 41 1.) N SSI=PK(11 /011)



C

C

ENO IF

OXI,0
DO b2 11, INZ, t1
G(11/.011C11 11 ti

52 DAT.DET66t1IIM.111,
DXft.OXI.SSI

OFfv4K1111 -; 1 Ssi1,1-11,
IF 1 ABS I Ox H.1 1 H J 1 I H E N

Dmil.0E-1/0x1
ELSE
0m0-21
ENO IF

DO 54 t=1 INZtit
54 811 , L 1 =B1 I I It t

50 CoN TI NuE

DO 7I5 1,1 N
HOLO=0
DO 721) 1=1 INCti,
551aABSI6t1.1 II

720 IFtSS1 GT HOLDI Hot.0,551
OF,111=0F111i11010
ENt11,FNIII:HOT(1
DO 715 1.1 INZII.

715 BII.L1,8Ii 1 //NOLL.
1St2
00 55 1 =1 N
F1112ENII,
1Z1112INZ1101111
DO 55 121 INZIIPIII,
ICCTI.L),.1CtIKII, L1

55 0811.11,8110111 t

GO TO 150
3011 CONTINUE

PRINT. ' NO CUNvERGENCE IN - IIMAx IfERAlioNS
PRINT'. CHANGE INITIAL GUESSES OR USE ANOTHER SoBBOUIINE
STOP
END

C FUNGI TEN Loint EvAl LTA TEs ISLE FOCI 'DIAN NN W./
C OF A VECTOR OF DIMENSION N "

FUNCTION EUCKit, it
REAL YIJ/
SS' -0
DO I I=1,J
55.SS.EtI11Y111
CONTINUE
EUCI,SORTisS,
RE TARN
END

SUBROUTINE SPAti2ITT15 tO AI

C SUBROUTINE SPAmA2 SOLVES A SISTER OF . N INEs0 Loo-IloNs
C THIS SUBROUTINE LIMES SPAHSE MATRIX IECuNlis IIW HI6u1 N5ND
C SIDE OF IHE SISIEm IS STORED IN vEcfOR B INZ,N, ,5 IHE NOti
C BEE OF EIEMENI5 IN EACH ROW OF IMF SISIEm All , iHH110s
C THE EL EMEN1S OF IHE MATRIX STORED IN A CO FORM
C THE VECTOR ICTI t I CONTAINS 1HE COLUMN OF

/I/Il
ELLmEN1

C IN MATRIX A

C N NotiLTLI, OF E DO A ItiNS 13E NG SOL Ail,

C LB ON (11111.511 CONT A INS ItIE DIMENSIONION ot- I '.11111 II
C
C IS OPTION 01 50TUION FOR ITT-,1 IltE mEINHO 0,Lo lok
C SCAOTIoN IS RELATIVE IOLEHANCE . FUR

IS
C THE 0E11100 IS " PIVOTAL CONOENSAIloN THE iF
C TION 12=3 IS USED WHEN A S2STEm IS SOIVTO SE2ERAI
C TIMES AND IHE OWL') THE RIGHT HAND SIDE OF THE
C SYSTEM IS CHANGED

(C3

C

COMMON /A104 II,2001
COMMON ,SP2. IN212001 A1200 /01,612001 IC1200 /0.
INTEGER IX12001 1/12001
REAL X12001
COMMON /02. ABt3000I 1801200P.160130001 1612001
EPSLI EI2
1F.N

IFtIS EQ 31 GO lu 999
00 1 1 =1,N
18111=1
IY11/=I
18011)=0

1 12111=1
L8=0

NZM,' 1
C
C EVALUATION OF TIDE TOLERANCE OF TUE SYSTEM
C

205 AM=At1 I;
00 206 1,1 N
NZ.INZ1I1
00 206 K,I NZ
IF1ABSIAMI GE ABSIA,I K111 GO TO 206
AM=ATI,K1

206 CONTINUE
TOLKEPSA851Am1

C
IFS IS EQ 21 GO TO 2
N1,N-1
00 10 12.1 NI
1,121121
L=I
111111=0
AM=0
N2=111F
1FIN2 GT NI N2LN
00 11 J1,12 N2
J=IZIJII
1E110.1,11 NE 121 GO TO II
L=LT1
IX111.11111TI
IMIL11.)
IF1ABS(A1J III LE ABSIAMiI GO TO II
AM.A1J, II

II CONTINUE
IFIABSIAM1 GT ICA) 00 TO 12
GO TO 101

2 NI=N-1
DO 20 1311.N1
I=1Z(171
LKI
111111=0

IFIN2 GT NI N2,T
LEL/N

DO 21 JI=13 N2
J=IZIJI

NE 131 GO TO 21
IFI INZIJI Lf ELL) LLL.3

111111,10111.i
IR(1.113
IYILI=J

21 CONTINUE
NJ=IXI21

IF(ABSIATNJ II; GI IOL AND NJ LE ILL, GO TU 12

KL=1011)K1
DO 85 LJI-t 2 1,,L
LJ3EN
LJL,LJ1
1133=0
LJMILJI



077 66 7.12-7 .11 4 /.10X bEFORE IUE PRoGH.1.1 Is HUN EN1E1)IFI INZI 1X1132111 I I 1.I31 THEN 5 1.10X = ATTACH IMSLION=1113RAR1 . 111
133-1Nzilx11 J2
1-11_=132

C
C

ELSE C
ENDIF
IFIAESSIAI I1 +I .111 11 GI ..F3/ MEN A811.81=A1

180111=1130111,1
11J3=ARS(A1111132 1 IBMILBI/-1
LJ11.1.12
ELSE

8111.13III/A1
N2=INZIII

ENO IF 00 24 K.I.NZ
86 CONTINUE 24 AII.K1=A1 l El.'A I

IAU/4-1X11.311
1611311.1181131 C ELIMINAFIoN OF ONE ROW/.1AuX C1A1.1911311
IY1111/.141k./0/ IF1NM GE 31 60 10IVILJD)=IAr 16(15 ED 21 00 10 2085 CON1IN1TE GO TO 10
00 87 7J1=2 TI

25 00 40 7=3 NM
11=187L1J3=40001 A2=4111,11

Ill =LJ1 4111 11=0
00 89 132-).,11 IL NZ=IN2IIIJMU=INZ(16111ii INZI 11,321/
I F JUL, LT 1131 MIEN C

IF1N2 GT 11 00 10 57

773,087 C CHANGE ROWS
LLL=LJ2
ELSE 1E111421111 ED 1 I GO 10 56
END IF

89 CONTINUE
K3=INZII11-1
DO 303 K4=I Kl

41.10.181131
/1,19=1011311
x11311=14171) I

ICI II,K41 =ICI II 4,1,
K4 +11

303 CONTINUE
911311.1771LJL I IN2IIII=INZ1111-1
MI 111)=1411A GO TO 56

87
01121 I =1 AU)

CONTINUE
57 NN.ICII.7(2,

NZI=IN21111

172=1x111.1
IFIICIII,N2II GI NO/ NO=IE111 N2I
14 =12

DO 23 K=2.NZ IFI IS E0 2) 14=13NJ=IXIKI DO 50 6=14.NN
IFIABSIAINJ 111 GI 1OLI GO 10 lb 50 81171=0

23 CONTINUE IFINZI ED 11 GO 10 55NJ=1912/
101 IS= 1

00 51 K1=2 N21
K= 101111

11119111 ED 01 60 10 150 51 CONTINUE
12 IF1NJ EQ I/ GO 10 14 C

CHANGE ROWS
C

55 CONTINUE

15 N2,1N2111
IFIN2 GT 701 MIEN
WRI1EI6.881

IFIINZINJ1 G1 NZI N2=INZINJ, STOP00 13 K.102
AUK.AII.K/ ELSE

END IF
A11,111=AIN3.1/.1 CAINJ,KI=AUX C
IAOK=ICII,K, DO 52 61=2.NZ
ICII.K1=ICINJ 7' K=IC11.611
ICINJ K1=IAUX X(1) 1=Xlkl-A2lAtl Ell

13 CONTINUE 52 CONTINUE
IATIKTIN2111
INZ111=11421T7.1,

61=0
INZ(111=INZIIII -1

1021031-IA0X 15=12
10111=03 1FIIS EC1 21 I=13
AUX=611, 00 53 K=I5.NN
0111.811721
8IN)1=AUX

IFIXIK/ ED 01 GO 10 53
K1=61+1

(4 41.011.1, CC
Atl 11=0 1E1E1 GT 701 MIEN
1.8.16.1

1E1)8 GT 30001 MIEN
WRITEI6.881
STOP
ELSE
ENDIT

68 FORMA11// 1UX SoURoulINE SPAMAI CAN Nul 5,71 101, 00061Em-
/ (OX "CHANGE MAIN PROGRAM 1,1 ACING (GE 110 I mwiT8.3

2 / 10X COMMON /IMS1.1/ (FLAG 41/ 11,1 "
3 (0 IFLAG/1 . // 109 'T//// ImP0141//)1 /..

C

C

WRITE76,881
STOP
ELSE
E NO IF

41I11,11=XIKI
.0111 K11 =K

53 CONTINUE
1142(111.61

56 61111.81111-//2/8/11
IF/ 11421111 GI NZH1 NiM=INZ1111
I8=113.1

51



IFlin GI 30001 IHLN
WRIEE,6 88,
STOP
ELSE
ENDIF

AB,16,42
180111 = 160111 ,

IBMIL13111

3=0
DO 1 114.t1
DO II L=1 1141.11,
IFIIC(I.T 1 EQ Li, IHEN
J4J.I

GO 10 I

ELSE
ENO IF40 CONIINOE

11 CONTINUEIF11S ED I I 1.1.) 10 10
I CONTINUE20 CONTINUE

GO 10 33
12 IGS=I10 CONTINUE K=N33 IFIIS NE 31 Gil TU 901 DO 101 I=1 JC

101 IFI INZI IS TI I11 tE VI K=INZIISTIII,C DO 2 I=1.JC
LR=ISTII/C
IFAINZILRI GT TI GO TO 2C

999 LCI=I IF) 1135 UT I) GO 10 55
IGS=IGSINI=N-I
KR=LRDO 100 1=1 NI

LC2LC1118011, I 55
GO TO 2
IFIICILR / GI I C I E R 1 THENJI.IBMILCII GO TO 23516(311 ELSEAUK.14111 KR.LRFIIII.B1J,

8131AUX
2

ENDIF
CONTINUE

110
141111111:ABlici)
LCI=LCIII 29 IKK4KR

IAUK41P1m1IFILC1 GT I.C21 GO TO 100
11:1E1M(LCII
42.=4.6(LCII
BT11)=6(111 42'8111

IPIMI=IPIKK)
IPIKKI=IAux
lAuX=11,21M,
INZIMI=INZIKKIGO 10 110
INZ(KK1=140X100 CONI1NuE
LL=MAXIINZIKK, )Ntim,1C
DO 4 1=1 LLC
IAUX=ICIM.1;C

C
4

ICIM,1)41CIKK 1 ,

ICIKK.11=1AuxC
901 J=10IN,

NZ=INZIJ,
DO 30 E -1 NZ

10 CONTINUE

RETURN
ENO

30
IFIICIJ,F1 NE 0, GO 10 32
CONTINUE C

CGO 10 150
C32 B1J)=BIJI/41J,K1

DO 90 J=2.N CIBB=N-J.1
II=121/BETI
NZ.1112(II,
IFIICIIINZ1 Eo 01 U0 10 90
00 91 K=1 11Z
14,IC111 ,.1

21=1Z1141
61111=61I11-411 F1181)1)

91
90

CONTINUE
CONTINUE
DO 94 1.1.N
0.12111

94
150

XIII=BIK,
RETURN

C
ENO

C
C
C

SUBROUTINE 41041,Ni

C THIS SUBROuIINE ARRANGES IHE I INEAR 5ySTEM Sol SEE Eo
C SPAMA THE 4R04NGEMENT PERFORFIED LEAVES THE

SI
C WHITH THE TOP RoWS HAVING THE

LO
11055161E NomMT0

C Of
C

COMMON /5112/ INZI2001 41200.701 O1200) 1C1200.70,
COMMON !APR/ 15112001
COMMON 111(2001
00 30 1 =1 N
151(11=1

30 IP111.1

00 10 M=1.N



C
C

C

C
C

511/1(' LIF4kAiCY
THIS COMPUTER PACKAGE CONTAINS A SELECTION OF NONIINE4R
EQUATION SOLUTION TECHNIQUES WITH AUTOMATIC OUTPUT OPTION
AND A COLLECTION Of EQUIPMENT MODULES WHICH PERFONTTS
THE MATERIAL BALANCE CALCULATIONS FOR FLASH. SEPARATOR
REACTOR SPLITTER, AND MIXER THE MODULES ARE INTERLINKED
THROUGH A COMMON BLOCK STRUCTURE WHICH CARRIES THE INPUT/
OUTPUT STREAM VARIABLES A CONVERGENCE MODULE IS Ai SO
INCLUDED WHICH USES A MODIFICATION OF NEWTON'S METHOD
TECHNIQUE

SUBROUTINE SECNEWIA,NT,EPS.SUBI
REAL G(101
DO I 1=1,10

1 G(I)=1
NTT=0

CALCULATE DERIVATIVE

5 CALL SUBIX.E1
FODER4F
x1=ABS(x)
H.mAXIKI 0 '0H
HJ=EPS,U3
xN=X.1-1,1
CALL SUBIXN,FNI
DER.IFN-FI/HJ
ICON.0
XN=X-F/DER

TO CALL SUBIMI,FN)
IFIABSTEN) LE EPS) THEN
X4xN
NI=NT1.1
RETURN
ELSE
ENDIF
W2=FNIFN
w34FIF
IFfw2 LE W3' 999) THEN
ICON=ICON-I
IF(ICON LT 0) ICON=0
ELSE
ICON4ICON*1
ENDif
WI.ABSIFODE NI
NTT=NTT.1
IF(NTT GT NTI THEN
WRITE(6,201 NI xF

20 ,,GRmAT(/.107."NO CUVERGENCE ACHIEVED IN ",I4 " IIERETIoNS
/,10X "LAST VALUE OF X=", F10 4

/.10X "LAST VALUE OF F =",F10 4,/1
SIOP
ELSE
ENDIF
00 2 1=1.9

2 2111=011,11
G110)=FN
IFTAG=0
1E11,11'1

VAL 2BGSSI

9111 THEN
vAi IABIG161/GI01 61 1

IFIvA1
AI IGVA1 ILL

GT 21
ELSE
ENDIF
IFISCON G1 3) IN G =1
IF(IFLAG ED I AND ABSIWI) GE 21 GO 10 5
DER=DER-(FN1DER)/F
X.xN
XN.TN-FN/DER
F.FN
GO TO 10
END

SUBROUTINE NEwIDNIx NI EPS SEW KI

A SUBROUTINE TI) FIND THE ROOT OF A NONLINE,4 FuNCIIoN
F(X)=0 USING IHE NEWTON'S METHOD

X INITIAL GUESS OF THE ROOT ON INPUT BHT HIE HE,
ESTIMATE OF THE ROOT ON OUTPUT

NT TOTAL NUMBER OF ITERATIONS ALLOWED
EPS RELATIVE ERROR CRITERION FOR CONVERGENCE

C
C

C
C

C
C
C
C
C

C
C
C

C
C
C
C
C
C
C
C
C
C

C
C

C

C
C
C
C
C

C

FOR 4-DIGIT ACCURACY SPECIFY EPS=0 0001
SFNC NAME OF TIME SUBROUTINE THAT CALCULATES IHE kONci1DN

VALUE "F" AND THE DERIVATIVE "FD. At X USER 171151
PROVIDE SUBROUTINE SNECTX.FFDT AND P111 TILE ACTUAL
NAME OF THE SUBROUTINE IN EXTERNAL STAMENT WUICH most
BE LOCATED IN THE PROGRAM THAT CALLS NEWTON

K A USER SPECIFIED PARAMETER TO CONTROL. THE PAINTING OF
ITERATION RESULTS EVERY K /H ITERATION IS PRINTED
NO PRINTING FROM THE SUBROUTINE NEWTON IF K.0

IF(K LT 11 GO TO 50
WRITE16,201

20 FORMAT(//,5x "ITERATION RESULTS FOR NEWTON'S mEiTou
1 4,1,"ITER" BX I3x "F.,13X..F0",
CALL SENC(X,F,F13)
WRITE16,251 0,X,F,F0

25 FORMAT(211.15 3E14 4)
GO TO 60

50 CALL SENC1x,F EDI
60 J=0

DO 100 1=1,NT
J=J.1
XN=X-F/FD
XIJEK.1=0
IF(AB5(x1 LI I OE-10, XOEN=SIGNIT 0E-10,X)
E=ABS(IXN-X1/x0ENt
IFIE. LT EPS) GO TO 120
X=AN
CALL SENCIX F FDI
IFIK LT II GO TO 100
IF(J LT KT GO TO 100
WRITE16.251 I x F FO
J=0

100 CONTINUE
WRITE(6,1101 NT m F

110 FORMATI//.2X "NO OONVERGENCE IN".15.3X ITERATIONS'
1 /51(..X =" F14 4 5x "F =".E14 41
STOP

120 11=AN
IFIK LT II RETURN
WRITE(6 251 I X F,FD
RETURN
END

SUBROUTINE INTHLVixL AR x N.ENC,X)

4 SUBROUTINE TO FIND THE ROOT OF A NONLINEAR EQUATION FTXT,U
USING THE INTERVAL-HALVING (HALF INTERVALI TECHNIQUE

XL USER SPECIFIED LEFT HAND BOUND ON THE ROOT
XR USER SPECIFIED RIGHT HAND BOUND ON THE ROOT

ON RETURN BOTH XL AND XR ARE REPLACED WITH THE FILL/I
BOUNDS ON THE ROOT THIS REFLECTS FINAL ACCURACY
BEST ESTIMATE OF THE ROOT ON OUTPUT

N NUMBER OF ITERATIONS SINCE THIS TECHNIQUE IS
GUARANTEED TO FIND THE SINGLE 8001 IN (XL KR1 WITH
CERTAIN DEGREE OF ACCURACY WHICH DEPENDS ON 111E NUMBER
OF ITERATIONS. THE USER IS ASKED TO ESTIMATE N
BEFORE CALLING THE SUBROUTINE

FNC THE NAME OF THE FUNCTION THAT CALCULATES F(xl
USER MUST PROVIDE FUNCTION FNC1X)
ACTUAL NAME OF FNC MUST BE DEFINED IN ExIERNAt

K A USER SPECIFIED PARAMETER TO CONTROL THE PRINTING OF
ITERATION RESULTS EVERY K TH ITERATION IS PRINTED
NO PRINTING FOR K=0

FL =FNCI AL I
FR=FNC(XR 1
IF(FL1FR LT 0 OT GO 10 20
WRI TEI6 .101 xi. Ft ./41.4FR

10 FORMAT( 7/ 2X FNCIxt AR FNCI ART"
I 24 4E10 2

.

/5X "ERROR IN INPUT TO INTERVAL VINO
STOP

20 IFIK LT 11 U0 10 50
WRITE(6,221

22 FORMAI(//5x,"I1ERATION RESULTS FOR )NIENvAL 11,1 YIN', HE11100
1 40..ITER"PX M".124 "FL" 124..x14" (24,"Fw
WRITE(6,251 0 XL.F1 FR

25 FORMAT12X,I5,4E14 41



C C K A USER SPECIFIED PARAMETER TO CONTROL 1HE PRINTING OF
50 .1,0 C ITERATION RESULTS EVERY K TH ITERATION Is PRINTED

DO i00 I =1 .N C NO PRINTING FOR K.0
J=J.1 C
X = ( xL *KR 1 /2 C
Fx,FNcl,,,, IFIK LT 11 GO 10 50
IFIFX.FR Gi 0 01 GO TO 35 WRITE /6,20/
FL=FX 20 FORMAT) //5X,"ITERATION RESULTS FOR WEGSTEIN'S ME1HoU
AL=x 1 5X,"ITER..8X,"X")
GO TO 40 WRITE16,251 0 x

35 FR=FX 25 FORMATI2X.15,E14 41
XR=X C

40 IF(K LT 11 GO 10 100 50 J=0
IF(J LT K1 GO TO 100 XI=X
WRITE16.25/ I XL.FL.xR,FR F1=FNC(X11
J=0 X2=F1

100 CONTINUE IFIK LT 11 GO TO 60
X.1xLYxF11/2 WRITE16,251 1,x2
RETURN 60 DO 100 I=2.NT
END J=J*I

C F2=FNCIX21
C X2M1=X2-X1
C IFIABSIX2M11 LT 1 OE-101 x2m1=SIGN11 OE,I0,x214io

SUBROUTINE SUCSUBIK NT,EPS.FNC.K1 S=IF2-F1)/X2M1
C IFIABS1S-1 ) LT U 0000011 S=SYSIGNIO 00001 ,s-i Ir
C A SUBROUTINE TO FIND THE SOLUTION OF A NONLINEAR ENuAlION T=1./(1.-S1
C IN THE FORM x=Ftx1 USING THE SUCCESSIVE SUBSTITUTION mETHou IF(ABSITI.GT 10 ) T=SIGN110 TI
C XN=11 -7).X2.T.F2
C X INITIAT GUESS OF THE SOLUTION ON INPUT, BUT THE XI=X2
C BEST ESTIMATE OF THE SOLUTION ON OUTPUT F1=F2
C NT NAXIMUM NUMBER OF ITERATIONS ALLOWED X2,04
C EPS RELATIVE ERROR BOUND AS STOPPING CRITERION NOEN=X1
C FNC NAME OF THE FUNCTION THAT EVALUATES FITT IFIABSIxit LT 1 0E-10) xDEN=SIGNI1 0E-10.1i o
C USER MUST PROVIDE FUNCTION FNCIXI AND PU1 THE IFIABSIIX2-X11/X0EN1 LT EPS1 GO TO 120
C ACTUAL NAME OF FNC IN EXTERNAL STATEMENT IFIK LI 11 CO TO 100
C K A USER SPECIFIED PARAMETER TO CONTROL THE PRINTING OF IFIJ LT XI CO 10 100
C ITERATIONS RESULTS EVERY K TH ITERATION IS PRINTED J=0
C NO PRINTING FOR K=0 WRITE16,251 I.X2
C 100 CONTINUE
C WRITE16.1101 N7.X1,X2

IFIK LT II GO 10 50 110 FORMAT(//2x.:NO CONVERGENCE IN",I5,3 -ITERATIONS /

WRITE16,20/ 1 54,.X1 =.,E14 4,50."42 =.,E14 41
20 FORMAT) / /5X ITERATION RESULTS FOR SUCCESSIVE SUBSTITUTION " /

120
STOP

WRI1E16.251 0.x IFIK LT 1) RETURN
25 FORMATI2X 15. E14 41 WRITE16,25/ I.X2

C RETURN
50 J=0 END

00 100 1=1 NT
J=J41
:5=FNCIX1
xCIEN=X SUBROUTINE WEGSmDIN,x,N1-.EPS.SUB.KT
IFIABSIII 11 1 0E-101 x0EN=SIGNI1 OE-TO xi C
IFLABST(XN-XL/KOEN) 1.1 EPS/ GO TO 120 C A SUBROUTINE TO FIND THE SOLUTION OF N NONLINEAR EQ0:,11ONS
x = XIV C OF THE FORM xf=FI(Xl.. ,X141, . , XN.FNI.41,,N)
IFIK LT II GO TO ISO C USING THE MULTIDIMENSIONAL METHOD OF WEGSTEIN
IFIJ LT K1 GO TO 100 C
J=0 C N NUMBER OF EQUATIONS TO BE SOLVED ILIMITE0 10 401
WRITEI6 251 I.x C X N-VECTOR OF INITIAL GUESSES ON INPUT WHICH ARE SPECIFIED

100 CONTINUE C BY THE USER, ON OUTPUT, X CARRIES THE BEST ESTIMATE OF
WRI1E(6.1101 NI x RN C THE SOLUTION VECTOR

110 FORmA1) //20"NO CONVERGENCE IN" 15 3 ITER,,Ilutt C NT MAXIMUM NUMBER OF ITERATIONS ALLOWED
1 5X..X =,E14 4.55."IN ='.E14 41 C EPS RELATIVE ERROR SPECIFIED BY USER AS STOPPING CRITERION
STOP C SUB A SUBROUTINE USED TO EVALUATE FUNCTION VALUES

120 x=xN C SUBROUTINE MUST BE IN THE FORM SUB)M x.F1 WHERE BOTH
IFIK LT IT RETURN C X AND F ARE M-DIMENSIONAL VECTORS. WHILE x=INDEPENDEN1
wRITE16,251 I,x C VARIABLES AND F=FUNCTION VALUES
RETURN C IN "SUB" VECTORS X ANF F MUST HAVE VARIABLE OTHENsIUNs u,
END C "SUB" MUST BE PROVIDED BY THE USER AND THE ACIUA1 N4ME

C C MUST BE DECLARED EXTERNAL
C C K A USER SPECIFIED PARAMETER TO CONTROL 1HE PRINTING
C C OF ITERATION RESULTS EVERY K TH ITERATION IS

SUBROUTINE WEGSINIX,NI,EPS.FNC V/ C PRINTED. NO PRINTING FOR K=0
C C
C A SUBROUTINE To FINN THE SOLUTION OF A NOM INLAR IWT,IluN C
C X-FIX1 USING THE mETHOO OF WEGSTEIN C COMMON /MWEG% IS USED WHEN WE WANT 'NSE0' JuGGESSIvE
C C SUBSTITUTION ITERATIONS BETWEEN EACH WEGSTAIN ITERATION
C X INITIAL GUESS OF THE SOT/tit/Mt ON INPUT Bui GTE C
C BEST ESIImAIE OF THE SOLUTION ON OHIPuI DIMENSION MINI 021601.F2160/ X11601.F1160/
C NT MAXIMUM NUMBER OF ITERATIONS ALLOWED COMMON /MWEG/ NSEQ
C EPS RELATIVE ERROR AS THE STOPPING CRITERION
C FNC THE NAME OF HIE FUNCTION r.Ar EVALUATES 1.1 ,,, IFTNSE0 LT 1 OR NSED GI 1E141 NSEWI
C USER MUST PROVIDE FUNCTION FNCIK) AND PUT TIll

C ACTUAL NA/./E OF THE FUNCTION IN EXTERNAL SiAlEoLNI KL=0



C

C

C

IFIK IT 11 GO 10 50
WRITE(6,20)

20 FORmAII//51 "IIERATION RESULTS FOR MULTIDIMENSIONAL wEG51LIN
wRIIEI6,251 0.1911).1=1.N1

25 FORMATI2X.15.5E13 4/7X.5EI3 41

50 J=0
00 51 1=1 N

51 11(1111111
CALL SUBIN.xi El)
DO 52 I=1,N

52 x2111.F1111
IFIK LT 11 GO TO 60
WRITE16,251 1,112111.1=1,W

KL=0

60 DO 100 IK=2 NT
J=J6I

CALL SUBIN,x2 12

KL=KLY1
IFIKL GI NSEQ1 THEN
K L=0

80 II-
)03=X2(II-x1111
IFIABSIX01 GT 1 OE 081 GO TO 65
KIIIT=X2(11
GO TO 80

65 S=112(1)-F111/1/60
IF IABSIS-1 Ll 0 000001) S=STSIGNIO 00001 IS I 1)

T=1 /II -SF
IFI1BSIT1 GT 10 ) T=SIGN110 .71
x1111=X2(I)
X21111,1 -T 1'x2111 11F 2111

80 F111)=F2II,
ELSE
DO 55 I = N
X1111..62,1)
121I1=F2III

55 FIII1=F2111
ENDIf

DO 85 1.I.N
KFIEN=x1111
IFIABSIXDEN) IT I 0E-101 XOEN.1 0E-10
IFIABSI(x2111-A1(111/x0EN) GT EPS) GO TO 90

85 CONTINUE
SuBIN,x2.F2I

DO 180 1=1 N
IFIABSIX2ITI-F2,1.1) GT EPS/48541211 11) GO lo IRO

180 CONTINUE
GO TO 86

190 DO 195 111,9
195 X2111=F2T11

GO TO 90
86 DO 88 I=1.N
88 X111=12111

GO TO 120
90 CONIINUE

IFIK LT 11 GO TO 100
IFIJ LT K1 GO TO 100
J=0
WRITEI6.25) IF,16211).1=1.N)

IOU CONTINUE
LL=MININ.101
WRIIF16,1101 Ni tx2111.1=1,LLT

110 FORMAT(//21 .MuLTIDImENSIONAL EUSIEIN'S mE10o0 RUES )Jul 1 ,1)NvENGE-

1
/2X.-TOTAL ITERATIONS =".I3 5x..LAST POINT .

2 /5E14 4/5E14 4)

)FILL LE 101 510P
wRITE(6.261 11211 i 1=LLY1 No

26 FORMATI/5114 4 /5E14 4,///

510P
120 IFIK LT I1 RLIURN

wRIIE16,251 111.1111) 1=1,N)
REIORN
END

SUBROUTINE READINST,NEQ1
C
C A SUBROUTINE 10 READ THE .NST" STREAM VARIABLES AND IHE "NEM'
C EQUIPMENT PARAMETERS THE VARIABLES ARE DEFINED AS FLU IOWA
C
C NST NUMBER OF STREAMS A MAXIMUM OF 30 IS ALLOWED INE0RITAIIDN
C FOR ALL STREAMS MUST BE ENTERED IN A SEQUENTIAL ORDER AS
C DESCRIBED BELOW STREAM NUMBERS MUST BE ENTERED FOR ALL.
C BUT THE FLOwRATES AND THE COMPOSITIONS MOLE FRACT1oNSI
C CAN BE LEFT BLANK
C A TOTAL OF 20 COMPONENTS ARE ALLOWED IN 1HE S(SfEm
C
C NEQ NUMBER OF UNITS (EQUIPMENT) INFORMATION MUST BE ENIERED
C IN A SEQUENTIAL ORDER AFTER STREAM VARIABLES /116 SPECIFIED
C ACCORDING TO THE FORMAT GIVEN BELOW
C A MAXIMUM OF 20 UNITS ARE ALLOWED IN THE SISIEM
C
C FIRST LINE OF DATA FILE IS USED FOR PROBLEM IDENIITILATIoN
C AS A TITLE FOR THE OUTPUT THE SECOND LINE IS NO1 OSED 6)))
C IT CAN BE UTILIZED BY PUTTING INTEGER NUMBERS TO GUIDE IHE
C ENTERING OF DATA THIRD LINE IS USED TO ENTER COMPONENI
C IDENTIFICATIONS VARIABLES ENTERED IN THIS LINE ARE NC CNAME, I)
C CNAMEINC) WHERE NC.NUMBER OF COMPONENTS, AND CNANE1J,NAME OF
C J TH COMPONENT THE FORMAT USED IS 12,88.101A5.261 1HoS COMPoNEN1
C NAMES ARE LIMITED TO 5 ALPHANUMERIC CHARACTERS SIMILAR 10 THE

AB
C COLUMN IDENTIFICATION LINE, THE FIRST LINE AFTER STREAM ,ARIABLFS
C (OR THE FIRST LINE BEFORE EQUIPMENT PARAMETERS) IS USED
C TO GUIDE DATA BY ENTERING INTEGER NUMBERS
C
C
C STREAM VARIABLES ARE ENTERED IN THE FOLLOWING °HOER
C
C LINE 1 NS1111/ FLOW11/, COMPI1,11, COMPII 21
C . COmPT1,181. COMP11,191
C LINE 2 NSTR(2), FLOW(2), COmP12,11. COMP(2 2)
C COMPI2,181, COMPT2,191
C ETC
C WHERE

C NSTRIII STREAM NUMBER NSTRTI)=1 NSTRI21=2 NS117,3,3 Ecl
THIS HELPS TO ENTER DATA IN A SEQUENI1A1 ORDER
AND TO IDENTIFY STREAM INFORMATION OuRING cALCuLATIoNn

FLOWIII MOLAR FLOWRATE OF STREAM I THIS PACKAGE OF PROGRAmS
C DOES NOT CHECK UNITS BE UNITS MUST BE KEPT
C CONSISTENT IN EACH PROBLEM
C COMPII,J) MOLE FRACTION OF COMPONENT J IN STREAM I

C AT INPUT, ONLY THE KNOWN STREAM COMPOSITIONS
C
C

ALL TWENTY) ARE SPECIFIED AT OUTPUT ToL
UNSPECIFIED STREAM VARIABLES ARE CALCuTATED

C
C FORMATTING FOR EACH LINE IS 112.F8 2.10F/ 4)
C
C EQUIPMENT PARAMETERS
C
C THESE ARE ENTERED AFTER THE STREAM VARIABLES IN A SEDoENIIAL
C ORDER AS FOLLOWS ZONE LINE IS SKIPPED FOR COLUMN IDENTIFICATION,

C LINE 1 NECIP11). EONAMEI11
C LINE 2 EQP11 II EQPII.21 ET:TP(1.10F

LINE 3 . EQPI1111 ECIP11,12/. EQPI1,20)
LINE 4 1E0E11.11. IEQP1121 IEQP11 8)
LINE 5 NECIP121. FUNAME121
LINE 6 EQP12 11, FU-P12,2), EQP12,10)
LINE 7 EQP(2.111 EQPI2 .121

. EQP12,20)
LINE 8 IEQP12.11 1E01,12.21 IECIPI2 81

C ETC
C WHERE
C
C NEOP111 EQuIPmENI NUMBER NEOPTI)=1 NEQP,21-2 FIG
C ONLy TEN (101 ARE ALLOWED
C EQNAmE11) NAME OF 1HE I TH EQUIPMENT mODOLES A,AIL/,B,L A.*

FLASH, SEPARAIOR REACTOR SPLITIER MixER
EQP1I.J1 J fH PARAMETER OF 1HE ill EQUIPMENT

NO1E THAT EQPII,J1 IS REAL
IEQPIIJ1 J tH PARAMETER (IN1EGER1 OF 111E 11H EouipmE-Ni

C SPECIFICATION OF PARAMETERS FOR EACH MODULE
C
C FLASH EDP,I JI.KJ WHERE KJTX2J/X7J IS III)) VAPOHA ioul0
C MOLE FRACTION RATIO FOR THE OUTPUT STREAMS OF A
C FLASH EVAPORATOR UP TO 19 KJ'S CAN BE SPECIFIED
C DOE 10 COMPONENT LIMITATION



C )LOP I1 J1=SIREAM NumBEN OF I-Etu INI0 IiIE tiAso ONII C
C IF 3=1 BUT STREAM NUMBER FOR vApolt II 3-- ., AND SUBROUTINE FIASHN;
C SETTEAm NUMBER FOR LIQUID IF J=3 1 INDICAIES IHE C
C EQUIPMENT NUMBER C A SUBROUTINE TO CALCULATE THE MATERIAL BALANCES
C C AROUND A FLASH EVAPORATOR WITH EQUIPMENT UNIT NUMBER =N
C SEPARATOR tuPI J). BETA,) FOR EQUIPMENT I wHLRL C STREAM VARIABLES OF THE FEED AND THE EQUILIBRIUM
C BETAA=x2J.N2/IXIJ.NIT IS THE SEPARATION tr.0 loR TM, C CONSTANTS MUST ALL BE SPECIFIED OR CALCULATED BEFORE
C THE J TH COMPONENT C CALLING THIS SUBROUTINE
C IEDP(I J)=STREAM NUMBERS IJ=1 FOR NI J,2 FOR N2 AND C
C J=3 FOR N3) FOR THE I TH EQUIPMENT C ER 19- VECTOR OF EQUILIBRIUM RELATIONS AT THE
C C SPECIFIC TEMPERATURE AND PRESSURE )SPECIFIED)
C REACTOR EQPTI.J)=NELIJ FOR J=1,2. .T9 MERE NEW IS 1mE C XI MOLE FRACTIONS IN FEED (SPECIFIED)
C STOICHIOMETRIC COEFFICIENT OF THE J TH COMPoNENI IN C X2 MOLE FRACTIONS IN VAPOR OUTPUT (CALCULATED)
C REACTION NEUJ IS POSITIVE FOR PRODUCTS NEGATIVE C X3 MOLE FRACTIONS IN LIQUID OUTPUT (CALCULATED)
C FOR REACTANTS AND ZERO FOR INERTS C FEED MOLAR FEED FLOWRATE (SPECIFIED)
C EQP(1,20)= GAMMAK WHERE GAMMAK IS THE SPECIFIEU C VAPOR MOLAR VAPOR FLOWRATE (CALCULATED)
C CONVERSION FOR THE K TH COMPONENT WHICH MUST BE C FLIQ MOLAR LIQUID FLOWRATE [CALCULATED)
C PRESENT IN THE REACTANT STREAM, GAMMAK IS IN 10 i T C
C TEQP(I.J1=NUMER OF THE REACTANT 13,1 OR 111E DIMENSION EKT20),X1120),X21201,x31201
C PRODUCT (J=2) STREAM J.3 TO J=7 ARE NOT )ISED COMMON /51/ NS,NSTR4301.FLOW(30) NC.CNAmE(20).COmPt30.20)
C 1E01.11 81=K TO INDICATE THE COMPONENT NUMBER FOR COMMON /El/ NE,NECIP1201,ECINAME(201,EQP(20.20I.IEQP120 81
C THE SPECIFIED CONVERSION
C NT=200

0C SPLITTER EQPTI J1=DELTAJ WHERE DELIAJ IS THE SPLIT RATIO A0=1
C FOR STREAM NUMBERS IECIP(I.J1 FOR J=2 3. 6,7 EPS=1.0E-05
C NOTE THAT A GIVEN STREAM CAN SPLIT UP 10 SIX ONLY NI=IECIP(N,11
C SO THE TINE WITH ECIP)J, IT) s. EQPIJ.20, MUST BE EMPIT FNI=FLOWINI/
C OR WITH ZEROS FEED=FNI
C IEQPII JI=STREAM NUMBERS J=I FOR INPLIf STREAM CALL CHECKSINII
C J=2 FOR 1ST OUTPUT STREAM. J=3 FOR 2ND 0014.01 STREAM DO 10 J=I NC
C J=7 FOR 6TH OUTPUT STREAM AND J-8 FOR THE EKIJT=EQP(N.JI
C NUMBER OF OUTPUT 1SPLITSI STREAMS 10 XI(J)=COMPINI.J)
C

mixER N2=1ECIPIN.21
C EQPT! JI NOT USED N3=1EQPIN.31
C TINES FOR ECIP1.1.11 sx EQPT.) 20) MUST BE EmPil A=A0
C OR WITH ZEROS
C TEQP(I J)=STREAm NUMBERS. J=.1 FUR THE IS) INPUT STREAM DO 100 K=1.NT

F=0
C J=2 FOR THE 2ND INPUT STREAM, J=6 FOR THE F0 =0
C 6TH INPUT STREAM,J=7 FOR THE STREAM NUMBER OF THE 00 50 I=1,NC
C OUTPUT AND J=8 FOR THE NUMBER OF STREAMS TO BE M DIRE IFIX1(11 LT I OE 101 GO TO 50
C NOTE THAT ((P TO SIX STREAMS ARE ALLOWE0 10 BE MIRED
C

B=1 -( /EE(I)
F=F-.1.1111/(1 -A.BI

C THE FORMATTING FOR THE TWO LINE SEQUENCES IS AS FLAIOWS FO=FD.x1(1143/(11 -A.BI.$21
C 112 IX.A.I0 1008 3./.1008 3./.8181
C

50 CONTINUE
F=E -1

C AN=A-F/FD
C ALL OF THE STREAM VARIABLES ANO THE EQUIPMENT PARAMETERS .HE IFIABSIAN -A) TA EPS) GO TO 200
C STORED IN COMMON BLOCKS AND ARE AVAILABLE TO ALL OF 1HE A=AN
C MODULES TAPES IS USED TO READ DATA AND TAPER IS 100 CONTINUE
C IJSEO TO WRITE THE RESULTS WRITE16.110) NI A.F.FD
C THE COMMON BLOCKS USED ARE 110 FORMATT//2X "NEWTON'S METHOD IN FLASH CALCULATIONS 00LS NO1" /

C COMMON /SI/ NS.NSTR(301 FLOW) 30) NC,CNAMEt201 COmE130 201
I 2X,"CONVERGE IN". I5." ITERATIONS",/ TX ''A ,. EIO 3

C COMMON /ET/ NE NEOP(20),EONAME1201.EQP(20 201 IEDPI20 FIT 2 5. "F =".E10 3,5x "FD =".E10 3/1
C PRINT., 'PARAMETERS AT THE TIME OF THE ERROR
C CALL WRITES

DIMENSION FNAML181 CALL WRITEE
COMMON /SI/ NS.NSIR1301.FLOWI301,NC CNAME120o.CUMP130 201
COMMON /ET/ NENEQP(201,EQNAmE1201.EQP120 20).1EQP120 81 STOP

C
'Al GI 2 'EPS AND A LT I 01 GO 10 205

LL=0

200 17,,.

WRITE16.2031 N A
NS=NST
NE=NECT

203 FORMATI//2x."WRONG ROOT IN FLASH. I3,. CALCULATION8-.
1 2X."ALFA ." F12 3.3X,"UNFEASIBLE SOLUTION FOR THIS INPUT sLT-

READ(5.2) (1-NAmETT).1=1 81.11.1 PRINT. 'PARAMETERS AT THE TIME OF 117E ERROR
2 FORmAT18A10/121 CALL WRITES
WRITET6.31 IFNAMEIIII=1.8I CALL WRITES

3 FORMAT(1H1//3x.FIA101
50 LL=LL.1 205 Dr;10 1 =1. NC

IC=10.11L-11.1 X3111=x1111/(A(1 Al E 1111
TE=10.EE X2111=EKIII1x3(1)
READ15,301 NI (CNAME1JT J'IC 1E)

30 FORMATI12.83.101A5.2311
COMPIN2.11=X2IIT

DO 5 1=1 NS
210 COMP1N3,11=x3111

FLIQ=A.FEED
5 READ15,101 NS(RIII.ELOW(ILICOMPII.J J,IC 1E, VAPOR=FEED-FLIQ
TO FORmAT(I2 F8 2,10E7 4) FLOW1N2)=VAPOR

READI5,151 ID FLOWIN31,,F110
15 FORMAT(12) C

IFINT GT 10 AND IL EQ I, GO TO 50
00 20 1=1 NE

20 READ(5.251 NEUP(1) EONAMEII,.ILQPII JI J-I %0I f(4, I J, ,,, Bo C

RETURN

25 IX A10 !.10G/3 3./.10G8 3 /.818, C
NC=NY C
RETURN SUBROUTINE SEE,14,1,

C
C

END
C A SUBROUTINE 10 CALCULATE THE MATERIAL BAIa NOES i, NU 11ND /



C SEPARATOR WITh LOOIPmEN7 NUMBER =N STREAM vARIABIL:, FOIL IHE DO 10 .1.1 NC
C INPUT STREAM AND THE SEPARATION FACTORS IBETAJ'S) MUST Al l 10 S.S.EQPIN J)
C BE SPECIFIED OR CALCULATED FOR UNIT N BEFORE CAL( INC THIS FINT2=FNIFS.R
C SUBROUTINE N2=IEQPIN,21
C FLOWIN2)=FN2

COMMON /SI/ NS NSIN1301.FLow)301,NC.CNAmE,20) Co13P130 tor DO 20 J=1,NC
COMMON /El/ NE. NEQP1201,ECINAmE1201,ECIP420.201 TEoP,20 8) 20 COMP(N2,J1=(COmPIN1 JIFNIKEQPIN,J11R)/FN2
REAL F(4,101 RETURN

C END
N1 =1EQPIN,11 C
CALL CHECKStNi) C
IF(IECIPIN,E11 GT 21 GO TO 100 C
S=0 SUBROUTINE SPLIIIN1
DO 30 JK1,NC C

30 S=S.(I 0-ECIPIN,J)1COMPINI JI C A SUBROUTINE TO CALCULATE THE MATERIAL BALANCES AROUND A
FNI=FLOWINI) C SPLITTER WITH EQUIPMENT UNIT NUMBER =N INPUT STREAM VARIABLES
FN3KFNIS C AND THE SPLITTING FRACTIONS MUST AL( BE SPECIFIED OR CALCULATED
FN2=FNI-EN3 C BEFORE CALLING THIS SUBROUTINE.
N2=1ECIP(N.21 C
N3=IEQPIN.31 COMMON /SI/ NS,NSTR1301.FLOW1301.NC.CNAME1201.COMP(3)) 20)
FLOWIN21=FN2 COMMON /El/ NE NECTP1201,EONAME(201,E0P(20.201 1E011420 91
FLOW1N31=FN3 C
DO 40 J=I,NC NI=IECIPIN,11
COMP(N2,J1=EOPIN J11COMPIN1 Ji1FNi/FN2 CALL CHECKS(1411

40 COMPIN3,J1=I1 .EQPIN.J11.COmP(N1 JIFN1/FN3 FNI=FLOW1N1)
RETURN 64=1EQPIN.B1

100 CONTINUE IFIM. GT 1 AND M If 191 GO TO 5
C WRITE15,71 N,M

DO 200 I=1.NC 7 FORMATI///5X,"IEQP(N.B1 IN ERROR FOR N=". 13/
F11.11=FLOW(1,111COmPTNt II 1 5X."VALUE SPECIFIED IS 1 ".141

200 F(4,1)=F11.11 PRINT, 'PARAMETERS AT THE TIME OF THE ERROR
C CALL WRITES

DU 205 1=2 3 CALL WRITEE
K=0 STOP
IF(I EQ 3) K=10 5 MI.M.I
DO 205 L=I NC 5 =0
F11,L)=E1 i L14EUP(N,K.L) DO 20 J=2.mi

205 F(4 L)=F14 LI-FII.L1 NJAIEQPIN,J1
C FLOWINJ)=ECIPIN J)'FNI

DO 210 1=2,4 S=S-LFLOWINJ1
K=1E01.11,4,11 DO 10 J1=1.NC
FLOw1K1=0 10 COMPINJ,J11=COmPINI,J11
DO 210 L=1.ETC 20 CONTINUE

210 FLOWKI=FLOWIK»F11.L1 IFIABSIS-FNI1 LT I 0E-081 GO TO 30
C WRITE16,251 IEQPIN,JI,J=2.M11.S N

DO 215 1=2,4 25 FORmATI///2X."SPLII FRACTIONS 00 NOT ADO UP TO I

K=1E01.114,11 1 2X.7F10 4/5X."FOR EQUIPMENT =",I41
DO 215 L =1. NC PRINI, 'PARAMETERS AT THE TIME OF THE ERROR

215 COMPIK.LIAFII I 1iFLOWIKI CALL WRITES
C CALL WRITEE

RETURN STOP
ENO 30 RETURN

C END
C C
C C

SUBROUTINE REACIN) C
C SUBROUTINE MIxERIN1
C A SUBROUTINE TO CALCULATE THE MATERIAL BALANCES AR00ND A C
C REACTOR WITH EQUIPMENT UNIT NUMBER =N C A SUBROUTINE TO CALCULATE THE MATERIAL BALANCES /.ROUND A
C STREAM VARIABLES FOR THE INPUT STREAM, THE STOICHIOLLEIRIC C MIXER WITH EQUIPMENT UNIT NUMBER =1,1 INPUT STREAM VARIABLES
C COEFFICIENTS AND THE CONVERSION FRACTION MUST ALL BE C MUST ALL BE SPECIFIED OR CALCULATED BEFORE CALLING THIS SUBRouTINE
C SPECIFIED OR CALCULATED BEFORE CALLING THIS SUBROUTINE C
C COMMON /SI/ NS NSTRI301,FLOW130).NC,CNAmE120) COmP(30 20)

COMMON /SI/ NS NSTR1301 FLOW(301NC CNAMEI20,.COMP130 201 COMMON /El/ NE NEOP(201.EONAME4201,EQP120 .20) TEQP120 81
COMMON /El/ NE. NEQP(201 EQNAME(201.EQP420.201 1E0P120 81 C

C
NIATEOPIN,11
CALL CHECKSNI,
GAMMAKAEOPfN 20)
F=IEQP(N,11)
SK=EQP(NKI
FNI=FLOwIN11
F1,-GAMMAK.COmpiNi K).FN1/SK
(FIR GT 0 I GO TO 24
WRITE(6.461 NR,SA.GAMMAK

46 FORMATI//2x"CONVERSION SPECIFICAIIONS AND;OR INLOI PARAmLILWj
I 2X,"ARE WRONG FOR REACTOR . 12,/2) "REACTION RATE E14 4
2 2X."STDICHIMEIRIC COEFFICIENT FOR CONVERSION =" F/ 2:
3 20,"CONVERSION ..FS 3)

'PARAMETERS AT THE TIME OF 1HE ERROR
CALL WRITES
CALL WRITEE
STOP

24 S.0

M=IEQPIN.B1
IFIM GT 1 AND M LT 71 GO 10 5
WRITE16,71 N.M

7 FORMATT///SX..TECIPIN.BI IN ERROR FOR N=".I3/
I 5X,"VALUE SPECIFIED IS
STOP

5 DO 10 1.1.m
N1=IEQP(N,I1

10 CALL CHECKSIN1,
S1=0
DO 20 I=1,m
FN=FLOWTIEQP,N

20 ST=SIFFN
FLOwIlECIP(N 711=51
DO 30 J=I,NC
S2=0
DO 25 K=I,M
NK=IEQPIN,K)
FK=FLOWINKI



25 52,52,COmP,NK , I1FK C A SUBROUTINE TO WRITE THE EQUIPMENT PARAMETERS
30 COmPlIEQP(N.7) ) 52/si C

RETURN COMMON /El/ NE NEWP1201.EONAME1201 EQP120.201.IEQR I 8)
END C

C WRITEIB 101
C 10 FORMAT( / /2x .EQUIPMENT PARAMETERS ° 4x,
C 1..

20
21); EQPT] .211/1EQPIT,21.,

HSUBROUTINE CECKSINI)
C 20 WRITE16,301 NEOPTII.ECINAME111 TECIPTI.J1,3=1.211/.TIELiptl .11 A.1.B
C A SUBROUTINE TO CHECK THE CONSISTENCY OF STREAM VARIABLES 30 FORMAT1/.14x." MODULE /, I-,I2-. . AID
C OF STREAM NI THE SUM OF MOLE FRACTIONS ARE COMPARED TO I 1 .

WRITE 16,331
"/ X 3.1X.10E10 3./ 1.10E10 3./ 61H 1)

C
COMMON /51/ NS NSFRI301.FLOW1301,NC CNAMEI201 COMP.30 20) 33 FORMAT) /)
COMMON /E 1/ NE NECIP1201.EONAME1201.EQPT20 20.1EQE.120 RI RETURN

C ENO
LL=0 C
EPS=1 0E-02 C
FNI=FLOWINII C
S=0 C
DO 10 J-1,NC C
S=SECOMPIN1.71 SUBROUTINE SIMS0111.12.13.1P,NSIGT

10 CONTINUE C
IFIABSIS-1 ) LT EPS AND ENT GT EPS) GO TO 30 C A SUBROUTINE TO SOLVE MASS BALANCES USING THE SlmoTTANLoos
WRITE16.121 C MODULAR APPROACH IF THE PROBLEM HAS CONSTRAINS SoBRoolINL

12 FORmAlf///2x . STREAM VARIABLES ARE UNSPECIFIED HR 1511INS IsiENT-1 C SPEC MUST BE USED WITH SUBROUTINE SIMSO
50 LL=LLti C

IC=104ILL-Ilki C II TOTAL NUMBER OF STREAMS TORN
IE=11_410 C
WRITEI6,15) ICNAmE171,,J=IC.161 C 12111 NUMBER OF EACH STREAM TORN 11=1.111

15 FORMA11//lx''STREAm VARIABLES "/IX1451H".2x 'I-12M' 11)121 5,T C
wRIIE16,201 NI FNI. ICOmPIN1 JI,J=IC.IET C 13 TOTAL NUMBER OF CONSTRAINS

20 FORmATI21 12 Ed 2.10E7 4) C
IFINC GT TO AND LL EQ II GO TO 50 C IP PRINTING PARAMETER FOR IP=1 NO PRINTING OF SIRE../.1
STOP C OR EQUIPMENT PARAMETERS BEFORE SOLUTION FOR 1:2

30 RETURN C ONLY STREAM VARIABLES ARE PRINTED FOR T,..3 .

ENO C EQIPMENT AND STREAM PARAMETERS ARE PRINTED
C C
C C NSIG DESIRED ACCURACY OF SOLUTION
C C

SUBROUTINE WRIIEE EXTERNAL FCN
C COMMON /SI/ NS. NSIR(301.FLOW130).NC,CNAME1201.COmP,30 2)1)
C A SUBROUTINE TO WRITE THE EQUIPMENT PARAMETERS COMMON /El/ NE.NEQP120).ECINAME1201,E01.120.20I.TEQP120 61
C COMMON /TAAI/ NI,K121201.N3

COMMON /El/ NE NEUP1201,EQNAME(201,EQP120.20 TEQP120 L, COMMON /16B2/ N41201.N51201.1461201.N7120),N61201 091201 F I)201
C COMMON /ITT, LIT,INT

WRITE(6.101 DIMENSION 8150).F1501.121111,WKI14001
10 FORmAt(i/2X-EQUIPMENT PARAMETERS ..40 IN1=2

" 12 x ECIPTI.J11/1EQPII,J)") MS=2
DO 20 1=i NE IIMAX=300

20 WRITE16.301 NEOPIII.ECINAME111,1EQPII ,J) J.1 20) $1E,41,1 .1) 7.1 a) N1=11
30 FORMAI1/.14X" MODULE // I" .12 "I - A10 N3=I3

I "./.10F6 3./ 10E6 3 , HITS 3.1,11 N=NC.1111,13
WRI1E(6,331 00 I 1=1 NI

31 FORMAT(/)
irs11,(I'UA lluRN

END 1 4111-11.14c.L,FLOWiN2IIIICOMPIN2111.L1
C IFIN3 LE 0) GO TO 3
C K=0
C 00 2 1=I+NC111.N

SUBROUTINE WHITES X=XEI
C X(1)=FLOWIN41KII
C A SUBROUTINE TO wRitE TOE STREAM vARIAB1ES IFINSIK) EQ 0) GO TO 2
C xItTrEQP1N41K,,N51K11

COMMON /si/ Ns NsiRt30),FloWi300.NC.CNAME120) CUMP130 201 2 CONTINUE
C 3 CONTINUE

LL=0 C
50 LL=LL.I CALL THREElx.F.N IPI

IC=ILL-1,1i0,i C
IE=IL10 CALL MPOLMIECN x.F,N WK,ITMAx,NSIG so
IFINC LE 1E) 1E,NC C
WRIFEI6 .101 CNAMEJI.J=IC IEI WRITE16,200)

10 FORMAT) / /IX.-STREAM VARIABLES 'ilx.EISTR' ow" 10121 AIJIT WRITE16,300) IlmAX INT
WDO 20 I=1.NS RITE16,2001

20 WRITE16.30I NST-14(1) FLOW) 10.(ComPti.Ji .1-IC 14, -200 FORmAT(IX,/."
30 FORMATII2 .F13 2 10F1 4) I

.

IFINC GI 10 AND Ll. EQ I) 60 10 50 300 FORMAT('./ 10. "NUMBER OF SIMULTANEOUS ITERATIONS ',' 14 ,

RETURN I IOX..NUMBER OF SEQuENTIAT ITERATIONS = 14 1

END RETURN
C END
C C
C C
C C

SUBROUTINE WRITE/TT, 1.1_21 C F.'
C SUBROUTINE SPEC,N3 NAME NuE.NUP NACU. NUS Nco vAi 1

\JD0



C A SUBROUTINE 10 SEECIF( ALL THE CONSIHAINS 11.1P USED 10 1HE
C PROBLEM

C N3 TorAL NUMBER OF CONSTRAINS (MAX or
C
C 1=1 N3
r.
C NAME NAME OF HE mODULES WHICH HAVE EQuipMFNI pARAmLIERS
C MANIPULATED IF A FLOW RATE IS mANIPOLAILD
C SET NAME(11.FLOW'

C NUETII NUMBER OF MODULE OH FLOW HATE

C NUP1I1 NUMBER OF THE EQUIPMENT PARAMEIET) mANIPHIEIED FOR
C EOPIL J), . IF A FLOW RAZE IS MANIPULAIED
C SET NUPIII.0 (THIS IS VERd IMPORTANT)
C
C
C NAC0i11 NAME OF THE CONSTRAINS BEING (MOWS LA I1HFHE ARE FOR
C TWO POSSIBILITIES 'FLOW' FOR FLOW RATE OR 'COMP' FOR
C COMPOSITION
C
C NUS! I! NUMBER OF TILE STREAM WHICH HAS THE CONSTRAIN NAC041 1'
C
C NC0111. NUMBER OF 1HE COMPONENT BEING SPECIFIED IF IHE SPECIFI-
C CATION IS FLOW RATE .SET NCO(1)=1

C SALM NUMERICAL VALUE OF IHE CONSTRAIN

INTEGER NUETN31.NUP1N3I NUSIN31.NCOIN3I
REAL VALIN3)
CHARACTERI4 NAmEIN31 NACO(N31
CHARACIERFID.NPR)201
COMMON /T002/ N41201.N51201,N61201.N7120/ Nt0201 N9,201 11.20J

DO I 1 =1 NI
N4iI1=NOEII)
NBII1=NUSIII

IFINAmE111 EQ 'SPLI'J THEN

GO 10 I

ELSE
C

IF(NAMEIT) EQ ifflAc') THEN
N6I11,-3
1,151 1/.NUPTI,
NPR(II='REACIOR'
GO TO I

ELSE

C

IFINAME11) EQ 'SERA', THEN
N611)=2
E15111=NUP11)
NPR(11.'SEPARAIOR'
GO TO I

ELSE
IF(NAMEII) EQ 'FLO THEN
N6111=4
N5(1)=NLIPII1
NPR(11='FLOW RATE'
GO TO I

ELSE
IF(NAMEIII EU 'USE1') THEN
N6! I1 =1
N511)=NUPII1
NPR111='USER 1'
GO TO I

ELSE

IFINAMEII) EQ 'usF2 THEN
NE(I)=2

NPRII,'USER 2'
GO TO 1

ELSE

WRITE(6100,1W.miti, 1

ENDIF

C

C

C

C

C

E NO IF
ENDIF
ENDIF
ENDIF
ENDIF

I CONTINUE

100 FORmATt/ IOX.'CIIECK SPELLING FOR fl,A4."I".I2

DO 2 I=1,N3

IFINACOII) EQ 'FLOW') THEN
N71 I1 =1
N9I1).1000
GO TO 2
ELSE

IFINAC0111 EQ 'COUP') THEN
N7111.2
N91 11=NC0111
GO TO 2
ELSE

IFINAC0111 EQ 'USER') THEN
Ni(1)=3
N911).1000
NAC0111.'NONE
GO TO 2
ELSE

WRITE(6.100)NAC0111 I

ENOIF
ENDIF
ENDIF

2 CONTINUE

WRITEI6.200,
200 FORmATIIX "

WRITE 16.50)
DO 3 1.1 N3
IFIN9111 EQ 10001 GO TO 4
WRITE16.101 NPRiit NUEI II. NAC0111 NE1111 N91 I! VALIT
GO TO 3

C
4 I EQ 31 THEN
WRITEI6 30) NP 2111 NACOtet

30 FORMATTBX.A10 2x "###",6x,A41
GO TO 3
ELSE
WRITE46,20, NPRI, NUEIII,NAC0111,N6(1),VALIII
ENDIF

3 CONTINUE
10 FORMATI/E1X A10 2X I3,6x A4 "t",I2 "" 12 "12 FLO 41
2,3 ,ORMATI/8X A10 2X 13 6X,A4,"1",I2 ") ,F10 4
SO FORMAII/2. "MODULE MANIPULATED I CONSTRAIN

RETURN
END

C
C
C
C
C

SUBROUTINE FCNX.F NJ
C
C SUBROUTINE FCN CONTAINS THE SySTEm OF NUN! 'NEAR
C EQUATIONS BEING SOLVED THIS SUBROUTINE IS USED
C 01 SUBROUTINE MPOLm
C

C

DIMENSION XIN)FINI
COMMON /fAAIL NI. N2 t 20 I .N3
COMMON /1-602/ N4t20),N51201.N6120,.N7120) Na I. N9,20; F1120,
COMMON /ITT, FIT.INT
INT.INTyl
IT.1

1E11,3 LE Op GO 10 10
CALL IEARitx F I1. N,
CALL CONTIIX F II NI

DO 20 1.1 N
20 IFtN7(1) EQ 3, 1171T- I



C 5 FLOWIN44111 ir,
CALL FSISix F IT NI IT=ITTI
17=1 GO TO I

CALI. YEARWI F II NI C
CALL CONT01,1 F II.N1 10 00 2 ,12.1EQPIN4111,81
LIT=1T EQPIN411),31.01111
RETURN SP=SPFx1ITI

10 CONTINUE 2 11,117.1
IT=I EQPIN4111,IECIPIN4111.8111=1 -SP
CALL TEARI,x F IT NI

I CONTINUE
LIT=IT RETURN
CALL FSISIx F.IT. NI END
IT.' C
CALL TEAROIX F II NI C
RETURN C
END C

C
C

C
C
C
C
C

C
C

C

SUBROUTINE TEARI AND CONTI ARE USED 10 ASSIGN THE. VisLOLs
CALCULATED BY MPOLM TO THE PROCESS VARIABLES

SUBROUTINE lEARO AND CONTO ARE USED 10 CALC1,11.1F
FUNCTION VALUES

SUBROUTINE TEARIlx,F IT.N1
DIMENSION XINI.F1N1

COMMON /TAAI/ NI,N21201,N3
COMMON /SI/ NS. NSIR1301,FLOw130p NC.CNAmE120) cOmP130 2111

3.1=111
LL=IT
CO I 1=1,NI
FLOwfN21111=0
DO 2 L =1 NC
FLOWIN2I111=FLOwIN2,1)),x(ILI)

2 LL=LLTI
DO 3 E=1,NC
COMPIN2III,N1m1R(JJ11/FLOWIN2IIII

3 33=331
I IT.ITNC
RETURN
END

C

SUBROUTINE CONT(MxF,II.N1
COMMON /SI/ NS NSTR1301.FLOW130I NC CNAME120. cump,30 201
COMMON /TAAI/ NI.N2I20I,N3
COMMON /7802/ N4(201.55120).N6120o N71201.N81201 N9.20i Vi,201
DIMENSION XIN,,FINI

00 I I=1.N3
GO TOI10.20 11 N71I1

C
10 FIIII=FLOW1N81111 -F1111

IT.IT.I
GO TO I

C
20 F1111)=COMPIN8III N9,111-F1111

IT=ITI
1 CONTINUE

C

C
C
C
C

C

RETURN
END

SUBROUTINE IHREE1X F N IPI

COMMON /SI/ NS,NSTR1301,FLOW1301 NC CNAMEI20 COM .30 201
DIMENSION RINI FIN)
COMMON /TAAI/ Ni.N2120),N3
COMMON /ITT/ LIT. TNT

C
C

2
CALL FCNIx,F.Ni

C IT=LIT
C DO 10 1=1.2

SUBROUTINE TEAROIX.E 1T,NI 10 CALL FSIS(X.F IT,NI
DIMENSION XINI.FIN1 iM1501 C
COMMON /S1/ NS.NSTRi30).FLOWI301 NC CNAMEI201 COmP130 201 111z1
COMMON /IAA,/ NI. N2(20I.143 DO 20 1.I.Ni

C 1,142(1)
DO I 1=1.NI DO 30 K=1.NC
J=N2i11 XIII1=FLOW1L11COMPIL.K1
JG 2 L=I,NC 32 ,7.11.1

2 FMIL1=FLOW1Ji1CumPti LI C
00 3 L=I,NC 20 CONTINUE
FIIT)=X,III-FM(LI GO TO 170.50.601.1P
11=1'41 50 CALL WRITES

3 CONTINUE GO TO 80
I CONTINUE 60 CALL WRITES
RETURN CALL WRITEE
ENO 80 WRITEI6.2001

C WRITEI6,1001
C READ.,NNN
C 200 FORMATI1K./."
C )

SUBROUTINE CONIIII F IT NI IFINNN EQ 101 STOP
COMMON /El: NE NFOP1201 EQNAME,201 EQP120.201 IFQP1211 81 TOO FORMAT( /.51 "RESULTS. AFTER 3 SEQUENTIAL ITER4)IONS
COMMON /SI/ NS NSTR1301 FLOw1301,NC.CNAmE1201,COMPIA0 20. ./.51."IF YOU WANT 10 STOP THE PROGRAM AND CHANGE
COMMON /TAAI/ NI.N21201,N3 */.51,.INITIAL GUESSES ENTER 10 AS I APPEARS ., /I
COMMON /TEI02/ N41201.N51201,N61201.N/1201 N8.201 N9,01 I-1)AI) 70 RETURN
DIMENSION X1N, FIN) ENO

DO I 1=1 N3
SP.0

IFAN6111 EQ II GO 10 10
IFIN6III EO 41 GO ID 5
EQPIN411/.1).151111 =,111)
17=17+1
GO TO I



C
C
C

-1.) L. IA

vi-7:Hstori

SUBROUTINE mi-ORmITCNx F N B IIMA410G1 MS)
REAL 5INI,FINIB1N,N1 OT(150).P41150,,PS1 45G)
REAL GII501 EN1150)cp19)
REAL 011501.131411501.03(60001
REAL LAMB
INTEGER 113)150)

C

C

C

C CCOMMON /SETA/ 101 C
IF(IRI LT 0 ON 1141 GI 1000) 1HEN C CALCULATE SEARCH STEP
101=50 COvAL,1000 00 20 14i.NELSE F411=F1111.13F(1)
OvA1,10 DO 20 L=I,N
ENDIF 20

MEN
1311 L1=1311.1110E11/
PNJ=EUCNIF,141

IF)MS NE li EN C
DO I 1=1 N WRITE19.9001111311j.),L=1-141.1,1 NI

I DFII)=I WRI1E19.90011014111.1=1.191
ELSE WRITE19,90011XII1.1=1.N1
ENOIF wRITEI9.900;iF1111=1.N)

WRITE19.900110FtII 13.1.41)
DC0,1
DO 2 IN MG! WRITE19.9001SK.S41.DELTA

WRITE19.9011V DO),OG1/10 WRITE18,9011
C HT IS THE MACHINE EPS1ON C

901 FORMAT(104..NEW JACOBIAN")
C C DECOMPOSE JACOBIAN INTO LTU FACTORS

HJ=6 E-8 CPAI,HJ3SORI1126 ) CALL FACLUiB Ii..N)
PA2=1 /128 C

DO 450 1=1 N
1(11{44x110,14.4)1 D15111=811.1)
ICON=0 450 811.11=1

DO 3 1=1
C

9 150 CONTINUE
3 C0111=1

10E1=0
DELHOL=DELTA

C
C
C SOLVE LINEAR SVStEm

C EI.ILUAII N G T 1011 JACUBIAN C
G111=-F111,14 I»

10(1 CONI1NOE DO 400 1 =2.N
CAL) FC4)14F NI FAC=0

C DO 401 2,1,1-1
DO 6 1=1,N 401 FAC=FACEETII.J/101J1
IFtABS(F,I)1 1.1 iE 441 F110,0 0 400 0II1=-F(IPIIII-FAC

6 CONTINUE PKIN)=C1N1/01AINI
DO 405 I=N. I 1,-1

DO 10 1=i N FAC =O
HMU3AB51x1I ri 00 406 J=IT1 N
,--, 3 MA X (NNW ,-, 1 ) 405 FAC=FACH311T,ITIKIJIPA4,PAIIP43 405 .'1.11',IGIII-FAC1/01A11
TEHP,X111 C CALCULATE CORRECTION STEP 113E)
X0=X111EPA4 CPA4=A0 -TEMP 160 PC1=EUCNIPK N)4111=x0 CCALL FCNIX FN N, IRV=04111,1EMP IFIDELTA GE PCII THEN
DO II L=1 N IRV,'
IFIABSIFNIL)) 1 1 14, 141 101)130 GO TO 29

11 BIL 11=1E1111 , F(L/i/PA4 ELSE
10 CONTINUE END IF

JFIAG=1
TAU= I

CALC01.14, INII1AL S1 EP BOUND

IF, ICON EO 01 MIEN
PB1=ELICNI0 NI
PEII=P6111R1/100

PB2=MINIPB1 0A.A1
IF(N.GT 101 PB2,P01
DELTA=P132
ELSE
DELTA=SEARCM
E NO IF

IF /MS EC1 2) 11115
DO 15 I=1,N
HOLO=0 0
DO 16 L=1,N

16 IFIABS1131I.1 01 GE 1101131 HOLD=ABS1611 LI)
0E11141 /HOLD

15 CONTINUE
ELSE
END1F

11=0
1FLAG=0

C
C OBTAIN



DO 410 ii N PG2,EUCNIFN NI
410 011 1,-F(IP11,1 PG3=EUCNIF NI

Do 411 1=1 N-I SKI=PG2.PG2
11010.0 51(=PG3PG3
DO 412 L=1.1 N TEISKI LT 1SK.9 999)1 MEN

411 HOLD,HOLD46, 1).0,1 1 11.11-1
4)1 0111.13(11.11010 IFIII 1_1 01 11,0

130 415 1,-1 N ELSE
415 G111.01.111,011 1 11=11.1

DO 416 1=1,N-1 ENDIF
DO 416 L=1+1 N IFIIM 1.1- II/ IHEN

416 GIL ,D,L1,131 1 11 Q1 Ir PRINT... CONVERGENCE IS 100 SLOW
PRINT', CHANGE INITIAL GUESSES .'

PC2=EUCN1G NI SSS=SSS/PP
PC37PC2,PC2 STOP

C ELSE
DO 420 1=1 N ENDIF

420 0111=1314111,C,I) C
DO 421 1=1.N-I C CHECK WHETHER A NEW EALUAT ION
DO 421 L=1.I N C OF THE JACOBIAN IS NEEDED

421 D,1,=WII/.811 I ',Gill C
DO 422 1=1 N IFLAG=0

422 PSI 1,0111 DO 40 1=1.8
00 423 1.2 N HOLD=CG(1111
DO 423 L=1 I 1 40 CGIII.HOLD

423 PS11/.PS(11.011 1.1,0ILI CG191=SK
C

PC4=EUCNIPS NI 1FIICON LT 101 THEN
PC5=PC4PC4 (FM GT 31 IFLAG=1
PC6=PC3/PC5 ELSE
DO 24 I=1 ,N RI=SKI/CGI51

24 PS11)=0111,PCE R2=sORTICG15)/CG(Ii,
POI=EUCNIpS NI IFIR1 GT R2 OR II GT 31 TFLAG.1
1E11.01 LT DEL1A) Go TO 28 ENDIF
PD2=DELTA/PC2 C
DO 25 1=1.11 C IF (FLAG IS . TO I ,TANO,

25 P1,11/PD21011 i C FIRE) AS SEEN REDUCED Si A
GO TO 29 C FACTOR OF TWO A NEW JACOSIAN

28 CONTINUE C IS EVALUATED iRENEWED1
C C
C EVALUATION OF A11-0 PG2I=PG2
C PIKABSIPG2-PNKI

PE,PCI.PCI 1F1ABSIPI/PNJ/ IT HJI FG21F.KIJ
PF2=P01.601 IFIIFLAG ED 1 AND 1F.Nj/PG211 GI 21 AO TO 100
PE3,0
PE4=0 IFiSKI LT SKI GO 10 47
DO 26 I=1,N 00 41 1=1N
PE3=PE3,PKIII-PS1111.PStio 41 XII1=4111-PKti)

26 PE4=PE4.PKII)PSIII 47 CONTINUE
C C

PE5,,DELTA.DELT C
PE6=IPEI-PE5,,PE5PE2).1PE4-PE514(PE4- PEST C UPDATE DELTA
PE7=SORTIPE61 C
ALFA=1PE5-PE21/IFE3.PE71 IF(IRV E0 II THEN
PF1.-11 -ALFA1 DO 428 1=1 N
DO 27 I=1 N 428 G111=-FIT)

27 PKII/KALFA.PKil i.1,111.PS111 ELSE
29 CONTINUE DO 430 I=1,N I

PC1=EUCN,PK NI 0111.014(1),PK,11
C DO 430 L=1.1,N
C EVALUATION OF F1A1,1,P1.1 430 011)=011/811 LI,P6111
C 01N1=DIAINI.PKINI

DO 30 1 =1 N DO 435 1=2,N
MIII.A111KPKiII HOLD.0111

30 CONTINUE DO 436 L =1, I.1
WRITE17.900,,x,i, 1.1,N) 436 HOLD=HOLD,61,T110111
SCE=EuCNIX,NI 435 GIIP1111=HOLD
DOTF,,SORI(DGT) 0111,11111.1311/
HOLD,MAXII SCE. ENDIF
OCTC,OGT.H01.0 . C

C IFIJFIAG EQ 1 AND SKI GE SKI THEN
CALL FCNIAFN NI CC
PG1=EUCNIFN NI EIL=0

C DO 42 I=1.N
IFIPG1 LT DulF AM/ PC1 1.I 0GI1. MEN 42 BL.BI,FIII,G,I,
ITmAX=ICON BL=2 'BL
RETURN CL.SK
ELSE AL=SKI-6L-C1
ENDIF LAMB= -B1 /12 ,I.1

C PH3=mAXIO I LA1481
00 31 1=1.N DEL1A=PC1.1.113

31 FN111,4N111.111- III C
C 1F1SKI LT SK AND 10E1 KU (II THEN
C SEARCH=DELTA



C

C

10Li-1
ELSE
END1F

IFIDELIA II 11 FL1101 1 1.3=1
1F1PG2 GU 11 51PG311 GO 10 160
GO 10 200
ELSE

IFLIRV EN II THEN
PH4=0
ELSE

00 44 1=1 N
44 0111 =El /11G)1)

PO4=EUCNIQ.N1
PH4=PH41004
ENDIF

Dm=SK-SKI -U 1,(sT 6141
IFIDM LT 01 !HEN
DELIA=PC1/2
TAO=1
ELSE
PTP=0
PIS=0

IFIIRV EU I1 HIEN
PTP=PG2IP02
PIS=PTP
ELSE
DO 46 1=1 N
HOLD.FNIII 0111
PTP=PIPTA8SIFN,11,HOLOr

46 PTS=PISTHOLD111010
ENDIF

200

pj1=1=1P+SLIFtrip10161P=OmP1so
IAm8=SORTII .0m/6,11
AMO.MINI2 LAHTI 1A0)
TAU=LAMB/AMO
DELIA=AMoIPC1
CFI DELTA LT DEi H01 I IA0. 1
ENDIF
ENDIF

CONTINUE
JELAG=0
IFIICON GT IlmAA, 60 TO 300
ICON=ICONvi

WRITEt8,9001I1011.v1 L=1 NI 1 =1. N1
WRI1E18.90011016(11,1=1.N)
WRIIE18.9001161111=1.N,
wiTTIE18.90011F1111=1,N
wRITEIB.900110FIII 1=1 NI
WHIIE16.9001SK.SKi DELIA

900 FORMATI1011X.O12 611

IFtS61 LI SF AND 10E1 EU Oi IHEN
SEARCH=DFLTA
10E2=1
ELSE
ENOIF

C THE JAC 51-0 will_ BE OPOAlf HI
C 191-1010EN 5 ALGORITHM

C

C

D111 =0
DO 50 IN N

50 061=06TO=K1C11=6,1)

WRITEI9 900111=611 1 I-i NI
IFIIRV EQ I; IoLN
DO 51 I=1 N

51 0111=F11111
ELSE
DO 52 1=1 N

52 0(11=F6011-F,11 1,1 1
END IF
WRI1E19 9001,0i I-1 N)

DO 53 1=1,N 1

00111=PKIII/oxl

C

C
C

C

C

C

C

C
C
C
C
C

G111=011Pi I
DO 53 L =111 N

53 1311,1 1 =1311 0111)11

GIN)=01iPoN,
PKINi=P61N1,061
WRITE19 900,1,6111 1=1,N1
WRITE19.90011FM.1=1,N1
WRITE(9,9001ITN11/ I =1, N1
1=1
68111=1
DO 55 L.2 1N1N,4.11

55 681L1=0

80 CONTINUE

PTS=0
6=-1
KI=N-1+1
DO 60 16=1,1
PTS=PTSTX811.1,G1m)

60 K=KTKI

01611)=P14111011i, ,,,prs
IFII EQ NI GO TO 65
00 62 M=1 ,N

62 CIIMI=P61111G1H,

M=I
00 70 L=1 .I
FIL1=881M1

70 M=MTKI
M=1
DO 63 L=1 1

DO 63 J=1 N 1

X61M1=6BiMI 1 8 I IiIFIL1
63 M=MTI

6131M1=1
DO 71 L=16.1 H111

71 68111=0
HOLn=p6Ii,
00 64 J=1,14-1

64 PKijI=PKIJI11 8 1,1/JITHOID

61=61-1
DO 65 J=1,14-1
811,1631=811.113 I1Pk1JI*PIS'DIAIII
1-1010=0
K=3
DO 66 M=1.I
HOLO=HOLOT1016110,m,

66 K=KTKI
0010=HOE0 T011.J1

65 811.3,I1=13(113.1)T1101 0/019111
HOLD=PTS/DIA1I)
DO 67 M=1,1,1

67 Glm1=G1m1-HOLD1311.1I
1=111
GO TO 80

85 CONTINUE
WRITE 19,900111611 I 1,1=1 NI 1=1.NI
WRI1E19,90011DIAf11 IN NI

DO 66 I=1,N- 1

F111=06(11
DO 66 L=ITIN

86 011,11=811 I ,11)IA41,
FIN1=FNINI

GO TO 150

300 CONTINUE
PRINT NO CONVERGENCE IN 10666 11E146 110N,"
PRIN11,. CHANGE INITIAL GUESSES OR USE ANUIHER soh0ooilm
SIOP
ENO

FUNCTION LOTIN EvALUAIES 1HE EucLIDIAN NOMA



C OF A vitclim OF DIMENSION N IPi IJ1=IPIKI,
C
C

IP(KII=TAux

FUNCTION LOCI,D, DO 60 J=I.N
REAt 11J1 X.A(IJI
SS-0 AIIJ1vA,K11
DO I 1=1 J A IF I I= x

SS,- SS T ( I 1'1111 K I = K 1 *N

I CONTINUE 60 I J. I J .F.1

EUCN= SORT 151, PER( IPIVOI , , 1_,-.,, IT

RETURN 70 PER ( I ) = IP I1/OT

END IF( II -N1 GE 01 GO TO 100
C I J. 10 v I

C I

C
C

SUBROUTINE FAIN ('IA 1P,N,
C KO=10N
C THIS SUBROUTINE FACTORS MATRIX A INTO A PRODUCT DO 90 K=IPI N
C OF A LOWER TRIANGULAR MATRIX L AND AN UPPER TRI KlvTOKK
C ANGULAR Ii i HAS UNIT DIAGONAL WHICH IS NOT $TOTTED ATKII-KAIKII,
C 1E11-11 110 90 75
C FROM IBM PROttRAmmER'S MANUAL 75 IJ=I
C STSTEMt360 SCIENTIFIC SUBROUTINE P,C,AGE KIvItOtt
C (360A-Cm-03X1 VERSION III 119661 OP=A(KII
C DO BO J=1 .IMI
C USAGE KJ.KO.J
C A IS i)iv mAIR1X INUICti ONE WANTS TO FACIOR19E 01,ADP-AllxTTATFJT
C THE MATRIX IS STORED COLUmNWISE BD It1=1.1.14
C IP CONTAINS A PERMUTATION VECTOR ON OulPul AIK11-,DP
C PER IS USED FOR INTERNAL COMPUTATIONS 90 KE=KOM4
C 100 10.10vN

REAL AINtN1 PLHIlbO RETURN
INTEGER IPINI 110 wRITE(6.1201

120 FORMAT(//.50 FACLU CAN NOT SOLVE THIS PROBLEM"
C COMPUTATION OF WEIGITIS FOR EQUILIBRATION CHECK INPUT PARAMETERS OR USE ANOTHER-
C

DO 20 I=1 N
2 /.5x SUBROUTINE '',//1
SSKSS/0

1E1(11.1 RETURN
IJ,I
K=ABS,AtIJ11

END

DO 10 J,2 N

TO IFIABSIA1131, GE Al X=ABStA1311
!FIX LE 0) THEN
PRINT. A ROW IN THE INPUT MATRIX IS NULL'

C
C
C

C
C
C

C
C
C

C

ELSE
ENOIF

20 PERM, /x
10,0
OCT 100 III N

IP1=-1.1

x=0

COMPUTATION OF THE ITN COLUMN OF L

DU 50 Kt-I N
KI,-10tF
DPAATKI)
IF(I-11 110 4(1 25

25 KJ=1,
DO 30 J.I Iml
13,10,J
DP = OP -A ( K .11 AIT.T,

30 KJ=KJ.N
AIKI)=OFT

SEARCH FuR EQUILIBRAIED Pivot

40 IF(TX-A0S4DP).PER,Kl1 GE 0 T GO 10 50
IP1v0T=K
K=AdSIDP,IPER)Ft

59 CONTINUE
IFIx LE 01 Gu TO ITO

PERMUTATION (IC OF ROWS IF REQUIRED

55 ITIIPIVOT-1 III) TO 57
57 KI=IPIvOr

1AUX=IPIIJ1


