AN ABSTRACT OF THE THESIS OF

Carlos C. Sanz for the degree of Master of Science
in Chemical Engineering presented on March 15, 1985.
Title: Strategies for Process Flowsheeting

Abstract approved: Hedacted for privacy

Two packages of subroutines were developed to perform material
balances on chemical processes using the simultaneous modular
approach and the equation-based approach. The performances of these
packages were compared for five different processes under at least
two conditions: one with no design specifications, and one with two
or more design specifications.

The equations arising from chemical process simulation using
the simultaneous modular approach and equation-based approach are
nonlinear. Therefore, two subroutines were developed to solve
systems of nonlinear equations using a modification of Powell’s
dogleg method as proposed by Chen and Stadtherr. One of the
nonlinear solver subroutines uses sparse matrix techniques and
updates the Jacobian through Schubert’s formula. The other uses
full matrix techniques and the Jacobian is updated through Broyden’s
formula. Both subroutines were tested with five problems and the
results compared.

The results obtained with the two packages of subroutines and
the nonlinear solver subroutines compared well with similar problems

from the open literature.

Strategies for Process Flowsheeting

by

Carlos C. Sanz

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of
Master of Science
Completed March 15, 1985

Commencement June 1985

APPROVED :

Redacted for privacy

Professor of Chemical Engineering in charge of major

Redacted for privacy

Chairman of Chemical Engineering DeparEhent

Redacted for privacy

Dean of Graduazi]School <7

Date thesis is presented

Typed by Meredith Turton for Carlos Sanz

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to Dr. Aydin
Konuk for his guidance and help throughout this work and, most
importantly for his friendship.

For the financial support, I am indebted to the Chemical
Engineering department (Teaching Assistantship, 1983-84) and to Itau
S.A. Planejamento e Engenharia (Scholarship, 1982-85). I am also
indebted to Milne Computer Center; without the grant they awarded to
me I could not perform the extensive computer work required by this
thesis.

I am thankful to all my professors at Oregon State University
-- Dr. J. Frederick, Dr. L. Garrison, Dr. J. Knudsen, Dr. O.
Levenspiel, Dr. R. Mrazek and Dr. C. Wicks -- for sharing part of
their knowledge with me. In addition, I am thankful to Dr. K.L.
Levien for the numerous suggestions, and the effort he put forth in
getting this thesis in shape!

Finally, and most importantly, I am indebted to my parents,
Cesar and Margarita, my parents in the U.S.A., Dorothy and Carlo
Rocca, and (yes, I took my vitamins) to Angela, for their
understanding, patience and love thfoughout the course of this

study. Certainly the telephone company will miss me.

TABLE OF CONTENTS

INTRODUCTION

1. BACKGROUND
The Sequential Modular Approach
The Simultaneous Modular Approach

The Equation-Based Approach

I1. SOLVING SETS OF NONLINEAR EQUATIONS
Successive Substitution Method
Wegstein’s Method
Newton-Based Methods
Implementation of MPDLM1 and MPDLM2

Performance of MPDLM1 and MPDLM?2

III. IMPLEMENTATION OF SIMO AND EQSS

SIMO Library
Subroutines to Solve Nonlinear Equations
Equipment Modules
Support Subroutines

Interconnection of the Subroutines
Example III-1

EQSS Library
Equipment Modules
Support Subroutines

Interconnection of the Subroutines

Page

13

16

X

26
34
42

52

59
59

63

69
69
78
78
87

92

Iv. PERFORMANCE OF EQSS AND SIMO
IV-1 Cavett’s Four Flash-Unit Problem
Iv-2 Ammonia Plant Simulation
Iv-3 Ethanal Production
Iv-4 Nitric Acid Plant
Iv-5 Gasoline Recovery

Final Remarks on Chapter IV

V. CONCLUSIONS

Future Work

BIBLIOGRAPHY

APPENDICES
Appendix A
Appendix B

Appendix C

Page

96
98
105
113
127
140

148

150
151

154

157
162
175

Tables

II-1
II1-2

III-1

III-2

Iv-1

Iv-2

Iv-3
Iv-4
Iv-5
Iv-6
Iv-7

Iv-8

Iv-9

Iv-10

Iv-11

Iv-12
Iv-13

Iv-14

Iv-15

LIST OF TABLES

Performance of Nonlinear Solvers (Number of
Functions Evaluations)

Initial values and Solution of the 3 Effect
Evaporator Problem

Possible Initial Guesses for Example III-1

Values of Vector ID for a Given Equipment
Module

Summary of Test Problems

Feed Composition and K-values Used in Cavett’s
Problem

Results for Cavett’s Problem
Main Programs Used to Simulate Cavett’s Problem
Solution of Cavett’s Problem

Feed and K-Values for the NH3 Plant Problem

Results for the NH3 Plant Problem

Main Programs Used to Simulate the NH3 Plant
Problem

Solution of the NH3 Plant Problem

Results for the NH, Plant Problem with One
Design Specification

Sequential Iterations Required by SECNEW

Solution of the NH, Plant Problem with One
Design Specification

Main Programs Used to Simulate the NH
Problem with One Design Specification

3 plant

Results for the Ethanal Plant Problem

Main Programs Used to Simulate the Ethanal

Plant Problem

Page
55

57

70
88

98
100

101
103
104
107
108
109

110

111

112

114

115

119

120

Table
Iv-16

Iv-17

Iv-18

Iv-19

Iv-20

Iv-21
Iv-22
Iv-23

Iv-24

Iv-25

Iv-26

Iv-27

Iv-28

Iv-29

Iv-20

Iv-31

Iv-32

Iv-33

Solution of the Ethanal Plant Problem

Results for the Ethanal Plant Problem with
One Design Specification

Main Programs Used to Simulate the Ethanal Plant
Problem with One Design Specification

Solution of the Ethanal Plant Problem with One
Design Specification

K-Values and Main Program Used to Simulate the
Modified Ethanal Plant Problem

Solution of the Modified Ethanal Plant Problem
Results for the Modified Ethanal Plant Problem
Reactions in the Nitric Acid Plant Problem

Separation Fractions as Percent of Individual
Input Flow Rate

Results for the Nitric Acid Plant Problem

Main Programs Used to Simulate the Nitric Acid
Plant Problem

Solution of the Nitic Acid Plant Problem

Results for the Nitric Acid Plant Problem with
One Design Specification

Main Programs Used to Simulate the Nitric
Acid Plant Problem with One Design Specification

Solution for the Nitric Acid Plant Problem with
One Design Specification

Design Specifications for the Nitric Acid Plant
Problem

Results for the Nitric Acid Plant Problem with
Seven Design Specifications

Main Program Used to Simulate the Nitric Acid
Plant Problem with Seven Design Specifications

123

124

125

126
127
130
130

131

132

133

134

135

136

137

137

138

Table

Iv-34 Results for the Gasoline Recovery Problem

Iv-35 Main Programs Used to Simulate the Gasoline
Recovery Problem

Iv-36 Solution for the Gasoline Recovery Problem

Iv-37 Results for the Gasoline Recovery Problem with
One Design Specification

Iv-38 Main Programs Used to Simulate the Gasoline
Recovery Problems with One Design Specification

Iv-39 Solution for the Gasoline Recovery Problem
with One Design Specification

Iv-40 Iteration Ratios

Iv-41 CPU-Time Ratios

Appendix B
B-1 Correction Step as a Function of A
B-2 Results for the System of Equations (12)

Page
142

143

144

142

146

147

148

149

166

174

Figure
I-1

I-3

I-4
I-5
II-1

11-2
II-3

II-4a
II-4b

II-5
II-6

II-7
II-8

II-9
II-10

III-1

LIST OF FIGURES

Example of Simple Modules for the Sequential
Modular Approach

Simple Flowsheet
Simple Flowsheet with a Recycle Stream

Block Diagram of the Strategy Used to Simulate
Processes with Design Specifications

Jacobian of the System of Equations I-8a through
I-8p

Successive Substitution Method: Block Diagram
and Graphical Representation

The Wegstein Method: Block Diagram
The Wegstein Method: Graphical Representation

Results for wegstein’s Method with Cavett’s
Problem

Results for wegstein’s Method with Cavett’s
Problem

The Newton-Raphson Method: Block Diagram
Ammonia Plant Block Diagram

Typical Jacobian Generated when Solving
Nonlinear Equations Arising from the
Simultaneous Modular Approach

Typical Jacobian Generated when Solving
Nonlinear Equations Arising from the
Equation-Based Approach

Block Diagram of the Modified Newton-Raphson
Method Used in This Work

Block Diagram of the 3 Effect Evaporator
Problem

Graphical Representation of the Method Used
in SECNEW to Solve Nonlinear Equations

11

27

30

32

33

13

47

53

56

62

Figure , Page

I11-2 Graphical Representation to the Subroutine 65
Used with the Simultaneous Modular Approach

I11-3 Example of a Data File Used with SIMO 66
I1I-4 Block Diagram of Example III-1 71
III-5 Hierarchy of SIMO Subroutines 76
I11-6 Most Important Operations Performed by SIMO 77
for Example III-1
II11-7 Example of a Data File Required by SREAD 89
I11-8 Flow of Information Inside EQSS . 93
Iv-1 Block Diagram of Cavett’s Problem %
Iv-2 Block Diagram of the Ammonia Plant 106
Iv-3 Block Diagram of the Ethanal Plant 117
Iv-4 Block Diagram of the Nitric Acid Plant 128
Iv-5 Block Diagram of the Gasoline Recovery 141
Plant
Appendix B
B-1 Typical 2-Dimensional P(XA) Curve in the 167
L-M Method
B-2 Typical Dogleg Approximation to the 168

P(X) Curve

STRATEGIES FOR PROCESS FLOWSHEETING
INTRODUCTION

Computer programs to simulate chemical processes are widely
used in industry for a number of purposes. Important uses include:
the design of new plants, optimization of new and existing plants
and, more recently, optimal control of processes and the training of
plant personnel.

The use of computer programs in the chemical industry started
in the mid-fifties with programs written to perform mass and energy
balances around single units, such as distillation columns,
evaporators, flash drums, etc. As computers became faster and
capable of greater storage, the programs written for single units
were integrated to simulate entire processes.

The beginning of the widespread use of computers to simulate
chemical processes started in the early sixties. At the same time,
the literature in the area started to flourish; examples of it are
today’s “classical®™ articles by Rosen (1962) and Cavett (1963).
During the sixties and seventies, the chemical industry invested
heavily in this field. Today, there are thousands of articles in
the open literature, and some journals are specific to this field.
However, 90 percent of the articles are concerned with one specific
solution method: the sequential modular approach.

Recently, two other approaches have received considerable
attention: the equation-based approach and the simultaneous modular

approach.

In this work, two packages of subroutines were developed to
perform simulations of processes through the equation-based approach
and the simultaneous modular approach. Another package of
subroutines, SIMFLOW (Kayihan, 1979), was slightly modified and used
to simulate processes through the sequential modular approach.

The aim of these packages is to serve as a teaching aid to
sophomore-level stoichiometry classes, thus, only material balances
are considered. In addition, we intend to verify some of the
results reported in the literature on the performance of various
simulation methods.

Chapter I presents a review of the three methods; the
equation-based approach, the simultaneous modular approach, and the
sequential modular approach. Chapter II presents the basic methods
to solve systems of nonlinear equations. Chapter III presents the
structure of the libfaries developed for the equation-based approach
and for the simultaneous modular approach. In Chapter IV, five test
problems are solved using all three approaches and results are
compared. Chapter V presents the conclusions and the future work.
In addition, there are appendices with listings of all programs
(libraries), a short description of a modification of an algorithm
used to solve nonlinear equations, and the equations describing

material balances used in the sequential modular approach.

CHAPTER I

BACKGROUND

The Sequential Modular Approach

The sequential modular approach uses a library of unit
operations modules (subroutines) which perform material and energy
balances. The modules are written so that each calculates its
output stream(s) variables, given its input stream(s) variables and
any other parameters required (see figure I-1).

To simulate an entire process, or a portion of it, all modules
describing the process are executed one after the other, following a
specific order. Figure I-2 shows a simple flowsheet which will
exemplify how the sequential modular approach functions.

In the example shown in figure I-2, Fi represents a vector of
stream variables: total molar flow rate, mole fraction of each
component, enthalpy, temperature and pressure. For each specific
case studied, a subset of those variables will be used. 1In
addition, each piece of equipment may require a set of equipment
parameters. In the example of figure I-2, Yo is the conversion of a
reactant and kJ is the equilibrium constant for the jEE component in
the flash drum. Assuming that Ypo kJ, and Fl are known, our task is
to calculate F2, F3, and F4.

Both modules, reactor and flash, are written so that the output
stream variables are calculated, provided that the input stream and

equipment parameters are known. In our example, one would first

U
/"—, ‘/‘%
A
s_ﬁ
SEPARATOR

F=STREAM VARIABLES
U=EQUIPMENT PARAMETERS

U
£
-

REACTOR

Figure I-1. Example of Simple Modules for the Sequential Modular
Approach

5
—

7,
K
/ %

A iy
—» —— -
REACTOR
g
—
FLASH

Y=CONVERSION
K=EQUILIBRIUM CONSTANT

Figure I-2. Simple Flowsheet

calculate stream F2 using the reactor module and then streams F3 and
F4 using the flash module. It looks (and it is!) very simple
because that is the natural order of calculations we would follow if
we were to perform those calculations by hand. This characteristic
of the sequential modular approach (following the natural order of
calculations) is one of the main reasons for its popularity among
process engineers. Given a process, it is easy to build a computer
model of the entire process using 10-20 different modules.

What makes process simulation difficult are recycle streams.
Figure I-3 shows a slight modification of the process from figure
I-2. Now we have stream F4 as a recycle, and a mixer is added.

As in the previous example, stream Fl, Yy and kJ are known.
However, none of the streams entering a module are fully known.

Although stream F, is specified, we cannot perform mixer

1
calculations because stream F4 is not knaown.

One way to solve the problem would be to *guess™ all stream
variables F2, perform reactor, flash, and mixer calculations and
compare the guessed and calculated values of F2. If the guessed
value agrees with the calculated value (within a certain tolerance),
the solution has been found. Otherwise, a new guess would be given.
This routine continues until a solution is found. It is clear that
the method is awkward. It is feasible only if there are a few
components and one recycle stream. With two or more recycle streams

and 10-15 components, the method is impossible. In the previous

example, stream F2 is known as the tear stream. There are several

an

MIXER REACTOR
-
ks
L

FLASH

Figure I-3. Simple Flowsheet with a Recycle Stream

algorithms to choose the best tear stream; an excellent review may
be found in Hlavacek (1977).

To overcome the problem of guessing new values, one has to
remember that the process is described mathematically by a series of

equations. In our example, we have:

Fy o= Y,(F) (I-la)
Fp = Y (F3) (I-1b)
Fo = U (Fy) (I-1c)
Fp = B F,) (1-10)

wl’ ¢2, and ¢3 are functions relating output streams with input
streams and equipment parameters. Clearly wl’ ¢2, and ¢3 are series
of calculations performed by the reactor; flash and mixer modules.

If we use equation I-la to eliminate F3 from equation I-1b, and

equation I-1b to eliminate F4 from equation I-1d, we get:

-
|

or
F2 = Lpll(Fl’FZ) (I-2b)

Equation I-2b is actually a set of nonlinear equations, called
stream connection equations, which can be solved using various
methods. Most commercial programs using the sequential modular
approach use the method proposed by Wegstein (1958). Wegstein’s

method is very popular because, to use the method, the equation

being solved must be in the form of X = F(X); the stream connection
equations are naturally in this form. In addition, the method
converges quickly to the solution, provided that the system of
equations has only mild nonlinearities, and each equation of the
system is dominated by one variable (Westerberg et al., 1979).

The drawback of Wegstein’s method appears when the simulation
is a "controlled® simulation (or, simulation with constraints). In
a controlled simulation, we allow one or more variables to be "free"
to meet some design specification. Let us suppose that we want the
flow rate (W) in the vector of variables F4 to be equal to some

value C. To meet this specification, Yr is a free variable. Now

the system of equations becomes:

Fy o= U Fv) (I-3a)
Fp = U (F3) (I-3b)
Fo = Wo(F3) (I-3c)
Fy = ¢3(F1,F4) (I-3d)
W= Y,Fy) = ¢ (I-3e)

The system is reduced to:

-
|

¢5(F1,F2,Yr) (I-4a)

or

-
|

wS(FZ’Yr) for specified F, (I-4b)

10

and

W= Y Fy) = ¢ (I-4c)

Wegstein’s method can be applied to equation I-4b, stream
connection equations; however, equation I-4c, the design
specification equation, is not in the form required by Wegstein’s
method, that is, X = F(X).

To overcome this problem, two levels of iterations are used.
One is internal, and the free variable Yr is assumed known. The
other is external, and Yr is manipulated in order to satisfy
equation I-4c. Typically, two different nonlinear solver
subroutines are used. For example: equation I-4c will be solved
using the secant method and equation I-4b using Wegstein’s method.
AR block diagram of this strategy is shown in figure I-4.

The internal level of iterations solves stream connection

eguations using Wegstein’s method where the unknowns are the tear

variables. The external level solves design specifications

eguations (in the example, Yr is the unknown) using the secant
method.

Actually Wegstein’s subroutine solves a series of different
simulation problems without constraints; each problem has a specific
value for Yr updated by the external secant iterations. If
Wegstein’s method performs an average of M iterations per secant
iteration to converge the tear stream, and the secant subroutine
performs K iterations for the convergence of the design variable,

the total number of flowsheet evaluations will be L = M * K.

11

GUESS
%, A
K=/

r" - - - - 7

1 l

WEGSTEINS | = —'~ T

SUBROUTINE'| | SOLVE ;

L |48 wiTH | i

J

I

N %k

ESTIMATE
NEXT

|
|
l
|
|
|
|
I
|
!
|
!
I
I
l
I
I
|
|
!
K=K+ i
|

I
|
l
|
I
|
| Y,
|
|
I
l
|
|
|

Figure I-4. Block Diagram of the Strategy Used to Simulate Process
with Design Specifications

12

Depending on the complexity of the process and the initial guesses
given, the total number of flowsheet evaluations may be
prohibitively high.

Another approach used is to insert a control module. The
control module behaves like a PID controller. The set point of the
control module will be the design specification imposed on the
system. After each iteration, the control module checks the error.
Depending on the error’s magnitude, the control module will change
the manipulated variable (free variable) according to pseudo-PID
parameters used. More details about the control module may be found
in Westerberg et al., 1979.

Although the handling of design constraints is difficult and
time-consuming, the seguential modular approach for process
simulation is widely used. As Chen (1982) pointed out, the main

reasons for the success of the sequential modular approach are:

1. The computer model of the process and the actual flowsheet
are closely related, and it is easy for the process
engineer to write the program used by the computer.

2. Each module is written to “stand alone™ so it can be
thoroughly tested, and the module can be very efficient
and robust.

3. Special programs for the different types of equipment or
nonstandard equipment can be easily incorporated into the

package of subroutines.

13

4. It is very easy to implement; it does not reguire much

computer storage (besides that required by each module).

A more complete overview of the seguential modular approach may

be found in Westerberg et al. (1979) and Myers et al. (1976).

The Simultaneous Modular Approach

The simultaneous modular approach, as it will be defined in
this work, does not differ much from the sequential modular
approach. The modules used will be the same modules used in the
sequential modular approach. However, the Newton-Raphson method (or
a modification of it) will be used to solve the set of nonlinear
equations.

In order to use the Newton-Raphson method, the set of nonlinear

equations should be in the form
G(x) = 0O (1I-5)

For example, to solve equations I-4b and I-4c, one simply

rearranges these equations to:

Now both equations can be solved using the Newton-Raphson
method, and only orne nonlinear solver subroutine will be used. It
is easy to see that we can add any constraint to the problem,

provided that the constraint has a physical meaning. In short,

14

stream connection equations (I-5a) and design specifications (I-5b)
are solved simultaneously, instead of using two levels of
Calculations. It should be emphasized that the unknowns in equation
I-5a (stream connection equations) are the tear variables. The
non-tear stream variables do not appear as unknowns in equation
I-5a.

Let u be a vector of equipment parameters, C a vector of
constraints, and T a vector of tear streams. With the simultaneous
modular approach, any process simulation is arranged to be the

solution of a set of nonlinear equations in the form:
G(T;,m,CJ = 0 (1-6)

This approach was successfully used by Perkins (1979) and Chen
(1982). They report promising results in genmeral simulations
(controlled or not). Moreover, Chen also reports good results in

optimization problems. The literature, at least the open

literature, does not report any commercial program using the

approach. Some authors mention that ASPEN (MIT and DOS) gives the
option of using the approach. Unfortunately, thus far there are no
articles in the literature about that feature.

It must be pointed out that the use of the Newton-Raphson
method for process simulation is not new. Cavett (1963) presented a
few examples using the approach; none of them were controlled
simulations. Furthermore, there is some controversy about the use
of the name "simultaneous modular.® Perkins (1979) presents the

method as sequential modular with a different method to improve

15

convergence. Chen (1982) presents the same method as Perkins as the

simultaneous modular approach. On the other hand, Westerberg et al.

(1979) formulate

the simultaneous modular approach in a different

manner. They present the approach as it was first suggested by

Rosen (1962). In that approach, each equipment module has two

different versions. One is the rigorous model, and the other is a

simple model which approximates the rigorous model. The simple

model relates each output value approximately to linear combinations

of all input values. For example, the flash unit of figure I-3

would be approximated by:

In a simulation,
linear system of

linear system to

a _F (I-7a)
a..F (I-7b)

one would start guessing all aij and then solving a

equations. Using the example of figure I-3, the

be solved is:

4 1

a,.F = 0

32 2 (1-8)
343F3 = 0

853F3 = 0

Assuming that Fl (feed to the mixer) is known, the system of

linear equations

I-8 is easily solved. Using the rigorous model of

each piece of equipment and the Fi variables just found, one

16

recalculates all aij' If the recalculated values are essentially
equal to the ones previously guessed, a solution has been found; if
not essentially equal, all aij are updated again and the linear
system I-8 is again solved. This procedure would continue until a
solution is found.

This method did not meet with much success because the linear
approximation is poor for some of the equipment. The linear model
cannot predict, for example, the influence of an inlet stream
temperature on the output streams of a flash drum. Some authors
(Mahelec et al., 1979) used a strategy similar to that of Rosen, but
used difference split-fraction models; they reported good results
with this approach. It should be noted that if one increases the
complexity of the “simple™ modules, this approach will tend towards
Newton’s method. Newton’s method linearizes all functions around a
certain point in each iteration, but all interaction between the
variables will be accounted for.

Also in Rosen’s approach, each stream is a tear stream, whereas
in the approach used in this work, we use blocks of equipment with
the least possible number of tear streams. The fundamental
differences between Rosen’s approach and the approach used in this
work are the number of streams torn and the model used to

approximate the rigorous model (or blocks of equipment).

The Equation-Based Approach

In the equation-based approach, all equations describing the

process are solved simultaneously. Let us consider again the simple

17

flowsheet of figure I-3. We will assume that there are only 3
components and that the reaction in the reactor is: A + 2B »+ 3C.
Subscripts j = 1, 2, and 3 will be used for components A, B, and C,
respectively. In addition, wi is the total flow rate of stream i
(mol/hr), Xij is the mole fraction of the jED-component in the

iEn stream, i is the conversion with respect to the iED component,
and ki are the equilibrium constants in the flash drum. It should

be noted that only mass balances will be considered. The system of

equations is:

Mixer
Wy = W, oW (I-8a)
Xop = (WXqq + WXy)M, (1-8b)
Xop = (wlx12 + waxaz)/wz (I-8c)
Xog = 1.0 = X5 = X, (1-8d)
Reactor
Let a, b, and c be the stoichiometic coefficient of
species A, B, and C; T = WZXZIYl/La
Wy = W, + r(c -a -b) (I-8e)
X3l = (w2X21 + ar)/w3 (1I-8f)
Xgp = (WX, + bT)Mg (1-8g)
Xz3 = 1 = Xy = Xy (I-8n)

18

Flash
WaXsp = WXy WXy (1-81)
WaXsp = WXy + WsXg, | | (1-83)
Waksz = WXy * WoXgs (1-8K)
Xy = KX, (1-81)
Xap = KKs, (1-8m)
X3 = KgXes (1-8n)
Xao * X * X3 = 1 (I-80)
Xsp * Xgp * Xgg = 1 (I-8p)

As there are 16 equations and 24 variables we have to specify 8
variables. The advantage of this approach is now clear. If we

specify wl, X k k2, and k., the problem is a

117 %120 X130 Yy Koo
simple simulation. If we specify X

3’
517 X520 Wss Xyps Xype Wpo X5
and X12’ we have a design problem (or a controlled simulation). In

the equation-based approach there are no distinctions between
constrained or unconstrained problems. In addition, there is no
need to search for a good tear stream as in the sequential modular
or simultaneous modular. Also, it is well known that the sequential
modular approach is very inefficient when there are more than 2
recycle streams and several constraints (Stadtherr and Wood, 1984).

Again, the equation-based approach is immune to these problems.

19

The question that arises is, “Why isn’t the equation-based
approach widely used?" First, the execution time and the computer
memory required can be prohibitive. A simple industrial simulation
will have 5-10,000 equations. Some authors report simulations of
complete chemical plants that would require the solution of 100,000
equations! Second, the industry has heavily invested in the
development of the sequential modular approach. Why invest in a new
method with so many challenges -- the solution of large systems of
nonlinear equations -- when the sequential modular approach solves
almost all industrial problems? Third, the seguential modular
approach is user-friendly. It is easy for the process engineer to
construct the sequence of modules that decribes a chemical process
with the sequential modular approach. In addition, in the
sequential modular approach, when the simulation fails valuable
information can be obtained; in the equation-based approach,
however, when a failure occurs, almost no useful information can be
obtained.

Typically, a Newton-based approach is used to solve such large
systems. Figure I-5 shows the structure of the Jacobian of the
system of equations I-8a through I-8p; it is clear that the Jacobian
is sparse. To speed up execution time, sparse matrix techniques
must be used, not only to solve the linear system at each iteration,
but throughout the nonlinear solver subroutine. The use of sparse
matrix technigues will decrease both execution time and memory

required by the program. Also, the linear system solver must use

Vo X X

22‘:X23 W3

VARIABLES
31 K32 %33 W Xat %42 %43 V%

Xy Xz X

5] 52" 53
|| @ @
20| @ o0
30| @ o
4 09O
» 99@ hd
Z 6 0@ o0
D Jel [e] (o] e
— 8 o0
< 9 I o0 o0
= 10 o] Te| [® o o
Rl o ® o ®
12 o o
13 o
14 d ®
15 A dh
|6 o 00

Figure I-5. Jacobian of the System of Equations I-8a through I-8p

21

some reorderiﬁg technigue to minimize the creation of nonzero
elements during Gaussian elimination.

Another point that should be considered is the evaluation of
the Jacobian at every iteration. For systems of nonlinear
equations, the Jacobian is usually evaluated numerically by forward
differences; this procedure may be time-consuming. One way to
reduce the problem is to evaluate the Jacobian once and then,
instead of calculating the Jacobian numerically every iteration, one
update the Jacobian using the information obtained from an increment
given to each variable and the resultant variation in each function.
Broyden (1965), Schubert (1970), and Broyden (1971) presented
methods to update the Jacobian. The first is more suited to full
matrix cases, and the second and third are more suited for sparse
matrices. The literature is abundant in articles reviewing and
comparing these three methods: Gallun and Holland (1980), Crowe
(1984), Mah and Lin (1980), and Lucia (1982).

In addition to the use of sparse matrix techniques and the
update of the Jacobian through Broyden’s or Schubert’s method, good
initial values should be given to all variables. For small
simulations, this will not be a problem, but when the simulation has
10,000 variables, some automatic procedure to initialize all
variables must be incorporated. Good initial guesses are also
required because Newton-based methods do not converge to a solution
if the initial values of the variables are too far from the

solution.

22

Unfortunately, there is no such method that guarantees a
solution. A good improvement was suggested by Powell (1970); his
method will be discussed in more detail in later chapters.

Powell’s method has received much attention lately, and the reviews
are generally favorable. See, for example, Chen and Stadtherr
(1981).

Today, at least five programs using the equation-based approach
in various stages of development exist: SPEEDUP (Imperial College,
U.K.), ASCEND II (Carnegie-Mellon), QUASILIN (University of
Cambridge), FLOWSIM (University of Connecticut/Control Data), and
SEQUEL (University of Illinois). ‘

Recently, SPEEDUP went through a detailed evaluation in order
to determine whether equation-based systems could be used
effectively for process simulations. The evalution was carried out
by Gupta and coworkers from Exxon Corporation and Prime Computer,
Inc. In short, Gupta et al. compared the performance of SPEEDUP
with the sequential modular program, COPE, used by Exxon. They
report that SPEEDUP is not yet commercially competitive with the
sequential modular approach. The evaluation was carried out using

the following test problems:

1. Cavett problem (four flash drum problem)
2. Heat exchanger network
3. Five-stage absorber

4. Three tower separation

5.

6.

23

Steam system

Compressor network

The most relevant points in the evaluation were:

l.

SPEEDUP proves that equation-oriented approach can solve
large problems handled by a commercial sequential modular
approach.

SPEEDUP demonstrates advantages of the equation-based
architecture over the sequential modular approach.

The equation-based approach is well-suited for problems
having a large number of design specifications
(constraints) and it provides a flexible environment for
solving new problems that cannot easily be solved with
existing tools.

There is potential for efficient implementation of an
optimization capability.

In some cases, it does not converge, unless good initial
guesses are given.

It is relatively inefficient, especially for smaller
problems.

It is difficult for users to determine the cause of

divergence, when a simulation fails.

More details may be found in Gupta et al. (1984). Overall, the

results obtained by Gupta et al. are exciting, to say the least. A

comprehensive evaluation of the equation-based approach was

24

performed, and the key problems were detected. What makes it more
important is that the evaluation was performed to see the commercial
potential of an equation-based approach, by a typical user of
process simulators (Exxon). The results obtained with SPEEDUP show
that some of the challenges encountered in the equation-based
approach were solved, and we can forecast the commercial use of the

approach in the near future.

CHAPTER II
SOLVING SETS OF NONLINEAR EQUATIONS

As shown in the last chapter, every process simulation with
recycle streams and/or design specifications requires the solution
of a system of nonlinear equations. Most commercial sequential
modular programs use Wegstein’s method to solve the set of nonlinear
equations. Some programs have the option of using a "blend™ of
Wegstein’s method with the successive substitution method. Programs
using the equation-based approach or the simultaneous modular
approach generally use the Newton-Raphson method, or a modification
of it. Before we present a modification of the Newton-Raphson
method used in this work, we will briefly review the three methods

mentioned. above.

Successive Substitution Method

The use of the successive substitution method is guite simple.
In a process simulation using the sequential modular approach, the

set of nonlinear equations has the form:
X = F(X) (I1-1)

where capital letters represent vectors or matrices. Starting with

o

°, xO)T

nl s all functions fl

a set of initial guesses x° = (x 1’

0
oy wees
fl 1 0]

2y uuy fn are evaluated at X;3 1 =1, n. If a convergence

criteria is reached, typically

26

k k
X3 - fi+1i /| f?+li < €

where € is the desired accuracy, the solution has been found.
Otherwise, x? replaced by f% and another iteration is performed.

The recurrence relation is:

XKL ki (11-2)

where the superscript k denotes the iteration number. Figure II-1
shows a flowchart of the method and a graphical representation of a
one-dimensional case.

The method of successive substitution is quite effective when
each function fi is dominated by one variable X; e Convergence,
however, is sometimes very slow. The major advantage is its
simplicity; its disadvantages are that if more than one variable
strongly influence one or more of the functidns, the methbd may not

converge or convergence may be very, very slow.

Wegstein’s Method

Wegstein’s method is a modification of Aitken’s A% method
(Cavett, 1963). Wegstein’s method, as the successive substitution
method, is easy to implement.

Assuming that each function fi’ from the set of equations II-1,
is a function of X4 alone, Wegstein’s method extrapolates the new
value of X3 along a straight line through two previous consecutive

points. To initiate the method, two points are required to perform

GIVEN

K=K+I

CALCU;ATE
F (X

(X)X

cHRF =

~ »
FiX’)
LY /

SOLUT ION
FOUND |
STOP

Figure II-1. Successive Substitution Method:

Graphical Representation

Block Diagram and

the first iteration. For a given set of initial values, x° = [x?,
xg, ceey xg]T the easiest way to obtain the second set of points
is by performing one successive substitution iteration. The

recurrence relation for Wegstein’s method is:

x?l = q?*(fi(xk)) + (1 - q?) * (x?) (11-3)
where
af = L/0 -89 (11-4)
A (R CO NN VO (11-5)
iz 1,2 .oy N
and
X{ o= e K, e, KT
FE = [F,059, 1089, L, 009 T

Note that setting Q; equal to 1 is eqguivalent to performing one
successive substitution iteration.
Figure II-2 shows a block diagram of the method and figure II-3
shows a graphical representation for a one-dimensional case.
Wegstein’s method may converge quickly if each variable
strongly influences a particular and unique function; otherwise the
method will be very slow or it will not converge. In some cases,

Wegstein’s method may be very inefficient if the slope of the line

40<Q<1O

£
=

w

Figure II-2.

.—_’.T

The Wegstein Method:

Block Diagram

SOLUTION
FOUND |
STOF

45 ‘\\
c= (F%F!) """""" .
SLOPE= 0 |
! \/
| R
X5 F°
X2 F2 v
/ i XI] Fl
< X3 F3 =L e ()
| 44
, X4 F X,L

Figure II-3.

The Wegstein Method:

Graphical Representation

31

between two consecutive points approaches one. In other words, if
S? from equation II-5 approaches one then q? approaches + «; in
practice q? is constrained, typical constraint values on q? are
[-10, +10]; [-5,+5].

Some algorithms have the option of inserting one or more
successive substitution iterations in between one or more of
Wegstein’s iterations. This "blend"™ of methods is quite effective
in some cases.

A problem widely used to study the performance of nonlinear
solvers is “Cavett’s four flash drum.* This hypothetical problem was
idealized by Cavett (1963). We studied the performance of
Wegstein’s method with O, 2, 4 and 8 successive substitutions in
between each Wegstein iteration. The results are shown in figure
II-4a and II-4b. For purposes of comparison, we also present the
results of the successive substitution method.

From the figures, it is easy to see that both extremes, i.e.,
Wegstein’s alone and successive substitution alone, are QUite
slow to converge. Moreover, while Wegstein’s method has an erratic
behavior, the successive substitution is quite constant in reducing
the error and in converging. The effect of introducing some
successive substitution iterations is extremely beneficial for this
problem. The best performance was obtained with 4 successive

iterations in between each Wegstein iteration.

WEGSTEIN'S METHOD

E RROK

WEGSTEIN'S METHOD
PLUS TWO SUCCES-

SIVE SUBSTITUTION
ITERATIONS

i 1 | é I'O LI) 1 LB 2|o I Ll l LI 3'0 I Ll I I }O

I TEGATION NUMBER

149

Figure II-4a. Results for Wegstein’s Method with Cavett’s Problem

9_
R-
74 SUCCESSIVE SUBSTITUTION(SS)
6 I TERATIONS BETWEEN ONE
5 WEGSTEIN ITERATION
4 A ONLY (5.8)
3 @ FOUR
® EIGHT
2] -@.
0 e
O
o
o
IS
)_
8
7_
6—<
54
4_
3]
23
]
] I)) I 1 | 1 I 1 I i L 1 1 i) ¥
2 4 6 8 0 20 30

Figure I1I-4b.

ITERATION NUMBER

Results for Wegstein’s Method with Cavett’s Problem

¢¢

Newton-Based Methods

The original method is known as the Newton-Raphson (N-R)
method, and it is an iterative procedure based upon a Taylor series
expansion terminated after the first derivative.

For a given set of N nonlinear equations,
F(X) = 0O (I1I1-6)

*
it is desired to find the vector of unknowns X = [xl, Xpy seey
xn]T which simultaneously satisfies the equation set II-6. The

Newton-Raphson method consists of the repeated use of the equation,

IR - (11-7)

where the superscript k indicates iteration number, Jk is an N x N

matrix of partial derivatives (the Jacobian matrix)

Mo M
QXl an
| |
1 1
! |
|]
I

Jk= - l
| I
i 1
! i
! 1
Moo 7
axl axn

35
|
\

Pk is an N-dimensional vector of correction steps,

k k+1 k T
P = X - X = [pl’ p2! sy pn]

and F(Xk) is an N-dimensional vector of function values evaluated at

X<,

FXY = T 00, £,00, o, f 0T

Equation II-7 is solved for Pk, and the predicted solution

vector for the next iteration is given by:
X = X + P (11-8)

Convergence to a solution set is achieved when

k+l _

x|

£€

| x

Fasd

where € is the desired accuracy of solution. Alternatively, we

could use as the convergence criteria
IFOXN e

where || ¢ || denotes the Euclidian norm of F(Xk)

N 1
IFOM 1= 12,8937
i=l

A block diagram of the method is shown in figure II-5. It

should be noted that at each iteration the Jacobian matrix must be

GIVEN
X*, K=0

EVALUATE
JACOBIAN

NO

1S
IF¥il< €

P SOLUTION

Figure II-5. The Newton-Raphson Method: Block Diagram

37

supplied. Also, the linear system II-7 is solved at every
iteration.

When the functions are not analytical, and/or the Jacobian is
difficult to obtain, we may calculate the Jacobian numerically, by

forward differences,

k k
af . f. (X° +n) - £.(X
J.. = [—1- =~ 2 1 (11-9)
1 oX . K , hl
J 7 x

i=l, 2, coey N; j=l, 2, ooo,N

h is an N-dimensional vector defined as follows,

0
n

0 for k # j

h,
J

gnall positive number.

The calculation of the Jacobian by forward differences requires
the evaluation of all N functions N + 1 times.

The functions that occur in chemical process simulations are,
in general, “expensive"™ to evaluate. In the simultaneous modular
approach, a series of equipment modules will be evaluated in each
iteration to obtain function values. In addition, some modules, for
example a flash drum, perform iterative solutions internally.
Besides the computational effort, care must be taken to avoid
"round-of f* errors. For instance, if the convergence criteria used
in the module is e (say, 10'4), perturbing a variable by less than ¢

will probably result in a poor evalution of the Jacobian matrix.

An alternative to Newton-Raphson’s method is the use of
Broyden’s method (Broyden 1965).

Broyden’s method is a modification of the Newton-Raphson
method. The first iteration is essentially the same as in
Newton-Raphson; in the second and subsequent iterations the Jacobian

k

1s not evaluated at X", but it is updated using Broyden’s secant

updated formula,

N A CAR T LGOS (11-10)

where

YKo RO 4 pKY L R

It is readily seen that no additional evaluations of functions
are required, thus Broyden’s algorithm is an attractive alternative
to solving sets of nonlinear equations that occur in chemical
process simulations. Actually, the use of the method in
flowsheeting problems was suggested as early as 1966 (Rosen, 1966),
and several other authors have either used the method or
modifications of it in chemical process simulations (for example:
Perkins (1979) and Mahalec et al. (1979)).

In general, Broyden’s method will converge more slowly to a
solution when compared with Newton-Raphson’s. Dennis and Schnabel
(1983), reported that at the solution, Broyden’s update formula will
generate a Jacobian with a relative error of approximately 1.1
percent when compared to the true Jacobian. Furthermore, the

Jacobian as updated by Broyden’s formula will have “fill-ins," that

39

is, some elements of the true Jacobian that are equal to zero will
assume values other than zero when updated by Broyden’s formula.
Moreover, Broyden’s method, similar to Newton-Raphson’s, may not
converge to a solution if the initial estimates of the solution are
far from the actual solution.

An alternative to Broyden’s update formula is Schubert’s update
formula. The method was first proposed by Schubert (1970), and
later by Broyden (1971). Schubert’s formula does not update

elements which are known constants. The formula is:

k¥l Lk k Kk oKy T p kT ok
33 o+ Uy 33 TP ACH ()] (1I-12)
1 = l, 2, se ey N
where
k k k k
Y; = fi(x +P7) - fi(X)
and
K . . .th
J;i = TOw vector containing the elements of the i= row
of the Jacobian matrix J
fi = iEE element of F(Xk)
T? = a column vector derived from Pk by setting to zero

Kk

each element of Pi that corresponds to a known

constant of j?

In practice, T? is set to zero only when an element of the
Jacobian is zero. Any information about elements which are known
constants but not equal to zero is disregarded.

When the Jacobian is sparse, Schubert’s update formula is more
attractive, since it does not create fill-ins and thus maintains the
sparsity of the matrix. However, some authors (Mah and Lin (1980);
Perkins and Sargent (1982)), reported unreliable results using the
Schubert update formula in connection with the Newton-Raphson
convergence algorithm.

As mentioned earlier, the Newton-Raphson method or nonlinear
solver algorithms based on the N-R method (Broyden’s or Schubert’s
methods) may diverge if the initial estimate of the solution is far
from the actual solution. Because the N-R method is based on a
local linearization of all functions by first order Taylor series
expansions, the linearized functions are a good representation of
the nonlinear functions when close to the solution, thus convergence
is fast. Therefore, N-R based methods have good local convergence
properties.

A priori we do not know the solution of a problem so there is
no way to know how far from the solution the initial guessed values
are. Although for chemical process simulation we can provide a good
estimate of the solution-using very simple models or experience -
the number of failures of N-R based methods may still be rather

high.

41

In recent years N-R based methods have been used in conjunction
with global methods for unconstrained optimization. The basic
strategy of the global methods for unconstrained optimization is to

solve the following problem:

min R(X) F(x)T F(X) (11-13)

Note that R(X) = || F(x) | 2 m iterative procedure would be

to find correction steps Pk which, at each iteration, minimize the
auxiliary function R(X) until a minimum is reached. If at that
minimum R(X) = O, the solution has been found. One of the drawbacks
of the method is clear: R(X) may converge to a local minimum where
the minimization problem is satisfied, but it is not a solution of
the system of nonlinear equations. On the other hand, it can be

proven that at a local minimum that is not the solution required,
T
JX)F(X) = 0

Since R(X) # 0, thus, F(X) # 0, J(X) must be singular and since
N-R based methods require the inverse of the Jacobian, they would
also fail! Another point worth mentioning is that minimization
methods have slow convergence properties, but, if no local nonzero
minimum is reached, they will eventually converge to the solution of
the equations, when it exists.

The Steepest Descent direction algorithm and Levenberg-
Marquardt algorithm (Broyden, 1970), are two popular methods for the

solution of systems of nonlinear equations based on the minimization

42

of an abjective function R(X); they both have good global
convergence properties.

In practice, minimization algorithms are used to drive the
initial estimate vector X° closer to the actual solution because
these algorithms have good global convergence properties; then, the
algorithm switches to N-R based methods, which have good local
convergence properties.

A very popular algorithm with the properties mentioned in the
last paragraph is due to Powell (1970). He proposed an hybrid
algorithm based on the Levenberg-Marquardt method which showed
excellent results. Later, Chen and Stadtherr (1981) proposed some
modifications which improved Powell’s method. In Appendix B there
is a short review of Powell’s algorithm and Chen and Stadtherr’s

modifications of Powell’s method.

Implementation of MPDLM1 and MPDLM2

As part of this work, two subroutines were developed to solve
systems of nonlinear equations. They both use Chen and Stadtherr’s
modification of Powell’s methaod.

The need to have two versions of the same algorithm arises from
the different characteristics of the Jacobian generated when solving
sets of nonlinear equations using either the simultaneous modular
approach or the equation-based approach. The first has a full
Jacobian, only a few elements are equal to zero; the latter has a

sparse Jacobian, only a few elements are different from zero.

43

To illustrate the characteristics of each approach, we will
show the Jacobian generated by each in a typical simulation of an
ammonia plant (figure II-6). In later chapters this problem will be
presented in more detail. For now it is important to know that
there are five components in each stream, five equipment modules (1
reactor, 1 mixer, 1 splitter and 2 flash drums), and the conversion
of a reactant is given by the chemical equilibrium constant.

In the simultaneous modular approach there are 6 nonlinear
equations being solved simultaneocusly: 5 stream connection

equations and one constraint equation. The equations are:

fi(Xy) = Xg =¥ Xy) i=1,5
f6(X,Yr) = K - Z(X,Yr)
where
X = Xy yXosXasX, Xo I
1°72°73°74°75

X; = molar flow rate of the iEE component in the torn
stream

Y; = molar flow rate of the iEE component in the torn
stream obtained after each pass in the flowsheet.
A pass in the flowsheet is defined as the
sequential evaluation of all equipment modules.
The initial and final point of the sequential
evaluation is the torn stream(s)

Y. = conversion of reactant r

T

AMMONIA
PRODUCTION

PURGE 44—
— Sp
5
FLASH
K K 3
FEED E[:::>»——Y 4 PX REACTOR? .
o \JEAR STREAM ~—
FLASH
4
<
-
» PRODUCT

Figure II-6. Ammonia Plant Block Diagram

45

X
1

chemical equilibrium constant = 0.35

N
1

a function of y and X1 i=1,5

The Jacobian generated by the simulation of the NH, plant using

3
the simultaneous modular approach is presented in figure I1I-7. It
is clear that the Jacobian is nearly full.

To solve the same problem using the equation-based approach
requires the solution of 50 simultaneous equations. The equations
represent material balances around each piece of equipment. The
Jacobian generated by the equation-based approach (figure II-8) had
182 nonzero elements. The full Jacobian has 50 x 50 = 2500
elements, so only 7.3 percent of the elements will be used
throughout the nonlinear solver subroutines.

Knowing the characteristics of each approach, it was decided
that Broyden’s update formula would be more attractive for the
simultaneous modular approach. For the equation based approach,
Schubert’s update formula was chosen. In addition, that subroutine
uses sparse matrix techniques which enables it to store and operate
on the nonzero elements only.

Subroutine MPDLML is used with the simultaneous modular
approach (Broyden’s update formula) and MPDLM2 with the equation-
based approach (Schubert’s update formula).

Following the suggestion of several authors (Powell, 1970; Chen
and Stadtherr, 1981; Dennis and Schnabel, 1983), the Jacobian and
function values are scaled. A scaling matrix DF is calculated so

that the resulting scaled Jacobian (DF)(J) has the largest elements

VARIABLES
X, Xo Xz X, Xg ¥

@ " o
w20 e e ®
§3oooooo
C4s]0 000 00
25|00 00 e e
‘|0 ® 00 e e

Figure II-7. Typical Jacobian Generated When Solving Nonlinear
Equations Arising from the Simultaneous Modular
Approach

50T,
. MIXER
BN REACTOR
FLASH

2 4

s i

l& e

3 .

w .
IFLASH
L1SPLIT

00— —_— -

VARIABLES 50

Figure II-8. Typical Jacobian Generated When Solving Nonlinear
Equations Arising from the Equation-Based Approach

48

in each row equal to +1. The scaling of the Jacobian and functions
was suggested to improve the accuracy and convergence of nonlinear
solvers.

Sometimes the rate of convergence begins to slow considerably.
This may happen because the Jacaobian update by Schubert’s or
Broyden’s formula is not a good approximation of the true Jacobian.
In this case the Jacobian is re-evaluated by forward differences.
Early tests with both subroutines showed that the Jacobian updated
by secant formulas "degrades" after 15-20 iterations if the initial
estimate of the solution is not good. To decide when to re-evaluate
the Jacobian, we used the same procedure suggested by Chen and

Stadtherr (1981). It consists of the followihg steps:

1. After each Jacobian evaluation by forward differences, set
IFLAG = 0.
2. After each iteration k, if
IFC + %) 12 2 0,999 |l F(XK) || 2
set
IFLAG = IFLAG + 1
Otherwise, IFLAG = IFLAG -1
If IFLAG < 0, set IFLAG = O
3. Evaluate
PO+ P 12/ ey) 2
I FOCy 0/ 1)

R

R

2

The Jacobian is re-evaluated if:

49

a. Since last Jacobian evaluation

Il FxX « =) | has been reduced by a factor of 2
and

> >
b. IFLAG > 3 or Rl R2

The parameters IFLAG, Rl and R2 can be interpreted as a
H

“measure™ of the progress towards the solution. Ry “traces" the

progress of the last iterations and R2 the progress of the 5

llS

greater than R2, we are ensuring that the converge is quite slow

iterations before those. If IFLAG is greater than 3, or R

before the Jacobian is re-evaluated. The first condition is used to
ensure that we do not re-evaluate the Jacobian too often.

The parameter IFLAG is also used to check when the algorithm
reached a local minimum, or when the convergence is too slow. If
IFLAG is greater than MAX (10, N+4), where N is the number of
equations, the subroutine stops and an error message is issued.

Besides the update formula, another difference between MPDLM1
and MPDLM2 is the method used to solve the linear system. MPDLML
uses an LU decomposition of the Jacobian matrix. The LU

factorization,

Jd = LU

where L is a lower triangular matrix and U an upper triangular
matrix, is performed every time the Jacobian is calculated by

forward differences. In subsequent iterations the L and U factors

50

are directly updated using Broyden’s formula and Bennett’s algorithm
(Bennett, 1965).

The solution procedure for the set of linear equations is

IPK - £

or

LUK = F ()

Define UkPk = Y and solve

LkY = -F(Xk)

for v.

Then solve

Th

for Pk.

For MPDLM2 we used subroutine SPAMAT (Rodrigues, 1979). This
subroutine solves the linear system by a Gaussian elimination, and
it uses sparse matrix techniques to store elements and perform
operations. The sparse matrix technique consists in storing only
nonzero elements in an N x M matrix 8. The row positions of each
nonzero element are stored in another N x M integer matrix IC, and
the number of nonzero elements in each row is stored in an
N-dimensional vector IZ. For example, assume that a Jacobian matrix

4 x 4 has the following configuration:

51

1020
0300

J =
00 41
L0 0 0 5]

r— l 2—# o l 3...» _2_
30 2 0 1
B(4x2) = IC(4x2) = 1Z(4) =
4 1 3 4 2
5 d 5 0 1]

The drawback of this fomulation is that we must know beforehand
the maximum number of elements in one single row in order to set the
second dimension of matrices B and IC.

The small size example shown above is for clarity. There will

be an economy in storage requirements if,

2(m*n) +n g n2

or
(2n + 1) < n

where m is the maximum number of nonzero elements in one single row.
For example, assume that the maximum number of elements in a single
row of a 200 x 200 matrix is 15. The storage requirements would be
200 * 200 = 40,000 for the full matrix. Using the sparse matrix

technique just described, only 2 * 200 * 15 + 200 = 4200 storage

52

positions would be required, or 15.5 percent of the full matrix
storage requirements.

This is not the best sparse matrix technique, but, for the
purpose of this work, it performed quite well. An excellent review
of sparse matrix techniques associated with the solution of linear
systems may be found in Duff (1977).

Thus far the most important features of MPDLM1 and MPDLM2 have
been discussed. Figure II-9 shows a block diagram of the algorithm.
It does not include all details, however, Appendix C contains a

printout of the source code for both subroutines.

Performance of MPDLML and MPDLM2

Both subroutines were compared with subroutine zZSPOW from IMSL.
We solved 5 problems, four of them from the open literature and
often used to compare the performance of nonlinear solvers. Some
results from Chen and Stadtherr (1981) and Powell (1970) are
available, so they are reproduced for comparison purposes. The
fifth problem is the simulation of a system of 3 counter-current

evaporators for Kraft black-liguor.

Problem 1 - Brown’s Almost Linear Function (PBALF)

F, = x, =11 +/.x. = 0 i=1,9
1 1 j___ll

10
F10=l_.nxj = 0

Figure II-9.

GIVEN
X" K=0

53

EVALUATE
JACOB I AN

J k

K=K+1

t&

SCALE
FUNCTIONS

SOLVE
JpL-F*

ACCEP
NEWTON
STEP

Block Diagram of the Modified Newton-Raphson Method
Used in This Work

}— R e T S —

|
!
]
|
!

I

UPDATE
JACOBI AN

EVALUATE
F k+1

SOLUTION
FOUND

54

initial point: X; = 0.5; 1 = 1,10

solution: X; = 131 =1,10

Problem 2 - Powell’s Badly Scaled Function (PPBSF)

F, = 10,000 * X ¥x,-1=0

F2 = EXP(-xl) + EXP(—xz) -1.0001 = 0O
initial point: X) = 0; Xy = 1

solution: X| = .1098 * 10'4; Xy = 9.106147

Problem 3 - Rosenbrock’s *Banana®™ Function (PRBF)

F2 = l.O - Xl = 0
initial point: x| = -1.2; Xy = 1.0

solution: X{ = 1.0; Xy = 1.0

Problem 4 - Powell’s Singular Function (TET)

Fl = xl + 10 * x2 = 0

Fy = V5 * (x3 - xa) = 0

Fo = (x, -2 % x)2 = 0
3 ‘ 2 3

F, = VIO * (x, -x,)%2 = g
4 - 1 4 B

initial point: X = [:3,-1,0,1:]T
solution: X = [0,0,0,0]"

Problem 5 - Kraft Black-Liquor Evaporator (KBLE)

The flow diagram is shown in figure II-10, initial values and

solution are shown in table II-2.

The number of function evaluations, that is, the number of

times the subroutine containing the nonlinear system was called,

55

including evaluations used to obtain the Jacobian, are summarized in

table II-1.

Table II-1. Performance of Nonlinear Solvers (Number of Function

Evaluations)
Problem

Subroutine PBALF PPBSF PRBF TET KBLEz/
MPDLM1 26 49 7 26 -
MPDLM?2 37 26 26 91 11.619
ZSPOW 3] 2 181 oY 18.651
Chen
Stadtherr 26 40 7 47 -
POWELL - 223 28 - -
1/

=~ failed to solve

2/

= only execution time available (CPU-sec)

In generai, the results obtained with MPDWLM1, are superior, in

terms of iterations required, when compared with the results of

Z5POW. In addition they are similar to those obtained by Chen and

Stadtherr, as expected since the methods are the same.

However,

[

\ 4
o

6

LIQUOR——o—vr—

CONDENSATE~ — - —

Figure II-10.

Block Diagram of the 3 Effect Evaporator Problem

9<

57

Table II-2. Initial Values and Solution of the 3 Effect Evaporator
Problem

NUMBER OF VARIABLES=54

THE SYSTEM TO BE CALCULATED,UITH INITIAL GUESSES AND
KNOUN VARIABLES WILL BE PRINTED NOW

STREAM ¥ FLOW RATE PRESSURE TENPERATURE SOLID CONTENT ENTHALPY
(LB/H) (PSIA) { DEG F) (LB/LB) (BTU/LB)
t 100000.0000 50.0000 282.0000 .0000 1000.0000
2 100000.0000 20.0000 200.0000 L0000 1000.0000
3 100000.0000 20.0000 200.0000 L0000 1000.0000
4 100000.0000 10.0000 180.0000 L0000 1000.0000
3 100000.0000 5.0000 140,0000 L0000 1000.0000
4 10000.0000 20,0000 200.0000 20000 1000.0000
7 $000.0000 5.0000 215.0000 L0000 1000.0000
8 100000.0000 L0000 281.0020 L0000 200.0000
9 90000.0000 .0000 200.9000 .0000 200.0000
i0 100000.0000 .0000 227.9%5%9 0000 200.9000
1 200000.0000 L0000 193.2139 L0000 200.0000
12 400000.0000 .0000 180.0000 L1500 143.4109 N
13 300000.0000 L0000 180.0000 L2000 140.1518
14 200000.0000 L0000 180.0000 L3000 134.03580
S 100000.0000 +0000 180.0000 <4000 128.4722
14 74000.0000 .0000 180.0000 .3000 123.3333

IF YOU UANT TO STOP THE PROGRAM AND CHANGE INITIAL
GUESSES ENTER 100 (AS ? APPEARS)

?2

THE FOLLOWING VALUES OF 3 AND UA WILL BE USED
BT U/ HeF BTU/Lb

UACT)= 3000000.0000 3(1)=2100000000.0000
UA(2)= 4000000.0000 1(2)=100000000.0000
UAL3)= 4000000.0000 3(3)=100000000.9000
THE CALCULATED VALUES FOR THE SYSTEM OF EVAPORATORS ARE:

STREAM # FLOV RATE FRESSURE TEXPERATURE SOLID CONTENT ENTHALPY

(LB/H) (PS14) { DEG F) (LB/LB) (BTU/LE)Y

1 117822.7748 50.0000 281.0020 0000 11740713
2 92248.1028 24,4530 244.7940 L0000 1183.1579
3 97441.0743 24,4540 2444758 L0000 1162.99983
4 101511.8145 9.7773 215,547 L0000 1154.1407
b 111597.5334 5.0000 165,7888 0000 1132,7387
§ $192.973% 24,4540 238.8440 0000 1140.1143-
? 2142.8393 5.0000 187,181 L0000 1142,7840
3 117422.7748 L0000 281.9020 L0000 149,002
9 112229.3032 L0000 238.3440 L2000 206.3440
10 97461,0763 L0000 238.3440 0000 204.8440
11 198972.3929 L0000 1921519 0000 140.1519
12 400000.0000 0000 180.0000 L1500 143.4109
13 288402, 4444 0000 145.7888 2080 124.2325
14 196134.3434 L0000 244.7940 L3059 192,253%
15 74622,5470 0000 215.5471 L6341 145, 1591
16 92479.7077 L0000 187.1311 .5438 122.0534
UALT)= 3000000.0000 0(1)=108424204.3010
Jal2Y= 4600000.0000 2(2)= 73187588.3397
JAL3I= 4000000.3009 @03)2105452254.5423

58

they are not identical and two possibilities exist for that
disagreement; one is that a user given parameter, the “distance®
between the initial guess and the actual solution, was not the same.
That parameter plays an important role in the number of iterations
required. The other possibility is an error in our coding of Chen
and Stadtherr’s algorithm.

The results of Powell with the problems PRBF and PPBSF, when
compared with MPDLM1, confirm the improvement of Powell’s algorithm
by Chen and Stadtherr.

MPDLM2, using Schubert’s update formula and sparse matrix
techniques, had inferior performance when compared to MPDLMl. The
reason for that is probably the simplification introduced in
Schubert’s update formula, i.e., treating only zeros as constants,
instead of all known constants in the Jacobian. On the other hand,
MPDLM2 solved problem TET, in which ZSPOW failed. In addition,
MPDLMZ solved the evaporator problem in 60 percent of the execution
time required by ZSPOW, which demonstrates the benefit of using

sparse matrix techniques.

59
CHAPTER III
IMPLEMENTATION OF SIMO AND EQSS

In this chapter we will describe the implementation of SIMO
(Simultaneous Modular Library) and EQSS (Equation Solving Simulation
Library). A listing of the source code for both libraries is shown
in Appendix C. It should be noted that both libraries use the same

nomenclature for the flowsheet variables:

h

FLOW(I) Molar flow rate of the IE— stream (mol/unit of

time)

COMP(I,L) Mol fraction of LD component in the

Pgl stream

th

EQrP(I1,J) JEtl equipment parameter of the I— module

Because of this, the modules from SIMO can be used to
initialize varibles in EQSS, and the same input/output subroutines

can be used for both approaches.

SIMO Library

This library is used to perform chemical process simulations
using either the sequential modular approach or the simultaneous
modular approach. There are 26 subroutines available, which can be

organized in three major categories:

1. Nonlinear Equations Solvers

2. Equipment Modules

3. Support Subroutines

Subroutines To Solve Nonlinear Equations

There are seven nonlinear solver subroutines; five are
one-dimensional (one equation in one unknown) and two are
multi-dimensional (N equations in N unknowns). FEach subroutine uses
a different method of solution, so the user has the option of using
the best method to solve specific problems. In addition to the
seven nonlinear solvers, there is one subroutine to perform an LU (L
lower triangular, U upper triangular) factorization of a general N x
N matrix.

We will now proceed with a brief description of each
subroutine. The nomenclature of several parameters common to some

of the subroutines are:

NT - Total number of iterations allowed.
EPS - Desired accuracy (typical values 107>, 10-4y,
X = An N-vector of initial guesses which are

specified as input by the user; on output X

carries the best estimate of the solutions.

F - An N-vector of function values (Input/Output).
N - Number of equations.
K - User provided parameter to control the printing of

iterations results; every kEﬁ iteration the

results are printed.

6l

SUBROUTINE NEWTON (X, NT, EPS, SFNC, K) - Solves one nonlinear

equation, F(X) = 0, in one unknown using Newton’s method. The user
must provide SUBROUTINE SFNC (X,F,FD), which calculates function
values and derivative values at X (Kayihan, 1979).

SUBRQUTINE INTHLV (XL, XR, X, NT, FNC, K) - Solves one

nonlinear equation, F(X) = 0, in one unknown using the
interval-halving (half-interval) method. The user must specify
left-hand (XL) and right-hand (XR) bounds on the root. In addition
the user must provide FUNCTION FCN(X), which calculates function
values at X (Kayihan, 1979).

SUBROUTINE SUCSUB (X, NT, EPS, FNC, K) - Solves one nonlinear

equation, X = F(X), in one unknown using the successive substitution
method. The user should provide FUNCTION FNC(X) which calculates
the value of F(X) at X (Kayihan, 1979).

SUBROUTINE WEGSTN (X, NT, EPS, FNC, K) - Solves one nonlinear

equation, X = F(X), in one unknown using Wegstein’s method. The
user provides FUNCTION FNC(X) which calculates the value of F(X) at
X (Kayihan, 1979).

JBROUTINE WEGSMD (N, X, NT, EPS, SUB, K) - Solves "N"

nonlinear equations, X = F(X), in "“N" unknowns using Wegstein’s
method. The user must provide SUBROUTINE WUB(N, F, X) which
calculates the value of F(X) at X (Kayihan, 1979).

SUBROUTINE SECNEW (X, NT, EPS, SUB) - Solves one nonlinear

equation, F(X) = 0, in one unknown using the secant method. The
first iteration is a Newton iteration, the following are secant

approximations. Figure III-1 has a graphical representation of the

Figure III-1.

62

Graphical Representation of the Method Used in SECNEW
to Solve Nonlinear Equations

63

method. The user must provide SUBROUTINE SUB (X,F) which calculates

function values of F(X) at X.

SUBROUTINE MPDLM (FCN, X, F, N, B, NT, IDGT, MS) - Solves N

nonlinear equations, F(X) = 0, in N unknowns using Chen and
Stadtherr modification of Powell dogleg method (see Chapter II and
Appendix B). FCN is a user-written subroutine to calculate the
values of the functions at X. B is a matrix with dimensions N x 32.
IDGT is the number of digits of accuracy required. MS is a user-

specified parameter defined as follows:

MS = 05 no scaling of Jacobian and functions

MS = 2; auto-scaling

MS

3; auto-scaling and the Jacobian of the system of
equations is given externally through a user given

subroutine JACOBI (X, F, N, B).

SUBROUTINE FACLU (A, IP, N) - Factorization of the N x N matrix

A into a product of a lower triangular matrix (L) and an upper
triangular matrix (U). L has unit diagonal elements which are not
stored. A is stored columnwise, in a vector of dimension NZ. 1P,
on output, contains a permutation vector of A (from “IBM -

Programmer’s Manual,® 1968).

Equipment Modules

There was no need to develop rew equipment modules for the
simultaneous modular approach because the source code of SIMFLOWS

(Kayihan, 1979) was available. A few modifications were introduced

into SIMFLOWS in order to simulate more complex problems. The
number of components allowed was increased from 7 to 19. The number
of equipment modules and streams allowed was increased from 20 to
30. In addition, the separator module was modified to allow three
output streams instead of two output streams as it was originally
developed.

The subroutines and their graphical representation can be found

in figure III-2. The details of the modules are shown in Appendix A.

Support Subroutines

Support subroutines are used for input, output and to prepare
the system of nonlinear equations for solution. For either
approach, sequential or simultaneous modular, the user must provide
one subroutine with the equipment modules describing the process in

its sequential order of calculation. When using the simultaneous

modular approach the subroutine must be named FSIS. The support
subroutines are:

SUBROUTINE READ (NST, NEQ) - A subroutine to read "NST" stream

variables and "NEQ" equipment parameters. The user provides in a
data file all known stream variables, equipment parameters, as well
as the initial guess(es) of the torn stream(s). A sample of a data
file is presented in figure III-3 (Kayihan, 1979).

SUBROUTINE CHECKS (N1) - A subroutine to check the consistency

of stream variables of stream N1. If a flow rate is lower or equal
to zero, or the mole fractions do not add up to 1, an error message

is issued and the program stops (Kayihan, 1979).

MIXER _____H

EQUILIBRIUM —
REACTOR S~

—>

SEF';.‘RATOP_H — >

—>
SPLITTER : »
—»

65

SUBROUTINE
NAME

FLASH

MIXER

REAC

SEPAR

SPLIT

Figure III-2. Graphical Representation of the Subroutines Used with
the Simultaneous Modular Approach

66

c
c
ETHANAL PRODUCTION :
121234567812345671234567123456712345671234567123456712345871234567123456712345
ETHOL EThHAaL n20 EE EEE H2 G QRG
2863.77 .2B186 7384
39 1847 0266 03830 90590 00000 01830 .0000C 0GUGY 01090
1000 . 20000 QQQQO 70000 00010 .00000 00000 0QO00O0 0989GO
388 4778 1689 1476 1701 QQ0s 0044 ocas Q24
6000 . .0108 0806 8080 0000 0000 QQo0s6 Q000 [eJs]e]o]

=RRNRNRNRNRNRN — = i oo s e e
—“NONSLN 00D AIRNPLN-—-0OLOUNDO LN~

3452;8&2345678123456781234567812345678123456781234567812345678|2345678I2J456
SEPA

o] 0 05467 o] 0 o] Q Q
o] Q Q0 842351 1 o] o] 0 Q
4 8 S . 3
2 REAC
~1 1 1
27871
i
3 REAC
-1 -1 1 1
Q2589
7 2
4 REAC
-4 666 - .5075 0 .277778 O. 1.8341 0. Q 2 1
02817
8 S ¥
) SEPAR
Q0 04051 0.76344 0 Q Q i 1 s]
Q0 95949 0.23656 0 98817 Q.08 1 Q s} 1
9 10 12 11 3
6§ SEPAR
Q 0.0273 0 Q Q 1 1 o)
0 . Q o] Q 0] 0 0
13 14 ts
7 SPLIT
Q 1117
o] R
8- 19 20 2
8 MIXER
Q.
Q
10 18 19 13 3
S SEPAR
8 o] 0 Q o] 1 0 10 g Q
16 17 18
10 MIXER
Q
o]
2 2 20 21 3
11 SEPAR
Q Q0 89764 O Q [s] G ¢} 0
0. 9936 O 0 99438 i Q Q 0 Q 258
21 22 24 23 3
12 MIXER
Q
0.
1 2 3 2
13 SPLIT
2687
Q
8 25 28 2

Figure III-3. Example of a Datafile Used with SIMO

UBROUTINE WRITES - This subroutine prints stream variables

(Kayihan, 1979).

UBROUTINE WRITEE - This subroutine prints equipment parameters

(Kayihan, 1979).

SUBROUTINE WRITEX (LFIRST, LLAST) - This subroutine prints

equipment parameters for modules LFIRST through LLAST.

SUBROUTINE SIMSO (Il, I2, I3, IP, NSIG) - A subroutine to solve

mass balances using the sequential modular approach. If the problem
has design constraints, subroutine SPEC must be used in conjunction

with subroutine SIMSO. Parameters:

Il - Total number of streams torn.
I2(I) - Number of each stream torn I = 1, I1.
I3 - Total number of design constraints.
IP - Printing Parameter. For IP = 1 no printing of stream
variables or equipment parameters before solution.
For IP = 2 stream variables are printed before
solution. For IP = 3 stream variables and equipment
parameters are printed before solution.
NSIG - Number of digits of accuracy required for the

solution.

SUBROUTINE SPEC (N3, NAME, NUE, NUP, NACO, NUS, NCO, VAL) ~ A

subroutine to specify design constraints imposed to the problem.

Parameters:

N3

NAME(I)

NUE(I)

NUP(I)

NACO(I)

NUS(I)

NCO(I)

VAL(I)

Total number of design constraints (max = 19)

Name of the modules which have equipment parameters
manipulated. If a flowrate is manipulated, NAME(I) -
FLOW;” I = 1, N3.

Number of the module or flowrate specified in
NAME(I), I = 1, N3.

Number of the equipment parameter being manipulated.

IF EQP(L,J) is manipulated NUP(I) = J. IF NAME(I) -

CFLOW,” NUP(I) = 0, I = 1, N3.

Name of constraint being imposed. There are only two
possibilities 'FLOW’ for molar flowrate or 'COMP’ for
composition. I = 1, N3.

Number of the stream which has the constraint
NACO(I), I = 1, N3. |

Number of the component being specified. If a flow
rate is specified NCO(I) = 0, I = 1, N3.

Numerical value of the design constraint, I = 1, N3.

SUBROUTINE FCN (X, F, N) - This subroutine is used by

subroutine MPDLM to evaluate function values at the tentative

solution vector X.

SUBROUTINE TEARI (X, F, IT, N) - This subroutine assigns the

values of X (from MPDLM) tb the stream connection equations.

SUBROUTINE CONTI (X, F, IT, N) - This subroutine assigns the

values of X (from MPDLM) to the manipulated equipment parameters or

manipulated flowrates.

69

SUBROUTINE TEARQ (X, F, IT, N) - This subroutine evaluates

function values from stream connection equations.

SUBROUTINE CONTO (X, F, IT, N) - This subroutine evaluates

function values from design constraint equations.

UBROUTINE THREE (X, F, N, IP) - This subroutine performs three

successive substitution iterations to initialize all stream

variables.

Interconnection of the Subroutines

Subroutine MPDWM, the nonlinear solver subroutine, in its
iterative procedure evaluates a tentative solution vector X, which
is used to calculate function values. The variables in vector X
correspond to the molar flowrate of each component in the torn
stream(s) and to the manipulated variable used to meet some design
specification. The function of subroutines TEARI and CONTI is to
assign the variables of the vector X to the flowsheet variables,
that is, each element of vector X is assigned to variables used by
the equipment modules.

We will use a simple example to show the flow of information

between the subroutines of SIMO. All compositions used are in mole

percent.

Example III-1

A stream containing 50 percent of A and 50 percent B is to be

separated into two streams, one containing 90 percent of A and the

70

other 90 percent of B. The block diagram of such a system is shown

in figure III-4.

For this problem we choose stream 2 as the tear stream. The

design constraints imposed for the problem are:

COMP(3,1) = 0.9;

COMP(6,2) = 0.9. The variables manipulated to meet that

specification are EQP(2,1) and EQP(2,2).

To solve this problem the first step is to create a data file

with all the known parameters and an initial estimate of the

variables in the torn stream. Table III-1 shows one possibility of

such values.

Table III-1. Possible Initial Guesses for Example III-1

STREAM FLOW coMP(I,1) CoMP(I1,2)
1 100 .5 .5
2 150/ 3 7L
3 _ - _—
4 _— _— -
5 _— _— _—
& _— - -
MODULE EQP(I,1) EQP(I,2) EQP(I,3)
1 NR NR NR
2 oY/ 1Y R
3 NR 0.5 0.5
1/

NR - not required; </ - estimated

71

———3901 A

r“\
SEPAR
11 2
\/
5\ |sP ,
901 54@— 2 4
FLOW(1) : = 100
coMP(1,1) = COMP(1,2) = 0.5
$PLIT FRACTION = EQP(3,2) = 0.5
SEPARATION FRACTION = ERP(2,1); EP(2,2) = ?
CoMP(3,1) = 0.9
CoMP(6,2) = 0.9

Figure III-4. Block Diagram of Example III-1

72

Next the main program and Subroutine FSIS are created (FSIS

with the modules in its sequential order of calculation),

SUBROUTINE FSIS (X, F, IT, N)
CALL SEPAR (2)

CALL SPLIT (3)

CALL MIXER (1)

RETURN '

END

And the main program,

PROGRAM EXAMPLE

INTEGER NUE(2), NUP(2), NUS(2), NCO(2)
REAL VAL(2)

CHARACTER * 5, NAME(2), NACO(?2)

I1 = 1

12 =2

13 =2

NAME (1)
NAME (2)
NACO(1)
NACO(2)
NUE(1)

NUE(2)

NUP(1)

NUP(2)

NUS(1)

NUS(2)

NCO(1)

NCO(2)

VAL(1)

VAL(2)

IP =3

NSIG = 4

CALL SPEC(I3,NAME, NUE, NUP, NACO, NUS, NCO, VAL)
CALL SIMSO(Il, 12, I3, IP, NSIG)

CALL WRITES

CALL WRITEE

STOP

END

:SEPAR:

 SEPAR

,COMP’
CoMP

OONHFOUWNFHNN

| L T | O VI | IO | I T I [}

.
\0 \O

Subroutine SPEC sets up 7 vectors with all the information in a

COMMON block, so the information can be shared by other subroutines.

73

The information given as CHARACTER (NAME and NACO) is coded into
INTEGER type variables. Furthermore, SPEC also codes the type of
modules containing manipulated parameters because the equipment
parameters used by each module have different allocations. For
instance, a reactor module (say, module 7) can have only the
conversion of a reactant manipulated and that variable is stored at
EQP(7,20). A splitter module does not use the first equipment
parameter, EQP(I,1). 1In short, the variables in the COMMON block
are a numerical code of the design specifications, in this form it
is easy to identify in which modules are the manipulated variables,
and which equipment parameters are variables.

Subroutine SIMSO will first determine the total numbef of
unknowns (and equations) that MPDLM will be solving. This task is
rather easy because the number of variables in each torn stream is
equal to the number of component flowrates of that stream; the
number of design constraints is specified by the user. Sao, if there
are two streams torn and 10 components in each stream and 3 design
specifications, the total number of variables is N = 2 * 10 + 3 =
23. In the example III-1, N =1 * 2 + 2 = 4,

The first NC elements of X, NC being the number of components
in each stream, are assigned to the molar flow rates of the first
tear stream. The next NC elements of X are assigned to the molar
flow rates of the second tear stream, etc. After the molar flow
rates of all tear streams are assigned to X, the initial estimate of

the manipulated variables are assigned to X.

74

Before MPDLM is called by SIMSO, three successive substitution
iterations are performed. There are two reasons to do so. First, a
check of the consistency of the initial guesses is performed. There
is a possibility that the initial estimates will generate negative
flow rates, or some unexpected Tesults, so the three initial
iterations "stabilize"™ the initial guesses. If some unexpected
result is generated, the user has the option of terminating the run.
Second, the successive substitution operations are used as a
convenient way of checking that the number of equations and the
number of unknowns are the same.

When MPDLM is called, the control of the program passes to this
nonlinear solver subroutine, and it will either find a solution or
fail to solve the problem. It is not rare to have a simulation fail
either because the maximum number of iterations allowed is reached
or the unknowns calculated by MPDLM during the iterations are
infeasible. Infeasible situations include negative flow rates and
values of split fractions, conversions of a reactant, or separation
fractions outside the interval [0,1]. 1In either case, a new set of
initial guesses is required.

Subroutine MPDLM is linked with the flowsheet through
subroutine FCN. The sole purpose of FCN is to evaluate function
values at vector X during the iterations. FCN, in turn, will call
the following subroutines: TEARI, CONTI, FSIS, TEARO and CONTO.

As earlier discussed, TEARI and CONTI assign the values of X to
FLOW(I), COMP(I,J) and EQP(K,L). Now that the torn stream(s) and

manipulated variables are defined, subroutine FSIS is called and one

75

pass over the flowsheet is performed. Next TEARO and CONTO evaluate
function values. TEARO calculates the values of the residual
functions of stream connection equations and CONTO calculates the
values of the residual functions of design specification
(constraints) equations. When MPDLM reaches the solution, the
control of the program goes back to SIMSO, and from SIMSO to the
user supplied main program.

A block diagram of the hierarchy of SIMO is presented in figure
IIT-5. A block diagram of the most important operations performed
by SIMO in the example III-1 is presented in figure III-6.

A feature introduced in SIMO is the possibility of introducing
algebraic equations relating some flowsheet variables. For
instance, assume that in the example of figure III-3, we would like
to find a split fraction, al, which satisfies the following

equation:
G(al) = (f-'l_ow(s))2 - FLOW(4) = O (I111-1)

Equation III-1 is another constraint imposed on the problem.
The following commands would be added to the main program of

page 72.

N3 =23
NAME (3)
NACO(3)
NUE(3)
NUP(3)
NUS(3)
NCO(3)
VAL(3)

:SPLII’
USER

LI L T | 1
OO0OOMNW

76

MIXER

N MAIN
PROGRAM |
4
\ 4
READ
1 9
SPEC SIMSO 1=
4
9 \
SN MPOLM THREE
Y
y
FACLU
ittt —t FCN | —»
|
1 v
|
I CONTC TEAR/ - - -
} y]
i ‘ '
|
-- TEARO CONT/ |
4 |
F-—----
FS/!S }=
4
3 I y 4
Y A \ 4
SEPAR REAC SPLIT
1 |
FLASH USER

Figure III-S.

Hierarchy of SIMO Subroutines

(READ)

Enter initial values

pulated variables.

EYEN
s

Identify torn streams,
constraints and mani-

to WPDL#A

¥(3)=0.5=5QP(2,1)
Y(4)=0.5=5qP(2,2)

Provide initial guesses

Y(l)==FLOW(2)*COMP(2,1)
¥(2)=TFLOW(2)*COP(2,2)

9

Perfornm 3 sequential
iterations
(THREE)

3

‘ Call 1PDLY

4

Solution found. Return
to SISO

y
| call rew e

FLOW(2) =u(1)+v(2) F(3)= C0iP(6,2)-0.9
S0MP(2,1) = X(1)/FLoW(2) F(4)=C0ur(3,1)-0.9
COiP(2,2)= ¥ (2)/FLOW(2) (CONTO)

\ A F(l)= FLOW(2)*COWP(2,1)-X(1)
EQR(2,1) =¥ (5, F(2)= FLOW(2)*#COVP(2,2)~¥(2)
20P(2,2) =v (L) (TEARO)
{(COHTT)

Figure III-6.

Most Important Operations Performed by SIMO for the
Example III-1

78

and subroutine FSIS becomes:

SUBROUTINE FSIS (X, F, IT, N)
COMMON(S1) FLOW(30), ...

CALL SEPAR(2)

CALL SPLIT(3)

CALL MIXER(1)

F(IT) = FLOW(5) ** 2 - FLOW(4)

IT=1IT +1
RETURN
END

EQSS Library

This library of subroutines is used to perform chemical process
simulations using the equation-based approach.

The general structure of £QSS is similar to the SIMO library.
Actually some subroutines from SIMO are also used with EQSS. 1In a

similar fashion as in SIMO, EQSS can be divided in three major

categories:

1. Equipment Modules
2. Support Subroutines

3. Nonlinear Equations Solver

Egquipment Modules

As in the simultaneous modular approach, each equipment module
has a mathematical model of the material balances around that
equipment. Although the equations are essentially the same, they
are written in the form F(X) = 0; in the simultaneous modular
approach some algebraic manipulation had to be done in order to

calculate output streams, given input streams and equipment

79

parameters. It was quite simple to generate the source code of the
equipment modules as the equations are simple material balances.
However, some decisions had to be made regarding the use of 1) molar
flow rates of each species, or 2) total molar flow rate and mole
fractions as the independent variables. Using the molar flow rate
of each species may be attractive when simple simulations are
performed, that is, simulations without design constraints. In this
case almost all equations are linear, the exceptions being the flash
module and, depending on the case, the reactor module.

Early tests with EQSS showed that the gain in having most of
the equations linear was offset by the flash module. The

equilibrium relations in a flash drum have the following form:

FIN) = y; - kixi (I1I1-1)
where:

i = component index

X; = mole fraction of the liquid leaving the system
y; = mole fraction of the vapor leaving the system
ki = equilibrium constant for component i

N = (Nvi, Nli) = molar flow rate

1 = subscript indicating liquid phase

v = subscript indicating vapor phase

In solving nonlinear systems using Newton-based approaches, the
Jacobian of the system is required every iteration. The LEE row of

the Jacobian corresponding to equation III-1 would be:

80

oF . (N) Ay, - k.x.)
J. = —1 = i Rih (I11-2)

i
oN . oN .
J J

assuming that only three components are present, i = 1,3

x; = 1i (I11-3a)
Nip * Npp ¥ N5
and
y; = vi (I1I1I-3b)

Nvl * Nv2 * Nv3

Equation III-2 is equivalent to:

) Fi(N) a(yj) a(ijj)

= - j=1,3 (I11-4)
N, aN . oN .
9 J J J
and
9 [j VAl
a(y.) N, +N_.+N
. VI V2 V> 5,3 (1II-5)
oN ., oN .
J J
or
;
a(y. N, +N_ +N_ =N, N
_£Z£1 . vl v2 v3 v] (k=l vk) k#3j (I111-6)
oN .
] (Nyp *+ Ny + N)2

81

Similarly,
5
3K X, ~k, [N, + N+ N.o =N, . N
kg - 51N N N 1] (k=l 11! (11I-7)
aN .
J 2
(Nyy *+ Ny * Np5)
where k # j

It is clear that the rows corresponding to equation III-2 are
dense. For the equation-based approach we must explore the sparsity
of the nonlinear system. The formulation using molar flow rates of
individual components would create a row with 2 * NC elements for a
flash drum. If k values are considered variables the number of
elements goes to 2 * NC + 1. On the other hand, using total flow
rates and mole fractions, only two elements per row are generated
(three elements if k values are not constant).

In this work we will use total flow rates and mole fractions as
independent variables.

We will now present equipment subroutines. The following

nomenclature will be used.

W, = molar flow rate of the 10 stream (mole/unit of time)
i c mol fraction of the jE-rl component in the iy-'l stream
Ui = iy-l equipment parameter

F(I) = numerical value of the iErl equation
NC = number of components

IT = internal counter

82

The equations will be written for the case of two components.
The extension to NC components is straightforward.

UBROUTINE SMIXER (NE, N, F, IT) -~ This subroutine simulates

the mixing of up to 7 incoming streams. No equipment parameters are

required.

7

F(L = w8*x81‘.§ Wy ¥ X5, = 0
i=1
7

F(2) = wa"‘xaz‘.z Wy ¥ X5 = 0
i=1

F(3) =].-)(81—)(82 = 0

Total Number of Equations = NC + 1

SUBROUTINE SFLASH (NE, N, F, IT) - This subroutine simulates

an isothermal flash. There are NC equipment parameters: Ui = ki

equilibrium constants.

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

Total

SUBROUTINE

83

—
-+

—
= W XX - W %X
= W) X, - Wy * X
= Xg k¥ Xy o=
= Kpp mky ¥ Xy =
= l-Xy - X, =
= l-x3l X32 =

Number of Equations

=2*NC +2

H
[

H
[

SSEPAR (NE, N, F, IT) - This subroutine can for

example simulate a simple distillation column.

There are NC or 2 *

NC equipment parameters (2 or three output streams): separation

fractions.

F(1)

F(2)

F(3)

F(4)

F(5)

F(é)

Total

SUBROUTINE

84

—_— >
= W X U - W
= W P X Uy -
= W F Xy -y X
= W F Xy - Wy X
= 1-Xy =Xy =
= Ll-Xy - Xy, =

Wo * Xoi

Wy * Xy

Number of Equations

SREACTOR (NE, N, F,

a simple reactor.

* X

0]
o

* X

- W, *¥X = 0

0]
o

* X

=2*N +2

IT) - This subroutine simulates

Equipment parameters are the stoichiometric

coefficients and the conversion of a reactant.

85

Assume the conversion, U20’ is for component 1, in addition Ul and

U2 are the stoichiometric coefficients of components 1 and 2.

Ro= W * X * Uy/(-0))

F(1) = w2 * X21 - wl * Xll ~ Ul *R = 0
F(2) = W2 * X22 - Wl * X12 ~ U2 *R = 0
F(3) = 1- X2l X22 = 0

Total Number of Equations = NC + 1

UBROUTINE SSPLIT (NE, N, F, IT) - This subroutine simulates a

splitter. Up to 7 product streams may be specified. Equipment

parameter: split fraction (up to 7).

86

Assume that stream 1 is split into two streams, 2 and 3. Then,

FOL) = W =W, =Wy = O
F2) = Wy-W *U, = 0
FG3) = X =Xy =0
F4) = X=X, = O
F3) = Xy - %5 = 0
F6) = Xy -Xg = O

If equipment parameters are also variables, one more equation

is required:

F(7) = 1= U2 - U3 = 0

Total Number of Equations = L + 2 * NC where L is the
number of output streams.
The user has the option of inserting special purpose modules.

The module must have the form

87

SUBROUTINE USER (NE, N, F, IT)

On input, IT is the number of the next equation. On output IT must
be equal to IT + NEQ, where NEQ is the number of equations in the

USER module. For example,

FCIT) = user equation 1
FCIT + 1) = user equation 2
F(IT + 2) = user equation 3
IT =IT + 3

Support Subroutines

This block of subroutines are used to enter data, print results
and prepare the system of nonlinear equations for solution. Four
subroutines from SIMO are also used with EQSS: Subroutines READ,
WRITES, WRITEE and WRITEX.

SUBROUTINES SREAD (NSTR, NEQ, NC) - This subroutine is used to

identify equipment modules used in the simulation, as well as
identifying which flowsheet variables are known constants or
unknowns to be calculated. SREAD will assign values of O or 1 to
vectors IFK(N}, ICK(N x N) and IEK(N x N). If a flow rate is a
known constant, the corresponding element of IFK will be one.
Similarly, ICK and IEK will be one if a composition or equipment
parameter are a known constant. Otherwise, IFK, ICK and IEK will be
assigned zero.

Rnother vector, NAME, will carry the name of each module used

in the simulation. The parameters required by SREAD are:

88

NSTR - total number of streams
NEQ - total number of equipment modules

NC - number of components in each stream.

SREAD requires a data file; an example is shown in figure III-7.

SUBROUTINE IDEN - This subroutine plays an important role in

setting up the system of nonlinear equations. The subroutine has

four major duties:

1.

Identifies equipment modules and assigns to vector ID(I)

the values shown in table III-2.

Table III-2. Vvalues of Vector ID for a Given Equipment Module

IE-rl Equipment ID(I)
Module
SPLITTER 1
MIXER 2
REACTOR 3
SEPARATOR 4
FLASH 5
USER 6

Vector INOP(I) is assigned the total number of streams
entering and leaving the IEﬁ module. Matrix ITOP(I,Jd) is
assigned the number of each stream leaving and entering

the IE-rl equipment module, J = 1, INOP(I).

Figure III-7.

xO0OO

t

SPLIT
MIXER
SEPAR
MIXER
SEPAR
MIXER
SEPAR
SEPAR
SPLIT
SEPAR

OCw®RINU b LN~

00O —

Example of a Datafile Required by SREAD

1

|

AAAAAXD102

1

I o

1

03040506070808910
1

) - —

12XXX12Xx010203040
1 [

i

1

S0
1
{

1

1
{

8070
1

!

1

8081

!
1

1
1§

0
1
!

]

89

90

Vector IEC(I) is assigned with the total number of unknown
equipment parameters of the IED module. IEK(I,J) is
assigned with the number of each unknown parameter of the
Pgl equipment, J = 1, IEC(I).

When sequential iterations are used to generate initial
estimates of all variables, some variables, which are
known constants, may have their value changed by the
sequential pass. When subroutine SREAD is called, it
assigns to a matrix CX(I,J) the numerical values of known
flow rates (FLOW(I)) and known mole fractions (comMP(I1,J)).
Subroutine IDEN reassigns the values of Cx(I,J) to FLOW(I)
and COMP(I,J). The use of sequential iterations to

generate initial estimates of all variables will be

treated in detail at the end of this chapter.

UBROUTINE SIMMAN (NSIG, MS) - This subroutine serves as a

“manager™ of the library. First, it performs a scaling of all flow
rates, by searching for the maximum flow rate, FMAX, and then
dividing all flow rates by FMAX. Second, it checks the consistency
of the system of nonlinear equations. If the number of equations
and variables are not equal, an error message is printed and the
program stops. If the system of equations is consistent, stream

- variables and equipment parameters with the known constants and
initial guesses are printed.

Last, SIMMAN calls MPDLM, the nonlinear solver subroutine.

91

SUBROUTINE FCN (X, F, N) - This subroutine is used by MPDLM to

pass the vector X, with tentative values to the solution, and to
pass to MPDIM function values. FCN will call two other subroutines,
VAROUT and FUVAL. In the following pages both subroutines will be
described.

SUBROUTINE VARIN (X, IT) - This subroutine is used by SIMMAN to

assign the initial guesses of flow rates, compositions and equipment
parameter to the vector X. The variables are stored in X by
equipment modules. For instance, module number 1 has 1 input stream
and two output streams, say, streams 1, 2, and 3. Alsoc there are 2
unknown equipment parameters and each stream has 3 components.

Vector X will have the following variables assigned:

X(1) = FLOW(1) X(5) = FLOW(2) X(9) = FLOW(3)
X(2) = coMP(1,2) X(6) = coMP(2,1) X(10) = COMP(3,1)
X(3) = COMP(1,2) X(7) = COMP(2,2) X(11) = COMP(3,2)
X(4) = COMP(1,3) x(8) = coMP(2,3) X(12) = CoMP(3,3)
X(13) = EQP(1,1)
x(14) = EQP(1.2)

SUBROUTINE VARQUT (X, IT, N) - This subroutine does exactly the

opposite of VARIN., It assigns the values of X to the stream
variables and equipment parameters.

SUBROUTINE FUVAL (F, IT, N) - FUVAL calls all equipment modules

subroutines. Each equipment module subroutine will evaluate
function values which will be stored in vector F and later on used

by MPDLM.

92

Nonlinear Solvers Subroutine

The subroutine used to solve the nonlinear system is MPDLM
which was described in the SIMO section. The only difference is
that it uses sparse matrix techniques and Schubert’s update formula.
Details may be found in Chapter II.

UBROUTINE SPAMA2 (N, IS, LB, X) - Solves a system of N linear

equations. The source code of this subroutine was obtained from
Rodrigues (1979). It uses sparse matrix technigues to speed up

execution time and save computer memory.

Interconnection of the Subroutines

Once the data file is created and the values read through
subroutine SREAD, the next step is to call subroutine SIMMAN. This
subroutine will first perform a scaling of the flow rates, then call
subroutines IDEN, VARIN and FUVAL, check the consistency of the
system, stop the program or print stream variables and equipment
parameters, and then call MPDLM. Now the control of the program
passes to the nonlinear solver subroutine. MPDLM will call
subroutine FCN several times with tentative solution vectors. FCN
in turn calls subroutine VAROUT, which assigns the values of X to
the stream variables and equipment parameters. Next, FCN calls
FUVAL and all the function values are evaluated. FCN returns these
function values to MPDLM.

A block diagram of the strategy is shown in figure III-8.

An important point that should be addressed is how to supply

initial estimates of all variables.

93

MAIN
It —» roGRAM [¢ 3
SIMO READ
SRED
v L v
VA IN IDEN
v
SPAMAT]
FUVAL VAROUT
SMIXER SREAC SSPLIT SSEPAR
A 4
SFLASH USER

Figure III-8. Flow of Information Inside EQSS

94

There are two possibilities. One is to supply the initial
estimates in a data file through subroutine READ. The task is very
simple if the problem has a few modules and a dozen streams.
However, if there are several modules and streams, and the number of
components is high the task is tedious and error prone.

The second possibility is to perform one sequential iteration.
As SIMO and EQSS have the same structure, and both use the same
common block for the stream variables and equipment parameters,
performing one sequential iteration in the system, that is, using
the equipment modules from SIMO to evalute stream variables is an
attractive alternative.

Nevertheless, the strategy has a serious drawback. The modules
from SIMO required the complete definition of the input stream(s)
and the required equipment parameters. Once the calculations are
performed in a given module, all residual functions of that module
when calculated by the equivalent module of EQSS are equal to zero.
For instance, assume that we want to solve the problem of figure
III-3 using EQSS, and we want to supply the initial guesses through
SIMO subroutines. We would write a small subroutine with the
equipment modules in its sequential order of calculation, and would
supply an initial guess for the tear stream and unknown equipment
parameters. The subroutine would be:

UBROUTINE IGUESS
CALL SEPAR(2)
CALL SPLIT(3)
CALL MIXER(1)

RETURN
END

95

So, for a given set of initial guesses of stream 2 and equipment
parameters EQP(2,1) and EQP(2,2), the separator module would

calculate the values of streams 3 and 4., Those values are the exact

solution of the separator module. With the values obtained for

stream 4, the splitter module will calculate stream 5 and 6, which
are the exact solution of the splitter equations. The same exact
solution will be obtained with the mixer module. Of course, now
stream 2 has different values than the initial guess, unless the
initial guess was the solution. Besides the residual functions from
the separator module, all other residual functions of the system
were equal to zero.

The fact that most of the equations were mathematically
satisfied, although the complete system was not, created unexpected
results from MPDLM. Most of the times it would not converge. In a
few occasions it would converge, but the number of iterations was
excessively high.

To overcome this problem we introduced "errors® in all
variables calculated by the sequential iteration. Truncating the
values of the variables at the third or fourth decimal place was

enough to solve all problems.

96
CHAPTER IV
PERFORMANCE OF EQSS AND SIMO

As discussed in previous chapters, the basic problem
encountered in process simulation is the need to efficiently solve a
set of nonlinear equations. In Chapter II we showed an algorithm to
solve nonlinear equations which, we believe, is one of the most
efficient available in the open literature.

The critical point is to define the measures used to compare
different approaches to solve the equations of a chemical process
simulation. In general, execution time plays an important role in
commercial simulations, but, as bomputers become faster and cheaper,
execution time will become less important. It is more important to
have a simulator which will not fail to solve simple problems, or
will not require several runs with different initial guesses to
achieve convergence in a more complex problem.

In this work our basis for comparison will be first, the number
of iterations required to solve a specific problem, and second,
execution time.

Each approach (sequential modular, simultaneous modular or
equation-based) uses a different subroutine to solve the set of
nonlinear equations. The sequential modular approach uses
Wegstein’s method (subroutine WEGSMD) to solve problems without
design specifications; if design specifications are part of the
problem, subroutines WEGSMD and SECNEW are used. The simultaneous

modular approach uses version 1 of subroutine MPDLM. The

97

equation-based approach uses version 2 of MPDLM (see Chapter II).
For all three approaches the stopping criteria used in the nonlinear
solver subroutine is the same, i.e., 1 x 10'4, which means that each
variable had a change smaller or equal to 1 x 10'4 between the last
two iterations.

Five problems were simulated using the simultaneous modular
approach (SIMO), the equation-based approach (EQSS) and for
comparison, the sequential modular approach (SEQ). Four of the
problems have at least two versions, one with 1 or more design
specifications (constraints) and one without constraints.

Of the five problems, four are from the open literature
(Cavett’s four-flash drum problem, ammonia plant, nitric acid plant,
and gasoline recovery); the remaining problem is a section of a 2
ethyl-hexanal plant in which ethanal is produced by the catalytic
dehydrogenation of ethanol. The data for the ethanal plant was
obtained from Elekeiroz do Nordeste Industria Quimica S.A. (Brazil)
through the document EN-001-00-TU3-015.

In table IV-1 we summarize the problems simulated.

98

Table IV-1. Summary of Test Problems

Number of Design Specifications

Problem EQSS SIMO SEQUENTIAL
Ammonia Plant 0,1 0,2 0,2
Nitric Acid Plant 7 0,1,7 0,1
Gasoline Recuperation 1 g,1 0,1
Ethanal Plant — g,1 g,1
Cavett Problem 0 0 0

It should be noted that only material balances are performed in
either approach, and the influence of physical property calculations
can not be analyzed. It is well known that physical property
calculations account for a significant amount of computer’s time in
Process simulation, however, there is no loss of generality in this

work as all problems are set up in the same manner.

IV-1 Cavett’s Four Flash-Unit Problem

This test problem was suggested by Cavett (Cavett, 1963). The
problem has been used by several authors to compare the performance
different tear streams sets on convergence. See, for example,
Westerberg et al. (1979), Rosen and Pauls (1975), and Shachan and
Motard (1974).

The block diagram of the process is presented in figure Iv-1.
Feed compositions and equilibrium constants (k-values) are presented

in table Iv-2.

CAVETT'S PROBLEM

e
FLASH v l< \-:
3 .Mlgi 07
!
FLASH
4

Figure IvV-1. Block Diagram of Cavett’s Problem

100

Table IV-2. Feed Composition and K-values Used in Cavett’s Problem
(Rosen and Pauls, 1977)

K-values

Component Mole Fraction Flash 1 Flash 2 Flash 3 Flash 4
N, 0.0131 24.260 5.940 149.700 620.800
002 0.1816 4.640 1.510 21.100 72.300
HoS 0.0124 2.030 0.890 8.280 27.100
CH4 0.1096 10.300 3.090 52.900 200.100
Ethane 0.0876 2.660 1.000 11.200 39.300
Propane 0.0838 0.943 0.502 3.290 10.800
Isobutane 0.0221 0.445 0.310 1.340 4.220
n-Butane 0.0563 0.342 0.246 0.990 3.070
Isopentane 0.0289 0.164 0.155 0.417 1.220
n-Pentane 0.0413 0.132 0.126 0.327 0.944
n-Hexane 0.0646 0.051 0.064 0.107 0.2%90
n-Heptane 0.0954 0.022 0.035 0.039 0.101
n-Octane 0.0675 0.008 0.017 0.013 0.033
n-Nonane 0.0610 0.004 0.009 0.005 0.012
n-Decane 0.0304 - 0.002 0.005 0.002 0.004
n-Undecane 0.0444 0.0008 0.003 0.0009 0.002
Temperature (K) - 322 311 309 303

Pressure (bar) - 9.6 56.2 4.39 1.91

101

For this problem, streams 2 and 7 were chosen as tear streams.
As initial estimates for the stream variables of the torn streams,
we used the stream variables of the feed (stream 1). Neither the
tear streams, nor the initial estimates of streams 2 and 7, are the
best, but in simulations with all three approaches - sequential,
simultaneous modular and equation based - the same set of initial
conditions were used, thus a fair comparison could be made.

The results obtained are summarized in table IvV-3.

Table IV-3. Results for Cavett’s Problem

Method 1TerY/ revaiy cru-tie #
EQSS 5 - 143.995 170
SIMO 6 43 21.167 32
£Q 105 105 5.902 32
1/

=~ Number of iterations performed by the nonlinear solver. For
EQSS and SIMD iterations were performed by MPDLM, for SEQ
iterations were performed by WEGSMD or SECNEW.

2/

= Number of flowsheet evaluations.
2/ Execution time in a COC CYBER 175; opt. = O.

4/

-~ Number of equations being solved.

In Cavett’s problem, the sequential modular approach was
superior to the equation based approach and simultaneous modular
approach in terms of execution time. However, in terms of
iterations required for solution the equation based approach and the

simultaneous modular were far superior. Unfortunately, EQSS is

102

rather slow to solve the linear system; the same happens with SIMO.
But it is clear that only a few iterations are required to reach a
solution.

The number of sequential iterations required by SIMQ, 43, were
used to perform the following operations: 3 iterations to
initialize the problem, 32 iterations to evalute the Jacobian, and 8
sequential iterationsvrequired by MPDLM. In this case, the 32
flowsheet evaluations to obtain the Jacobian did not contribute
significantly to the execution time. Roughly, 2.5 CPU were required
to evaluate the Jacobian.

The main programs used for the three methods are listed in
table IV-4. The solution of the problem is presented in table IV-5.

Westerberg et al. (1979) reported 73 sequential iterations to
solve Cavett’s problem with the sequential modular approach.
Unfortunately, they did not report the initial estimates of the tear
streams, or which procedure was used to initialize the variables.

We believe our implementation of the sequential modular approach is
correct, so the discrepancy in the number of iterations must be due
to the initial estimate of the solution.

As it was earlier mentioned, Cavett’s problem has been
extensively used to evaluate process simulators. Chen (1982)
reports that 5 iterations were required to solve Cavett’s problem by
the simultaneous modular approach using the same tear streams as in
this work. However, the execution time Chen reports is 2.64
CPU-second, which is one order of magnitude smaller than the

execution time obtained in this work. The computer used in Chen’s

0000

20

20

3o

Table 1IV-4.

PROGRAM SCA(TAPES TAPEG OUTPUT=TAPEG)

EXTERNAL FSIS
COMMON /S1/ NS NSTR(JO) FLOW(JI0D) NC ,CNAME(20) COMP130 .20}
COMMON /E t/ NE NEQP{(20) .EQNAME{(20) EQPI120.20).1EQP(20 .8)
COMMON /MWEG/ NSEQ

COMMON /P31 / 1707

REAL X(32),Ft32)

17T01=0

NSEQ=450

N=32
NT=300
EPS =)
K=0
CALL REAO(1) 6)

00 10 1= ,16

X{ID)=FLOW(2)*COMP (2 ,1)
X{I+16)=FLOW(?)*COMP(T.1)

CALL WEGSMO(N X ,NT EPS FS1IS K)
WRITE(B,20) 1707

FORMAT(//.5X "CONVERGENCE ACHIEVED IN
CALL WRITES

CALL WRITEE

STOP

ENO

E-4a

v.re v ITERATIONS

SUBROUTINE FSIS(M X,
REAL X{M) , Fim)
COMMON /S1/ NS NSTR
COMMON /E)/ NE . NEQP
COMMON /P31 / 1707

-Z

C .CNAME (20) . COI
1E

(3o
.EQP(20,20) | (2

M P 20)
QrP(20.8)

-

L)

(1}

aO000

Main Programs Used to Simulate Cavett’s Problem:

250

SCA - sequential modular approach
ECA - equation-based approach
MCA - simultaneous modular approach

TAPES
FLOW(30), NC CNAME
EQNAME (20) | EQP(20 L20)

PROGRAM ECA(TAPES TAPE
COMMON /S !/ NS NSTR{JD
COMMON /E 1/ NE NEQP(20
CaLL REAO(11 . 86)

CALL SREAO()1 6 .16)

00 250 1F=}
caLtL
CALL
CALL
CALL
CALL
CALL
CONT I NUE

CALL WRITES

00 10 1=1,NS
IS=NINT(100*FLOWL 1))
FLOW(1)=15/100

DO 10 L=V ,NC
IS=NINT(COMP(1 ()*10000)
COMP(1 L)=1S/10000
CONTINUE

CaLL SIMMAN(2 2

STOP

END

20+ COMPt30 20

5
). 1EQP(20 8

{TAPES TAPEG)
)

Ni1=z2

,IP.NSIG)

S(X . F ., IT,N)

SUBROUTY INE
REAL X(N),
CALL
CALL
CALL
CALL
CALL

¢0t

104

Solution of Cavett’s Problem

Table Iv-5.

—
ZO~ DI SOOCO
W~ THhooNO~N THhH
X tOONOND IR
200000000000

- .
ZOI4QQOOW — ~Orw
WOOOON~g S I~09
ANNO SO — TN NGO
~“~0000000000D

O~ QONO00 —~ oo

QOO F NSO
Ioo—9nRO-~QOO0n
OO~V ONO — N
VO-——~NNO~O 0

VONIOS SN~ SO —
I~ 0OOONON-—~—~
NO~—OOO SO
vo——-0-~-0-000

CO~N -~ ~OO0
tONIF-N—IDHONO
TOMO—NH~0000
O—-0—-0NOOO0OO0OO0O

TONO DI NN T
NNENNISINON00
N—~—N—~NN—NO—O
I00000000000

CRAONONNONNM
N—@RONEOTONNO
QOO IO NONO
O~—MONNO-000

N ——OoonnNrr0o000
Ww oog—-—0evt0—000
AN —ONONOOOOOO
MZO00000O000000

OO -~NEO—-NOoMN
—— OV -~ OO~

FLOW

NN OO VO — D
Noa~—Ol-VON~ g
SOCONINOIN SO~
NN~ O~ N -

STREAM VARIA

NS TR

—NOSTNONONO

WNNDODOQOWN— O~
ITn—N~-OO0~—-0®
1 OO OO OO ¥ — ™
Z2000~-0Q0000—-0—

ON~OON - 01 OO
TIONONOO —~OO
OIOr-O~O—00N
00000000 ~0—

N-HE X

oOWOOoO —~WNE—WNON
—— 0NN -~~oONn

N0 OO — D
Nt ~OrNON~ S
NN T O
OoNNO - O —-N -

STREAM VARIABLES
FLOW

—NOSTNO~ORNO0 —

EQUIPMENT PARAMETERS

oo

LJY)/ IEQP L

(2 X EQP(!I

~O

-

‘e
00

342
000

00
ISs]
-3

<0 oo
NN <0 oo
9 oo oo
oo oo
~3 ~O oo
%8 ~O oo
1 1
=Ye [K=t=}
a3 't~ O 100
*no oo 100
1 o o~
O 1n
i 1
1 1
1 1
| 00 [f=Ye)
WW ~Oo o0
~Oo oo
mo =) ~
o <
h o @
1] w
o- 40 XOO
a5 J0Q =00
Lo 300
~o fa) o
o o
« = "
<0< woo
35 oo oo
~O o o
_ 9 ro *
— (]
w w
))
lJ20n 200
S99 Qo- @oo
29 Q-0 Qoo
o 2 0 = o
o
o o
w0 ~
1om 1 0o
NB 10m 1 oo
2m 1 -0 [Nala)
1 -— 1 o
© Do~ —
xS '
1 1
1 1
1o~ oo
aa 100 R=1=
!M o~ oo
© o © ‘o
by ~
[=1o) oo
S5 on oo
Qo o~ oo
) -«
N
L o~
e ©

105

work and in this work are the same. The time required to evaluate
the Jacobian, and the time required for one flowsheet evaluation are
roughly the same in both works. However, the time required by
Chen’s nonlinear solver is 0.15 CPU-seconds; in this work 18
CPU-seconds, which is more than 100 times higher. Either there is a
discrepancy in Chen’s time units, or our implementation of the

nonlinear solver is rather inefficient.

IV-2 Ammonia Plant Simulation

In this problem an ammonia production plant using the Haber
process is simulated. The data required for that problem was taken
from Myers and Seider (1976).

A block diagram of the process is presented in figure IV-2.
The process is rather simple. The feed consists of hydrogen (H2)
and nitrogen (N2) gas containing argon (Ar) and methane (CH4)
impurities. The reaction between hydrogen and nitrogen to obtain
ammonia (NH3) is performed using an iron catalyst at 200 atm and

about 800%:

N, + 3H, 2z 2NH

2 2 3

The outlet from the reactor (REACTOR2) is cooled and it goes to
a high pressure flash drum (FLASH3). The liquid from FLASH3
contains mosf of the ammonia, and the vapor contains unreacted
gasses and impurities. The vapor stream from FLASH3 goes to a
splitter (SPL5) where 2 percent of the vapor is purged. The liquid

stream from FLASH3 is the input stream of a low pressure flash drum

PRODUCTION

[A MMONIA

’l:l\} W REACTOR 2 v . 3

\Y/

» PRODUCT

Figure IV-2. Block Diagram of the Ammonia Plant

901

107

(FLASH4). The liquid stream from FLASH4 is almost pure ammonia, the

and NH_, which are

vapor stream contains a small amount of N2, H2 3

recycled.
The feed composition, as well as the vapor liquid equilibrium

constants for FLASH3 and 4, are presented in table IV-6.

Table IV-6. Feed and K Values for the NH3 Plant Problem

COMPONENT ~ MOLE FRACTION MOLAR FLOW RATE K-FLASH3 K-FLASH4

N 0.0 0.0 0.06 0.28
N, 0.24 24.0 105 2400
H, 0.743 74.3 90 1750
Ar 0.006 0.6 100 1400
CH,, 0.011 1.1 33 500

The conversion of a reactant was not supplied, but the chemical

equilibrium constant is given as k = .35, or
0.35 = (NHL)2/[IN,)(H,)?] (Iv-1)
* - 3 272

In using the sequential modular approach, the conversion of a
reactant must be specified, so before the reactor module is called,
the conversion y is calculated by solving a nonlinear equation
derived from equation IV-l with the interval-halving method.

In the simultaneous modular approach and equation-based
approach, equation IV-1l is included in the system of nonlinear
equations, and the conversion y becomes a manipulated variable, that

is, another unknown.

108

The results obtained for this problem are summarized in table

Iv-7.

Table IV-7. Results for the NH., Plant Problem

3
ITER FEVAL CPU-TIME * B
EQSS 4 - 8.37 48
SIMO 4 15 1.454 6
EQ 119 119 2.54 5

Table IV-8 presents the main program used for the three approaches;
table IV-9 presents the solution of the problem.

It can be seen that the simultaneous modular approach achieved
convergence in a few iterations and the execution time was the
lowest of the three approaches. The number of equations was very
small (6 equations), so the overhead of SIMO was\quite small and it
did not contribute substantially to execution time. However, MPDLM
used 0.2935 CPU-seconds per iteration, whereas Wegstein’s subroutine
spent 0.021 CPU-seconds per iteration to solve the problem using the
sequential modular approach.

EQSS solved the problem in a few iterations, however execution
time was rather high. The execution time required to evaluate the
Jacobian was approximately 1 CPU-second, so MPDLM used about 1.8
CPU-seconds per iteration. It should be mentioned that when the
same problem was again solved using MPDLM, but the linear system was

solved with a full matrix technique; the execution time Jumped to 45

Table Iv-8.

oo

[eXz1212)

oo

Programs Used to Simulate the NH3

PROGRAM SENH3 (TAPES OUTRUT TAPEG)
EXTERNAL FSIS
COMMON /F31/ FL5) FNI LTQT

'
7
5
5
t
T/, INITIAL ESTIMATES OF TORN STREAMS AND",
/ EQUIPAMENT PARAMETERS " /)
WRITES
WRITEE
CALL WEGSMO(N X NT EPS,FSIS K)
WRITE(6,10) 17107
10 FORMAT(//5%x "CONVERGENCE ACHIEVED IN “ . 13," ITERATIONS",//)
CALL WRITES
CALL WRITEE
STOP
END

)
0) FLOW(30), NC,CNAME (20) ,
0) [EQNAME(20), EGP(20,20) .

1.1107
EXTERNAL CONS

S
LOwWe2)exil
.5

XL /FLOw(2)

—OIBWe
v M< -
—r e

[e]e] I=1
30 F(I)—FLOW‘?D‘LOMP{Z |

RETURN

ENO

LJENL L TTOT

F(2)-3 #y)++3

Plant Problem:

Ooo00

0noo

o600

o

SENH3
MNH
ENH

sequential modular approach
simultaneous modular approach
equation-based approach

PROGRAM SMNH(TAPES TAPES)
CHARACTER4Y4 NAME(2, NACO(21

INTEGER NUE(2) NUP(2) NUS{2) NCO(2)
REAL VAL(2)

CaLL READ(9 5
=1

3 NAME NUE NUP ,NACO,NUS NCO. VAL I
(N1 N2 N3 IP.NSIG)

)
FLOW(30) NC.CNAME (20) . COMP{30,20)
CALL REA

XPF PP o
MWW
=TI~

“~ZZonwn

PROGRAM ENHITAPES TAPEQ TAP
COMMON /Si/ NS . NSTR(30). FLOW(30I NC,CNAME (20) ,COMP (30,20}
COMMON /E)/ NE NEQP(20) EGNAME(20).EQP(20,20) 1EGP(20.8)

CALL READ(9 6)
CALL SREAD(9.6.5)
CALL REAC(2)

CALL
CALL FLAS
CALL S
CALL M

SUBROUT INE USERIT (NN

NOF LT
COMMON /S 1/ NS NSTR‘; 3. LOW(3D) NC . CNAME (20) .COMP {30 20}
)

o
COMMON /E1/ NE NEQP(20 EQNAME(ZU) EQP(20,20) IEQP(20.8)
REAL F(N)
FI1T)= COMP13 32 YCOMPL3, 31/1COMP (3 1)*COMP{3,2)%4%3 -0 35
I¥=1T+
RETURN

601

110

Table IV-9. Solution of the NH3 Plant Problem

STREAM VARIABLES

NSTR FLOW N2 H2 NH3 AR CH4
! 100 00 .2400 7430 .Q0oQ0 0060 Q110
2 788 58 1738 .6674 0520 0380 [sI-X° 3]
3 745.20 .1545 6189 1132 0402 0732
4 701.95 1639 6566 (0S93 Q427 Q775
S 43 .25 .0018 0Q73 9884 0004 0023
6 .66 [slX°)] 4587 2798 02686 1357
7 42 .58 gooo 0003 8884 Q000 0003
8 687 .91 1639 6566 0583 0427 0775
9 14 .04 1639 6566 0583 0az27 Q775
EQUIPMENT PARAMETERS . (2 X EQP(I J}}/IEQP(IL J}
—————————— MODULE # (1) = MIXER S mmmmmm -
000 000 000 000 [s]o]s] [s]o]s] 000 Q00 Qo0 000
[s]s]s] [s[s]s] [s[s]s] [s[s]s] [s]s]s] [s]e]s] [s[s]s] [s[s]s} [s[s]s] [s[s]s]
1 8 6 [s] [s] [s] 2 3
—————————— MODULE # (2) = REACTDR --=-=----=-=~
-1 0n0 -3.000 2 000 Q00 000 000 Q00 [s]s]s} Q00 Qo0
[s[¢]s] Qoo [s[s]s] [s[s]s] [s]s]s] [s]s]s] [s[s]s] [s[o]s} 0go 159
2 i 0 0 o :
—————————— MOOULE # (3) = FLASH e mm- -
105.000 90.000 060 100.000 33 000 [sls]s} 000 000 000 000G
[s[o}s [s]s]s] [s[s]s] Qoo [s]s]s] .000 [s[s]s] [s[s]s] [s[s]s] Qoo
3 4 S [s] [s] [s] [s]
—————————— MOQULE # (4) = FLASH ce--eeoo oo
2400.0001750.000 2801400 Q00 500 000 000 000 Q00 QQu cog
2] [s]s} .000 Qoo [s[s]e} [e]ss] 000
S [s] [s] [s]
—————————— MODULE # (S5) = SPLITTER ---====-=--
000 020 980 .000 [s]o]s] 000 000 coaQ gQQ
[s[s]s] Qoo [s[s]s] . Q00 . 300 [s]s]s] [s[s]s] coo [ale] s} agae
a4 9 8 0 0 0 0 2

111

CPU-seconds. Thus, there was a considerable advantage in using
sparse-matrix technigues in MPDLM, including SPAMAT, to solve the
linear system. It is clear, however, that an even faster subroutine
must be used for the equation-based approach to be competitive with
the other methods.

The same problem was solved imposing a design specification on
the flow rate of stream 9 (purge stream) equal to 10 mole/unit of
time. The split fraction in SPL5 was manipulated to meet this
design specification.

To solve the design problem with the sequential modular
approach, we used subroutine SECNEW to solve the design
specification equation and Wegstein’s method to solve stream
connection equations. In the other two approaches little had to be
changed other than entering a few parameters indicating that FLOW(9)
is equal to 10 and EQP(5,2) was an unknown.

The number of iterations and execution time for the design
problem are presented in table IV-10.

Table IV-10. Results for the NH3 Plant Problem With One Design
Specification

ITER FEVAL CPU-TIME * EQ
EQSS 5 - 10.077 50
SIMO 15 36 2.867 7

SEQ 5 471 8.61 6

112

A few comments are appropriate at this time. The absurd number
of sequential iterations required by the sequential modular approach
is a typical result of nested nonlinear solvers. To guarantee a
maximum error of 1 x lO"4 in the outer loop (SECNEW), the inner loop
(Wegstein) should not have an error greater than or equal to 1 x
10'4. A few preliminary tests showed that one order of magnitude
was enough, so the convergence criteria for the inner loop was set
equal to 1 x 10'5. Table IV-11 shows how the iterations were

distributed.

Table IV-11. Sequential Iterations Required by SECNEW

SECNEW Iteration Wegstein’s Iterations

1 154
la (derivative) 9
2 110
3 133
4 40
5 3

TOTAL 471

Wegstein’s methods require a set of initial guesses at each
iteration of SECNEW. For the first iteration, the user provides the
set of initial estimates. The following iterations of SECNEW use
the converged values of the torn streams variables of the previous

iteration. For instance, the initial guesses for the stream

113

variables for the third iteration of SECNEW used the converged
values of stream variables of the second iteration of SECNEW.

SIMO solved the problem in 15 iterations and it took 2.87
CPU-seconds for solution, 3 times faster than the sequential modular
and almost 4 times faster than the equation based approach. Again,
the equation based approach converged fast, but the execution time
was too high.

The solution of the problem is presented in table IV-12, and

the main programs in table Iv-13.

IV-3 Ethanal Production

The dehydrogenation of ethyl alcohol to produce ethanal is a
process used since the beginning of the century. Later, when
petroleum feedstock became cheaper and abundant, ethylene was used
as raw material. After the petroleum crises of the 1970’s,
dehydrogenation of ethanol became attractive to some countries where
ethanol could be produced cheaply. Several countries, for example
Brazil and India, use the process today.

The dehydrogenation of ethanol is performed over a copper

catalyst at about 1 atm and 600°K..

CHBCHZOH z CHBCHO + H2

Unfortunately, there are several other reactions in series and
in parallel occuring in the reactor. Besides ethanal and hydrogen,
acetic acid, ethyl acetate, higher aldehydes and alchohols (4 or

more carbon atoms) and gases (CO, Coz, CBH8) are also obtained, in

114

Table IV-12. Solution of the NH3 Plant Problem with One Design

Specification
STREAM VARIABLES
NSTR FLOW N2 H2 NH3 AR CH4
1 100.00 2400 7430 0000 .00860 .0110
2 1054 .08 1458 .8466 0538 .0548 . 0882
3 1008 .77 1287 .6083 1011 .0872 . 1036
4 983 .32 1358 6387 0593 .0888 1084
S 45 .45 0013 .007 9877 -0008 © . 0033
] 73 0783 .42485 2798 .Q3%6 L1817
7 44 .72 0000 0002 9993 .0000 .0004
8 853.32 1358 .8367 0593 .0598 . 1084
9 10.00 1358 .83867 0593 .0589 . 1084
EQUIPMENT PARAMETERS - (2 x EQP(IAJ))/IEQP(I,J)
---------- MODULE # (1) = MIXER e e e eean
-000 . 000 .Q00 .000 .000 .000 .000 .000 .000 . 000
.000 .000 . 000 . 000 00Q 000 000 .000 .000 .000
1 8 6 o [¢] o 2 3 :
---------- MOQULE # (2) = REACTOR T ee st es-a
-1.000 -3.000 2.000 .000 .000 .000 000 000 000 000
.ago .000 .000 - 000 . 000 . 000 . 000 000 [e]e]e} . 147
2 3 1 o 0 o [¢] !
--------- MOOULE # (3) = FLASH el il
105.000 80.000 -080 100.000 33.000 000 000 -000 000 000
000 .000 . 000 - 000 000 000 goo .000 000 000
3 4 0 [¢]
--------- MOOULE # (4) = FLASH v eetemaaa
2400.0001750.000 -2801400.000 500.000 -000 000 000 000 000
.000 .000 . 000 - 000 .000 -000 000 .000 000 [e]e]e]
3] 7 o] o [¢]
---------- MOOULE # (§) = SPLITTER ~~w-ccwenn
.000 .010 . 980 000 000 .000 .000 .000 .000 .000
[e]e]e] .000 . 000 000 000 .000 000 000 000 000
4 9 8 0 0 0 2

Table IV-13. Programs Used to Simulate the NH. Plant Prablem With One Design Specification:
SCINH - sequential modular apprgach _
MC2NH - simultaneous modular approach

c
c

¢ (VAPES TAPEG) ’ ¢
PROGRAM SC 1N 55 . FUNGCT ION CONST(Y)

EXTERNAL SuB . COMMON /P31/ F(5) ENT _LTOW
COMMON /P31/ FIts) FNI_ LFOF EQK=0 35
1707=0 FT=6NI-2 +y
EPS=} E -4 ASEQKY(F(I)-Y 1o (FI21-3 +y)vr3
:38532 B=FF*(F13)+2 dy)
CALL READIY 5} CUNST =4 -8 '8
WRITE(6 ,222) RETURN
222 &DRMAII/ 10X." INLTLAL ESTIMATES OF TORN STREAMS AND" END
/ 10X EQUIPAMENT PARAME TERS ", /) c

CA(I WRITES ?
CALL WRITVEE i
CALYL SECNEWIK.NI,EPS‘SUB)
WRITE(B . 10) Ni _1]O

10 FORMAT(// Sx ‘CONVERGENCE ACHIEVED IN " 14 " ITERAVTIONS"
1 /. 5X_ "NUMBER OF FLOWSHEET EVALUATIONS:= " 54 /7/)
CALL WRITES
CALL WRIIEE
ST0P
END

[

c

c FROGRAM SMC2NitI TAPES FAPEG)

c CHARACTER*4 NAME{(2) ,NACO(2)
SUBROUTINE SUBLX £) INTEGER NuE(?l NUP(2) NUS(2) . NCOIZ)
COMMON /S1/ NS NSTR{3 LOW{30) . NC,CNAME (20) ouptao 20) REAL VAL(2)

COMMON /E 1/ NE NEQP(2 EQNAME(20) EQP(20.20) . TEQP(20.8) c
REAL Y(5) CALt READ(Y .5
EXTERNAL FSIS Ni=
0 N2=2
N3=2
NSIG=4
NAME ([1) ="USE2
NUE(1122
10 1PCOMPI2 1) NUP ())220
NACO(1)= USER
x NUsS(1):0
N.Y N1 EPS. FSIS K) NCO(1)=0
0 VAL (1)=0
c
NAME(2)="SPL1Y

c NUE(2)=5

c NUP{(2)=2

[NACO(2)= "FLOW

[NUS(2)=9
SUBROLITINE FSIS(M X F) NCO(2)=0
COMMON /S1/ NS. NSTR(J0).FLOW(30) NC,CNAME (20} .COMP(30.20) VAL(2)=10
COMMON /E 1/ NE _NEQP(20) EQNAME(20) EQP(20 .20} IEGQP(20 .8} 1P=3
REAL N(M) Fim) CALL SPEC (NI NAME ,NUE .NUP ,NACO.NUS NCO, VAL)
COMMON /P31/ FIU(S) FNI . 1TOT CALL SIMSO(NI N2 NI IP NSIG) .
EXTEANAL CONST CALL WRITES
110T=§707 ¢} CALL WRITEE

sTo
END

[

c

c

c
SUBROUTINE FSIS(X F IV,
couuou ISt/ NS, NSTR{30} . r;owc]ux .NC .CNAME (20) ,COMP (30 .20)

OIMENSION KN} FiNn}
CALL REACI2)
FE=COMP (3 .3)/'COMP(3,3)
F2=COMP(3.2) %]
FOIT)=F1/(COMPL3 1)*F2)-0 1S
CALL FLASH(3) ot
CALL FLASH(4) —
CALL SPLIY(S) W
CALL MIXER(1)
RETURN
END
- <

116

small quantities. Some of the products, even at small quantities,
have an attractive commercial value.

The entire process is presented in figure IV-3. Although the
dehydrogenation of ethanol is performed in a single reactor, we
could not simulate the complex series of reactions in a single
reactor module. We used three reactors in series, each of them

performing the indicated reactions:

First Stage

ETHOL < ETHAL + Hoy
ETHOL = ethanol
ETHAL = ethanal

Second Stage

ETHAL + H,0 Y OEE + H,,

EE = acetic acid

Third Stage

4.66 ETHOL + 0.508 ETHAL < .278 H,0 + 1.534 EEE + 0.26 + 1 ORG
EEE

ethyl acetate
ORG

higher alcohols and aldeydes

These are not the true stoichiometric coefficents; they will be
used in this work because there is no precise information available

about the reaction.

ETHANAL PRODUCTION
\V4

SEPAR
MIX 6 |
8 4

<
B3

&l

8 <8

A

4

REACTOR 3
REACTOR 4 v

Figure IV-3. Block Diagram of the Ethanal Plant

LTT

118

A few comments about the process should be made. The
conversion of ethanal is about 33 percent per pass. Separator 5
(SEPAR5) performs a rough separation of the components: stream 11
contains acetic acid and water, stream 10 contains gases (Hz, CDZ’
Co, C3H3), ethanol and ethanal. The system containing MIX8 and 14,
SEPAR6 and 9 and SPL7 have the sole purpose of separating ethanal
from hydrogen. The separation is quite difficult as ethanal has a
low boiling point (21°C at 1 atm). Separator 11 has three outlet
streams: stream 22 as pure ethanal, stream 23 as ethyl acetate, and
stream 24 with ethanol and water. Separator 1 removes the excess of
water and a few impurities.

Although the block diagram of figure IV-3 is a simplification
of the actual process, we could not solve the simulation of the
process using the equation-based approach. The nonlinear subroutine
was set up to a maximum of 200 simultaneous equations and this
problem requires the splution of 216 equations. Unfortunately, even
modifying all subroutines to accept 216 equations, we could not
simulate the ethanal plant because we would reach the maximum
allowed computer memory allocation for the type of account we had.
As an alternative we decided to simulate this process for three
different conditions: with no constraints, with one constraint, and
with one constraint and two new equipment modules. The simulations
were then solved with both the sequential and simultaneous modular

approaches.

119

The execution time and iterations required for both methods in
the case of the simple simulation (no design specifications) are

summarized in table IV-14.

Table IV-14. Results for the Ethanal Plant Problem

ITER FEVAL CPU-TIME # EQ
SIMO .2 22 2.422 16
SEQ 111 111 4.47 16

For this problem the tear streams were streams 3 and 13. The
main programs may be found in table IV-15, and the solution of the
problem in fable Iv-16.

It is easy to see that the simultaneous modular approach was
far superior to the sequential modular approach. The execution time
was almost halfed using SIMO, in addition only two iterations were
required to reach a solution.

The same problem was solved imposing as a design specification
the flow rate of the product equal to 65 (mole/unit of time) and
specifying the conversion of Reactor 2 as a manipulated variable.

Table IV-17 summarizes the execution time and iterations

required to solve the design problem.

Table IV-15. Main Programs Used to Simulate the Ethanal Plant Problem:
SEN - sequential modular approach
MEN - simultaneous modular approach

PROGRAM SEN{TAPES TAPEB) PROGRAM SMEN(TAPES TAPEE.OUTPUT=TAPEG)
COMMON /S 1/ NS NSTR(30)} .FLOW(30) . NC.CNAME (20) COMP(30.20) REAL vAL(3)
COMMON /E |/ NE . NEQP (20) EQNAME (20).EQP(20.20) 1EQP(20.8) INTEGER NUE (3) NUP(I) . Nusl:) NCOI3) N2(3)
REAL X(16) CHARACTER*4 .NAME(3) NACO(3
EXTEANAL FSIS CALL READ(26. 14)
COMMON /P31/ 1TOT Ni=2
CALL READ(26.14) N2(1}=3
WRITE(6 222} N2(2)}=13
222 FONMAT{/ 10X, INITIAL ESTIMATES OF ronN STREAMS AND™ N3=0
7, 10X "EQUIPAMENT PARAMETERS" . /) 1P=13
CALL WRITES NS1G=4
ALL WRITEE CALL SIMSO(NI N2 .N3_1P _NS1G)
1101=0 CALL WRITES
Nz18 CALL WRITEE
NT=200 STOP
EPS=) E-4 ENI
K=0 [
DO 20 1=).8 SUBROUT INE FSIS(X . F . IT . N)
X(1)=FLOW(3)*COMP (3. 1) REAL X(N) . F(N)
20 X(1+8)=FLOW(13)*COMP(13,1) CALL SEPARL 1)
CALL WEGSMD(N,X NV EPS FSIS K} CALL REAC(2)
WRITE(6,10) LToT CALL REAC(3)
10 FORMAT(// SX."CONVERGENCE ACHIEVED IN " . 14." [JTERATIONS" . /) CaLt REAC(4)
ALL WRITES CalLlL SEPAR(S)
CALL WRITEE CALL SEPAR(6)
STOP CALL SPLIT(1])
ENO CALL MIXER(14)
c CALL SEPAR(S)
c CALL SPLEIT(T)
¢ CALL MIXER(B)
€ CALL MIXER(10)
SUBROUT INE PS SIM X F) CALL SEPARLII)
REAL X{M) FiMm CALL MIXER(1Z)
COMMON /SI/ Ns NSTR(30) .FLOW(30),NC.CNAME (20) . COMP (30,20} RETURN
COMMON "/E Y/ NE_NEQP(20) . o AME(20) . EQP(20,20) .1EQP(20.8) ENO
COMMON /P31/ 1707
ITOT=JT0T ¢!
FLOW(3)=0
FLOWI13)=0
DO 10 1=1.8
FLOW(3)=FLOW(3)ex (1)
10 FLOW(I13)=FLOW(13)+x(1+8)
b0 20 1=1.8
COMP (3, 1)=X{1)/FLOWI])}
20 COMP{13 1)=x{1+B)/FLOW(123}
CALL SEPAR(1)}
CALL REAC(2)
CALL REAC(J)
CALL REAC(4)
CALL SEPAR(S)
CALL SEPAR(6)
CaLL SPLIT(13}
CAtL MIXER(14)
calLt SEPAR(G}
CALL SPLIT(T)
CALL MIXER(8)
CALL MIXER(1Q)
CALL SEPAR{ 1t}
CALL MIXER(12)
IF(1101 EQ 1) THEN
CALL WRITES
CALL WRITEE
ELSE
ENDIF
bgo 30 1=),8
FOLIZFLOW{3)+COMP (3 1)
30 F(I+8)=FLOW(13)*COMP(13 1)
RETURN
END

0zt

121

Solution of the Ethanal Plant Problem

Table Iv-16.

VOoONMO 000000 WO0000000INO0 YO0
rO0000WOO0ONOOYO00000000~-0NOOO
00 -00NOO0OO0O00O000000000000~000

0000~00000000000000000—-000

O0MO0000O0ONO00000000Q0Y0ONOO0O
WOowOO00000OY00R00000000NOWOO0
Wo—-00000000000000000000MO00
WOOO0O0O000000000000000000NOOO

00 <Y00WOOMNNOND INOWINOWWOINOOWOE
0000000¢YY0vY000000000000000
WOO000000000MO00000000000000
WOoO000000000OrR000000000000000

DO FONDOWOIN TAINOMIMIOINO —
DN~ —OOINNOODOOONOVO0 —
o NYIMOO-~00—~00OW® ~ —IN0©
O —ON—~ ——ONNDONDONNON O

< o<
jol. AN
Nem oo
e O

-

dO0MO000rRNOAOYTOMMIO —MMO00N000
IOWOO00OrRNNYORNN~RON~ ~O00O000
HOMOOOOWOOVAOOHIN~~O—~~OOWWOO00

W786664003996239|1036065986
ANV ~OND—OINNMIMNO— ¢ —M O

NI DONINNOOND FDVONO™ ~INNNQD —~— N
OO~ OTItN ~OFNOVONDOND 1D ~N
TN ~N ©OOOM~- NO OO ONOO O~
[- © n
[4)]
Z-NOTINOFOVNO—NOITNOFDNO ~NO ¢ INO

llllllllll NN NN N

Q0
[s]s}
[s]s]s]
[s[s]e]
000
ele o]
[s]s]s]
- 000

[s]e]
[s]¢]
[s]e]s}
[s]e]s}
[]¢]
[s]¢]
.00
[s]¢]

[s]e]s]
. 000
[s]e]s]
[s]e]s]
[s]e]s]
[s]e]s]
[s]e]s]
[s]e]s]

[s]e]s}
[s[e]s]

13

3)

(2 X EQP(I,J))/IEQP(I J)
MODULE #
-Q00

0go
MODULE #
.000

[s]e]s}
MODULE #
MODULE #
.000

. 000
o]

S
o]

i
1

23

0ss
943
Q00
988
Q00
. 000

6

12
. 978

24

-Qo0o
. 000
.7863
237
.027
.000
[s]e]s]

10
22

.000
. 000
.04
.959
.000
000

13

10
.000
000
994
.000
000

EQUIPMENT PARAMETERS:
21

122

Table IV-17. Results for the Ethanal Plant Problem with One Design

Specification

ITER FEVAL CPU-TIME # EQ
SIMO 3 25 4,523 17
SEQ 7 435 12.983 17

Again the simultaneous modular approach was far better than the
sequential modular approach. The execution time with SIMO was
almost one-third that when using SIMO. The number of sequential
iterations is only about 5 percent of the number with SEQ.

The main programs are presented in tables IV-18 and the
solution is presented in table IV-19.

From table IV-19 it can be seen that the recycle stream 19 has
a rather high flow rate. To reduce the flow rate, we will introduce
two flash drums in series after separator 5. The idea is to reduce
the amount of ethanal entering the separation area (SEPAR6 and 9).
We will maintain the separation factors and we will impose the
concentration of ethanal in stream 18 to remain the same, that is,
COMP(18,2) = 0.0191. We will let the split fraction of splitter 13
be a manipulated variable to meet the design specification. The
vapor-liquid equilibrium constants are shown in table Iv-20, as well
as the main program for the simultaneous modular approach. The
solution of the problem may be found in table Iv-21.

Again, the simultaneous modular approach was far better than

the sequential modular approach. The execution time was about

Table IV-18. Main Program Used to Simulate the Ethanal Plant Problem with One Design Specification:
C1EN - sequential modular approach
SMCLEN - simultaneous modular approach

c PROGRAM SuLIEN(lAPES TAPES , OUIPUT =T APEG)
PROGRAM SCIEN(TAPES TAPEG) REAL VAL(3)
COMMON /P2t/ 1107 INTEGER NUE(3) NUP(3) ,NUS(3) NCO(3) N2(3)
3 CHARACTER*4 NAME(J] NACO(J
CALL READ (26,
o0
CALL READ(26 . 14}
c
RITE(6B, 242)
222 FORMAI(/ " INITVAL ESTIMATES OF TORN STREAMS ANO"
" EQUIPAMENT PARAMETERS " /)
CAtl WR 1
CALL wri
CALL SEC (NT EPS . SUB)
WRITE (6 LHov
10 FORMAT(/ "CONVERGENCE ACHIEVEO IN " [4, " l!eRA!lous
X "NUMBER OF FLOWSHEEY EVALUATIONS= " 14 ./7/) CALL SPECINI, NAME NUE | NuP NACO . NIS NCO VAL)
CALL WRITE CALL SIMSO(NI N2 N3 1P NSIiG)
CALL WRITE CALL WRITES
sToP CALL WRITEE
END SYOP
c ENO
c
¢ SUBROUTINE FSISIN.F 1T N)
c REAL X{N) F(N)
SUBROUT INE SUB(X.F) CALL SEPAR(1)
COMMON /S ¥/ NS . NSTR(I0) FLOW(IO) NC CNAME(20) . COMP{30 .20} CALL REAC(2}
COMMON /E L/ NE_NEQP(20) EQNAMEI20) EQP(20.20) . 1EQF(20 8) CALL REAC(3)
REAL Y(16) CALL REAC(4)
EXVERNA CALL SEPARIS)
00 10 1 CALL SEPARIB)
YOl)=FL PCOMP (] 1) CALL SPLIT(13)
L0 vitep)= 13)*COMPL I 1) CALL MIXERL 14)
N=16 CALL SEPAR(Y)
NT=300 CALL SPLIY(7)
EPS=1 E-5 CALL MIXER{B}
K=0 CALL MIXER(10)
EQP (2 ,20)=x CALL SEPAR(14)1)
CALL WEGSMDIN Y NT EPS FSIS K) CALL MIXER(12)
F=FLOW(22)-65 O REVUAN
RETURN END
c
[
c
c
SUSNOU'INE r51>(u X F)
REAL XIM) F1(M)
COMMON /:I/ Ns NSTRI30) FLOWI30), NG, CNAME (20} COMP{30.20)
COMMON /E 1/ NE NEGP(20) | EQNAME (20 , EQP(20 20) 1EQP(20.8)
COMMON /P31/ 1107
IYOT=1T0T
FLOW(3)=0
FLOW(13)=0D
0 10 =1 .8
FLOW(3)=FLOWI 3) v X(§)
V0 FLOWLI1D)=FLOWI{13)ex(1+8)
DO 20 1:=1.8
COMP(3 1)=X(L}/FLOW(D)
20 COMP(13 11=x{1+8B)/FLOW(1d}
CALL SEPAR()
CALL REACI(2)
CALL REAC(J}
CALL REAC(4}
CALL SEPAR(S)
CALL SEPAR(E]
CALL SPLIT(13)
CALL MIXER(14)
CALL SEPAR(9)
CALL SPLIT(7)
CALL MINER(A)
CALL MIXER(10) —
CALL SEPARLIL)
CALL MIXER{12Z1 N
DO 30 1:1.8 W
FOL)=FLOW{3)1 COMP (3 1)
30 FUI+B)=FLOWL13)'COMP{ 13 L)
RETURN
ENG
c
c
c

124

ign

Solution of the Ethanal Plant Problem With One Des

Specification

Table Iv-19.

ow om oo oo oo [e]a} oo oo oo oo oo

oo oo

[a]=] oM onN o oo [e]e] [e]e] Qo Qo oo Qoo [w]a} oo
oo o< oo oo oo oo Qo oo [e]a] oo oo oo oo
oo oo oo oo oo oo oo oo ao oo oo oo oo
Qo Qo oo oo oo Qo [e]e] [e]e] Qo oo [e]a] Qo [e]e]
oo oo oo oo oo Qo oo oo [e]e) [e]o] oo oo o9

VOoONOYOO0O0N00WO0000000~0WMOO

Xo0O000MO00-~00MO0000000~ 0000]]] [}] L] L] 1]] 1 1]

00~-00®WO00000000000000000MO00 100 [N [Nelo} [Nele] 100 100 100 [Nele} 100 [Relal [Nl] 100 (e la)

0000000000000 0000000000000 100 1 OO0 1QQ0 [Nele) 100 100 [Nele] 100 Q0 100 [edls] [el [Nele]
A R oo co V00 [Nelel t 00 100 100 100 [Ne]e] 100 100 100 10 100 'O
(IR T | - 1 Ny = e [= I I Y O R = R R S © o~
t t t ‘- t - t t ' i t t ! '
00000000YMN000MONINO00000000] 1 1 1 [} [}]]] L]] 1 1
0000000000000 ~-~00~-~000000000 1] t : [}] 1 [}] L]] 1 1
000000000000 000000000000000 1]] [}] t [}]] [} ' 1 1
0000000000000 0000000000000 100 [Nele} '00 [N ele] [Nele) 100 1 OO0 100 [N e]a] [Relal [Relal tQo 100
....... c . . . o ot Qo oo oo oo [e]e] [e]e] oo [=]e} ao oo [e]e] oo Qo
oo oo oo ~NO oo oo oo oo [=]&} oo oo oo oo
o o = O (=] - - B ¢] o o (=] ©
000000W~N~0O0YYOYTIN0O00000000 -~ - - - - o~
000000~ Y00—1NONWOO00000000 el
NOOOOOOYNINWOO—~Y0NM0O000000000 - [+ 4 [+ 4 [[+ 4 [+ 4 [+ 4 [+ 4 [+ 4 L
I000000ONNNINOOOWOO0OMOO00000000 - A Q Q Q « « - w « w « w -
............ oo T - 0Loo 400 <00 400 [[Qels] aoo J00 x0o 0o x0oo ago x0o0o <400
a woo woo woo woo woo woo ago -0o0 woo —-00 woo ~00 [Yalal
o woo xoo xoo xoo noo noo noo 00 "noo 00 "noo 00 ?noo
O0MO00000000WO00000000WO~000 w - B =] - O - - - Q - Q (=] B =] - Q =] =)

WOoWOoo00000MOOWOO0000000~-0~000 - - - - - -

WOo—-—00000000000000000000MO00 ~ » " n n 1) " " 1) " n L] " "

WOoO0O00O000000000000000000~ 000 i

.......................... -~ -~ - - - - -~ - - -~ -~ - - -
D -0 ~NOoO ©moo <0 Nnoo woo ~00 wWoo []e] [e]eja) —0Q0 ~NOO ©®oo
M Qo [=]e} Qo [yl [e]e] oo [e]e] [e]e] [e]a] -QQ —QQ -QQ -0o0
OOoNWOooWOoWVINONOWOVOOVPOOOO OO - 00 ~0o -~ 0o —-ino -~Qoo -0 ~00 ~ Q0o ~Qoo —0o0 ~00 ~00 g =l=]
0000000WWOM~00000000000000 ~ - - - - B =] BT = 3 e o 0 -] (=] (=] (=] o
WO0000000000OY000000000000000 o *» % * * — * - * * * * R % % R
WOoO000000000OrR0O00000000000000 o
...... o . . . R w o w w w w w w w w w u w w w
4 4 4 4 4 4 4 o 4 4 o 4 4
xX 200 200 200 200 200 200 200 200 200 200 J00 200 JOoo
TONVOIENMNOPV—OWNNO R DNOORO ¢ ¢ [ef=le] [ef=le] [ele]e] aoo aQ® [e o] [elele] Qoo aog agoo Qoo [o] =] [e]a]e)

OV~ DO NIYTOO~FON -0 DN OMOND N QOO0 [s]ela) [s]=la) Qoo [s]lelal [s]ela) Qoo Qoo [s]=]a] Qoo Qoo oo0o Qoo

NN~ OUNNOO—OOR———OUNOOD - ¥ 0 3 o 3 ‘0 ¥ 0 -~ ¥ 0O 3 o = = SR « I 3 o = ‘™ 3 o =

IrOONON~~—ONONONDONONOO FOON - - - —o

]

4dO0M0000VNNNOMNOMVOO00MOOO ~000 e [Nela) [Ne]a] 100 10w [N elel 1NO [Mele} 100 100 ' O [Nela] 'r~0

IOWO000NMMOFORNMYNOOY IVONO00 - [N ¢ [Nela) '00 1~0 1 0® [Nela) 1 -0 [Rele] 100 100 [R=le] 100 1wo

HFOMOOOOYY Y000~ —ON~MROOO000 [K1] [Rele] ' 00 (R =] oo [Rele] 1 -0 [Kela] 100 100 (KT] 100 10

WOoO0o000oNNNYO~-0-00000000~-~000 [+ 4] [+ L] (=]] =) [= B | "N t o] N] @ (=] ' < ' (=] i

. o . s w ' 1 [el [} [-) - [o~] -] - [} o~ 1 [B 1
- [' [N ' ' ' ' ' t ' ' 1 '

4 w ' ' ' [N] ' '] ' ' ' 1
NOWOOVNOOOONVONOO~000—~—NOINOO 2 !]] |] ']] 1] ' 1
WI-OrRrOOO~-—MmFOONoONOooNINO0MO00 « [N la) [Relal 100 [N =) [N] o t~0O ' 0O [Ne]a] 100 100 ' w0o [Nele] 10
SJHEONYTOOONN~-~NOOVOOOO0O00O0000WO00 [+ 4 100 100 100 [Nw]e) Lo Lot] tNO t QO 'O0 100 [Ne] t~Q 1Qoo I ma
OWNO~FROOMMOMOOINO00000000~00~00 « oo oo oo no ~o oo ®wo oo oo oo ao oo ~0
€ - a . o~ Y o ..o ¢ S © ~ Y o~ L .
- - - ' - - - - - - o~ o~
x3z - [}
dOrRVOOYTOIREINN—OONO—~FOONOMDNO Z
SIR—OrR00ONN~TNLTDNADNNIN O IND — w

Wooooco e L >3 oo oo oo [Je) -y oo oo oo oo oo (=X 4 oo oo
ZE OO ~NOOOR~—NON—ONOONODIEMON a oo Qo oo 0o hg il [e]e] Qo oo oo [e]a] (=] [o]=) Qo
4 O0OMO OOOON FNOLIDONROSO Bt~ - oo oo oo 0o aoon oo oo oo oo oo (=]] oo oo
WEN ON ONNN—~ ~O OO ONO® ~ON 2 © < ~ -0 [} M ©on o [+ N - -
o+ — [7+] n n o - — < — — — — o~
X2 w ! 1
NZ~NIINONRDNO~NMITHORDNO—~NO T INDO

lllllllll NONNNNNDN

Qo
[s]1]

[s]e]s}

[s]e]s}

000
Qoo

28

TE&)le IV"20|

K-Values and Main Program Used to Simulate the

Modified Ethanal Plant Problem

COMPONENT K-FLASH(15) K-FLASH(16)

ETHOL 0.002 0.100
ETHAL 0.050 1.100
Hy 140.000 820.000
G 4.o00 43.000

oooo

PROGRAM ENFLCO(TAPES,TAPEé)

3, NAME NUE NUP NACO, NUS.NCO,VvAL)
N1 N2 N3 IP NSIG)

SUBROUT INE
REAL X(N} F
CALL SEPA
CALL REAC
CALL REAC
CALL REAC
CALL SEPA
CALL FLAS
CALL FLAS
CALL SEPA
CALL SPL!I
CALL MIX
CALL SEP

-Zz0
ot
»

x

m

-

-4

z

DDVOVDADVADIID~~~D
pagegegegiigegegiigagmioiiodl g
e = YD e o B = = M e e = T
D=0 — WU~

125

—t
Qo oQ oo om oo 0o Qo o353 oo oo 53 co oo oo o [STF)
Qo oD oo Qo Qo o0 oo oo Qo0 ag o9 Qo oo oo oo [=15)
Qo Oet oo oo oo (251 [s1=1 oo oo 20 a3 aa a0 oo =13} 00
()] 20 oo oo oo Qo oo oo oo =3+ oo a0 =153 oo (=753 og Qo
—f o0 533 Q0o Qo Qo [<35] oo oo Q0o Q0 00 20 oo 0o o0 [s35]
o) oo oo 0o oo oo oo oo Qo Qo oo ao oo =2<3 o251 (=25 o0
[SONEON000NNON0GEO0000Y0® - 0B0BO0
ZO0004000M00NEG000000MOY -~ 060000 . ' ' ' ' ' ' y ' y ' ' .
[I N9 -00NO0YOON0AHB0A000G0GN00000G0 oo 100 100 1oo ' 0O ' oo 10O 1 ago ' om y oo » DO fow [NETs)
GQ00NO0000000G00000000- 003000 100 tOOo ' 00 [K=15} ' QO ' oQ 100, Ggo 1 on yao ' oo PO COa
' OO R-1-1 a0 100 ' OO x=1=1 100 100 e [RE1s1 » OO ' OO OO
S . @ -] PR o P « o o - P e o 5]
. y ’ ' ’ ' ’ ' ' h ' ' '
Cc 89009000QWH 00~ NVVOQVOOONOON ¥ W — » ' ' ' ' ' ' ' ' N y ' ' '
Pl 000000000 -000N0 ~NA0BAAOOBANO MO ’ ' ' ' ' ’ ’ , y ¢ ' ' '
8990000000000 0000000B0BVAABGA ’ ' ' ' ' ' ' ' ') ' ' '
— 0000000000 00N0G000000000330A000 roo 100 o0 ‘o 100 oo Y00 1o 1oq 100 roo too raa (X515
o oo Q9o [<35] Qo Qo oo Qa og aq Qo aa g9 Qg 0o
20 oo a0 oo oo oo oo 0o oo oo a0 Do o0 o0
o o [o o o o - o © o ©) I3
090000~ 1BNOON-04000000MOAQO DD~ ~ - — ~ - “ “
— 98999904 MOPO0EMO T HO00NACACAATOMG 1 o
o NO0000000~400INONMOOARAOAAGGNOTO x « x - x « x x x . a L X
I000000MNNNOO00NOMMO0B000000ROT0 ~ & Q <« a - w P w a w o w 7] w
C - 000 400 £93 L9o J00 x00 ad0 Xgo adoo Yoo 400 xOO 100 100
@ WOO wWoo ©$9S “8g 800 00 WOO a9 WAoo ~a9 @a0Q ~00 Joa 200
] g »woo «oo ©wO0Oo ®woo woo 300 900 330G woo 300 #©0O0 300 400 400
N 90300090900 0000000000v0 ~000000a & o o o o o o o o o a =] o o]
WOWOO00000I00DO000AA0ANONACIOCOS o - - - - o o
4 wo~0000000000000000000ONIA00000 ~ " " " " " " " " " " " "a ve
w WOOO000000000N00030000030MAA00000 @
? 788 ™92 Moo wvo woo wo0 00 ®oo 38 0Qa -0gQ ©~O00 @00 100 Woo wWoo
ao o33 oo “a Qo0 Q0 oo og Q0 -Qg -00 -0o0 00 . ~-00 -~00 -O00
O CONO00WONNOANNOV Y CVWNVOCWBYOOoO -~ .99 -~ 00 Qo -wo -00 -00 ~00 ~00 -00 _Qo ao -00 -0G -00 20 0o
Q 9899000V OV00000000ACO00000000 o o o o o ‘o o o o o o o 5 o © <)
Wo000000000WA000000000A00300000 1) ~ .- LI ~ ~ ~ * - . ~ [N . . - -
oy WO00000000G00B0000000000003030000 G
W ow L3 o w u] w W w w w w w w w w
G o 4 4 4 o) r 4] 4)) 2+ 4 o -
o x D00 200 200 200 J00 2009 Joo 200 200 200 200 200 200 platel Joo 200
IR ST WO~~~ O MO OONM Y Y0000 833 922 Q9o Q00 O0ow Qoo doo Bdoo 898 ©go goo ©0oo Qoo aeo Aaoo 0doo
O A2 BO-NO -~ 00N ~00VANOMBPNOC00 ~ a9 9333 Qoo _ 0980 Qoo goo 6ao 9ao 998 Q00 QOO0 QOO0 000 Qoo Qoo 000
0 2302B4SGSE030802608225043990000 R 1 » 3 o 3 o 3 o 3 - 3 o 3 o 3 @®» 3 o 3 o 3 ©o ¥ [o T3 o 3 O ¥ [= I3 O
IEO0Or 00000~ ~00POORIMIO - nARAOS O - - - o~ - - -
4 .
1)) 4000000 - BN PO NN~ AP0 -~ RBPOOBAIOOB A T 1oQ 100 ' 00 10@ Qo 00 0o o on 00 oo Too 'O
900000200000 R -~ ON~ - NONAOOM D e 10Q tQo [N~} 100 1 Qo 99 0o =T 1 go ¥sT<) 100 (X143
c FON00000BBRAON T O ~O~ -~ 10 -~ 0034w« 1 e 100 t60 (K< oo 100 30 06 1 Om » QO a0 [Rstst 100
WOO0AG 00N~ ND0000OOVAB-0O000DMmE & 0 o o (S I ~ 0 © (S T <] ' o o «
4 w o ' = . ' = -~ T R R ' Ve A
- - ' [' ' ' ' ' ' v ' y
a4 w ' ' + ' ' . ' ') ' ' v

Q. PO RBNO 0NN MIO0NONCOOINYOW- OO~ 3 1 ' : ‘ ' ' ' ' ' ' v '

o U L BI00ONNI10MO000000006-00000Be~ I 100 100 [NTel 100 b tro 00 oo i 0o roo ' 0o roo 100
B 500NN - 1000000000 BONBACON-% & 100 100 ‘o0 (N7 Too 1O 209 100 "o 100 100 two 100
BWNOARODNNNOONOOA0OAD0MO- 43080~ & ' a9 oo Qoo w0 o oo oo Ao »0 oo oo Qo 5
« [y - ~ @ « o - ~ ~ o - w ~ @

C X —~ - ' 2 2 = b S ~ ~ e P

0 axz -~ '

10 BNE NN - OO 0T - NBO I D~ T
o > TERIOAIA - CDOINING - 0~ VDD DO T w
'S 3 oo oo oo 0o ~o oo oo oo Qo oo as oo 0o oo ~o Qoo

+ 3 OO0 S MN00 - - DRIOr T DONODY DD -~ & OO Qg Qo wo T Qo Qo Qo oo Qo oo oo Qo oo oo og

o } Lyl B - PBOBOOODI-© toNBn ¢ & 2D oo Qo @0 oo 0o oo oo oo oo om aa a0 oo a0 =)
WES ©n 0Oam- —M N8 g e 3 © - ~ L) o © 0 ~ © o - - © - <] ™

—t @ - - - - - - - ~ o~ = o - o
) w ' '

Q NZ-NIIDONBRO - NI NDI DNO v ¢ VIO RO

73] S AN g ———

Table IV-21.

127

30 percent and the number of sequential flowsheet evaluations was
about 6 percent in the simultaneous modular approach when compared
with the sequential modular approach. Table IV-22 summarizes the

results obtained.

Table IV-22. Results for the Modified Ethanal Plant Problem

ITER FEVAL CPU-TIME #* EQ
SIMO 14 55 9.95 17
SEQ 18 960 26.560 17

Furthermore, we had to provide better initial guesses, that is,
closer to the solution to solve the problem with the sequential
modular approach. The introduction of two flash drums increased the
nonlinearities and was the main reason for the poor performance of

the sequential modular approach.

IV-4 Nitric Acid Plant

The nitric acid plant problem was taken from Perkins (1975). A
block diagram of the process is presented in figure Iv-4.

This problem is very interesting because the way it was set up
by Perkins, with 10 design constraints, it can be solved in less
than 10 minutes using a hand calculator. Using any of the packages
available - SIMO, EQSS or SIMFLOW - it would take a few hours to set
up the problem (main program, data files, etc.). This problem
teaches an important lesson about process simulation. It does not

matter how complex a problem may look at first sight, a critical

NITHIC ACID PLANT

REACTOR

Figure IV-4. Block Diagram of the Nitric Acid Plant

821

129

analysis of the problem must be done before we attempt to solve it.
Computer packages are powerful tools if we fully understand what we
want to simulate; otherwise, there is no use for them.

Perkins used this problem to show the performance of his
implementation of a simultaneous modular simulator. It should be
pointed out that he does not call his implementation simultaneous
modular, but sequential modular with a different convergence module.

The process may be divided into three parts. First, is the
production of hydrogen. This is done by Reactors 8, 9 and 10. The
first reactor performs a stream reforming yielding hydrogen and

oxygen,

-
H20 <« H2 +1/?2 o2

The second and third reactors perform an oxidation of methane

as follows,

4

2C0 + 4H

2CH4 + 02 2

CH, +0, < co, + 2H

4 2 2

Second is the production of ammonia from nitrogen and hydrogen,

>
N2 + 3H2 - 2NH3

Third is the oxidation of ammonia yielding nitric acid,

>
N3 + 20, < MO+ H 0

Table IV-23 summarizes the reactions in the nitric acid plant

120

Table IV-23. Reactions in the Nitric Acid Plant Problem

REACTION REACTOR CONVERSIONY
H0 * Hy + 1/20, 8 100%, H,0
2CH, + 0, % 2C0 + 4, 9 4.7%, 0,
CH, + 0, % Co, + 2H, 10 100%, 0,
N, + 3H, * 2N 13 25%, N,
NH5 + 20, z HNO; + H,0 3 100%, NHy
1/

=~ Percentage conversion in relation to the indicated reactant.

The separation fractions in each separator are presented in

table Iv-24,

Table IV-24. Separation Fractions as Percent of Individual Input
Flow Rate

SEPAR N2 H 0 CH NH HNO H,O CO CO

2 2 4 3 3 2 2
1 100 100 - - - - - -— -
5 - e — - 100 100 - --
6 93.6 - 91.3 -- - -~ - - -
11 - - e= - - - -— 100 100
14 100 99 - - 100 -~ -- - -

The simulation of the nitric acid plant without design
specifications was performed using the conversions shown in table
Iv-23, separation factors shown in table Iv-24, and stream 18 was

chosen as the tear stream.

131

The execution time and number of iterations for the simulation

without constraints is presented in table IV-25.

Table IV-25. Results for the Nitric Acid Plant Problem

ITER FEVAL CPU-TIME # EQ
EQSS 2 - 38.405 190
SIMO 2 15 1.297 9
EQ 45 45 2.012 9

The number of sequential iterations in the simultaneous modular
approach was about 30 percent of the number required by the
sequential modular approach. The execution time was about &0
percent of the time required by the simultaneous modular. Again the
equation based approach converged quickly but the execution time was
high.

The main programs are shown in table IV-26 and the solution in
table Iv-27.

Another version of this problem was solved imposing the
concentration of nitrogen in stream 18 equal to 0.25. The
separation factor of N2 in separator 6 was used as a manipulated

variable. The results are summarized in table IV-28.

Table IV-26. Main Programs Used to Simulate the Nitric Acid Plant:
MNO - sequential modular approach
MNO - simultaneous modular approach
ENO - equation-based approach

PROGRAM SNO(TAPES 1APEG) PROGRAM SHNO! INPUT TAPES TAPEG)
COMMON /P 11071 CALL REAQI1Z] 14

REAL Y(9) [
EXTERNAL kSIS N
COMMON /S 1/ NS NSTR(3O0) . FLOW! IO) NC CNAME (20) .COMP (30 . 20 N L)
COMMON JEN/ NE NEQP (20} . EQNAME (70) EQl’l 20.20) 1€QP(20 8) N

N1 N2 N3 1P NSIG)

JPCOMP I8, T}
N Y N1 EPS FSI1S k)

aocOon

1iof SUBROUT INE
"CONVERGENCE ACHIEVED IN" 14 FTTERATIONS" // REAL XiN)
CALL
caLd
caLt
CALL REAC
CAL L MIXE
CALL SERA
CALL SEPA
CALL WIXE
CALL REAC
LOWI 30), NC.CNAME (20) COMP (30 .20} CALL REAC
QNAME (20 €QP120.201 TEQP(20 .8 CALL REAC

Twn
“mm
xU»
mpey -

a0ao
~=-DPTD~TD~.
Y- Tt

m

OWL LAY sx1 1)

1r/FLOW(18)

x

3

]

}

4) PROGRAM ENOITAPES | .TAPEG)

g: COMMON /S1/ NS NSIR CELOWLI0) NC.CNAME 1 20) COMPI30 20,
E

7

)

)
0
1
'
+

a
¢
« QNAME(20) EQP(20 . 20) TEQPi20 B

PEQ
309
COMMON /E 1/ NE NEQP (20)
CALL READ(23 14)
CALL SREAD(2) 14 g)
CALL FSIS

B)COMPL 18 T FLOWIL T

coao

SUBROUYINE FSIS
Call REAC(13)

CALL SEPaR|
CALL SEPAR
CALL MIXER({
CaLL REAC!
CAalL MIXKER
CALL SEPA
CALL SEPA
CALL MIXE
CALL REAC
CALL REAC
CAtl REAC
CALL SEPA
CALL MNIXE

e

<l

133

Solution of the Nitric Acid Plant Problem

Table 1v-27.

00000000000020704528070
200000000000094'04516040
H00000000000069305\90000

000000000000 MMPWOrt IO ~O

i

00000000000397020000000
400000000000053000000000
H00000000000497000000000
COOOOOOOOOOOa‘“OOOOOOOOO

0000000000000 00NOD000000
200000000000000800000000
000000000000000410000000
COOOOOOOOOOOOOO‘SOOGOOOO

0000000000000 NYWOD000000
00000000000007400000000
OOOOOOOOOOOOOO]ISOOOOOOO
COOOOOOOOOOOOOOOOOOOOOOO

O00®mMON—00000
QO0O0-00M000000
NOOOOODOQO0O0O
TOO—~ONOOOOO

4528

MOO0OMOONOO0000000000000000
000109900000000000000000
NOOOOBSOOOOOOOOOOOOOOOOO
HOO‘IOOa‘OOOOOOOOOOOOOOOOO

O0<4000000000000
MONOO0O0000000000
I 0000000000000

ooo

o

o

000WO000o0
Z00000000000 o

0O0—-0000

06507020200]'7000000000
00WONOPWOOOMMOOOOD00000
N-~O000000-000xR000000000
02]000000000011000000000

0000NOWOVOODMHFOOW -~ MNOMO
07005012900371505‘53050
9]909099800044004849090
77706099900322202222020

0572757881727184727533
ONO—FNLOA NN~ DDNDO

FLOW
g 35

oM—~0O0mro —mem N Ot <

STREAM VARIABLES

NSTR

TNOINOFTNO~NMITNOCNO — N
llllllllll Ny ooy

.000
[s]s]s]

[]s]
.00
00
[o]s]

[s]s)s]
coo
.000
coo
[s]s}s]
[s]a]s]
000

i
[s]s)s]

coo

LI/ LEQP(T L J)

(2 X EQP(I
000
.000

MODULE #

coo
000
Qoo
coo

21

000
coo

. 000

. 000
. 000
20

coo
S00
coo
'3
22

[s]s)s]
[s]a]s]

EQUIPMENT PARAMETERS:
12

Qo
D0

goo0
[s30]e}

oo
Q00

134

Table IV-28. Results of the Nitric Acid Plant Problem with One
Design Specification

ITER FEVAL CPU-TIME # EQ
EQSS 2 - 38.01 190
SIMO 2 16 1.685 10
EQ ~ 3 255 6.732 10

Again, the simultaneous modular approach was far better than
the sequential modular approach. Compared with SEQ, the execution
time if SIMO was about 30 percent and the number of sequential
iterations about 6 percent. The execution time in the equation
based approach was again rather high, although it did converge in
two iterations. In addition, there is no significant difference in
the execution time of EQSS when comparing the problem with one
design specification and without design specification. In the
equation based approach, when we specify one variable as fixed and
allow a corresponding parameter to be a variable we can expect this
behavior, that is, the same execution time.

Table IV-29 presents the main programs of the HNO, plant with

3
one design specification and table IV-30 the solution of the problem.

The last HNO3 plant simulation problem had 7 design
specifications. Because of the large number of constraints, we did
not attempt to solve the problem with the sequential modular

approach, it was solved only with the simultaneous modular approach

and with the equation based approach.

0000

o000

Table IV-29.

SCINO
SMCINO

Specification:

PROGRAM SCINOITAPES . TAPEG)
COMMON /MWEG/ NSEQ
EXTERNAL SUB

COMMOg /PIt/ 1TOT

NT EPS su8e)
WRI TE (
CONVEﬂGENCE ACHIEVEO IN" 14, l"ERATIONS"
“NUMBER OF FLOWSHEET EVALUATIONS = "1 7

SUBROUTINE SUB:x F)
EXTERNAL FSIS

COMMON /S51t/ NS NSTRI(30)
COMMON /E‘/ NE NEQP (20}
REAL Y9}

NT=500

N=Q

EPS=1 E-S

K=0

[}
(

FLOW(30) NC.CNAME(20),.COMP(30.20)
EQNAME(20) EQP(20.20) 1EQP(20.8)

o000

1,9

LOW(8) 'COMPL 18 1}

2)=x ~
EGSMD N, Y NT EPS FS1S5 X}

~COMP (18 1}

o 5 1
Y(L)=F
EQPI(6

CALL W
F=0 2S5
RETURN
E

A
E
N

SUBRUUYINE FSIS(N,.X .F)
COMMON /S1/ NS NSTR(30)
COMMON /E I/ NE NEGP(20
.F{N)

r/orTOY

FLOW(30) NC.CNAME{(20) . t
EQNAME (20) . EQP(20.20) . TEQP{

W(18)+X (1)

[ele]

F)/FLOWE)H8)

8riCoMPi I8 1)

Main Programs Used to Simulate the Nitric Acid Plant Problem
sequential modular approach
simultaneous modular approach

with One Design

PROGRAM SMC lNOl TAPES . TAPESB)

0) FLOW(30) NC CNAME{20} €3
0) EQNAME(20) . €EQP(20,20) .1EQP(2
0} .NUS{10).NCOI{1D)
NA

(

P(

INTEGER NUE (10} .NUP(
0).NACQE10)

CHARACTER*4 . NAME(I
CALL REAO(23.141

Nizt
N2=18
N3z
1P=3
NS1G=2

SUBRQUYINE
REAL X

N)
CALL
CaLL SEPA

SIS(X.F,IT.NI
(N)

)
1)
)

F
3
2

)
4
S
]

b4
m-
»2
(2]

7
)
)
1]

o

»

7

-

w

m

A

>
DID~~~DDDD~DD ~
-GS AR)

)
1)
14)
12)

SeT

[T Y YN S RN

Design Specification

STREAM VARIABLES
NSTR FLOW N2
! - 78900
7174

w
(U]

1

ONWO~-WOow

N - -

a aeN-—-
[w]
o
o
o
000000000 -—-000D00ODDODODDO—~ND

WN-0WENONLELN~-OEOERION L WN
OCOWORNPOWWEOARJLWAEDL —-ROINWLW
BPLWAINILWER - IND ~DEOORN -0ONO

[x)

o

~

o
OOODODODOOODONEKODO—~000ODO0OW—~N
OO0O0O00000OWIWDDOoOWYWWOMONODD
OOODO0OO00OOO0DWE ~-DO—-MOMONND

[s]e}s]s]

EQUIPMENT PARAMETERS

1 000 000 000
goo ooo 000

19 20 21
000 000 000
o03c ooo voo

1 21 0
000 -2 000 -1 Q00
ooo [s]0]0] [s]0]0]

3 0
0 000 [s]e]0]
ooo ooo [s]0]0]

4

Qoo [s]e]e] 0oo
ooo ooo ooo

S 8 7
336 833 000
0 0o 000

7 g
000 000 Q00
[s]0]0] ooo ooo

10 11
000 S00 0oo
[s]0]0] 0oo ooo

12 13 o]
000 -1 000 Q00
ooo ooo ooo

13 14

000 -1 000 000
000 [s]0]0] ooo

14 15 0
000 1.000 000
[s]0]0] ooo 000

15 18 17
0oo 000 Q00
[s]0]0] . 000 [a]e]e]

17 22 g
-1.000 000 2 000
000 [s]0]0] 000

18 19 o]
1 000 000 200
000 ooo 000

ooz

o

o

o

o
OOO0OODOODUDDODOOOODODOWDO~00T
ODOOODO0OO0OO0O0ODDOODODDODODDO®OD

-000

OOO0OODOOODODOODOOMOODOO~0ONDDW

ODODO0OO0OO0O0ODDOODODOD0DDODODWOD

o

o

o

o
OO0OOO0CO0O0ODODOODOOOUDODDOO
OO000DDODOW—-—-000DDOODODOODOOOD
ODOO0O0O0OO0O0»NOODOODOOOOCOODOOD

(2 X EQP(I J))/I1EQP(I

MODULE #
000

o000

0

MOOQULE #
000
o000

0

MOOQULE #

1 000 !
ooo

0

MOQULE #
[a]o]s]
ooo

0

MOQULE #

000 1
ooo

0

MOOULE #
[a]o]s]
ooo

0

MOOULE #

ooo
ooo
0

MODULE #
000
000

0

MOOULE #
[o]o]]
goo

0

0 o}

MOOULE #
[o]e]s]
[o]o]]

o]

MODULE #
000
o000

0

o)
o000
ooo

= REACT
[a]o]s]
ooo
0

= REACT
2 000
000G
0

= REACT
[o]e}s]
(e)o]s]
0

= SEPAR
1 Q00
ooo

0

MIXER
[s]o]s]
ooo

[¢]

2 REACT
o000
ooo

0

= SEPAR
[a]o]s]
ooo
0

Jb

cO2 Cr4a
0 00Ga GO0
0 Q000 000
0 Q0GC0 [s)0]s}
0 GooQ coag
s} 0000 030
o] Q0G0 000
0 0000 e)el}
0 0000 QG0
0 GoQo QG0
0 0G00 ' 0Q0
0 [e]ulele} GGaQ
0 Q00G 240
Q G300 1596
2 QUCo 173
7 1482 uGOo
o} 3100 0G0
Q Q0060 GQoo0
0 0oco 000
0 [e]o}vTe] [pJe]s}
0 0000 Q00
0 Q0CQ Q00
0 Cosco 000
0 00Go [s)e]s}
00Q i 000
ooo 000
Q 0
goao Q00
000 Go
3 2
oue gQe
000 Qoo
3
0da [e]e]0]
[s]e)s} 000
S 2
000 000
ooo Qoo
0 Q
000 Qoo
[s]e)s} Gdo
o .
000 000
Qa0 GoQ
12 3
Q0o [V]e10]
ooo 000G
0 S
000 -2 QGO
ooo Goo
0 P4
i Q000 -1 Q00
Goo 00G
0 2
1 000 1 000
00 ocGo
0 9]
000 0Q0
ooo ago
18 2
Qo0 Goo
ooo oeoo
a 1
000 GGG
300 coo
s} J

COO0O0O0OGOOOWINO0D0DOCOCOIDDO

Solution of the Nitric Acid Plant Problem with One

[olezele]

NOOWwwer
AOLYWDO
IO B OO
(U eI N RN N

[a]o]s]
Q00

0oo
000

[e1e]]
000

30
00

O w

136

oG
oo

137

Table IV-31 is a list of the design specifications and

manipulated variables.

Table IV-31.

Design Specifications for the Nitric Acid Plant
Problem

Design Specification

Variable Manipulated

FLOW(6) = 3.174 EQP(6,1) (SEPARATOR)
CoMP(6,5) = 0.7 EQP(6,2) (SEPARATOR)
COMP(7,1) = 0.992 EQP(9,20) (REACTOR)
CoMP(9,2) = 0.01 FLOW(1) (Feed)

CoOMP(15,9) = 0.0 FLOW(4) (Feed)

CoOMP(16,7) = 0.91 FLOW(10) (Feed)

comMP(18,1) = 0.25 FLOW(1l) (Feed)

For this problem the initial guesses were taken as t+ 10 percent

of the solutio
was multiplied

The resuyl

n value, that is, each variable of the solution vector
by 0.9 or 1.1.

ts obtained are presented in table Iv-32; the main

program for SIMO is presented in table IV-33.

Table IV-32.

Results for the Nitric Acid Plant with Seven Design
Specifications

ITER FEVAL CPU-TIME * EQ
EQSS 2 - 59.259 190
SIMO 11 68 11.894 16

Table IV-33.

[e1e]eTe]

Main Progyam Used to Simulate the Nitric Acid Plant
Problem with Seven Design Specifications

PROGRAM SMCTINO(INPUT, TAPES . TAPES)

REAL VAL(10)

INTEGER NUE(10) NUP(10) ,NUS(10) NCO(10)
CHARACTER*4 NAME({ 10}, ,NACO(10Q)

CALL READ(23, 6 1'4)

w
m
o
>

‘COMP ~

Mo — N~
w

O—~unNon

N
w

‘SEPA

' COMP *

-~

OoOW—=u~0n
. w

CFLOw

‘COMP

GO NOL N

Ml — N

~
pil
m
T
(o]

‘COMP *

= WO
o N

©o o

[VIR TR TR

CFLOW S

o

‘COMP *

H M~ N~
oNONHNO— N
o

CFLOW
!

‘COMP 7

N — W0~

O~~Nno-—n

392
‘FLOwW

CFLOW S

174

(N3 NAME NUE . NUP NACO.NUS NCO VAL
O(NI N2 N3 [P NSIG!

ES

EE

4400

SUBROUTINE FSIS(X . F IT N)
REAL X{N) FiN}

CALL REAC 3

CALL SEPA
CALL MIXE

{
R
R
CALL REAC:
CALL MIXER
CALL SEPAR
CALL SEPAR
CALL MIXER
CALL REACH
CALL REAC!
CALL REACH
CALL SEPAR
CALL SEPAR

]

128

139

The equation-based approach converged in a few iterations,
whereas the simultaneous modular approach took almost 5 times more
iterations than the equation-based approach. In terms of execution
time, the simultaneous modular approach was far better. This
problem shows that when the number of design specifications
increases, the simultaneous modular approach requires more
iterations, 4 or 5 times more, than the equation-based approach.

The same problem (seven design specifications), but with a
better set of initial guesses, i.e., in the range of #2 percent of
the actual solution, required 16 iterations (55 sequential
iterations) in the simultaneous modular approach, and 2 iterations
in the equation-based approach. The execution time was about 7
CPU-seconds for SIMO and about 40 CPU-seconds for EQSS. The
equation-based approach maintained the trend of 2-3 iterations to
solve the problem as well as the simultaﬁeous modular approach with
11-16 iterations.

In time, there is no discrepancy in the results obtained with
the simultaneous modular approach. The first set of initial guesses
required 11 iterations of MPDLM with &8 sequential iterations. The

sequential iterations are distributed as follows:

3 - initialize the simulation

51 - initial evaluation of the Jacaobian and two
re-evluations of the Jacobian

14 - required by MPDLM

140

The second set of initial guesses required 16 iterations of MPDLM

and 55 sequential iterations distributed as follows:

3 - ipitialize the simulation

34 - initialize evaluation of the Jacobian and one
re-evalution of the Jacobian

18 - required by MPDLM

The extra re-evaluation of the Jacobian required by the first
set of initial guesses increased the execution time, because the
Jacobian matrix is factored every time the Jacobian is evaluated.

On the other hand, the better approximation of the Jacobian obtained
from that re-evaluation allowed the first system to converge in

fewer iterations of MPDLM (11 against 16).

IV-5 Gasoline Recovery

This test problem was taken from Reklaitis (Reklaitis, 1983),
it is problem 5-36, page 368.

A block diagram of the process is shown in figure IV-5.

The input gas stream has several hydrocarbons (from Cl to C9)
which will be stripped of gasoline range components with decane. It
is known the split fraction of splitters 1 and 9 are known equal to
0.75 and 0.264, respectively.

This problem is regarded as a challenge to process simulators
when energy balances and physical property calculations are
performed. However, because in this work only material balances are

performed there was little challenge to either approach used.

GASOLINE RECOVERY
&

l
yl S 9PL

Figure IV-5.

Block Diagram of the Gasoline Recovery Problem

18741

142

The execution time and number of iterations are presented in

table Iv-34,

Table IV-34. Results for the Gasoline Recovery Problem

ITER FEVAL CPU-TIME * EQ
EQSS 4 - 81.320 187
SIMO 5 20 3.146 10
EQ 3 3 0.916 10

Surprisingly, the number of iterations required by the equation
based approach and by the simultaneous modular approach were higher
than the sequential modular approach.

The main programs used are presented in table Iv-35, the
solution is presented in table IV-36.

The design version of the problem has the flow rate of stream
19 fixed and equal to 72 (moles/unit of time) and the split fraction
of SPL9 is a manipulated variable. The results are summarized in
table Iv-37.

Table IV-37. Results for the Gasoline Recovery Problem with One
Design Specification

ITER FEVAL CPU-TIME * EQ
EQSS 4 - 82.856 188
SIMO 2 17 1.908 11

EQ 4 35 1.573 11

o000

PROGRAM SCB(TAPES TAPESG) PROGRAM SMCB(TAPES,K TAPEG)
COMMON /ITT/ 1ICO CHARACTER*4 NAME , NACO
REAL X(10),Y(10) CALL READ(19.10)
EXTERNAL FSIS Ti=s|
CaLL READ(19,10) 12=11
X(1)=0 13=0
X{(2)=175% IP=3
X(3)=175 NS1G=4
X(4)=178 CALL SIMSO(It, 12,13 ,IP NSIG)
X{5)=175 CALL WRITES
X(6)=178 CALL WRITEE
X{7)=175 STOP
X(8)=175 END
X(9)=175
X(10)=2100
N=10
I1COo=-1|
NT=100 SUBROUTINE FSIS(X,F,IT,N)
EPS=1 E-4 REAL X{N) , F(N)
K=0 CALL SEPAR{(8)
WRITE(6,222) CALL SEPAR(10)
222 FORMAT(/,10X," INITIAL ESTIMATES OF TORN STREAMS AND" CaLL SEPAR(7)
] /., 10X ,"EQUIPAMENT PARAMETERS" ,/) CALL SPLIT(9)
CALL WRITES CALL SPLIT(1)
CALL WRITEE CALL MIXER(2)
CALL WEGSMD(N X NT EPS,FSIS . K) CALL SEPAR(3)
WRITE(6,10) ICO CALL MIXER(4)
10 FORMAT(///.10X, "CONVERGENCE ACHIEVED IN " ,I14,6" ITERATIONS " ,/) CALL SEPAR(S5)
CALL WRITES CALL MIXER(6)
CALL WRITEE RETURN
STOP END
END
SUBROUTINE FSIS(M,X , F)
REAL X(M) F{M)
COMMON /S1/ NS . NSTR(30) ,FLOW(30),NC,CNAME (20) ,COMP(30,20) -
COMMON /ITT/ ICO PROGRAM ECB{(TAPES , TAPES TAPEG)
ICO=ICO+1 CALL READ(18 10)
FLOW(11)=0 CalL SREAD(19,10.10)
DO 1V I=1,M CALL FSIS
} FLOW(11)=FLOW(L 1) +X (1) CALL SIMMAN(3 .2)
DO 2 1=1,M sTOP
2 COMP(11, I)=X{(I)/FLOW(1) END
CALL SEPARI(8)
CaLL SEPAR(10)
CALL SPLIT(S9)
CALL SPLIT(1)
CALL MIXER(2) SUBROUTINE FSIS
CALL SEPAR(3) CALL SEPAR(8)
CALL MIXER{4) CALL SEPAR(10)
CALL SEPAR(S) CALL SEPAR(7)
CALL SEPAR(7) CALL SPLIT(9)
CALL MIXER{B6) CALL SPLIT(1)
DO 3 I=1,M CALL MIXER(2)
3 F(I)=FLOW(11)*COMP(11.1) CALL SEPAR(3)
RETURN CALL MIXER(4)
END CALL SEPAR(S5)
CALL MIXER(6)
RETURN
END

el

144

Solution for the Gasoline Recovery Problem

Table Iv-36.

Z0000rOMO~INOOOOON O
400000~ FORDMIONNO ~— ——

N~O0000Q0WOONVEO
IMO0O0-ONDO®MO
NLO000~-0~000~— ™
0000000000000

©

—WO0O0OYON ~OMININNO TN ¢ ¢
I0O000ONOYOOOMIMINDMMIM MM
VY000 —-0—~0~—M—~<400000

o

—000000rNO —~ONINNM N OOWY
INOOOOONMOO®IN —~OONOOO
~4000~0-00—~—4—400 NNN
0000000000000 00QQ ~——

<

—FO0O0~0VO—ONGDMNOD M
IN000000-0O~-NOONTONNOD
OMNO00000~~0——t0—~4O N~ ~—
0000000000000 000 ~——

00O NOT TN~V O00
QOQNOWNONO M~ NINM ~ — —
000 —-O0~-—NONYTM—DO ~ 00O
Q000000000 ~0QQ — ~— —

o]

—000Q00M— N~ NONOW —0 ¢ ¢ ¢
INO0OT— OIS ~0NOSINN0
TNO000~0~INMYTH —~O0OMD®

VMO00NOLOMINANNONO T ¢ ¢
IOO00O SO DO OON— — DWW
MNO00ONO~NONNNAOTODN I~ I~
000000000 NOOYTOQ O ~ — —

ONOOONNMIN~ODOONO NN
I-0000rRYNEM—0000MNNN
NYOOO~-—<4O0—~M——0O0QQ @M~ — —
000000000000 O000CQTQO

QO —-—PFNOMNN~000 O~ — —

[Bl

Wt OWOoOoOMINONOO~O0O0~000

JINO0OYON~30000000000

MONO000-VOOWOO000000Q0
a . P L L

~

=

40000 LNNNOMIMNOIND FOML

>JV000VONFITD—OM SN ¢ —
e - PR [

ZE 00000 0OOM ~4~ONOMM

< N-—IFONDTONNOND O ¢
T N— N N OO O o

(2 X EQP(I J))/IEQP(I .J)

MODULE #

EQUIPMENT PARAMETERS

1)

(

Qo [e]e] Qo [e]e] —~O oo <O
Qo [a]e] Qo [a]e] [e]e] Qo o O
Qo [e]a] Qo [e]a] Qo Qo oo
oo [e]e] [e]e] [e]e] [e]e] Qo no
Qo [a]e] Qo [a]e] [e]e] Qo ~O
oo Qo Qo Qo Qo oo [ele]
' ' ' ' 1 '
oo [Nelel 'OQ ' 0Q 1t Qo Q0 1 0Q
oo 'CQ [Nelel t Q0 100 Qo 1t0wo
oo [N eJea] 100 [Nelel 100 '0oQ [=)
B B B B Y o B T T Y - T © [e]
t ' 1 ' 1]
[} ' 1 ' 1 ¥
' 1 1 | ' '
' 1 1 ' 1 l
oo 'OQ [Nelal 'OQ [Nele] [Nelel <0
Qo Qo [e]e] Qo [e]e] Qo [sle]
oo [als] oo Qo Qo Qo no
- Q Cotn -Q o o - o
@ @ 14 @ @ @
w <« w « w <«
Qo xQo0 a. 00 xQo0 aoo Qo a<tQ
Qo ~ 00 woo [afele] woo ~00 w—~o
oo 200 ”noao 200 »woo Foo Nnwo
" - Q o o - Q o o
L " " L} " "
Qo ~NOQ LelyJol Qo noo [fs]e) ~rwo
oo Qo Qo Qo [e]e] Qo oo
Qo ~ Qo ~0o0 ~QQ ~0Q -~ Q0 ~r~O
o - Q o - Q o o - Q
* * * * * *
(1} (1} o w w w
J J a J J J
oo 200 200 JOoo pljel Joao a0
Qo Qoo o—-o Qoo Q—-o Qoo [o Xale]
oo [s]lala) [e]elal [slale) Qoo [s]a)a) or~o
R = -1 o X O X o 3 o 3 0o = o
o [Nele] I NQ [e]e) [fe) t OQ 1~Q
wno [Nele] [N Je] [Melel 1100 t 0o [Nele)
~O 100 1 oQ t 00 tOo0 toQ ' o
< a ~ © o 1 < 0
| ' ' -~ 1 - - -
| ' | ' 1 |
' ' ' ' ' +
' | 1 ' 1 '
o [Nele) "~O 100 two 100 [N]e]
wo [Nejel [o] '0CQ two t oo 1O
~Q oo wo Qo —Q Qo wo
) © © BRI B] -0 <
Qo Qo no Qo oo Qo Qo
Qo [a]e] no Qo L le] Qo Qo
Qo oo o Qo @O Qo Qo
o~ —_ w A 4 a o L]

SEPAR
367
000

)

8
8
o]

(

8
0

MOQULE #

998
000

<O
Qo

287
000

389
[o]o]o]

484
000

]
0

940
(o o]o]

o]

12

000

000
[s]e]0]

000

984
. 000

12

145

The simultaneous modular approach had fewer iterations required
than the sequential modular and equation based approach. The
execution time was better with the sequential modular approach. The
main programs for the simultaneous modular and sequential modular

approach are presented in table Iv-38; the solution of the problem

is in table Iv-39.

Table IV-38.

annn

o000

N -

w

Main Program Used to Simulate the Gasoline

Specification

PROGRAM sCILB(lAPES TAPEG)
COMMON /p3)/ T

EXTERNAL suB

17107=0

" INITIAL ESTIMATES OF 'ORN STREAMS ANO" |
" EQUIPAMENT PARAMETERS :)
{X NT EPS, SUB)

ior

1
S
E
w
WRITE }
BX, "CONVERCENCE ACHIEVED N » " ITERAT'ONS'
85X
s
E

z
ol

,"NUMBER OF FLOWSHEET EVALUA'IONS 14,7

SUBROUTINE SUB(X, F)
COMMON /S1/ NS, NSTR(JO).FL
COMMON /E 1/ NE . NEQP (20) ,EQN
REAL Y{(10)

EXTERNAL FSIS

OW(30) NC,CNAME (20) .COMP(30.20)
AME(20) EQP(ZO 20) .1EQP(20.8)

00 10 1=t (O
V(l)"FLOW(III‘COMP(II 1)
N=

NY=200

EPS = E-S

K=0

EQP(8.2)=x

EQP(8,3)=4 -x

CALL WEGSMD(N.Y NT EPS FSIS K}
F=FLOW(18)-72 0

RETURN

ENO

SUBROUT INE FSIS(M X . F)

REAL X{M) F(M

COMMON /Sl/ NS, NSYR(JO) FLOW(SO).NC_CNAME(IO),COMP(JO.ZO)
COMMON /P31 / fC

1CO=1CO+1

M
F(l) FLOW(!I)‘COMP(II_I)
REIURN

[x1s1+15]

Recovery Problem with One Design

PROGRAM SMCICG(IAPES TAPEG)
ACO

CHARACTER*4 . NAME
CALL REAO(IQ 101
=)

12=114

13=1)

1P=3

NAME= "spyL 1

NUE =9

NUP =2

NACO= 'F w

NUS =)

NCO=

VAL =72

CALL SPEC(IJ,NAME‘NUE NUP NACO, NUS . NCO. VAL)
CALL SIMSO(I) . 12,13 .18)

CALL WRITES

CALL WRITEE

STOP

ENO

SUBROU']NE

AL X(N),
CALL SEPA
CALL SEPA
CALL SEPA
CALL sPLYS
CALL SPLI
CALL MIXE
CALL SEPA

S(X . F,IT N)

zw

22122442221
DDA = O e D=7y
—— e D e

o1

147

Solution for the Gasoline Recovery Problem with One

Design Specification

Table Iv-39.

ZO0O0O0OrROMON DI — — OO0

—00000®MIOWrMINOOWWOO
MO0O0~0ONTOXM@N ¢ O
Y000~-0—-000———MOO0InIN
000000000000 0000000

[+]

~TWO000YONNO—~—ONINTO~ M
INO0QONOYNOOVIEHDOIDMO®
VY000 ~0—~00——M—3000N0
C

o
—0WO000NOr WO ~NDM—ONIDN I~
INOOOOONNOONTMHDNDNO O
9000~ 0—-00~—94—400——~—
Q0000000000000 000———
<

—rrO000~-0WY—VNOV—-OIM I I
IN0O0QO0OMOO— O~ —hbNTNNN
©MO0000—-—0~NIN—INONNNN
Q0000000000000 000 ~ ——

o
000 NOYMNNY FIN0MO00
I0O00QO0ONOINOOOWMO ¥ ~NDDD
NNO000~O0—M—MNIFTNOONDOD
000000000000 ~0~0——~—
Q

—00000M— MY ~O¢—ON~—~———
IWO00YT—~ QOO NIDNG— ——
FNO000~O0~- NI+ N—~OODIDO

O~ VDNV O—I -~

OO0 NMIONFMONO~OOO
I-0000rYINFM—9000% —~~
NYO00O0~40—N—— OO0~ —~—
0000000000000 0000000

00O0OYOW~FdOTNE O
OO00MNNOIINO M TNDOOO
OO0 OWNOVNOYT~NND
-0 —-—ONDIRONSNNNO

FLOW
84

653

NHONMINT MDD —ST@ION
N N N O M N

STREAM VARIA

NSTR

—NOITNO VN0~ NONDO

[s]e}
[s]o]
.00
[s]o]
[]0]
[s]e}
Q00
[s]e]0]
o8
oo
004
.000
000
[s]e]0]

-Q00
.Q00
000
[s]e]e}
000
[s]e]0]
000
[s]e]0]
375
oo
287
[s]e]e}

.000
[s]e]e}
.000
[o]o]e]
450
[s]e]e}

J))/IEQP (I ,J)

2)
3)

(
(

(2 x EQP(TI,

MOQDULE #
000
.000

0

MQDOULE #
.013

. Q00

o]

18

EQUIPMENT PARAMETERS:
- 858

All results obtained are summarized as ratios; table IV-40

presents iteration ratios, table IV-41 presents CPU-time ratios.

Final Remarks on Chapter IV

Table IV-40. Iteration Ratios

148

SECNEW)

A - all problems

B - only problems with no design specifications

C - only problems with one or more design specifications

ND- not defined

Total number of flowsheet evaluations

smo¥ s/ sy
A .617 0.093 ND ND
EQSS B .882 0.039 ND ND
c 467 0.111 ND ND
A 1 0.131 1 0.104
SIMO B 1 0.05 1 0.3
c 1 0.971 1 0.069
1/

Total number of iterations of main nonlinear solver (MPDM or

The ratios are defined as the number of iterations of the

horizontal entry divided by the number of iterations of the vertical

entry.

149

Table IV-41. CPU Time Ratios

SIMO SEQ st/
A 10.216 14.214 —
EQSS B 10.113 17.177 -
c 10.368 10.445 —
A 1 0.697 0.439
SIMO B 1 1.851 0.820
c 1 0.372 0.372

=~ without Cavett problem

It can be seen from table IV-40 that the equation-based
approach had the best convergence performance. In the case of
problems with one or more constraints the equation-based approach
requires half of the iterations required by SIMO and 10 percent of
those required by SECNEW.

The true comparison between SIMO and the sequential modular
approach is in the total number of flowsheet evalutations. SIMO
requires about 7 percent of the iterations required by the
sequential modular approach for constrainted problems, about 30
percent for problems without constraints and 10 percent gverall.

It is clear that the equation-based approach has the worst
performance of the three methods in terms of execution time. The
simultaneous modular approach performed best with design
constraints, but without design constraints only marginal benefits

were achieved.

150
CHAPTER V
CONCLUSIONS

The implementation of Chen and Stadtherr’s modification of
Powell’s dogleg method proved to be an efficient alternative to
solve systems of nonlinear equations. When used to solve nonlinear
systems arising from chemical process simulations it was very
reliable, even with poor initial guesses.

The equation based approach is an attractive alternative for
chemical process simulations. However, in order to have the
equation-based approach attractive for commercial applications,
better algorithms to solve the set of linear equations must be
incorporated. 1In addition, the Jacobian evaluation must be
optimized. Knowing the modules which will be used in the
simulation, it is easy to know the structure of the Jacobian;
therefore, there is no need to perturb all variables to evaluate the
Jacobian matrix by forward differences, only the ones that affect a
given equation.

The simultaneous modular approach is better than the seqguential
modular approach for controlled simulations, that is, for
simulations with design specifications.

The findings in this work are applicable to simulations where
only material balances are performed. The results with simultaneous
mass and energy balances, and physical properties estimation may
result in different conclusions. However, we expect better

performance of the equation-based approach and simultaneous modular

151

approach when compared with the sequential modular approach. We
expect that behavior because the execution time for each flowsheet
pass will be higher when physical properties and energy balances are
performed. In addition, we expect a significant increase in the
severity of nonlinearities which will affect Wegstein’s method
performance.

The findings of this work agreed with results presented in the
open literature regarding the three methods: the sequential
modular, simultaneous modular and equation-based approach. However,
the results of this work also indicate that much more research must
be done with the equation-based approach.

Finally, two libraries of subroutines were developed, SIMO and
EQSS, which provide powerful teaching aids for undergraduate level

stoichiometry classes.
Future Work

It became gquite clear while this work was in progress that the
main problem associated with the simultaneous modular approach and
equation based approach is the effective solution of a system of

nonlinear equations. A few areas must be further researched;

namely:

l. The evaluation of the Jacobian accounts for a significant
amount of execution time. It would be interesting to have
the Jacobian coded analytically. Although the task is

tedious, it is feasible. We must remember that material

2.

152

and energy balance equations have the same form for all
equipment modules, that is, output = input + accumulation.
Therefore, there is no need to code the analytical
Jacobian in the case of material and energy balances
eguations for each module, a general subroutine would do
it. If the analytical Jacobian is not expensive to
evaluate it would be preferable to evaluate the Jacobian
every iteration rather than to update it by secant
formulas.

Although the results obtained with Schubert’s update
formula were fairly good, it would be interesting to
ahalyze the effect of maintaining all known constant
Jacobian elements, not just the zeros. 1In Chapter II we
presented Schubert’s update formula and we mentioned that
in practice we hold as constants only the elements equal
to zero. The question that should be answered is what is
the gain, if any, of not updating all known constants, but
only the ones equal to zero. This guestion is very
important because some authors (for example, Lucia, 1982)
reported unreliable results using Schurbert’s update
formula. Were the unreliable results due to Schubert’s
formula, or due to simplifications introduced to
Schubert’s update formula? |

EQSS and SIMO should perform energy balances. As teaching
aids, SIMO and EQSS fulfill the purpose of showing the

performance of different approaches to solve process

153

flowsheets. On the other hand, the type of simulations
that can be performed with SIMO and EQSS are rather
simple, and their use in research is limited.

Introducing energy balances and physical properties
calculations would enable SIMO and EQSS to solve more
complex problems.

A weak point in EQSS is the solution of the linear systems
every iteration. A better (more efficient) subroutine
must be incorporated to solve the linear system. There
are several such algorithms published in the open

literature. Unfortunately, our choice was not the best.

154
BIBILOGRAPHY

Bennett, J.M., "Triangular Factors of Modified Matrices.”™ Numer.
Math. 7, 217 (1965).

Broyden, C.G., ™A Class of Methods for Solving Nonlinear
Simultaneous Equations." Math. Comp. 19, 577 (1965).

, "The Convergence of an Algorithm for Solving Sparse
Nonlinear Systems.™ Math. Comp. 25, 114 (1971).

Cavett, R.H., "Application of Numerical Methods to the Convergence
of Simulated Processes Involving Recycle Loops.™ Amer.
Petroleum Inst. Preprint No. 04-63 (1963).

Chen, H.S. and Stadtherr, M.A., ™A Modification of Powell’s Dogleg
Method for Solving Systems of Nonlinear Equations.™ Comput.
Chem. Eng. 5, 143 (1981).

Chen, H.S., "Computational Strategies for Chemical Process
Flowsheeting and Optimization." Ph.D. Thesis, University of
Illinois, Urbana (1982).

Crowe, C.M., "0On a Relationship Between Quasi-Newton and Dominant
Eigen Value Methods for the Numerical Solution of Nonlinear
Equations." Comput. Chem. Eng. 8, 35 (1984).

Dennis, Jr., J.E., and Schnabel, R.B., Numerical Methods for
Unconstrained Optimization and Nonlinear Equations.
Prentice-Hall, lst ed. (1983).

Duff, I.S., "A Survey of Sparse Matrix Research.” Proc. of the IEEE
4, 500 (1977).

Gupta, P.K., Lavoie, R.C., and Radcliffe, R.R., "An Industry
Evaluation of SPEEDUP."™ 1984 Annual Meeting of the A.I.Ch.E.,
San Francisco.

Gallun, S.E., and Holland, C.D., ™A Modification of Broyden’s Method
for the Solution of Sparse Systesm - With Applications to
Distillation Problems Described by Nonideal Thermodyanamic
Functions.” Comput. Chem. Eng. 4, 93 (1980).

Hlavacek, V., "Analyses of a Complex Plant - Steady State and
Transient Behavior." Comput. Chem. Eng. 1, 75 (1977).

Kayihan, F., “SIMFLOWS: Simplified Modular Flowsheet Simulator.®™

Chemica% Engineering Department, Oregon State University, Rev.
2 (1979).

155

Lucia, A., "Some Results for one Iterated Projection of the
Symmetric Schubert Update." Comput. Chem. Eng. 6, 283 (1982).

Mah, R.S.H., and Lin, T.C., "Comparison of Modified Newton’s
Methods.* Comput. Chem. Eng. 4, 75 (1980).

Mahelec, V., Kluzik, H., and Evans, L.B., "Simultaneous Modular
Algorithm for Steady-State Flowsheet Simulation and Design."
Presented at 12th Symposium on Computer Applications in
Chemical Engineering, CACE 79, Montreux (1979).

Motard, R.L., Shacham, M. and Rosen, E.M., "Steady State Process
Simulation.™ AIChE J. 3, 417 (1975).

Myers, A.L., and Seider, W.D., Introduction to Chemical Engineering
and Computer Calculations. Prentice-Hall, 1st ed. (1976).

Perkins, J.D., “Efficient Solution of Design Problems Using a
Sequential-Modular Flowsheeting Program.* Comput. Chem. Eng.
3, 375 (1979).

Perkins, J.D., and Sargent, R.W.H., “"SPEEDUP: A Computer Program
for Steady-State and Dynamic Simulation and Design of Chemical
Processes.” Selected Topics on Computer-Aided Process Design
?nd Analyses. CEP Symposium Series, A.I.Ch.E., New York

1982).

Powell, M.J.D., "A Hybrid Method for Nonlinear Equations."
Numerical Methods for Nonlinear Algebraic Equations, P.
Rabinoiwitz (ed.), Gordon and Breach, New York (1970).

Reklaitis, G.V., Introduction to Material and Energy Balances. John
Wiley and Sons, 1st ed. (1983).

Rodrigues, A.F., "Solucao de Sistemas Esparsos de Equacoes
Algebricas Lineares por Metodos Diretos." M.S. Thesis,
Escola Politecnica da Universidade de Sao Paulo, Brazil
(1979).

Rosen, E.M., "ﬁ Machine Computation Method for Peforming Material
Balances.” Chem. Eng. Progress 58, 69 (1962).

, "A Review of Quasi-Newton Methods in Nonlinear Equation
Solving and Unconstrained Optimization.” Proc. 21st ACM
National Meeting, Washington D.C. (1966).

Rosen, E.M., and Pauls, A.C., “Computer Aided Chemical Process
Design." comput. Chem. Eng. 1, 11 (1977).

Schubert, L.K., "Modification of a Quasi-Newton Method for Nonlinear
Equations With a Sparse Jacobian.*" Math. Comp. 25, 27 (1970).

156

Stadtherr, M.A., and Wood, E.S., "Sparse Matrix Methods for
Equation-Based Chemical Process Flowsheeting - I." Comput .

Chem. Eng. 8, 9 (1984).
Ibid. Part II, Comput. Chem. Eng. 8, 19 (1984).

Wegstein, J.H., "Accelerating Convergence of Iterative Processes."
Commun. Assoc. Computing Machinery 6, 9 (1958).

Westerberg, A.W., Hutchinson, H.P., Motard, R.L., and Winter, P.,
Praocess Flowsheeting, Cambridge University Press, Cambridge
(1979).

APPENDICES

157

Appendix A

Solution Equations

In this appendix we will show the equations solved in each

equipment module used by the sequential and simultaneous modular

approach.

In

parameters are

either approach the input stream variables and equipment

Xy s
1J

SPLITTER

N Xy

known. The following nomenclature will be used:

male fraction of the j-t-D component in the

izﬁ stream

total molar flow rate of the iEE stream

I p1it fraction

separation fraction of the iED component
stoichiometric coefficient of the iED component

conversion of the kEﬂ reactant

liquid-vapor constant of the iED component

N components
L streams out (max 7)

1 stream in

]

(@]

———> N; Xjj

lb

Equipment parameter: split fraction 3

k
Ny
ak = -
N
1
ij = XiJ k=2,L;y J=1,n
MIXER n components
L input streams (up to 7)
1 output stream
|
2
Ni, Xij - —> Ny, X4

Equipment parameters: none

3
‘ " kzl "«
}
)
‘ X oo el <k j=1,n

158

159

SEPARATOR n components
L output streams (up to 3)

1 input stream

— Na,Xyj

r"‘“"‘\

; ——
N|/ ><U
-
— > .
Pd55><3j
N2 x2 .
Equipment parameters: B, = —<—4ul jJ=1,n
J N, X, .
171,]
n
N = N 1 -R. .
3 lJ:l(B‘J)xl"J
N2 = Nl - N3
Bj Nl xlj
X . = j:l,n
2,
Y N2
N, X, . = No X, .
oL 1, 2 2, -
x3,j = 2 2 J=1,n

160

REACTOR n components

Mp o o= stoichiometric coefficients
reactant
product

inert

O®HO

NpLX; No,X;

Equipment parameters: Y =

Conversion of the k reactant

N, X, Y
Define T = 1 1k Kk extent of reaction

_uk

)
trT 4 Nj

N = N

2 1

FLASH (Isothermal) n components
2 ouput streams

1 input stream

161

—— N2Xp;

TN
, ————P
N|/ ><H
—
—> N3z, X3;
Xos
Equipment parameter: K, = -4l j=1,n
J Xo s
3]
N
Define o = 2
Ny
Solve
L X
) 11 -1=0
i=1 1 - G(l - l/ki)
for a
Ny = o)
N2 = Nl - N3
X
X2 3 = 1 =1, n
’ 1-oa(l - l/kj)
X
2,J
= =2 —
x3,J = y J=1,n

162
APPENDIX B

Chen and Stardtherr Modification of Powell’s Dogleg Method

to Solve Sets of Nonlinear Equations

In this appendix we will try to show how Chen and Stadtherr’s
algorithm functions. The references for this appendix are: Powell
(1970), Broyden (1965), and Chen and Stadtherr (1981).

We will now present a brief review of methods for solving
nonlinear equation, which are relevant to understand the algorithm.

Consider the solution of N nonlinear equations in N unknowns.

We aim at the determination of the vector X* such that
FIX) = o (1)

where F, X, and O are NEE order vectors.
%
Several iterative procedures to determine X , solution vector

of (1), have the general form:

7o xt ool (2)
where:
i = iteration number
i .th . .
X7 = 1= estimate of the solution
FLo2 function values at Xl
o scaling factor
i

H™ = depends on the method used

163

To follow the convergence towards the solution, the euclidian
norm of the functions is traced.
1
2

N
sx) =) oo
J=1

= IFoo | (3)

When a vector X* reduced the euclidian norm to a determined
snall value 3, we accept X* as the solution to the system (1).

%
Thus, X 1is a solution if,
i *
IF o) 1< o (4)

It is desirable that at each iteration the euclidian norm of

F(X) is reduced, so we would like that
F* o0 s IFtoo | (5)

In the Newton-Raphson method H' is chosen to be the inverse of

the Jacobian of F(X). Equation (2) becomes
x1+l - Xl _ (Jl)-l Fl (6)
and 7% = 1.

In the steepest descent method H' is chosen to be (Jl)T. The
method is based on finding a minimum of Z(X) = F(X)TF(X). The
gradient of z(X) is 2JTF(X) and the steepest descent direction of
Z(X) is -grad z(X) . So if we choose H! to be (Jl)T equation (2)

becomes

i+l i (Ji)T F(Xi) Ti (7)

164

If we choose T! properly Z(X) will be reduced every iteration.

Note that z(X) = S(X) 2 = || Fix) || 2

. The method may fail to
solve (1) if a local minimum, different than the solution vector X*,

is reached. It can be shown that at the minimum
IF0 = 0o

since its not a zero minimum F(X) # O, JT must be singular. This is
not a serious drawback, as several algorithms, for example the
Newton-Raphson method, require J'l. However, if such local minimum
is not reached, the steepest descent algorithm will eventually reach
the zero minimum. It has been found that the steepest descent
algorithm is rather slow.

Another iterative method used is the Levenberg-Marquardt. In
this method Hi = (Ji)TJi + AiI 'l(Ji)T and Ty is set equal to 1.
The parameter ki, Levenberg-Marquardt parameter, is chosen to be

always greater than or equal to zero. Equation (2) becomes
X1+l = xt o (Jl)TJl + 3 —l(Jl)TFl (8)

A few comments are in order at this time. If we set ki = 0,
equation (8) reduces to equation (6), the Newton-Raphson method. If
we let ki big enough, equation (8) reduces to equation (7), the
steepest descent algorithm, where Ti = (xil)_l. It can be shown
that equation (5) is satisfied with a proper choice of ki c.

It is important to note that if ki 0, the inverse matrix in
(8) will always exist, which eliminates the drawback of the other

algorithm, a singular Jacobian. However, as in the steepest descent

165

algorithm, the L-M algorithm may find a local minimum in which
FCx) I # o.

An important feature of the L-M algorithm is that, depending on
the value of xi, it has good global convergence properties, as the
steepest descent direction method or good local convergence
property, as Newton-Raphson method.

Let us rewrite equation (8) in the following manner:

x1+l - x1 + Pl (9)

where
Pto= Lahah +adiTihTH (10)

and P! is a correction step which value is chosen as to satisfy
equation (5). Clearly, Pl - f(xl), and the problem now is to find
xi, so as to satisfy equation (5). As Al may assume any value in
the interval (0, +=) we will have to assume several values of A and
check whether egquation (5) is satisfied or not.

To exemplify the procedure, consider the following system of

equations:

1]
o

fl(x) = X7 +x5-5
(11)

fz(x) 2X, + X, - 4

1 2

1]
o

Let xl = (l,l)T, thus Fl(x) = (-3,-1)T and the Jacobian is:

166
Table B-1 shows several values of Pl as a function of Al.

Table B-1. Correction step as a Function of A

i i
Al Pl P2
0.0 -0.50 2.00
0.5 0.19 1.07
1.0 0.33 0.83
5.0 0.40 0.46
10.0 0.33 0.33

The L-M curve is shown in figure B-1. To obtain the curve a
linear system had to be solved for each value of X considered.
Clearly, this procedure is time consuming as the number of equations
in the system increases. Powell approximates the L-M curve by a

>
broken curve as shown in figure B-2. The curve BC was obtained

through the steepest descent direction of S(X) = | F(X)|. As it was
previously discussed, as A increases the L-M equation (8) tends
towards the steepest descent direction, so the direction of gb is
the steepest descent direction given by G = -grad S(X) = —JTF in the

example,

and

P =E=L1G (12)

167

20

05

Figure B-1. Typical 2-Dimensional P(A) Curve in the L-M Method

aN L

Figure B-2.

Typical Dogleg Approximation to the P(A) Curve

168

169

where
I II2 13)
u = —2 13
|3 |
(82 + 72)
T 5 5 = 0.079076
(30° + 239)
. 8
AB = 0.79076
.

For A = 0, P(A) is just the correction step given by N-R
algorithm so that

>

X =0; BC = P(A)

PN P(A) = -37%F - [-0.5;2]T

Now the broken line ABC (dogleg) is completely described and,
as seen in figure B-2, it well represents the L-M curve. The
advantage of using Powell’s dogleg curve to approximate the L-M
curve is that only one linear system was solved, the N-R correction
step.

In order to solve the system of equations (11), it would be
interesting if after each iteration we could reduce the value of
| Fll, in other words, we want equation (3) to be satisfied every
iteration. Let us consider a trust region A which represents the
distance between X; and X" (the solution vector). One of the good
characteristics of Newton’s method is that it converges fast nearby

the solution, and one good characteristic of the L-M method is that

170

for a sufficiently large X equation (5) is satisfied. The parameter
A will be used to determine the correction step through the
following algorithm.

Use:

N

PN if A N

P

[\Y%

(N-R step)

S

PP if A< | P

IA

S Il (Steepest Descent Step)

If 1PN < & <l P° || we will use the intersection of the

broken line (dogleg) with the circle of radius A.
P = aPN+ (1 - a)pS

where

22 - P8

a = l
PN - PHTRS LEMTRS - 2974 (PN 2 - 252 - [PO)2]

In this case we will keep the good convergence properties of the L-M
algorithm. To illustrate the procedure let us use again the system

of equations (11) and assume that A = v/Z.

N
I

P 2.0615

e |

0.8406
S0

TN & 1e9

171

and

PN - (-0.04085;1.413624)T

The next step in the algorithm is to update A. We want A as
large as possible because we want to decrease || F | in every
iteration, without taking too small steps. If A is too small the
number of iterations required is prohibitive.

Chen and Stardtherr suggest the following procedure. If the

Jacobian is new, use:
A = [P || max (0.1,))

where

-b
2
and

a = S -5-2rFhTylpt

b = 2(F)T ii

s = lFxt v PY R

s = [rexd 2
Otherwise, evaluate dm,

dm

l

S-S -0.1s - g%

Fixt) + g%t

0
H

172

if d <0 set
A = 0.5] P |
if dm >0
d
AZ = 1+ m -
2 z
0P * (OP + dmcs)
n
_ i i i i
g = L1t e phliesod + el - o
J=1
n
GS = E [f'.(Xl+Pl) -qj]2
J=1 J

The new A is defined as follows:

set TFLAG = 1 if the Jacobian is new or whenever A is

reduced.

calculate A and find MV = min(2,X,TFLAG)

reset TFLAG = AMv

set A = M| Pt |
Other features of Chen’s and Startherr algorithm are:

- Check for slow convergence or nonconvergence. This check
is done because the algorithm may converge to a local
minimum and no progress is done towards the solution. If

the check shows slow convergence of nonconvergence the

173

program stops and a different set of initial guesses is

required.

- The update of the Jacobian through secant formulas
"degrades” as the number of iterations increases. When
the Jacobian is not making good progress, it is

reevaluated through finite differences.

What was exposed so far are the basic ideas behind Chen and
Stadtherr’s modification of Powell’s dogleg method. The following
references will cover in more details the dogleg method and its
modifications: Powell (1970), Broyden (1970), Chen and Stardtherr
(1981).

If anyone wants to work out the system of equations (7), table

A-2 shows some results.

Table B-2. Results for the System of Equations (12)

174

ITERATION 1 2 3

X, 1.0 0.9591 1.0849
X, 1.0 2.4136 1.8301
Fl -3.0 1.7455 -0.4737
F -1.0 0.3319 -0.0001
A V2 1.1007

Py -0.04095 0.1258

P, 1.4136 -0.5835

P 2.0 0.3563

IF i 3.16 1.7768 0.2244
a 0.5946 -

APPENDIX C

Subroutine Listing

EQSS
LIBRARY

SUBROUTEINE SREADI(NSTR NEQ NC)
COMMON /S1/ NS NSI1(30) FLOW(30)
CHARACTER*S NAME

MN CNAME (20

COMP L 40

20

3]

0000

N—
cow

30

COMMON /51
COMMON /51t
/s

KE20 ZU 1100 1y
COMMON \

TNOP (200 Cxr30 20

ERCE CICKOL Jb gzt 20)

NSTR
EQ 1) CX(1 ,20)=FLOWIT}
NC

)

EQ 1) CxlL LhCOMP Y L)

SUBROUTINE IDEN

COMMON /S 1/ NS NSTR(J0) .FLOW(IO) NC CNAME(20) COME. 50 200

COMMON /E 1/ NE . NEQP(20) EQNAME(20) EQP(20.20) 1€EQP(20 8

CHARACTER'S NA

COMMON /SIM)/ NAT20)

COMMON /SIMZ/ IFK{30) ICK{30.20), 1EX(20,20) ,110P(20 1

COMMON /STM3/ 10¢20) . ECCL30) T1EC{20) INOP (20) Cxo 30 211y

00 1 1=t NE

TFENACT) EQ "SPLIT) THEN

1oy =1

GO 10 1t

ELSE

IFENACI) EQ “MIXER)} THEN

10111=2

GO TC ¢t

ELSE

IFINACL) EQ "REACT' OR NAt1) EQ "'REAC |} IHEN

1D(1)=3

GO T0 |

ELSE

IFINA(LI) EQ "SEPAR') THEN

ID())y=4

GO 10

ELSE

IF(NA(L) EQ "FLASH') THEN

lD{1)=5

GD 10

ELSE

TE(NA(L) EQ "USER)' OR NA(I) EQ "USER') THEN

10{(1)=5

vC TO 1

ELSE

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENOIF

WRITE(S .10) T NALL

FORMAT(/ SX “"CHECK SPELLING FOR MODULE(" 12 “12° ab .

STOP

CONTINUE

D0 20 1=) NS

1cCCc(l)=0

TECIFK(Y)Y EQ 1) FLOWI D) =Cx(D 201

DO 2t L1, ,NC

TEE1CKUT L)Y EQ 1) THEN

1CCLI)=1ICCiI)+)

COMP(I.LV=Cxel)

INOPLICCI 1)) =0

GO 10 21

ELSE

ENDIF

CONTINUE

1F(ICCll) EQ 0) GO 10 20 b

DO 22 L=1 TG ~J
w

22
20
c
35
31
32
30
c
c
S0
110

80
9%
140

90

0000 0000

RS

LOCKOL L)= TROUP L
CONTINUE
00 30 [=1 ,NE
TIEC(1)=0
IFCIOIT)Y EQ 24 GO 10 30
Lisd
L2=NC
IF(IDE1) GE 4+ GO 10 3%
t1=2
L2=-1EQPI(I 81
1IFCID(T Y EQ 1) GO TO 35
L1=20
L2=20
CONTINUE
00 31 L=t} L2
TF(IEK(] .t} EQ Ui THEN
TECI1)=IECUT) +1
INOPLIEG(1))=
GO 10 31t
ELSE
ENDIF
CONTINUE
IF(I1EC(I) €U U) GU TO 30
DO 32 L=) lEC(I)
TEK (! L)=INOP) |}
CONTINUE
D0 40 K=1 NE
GO TO (S0.60 70 80 80 .90 1Dk}
CONTINUE
INOP(K)=LEQPIE B1+1
Q0 110 1=1_ INOPLK}
1TOPLK, 1)=1EQPLK)
0
E
1
.1 [
1
Q
E
1
.1
0
CONTI1NUE
INOP(K)=1
CONTINUE
DO 140 151 INOFIK)
TTOP(K ,1)=1EQP(k 1)
TO 40
CONT i NUE
TNOP(K) =
IFLEQPIK a
Do 150 1
ITOP(K 1
GO 10 40
IFLEQP(80
INOP (K
1FLEQP! g%
WRITE (6
FORMA T{ PARAME [ER"
,20) =" 113,
2. OR 3
S5T0F
CONTINUE

RETURN

SUBROUT INE STMMANINSIG . MS)

THIS SUBROUT ENE PREPAHRES
NONL INEAR EQUATIONS FOR SOLUTTON

s

]

THE S1S1EM OF

o0

oo

O 0000

a0oon

REAL X(200) £12001 WK 16400)

COMP S0 1
FOPL20 .7

INOP{20) CX{30 .20

”NUM?EN OF VARIABLESG: "
3

CUMP U 20
1EQP 20 8)

1IOP120 71

CxX{30 00

COMMON /S1/ NSTR N3 1(30) FLOWI3O0) MN CNAMEL2U)
COMMON /SIM2/ IFK(30),1CK(30 20) IEKI20 .20} 1
COMMON /S 1IM3/ 10120) ICCLI0) IEC(20)
SH=0
DO 100 1= NSTR
IFCIFK(L)Y EQ V) FLOwtl)=Cx¢t1 201
100 IF(FLOW(T) GT Sit) SH=FLOW(T)
DO 110 1=1 R
110 FLOWIT)=FLOW(1)/SH
00 30 J1=) NSTR
30 IFLIFK(I) EQ 1) CX¢I,20)=CX{1.20)/SH
N=200
CALL 1QEN
CALL VARIN(X [1)
CALL FUVAL(F tT1 . N)
1F(IT EQ 114) GO TO 120
WRIYE(S‘ZOO) 1T, 171
STOP
120 N=IT-}
I TMAX =300
WRITE(6,201) N
WRITE(6,204) SH
CALL WRITES
CALL WRITEE
CALL MPOLM{FCN, X, F N WK, I1TMAX NSIG MS)
WRITE(6 2031 ITMAX
203 FORMAT(/L.8X NUMBER OF ITERATIONS
.BX
3oo)
6,
R
CALL WRI
200 FORMAT(/ SX "ERROR ON INPUT" / &X
1 /. SX . "NUMBER OF EQUATIONS= .
201 FORMAT(/ SX . "NUMBER OF VARIABLES = "
1 /‘gx “THE SYSTEM YO BE SOL\I&D WlLL BE PRINIEU NOw "
78X i
202 FORMAT(/ 5X "YH(: SOLUTION TO YHE PROBLEM 1S
S
204 FORMAT(/ SX."ALL FLOW RATES HAVE A SCALLING "
t /‘SX"'FACTOR = " FIl0
- B LT T
RETURN
ENO
SUBROUT INE FCN(X . F NI
REAL XIN)} Ft
CALL VARQUTI(X [T N)
CALL FUVALIF 1T N)
RETURN
ENO
SUBROUTINE FUVALIF 1T N)
/S1/ NS NSTR(3IQ) FLOWI30) NC CNAMEIZ20)
COMMON /E 1/ NE NEQP(20) EQNAME(20) EQP(20 20}
COMMON /S M2/ lFKlJD),ICK(SO 20) ,1EK(20.20)
COMMON /S {M3/ 1D(20) 1ICC(3),IEC(ZO) INOP (201
REAL F(N)
11=1
00 1 K=1 NE
GO TO t10,20.30 .40.580 613 . 1DtK)
10 CALL SSPLIT(K NFOIT)
GO TO
20 CALL SMIXER\K NF L
GO
30 CALL SREI\CAK LN R
GO TOo 1t

13

9.1

o000

0000

a0

200

CALL SSEFPARGK W F 11

GO 10

CAL L SFLASHIR NoF LT
o

CALL USENIII’ N+ 1T
CONTINUE

RETURN

END

SUBROUT INE VARGUT(X 1T N)

COMMON /St/ NS NSIR(30).FLOWL30) NC CNaME<20) Cotire 30 20U
COMMON /E 1/ NE NEQP(20) EQNAME(20) EQP(L20 20) LEQF(20 8)
COMMON /SIM2/ IFK(30) 1CK(30. 20) IEK(20 .20) [10P(20 7
COMMON /ST43/ 101201, 1CCt30) . TEC(20) INOP(20) CX130 20)

REAL X{(N)
INTEGER ITERL30)

[1=1

DO S 1=1 ,Ns

ITER(1)=0

IFCTFK(I) EQ + AND ICCi1) EQ NCHY ITERCL)=
00 1 K=1,NE

00 100 I=1, INUF LK)
L1=1TOP(K . 1

IF(ITERILY) EQ 13 GO TO 100
TTER({LI)=t

TFCEFK(LYI) €Q 1) GO 10 105
FLOW(L) =X(IT)

17=11T+1

CONTINUE

0O tt) J=1 NC

L=1CKI(LY J}

IF(L EQ J) GO 10 i3

COMP (L)Y Jg)=x(1T)

IT=1T+1

CONT I NUE

CONTINUE

LFCLECUK) EG U) GO TU

00 200 1= TECIK

LI1=TIEKt(K I}

EQP(K L1)=Xt11)

IT=17T+1

CONTINUE

RETURN

END

SUBROUVINE VARINUA 1T)

COMMON /$1/ NS NSTR(30) FLOWt3U) NC CNAME (Z20) COMPII0 200
COMMON /E Lt/ NE NEQP120) EQNAME(20) EQP{(20,20) TEQP(20 B8
COMMON /S 1IM2/ IFKKJUI,ICK(JO 200 [EK(20 20) 110F(20 7}
SOMMON /SIM3/ 100200 [CCU30V 1ECI20) INOP(201 CXt30 . 200
REAL X{*)

INTEGER [TER(30)

1r=1

DO S 1=1,NS

ITER(1)=0

IFCIFK(I) EQ 1 AND LGCUI) EQ NG LTERCL -t

00 t K=1 NE

00 100 =1 INOPAKI

LI=ITOP(K |

TFCULTERIL 1) {u 1) G 10 100

ITERILT)= .

IFCIFKCLL) EQ 1) GO TO 108

XCIT)Y=FLOWLL T

CxiLl 2001=17

1T=0T 14

CONTINUE

DO 110 J=1 NC

L=1CK{L 1 J)

TF(L EQ J) GO 10 110

XCIT)=COMP (L1)

Cx(L) Ji=tf

IT=11+1

CONTINUE

(2121}

oooo

o000

200

CONTINUE
IFCIECIK) EQ 01 GO TO

ICK(K 20)=11
DO 200 1=1 1ECiK)
Li=1Ex(x I)
XLITY=€QP (K L 1)
TT=1T+y
CONTINUE
RETURN
ENO

SUBROUT ENE SFLASHI(
COMMON /S1/ NS, NSI
COMMON /E 1/ NI . NEQI
REAL F(N)}

E FooT
{ Lowuau> NC . CNAME (205 COMPYL 300 24)
{

N N.
R{30) .,
P {20 EQNAMEL 20) EQP{Z0 201 1EQF{120 8)

n MLON=0-

2ocomp(mz
3 +COMP(L3 .
-

1}
M I}
OMP (L2 EQP(NE F1tCOMPILS 1)

-—~OCCn_moOOnvvv
"
|
)
=
k4
b

Zem e NP PP EF—DDD®

MI=NN=MOPO~TTMMOr~
ZMAmm 4 mCCO~~rrrOwn

OAtmmn—=TZ

SUBROUT INE SMIXER(NE N,F IT)
COMMON /S 1/ NS NSTR(30) FLOW(IOD), NC CNAME(20) COMPL30 20
COMMON /E1/ N1 .NEQP{20) EQNAME{(20) LEQP(20.20) TEQP(20 81

L)
SUBROQUTINE SREAC(NE N F 1T}
COMMON /S1/ NS NSTR(30Q) FLOW(JO) NC CNAME (20) COMPCIU 20t
COMMON /Et/ NI NEQP(20) EQNAME(20) EQP(20.20) [EQP120 8)

FCOMP (| LB ICEQPINE 205 /4 "EQP INE 1.8)3
C

YCOMP L L

MP (12 11
1)
)ACOMP L 2

1
1)

QPINE 1)*'R

LLT

)

20
2%

FULTYt - SumMe
FelTeth=1 -Suag
IF(L4 NE 0) THEN
FLIT+2)=21-50M4 [o]
IT=1T+3 C
ELSE c
IT=17T+2 [+
END §
RETURAN
ENO
SUBROUTENE SSKHIL ITINE N F IT)
COMMON /S1/ NS NSTRII0) FLOW(30) NC CNAME (20) COMPG 3 2001
COMMON EQP ¢20) EQNAME(201 EQPI20 20) TEQP(20 8)
COMMON 200 1CC(30) IEC(20),INOP (20} CXt3} 241)
REAL F)
00 1 1 .8
SUMEL)=0
LI=TEQP(NE 1}
LB8=TEQP(NE , 8
SUM(1) =FLOW (L
00 2 I1=2.1L8+1
SUM(B)I=SUM(B)+EQP INE)
L3=IEQPINE)
F2=FLOW(L])
SUMI) 1 =SUML 1) F2 !
FOEMI=SUM(L)
CONTIH E
IT=17
Do 3 2
L2=g t
Filtl L
17=1 [
Cc
DO [+
L2 [+
0o
F o
1
1Fu
Ful
Ir= 2
CON
RETURN
END
SUBROUT INE READINST NEQ)
OIMENSION FNAME (8)
COMMUN /S 1/ NS NSTR(30) FLOWI3U) NC CNAME (2U1 COMP(IU 200
COMMON /E 1/ NE NEQP(20) EQNAME{20) ,EQP(20 20} TEQP{20 81
tL=0
{FNAMECT) 1=1 .8}, 10 !
07129
(FNAME £1) 8)
/73X 8a10)
3
Liel
NY ACNaMECD S J=tU (E) 4
Bx I0(AS 2x))
S
NSTRULY FLOWCL) (COMPUL 0y J=1C IE) c
F8 2 10F7 41 [
10 [
C
0 AND LL EQ V) GO TO 50
NE
S ONEQPT) EQNAME (L) LEQPCL g9 =1 205 CEEGP] 4y -1 B
FORMATIIZ I1x al0. /7 H0G8 3,/ 10G8 3 /. 818)
NC= NY
RETURN
END
SUBROUT INE Fi aSHi N
OIMENSION Ek1201} 1E20) x2120) x3120)
COMMON /S 1/ N3 NSTR(30) FLOW(30} NC . CNAME (20} LG S0 200
COMMON ./E 1/ NE NEQP(20) EQNALE! 20) EQPI120 201 LTEQP(20 8
NT=200 2
AQ=1 O
EPS=1 0OE-05
NI=1EQP (N 1, 1o
FNI=FLOWINI)
FEED=FNI 20

CALL CHECKSI(MNI

SUBROUT INE SSEPAR(N
COMMON /S 1t/ NS NSIR
COMMON /E 1/ NI NEGP
REAL F(N)}
M2 =

NLF L IT)
:2‘0) FLOWI30) NC CNAMI
0)

E
t
1 LEQNAME 201 EQP(2

om

No—ziwEEE
.
2
z

Z+-N++n200

D~ v w it a7

ZMatm~ S~

MDm AN
O e

SUBROUTINE SSPLIT
COMMON /S 1t/ NS NS €301 NC CNAME (ZU1 CUMPL U 720,

ME(20) EQP(20,20) ,1EQPI20 B8)
COMMON /S IM3/ |Di TECI(20) . INOP(20) Cx130 20,

00 2 .8

SumM(

Li= NE 8)

L2= NE 1)

00 LI

SUM UMI 1} +EQP(NE .)

L3= NE 1)

Fl= E LV PFLOWL2)

F2= L3

00 NC

Sum UML) +COMPELY L}

F(1 YCOMP (L2 LI-F2+COMP (L3 L)

17=

IF{ NE) EQ 0) GO 10 3

Fel SSUMLE L)

1¥=

CON

a]e] Lt

Fl SSUMIL)

(>

RET

END

SUBROUTINE JACOBI (X F N)

EXTERNAL USERI

INTEGER IP{30) IH130)

REAL X{N) .FIN)} FN{200)

COMMON /S1/ NS NSIR(30) FLOW:3D) NC CNAME (201 COME1 30 200
COMMON /E)/ NE . NEQP(20) EQNAMEL 20} EQP{20.20) [EQPI2D B8)
COMMON /SIM2/ TFK(30) 1CK(A0,20) FEK(20 20) . t1oP(20 .7
COMMON /SIM3/ 1D020) 1CCI30).IECI(20) 1INOP(20) Cxt30 20,
(IDOMMON /SP2/ 12(200),B0200,70).Q(200) . 1C(200 70

T=1

0O 2 =1 N

1Zct)=1

GO TO(10.20 30 40 50 80) 10
CALL JSPLIT 1T .
O TO

CALL JMB(1 , 17
IS=1EQP(I 7))

8L

OOOO00NOD0NCCNNNN0000000aOCaANDDCONDNn 00000

SUBROUT INE MPOLMIFCN X F N. B

MPLL M
VERSION 2

LIMAK TDGT MS)

A SUBROUTINE
EQUATIONS OF

TO FIND THE SOLUTION OF * N " NONLLNE -
THE FORM

Foxi, x2, LAND =0

THE SUBROUTINE USES A MODIFICATION OF POWELL 'S LLGLEG
METHOD AS PROPOSED BY CHEN AND STADTHERR IN COMP
CHEM ENG 6 .143101981)

THERE WERE A FEW MODIFICATIONS IN THE METHOD PROPOSED
BY UHEN AND STADIHERR THE MOST [(MPORTANT GF at

BEING THE UPDATE UF IHE JACOBLAN BY SCHUBERI *$ ME) HUD
INSTEAD OF BROYDEN'S ME I HOD

PARAME TERS

FCN A SUBROUIINE USED U EVALUATE FUNCIVONS vl Uk (NTT
SUBROUTINE MUST BE DECILARE IN A EXITERNAL STATEMANT
IN THE CalLING PROGRAM THE SUBROUTINE NaS (G BE IN
THE FORM SUBROUTINE FONIX i

X A N VECTUR OF INTYIAL GUESSES ON INFUL wilolt siE
SPECIFIED BY IHE USER ON OUTPUT | X CARKIES [oE BES 1
ESTIMATE OF IHE SOLUTION

F A NCVELTOR WHICH ° PASSES " THE Valuf OF E.olit FUNC
TION EVALUATED wiTel ThE X vECTOKW

N NUMBER OF EQUATIONS BEING SOLVED (L IMITEL 1o oy

wK A WORK VECTOR OF DIMENSTON 32N

1TMAX MAX MUK NUMBER OF 1TERATIONS ALLOWED

NS 16 NUMBER OF DLGIIS OF AUGURAUY

Ms PARAME TER USED TO SPECIFY THE OPLION OF il Scal TNG
MSE -0 NO SCALLING 1S PERFOKMED

oa000000000cO0000060e

o060 [ooon

o

[xXelvXel

[N

100

(A1)
MS =3
AN ExTERNAL
THE USER MUST PROVIDE
ROUIT INE MUST USE

IN EACH ROW OF B

STORED ARRAY TCCE L)
LTH ELEMENY OF B

COMMON BLOCK
IR 1
THE INIITAL GUESSES ARE

/SE YA/

IR=70Q0 MEANS THAT THE ACTual
) DEFAULT

N+ 7 x x-0 7+ x

COMMON /ASNO. 1
REAL XUINJ . FIN)
REAL GI1200) FNt
COMMON /SP2, 12
REAL LAMB
COMMON /1P1/ 1P
1
1

00
321, 0
€GL9)

(200 .70}

C
a8 .
2)
12001
[Vl

COMMON /SETA,

(3
N
09
20
20
IF(IR LT O OR G

!
R
R

T 100} IR=50

INITIALLZE PARAMETEKRS

1} THEN
N

DO 2 I=1,10GT
DGT=0GY /)10

DGT 1=SQRT(DGT)

HJ 1S THE MACHINE EPSLON

-8
HJ*SQRT (128)
PA2=1 /128

IMEMAXRT 10, (N¢ 41y
1CON=0

DO 3
CGt1
IDEL=0

.9

EVLUATION OF it JACOBTAN

wWACAC
meg g

GE 3) THEN

b-Go

EQ 4) uou=2

M g e
—»pmen

m
z
=]

1F

CONT I NUE
CALL FCNiX F .N)
N

COSUsELING H1WE RECOWMLNLY T
THE JACOBIAN WItt BE EVALUATED TrkGuah
SUBROUTINE

HE USE ©

T JACOBI(X F N

1S usewp To
AN ESTIMATIVE OF HOwW FAR

32).INZ¢200
Y OF(200) ,Pk1200) PSH2001

Q200

THE SUBROUTINE
THE COMMON BLOCK /a5
COMMON BLOCK /ASNQ/ SHOULD CONTAILN
{VECIQR 12¢(1
COMPRESSED FORM WHERE ONLY NON-ZERO ELEMENTSY
CONTAINS THE O

In] AMR

“PASS T)

FROM Tk
IR 1S GIVEN AS A PERCENTAGE
SOLUTION 1S
VALUE 5 5

1ICCy200

[AN

8)

Nk SOk

NO

THE NUMUER O &

A1 B Has Tht

LA UMN

~RE

G fHE

BE PARAME TER

ACTUAL

IN &
1

1o

S0LUt1

Fitas

LEMENT S
1ACOB L AN

[
ON
EX

INTERVAL OF

i

6LT

o

o 0 oo

coo

[N}

N O-

16
[R+3

1540

DU 10 L= N
HMU = ABSUXCT 1)
PAJMAX (HIAU PA2)

PA4=PAN'PAD

TEMP=X(1)

XD=X(1)+PAd4

PAQ=XD- TEMP

X1 p= X0

CALL FCNiX PN N

X1)=TEMP

0O 11 L=t N

TFCABS(FNUL /) L1 TE-14) FNULISU
COF =FN(LJ)-F{L
IFLaBS(COF) L

VE14) CODF =0

sC

P CdeELaC/ Gy

Cmm e rmen (3
Fro@d >

N
CONTINUE
CONTINUE

CONTINUE

11=0
CALL ARRI(N)
1FLaG=0

JFLAG= T
Tau=1

SCAal ING OF THE FUNCTIUNS

TFIMS EQ 2) IhEN
DO 15 1=1.N

HOLD=0 0

00 18 L= INZ1 1)

IFCABS{B(L ()1 Gl HOLO! HOLD:=ARBS(BLT ¢
QFT)=1 /7HOLD

ELSE

ENDIF

00 20 1-1 N
Gily=0
Fily=FLlt0F 1)
1ZE1y=INZUTRLE
00 20 L=1,INZC1)
BO1 L)=BCL LIt0E 1)
15=2

LBaN

PNUEUCNIF N}

CALCULATE INTTlAL STER BOUND

IFOCICON EQ G I1HEN
HOL D= EUCNIX N
HOLD=HOLD*IR’ 1UU
DELTA=MINIHOLG, 10)
ELSE

LT

ASSEARCH
ENDIF

CONTINUE

DO 103 121 N
WRITELT7 10S) IS
WRITE(TY 10510 1CLL H
WRITE(7 104 18{1 1)
103 CONTENUE
WRITE(7 1041 Filyr 121 N1
IF¢JJJ) EQ 2 S5T0OP
104 FORMAT(10G12 61
105 FORMAT(I0T12)
[+
DELHOL=DELTA
[+
c SOLVE LINEAR StSTEM
c
It N
21 QUIY=-FllPiL)
c
Cc
c
c
CalLL SPAMA2IN 15 LB PK)
c
[
c
c
IFLIS EQ ~-1) THEN
PRINT* * THE JACUOBEAN HAS A ZERO IN THE DI1AGONAL
PRINT* CHANGE THE ORDER OF THE EQUATEONS °
PRINT* L8 = L8
STOP
ELSE
END IF
1s=3
c
c CALCOLATE CORRECTION STEP (PK)
c
N
{ IE-14) PK(IL)=D O
)
e
[s] onN
0 L) L=) N}
o ! DELTA
. R Q SOLUTION")
.G10 4 “DELVA=" G110 4}
C
THEN
c
[+
L L -B01 LItFLL)
c
LGueIcer vy
C
LEal GO 1o 28
28 CONTINUE
(o}
c EVALUATIUN OF ALFA
C

PEI=PCPCH

081

SOoO0000n0

30

w

40

P
PEA=0

DO 26 1=1 N
PEJI=PEJ+ (FKrt
PEA=PE4+6 (1]

PEZ=PDI tREL
E

(ISR EERE VAL T
(R 1 B

BIPEL PEBI ' IES PELI Y (PEG - FES) LIPEA-PEY)
PET=SQRI(PEG
ALF A= (PES-PE2 1, tPEJIPET)
PFI=(1 -ALFA)
D0 27 i=1 N
PKUL)=ALFA*PRIL s PFIIPS L)
CONTINUE

EVALUATION UF Fi XK sFK)

1=1
X1+
EUCN
MAX U1 DGI
DGY X:DGTVHOLD

CALL FCNUX FN N

FPGI=EUCNIFN N

[FIPGE LT DGTH AL #C1 LT DGIX) THEN
I TMAX =1 CON

REJTURN

EiLSE

ENDIF

JE ~14) FNUI-0 0O

SK:PG34PG3
TFESKY LT (SK*O 999)) THEN

Li=11-1
TFCLL £7T 0) 11=0
ELSE
It=114)
ENOLF
TFUIM LT 11 THEN
PRINT ' ° CONVERGENCE IS 100 SiLow
PRINTY, ° CHANGE INITIAL GUESSES -
$55=885/PP
STOP
ELSE
ENDIF
CHECK wHEITHER A NEW EALUATION
OF THE JACUBIAN 1S NEEDED
IF IFLAG 15 = TU t **AND*»
FiXK) AS BELN REDUCED BY A
FACTOR OF TwO A NEW JACOBI AN
IS EVALUATED (RENEWED)
TFLAG=0
1

FNJD =)
GE 2) THEN
THEN
100
13y
O 160
ITFisKt [P KVIRE Y 4
DN 44

aooooe

o00

oocoe

42

-]

46

200

51

XELp=xiby PrEil)
CONT INUE

UFQOATE DEL Ia

1FLJIFLAG EQ 1 AN SKI GE Sk) THEN

PH2=0
DO 42
Gily
00 43
00 4
GlIC LBl LOYFLE)
DO &
PH2= 1)
L AMB PHZ2 -SK I}
PH3=4AX (B)
DELTA
IFESK 10€L EQ O} THEN
SEARCH
IDEL=1
ELSE
ENDIF
IFLDELTA DELHOL) TAU=
1IF(PG2 G SiPG3})) GO TO 160
GO 10 20
ELSE
DO 44 I
PHS =D
0g 45 L FAN B
PH52PHS LIPRETICET L
(5
UCN()
PHE 'P
SK-SK1 §YISK-PH4)
TF(DM L THEN
=p
1=) N
FN{L}Y-GUI)
QLD *HOLD+PTS
ABSILENLL) *HOLDD
PIP+PTP)
PTIP+SQRI(FIPIPIPIOMIPIS)
LAMB=SQRT t) +DM/PJIY)

AMU=MIN(2 LAMB TaU)
TAU=L AMB / AMU
DELTA=AMU*PCH

IF(OELTA LT DELMOL) TAw=)
ENDIF

ENDIF

CONT1NUE

JFLAG=0

WRITE(? 1083 PCt . DELTA SK.SKI

FORMAT(SX ,"PCI=" GiS B "DELTA=" GI5 6 "SK=2" GlS 6 S
1F{ICON GT ITMAX) GO TO 300

ICON=TCON+)

AND JOEL EQ O) THEN

THE JACOBIAN WILL BE UPOATE By
SCHUBERT 'S ALGORT1HM

BS{QCI v b1 HJItHED) THEN
]

wls

6

18T

0CON00O000

00000

000000D00CONONN0OAa0

54
50

120

300

RN]
tig) THEN

DO 54 L=1_IN2Zu1;
Bl La=B01 (L) sDmu tGet)
CONTUNUE

DO 715 1:1 N

HOLD=0

DO 720 1= IMZC0
SS1:ABSIB UL 1}

IFESSH GT MOLD HoLO=5%1

OF LT =DF {11 /HOL D)
FNUTI=FNO LI HOLD

DO 715 L=) INZt ()

BC1 LY=B(1 1) /oLl

15=2

DO §5 1=1 N

FOI)=FNULD

TZOLI=INZOLP T

00 55 L=} INZiIP(L))

ICC(r Li=1C0lFiLy L
OBl . L)=BEIPITY ()

GO 10 150

CONT INUE

PRINT? ' NO CONVENRGENCE 1IN {IMAX 1 TERAT LUNS
PRINT ¢ CHANGE INITIAL GUESSES OR USE ANOTHER
STOP

END

FUNCTION EUCN EVALUDATES 1THE EUCE IDIAN NUHRM
OF A VECIOR QF DIMENSION " N ™

FUNCTION EUCNU, go
REAL Y(J)

S$S5:=0
DOV 1=
$5=5S+y
CONTINUE
EUCN=SQRT {55
RETURN

END

i
'

SUBROUTINE SPAMaZil 1S (8 X}

SUBROUTINE

SUBROUFINE SPAMAZ SULVES A SHYSTEM OF * N " | INEAN Bl TOMS

THIS SUBROUTINE USES SPARSE MAIKIX TECHNICYH THE HEGHT 11ARND

SIDE OF 1HE SySIEM IS STORED IN vECIGR B IRZONG A e HUN
BER OF ELEMENIS IN EACH ROW OF THE SYST1EM at1 1 M E

THE ELEMENITS OF THE MATRIXK STORED IN A COMPRLSH
THE VECTOR 1C(1 L) CONTAINS IHE COLUMN OF EACH
IN MATRIX A

N NUMBE R DF EWUATITUNS BEING SOLVEL

L ON OUIFUT CONTATINS IHE OIMENSION OF 1

15 OPTION OF SOGLUTON FOR 151 THE ME o) G
SOLUTION 15 " RELAFTLIVE TOLERANCE " Fuk

THE METHOUL
T1an Is5=3 ¢
TIMES AND T
SYSEEM IS

"OPIVOTAL CONDENSAIL TN

S
E ONLY THE RIGHT HAND S1IDE O
ANGED

ELD F
ELiMENT

TECTDR Al
SEL UK
15-2

oy

USED WHEN A SYSTEmM 1S SO vEU SEVERM
HE

F

o0

[elv1e]

oo

COMMON s ARK Ly 2000
COMMON /SP2: INZI200
INTEGER [x1200) 1212
REAL X200

COMMON /G2 ABC3UD0) 18012000 1BMU3000 182001
EPS=1 E-12

1F=N

boGu 1o 989

NZM= 1

Zz
E ABS{AC] K))) GO TO 206

CONTINUE
TOL=EPS *ABS (AM)

{FIS €Q 21 GO 1O 2
NI=N-

DO 10 t2=1 N1

1=12(12)

L=t

IXt$)=0

AM=0

N2=T+1F

1F(N2 GT N} N2:=N

0O 1Y Jt=12 N2

JELZCJ1)

TFCIC(U 1) NE 12) GO TO 11
L=L ¢+

IxCry=1xi 1)+

EX(L Y=y

IF(ABS(A{J 1)) LE ABS(AMI) GO TQ 11
AM=ALL 1)

NJ=J

CONTI1NUE

IFLABSIAM) GT T0L) GO VYO 12
GO TO 101

N1=N-1

DO 20 13=1_N1

1=12(13)

L=1

IXtii=0

N2=1+1F

IFINZ GT N) N2:2N

LLL =N

DO 21 Jt=13 N2

JE1Z0g1)

TF(ICEY 1y NE 133 GO 1O 21
FFOINZEG) LF LLL) LLt =y
L=t +1

EXEL)=0xehhed

IX(L)=y

EY{L) =0

CONTINUE

NU=Ixt2)

IFCABSUACNG 1) GI TOL AND NJ LE (0L} GU Tu 12

KL=1X(1 et
DO B85 LJy=2 KL

LJyH=LJI

AL200.70) B200) 1CL2Z00 . 70)
)

Z81

| 183

ax
=Q
z=
o
Z
N
-
x
za ~
o ~
20 2
23 -
B - -
= Ed - -
we 2 0 ~
Iz x © - 2
== s f =
w 2z "
wI z =) z] 3
ES] - - 0 w N
32 0o ~ - - s -~ 7
- N~ 0) .- 2z ~ o -
e 3 2 e- z =l x =4 --
2 2C 2 P - = 2z - ™ z -3
-z s = s - a - = 4 -~ R S oN
: - 2 z - -x - oI 2 z ~ - 1 Q0 Tz -z
- R ZQ o & e - T 5= - e - @ = =
x x - - = 20 - R S e - =z N - N - =2 - =
b - - Y« < z we O - - 2 -2 - - 2z o~ - 2o - = RS
- - o« 2 2 -~ z -~y Cell N meN m e 2 Say o~ a N = o o) -
S - -oe - - % ~—and 2 N=Z oN® Ne o o~ 2 awe ~a X —--
s z - M =0~ 2 @m0 o~ Z= - Qux- o - - - © Wom xm—
= TWOOu~ ke = WNIE w= FN W= ey w= - ~—xxw n QOn - e
“ mOWmLd=~=Q I ww xeI~=N= WX x~=-3 OO X =3 =~ Wx-==- GO —xS~@— -
W~ =N O NN X Ze -2 o= =~aZ Z2° - -xZ - X+ - x Z~-UN-
220= =mOO—~ONNCIN=~I — —~Nw . Nt = aNNO—= = ™ ————ZQ
- Y e e 1 e D)~ 2 QO 2w BO~ O mm XX XFRQU= ——e o=
—i == 2N i mwmiie X mx2 zZ-=~QugQ CXZANK— =N —mOAG mwZN——n
LMQO-QZOZNWTLO-LOn~0O Qugr-J2Z ONwO=2VuLQu~- wlEF.2Z ~U0Z~-ul
0 Z==O0=aq2Z= HUO=CO~NOZ 2 —~mOX~Oxx O=Znww OXXOxX=m=0=X =ZTOHWW I -O=D=o
w [} ~ [} - 0 o~ = o
~ S 9w 0 wow 0 w90
Ll
[$]
Qoo [ET313) vvo Qo oo © (8} o
3c~-
22,
T3l
Tl
sz
k..W‘U
rge
20 -
2 -
—0=
zZd-
OFLx
z ppee)
w 2 - =
= - 19~
= F3--
- = A 2~
z - z bt - e
& = o~ 2 n_zT:
= 2 H 2 z W27
z -) N Za_ -
3 3 - - 0 z —~ZZ
2 3 - o - = —*3c¢
| B 2 N 3 i Swi<
= -C N - o N S¢S~
, -- z2 <~ z z IZ3u
, - - v - ot 1IC-
- : -z 3 ele] - = Zz
- - -~ _— or=4 N ~ = R
== A - - Z~ - - s 2 " A
- = - hey - M - - -2 2 - - z
-~ - S =~ s -ne EE) - 20 2 - = 2% b} 2 xxxx
i T -ax S a0 ~-Lhxom ~ k4 N ~Z3 Zx =] sooc
Tz T LI2CTr ™ Eeid —z=--3 z 2 3~ 2 Dx%x~I ~=3 o= -——
el - X g = D) X OOxxqq - 2 wew - ~22 0= =NJg -~ 2L}
N X - i -_—— = P —— P 2 m D x— T 2= -5 ~ - N~
T—— - Wt oi W DS Dea Wi 10 W =1~ L= ~@ 2 =20 A~ ~GN= D ~Z D~ - ~ o~
~ NN N X~ -~ —m~3 LQ= NN IXr—=m~mD —x¥X-2N —@ 4 =eX=N 0=y 3Zu~Z==d -n= oo -
~NZS @S Z=-L»-Z2 TSo 2330 2222 ~TIazl z I NN —~x=x Za-amhi—gu—--« ot -
- x3 T Z2ZOdx 1 Jemuw=Ze@io-=—@ QW w g
2 2 gl S S R N 1 Smauw= 3
~QJIBPA-NINC 2D =~ 2 Mo D~ NQZ DT e m—ee2 1 =20 e~ o X2 —ZONN—X=Z =l Z—0owo T
Qw2220 23T Z0AXXI>>0 ID202wTIS52ZCIEIX>»x»C NODWTIM wu NLOD--q000qZ2ZC I~~~ D wZ=LZ O
O S WU =T sl O mmm) CoSCO S SHWOm—m e e 208Z=02= —— 2-0%F<4~Sl0-Sn-Fao<ss =EFrRL oL
© w @ ~ @ - ~ w “ < 4
£ £ < © ~ 3 - - - - °
© &)] [SRS)S] (]9} &}

[eYs¥o¥sVel

00000

o000 0000

a0
20

1
33

9499

110

100

901

30
32

94
150

30

FEOLB G 30000 ineN
WRITE (6 u8)

ST10P

ELSE

ABUIB)AL
I8OCIY=1BOCL o4
1IBMILB) =T)

CONTINUE

IFIUIS EQ 1) Gu 1u 10
CONTINUE

GO 10 23

TFUIS NE 3) GO tu w0l

SUBROUT INE Ak N

THIS SUBROUI INE ARKANGES

L '

N -1

3 00 1=1 N
LC2=LCIvIBOCL) |

N BM{LCH

J [

A)

B B(J}

8 AUX

8 BOI) aBi1ei)

L Clel

! ! GT 1LE2) GO TO 100
1 MOLC

A teCiy

8 1=B(1V) Az BL1)

GO 1O 110

CONTINUE

J=12(N)

NZ=INZ{J)

0O 30 k=1 NZ

LFEICIS KDY NE) sU TO 32
CONTINUE

GO 10 150
BlII=B(J)/ALD K

Do 80 4=2 . N -

IBB=N-J+1

ri=1zc1ee)

NZ=INZ(T1V)

TFCICLIT NZ) Eu 0 GO To 90
00 91 K=1 NZ

TA=[IC(I Kk

JI=1Z(TA)

BIH) =BT ALY K 'B1g1)
CONTINUE

CONTiNUE

DO 9a I=4 N

K=12¢1)

Xtli=8tx)

RETURN

END

Jg=
Do
Do TNZt
1F EQ M) THEN
NEE
1s
GO
ELS
ENI
11 CON
I CONT
[
12 1G5=
K=N
00 10V I=1. 9
100 LFOENZCISTYOL Y LE K K= ENZUIST(L))
DO 2 i=1,0
LR=IST(I)
TFOINZOLRY GT ¥k GO TO 2
IF(IGS GT 1) GO 10 585
1GS=1GS+ 1
KR=LR
GO YO 2
S5 IFUICILR ¥) GV ICI(KR Ki) THEN
GO To 2
ELSE
KR=LR
ENDIF
2 COMNTINUE
29 KK=KR
. TAUX=IP (M)
IPIMI=TP (KK
IP{KK)= [AUX
TAUX=IN2{M}
INZIM)=INZ(KK)
INZ (KK)}=1AX
LLEMAXCINZOKK Y ENZiM)}
DO 4 1=1 Li
. TAUX=1CIM, T+
IC(M, 1)=1C(KK |t
4 I1C(KK 1)=TAUX
10 CONTINUE
c .
RETURN
END
C
C
Cmmmm e e — el o
C
c

THE | INEAR SYSTEM SUh vEl) b

SPAMA THE ARRANGEMENT PERFORMED LEAVES THE SySIEL

WHITH THE TOF ROWS HAVING

OF ELEMENIS

COMMON /SP2/ IN
COMMON /ARR/ I3
1P

.
‘
COMMUN /1P 2
00 30 N

St
1Pt I)=
v}

10 M=1 N

U0 A200

THE LOWES! POSSIBLE NIMBLK

T0) Qu20Ur ICE200 70

781

000000000000

000

0O0oO000o 00

SHAC LIEKARY

THIS COMPUTER PACKAGE CONTAINS A SELECTION DF NONL I HE AR
EQUATION SOLUTION TECHNIQUES WITH AUTOMATIC OUTPUT UPTIUN
AND A COLLECTION OF EQUIPMENI MODULES WHICH PERFORMS

THE MATERIAL BALANCE CALCULATIONS FOR FLASH, SEPARATOR
REACTOR SPLITTER, AND MIXER THE MODULES ARE INTERL ENKED
THROUGH A COMMON BLOCK STRUCTURE WHICH CARRIES THE INPUT/
OUTPUT STREAM VARITABLES A CONVERGENCE MODULE 1S Ai SO
INCLUDED WHICH USES A MODIFICATION OF NEWTON'S METHOD
TECHN1QUE

SUBROUTINE SECNEW(X NT EPS SuB)
REAL G(10)

DO 1 1=y 10
Gel)=t
NTT=0
CALCULATE DERIVATIVE

CALL SUB(N F)

KNz X+ HJ

CALL SUB(XN.FN)

DER=(FN-F) /HJ

1CON=

XN=X-F/DER

CALL SUB(XN FN)

IF(ABS(FN) LE EPS) THEN
=X

TF{w2 LT w3*' 989) THEN
IF(ICON LT 0O) ICON=0

WI=ABSIFODER/FN}
NTT=NTT ¢

TE(NTT GT NF} THEN
WRITE(6.20) NI X F

FCRAMAT(/ 10X, "NO CUVERGENCE ACthvEU IN " 14 ' 1LTERETIUNS
/ 10X . “LAST VALUE OF X=" FI10
lOX “LAST VALUE OF ¢ =" FIO l,/)

s

E

E

D 1.9

G I ARE

G N

1

1 GT 93+ THEN

v SIGLI0)/GIiB}

v SIG{61/GL1)

1 GT VAL2) TFLAG=

€

E

I ON GT 3) IFLAG=L

1 FLAG EQ 1 AND ABS(W!)} GE 2) GO Y10 5

o vDER‘lFN'DER)/

X

XN xN FN/DER

F=FN

GO To 10

SUBROUT INE NEWTONtX NT EPS SFNC k)

A SUBROUTINE TO FIND THE ROOT OF A NONL INEAR FURNCITON
F(X)=0 USING THE NEWTON'S METHOD

X INLITLAL GUESS OF THE ROOT ON INPUT Bl Tk best
ESTIMATE OF THE ROOT ON OUTPUT

NT TOYAL NUMBER OF ITERATIONS ALLOWED

EPS RELATIVE ERROR CRITERION FOR CONVERGENCE

00000000000

—~rFrY X

G’C == -

0O00O0CO000000D0N00N000 000

FOR 4-01GIT ACCURACY SPECIFY EPS=0 000

NAME OF [IHE SUBROUTINE THAT CALCULATES 1h: FuUNUTION
VALUE "“F" ANO THE DERIVATIVE “FD" Al X USEH Hust
PROVIDE SUBROUTINE SNFC{X.F FD) ANO PUT THE ACTURI
NAME OF THE SUBROUTINE IN EXTERNAL STAMENT WHICH Mus |
BE LOCATED IN THE PROGRAM THAT CALLS NEWTON

A USER SPECIFIED PARAMETER YO CONTROL THE PRINIING OF
ITERATION RESULTS EVERY K TH ITERATION 1S PRINTED
NO PRINTING FROM THE SUBROUTINE NEWTON If K=Q

I} GO TO SO

20)

/ . SX. "1TERATION RESuLTS FOR NEWITON'S ME 110U
R" 8X "X 13X “F" 13X

C(x F FOD)

.26) 0. X F FO

2X .15 3E14 4)
0
NC(X F FOI

100 1=1 NT

X)Ll o 06-!0: XDEN=SIGN(1 OEk-10 x)
XN-X)/ XDEN

EPS) GO TO 120
NC(X F FD}

V) GO TO 100

K) GQ 10 100

.28) U .x F FD
£

) NT X F

X "NO CONVERGE NCE IN" §5 3x, "11IERATIONS"
Elda 4 5x "F =" Ela &)

SUBROUTINE INTHLVI(XL XR X N _FNC K|

4 SUBROUTINE TO FIND THE ROOY OF A NONLINEAR EQUATIUN FIiX}:zU
USING THE INTERVAL-HALVING (HALF INTERVAL } TECHNIQUE

USER SPECIFIED LEFT HANO BOUND ON THE RQOT

USER SPECIFEIED RIGHT HANO BOUND ON THE ROOT

ON RETURN BOTH Xi AND XR ARE REPLACED WITH THE FINAL
BOUNDS ON THE ROOT THIS REFLECTS FINAL ACCURACY

BEST ESTIMATE OF THE ROOT ON OUTPUT

NUMBER OF ITERATIONS SINCE THIS TECHNIQUE 1S
GUARANTEEO TO FIND THE SINGLE ROU! IN iXL xR} wlit &
CERTAIN OEGREE OF ACCURACY WHICH OEPENDS ON THE NUMBER
OF 1TERATIONS. THE USER IS ASKED TO ESTIMATE N
BEFORE CALLING THE SUBROUTINE

THE NAME OF THE FUNCTION THAT CALCULATES F(Xx:

USER MUST PROVIDE FUNCTION FNC(X)

ACTUAL NAME OF FNC MUST BE DEFINED IN EXTERNAL

A USER SPECIFIED PARAMETER TO CONTROL THE PRINIING
ITERATION RESULTS EVERY K TH ITERATION [S PRINIED
NO PRINTING FOR K=0

IF

XL
XR Y
R LT 0 0 GO 10 20
10 XL FL _XR_FR
L2k F L) xR FNCURR)" 7
0 3/5x “ERROR IN INPUT TO INIERVAL HAL VING")
T 1) GO 10 80
6,22,
(/7/5% "1T{ERATION REbUllS FOR lNltHVAL Pl VING METHOD
TER™ IX "XU" 12X “FL® 12X “KR" 12X, "FH")
6.28) O XL FL XR FR
(2X .15 4E14 4)

=
[0 4]
(%,

COOOD0ON0NO0O000 000

0OODDo0OO0 000

o
o

s w
c o«

o
=1
MIXOCE==XMOXN=NxC G

SuBROU

Gl 0 U) GO TO 35

GO Ty 100
GO TO 100
1 xt FL xR FR

TINE SUCSUBIX NY EPS FNC K)

A SUBROUTINE TO FIND THE SOLUTION OF A NONLINEAR EQUALLON

IN THE
x
NT

EPS
ENC

100
1o

MECETC e X rmim
1T ANODCDH MUY

120

ZexOxD=ZmO~~x~~

DE ==
m
it
im
z

SUBROU

A SUB R
X=F (X))

FORM X=F(X) USING THE SUCCESSIVE SUBSTITULION METHOL

INET 1AL GUESS OF THE SOLUTION ON INPUT, BUT THE

BEST ESTIMAYE OF THE SOLUTION ON OQUTPUI

NAXIMUM NUMBER OF ITERATIONS ALLOWED

RELATIVE ERROR BOUND AS STOPPING CRITERION

NAME OF IHE FUNCTION THa¥ EVALUAIES FtX}

USER MUST PROVIDE FUNCTION FNCIX) AND PUI THE

ACTUAL NAME OF FNC IN EXTERNAL STATEMENT

A USER SPECIFIED PARAMETER TO CONTROL THE PRINTING OF
TTERATIONS RESULTS EVERY K TH JTTERATION 15 PRINIED
NO PRINTING FOR k=0

GO 10 S0
'IYERAIIUN RESULTS FOR SUCCESSIVE SusssTI(UIION ©
8x
) 0 x
15 Ela 4y
NT
{x)
{X) LT 1 QOE-10) XDEN=SIGN(1 OE-10 X1
((XN-X)/XDEN) L} EPS) GO Y0 120
T 1) GO TQ 100
T x} GO fO 100
6.25) 1 . x
UE
6 110 NI X KN
(/72X ,"NO CONVERGENGE 1IN 5 3X . "TVERAT IONS"
= El4 4 SX "XN =" Eid 4)
T 1) RETURN
6.253 I . X

TINE WEGSTINIX NT EPS FNC K}

OUT INE TO FIND THE SOLUTION OF A NUNL INEAR FUNCTITON
US ING THE METHOU OF WEGSTEIN

INTTIAL GUESS OF THE SOLUTION ON INPL) Byt Tk
BEST ESI1IMATE OF THE SOLUTION ON QUTPU)

MAXTMUM NUMBER OF 1TERATIONS AlLLOWED

RELATIVE ERROR AS IHE STOPPING CRITERLOUN

THE NAME OF THE FUNCTION THAT EVALUATES F (X
USER MLST PROVIDE FUNCTYION FNC{X) AND PUT T
ACTUAL NAME OF THE FUNCTION IN EXTERNLL STATEMLNI

[e¥sTeTo¥od

000000000 ON0N00N0000D0000N0 000

o
e

o
=3

K A USER SPECIFIED PARAMEIER 10 CO IR THE PRINIING OF
ITERATION RESULTS EVERY K TH IT AIIUN 1S PRINTED
NO PRINTING FOR X=0

IF{K LT) GO 1D SO

WRITE(6,20)

FORMAT(//S5X " ITERATION RESULTS FOR WEGSTE IN'S ME D
5x "1TER" 8x,

WRITE (6.25) 0O x

FORMAT(2X 1% Ela a)

J=0

X1=x

FI=FNC(X1)

x2=F1

IF(K LT 1) GO TO 60

WRITE(6,25) § . x2

DO 100 1=2 NT

J=gel

F2=FNC(X2)

X2ME=X2-X1

IF(ABS(X2MI) LT 1 OE-10) X2MI=SIGN(1 OE- 10, x2M1
S=(F2-F1)/X2M}

IF('A??('S-SI) LT O 000001} S=S+SIGN(O 0000 (S-1 1
T= -S)

1F(ABS(T) .GT 10) T=SIGN(ID T)

XN=() -T)¥X2+T*+F2

Xh=x2 .

Fl1=F2

X2=XN

XDEN=X |

FFEABS(X1}4 LT) OE-10) XDEN=SIGN{1 OE-10 x1 4
IF(ABS{ (Xx2-X1)/XDEN) LT EPSI GO TO 120

IF{K LT 1) GO TO 100

IF(J LT k) GO ¥D 100

J=0

WRITE(6,25) [x2

CONTINUE

WRITE(B.110) NT x1 X2

FORMAT(//2X . "NO CONVERGENCE IN" 15 3X "1TERATIONS ", /
SX "XV =" E14 4, 5X."X2 =" E14 4)

STOP

X=XN

IF(K LT §) RETURN

WRITE(B,25) 1 X2

RETURN

END

SUBRUUT INE WEGSMDI(N X NT EPS SUB K|

A SUBRDUTINE TO FIND THE SDLUTION DF N NONLINEAR EQU».!IONJ
OF THE FORM X1t=F1 (X1, XN, XN=FNIxAt,
USING THE MULIIDIMENSIONAL ME THOD OF WEGSTEIN

N NUMBER OF EQUATIONS 7O BE SOLVED (LIMITEQ 11U 4
X N-VECTOR OF INITIAL GUESSES ON INPUT WHICH ARE SPECLFIED
BY THE USER. ON OQUTPUT, X CARRIES THE BESYT ESTI!MAIE OF
THE SOLUTION VECTOR
NT MAXIMUM NUMBER OF ITERATIONS ALLOWED
EPS RELATIVE ERROR SPECIFIEOD BY USER AS STOPPING CRIINERIUN
suB A SUBROUTINE USED TO EVALUATE FUNCTION VALUES
SUBROUTINE MUST BE IN THE FORM SUB(M X F) WHERE BOIH
AND F ARE M-OIMENSIONAL VECTORS . WHILE X=INDEPENDEN]
VARIABLES AND F=FUNCTION VALUES
IN “SUB" VECTORS X ANF F MUST HAVE yARIABLE OIMENSIONS M+
“SUB" MUST BE PROVIOED BY THE USER AND THE ACIUAIL N4ME
MUST BE OECLARED EXTERNAL
K A USER SPECIFIED PARAMETER 10 CONTROL THE PRINTING
OF ITERATION RESULTS EVERY K TH ITERATION I3
PRINTED NO PRINTING FOR K=0

COMMON /MWEG. IS USED WHEN WE WANT SEWQ’ SUCCESSIVE
SUBSTITUIION ITERATIONS BETWEEN EA(‘H WEGSTAIN TIERATION

OIMENSION XI(N) XZ{(601 F2(601 Xx1(6Q) FI1160
COMMON /MWEG/ NSEQ

IF(NSEQ LT 1 OR NSEQ GT IE14) NSEQ:-0
KL=0

981

oo

“ITERATION RESULTS FOR MULT JDIMENSIUNAL

5.SE1D 4/7X.5E13 41

CALL SUBIN. XZ FZ2)

IF{KL GT NSEQ!}

~—ONX -

S=5+SIGNLD 00001

woIll
V-~
Mm@ -

gy 1L T

OmmxD MAXXOMMX X = ==X
6~~=

SrCTMOC Z-N=Or=N-T im0~

GT EPS*ABS(F2i111))

OOO00OO00O0O0N00N0000000N0CO0COCOOON0NONONONONONOONONONONONONNNONNNNCOOCONNNNNNNOCO OO0

SUBROUT INE RE4AD(NST NEQ)

A SUBROUTINE 'O READ fHE “NST" STREAM VARIABIES AN IHE NEWL "
EQUIPMENT PARAMETERS THE VARIABILES ARE OEF INED AS Full Ows

NST NUMBER OF STREAMS A MAXIMUM OF 30 IS ALLOWEQD INFORMAT LUN
FOR AtLL STREAMS MUST BE ENTERED IN A SEQUENTIAL ORDER AS
DESCRIBED BELOW STREAM NUMBERS MUST BE ENTERED FOR atl
BUT THE FLOWRATES AND THE COMPOSITIONS (MOLE FHACTIONS)
CAN BE LEFT BLANK
A TOTAL OF 20 COMPONENTS ARE ALLOWED IN THE 3,51tW

NEG NUMBER Of UNITS (EQUIPMENT) INFORMAT LON MUST BE ENIEREL
IN A SEQUENYIAL ORDER AFYER STREAM VARIABLES ARE SPECIFIED
ACCORDING TO THE FORMAT GIVEN BELOW
A MAXIMUM OF 20 UNITS ARE ALLOWED IN THE SySItm

FIRST LINE OF DATA FILE IS USED FOR PROBLEM JDENIIFICANTUN

AS A TITLE FOR THE OUTPUT THE SECOND L INE IS NOT OSER BuUI

IT CAN BE UTILIZEO BY PUTTING INTEGER NUMBERS TO GUIDE 1HE
ENTERING OF DATA THIRD LINE 1S USED TO ENTER COMPONENI
IDENTIFICATIONS VARIABLES ENTERED IN THIS LINE ARE NG CNAME! 1)

., CNAME (NC) WHERE NC=NUMBER OFf COMPONENTS AND CNAKE! 22 sNAME OF
J TH COMPONENT THE FORMAT USED IS 12 ,8X, 10(AS 2r) THUS COMPUNE M
NAMES ARE LIMITEO TO S ALPHANUMERIC CHARACTERS SIMtL &R 10 THE ABOVE
COLUMN IDENTIFICATION LINE, THE FIRSY LINE AFTER SYREAM VARIABLES
{OR THE FIRST LINE BEFORE EQUIPMENT PARAMETERS) IS USED
TO GUIDE DATA By ENTERING INTEGER NUMBERS

STREAM VARIABLES ARE ENTERED IN IHE FOLLOWING ORUER

LINE 1 NSTR()} FLOWL I}, COMP(I , 1}, COMP{1 2}
. COMP L) 18), COMPLI 19)
LINE 2 NSTR(2), FLOW(2), COMPL2, 1), COMP(2 2)
COMP (2 18), COMPI(2 19)
ETC
WHE RE
NSTR(11 STREAM NUMBER NSTRil)=1. NSTR(2):=2 NSIR(3):3 EC
TH1S HELPS TO ENTER OATA IN A SEQUENI AL ORDER

ANO 10 IDENTIFY STREAM INFORMATION ODURING CALCULATIONS
FLOW(I MOLAR FLOWRATE OF STREaM 1 THIS PACKAGE OF PROGRAMS
DOES NOT CHECK UNITS THEREFORE , UNITS MUST BE KEPT
CONSISTENT IN EACH PROBLEM
COMPI T, u) MOLE FRACTION OF CUMPONENT J IN STREAM {
AT INPUT, ONLY THE KNOWN STREAM COMPOSQ T1ONS
(ALL TWENTY) ARE SPECIFIED AT CUTPUT ALL ThHiE
UNSPECIFIEO STREAM VARIABLES ARE CALCUL ATED

FORMATTING FOR EACH LINE 1S 112 . F8 2 10F7 4
EQUIPMENT PARAMETERS

THESE ARE ENTERED AFTER THE STREAM VARIABLES IN A SEQUENI TAL
ORDER AS FOLLOWS (ONE LINE 15 SKIPPED FOR COLUMN IDENTIFICATION)

LINE | NEQP (1), EQNAME(|}

LINE 2 EQPI 1 1} EQPLY,2) EQP (L . tD)

LINE 3 EQPit, 11 EQPLI 12 . EQPCLE, 200

LINE 4 TEGPI 1 1), TEQPLY 2) 1EQPL 1 8

LINE S NEQPI12). EQNAME{2)

LINE 6 EQPI2 V), EQPL2,2) EQP(2 10

LINE 7 EQP(2. 11} EQP(2 12) EQP(2 .20

LINE 8 IEQPIZ (1) IEQPt2 . 2) 1EQPI2 . 8)

ETC

WHE RE

NEQP (1) EQUIPMENT NUMBER NEQP(1 =1 NEQPLZ1:2 E1C
ONLY TEN (10) ARE ALLOWED

EQNAME L) NAME OF THE 1 TH EQUIPMENT MODULES AvalLiBLE 4RE
FLASH, SEPARAITOR REACIOR. SPLITIER MIXER

EQP LT 0 J fH PARAMETER OF THE 1 TH EQUIPMEN]
NOIE THAT EQPII Jt IS REAL

T1EQP(I 0} J ITH PARAMETER (INTEGER) OF THE 11+ EQUIPMENI

SPECIFICATION OF PARAMETERS FOR EACH MODULE

FLASH EQP(1 J1=kd WHERE KJU=X2J/X3J 1S THE yvaroR-11QUID
MOLE FRACTION RATIO FOR THE OUTPUY SIREAMS OF A
FLASH EVAPORATOR UP TO 19 KJ°S CAN BE SPECIFIED
DUE TO COMPONENT L IMITATION

(81

c
c
c
c
c
c
o}
c
c
c
[
c
c
c
c
c
c
[
o]
[o}
c
c
[
c
c
c
c
C
c
c
c
o]
C
[
[+
c
C
c
c
[
C
[o}
c
c
c
c
c
c
c
C
C
[o}
[of
c
C

~

@
[=1%3

30

0
5

20
25

Jtar il J)=STREAM NUMBER OF FEEL INTO)it 'IAJH N
LF J=10 . BUT STREAM NUMBER FOR VAPOR 11 o=

S[NEAH NUMBER FOR LIQUID IF J=3 [Ul(AlLb he
EQUIPMENT NUMBER

SEPARATOR EQPiT J)= BETAJ FOR EQUIPMENT 1 WHERE
BETAS=X20¢N2/ (X1J*NT) IS THE SEPARAITION t4ACIUN FOR
THE J TH COMPONENT
TIEQP11 J)=STREAM NUMBERS (J=1 FOR NI
J=3 FOR N3} FOR THE I TH EQUIPMENT

d52 FUR N2 AND

EQGP{ 1 J)I=NEUJ FOR J=1,2, .18 hE RE NELJ 1S ITHE
STOICHIOMETRIC COEFFICIENT OF THE J T#t COMPUNENT IN
REACTION NEUJ IS F'OSI1|VE FOR PROOUCTS NEGATIVE
FOR REACTANTS AND ZERO FOR INERTS

EQPt1,20)= GAMMAK WHERE GAMMAK IS THE SPECIFI1ED
CONVERSION FOR THE K TH COMPONENT WHICH MusST BE
PRESENT IN THE REACTANT STREAM, GAMMAK 1S IN (O 1
TIEQP{1 J)=NUMER OF THE REACTANT {(J=1) OR THL
PRODUCT (J4=2) STREAM =3 TO J=7 ARE NUT USED
TEQP(I 8)=K TO INDICATE THE COMPUNENT NUMBER FOR
THE SPECIFIED CONVERSION

REACIOR

SPLITTER EQH (1 . J)=DELTAJ WHERE DELTAU 1S THE SPLII Nullo

FOR STREAM NUMBERS TEQP(I . J) FOR J=2 3.

NOTE THAT A GIVEN STREAM CAN SPLIT UP 10 alx QNII

SO THE LINE WIITH EQPUY . 11) >+ EQPLJ 200 MUSI BE EMPIY
OR WITH ZERUS

TEQP {1 J)=STREAM NUMBERS J=
J=2 FOR ISY OUTPUT STREAM, J=3

FOR 6TH QUIPUT STREAM

NUMBER OF OUTRPUT (SPLITS) STREA

FOR INPUT STREAM

FOR 2ND QUTPUT SIREAM
AND J:8 FOR 1HE

MS

EQFTT J) NOY USED

LINES FOR EQP(J V) >> EQPLJ 20) MUSY BE EMPT
OF wliH ZEROS

TEQP (L J)I=STREAM NUMBERS . J=1 FUOR FHE 151 INFL
=2 FOR THE 2ND [INPUT STREAM, J=6B FOR THE
6TH INPUT STREAM. J=7 FOR THE S)REAM NUMBER OF T1iE
OUTPUT AND J=B FOR THE NUMBER OF STREAMS TO BE MIXED
NOTE THAT UP TO SIX STREAMS ARE ALLOWED 10 BE MIXED

MIXER

51 RE AM

THE FORMATIING FOR FHE TWO LINE SEQUENCES IS 4S5 FUi L OUWS
(12 1x. A10.10G8 3./ 10G8 3 /.818)

ALL OF THE SIREAM VARIABLES AND THE EQUIPMENT PARAME IERS ARE
STORED IN COMMON BLOCKS AND ARE AVAILABLE TO ALL OFf [IHE
MODULES 1APES 1S USED 10 READ DATA AND TAPES (S
USED TO WRITE THE RESULTS
THE COMMON BLOCKS USED ARE
COMMON /S1/ NS NSTR({30) FLOW{(30) NC,CNAME20)
COMMON /Et/ NE NEQP(20) EQNAME (20}, EQP(?Q 200

COMP (30 . 209
IEGP 120 .81

DIMENSION FNAME (8}
COMMON /S1/ NS NSTR(30)
COMMON /E 1/ NE NEQP(20)

FLOWL 30), NC . CNAME ¢

. 20 COMP I 30 200
EQNAME(20) EQP(2D 20D)

1EQP120 8

LL=0
NS=NST
NE=NEQ

READ(FNAMEC B 150 83 10
2

——rTET
morcag
W D=
=z
>mx
PG,

W

T
m

> n
o--r
r-cor

}ONY _(CNAMEG S J=1C 1E
X, I0(AS 2X))

FLOWCI) (COMPIT) J:1C TE)
4)

[T VST e)

FORMA

-
4
z

-

O AND 1L EQ i GO T b0

\ .

S5 NEQP L1} EQNAME (L) {LEQPUE) U= HYAEGQFEL) 9 By
21X, A10 77,1068 3./.10G8 3./.8i8})

NC=NY

RETURN

END

OONO000000O00000 O

[o3

o

0o o000

)

PemdAONMAD=OMMOPZZXxMO

203

20s

2
PRINT *

SUBROUT INE Fi asHIN}

A SUBRDUTINE T CALCULAYE THE MATERIAL BALANCES

ARQUND A FLASH EVAPORATDOR WITH EQUIPMENT UNIT NUMHER =N
STREAM VARIABLES OF THE FEED AND THE EQUILIBRIUM
CONSTANTS MUS1 ALL BE SPECIFIED OR CALCULATED BEFORE
CALLING THIS SUBRDUTINE

m

K 19-VECIOR OF EQUILIBRIUM RELA

M1 ONS

SPECIFIC VEMPERATURE AND PRESSURI
FIE

t

I Hi

ISPECIFIED)

MOLE FRACTYIONS IN FEED (SPEC!

MOLE FRACTIONS IN VAPOR QUTPUT

MOLE FRACTIONS IN LIQUIO OQUTPUT
ED MOLAR FEED FLOWRATE (SPECIFIEQD)
POR MOL AR VAPOR FLOWRATE (CALCULATED!)
1Q MOLAR LIQUID FLOWRAYE (CALCULATED)

"‘OQNZ

|)
2 ALCULATED)
g CALCULATED)
A

L

nC M X x

DIMENSION EK(20) . Xt(20) X2020}.X3(20)
COMMON /S 1/ NS NSTR(3I0) FLOW(30) NC,CNAME(20)
COMMON /E 1/ NE NEQP(20) EQNAME(20) EQP120 .20 1EQP(20 8)

(<]
»m
~m

J)

~O—mmL L =

GE- 101 GO TO S50

B/l -AYBI**2}

LT EPS) GO TO 200

NT A F FOD

“NEWTON *S METHOD IN FLASH CALCULATIONS [Jnkb
"'CONVERGE IN", IS llERk‘IONS" /.8Xx A=

X "F =" EIQ0 3, 5x Ep = E1D

‘PARAMETERS AT THE TIME OF THE ERROR

CALL WRITES

CALL WRITEE

IFiA GT 2 *EPS AND A LT | O0) GO 10 205

WRITE(6.203) N A

FoRgAVl//ZK WRUNG RUOI IN FLASH"™ 13," CALCULATIONS
"ALFA =" 12

PRINT ¢+ 'PARAMEIERb AT THE TIME OF 1HE ERROR

CALL WRITES

CALL WRITEE

| AVPEK(T))
)

RETURN
END

SUBRUUI INE SEFPARIN)

A SUBRDUTIINE 10 CALCULATE THE MATERIAL BALANCES 4AROUND 4

LCOMP L3020

“UNFEAS IBLE SOLUT[ON FOR rH].; LRl

’

£18 B

88T

00006

SO000000 ODG

o

SEPARATUR wliHt EQUIPMENT NUMBER =N SITREAM VAKIABIEn Fuk ThE
I'NPUT STREAM AND THE SEPARATION FACTORS (BETAJ S) mUsT A
BE SPECIFIED OR CALCULAVED FOR UNIT N BEFORE CAtLING Ti(fS
SUBROUT INE
/ NS NSTHI30) . FLOW(30) NC CNAME 1200 COMP O30 2U)
/ NE NEGP (20) EQNAME(20) ,EQP(20.20) LEQK(20 .8)
o)
Nl
SUN)
.8) GT 2) Go TO t00
.NC
QP(N.J) 1*COMP (N J)
1)
3
29
.3
N2
N3
NC
ZEQPIN_ J)ICOMPINT JI'FNI/FN2
=00 EQP(N, J})4*COMP (NI J)*FNI/FN3
Lo0
'
200
20%
210
215
SUBROUT INE REACIN)
A SUBROUTINE TO CALCULATE THE MATERIAL BALANCES ARUUNU A
REACTOR WITH EQUIPMENT UNIT NUMBER =N
STREAM VARIABLES FOR THE INPUT STREAM, THE STOLCHIOMETRIC
COEFFICIENTS AND THE CONVERSION FRACTION MUST ALL 8E
SPECIFIED OR CALCULATED BEFORE CALLING TH#IS SUBROUT INE
COMMON /S 1/ NS NSTRU30) FLOWU3IU) NC CNAMUE (20 COMP (30 201
COMMON /E1/ NE NEQP(20) EQNAME(20) EQP(20 .20) TEQPL20 81
NI=1EQP(N 1)
CALL CHECKS N1}
GAMMAK=EQPIN 20)
K=1EQP(N 8)
SK=EQP(N K)
FNILZFLOWINI)
R=- GAMMAK *COMP IN1 K)+ ENT/SK
TF(R GT O + GO 10 24
WRITE(B 461 N R Sk GAMMAK
46 FORMAT(//2x "CONVERS1ON aPt(lFlLﬂllUNS ANOURENEUE Podial (ERS
12X, "ARE WRONG FOR REACTOR " 12 /2x “REACTION RATE " £14 a
2 2X."STOICHIMEIRIC COEFFICIENT P()R CONVERSION =" FJ} 27
32X “"CONVERSION =" F8 031
PRINT* ‘PARAMETERS AT [HE TIME OF THE ERROUH
CALL WRITES
CALL WRITEE
SToP
24 5:=0

000000 OO0

OO0 000

DO 10 J=1 NC
10 S=S+EQP (N J}
FN2=FNi+S+R
N2=IEQP (N, 2}
FLOWINZ2 J=FN2
00 20 J=1 ,NC
20 COMP(N2 ,J)=(COMP(NI J)*FNI+YEQP(N J)IR)/F
RETURN
END

SUBROUTINE SPLILT(N)

N2

A SUBROQUTINE TO CALCULATE THE MATERIAL BALANCES AROUND A
INPUT SIREAM VaRIAHBLES
SPECIFLIED OR CALCULATED

SPLITYER WITH EQUIPMENT UNIT NUMBER =N
AND THE SPLITTING FRACTIONS MUST ALl BE
BEFORE CALLING TH!S SUBROUTINE

COMMON /S 1/ NS . NSTR(30) FLOW(3D) NC.CNAME (20}
COMMON /E 1t/ NE NEQP(20) EQNAME(20) EQPt20.20)
NIZTEQPIN, 1)
CALL CHECKS(NI)
FNI=FLOWI(NI)
M=1EQP(N.8)
TF(M.GT | AND M LT 19) GO ¥O 5
WRITE(6,7) N, L
7 FORMAT(///5X, "1EQP(N.8) IN ERROR FOR N=" 13/
t 5X,“VALUE SPECIFIED IS =*
PRINTA . °PARAMETERS AT THE TIME OF THE ERROR
CALL WRITES
CALL WRITEE
STOP
S MI=Ms)
00 20 J=2 .MI
NJ=1EQP (N, J}
FLOW(NJ)=EQP(N J}*FNI
S=S+FLOW(NJ)
00 10 J1=1,NC
10 COMPUNJ,J1}=COMPINI U1
20 CONTINUE
IF(ABS(S-FEN1) LT | OE-08) GO TO 30
WRITE (6,25) (EQPIN, L J=2 M)
25 FORMAT(//72x . "SPLIT FRACTIONS DO NOT AOD uP TO
' 2X.7F10 4/SX."FOR_EQUIPMEN}
PRINT®, ‘PARAMETERS AT THE TIME OF THE ERROR
CALL WRITES
CALL WRITEE

STOP
30 RETURN
ENO

SUBROUTINE MIXERIN)}

COMPs 30 200
1EQP (20 8

A SUBROUTINE TO CALCULATE THE MATERIAL BALANCES 4HOUNU A

MIXER WITH EQUIPMENT UNIT NUMBER =N

EINPUT STREAM VARIAHLES

MUST ALL BE SPECIFIED OR CALCULATED BEFORE CALLING THIS SUBRUUIINE

COMMON /S1/ NS NSTR{3IO0) FLOWI3O0) NC,CNAME(20)

COMMON /E 1/ NE NEQP(20) EQNAME(20) EQPt20 .20,

M=IEQP(N_ 8)
IF(M GT | ANDMLT 7
WRITE(6,7) N
7 FORMAT(// /5K, 'lEQPiN 8) IN ERROR FOR N="
15X, "VALUE SPI:CIFIEU Is =" 14

GO To 5

PON 1)

Trr=s81

-7

S~ m.
22 o2
3}

13/

COMP (30 20
TeEQrPi20 8)

681

DOOO noo

SO0 000

o

6 000 0006

[s1=TeXel

o

2% $2:524COMPUINK U1 FK

30 COMP(IEQP(N .71 031-52/8¢ R
RETURN
END

SUBHOUT INE CHECKS(NT)

A SUBROUTINE 10 CHECK THE CONSlSléNCV OF STREAM VaRIABLES
OF STREAM N} THE SUM OF MOLE FRACTIONS ARE COMPARED TO |

COMMON /S 1/ NS NSTR(30) FLOWI(JO0) NC CNAME {201 CUMF«31) 201
COMMON /E 1/ NE NEQP{(20) EQNAME(20) EQPt20 20) 1EQFt20 B8)

LL=0
EPS=1 (QE-02
FNI=FLOW(N)Y)
S$=0
00 0 J=1 NC
S=S+COMP NI .0
10 CONTINUE
IF(ABS{S-4) LI EPS AND FNI GT EPS} GO T 30
WRITE(6 12)
12 FORMATI /772X " STREAM VARIABLES ARE UNSPECIFIE0 OR INCONSTISIENL ")
50 LL=2LL ¢+
1C=104(LL-1)+1
[E=1L*10
WRITE(6,15) (CNAME(J) ,J=IC, IE)
15 FORMAT(//1x "STREAM VARIABLES "/ I1X “NSTR" 2x "Flow Ui ex A5
WRITE(6 ,20) T FN1 _(COMPINI J) u=s1C IE)
20 FORMAT(2x 12 F8 2 tOF7 4)
LFINC GT 0 AND LL EQ 1) GO TO S0
sTOP
30 RETURN
END

SUBROUTINE WRITEE
A SUBROUIINE TO WRITE THE EQUIPMENT PARAMETERS
COMMON /E 1/ NE NEQP(120) EQNAME(20) EQP(20 .20 1EGPRL2U 8)

WRITE(6,1Q)
10 FORMATL //2X “"EQUIFMENT PARAMETERS " 4X

1 L2 X EQPUL J))/TEQPIT,J)")

DO 20 I=1
20 WRIYE(B .30
30 FORMAT(/ 1

1

WRITE (6,
37 FORMAT(/

AE TURN

= ND

1odE1 200 faEQRCL g dF1 8)
2 ")y - v AND

' .
8 3 / BUES 3x

E
NEQP(L) EQNAMEL(T) (EQPLT U
L il MODULE # (
- w--="_/ 10F8 3./ 10F

-
w

SUBROUT INE WRITES
A SUBROUTINE TO WRITE THE STREAM VARIABLESG

COMMON /S1/ N$ NSTR130) ,FLOW(30) NC CNAME (201 CUMPc3L 20

LL=0
50 LL=LL ¢}
IC=tLL-11 v 10
IE=iL*10
[F(NC LE IE) lE=NC
WRITE(E 10) (CNAME(D) J=IC T1E)
10 FORMAT{//1X “STREAM VARLABLES "/ IX "NSIR" 2x “FyUw" 1002X ASH)
DO 20 171 NS
20 WRITE(6,30) NSTROI) FLOWOL) (COMP UL U g2l Tk
30 FORMAT{12 F8 2 V0QF?7 4)
IFINC G) 10 AND LL EQ) GO TO S0
RETURN
END

SUBROUTINE WHINTEX (L1 L2

C A SUBROUIINE 1O WRITE THE EQUIPMENT PAHRAME TEHRS
COMMON /E 1/ NE NEWP(20) EQNAME{20}) EQPL120.20) L1EWP 20 . 8)

WRITE (6 .10)
10 FORMAT(//2x “EQUIPMENT PARAMETERS " 4x,
1 (2 x EQPC(1 JYI/IEQPIE U1 ")
00 20 I=L1 42
20 WRITE(6.30) NEQPUI) EQNAMEIL L) LEQPI Y J) J=1 . 20) 1 1EURPLL) 45
30 FORMATI(/ t1ax, “ MODULE # (" 12 ") * A0,
1 "o JIXLI0EI0 3./ AN 10EN0 3./ 8U17 ax
WRITE(6,33)
33 FORMAT(/)
RE TURN
ENO

SUBROUTINE SIMSOQt11 ,12.13 IP NSI1G)
A SUBROUTINE TO SOLVE MASS BALANCES USING THE S1MUL I ANEOUS
MODULAR APPROACH IF THE PROBLEM HAS CONSTRAINS SuBRUUT INE
SPEC MUST BE USED WITH SUBROUTINE SIMSO
11 TOTAL NUMBER OF STREAMS TORN
12(1) NUMBER OF EACH STREAM TORN (1=1 11
13 TOTAL NUMBER OF CONSTRAINS
1P PRINTING PARAMETER FOR IPz1 NO PRINIING OF 51 RE -
OR EQUIPMENT PARAMEYERS BEFORE SOLUTION FoOwr 10:2
ONLY STREAM VARIABLES ARE PRINTED FOR 1p=3
EQIPMENT AND STREAM PARAMETERS ARE PRINTED

NSIG OESIREO ACCURACY OF SOLUTION

QOOoOoOO0O000000000 OOO0O0

EXTERNAL FCN

COMMON /S 1/ NS NSTR{30} FLOW(JOD) NC CNAMEL20) COMP(30 20)
COMMON /E 1/ NE NEQP({20) EQNAME(20) ,EQP{(20 .20} [EQP(20 B
COMMON /TAA}/ NI,N2(20) N3

COMMON /1BB2/ N4(20) NS5120) N6(20) N7(20) . NB8120) NII1LOs F i 20
COMMON /1TT/ LIT.INT

Dl?EgSlON X150 FIS0) 12001) WK{t400}

INT=

MS=2
1TMAX =300
N 1

N3
N=NC*11+N3
00 1 Izt NI
N2CL)Y=12(1)
NO 1 L=t ,NC
I XEUL- 1) ANC+L) =FLOWINZ €} V) *COMPIN2(1) L}
EFIN3 LE 0) GO 10O 3
K=0
00 2 1=1+NC*I1 N
K=K+
X(13}=FLOW(NALK])}
IF{NS(K) EQ 0) GO TO 2
XUE)=EQP (N4 1K) N5(K)) .
2 CONTINUE
3 CONTINUE
c
CALL THREE(X F N_IP}
c
CALL MPOLM(FCN X . F N WK, ITMAX NSIG.MS)
c
WRITE
WRITE
WRITE
200 FORMA
1 Y
300 FORMAT(/| ivopa
V 10X . “NUMBER OF SEQUENTIAL ITERATIONS ="
RETURN
ENO
c
c
c
c

SUBROUT INE SPELIN3 NAME NUE NUP NACO NUS NUG val)

06T

00000000000 0NRN0000N0O300000000

A SUBROUTINE 10 SHECIFY ALL THE CONSIRAINS 1uPOSED 10 thE

PROBLEM

N3 TOTAL NUMBER OF CONSTRAINS (MAX OF 19)

1=1 N3

NAME 1 1} NAME DF THE MOUULES WHICH HAVE EQUIFMENI PARAME LERS
MANIPULATED IF A FLOW RATE 1S MANIPULATLD
SE1 NAME (1)= "FLOW'

NUEC 1) NUMBER OF MOOULE OR FLOW RAlE

NUP{ 1) NUMBER OF THE EQUIPMENT PARAMEIER MaNIFUtETED FOR
EQPIL J), NUPII)SJ . IF A FLOW RAIE IS MANIPUL ATED
SET NUP(I)=0 (THIS IS VER(IMPURTANT}

NACO(T) NAME OF THE CONSTRAINS BEING IMPOSED Ve RE W RE ONL Y
TWO POSSIBILITIES “FLOW' FOR FLOw RATE UR ‘COMP’ FOR
COMPOSTTION

NUSCD) NUMBER OF fHE SEREAM WHICH HAS THE CONSIRAIN “NACO L) "

NCOCT) NUMBER OF THE COMPONENT BEING SPECIFIED & IHE SPECIFI
CATION IS FLOW RATE _SET NCO(1)=

vaL (I NUMERICAL vALUE OF 1HE CONSTRAIN

INTEGER NUE{N3) NUP{N3) NUS(N3) NCOIN3)

REAL VAL(N3)

CHARACTER'4 NAME (N3) NACOIN])

CHARACTER* IO . NPR{20)

COMMON /TBR2/ NA4(20) NSL201 NB(20) N7120) NBIZ2O) NY 200 F 2o

00

N4 |

N8 (]

Ficl

TFt)

NE ¢

N5t

NPR

Go

ELS

IF¢ (1) EQ "REAC)

NGB {

NS{ ur(l)

NPR REACIOR

GO

ELS
(1) EQ "SEPA)
UP (1

=2 MemmmZMe~am =2 MoAg~mmZ Mom—e=Z Mon——Z

IR
NG
NS
NPRUI)= “SEPARAIOR
GO 1O 1
ELS
IF(NAME (1) EQ "FLOW")
NB(I1)=4
NS5(UP 1)
NPR 'FLOW RATE
GO
ELS
IF(ELL) EQ "USEL ")
NECT) =1
NS(T)=NUP (1)
NPR(I)= "USER 1~
GO 10
ELS
TFONA {1y EQ "USE2 ")
NB(T)

uPil)

TUSER 2
WRITE(6 100)NAMECT) 1
ENDIF

THEN

THEN

THEN

THEN

THEN

rHEN

aooon 060000

oo

I CONTINUE
100 FORMAT(/ 10X

1) €EQ

E
NACO{I) EQ
r=2

}=NCOL L)
o 2

CFLOW)

“COMP ")

TUSER)

WRITE (6 . 100)INACOCT) 1

ENOIF
ENDIF
ENDIF
2 CONTINUE
WRITE{6,6200)
200 FORMAT(1IX . "-
1

"CHECK SPELLING FOR

THEN

THEN

THEN

WRITE(6,5D)
DO 3 I=i /N3
IF(NS(T) EQ 1000) GO TO 4
WRITE(6 10) NPRIT}I NUELT)
GO 10 3

4 [F(NT(1) EQ 3) THEN)
RITE(6 30) NPRII I NACO(I)

/8x. A
2d “ORMAY(/BX A
SO FORMATFL /2X
RE TURN
END

NN
=% x

SUBROUTINE FCNuX F NI

SUBROUTINE FCHN CONTAINS
EQUATIONS BE ING SOLVED

BY SUBROUT INE

OIMENSION X (N}
COMMON /TaAl/

COMMON /TBB2/

COMMON /ETT/
INT=INT+ |

17=

IF(N3 LE
CaLL TEAR
N

o) G
1
CAaLL CONT1

o]
tx_F
X F
'

00 20 1= N
20 IFUNT7U1) EQ 3

MPDL M
{

_FUIN
1N
412
(]

jstel

zZZ2-

1r=17%-

CHANT BX A4

13.6x A4
13.6X a4,
€ MANIPULATEO

)

21201 N3

0) NS{20) .NBC20) . N71Z0 NBIZO) N3 200 Floz0n
NT

THE

“LA4 a1 vt i

NB(E)Y NS(T) VarLila

SE
WRITE(6,20) NFRi1) NUE(T) . NACO(I) NBUI) vaL Ll)
DIF

PR ' LA R B

LEIO 4
CONSTRALN "

SYSTEM OF NONL INEAR
THIS SUBROUTINE 1S USED

T6T

[
c
c
c
c
c
c
C
c
c
c

[eXedeXel

o000

—w

CALL FSIStX ¢ 11 N}
17=1
CALL TEARO(X ¥ Il N) c
CALL CONYOU(X F IT . N)
LIT=tT
RETURN
CONTINUE
17=1
CALL TEARLtX F 1T N)
L1T=1
CALL FSIS(X F . 1T.N)
1T=1 c
CALL TEAROUX.F 1T .NJ é
RETURN c
END é
SUBROUTINE TEARI AND CONT1 ARE USED TO ASSIGN THE Valuyts
CALCULATED BY MPOLM 1O THE OCESS VARLABLE
SUBROUT I NE ltnku AND CONTO ARE USED 10 CALLULAIE
FUNCTION VALUE c
c
0
NE TEARI(X F 1T NI
N X{N) FI(N) ¢
AAL/ NP, N2(20) N3 20
COMMON /817 NS NSTR(30) FLOW(30) NC . CNANME (20 COMPO3O 201
1
c
(N1
)} =0 c
NC ¢
J)EFLOWINZ LE)) (X(LLY) c
c
NC
YLK EUXCSI) S /FLOWENZ BT b)) c
c
SUBROUT INE TEAROIX F 1T N} 10
DIMENSION XI(N} FIN} FM(50} c
COMMON /$1/ NS NSTR(30) FLOW(30) NC CNAME (20 COMPI30 200
COMMON /TAAN/ N1 .N2(20) N3
0O 1 1=1.N)
JEN201)
JC 2 L=, 39
FMUL} =FLOW(J\‘LUMPIJ (W c
DO 3 L=t . 20
FOIT)=X (LY -FMiL)
TT=17T+1 50
CONTINUE
CONTINUE 60
RETURN
£ND 80
200
SUBROUTINE CONFT(X F 1T NI
COMMON /E 1/ NE NEQP(120) EQNAME(20) EQP(20. 201 TEQPI2U & 100
COMMON /S 1/ NS NSTR(30) FLOW(30) NC . CNAME(20} COMPLI0 20
COMMON /TAA I/ NI .N2{(20) N3
COMMON /TIBBZ/ N4(20) N5(20) NE(20) N71201 NBL2ZUY NY'ZUL F LUy 70
DIMENSION X{N,) FI(N)
-
DO 1 1=1 N3
SP=0
IFENB (L) EQ 1) GO TG 10
IFING(T) EQ 4) GO 10 S
EQPINA(1) NSUL)I=X{T1T)
1T=10T+1
GO 1O f

} L LEQPINACL Y B)r))=1 ~5P

SUBROUT INE CONTOL
COMMON /St NS NS
COMMON /TAAI/ N

COMMON /1BB2/ N4l
OIMENSION X(N} .

3
0. 1) .NTCT)

OW{ 30) NC CNAME (20 COmb 30 200

JUNBL20) N7C20) NBL20 N9 1201 F iy 2Dy

=}
co
-

1=1.N
o(10.2
W

INBILI-FILCL)

FLO
]
1

oo~

MPINB(T) NGUTLI-FLCL)

M OmT Om™ O
m O

SUBROUTINE THREE(X F . N.IP)
COMMON /S1/ NS NSTR(30),
OIMENSION X(N) F(N)
COMMON /TAAY/ NI N2120l
COMMON /1TT/ 1T,

FLOW(30) NC . CNAME 120 COmMP 3D 200

CALL FCNIX F NI
IT=L17

O I=1,2
CALL FSIS(X F 1T N}

FORMAI{ X/
|

IF(NNN EQ 10}

FORMAT(/.5X
. LUIF YOU WANT

+/.5X,"INITIAL GUESSES ENTER

RETURN

END

STOP
"RESULTS. AFTER 3 SEQUENTIAL

ITERulI()NS '
TO STOP THE PROGRAM AND CHaNGE
10 AS ? AFPEARS " /|

z61

cooac

ooo

~

w

100

MEP DL A
Vie RSO 1

SUBROUT INE MPDUMIFCN X F N B ITHax 10GI MS)
REAL X{N} F(N} BIN N} GF(I150) PrII50) PSCISO}
REAL G(150) FNUIS0)Y CGIG)

REAL G(15D) DIACI50) X8(6000)

REAL LAMB

INTEGER tPLI15O)

COMMON /SETA/ IR

IFCIRL LT O OH IRL Gl 10D0O) THEN
I1R1=50

OvAL= 100D

DG =1
DO 2 1= UG
DGI=0G1/10

Hy 1S THE MAUHINE EPSLON
HJ=6 E£-8
PA JESURI (128)
PA2=1 /128

IMEMAXT HO (N A)
{CON=D

EVLUATIUN GF 1HE JACUBIAN
CONTVINILE
CALL FONUX . F)

JoE) dE 1Ay Fola=ug O

DO 10 1=31 N

PAT P AT
TEMP=X(1)
XD=xt1)+PAQ
PA4=X0-TEMP

X1 =XD

Chtt FONUX FN N
X €1} = TEMP

DO 11 oL= N

TFCABS(FNIL Y 1 T JE 14} FNUL)=U
BOL T)ztFNIL Y FiL))/PAA
CONTINUE

11=0

1FLAG=0

o000

[21slele]

o 000

o000

[xlel

'6
15

20

450
150

JFLAG=1
Tay=1

CALCUI ATE INI)IAL STEP BOUNU

IF(ICON EQ 0) VHEN
PBt=EUCNIX N)
PBI=PBIVIRI /10D

PB2=MIN(PB1 OVA
IF{N.GY 1D) PB2
DELTA=PB2

ELSE
DELTA=SEARCIt
ENDIF

1F(MS EQ 2
DO IS T=t N
HOLO=D
Do

THIN

i.11) GF HOLD) HOLD=ABSIBI(L L))
HOLD

"NEW JACOBIAN")
COMPQOSE JACOBIAN INTO L*U FACTORS
cLUB [P . N}

CONTINUE
DELHOL=DELTA

SDLVE LEINEAR SYSTEM

DO 406 J=1+1 N

FAC=FAC+B(1 0)'PKLJ)

VHETS(GEL) ~FACY/DLALL)
CALCULAYE CORRECTION STEP (Pr)

PCI=EUCNIPK NI

fRV=
IF(DELTA GE PLI 0 THEN
IRv=1
GD TO 29
ELSE
ENDIF
OBTAIN -~ G

¢6T

o)
[+
C

Q00

00

a2l
422

423

24

25
28

30

3

Lot
1

1Lty iy

PC2=EUC
PC3=PC2

2
oo
z

JrGAL Y
LrtQiLy
P
[' Gu 10 28
PD2=DEL TA/PC2
DO 25 =1 N
PKUTY=PD2IG 1
GO 10 29
CONTINUE

EVALUATION OF ALFA

PEI=PCIPCH
PE DLPDI

PEI=PE]+
+

ALFA=(PES-PE2)1/ (PEJ+PET)
PEL=LY LFA)

DD 27 1=1 N
PKUTIY=ALFA'PRITICPFIYPS (L)
CONTINUE

PCI=EUCNIPK NI

EVALUATION QF FUXKEPR I

DO 30 1=}
XTI X4 THePKO 1)
CONTINUE

CALL FON{X FN N}
PGI=EUCNIFN N)

TE(PGY LT DGIF AND BCYT L1 DGTE) 1HEN
JTMAK =1 CON

RETURN

ELSE

ENDIF

00 31 =i N
FN{T)=FENIT)POF L)

oon0

nooo00n

o000

40

Yy
~—

430

436

42

PG2=EUCNIEN N
PG3=EUCN(F N
SKY=PG2 P32

LT (S5ht0 QYY) THEN

T Il VTHEN

L CONVERGENCE S 100 SLOw

‘ CHANGE INITI1AL GUESSES '~
/PP

DNOWme— =D L= b =1

K
¥
I
F
L
1
N
F
R
R
S
T
L
N

MAOD DD M M= = et

CHECK WHETHER A4 NEW EALUATION
OF THE JACOBIAN IS NEEDED

IFLAG=0

I8
GT 3} LFLAG=)

TFLAG IS = TO 1 *+AND* ¢
K) AS BEEN REDUCED Br A
TOR OF TwO A NEW JACOBIAN
EVALUATED (RENEWED)

ET HJ) FG21+PNJ
AND {BNJ/PG21)Y G 2 WO

_-p b=

IS
a
SK) GO TO 47
N
P

—“—aw

UPDATE DELTA

1F{ IRV EQ

) THEN
DD 428 t=1 N

h]

1
KO
N
LiPRIL)
N}

WZ o ———

R, IR

z:~--2
=

B!
Ll

WD b= thme

DX ==
“Sm
- -
-D=

1F(JFLAG EQ 1 4AND SKU GE SK) THEN
BL=0

LAMB= -BL/12 ‘AL
PH3I=MAX (O 1 LaMB}
DELTA=PCI *PH3

TF(SK) LT Sk AND I1DEL EQ Q) THEN
SEARCH=DEL YA

%61

0000

DLLBOL Y TAU= |
1T 5tPG3)1 GO 10 160

IFCIRY EW 10 THEN

44 Q(1)=F i
PHAZEUCNIQ. N
PH4 =PH4 YPHa
ENDIF

DM=SK-SK1 -0 185k Piid)
IF(OM LT Q) THEN
DEL FA=zPCI /2

Z~
o

N
HOL D= F }-Qi1
PIPzPIP«ABSIFNUL) tHOLD)
46 PTS=PTS+HOL D' HOLD
ENDIF

PUI=PIPYSURIIHIPIEIPYOMPIS)
LAMB=SQRT (} +DM/P gL
AMU=MINI2 LAMB TAU)
TAL=LAMB / AMU

DEL TA2AMU *PC)

LFIDELTA LT DELNOI) TAU=1
END1F

ENDLF

200 CONTINUE
JFLAG:0
LFUICON GT 11MAX) GO TO 300
TCON=TICON® I

£
£
E
E
E
[
a

WRIT
Y00 FORM,
TFOSKY LT SK AND [CEL EQ 01 VHEN
SEARCH=DELTA
IDEL 71
ELSE
ENOIF

THE JACOBTAN wll L BE UPDATE By
BROYDEN'S ALGORITHM

Dx1:=0
DO S0 P:1
S0 OXT=0KT ePKI 1) 'PK (1)

WRITE(S 900 tPKIV Y (=1 N
TFCIRY EQ V1 THEN
1=

z

N
SFOLD Gy

X URRIEFLIS BV SN I YN

[21¢]

O00000

§3

S5
80

T

66
65

8s

86

Gil)y=QulIPn,
DO S3 L:=141
Bl L1=B(1 L

-z-

[ZR TN)

~—zZs
mmm

VNG

XxCxmELETO
PooNDDDX~
CaoTomooz
-

-» xw©
+u
=

‘-

BOled TI1+FLL}

)
x

Bl I+u)*HOLD

"

o —

-1
T Iy JI+PRUIS*PTISOFACT S

2ICO*=-00~0400RO~Om
_T P mFRFCF-
SN+ DT+ OTR O OX CDDr~T

Mo EEOQ-O0IUIXIOXIODX
==z

il 2]

~=8-0
z2m -
L o-o

N
LV iDIAGT

IFB NG MMuO-nwhCax RO

n-

PRINT NO CONVE
PRINT S © CHANGE INITIAL GUESSES OR USE ANUTHER

FUNCIION EUCN EVALUAITES THE EUULIUDIAN NOKRM

ENCE IN ° TFmax JIERATIONS -

Sl LN

S6T

C OF A VECITONH OF DIMENSION N el
¢ 1P (K
¢ c
FUNCT ION LGN D) oo
REAL ¥(J1 X=A
55-0 ary
DO 1 1= 4 Atk
SS=SSev LIt . KI=
t CONTINUE 60 1J=
EUCN=SQRT t$5) PER
RETURN 70 PER
¢ END TF(10 100
INE
g x=a
¢ c
¢ c
SUBROUTINE FaCLlLu(a [P N) c
¢ . KO=10+N
c THIS SUBROU]INE FACTORS MATRIX A INTO A FHOOUC! DO 90 K=1PI N
c OF A LOWER ITRIANGULAR MATRIX L AND AN UPPER TRI - K1=T10+K
[ANGULAR U 1 HAS UNIT DIAGONAL WHICH 1S NOT STOHEU A(KEI)=AIKI) /)
g) :
C £ ROM 18M PRUGRAMMER 'S MANUAL 75 }FJL{ t)y v1g 8o IS
c SYSTEM/360 SCIENIIFIC SUBROUTINE Palt 4GE K1:k011
[+ (360A-CM-03X) VERSION IIY (1968) DP=ATKI)
c -
é USAGE 28:28.3” 1
c A IS 1HE MATHREX WHICH ONE WANTS 10 FACIURISE DP-DP-A(1J) AR}
c THE MATRIX 1S SIORED COLUMNWISE BO lu=lu+n .
c IP CONIAINS A PERMUTATION VECTOR ON OulPUIl AiK1)=0P
c PER 15 USEO FOR INTERNAL COMPUTATIONS 90 KO=KON
c ' Z
REAL AUNSNI PERIIS0) 100 ;g;.‘,g;"“
c INTEGER TP tN) 110 WRITE(6.120)
c COMPUTATION GF WEIGHTS FOR EQUILIBRATION 120 FORMAT(// 5% " tictk PRI LR Pt s O
¢ N 7 8x © SUBROUTINE * . //}
$5=85/Q
RETURN
ENI
by
N
S0 GE K1) KZABSTACIJ))
THEN
A ROW IN THE INPUT MATRIN 1S NULL "
I8
N
[
c COMPUTAT IUN OF THE 111 COLUMN OF U
c
00 50 x=1 . N
KI=10+K
DP=A(KL)
IF(I-1) 110 a0 25
25 KJ=K
DO 30 J=1 1
1J210+4
DP=0OP-ALKJ) tat by
30 KJ=KJ*N
AlKI)=DP
[
c SEARCH FUH EQUILIBRAIED PLvVOT
c
40 TF({X-ABS(DF)'FER(K) GE U) GO 10 50
TPILVDT=K
X=AAS(DP) *PERLY }
59 CONTINUE
TFiX LE 0) Lo TO 110
[
[PERMUT AL LN OF GF ROWS JF HEQDIRED
c
55 1FCIPIVDT-1 1110 70 57
57 KI1:=1PIVOS
1J=1
c

TAUX=IP UL

961

