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This thesis considers the problem of estimating the linear

parameters of generalized linear models (GLM), especially binomial

and Poisson regression models, when the explanatory variable is

subject to measurement error. In this situation, the dependence of

the response variable on the observed explanatory variable cannot

typically be modeled as a GLM; in particular, extra variability

caused by measurement error cannot be accounted for using the

binomial- or Poisson models. One strategy is to use existing methods

adapted for extra-variability. The contribution of this thesis is to

introduce an estimation method which makes use of Efron's (1986)

double exponential family. The proposed method involves the

calculation of maximum likelihood estimates from this density when it

is used as an approximation to the true density of the response

variables given the observed measurements.

Efron's family of distributions offers an attractive alternative

for approximating the distribution of the response variable given the



observed explanatory variable and is closely related to the

measurement error in GLM methods suggested by Armstrong (1985) and

Prentice (1986). Properties of the proposed method are considered

when the double exponential family model is thought to be correct and

when it is thought to be an approximation. Special cases and

examples are given to illustrate the estimation procedure and how to

apply this method. Comparisons are made with other estimation

procedures for the measurement error problem, both procedurally and

numerically.
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A METHOD FOR ESTIMATION OF GENERALIZED LINEAR MODELS

WHEN EXPLANATORY VARIABLES CONTAIN MEASUREMENT ERROR

Chapter 1

Introduction

This work concerns the estimation of parameters in generalized

linear models when the explanatory variable contains measurement

error. The naive method, which ignores explanatory variable

measurement error, leads to inconsistent estimators of the parameters

(Stefanski and Carroll, 1985). The proposed method approximates the

likelihood based on the distribution of the responses given the

measurements by using Efron's (1986) double exponential family

distribution and obtains estimates that maximize this approximation to

the likelihood. The proposed method is closely related to estimators

presented by Armstrong (1985) and Prentice (1986). Section 1 of this

chapter discusses the basic problem of measurement error in the

explanatory variable. Examples are introduced in section 2. The last

section of this chapter outlines the remaining elements of this

thesis.

1.1 Measurement Error in the Explanatory Variable

Generalized linear models are used to model discrete data in the

form of binomial and Poisson regression. These models, like their

continuous counterparts in ordinary regression, assume that the
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explanatory variable is known or observed exactly. Many researchers

have examined the problem of estimating regression parameters in the

presence of explanatory variable measurement error. Some methods of

estimation for ordinary regression are discussed in chapter 2.

Chapter 3 considers some methods of estimation for this problem in a

generalized linear model setting. Although the thrust of this thesis

is to propose a new method of estimation, it includes comparisons of

the proposed method to existing methods. Simulated comparisons focus

on the performance of the methods on an example introduced in section

1.2.1 below. Data analysis is conducted on both of the examples

introduced in the next section.

1.2 Introduction to the Examples

1.2.1 Chromosome Aberration Data Set

The first data example is of 649 survivors of the atomic bomb

dropped on Hiroshima in 1945 (Otake and Prentice, 1984). The response

variable for each individual is the proportion of cells, out of 100

examined, that had chromosome aberrations. The explanatory variable

of interest is the total exposure to radiation for an individual. The

measurement of total radiation exposure for an individual involved

physical calculations based on his or her distance from the blast and

the shielding configuration. The data for the calculations was

gathered through interviews with 649 survivors. A goal in the

analysis of this data is to estimate the regression of the proportion

of chromosome aberrations, denoted by p, on the true dose of radiation

exposure. It is desired to model p as a
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linear function of the total radiation exposure:

pi := #
10

+ #
1
exposure..

Models that are quadratic in exposure are also of some interest but

will not be examined here. It is known that substantial measurement

error is present in the observed values of radiation. Figure 1 on

page 4 contains a scatter plot of the data. The data was grouped into

seven categories, where the zero radiation exposure category is

thought of as a control group. A small random uniform number was

added to each grouped average exposure to display the concentrations

of points in each category. The raw grouped data is listed in

Appendix A.

1.2.2 Coronary Heart Disease Data Set

This example is taken from a study by Iso et al. (1989) to

investigate the association of serum cholesterol and age-adjusted

rates of death from coronary heart disease for 350,977 men between the

ages of 35 and 57 years old. Although a more formal analysis would

take age into account explicitly (as well as smoking habits), it is

convenient to consider the simple model with age-adjusted rate of

coronary heart disease as a response variable and serum cholesterol as

an explanatory variable which is measured with error.

As a starting point, suppose that the probability of coronary

heart disease, p, is related to cholesterol by

log(pi) = #0 + filcholesteroli.
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Figure 1. Plot of Chromosome Aberration Data.
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For a large number of individuals, mi, with approximately the same

cholesterol level, the number of individuals with coronary heart

disease may be modeled as Poisson with mean mipi. The age-adjusted

rate is modeled as having mean pi and variance pi/mi. It is observed

that the measurement error in cholesterol levels can have a

substantial effect on the estimate of ft. This data has been grouped

into 10 cholesterol levels. A graph of the data is presented in

Figure 2 and the data is listed in Appendix A. The double exponential

family is used to model the data to illustrate the mechanics of using

the method.

1.3 Outline of Thesis

This thesis proposes a method for estimating the parameters in

generalized linear models when the observed explanatory variable

contains measurement error and identifies the properties of the

proposed estimator. Some asymptotic results for an approximation to

the proposed method are presented and small sample properties are

compared in several situations of interest, using simulation.

Relevant comparisons of the proposed method to existing methods,

particularly Armstrong's (1985) method and Prentice's (1986) method,

include a simulation comparison to judge relative performance on a

simulated model which is comparable to the chromosome aberration data.

A literature search is presented in chapters 2 through 4.

Chapter 2 cites work conducted to address the measurement error

problem in ordinary regression. Methods for estimation in the

presence of measurement error for generalized linear models are
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discussed in Chapter 3. In chapter 4, the concept of overdispersion

is introduced and methods developed in this area are presented,

focusing on the double exponential family. .Chapter 5 introduces the

proposed estimation procedure using the double exponential family.

Chapter 6 contains the analysis of the data sets. A numerical

comparison of methods is presented in chapter 7. The last chapter

summarizes the conclusions and discusses further topics of interest.
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Chapter 2

Measurement Error in Ordinary Regression

2.1 Introduction

A large body of literature exists for the problem of measurement

error in explanatory variables. This chapter offers a brief overview

of some issues regarding the errors-in-variables problem without

providing exhaustive coverage. Fuller's book (1987) contains a modern

review and list of references for work on errors-in-variables.

In order to discuss some relevant issues concerning measurement

error in simple linear regression, it is convenient to label the

following set of assumptions as MODEL 1:

1) (y1,z1), (y2,z2),...,(yn,zn) are independent pairs of random

variables

2) yi= 440+ flixi+ ei, for i=1,...,n,

3) z.= x.1 + d.1 , and
1

4) e. and d.
1

are independent random variables with means 0 and

variances 02
e
and 0

'

respectively
d

where yi is the response variable,

x.
1

is the true but unknown explanatory variable,

z.
1

is the observed explanatory variable, and

d. is the random measurement error.
1

Some additional assumptions are used to illustrate specific points.

The following assumptions, in addition to MODEL 1, are referred to as



MODEL 1A:

(ei,di,xi)1 N N[(0,0,#x)',

9

2.2 The Problem with Ianorina Measurement Error

There is one situation for which the presence of measurement

error in the explanatory variable can be ignored. When the purpose is

to estimate an equation for predicting future y's from future

imprecisely measured z's with the same measurement error distribution,

the presence of measurement error in the explanatory variable can be

ignored. In this situation, the relationship between the y's and z's

is the relationship of interest.

However, measurement error in the explanatory variable cannot be

ignored when it is desired to estimate the coefficients in the

regression of Y on the true explanatory variable. The following

example is used to illustrate a problem that arises when measurement

error is ignored. Consider MODEL 1A; the vector (yi,zi)' is bivariate

normal with the following properties:

El(yvyl = (#y4z) = (Q04102e/ix), and

covariance matrix

f # f2+ f2 # f2
y zyl lx e lx

r
zy

#
l

0+0
x xd

The naive estimator for fir, denoted by #
l'

is the least squares

estimate of slope in the simple regression of Yl on z
i

. One problem

caused by ignoring the measurement error is that this estimator is



biased, i.e.

E[fil] = #1(P /(q+11)) = p101/op.

10

The ratio R = 01,2
z

is referred to as the reliability ratio. The

least squares solution, #1, is biased towards zero (i.e. the

measurement error attenuates the regression coefficient). As the

variance of the measurement error gets larger relative to the variance

ofthex.,the usual least squares estimator becomes increasingly

biased.

2.3 The Need for Additional Information

Consider again MODEL lA in which ei, di, and xi are all normally

distributed. In this situation, jointly sufficient statistics for the

distribution of y and z are

n

1 1m,m,m,m,m,wherem=-Ey.andmmtE(y.-10(z.--i) .
y z yy yz zz y A 1 yz 11 1 1

1=1

There are five sufficient statistics for six parameters

(#
x x

,2 ,2
'

,2, #
0' 1

) and therefore the parameters are not
e

identifiable. More information is needed to estimate all the

parameters.

Although there are models other than the normal for which the

parameters are identifiable, the basic problem remains that little can

be said about the regression coefficients without some additional

information about one of the parameters. The extra information may be
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internal. For example, if there are replicate values of z at several

x's, the parameters are identifiable. When there are no such

replicates, estimation of the regression coefficients depends on the

availability of outside estimates (or knowledge) of the parameters,

typically ad or R.

Missing information can be provided in a number of ways. When

the reliability ratio, R, is known, the parameter space is reduced to

five dimensions and the maximum likelihood estimators may be obtained

by equating the sufficient statistics to their expectations (Kendall

and Stuart, Ch. 29) and the unbiased estimate of #1 is fl1= R-1#1.

If the measurement error variance,
d

r2
'

is known, the dimension of

the parameter space is five and the maximum likelihood estimators are

given by

R = Im
1 z h' zy'

x' e
) = (mzhy-r2,m -fl

l zy),

(#x,#0) (z4-flit).

Another way that needed information can be provided is through an

instrumental variable, wi, which is independent of ei and di, but

correlated with xi
1

Suppose, in addition to MODEL 1A, that w. is a

random variable with mean #w and variance r: which is independent of

e.1 and di and that cov(w.,x.1 ) = r
XV

# 0. This leads to the following,
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Xt

e
t

d
t

w
t

NI

11x

0

0

ex 0 0

0 re 0

0 0 ed

I
XV

0 0

I
XW
0

0

d
w

where px= do+aliew and it is assumed that trxw= eflo;. Under these

assumptions, the observed vector (yi,zi,wi) is normal with mean vector

covariance matrix

(fiell*o"low' *o+alole #w"

i

0412,2 # 0 #1 2elx lx 1 1

4.#
1

20 & 0
1 d 1 w l'

#1 2
a1

0.2
w1 1 1 w

and nine parameters with a set of nine minimal sufficient statistics.

Thus, the parameters are identifiable and maximum likelihood

estimation can be used.

This section has focused on MODEL 1A. All forms of additional

information discussed here can be used in the general setting of

MODEL 1. Fuller (1987) lists the asymptotic properties of these in a

general setting.

2.4 Structural and Functional Models

The structural model refers to MODEL 1 with the assumption that

the x.'s are independent and identically distributed. The functional

modelassumesthatthex.'s are fixed constants.
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In ordinary regression, without measurement error, the typical

assumptions for the model are

y= fl + fl x. + e.
1 0 1 1 1'

where
0

and fl
1
are parameters,

x.1 are known constants, and

e.
1
are random variables with mean 0 and variance 0.

With these assumptions, the least squares estimators, 00 and fl1, are

the best linear unbiased estimators. These same properties hold when

the xi .'s are independent and identically distributed random variables

with these assumptions:

1) the conditional distribution of yi given xi has mean, ,0411xi,

and variance, sr:, and

2)themarginaldistributionofdoes not involve $ 2.xi
0'

re

So, except for the rare possibility of (2) above, there is no need in

ordinary regression to be concerned with whether or not the xi's are

realizations of a random variable or fixed contstants.

For measurement error models, the distinction between functional

and structural models is more important because, for the functional

model, xi,...,x
n

are unknown constants, and therefore parameters. The

structural model is one way to eliminate the n incidental parameters

by assuming they come from a common probability distribution depending

on only a few parameters. There are some important differences between

these two models. The structural model is usually easier to
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incorporate into standard statistical methods. In theory, it is

possible to find the maximum likelihood estimates of the parameter and

the asymptotic distribution of these estimators. The functional

model's drawback is that the number of incidental parameters increases

with an increase in the sample size. Thus, maximum likelihood

estimates are not appropriate or not useful for the functional model

(Kendall and Stuart, Chapter 29). Method of moments estimators are

available for the functional model but it is difficult to find the

asymptotic distribution of the estimators without using an asymptotic

framework where the measurement error variance approaches zero. One

drawback to the structural model is that it is only appropriate when

the explanatory variables are independent and identically distributed.

This is a much stronger condition than is generally required in

regression analysis. In addition, the distributions for the

independent and identically distributed x's and d's, for which maximum

likelihood estimators can be found, are very limited, while the

functional model may be used no matter how the xi are selected.

2.5 Nonlinear Models

The situation to be considered in this section is the nonlinear

model. This model is as follows:

yi= g(xi,4) + ei, zi= xi+ andand

(ei,di) NI[O,diag(a ,44)],

where e1 ., d.
1

and xi are independent. Fuller (1987) uses a Taylor
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expansion of Oxi,A4 about g[E(xilzi),Aq to arrive at the following

approximation for the mean of the distribution of yi given zi, when xi

is also assumed to be normal:

E(yilzi) = g[E(xilzi),firl + 4trig"[E(xilzi),fil]Var(xilzi)1

He uses this as his new model, i.e.

yi = g[E(xilzi),AU + (0.5)trig"Mxilzi),AU-Var(xiizi)1 + et.

and suggests using an iterative weighted nonlinear least squares

method on this model to estimate the parameters. The first step is to

use ordinary nonlinear least squares to arrive at initial estimates of

parameters. The second step is to determine the weights from these

estimates for the third step of weighted nonlinear least squares.

Once the new estimates are calculated, the second step is repeated to

update the weights, so that step three can be performed again. Steps

two and three are repeated until convergence occurs. For more details

see Fuller (1987).

2.6 The Berkson Model

The following model, due to Berkson (1950), is different than the

classical measurement error model but is relevant in some later

discussions. Suppose that yi and zi are observed, where

3c1 . e.
1

and
1 0 1

x.
1

= z.
1

+ d.1 ,
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where the n pairs (ei,di) are independent with means (0,0) and

veriencee614,endwhered.1
1

isindependentofz..The latter

point is the distinguishing characteristic of the Berkson model and

implies that E(xilzi) = zi. In this situation, the zis are controlled

by the experimenter and can be thought of as fixed. The uodel can be

written as,

y.= fl + fl x+ e.= ,61
(z.+ d.) + e.= fl + fl z.+ v.

0 1 1 0 1 1 1 1 0 1 1

where vi=
1

fildi and z. and v.
1
are independent. This implies that

E(Yi) flO filzi.

Berkson realized that the ordinary least squares estimates can be used

when z.
1

is fixed. The least squares estimates are

r n -1 n

fl1 1(z'-i-)2 11E(z*-i)*(Y1 -i) and
1=1

A A

110 Y filz'

Becausethez.1 are fixed, it is straightforward to show that these

estimates are unbiased, as follows,

-1 n

E(#1) = EIrj(zi -i)21

1=1 !1= =1J
11

[

n -1 n

= E(zi-i) 2 El (zi-z) [E (yi) -E (i) ] I

i=1 1=1
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-1 n

(z -i) 2 EI [ 00+flizi)-00+flii)] I

1=1

n

)11_,Izi -i)2 (zi-i)2fl1
p1

[i=1 i=1

and similarly for #0. Thus, if (ei,di)' NI(0,diag(c 1,(1)), then the

usual inference with fi0 and fit can be carried out. Estimation is

unbiased only for the linear model. It is possible to obtain biased

results if the same measurement error holds for several replicates in

replicated experiments. Also, if the mean of yi is not linear in xi,

least squares estimation can give biased estimators.
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Chapter 3

Measurement Error in Generalized Linear Models

This chapter is an overview of the previous literature on the

problem of measurement error in explanatory variables for generalized

linear models (GLMs). The first section introduces the notation that

is used for GLMs in the rest of this work. The following two sections

review specific estimators for functional and structural assumptions.

The fourth section introduces the role of overdispersion in the

measurement error problem.

3.1 Notation

Suppose yi is a response variable whose distribution comes from

the one-parameter exponential family,

f
y 1 1 1 1
(y.) = expi[y.q.+b(](m./0)+c(Yi.,0)i,01

where b'(,/i)=pi is the mean of yi, 0 is the scale or dispersion

parameter, and m. is a known constant. The variance function is

defined as V(pi) = b"(qi) and implies that

Var(yi) = (0/mi)V(pi).

The mean of yi is assumed to be related to an explanatory variable xi

through a nonlinear model of the following form:

myilxi) = #i= g-1(01
o
+fl x.), (3.1)

where # is the 2 x 1 vector of parameters and g(.) is referred to as
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the link function. It is also assumed that the yi's are independent.

Suppose that zi is a measurement of xi and that

f(yilxi) = f(yilxi,zi). This condition implies that zi is useful in

predicting yi only through xi. Thus, when xi is known, zi provides no

new information about yi. It is straightforward to find maximum

Wcelihoodestimatesforfiwhen xi is known (see McCullagh and Nelder

(1983)fordetails).Becausex.isobservedonlythroughz.,it is

necessary to consider models to represent this relationship. The

following sections review some specific examples of what has been done

to deal with this problem.

3.2 Functional Model Estimators

This section introduces some functional model estimators that

were suggested by Stefanski (1985) and Stefanski and Carroll (1985).

The inherent problem of having a functional model is that the fixed

xi 's are unknown parameters. The problem does not resolve itself with

an increase in sample size because the number of parameters increases

correspondingly.

3.2.1 Stefanski's (1985) Approach

This approach for dealing with measurement error is to modify a

naive estimator, A. Stefanski assumes that # can be estimated by an

M-estimator (including maximum likelihood) which is consistent when

thetruex.1 are known. This M-estimator, 0, is the solution to
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E = 0

i=1

where, for maximum likelihood estimation, 0 would be a log-likelihood

score function. It is assumed that the yi's are independent and that

E[0(yi,xi,41] = 0, for i=1,...,n.

A naive estimator, 0, of fl can be found by ignoring measurement error,

as the solution to

= 0.

i=1

The estimator, 0, converges in probability to 0 which is the solution

to

lim n lE
1

El0(y.1 ,z1. e)1 = 0.

i=1

Generally 0 op, therefore fl is asymptotically biased. Stefanski's

approach is to approximate the asymptotic limit of 0, in an asymptotic

setting where the measurement error is small, and subtract the

estimate from 0 in order to arrive at an estimator that is less

biased. This approach is illustrated in the following example. For

the simple model

Yi = # 0+ #
1 3. 1 1
x.+ e. and z.= x.+ d.,

whered.isindependentofx.1 and e.1 , and di has mean 0 and variance
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0
'

the limit of the naive estimator, 0, is
d

e= Ilia n
1111

lE[E(x.x!)] + E(d.d!)I-1(lim n-
1

lE[E(x.x!)] 10,

1=1 1=1

where x.3. = [
1

x
and d.= ° J. The corrected estimator suggested by

1 d

Stefanski is thus,

-*
mz 0

fl = I +I
m 0 0 PL

z zz

He shows that this estimator has less bias than the naive estimator,

that it is consistent, and that, under regularity conditions, it is

asymptotically normal. The expressions for other generalized linear

models are lengthy and not reproduced here.

3.2.2 Stefanski and Carroll's (1985) Approach

Stefanski and Carroll (1985) proposed four functional model

estimators. All of these approaches deal with logistic regression ,

suchthat.
1

are fixed predictors and y. are Bernoulli variates withxi

Priyi=lixil = F(xj0) = (1 + exp(-xi,))-1, i = 1, 2,...,n, (3.2)

where x1 !! = [1 x1 ]. The approach starts with the usual logistic

regression estimator of 0, which is asymptotically biased, and then

introduces modifications to this estimator. All modifications involve

estimating both vectors ft and x because the functional model is used.

The initial estimate is obtained by regressing yi on zi. This

estimator is called 0 and satisfies
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Di-F(cifinci = 0,

i=1

when ci. = z.. The variable c.
1

is the place holder for the explanatory
1

variabletobeusedandz.1 is the observed explanatory variable. If

thex.1 wereavailable,c.1 =.xi would lead to the usual maximum

likelihood estimates. Stefanski and Carroll show that fl is

inconsistent for fl. Using fl as the starting point, three alternative

approaches are considered by using different choices of ci.

Each of these modified estimators can be thought of as a type of

two-stage estimator obtained by doing logistic regression with xi

replacing zi and then maximizing the log-likelihood based on (3.2)

with respect to Q. The first modification is distribution free in the

sense that only moment assumptions are made about the measurement

error. In this approach adjustment for the bias in it is made by

maximizing (3.2) using ci= xi, where

x.
1

zi f2(I -
n

) B
n 1
z.,

where B
n
is a correction for asymptotic bias as ain(n,f 1) ' m which

depends only on the observed data (See Stefanski and Carroll, 1985,

for details).

The other modifications suggested by Stefanski and Carroll (1985)

add an additional assumption of normality of the di to the model

(3.2). The second modification uses the log-likelihood for estimating

0 and x, based on these assumptions, to estimate ci= xi, defined as
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A A A

xi = zi + [yi
i

- F(e.#)]0#

In the last modification considered, Stefanski and Carroll take r and

/1 to be known and find a sufficient statistic for estimating xi. The

particular sufficient statistic they choose has the property of making

the estimate for 0 unbiased. Here c = x.
1 1

i

1

2
xi = zi + r2(y - )fl.

The Stefanski and Carroll (1985) methods extend to models with

additional explanatory variables.

3.3 Structural Model Estimators

This section considers structural models in GLM. Five particular

estimators are introduced. The last two, covered in sections 3.3.4

and 3.3.5, are very close in spirit to the method proposed in chapter

5 and are discussed in greater detail. They are also compared in more

depth in later chapters both numerically and procedurally.

3.3.1 Schafer's (1987) Approach

This method involves treating the true explanatory variables, xi,

as missing data. The idea is to use the EM algorithm to obtain the

MLE for 0 where the likelihood is based on the joint distribution of y

and z. It is assumed that zi is distributed normal(xi,rp and that xi

is distributed normal(#x,1X). The general form for this procedure of

estimation is accomplished by using the following two steps at the
tth

iteration:
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E-step: Compute Q(flifl(t)) = E(log f(y,z,x,Smly,z,Sm,fl(t))1,

which requires computation of approximate first and second

conditional moments of xi .given z.
1
and where S

m
is an

unbiased estimate of the measurement error sample covariance

matrix.

M-step: Choose fl(t+1) to maximize Q(UIP)),

where regression parameters are updated by iteratively

weighted least squares.

Approximations are suggested to simplify these calculations.

Schafer concluded that this approximation to the maximum

likelihood estimator based on normality did well in almost all

conditions that he examined and may be useful more generally.

Whittemore and Keller (1988) reported that error for this estimator

can be reduced to the order of o(5), where 6 is an arbitrarily small

constant.

3.3.2 Whittemore and Keller's (1988) Method

A method of adjusting the naive estimator of an approximate

likelihood function to improve estimation in the presence of

measurement error was proposed by Whittemore and Keller (1988). A

likelihood score vector t(y1.lz.I ;fl,b) is proposed where assumptions
.

only involve the mean and variance of the measurement error

conditional on the observed explanatory variable, zi. These

assumptions are valid when the moments are small, say of order 5,

where 6 is a small parameter representing the size of the measurement

error variance, and when the third moments are of order 0(6).
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Whittemore and Keller define the ideal maximum likelihood estimate to

be IRO), the solution to the following equations,

W/1,0 E 0. (3.3)

When (5 = 0, the solution fl(0) is the naive estimator which ignores

measurement error. This is inconsistent and has bias of order 0(6).

In order to help correct this bias, Whittemore and Keller propose an

estimator that depends on the first two terms of a Taylor expansion

for fl(6) about 0. The computations involve taking the derivative of

(3.3) with respect to 8, evaluating at 8=0, and solving for /PO), this

leads to the following estimator,

*
= #(0) + 61-1,

I
u(0),N1 11,

8
[IRO) 0]

For details of this procedure, examples, and conditions for fl* to be

consistent, see Whittemore and Keller (1988).

3.3.3 Carroll, Spiegelman, Lan, Bailey, and Abbott's (1984) Approach

For binary regression, Carroll et al. (1984) start with,

pi
pr(y. = llx.) = G(O0 + #

1 i
x)

where G() is a known distribution function like G(a) = (1 + e-a)-1

for logistic regression or G(a) = $(a) for Probit regression. Here

CO is a standard normal distribution function. The observed

explanatory variable is zi = xi + di, where di is the measurement
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error and it is assumed to be independently and normally distributed

with mean 0 and variance r2
d'

Carroll et al. eliminate the nuisance parameters xi by assuming

thatx.1 are independently and normally distributed with mean #
x

and

variance 11. Initially, the parameters #x, 11 and rd are assumed

known. Carroll et al. condition on the observed values zi and use the

likelihood of yi conditioned on zi for estimation. For logistic

regression, this involves numerical integration but for Probit

regression it can be evaluated explicitly. In practice, the

parameters #i and 01 are estimated in the first stage of the analysis

fromthez.'s and it is assumed that rd has a specific value.

3.3.4 Armstrong's (1985) Approach

Armstrong's approach is to force the induced model for yi given

zi into the same distributional form as f(yilxi) but with mean and

variance to match E(yilzi) and Var(yi Izi). These are given by

E(yilzi) = E(E(yilxi)lzi) = E(g
-1

(xiAlz) =

and Var(yi Izi) = Var(E(yi Ixi) Izi) + E(Var(yi 'xi) Izi)

= Var(g-1(xpi) Izi) + E(4--y(#i) Izi)

= Var(#ilzi) + t7E(V(#i) Izi) . (3.4)

1

In order to fit this into the original setting, Armstrong approximates

-1, a, 1 *-1,
E(g mipuizi) = #i g tzipu,
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where g
*-1

is the approximating function that relates #i to z:fl not

necessarily the same as g
-1

. Next, he equates the desired variance,

Var(y.lz.) = 4V(#i), to (3.4), which may be accomplished by taking
w.

as a prior weight

OV(#:)

(0tw.)E(V(#.3. )1z.3. ) + Var(#.1z.)

where #i, wi, 0, V() are the mean, weight, scale parameter, and

variance function of the original GLM for yi given xi. This gives the

following set-up:

E(y.lz.) = #i = g
*-1

(z!"), and

Var(Y.1z.) = 04(#.).
*

w.

* *
Once iv is estimated, Armstrong assumes w is known and the estimation

of fl is accomplished by maximum quasi-likelihood estimation using GLIM

(Baker and Nelder, 1978).

3.3.5 Prentice's (1986) Approach

This method, which is appropriate for binomial response

variables, is similar to Armstrong's except that the induced model for

yi given zi is approximated by a beta-binomial distribution rather

than a generalized linear model. The mean-variance relationship for a

beta-binomial random variable Y is given by:
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E(Y) = mp and

Var(Y) = mp(1-p)(1+(m-1)pl

mp(1 -p)

m

where 0
1
= 1+(m-1)p. This relationship results when Y = E U. where

j=1

the U. are correlated Bernoulli random variables with correlation, p.

It is also the mean-variance relationship one would find if the Uj

were independent Bernoulli trials with the probabilities pj being

random variables having a beta distribution (see Williams, 1982). For

many purposes, the extra parameter 0 offers a convenient way of

incorporating extra-binomial variation and maximum likelihood can be

used to estimate the unknown parameters.

Prentice considers a special regression problem where measurement

error in the explanatory variables is the sole source of

extra-binomial variation. In this case, regression models are induced

for both p(zi) and 0(zi). He embeds the resulting expressions for

E(yilzi) and Var(yilzi) into a beta-binomial model so that maximum

likelihood can be used for estimation. The likelihood function,

L(p,0), for a beta-binomial, is used to estimate the parameters of

interest, 0, which are the coefficients from the induced regression

model. The score statistic and information are obtained through

at, ap
31-W71 71171

and a similar expression for d2 L ,. These expressions, along with

the first and second derivatives of p(zi) and 0(zi) with respect to 0,
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make it possible to carry out standard asymptotic likelihood inference

on /1 (note, however, that the beta-binomial model itself is only a

useful approximation to the distribution of yi given zi in this

situation).

3.4 The Role of Overdispersion

One facet of this problem, implicit in the two previous sections,

is that the variation of yi given zi is greater than the variation of

y.givenx.1 .The problem is illustrated using the model given in

(3.1) where g(.) is the identity function and the distribution of yi

given xi is binomial(m,p.1)/m. These assumptions lead to the following

mean-variance relationship for the distribution of yi given xi:

E(yilxi) = pi = fi0+ flixi, and

p. (1-pi )

Var(yilxi) = 1 for i=1,...,n.

The mean-variance relationship needed for estimation is the

conditional distribution of yi given zi, as follows:

and

3(yilzi) = pi = ft0 #1.E(xilzi) (1)

1 * 1 .2
Var(irdz.)=-1).(1.-.)+ (1- )p -Var(x.1z.),

m m 1 3. 3.

pi (1 pi)

mO. '

(2)
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1 1
var(x.iz.)

where 0 = 1 + r
1 1 * *

p.
1

pi(1 - .)

writtenintAisform,thedistributionof.Y1 given z
i
looks similar to

the distribution of yi given xi. The main difference between the two

is the replacement of xi by E(xilzi) in the mean and the addition of

the overdispersion factor, ei. One consequence of using the measured

explanatory variable in place of the true values is that the

variability of yi conditional on the measured variables is greater

than what is expected under the binomial model. If the density

functionfortheconditionaldistributionof.
Y1

given z
i
were

available, estimates of the unknown parameters could be obtained by

maximum likelihood. For the model given, however, the density cannot

be expressed in closed form. The idea is to use a density which

approximates f(yilzi) and has the.correct mean and variance as given

above. The quasi-likelihood method of section 3.3.4 and the

beta-binomial structure of section 3.3.5 are two methods to estimate

parameters in the presence of overdispersion. An additional method,

based on the double exponential family, is introduced in the next

chapter.
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Chapter 4

Estimation in OverdisDersed Generalized Linear Models

and an Introduction to the Double Exponential Family

While generalized linear models have proven to be extremely

useful for analyzing binomial and Poisson data, response variables in

the form of proportions or counts often exhibit more variation than

expected from binomial or Poisson models. This chapter considers

methods for estimation when overdispersion occurs, with an emphasis on

the use of the double exponential family. The double exponential

family is explored in chapter 5 as an estimation method for the

measurement error problem. The topic of overdispersion is relevant to

the discussion of measurement error for the following reason. As

shown in section 3.4, if

E(yilxi) = pi = flo + filxi and

Var(yilxi) = V(pi)/m,

we know that

E(yilzi) = pi = ,60 + #1E(xilzi) and

Var(yilzi) = E[V(pi)/mIzi] + Pl Var(xilzi).

From this, we might expect, at least as an approximation, that the

distribution of yi given zi is similar to that of yi given xi, but

with the first two moments as given above. If the distribution yi

given x.
1

is a one-parameter exponential family such as a binomial or
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Poisson distribution, it is apparent that, given zi, the distribution

of yi has greater variability than is explained by the binomial or

Poisson model (although the Bernoulli model is an exception). The

methods proposed for extra-binomial and extra-Poisson variation may be

useful for the measurement error problem when the correct mean and

variance for yi given zi are used as suggested in the techniques

proposed by Prentice (1986) and Armstrong (1985) discussed in the

previous chapter.

Section 4.1 of this chapter introduces overdispersion in its

typical setting and illustrates problems that arise when

overdispersion is ignored. Section 4.2 investigates likelihood-based

solutions. Quasi-likelihood solutions are examined in section 4.3.

Section 4.4 expands the concept of overdispersion to include

covariates in the variance function. The last section in this

chapter, section 4.5, introduces the use of Efron's (1986) double

exponential family for dealing with overdispersion.

4.1 Introduction to Overdispersion

If an observed count is the sum of correlated Bernoulli trials or

if counts for the same treatments have means which are random

variables, there will be more variability than predicted by the

binomial model. Likewise, in the Poisson setting, if the mean

parameter is a random variable, the variability of the responses is

greater than that predicted by the Poisson model. Methods for

modeling overdispersion in binomial and Poisson models are introduced

in the remaining portion of this section.
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Although overdispersion has little effect on the estimation of

mean parameters, Cox (1983) summarizes the problems that arise when

overdispersion is ignored. The first is that the parameter estimates

have a larger variance than anticipated by the simple model. The

second problem is what Cox calls a possible loss of the efficiency of

using statistics appropriate for the one-parameter family. In this

case, using the customary fully efficient statistic for the

one-parameter family may not accomplish full efficiency in the

presence of overdispersion.

4.2 Fully Parametric Models for Overdispersion

4.2.1 The Correlated Bernoulli Model for Proportions

Greenwood (1949) dealt with the following situation. Let

y.=(...+ILim) /1 m.wherethelLij 's are binary variables from a
1

singlegroupandshareacommonp.1 =Fr(Lij
i=1)

and 0
j 1 1
= p.(1-p.) for

all j=1,...,mi and let pairs of binary observations within a group

have common correlation, pi. Given these assumptions, Greenwood

showed that the response variable yi has the following mean and

variance

Var(yi) =

E(yi) = pi and

j k

p.(1-p.)

Pi fij rik

where 8.
1

1 1 1
= [1+(m.-1)p.]. Greenwood asked Irwin (1954) to derive-the

distribution of yi for this situation. Irwin accepted the challenge
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and showed that the correct distribution in this situation is the

negative hypergeometric distribution which is more commonly known as

the beta-binomial distribution. Maximum likelihood techniques can be

used for the estimation of the parameters with the beta-binomial

distribution used as the likelihood function.

4.2.2 The Beta-Binomial Model for Proportions

The beta-binomial distribution for proportion can also be derived

in the following setting. Suppose yi = (Ui14....+ Uim )/mi where Uij

are binary variables from a single group that share a common mean

Pi = Pr[Uij=1]. Let Pi be a continuous random variable independently

distributed over (O,1). A convenient distribution for Pi a beta

distribution, because it is flexible and has some desirable

properties. This assumption on Pi leads to a beta-binomial

distribution for the distribution of yi which has the following

variance:

pi(1 -pi)
-1

Var(y) = ajr--, where Oi = [1+(mi-1)pi],
1 11

as in the previous section. Once again, maximum likelihood techniques

can be used to estimate the parameters.

4.2.3 The Correlated Poisson Model for Counts

Irwin (1954) also derived a correlated Poisson model. The model

is a Poisson-type model except for the correlation factor. Suppose

that pi is the probability that a single case occurs within any of the
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m. intervals of length h, but what occurs in one interval is not

independent of what occurs in another interval. This results in the

following mean-variance relationship,

E(yi) = mipi and

Var(yi) = mipi + (mi-l)pmipi = mipi[1 + (mi-1)p]

Because it is thought that pi is small and mi is large, this could be

modeled as a Poisson distribution with #i = mipi except for the

correction that occurs. Irwin discovered that the corresponding

distribution for this correlated Poisson model is the negative

binomial distribution. The negative binomial distribution for counts

plays an analogous role to the beta-binomial distribution for

proportions.

4.2.4 The Negative Binomial Model for Counts

Suppose that yi given vi is distributed Poisson(vi). Suppose

further that v. is a random variable such that

E(vi) = pi and

Var(v.) =

This leads to the following:

E(yi) = E[E(yilvi)] = pi and
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Var(yi) = E[Var(yilvi)] + Var[E(yilvi)]

= + 92pi.

The term 92#i is extra-Poisson variation caused by the fact that vi is

a random variable. A convenient distribution for yi results if vi is

assumed to have a gamma distribution which leads to negative binomial

distribution for yi. With these assumptions, maximum likelihood

techniques can be used to estimate the parameters.

4.3 Quasi - likelihood Methods for Overdispersion

Quasi-likelihood methods (Wedderburn, 1974) only require

assumptions about the mean and variance of the distribution rather

than full distributional specifications as required for maximum

likelihood estimation. When we are dealing with one-parameter

exponential distributions, quasi-likelihood and maximum likelihood

lead to the same estimates. The practical use of quasi-likelihood,

however, has arisen from the ability to add an extra parameter to the

binomial or Poisson variance as a simple model for overdispersion.

Suppose that Y is a vector of responses which behaves similar to

binomial or Poisson responses except that the variability is greater

or less than expected. One way to model Y involves the following mean

and variance:

E(Y) = p and

Var(Y) = V(p)/0,
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where values of 0 between 0 and 1 are appropriate for modeling

overdispersion and V(p) is a positive semi-definite matrix whose

elements are known functions of p. The explanatory variable is

involvedinthemodelthroughwherex!1 = [1 xi]. Let

D=dp/d0 be full rank for all fl, which ensures identifiability of the

parameters. The quasi-likelihood function is defined as,

0Q(p;y)/0/1 = V-1(p) (y-p).

The maximum quasi-likelihood equations used to solve for 0 are given

by:

D'V
-1(p)

(y- p) = 0.

The convenience of this method is that it is not necessary to know

Q(p;y) or 0 to estimate Q. The calculations can be carried out in

GLIM (Baker and Nelder,1978).

Williams (1982) proposed two models for dealing with

extra-binomial variation (overdispersion) in logistic regression. In

the first model, he allowed the probabilities of successes for a group

tobeusobservedvariables,P1 ,independently distributed on (0,1)

where only mean and variance assumptions are made about Pi, i.e.

E(Pi) = p.
1

and

Var(Pi) = ppi(1-Pi),

- *
where

p1 1 1
.

1
= 1 + exp(-x10). He assumed that conditional on P.=p., y.

1

ad tois binomial ( mi,pi) /mi.
1

Y1
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E(yi) = pi and

var(yi) = frilpi(1-pi)/mi,

wheref0=1+(m.-1)p. The knowledge of the mean-variance
3. 3.

relationship of yi can be used to determine the quasi-likelihood

function to estimate the parameter fl. This procedure assumes that p

is known, which is not typical. Williams suggests estimating fl using

an estimate of p and then updating p before estimating fl again. He

also gives a goodness of fit test for p to indicate when the estimate

of p is satisfactory.

A second model for overdispersion given by Williams (1982) has

the logit of Pi varying about xifl with constant variance 02, instead

of varying about pi with constant variance. Estimation for this model

is accomplished by minimizing the weighted squared deviations between

each yi and its approximate expectation. If r2 is small, then

E(Pi) = pi 11J [1 + exp(-21,0]-1 and

Var (Pi). = f2 p.2

3.

(1-p.)
2

.

Estimation can be accomplished for fl as it was in the previous model,

except that,

1

*

a.

01 .1. 1 + r2(m.-1)p.(1-p.* )
3,

where pi is the value of pi based on the last estimate of 0 and 0

needs to be estimated instead of p.
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Breslow (1984) discussed extra-Poisson variation in log-linear

models similarly to Williams. Instead of assuming vi is distributed

as a gamma distribution, Breslow only required mean and variance

assumptions. Suppose yi are observed counts which, given pi (the

unknown rates) and mi, are distributed Poisson with E(yilpi) = mipi.

Suppose also that the relationship between pi and xi, can be described

with a log- linear model, i.e. log(pi J= x!// + e
i' 1

where e. has mean 0

and variance O. This results in the following approximate GLM:

E(Yi) = #i N exp(log mi + xi a) and

Var(yi) Ai + ir2#i*

If 01 is known, maximum quasi-likelihood estimates can be obtained in

GLIM by using weights Oi = (1 + 0#i)-'' and, if necessary, 0 can be

estimated and updated through the iterative procedure. Breslow

includes the GLIM macro to carry out this estimation.

4.4 Methods for Incorporating Covariates in the Variance Function

Two methods for using covariates in modeling the overdispersion

are presented in this section. The first is suggested by Welder and

Pregibon (1987) using an extended quasi-likelihood function. The

second, Prentice (1986), uses the beta-binomial distribution.

4.4.1 The Extended Quasi-likelihood Method

The extended quasi-likelihood method proposed by Welder and

Pregibon (1987) allows for the overdispersion parameter to be a
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function of covariates. The extended quasi-likelihood function for an

individual is defined to be

e(Yviii) = -1/2flog[2/V(yi)/00 + D(yiipi)Oii

where D(y.,p) = -2IQ .41) Q(y.,y.)1 = -2.(yi

yi-u
du

v u
Yi

and O. is the dispersion parameter. The quasi-likelihood function, Q,

is defined in section 4.3.

The following general model used in extended quasi-likelihood

methods was given first by Pregibon (1984),

g(pi) = xi,

h(0.) =
1

z'e

Var(yi) =

In this model both the mean and overdispersion are functions of

covariates.Estimationinvolvesmaximizinge,where.01 depends on

unknown parameters. Iterative least square techniques are used by

alternatively fixing A and 8 and updating the other parameter. This

estimation can be carried out in GLIM using a macro.

4.4.2 The Extended Beta-Binomial Model

Prentice (1986) used the beta-binomial framework to model

covariates in the dispersion parameter. Be considered a special

regression problem which occurs when measurement error in the

explanatory variables is the sole source of extra-binomial variation.
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In this case, regression models are induced for both p(z ) and 0(z ).

He embedded the resulting expressions for E(y.
3.
I"

I.

and Var(yilzi) into

a beta-binomial model so that maximum likelihood can be used for

estimation. The likelihood function, L(p,0), for a beta-binomial is

used to estimate ft. The score vector and information matrix are

obtained through

du #p aLae

and a similar expression for
d2L

These expressions, along with

the first and second derivatives of p(zi) and 0(zi) with respect to fl,

make it possible to carry out standard asymptotic likelihood inference

on Q.

4.5 The Double Exponential Family

In his motivation for the double exponential family, Efron (1986)

described overdispersion as the clumping of observations which leads

to a reduction in the number of independent observations, such as the

number of Bernoulli trials going into an observed count. Efron used a

reduction in the sample size from mi to mi0i, where ei is between 0

and 1, and introduced the double exponential family as an extension of

one-parameter exponential families to allow for this dispersion

parameter. The double exponential family not only provides for the

mean to vary independently of the variance, but allows for both the

mean and the variance to be functions of the observed covariates.
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Efron used the double exponential family as an estimation

technique which accounts for overdispersion in a robust fashion.

However, it seems that the framework is also suitable for modeling

when a specific, covariate-dependent structure for the variance is

assumed. One case with these characteristics is the regression of a

response variable on an imprecisely measured covariate, as suggested

at the beginning of this chapter. Included in section 4.5.1 is the

definition of the double exponential family distribution. Section

4.5.2 covers the basic estimation procedure for this distribution and

some properties of the double exponential family.

4.5.1 Definition of the Double Exponential Family

The double exponential family introduced by Efron (1986) allows

for an extra parameter in one-parameter exponential families to

account for the extra variability in the model that cannot be

explained by the one-parameter distribution. When extra variability

is present, the double exponential family distribution behaves

similarly to the corresponding original one-parameter exponential

distribution if the sample size is thought of as being reduced from mi

to m.0..11
A double exponential family density can be defined as follows.

If g
11,m

(y) is an ordinary one-parameter exponential family of density

functions, i.e.

g (y) = emEIY-0(#)]
#,m

where # = E(y), y is the natural statistic, 7 is the natural

(4.1)



parameter, and 0(#) is the normalizing function so that the density

integrates to 1, then the family of density functions

.1/2
0 (10 = c(11,0,m).b- ig (y)i .1g (y)11-9

#, ,m #,m ydu
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(4.2)

is called a double exponential family with parameters #, 0, and m.

The term c(#,8,m) ensures that the function integrates to 1.

The binomial distribution is used as an example, as follows. If

g
P.m

(y) is the probability function for a binomial proportion with

probability p and index m, i.e.

g
p,m my

(y) = -p".(1-P)m-",

where y = 0, l/m, 2/2,..., 1, then

fp,8,m (Y) = c(P,O,m).0412(g (y)19.1g (y)11-8
P.m y,m

is called a double binomial distribution.

4.5.2 Properties of the Double Exponential Family

Some properties of the double exponential family distribution are

that,

1) c(#i,8i,mi) = 1 and

2) E(yi) = #i and Var(yi) = 0i1V(#i).

Efron shows that these approximations are nearly exact. This allows

us to drop c(#i3Oi,mi) from all subsequent uses of the double

exponential family distribution in this work.
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A feature of a double exponential family distribution is that the

mean-variance relationship is the same as the one-parameter

exponential model except for the additional factor, 9, in the

variance. As Efron puts it, the double exponential family allows us

to take the "quasi" out of "quasi-likelihood" because the

mean-variance relationship is the same as what is used for

quasi-likelihood but full likelihood techniques and properties may be

used.Efron'sideawasthate.could contain covariates and, in this

sense, the idea is very closely related to the extended

quasi-likelihood method (Helder and Pregibon, 1987).

Some other facts presented by Efron (1986) include the following:

1)Whene.andm.are fixed, (4.2) is an exponential family

distribution with index #i.

2) The density of (4.2) represents the same probability distribution

as (4.1) except the sample size is adjusted from mi to mi 9i.

3) When #i and mi are fixed, (4.2) is an exponential distribution

withindexO.and

D(yi,#i) N (1/0i)4 as mi -4 03,

where
1

D(y1. #.1
1

) = 2m.E
#

Ilog[g
Y

(x)/g
#1 ,

(x)]I .

1
,m

1 1
,m

1
m.
1

Estimation can be accomplished using the Newton-Raphson method to

obtain maximum likelihood estimates. When the assumptions are met for

the double exponential family, it is possible to get maximum

likelihood estimates even in the presence of overdispersion.
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If the double exponential distribution specifies the correct

log-likelihood function, the estimator enjoys the usual properties of

maximum likelihood estimators, i.e. it is consistent and

asymptotically normal.
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Chapter 5

Measurement Error Model Estimation Using the Double Exponential Family

The proposed method is introduced for the special case of the

identity link and later expanded to include nonlinear links. In

section 1 of this chapter the model is presented along with its

assumptions. Section 2 discusses the role of Efron's (1986) double

exponential family in the proposed method. The details of the

estimation process are given in section 3, along with the properties

of the estimator under ideal assumptions. Section 4 introduces three

approximations to the proposed method that are considered in later

sections. A special case, when the distribution of yi given zi is

only an approximation, is considered in section 5. Section 6 covers

specific examples using the identity link. Section 7 expands the

concept to the general nonlinear link. Notes about the requirement

that E(x.1 1z.1 ) and Var(x.1 1z.1 ) must be known are contained in section 8.

5.1 The Model and Assumptions

The following model is assumed for the relationship between the

response yi and the true explanatory variable, xi:

E(yilxi) = #i = fl0+ flixi, and

Var(yilxi) = V(ai)/mi.

It is assumed that,

1) the distribution of yi given xi is a known member of a one
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parameter exponential family;

2) yi,...,yn are independent, and

3) f(yilxi,zi) =

An exact model for the measurement error is not required here,

except that values of E(xilzi) and Var(xilzi) must be estimated in the

first stage of the analysis. Two measurement error models are

considered to illustrate this. The first is an additive model,

z.
1

= x.
1

+ d.1 ,

withx.1 and di independent. The second is a multiplicative model but

reduces to an additive model when logarithms are applied, i.e.,

log zi= log xi + log di.

In particular, for the additive model it is convenient to assume

xi N(/ix,q) and di N N(0,1). With these assumptions the

distribution of zi is normal with mean #x and variance el + eq. The

resulting conditional distribution of xi given zi has a mean and

variance as follows:

E(x.1z.) = #
x

+ R(z.-#
x

) and

Var(x.1z.) = 0(1-R),

where R is the reliability ratio, (1/(q+c1). Thus, the assumptions

on xi . and d. allow us to calculate the necessary values, E(x.1z.) and
1

Var(x.1 1z.1 ).
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For the multiplicative model, it is convenient to assume

log xi ,... N(#x,f21) and log di N, N(0,f4). With these assumptions, the

distribution of log zi is normal with mean px and variance s; + fl.

Meresultingconditionaldistributionoflogx.1 given log z
i
has a

mean and variance as follows:

E(log xillog zi) = px + R[log(zi)-/ix] and

Var(log xillog zi) = ,;(1-8).

where R = 0/(0+0). The moment generating function for this
x x d

conditional distribution can be used to show that:

and,

R
E (x dz . ) = . [ (1-R) px+441-R) 0]

i 3.

ziexp
x

E(x2
i

1z) = z.
2

exp[2(1-R)p
x
+2(1-10(1].

This leads to the following variance:

Var(x.lz.3. ) = E(x.2
1

lz.) - [E(xi lz.3. )]
2

1 i

= z.1 2RexP[2(1-R)px x
+(1-8) f2] lexp[ (1-11) 0] -11

These are two models for which E(x.1 1z.1 ) and Var(x.1 1z.1 ) may be

estimated with the available z.'s and some extra information about the
1

distribution of the measurement error. Other methods, such as the use

of a validation data set, may be used to estimate these. In what

follows E(x.1 lz.1 ) and Var(x.1 lz.1 ) are taken as known and the particular
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modelforthedistributionofx.1 and the measurement error are not

relevant.

5.2 The Double Exponential Family as an Approximation

The assumptions in the previous section lead to the following

induced mean and variance for the conditional distribution of yi given

zi:

E(yilzi) = #i = + fli.E(xilzi) and

Var(y3.
3.

1
dz.) = .E[V(#.)Iz.] + .4.Var(xilzi)

m. 3. 3.

3.

where 61.
1
depends on the variance function V(.). For the primary cases

of interest, when yi given xi is binomial or Poisson, E[V(#i)lzi] can

be easily expressed in terms of E(xilzi) and Var(xilzi). If the

density function for the conditional distribution of
Y1

given z
i

were

available, estimates of the unknown parameters could be obtained by

using maximum likelihood techniques. However, the density cannot

usually be expressed in closed form. The idea is to use a density

which approximates the distribution of yi given zi and has the same

mean and variance as given above.

The proposed method uses Efron's (1986) double exponential family

distribution to approximate the density for the induced model. This

is closely related to Prentice's (1986) work in which the distribution
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of yi given zi is approximated by the beta-binomial distribution.

These distributions are not believed to be the true distribution of yi

given z
i
but are useful and convenient approximations for the purpose

of obtaining estimates. By specifying the distribution, it is

possible to use maximum likelihood estimation techniques to estimate

the parameters of interest (although the resulting estimates only

maximize a likelihood which approximates the true likelihood based on

the distribution of yi given zi).

5.2.1 Introduction to the Proposed Method

The double exponential family distribution is based on a

one-parameter exponential family distribution but contains an extra

parameter, 8i, which is used to model the dispersion. In the current

problem, the parameter, Oi, is a function of the measurement error

variance and the unknown regression coefficients.

One feature of the double exponential family is that it allows us

to model the dispersion parameter as a function of covariates. Using

this feature the proposed method capitalizes on the fact that the

variance of yi given zi is a function of Q when the estimation of fl is

carried out with maximum likelihood techniques. The purpose of using

information about # contained in the Var(yilzi), is to more

efficiently estimate a than is possible with, say, Armstrong's (1985)

method. When information about the parameters contained in the

variance is used in the estimation procedure, it is referred to as a

feedback model (Carroll and Rupert,1982).
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The proposed method is in the same spirit as the work proposed by

Prentice (1986) and Armstrong (1985). Prentice's method is also a

feedback method, but differs because the distribution of yi given zi

is approximated by the beta-binomial distribution, instead of the

double binomial distribution. Armstrong's method is not a feedback

method, because it treats Var(yilzi) as known before each iteration

and updates it after each iteration. His method assumes the same

distributional form for the distribution of yi given z
i
as is thought

to be true for the distribution of yi given xi, but accounts for the

dispersion parameter in weights, wi, and in the use of E(xilzi) as the

explanatory variable rather than zi. The use of the double binomial

distribution was not intended to lead to "better" estimates than those

from the beta-binomial distribution but the double exponential family

approach is more flexible in that it could be used for the Poisson

case as well.

5.2.2 Basis for Approximating the Distribution of yi given zi

As previously mentioned, the proposed method involves

approximating the density of the induced model for yi given zi. The

basis for this approximation includes the following reasons.

1) It is possible, in some situations, to write down an expression

for the exact likelihood for the distribution of yi given zi with

the given assumptions, but often it does not have a closed form

solution. Thus, solving the exact maximum likelihood equations

can be very difficult and involve numerical integration.
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2) The double exponential family distribution offers a convenient

framework for incorporating the mean-variance relationship given

at the beginning of section 5.2, which is not substantially

different from the original exponential family distribution

assumed for yi given xi.

5.3 Details of Estimation and Properties of the Estimator

Recall that the induced mean and variance for this model are

E(yi(zi) = E[E(yilxi)lzi] = flo + #1E(xilzi) = fit and (5.2)

Var(yi(zi) = E[Var(yilxi)lzi] + Var[E(yilxi)lzi]

=
1

E[V(0.)1z.] + P2 1 1.Var(x.lz.).
1Mi

(5.3)

It is assumed that both E(x.1z.) and Var(x.1z.) are known, or

estimated in a first stage of the analysis as in the pseudo-likelihood

approach used by Carroll et. al. (1984). The remaining parameters to

be estimated in the induced model are fl = (flo,fli).

Let G denote the log-likelihood based on the double exponential

family distribution. The score statistic is obtained through

at c7t 6* at a8
7'+

and a similar expression for the information matrix
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it

I oflor

Mg* V g

Ug*) g* [410) 4

The estimation process is iterative, where A is updated at each step

using the Newton-Raphson method as follows,

(t+1) 'At) -1 de,
fl = fl .1

where t(t) is the current estimate of fi, ^0(t+1) is the updated

dc
estimate, and I and are evaluated at fl

(t)

If the double exponential family distribution specifies the

correct log-likelihood function, then the estimator enjoys the

properties of maximum likelihood estimators, i.e. it is consistent and

asymptotically normal with mean ft and variance I
-1

. The simulation

results seem to indicate the same properties hold true for the

proposed estimator when the conditions of our example are satisfied.

The details of the method are shown in section 5.6 on three special

models for yi given xi: normal, binomial, and Poisson.
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5.4 Approximations to the Proposed Method

The three approximations that are introduced in this section are

modifications of the double exponential family, maximum likelihood

method. The third approximation is considered as a special case in

section 5.5. All of the approximations are illustrated on the

chromosome aberration data example in section 6.1. The modifications

are based on the extent to which information about fl in the variance

of yi given zi is used. Recall that

V(q)
Var(yilzi)

E[V( .) lz.] 1Var(x.lz.)
#1

)

1 r
V(r)

1
where 071

V(p1-
+ m.--=.---- (this expression simplifies

1

for the binomial and Poisson cases, in particular for the binomial

case with identity link

Var(x.1z.)

871 *= 1 + (m.-1),V.
1

where V. =
1

1 1 1
(5.1).

The modifications involve replacing certain pieces of ei by their

estimates and treating then as known. Armstrong's method, for

example, involves the replacement of all of 9i by its current

estimates. For simplicity all the approximations are discussed in

terms of the binomial identity link case, but it is very similar for

the Poisson case and non-identity link.

The first approximation are referred to as approximate DEF method

1. In this method the only feedback information about fit in

Var(yilzi) from (5.1) that is used is contained in the 4 term. The
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termV.is estimated at each iteration of the Newton-Raphson method

but treated as known. Two reasons for using this approximation

include: 1) it is thought that most of the information about #
1
might

be contained in the #
1

term and 2) the derivatives for the estimation

of fl are greatly simplified. If the estimates are not greatly

affected by this approximation it may be preferred over using the

complete feedback model.

The approximate DEF method 2 is an intermediate step between the

first and third approximations. This method allows for Al to be

replacetibirahotherparameter,saIrevillOW,butV.is still

treated as a function of Q. This approximation allows for the

feedback information about fl in Var(yilzi), except from the fl1 term.

Approximate DEF method 3 combines both of the first two

approximations.ThisapproximationallowsforOto be independent

of fl, so that this method is no longer a feedback method, but more

along the lines of Armstrong's (1985) method. In this approximation

01 isreplacedbyalandTis estimated at each iteration of the

Newton-Raphson method but treated as known.

5.5 Some Asymptotic Results When the Double Exponential Family is

Viewed as an Approximation

It is of interest to know how well the asymptotic properties of

the maximum likelihood estimator apply when the correct distribution

of yi given zi is not the double exponential family. Some of White's

(1982) results concerning properties of maximum likelihood estimators

based on incorrect likelihoods are relevant, but I have not been able
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to apply the theorems to the complete double exponential family

estimator. The results below relate to the approximate DEF method 3

introduced in the section 5.4, with the restriction that the natural

link is used. The results demonstrate the asymptotic properties of

the double exponential family estimator when Vi is taken to be known.

Additional results related to the small sample distribution of the

double exponential family estimator are discussed in Chapter 7.

Suppose g(yilzi;v°) is the true distribution of yi given zi with

parameter vector
0' l'

yi given zi, on

which the "maximum likelihood estimates" are obtained, is specified to

be the general double exponential family distribution where
Bil

is

independent of Q1 such that 01=1-withilHmown. This can be

expressed in the general form with natural parameter, as

f(lf.""141e"fl'ili)c49i[ expfYiii-b(ii) c(y.)1 1 w.
( Y1

r
= #1.exp T-.11.[yoi-b(vi)]-(yiii-b(ii)]] c(yi))

w.

where v=(fl
0'

)1.?

11 i
) are the unknown parameters, tb=h(01)=fl

0 1 i
e with

zI=E(xilzi), and h() is the natural link function where vi=h(yi).

The corresponding log-likelihood for yi given zi is

t(v;yi,zi) =log Ef (yi lzi; v)]=4.1og ( 0i) +40iD (yi; (ii) ] /wi+c (yi)

ili-b(li) yji-b(ii)]
where D(yi;gi)-r w. w.

is the deviance. The

1



existence of a unique maximum to the following expression is a

necessary assumption for the use of White's theorem:

n

L = E
v n
°Ilia LE t(v;yi,zi)1
n00

i=1
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(5.4)

where expectation is with respect to the true distribution,

g(yilzi;v°), and is denoted by the subscript v°. The maximization

can be done by considering the following equations

d dnp = 0 and 3iL = 0.

Subject to regularity conditions involving the exchangeability of

derivatives and integrals, these equations reduce to

b(q.)-b(ii)/411
op I. 0 and

n
dd.

iii=E[ylir iEvo[D(Yi;gi)]1311 = 0.

1=1 1

By using Taylor's first order approximations on bari) and D(yi://i)

about lq, these equations reduce to

d

11
.

= ...iiiirzizil(AL-AP)=0 and

i=1
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where 0.1 1= 1 + eV.
*

1
and Z! = (1 E(x.1z.)]. If E(x.1z.) does not equal

0 or 1 for all i then the unique solution to these equations is v =

0. Thus, the solution to these equations converge to the true values

as desired.

White defines the following matrices in order to arrive at the

information matrix for the misspecified model:

n n

A= E lim l at nd B= E I11-0lia lE at MI
i WW v

°
I 4 WT

oo
i=1 i =1

The variance-covariance matrix of the asymptotic distribution of v is

defined as

C = A
-1
BA

-1

evaluated at v=v*, where v* is the solution to (5.4). For our problem

where the parameters of interest are the fl's, the covariance matrix of

interest becomes

-1 -1
C
11

= A
11

B
11
A
11

n

where All = Eflollim iliy] Al and Bll = Evolim 001.
"°2 1=1

`nom
1=1

When C
11

is evaluated at ifq , the solution to (5.4), C
11

reduces to

A
11

which is the usual asymptotic covariance matrix. The result can

be expressed as

Vi(fl ,d9) N[0,C
11

(r)] as n + m,

because ir is the solution for /1 in (5.4). Thus, in this special case
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the estimator is consistent and asymptotically normal with variance-

covariance matrix as indicated by maximum likelihood theory as if the

double exponential family were correct.

5.6 Special Cases with Identity Link

This section illustrates the proposed method using three special

cases involving exponential family distributions: 1) normal with

unknown variance; 2) binomial, and 3) Poisson. All of these cases use

one of the measurement error models discussed in section 5.1, where it

is assumed that E(xi (zi ) and Var(xi (zi ) are known or will be estimated

in the first stage of the analysis and then treated as known in the

estimation of if using the double exponential family.

5.6.1 The Normal Distribution

Suppose yi can be modeled as follows:

yi = fl
0

+ fl x + e.
1 i i

where el .,,,, N(0,0), and 0 = (0
0'

0
1
) are the parameters of interest.

Because Var(yi(xi) = tr:, it follows from (5.2) and (5.3) that

and

E(yi(zi) = flefliMxi(zi) = /II

Var(yi(zi) = el + 4.Var(xi(zi)

= 1/0.
i

where Bit= r2 + 02
1 i

-Var(x.1z). The normal model with unknown



variance is a member of the double exponential family and may be

written as

1 9 9' 1
1-9.

4 /.1Z.-7-0.71-----er.r-I..-2.""1/ lf----eXP[-i(17.-u.)]/ 1Le,e.tIll li 1 YL y1.1 Pi/ J .11
1 1 riT

1

eY e.
I ex+ L.

(y1 .-p*) 2 ].=
2 1IriT

(5.3)
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The double exponential family approximation leads to the following for

y.
1

given z.1 :

y1
1

dz. N N(flo+01E(xilzi) ,,:+4Var(x.1 lz.1 )]

Thisisexactifxigivenz.1 is normal but an approximation otherwise.

If Var(x.lz.) is constant, the maximum likelihood estimates are

the least squares estimates in the simple linear regression of yi on

E(x.1 lz.1 ). If Var(x.1 lz.1 ) is not constant, there is information about

in Var(yilzi). The corresponding log-likelihood for a single

observation in terms of ist and 0i is

C=-41og(2r) ++log(0.1 ) - +
1

(y.-e)
2

.11
Estimation involves the score vector as described in section 5.3 and

the following derivatives are needed:

et = 0.(y.-#*),
up



61

dc --
-26 Var(x. lz1)

T = 01(11-#19E(xilzi) + [441/9i) 441i#1)] fe+flivarlx1 1z1 ) ] 2

The derivatives for the information matrix include the following,

92I
Thly = -va

0

-2fliVar(xilzi)

dflOdfil
1 1

u.E(x.1z.) + #1) ] [ 10.112Var(x.1z.)]2
and

e 1 11

my
dO

= I [ -OiE(xilzi)+(yi -ppm ]E(xilzi)

+ ([(yi-pt)E(xiizi)-4(1,02i)g]g+[4.(1,8i) 4(Yi-01)21444,

99
-216,

1
Var(x.1z.)

2
[0-02Var(x.lz.)]
e 1 1 1

where
[1+fir

1 1
iar (x I z ) ] 2 and 712- --2Var (xi I zi ) [s2+fl2Var (x

I z ) ] 3"1 e 1

The above equations used with the Newton-Raphson method below yields

the maximum likelihood solutions for it

ii(t+1) I-1.d

Some simplification is possible if the method of scoring is used for

the normal situation; but not for the binomial and Poisson cases that

follow.

The purpose of the double exponential family is to be able to

apply the same desirable properties of the normal distribution to

distributions like the binomial and Poisson distribution. The next

two subsections give an example of these two distributions.
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5.6.2 The Binomial Case with Identity Link Function

Suppose Yilxi is distributed binomial (mi,pi)/mi, where

E(yilxi) = pi = floilixi and

p.1 (1-p.1 )

Var(y.3. lx.3. )
m

.

.

1

These assumptions lead to the following mean and variance for yi given

Z.:
1

E(yilzi) = #044113(xilzi) = pt and

V 4-Var(x.3. 1z.)
3. 3. 0 1 1 1

= 1-0(1-0) + (1- 1 )fi2 Var (x I z )

. 3. mi 1 3. 3.mi

p(1
3. 3.=

(24-W2Var(x.1z.)
1 1

where 9
71

= . = 1+ . The mean and variance are in01 e(1-0)

the same form as the original distribution of yi given xi with the

addition of 9. in the variance. This is the situation that the double

exponential family is designed to handle. The double binomial

distribution is defined to be:

m.y. m.y. m.-m.y. 1-0. a.
f 1 1 , 1 1 1( 1 )

. ti-y.,'0 0.'11 1' 1 Y1 YI' Y1 1 m.y.
1' 1 1 1
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and can be used to approximate the distribution of yi given zi. Using

f
Ai

4. as the likelihood, the usual asymptotic inference can be
r%

performed. The corresponding log-likelihood for a single observation

in terms of pt and Oi is

t = 4-log(0i) + miei[yilog(pI)+(1-yi)log(1-ppl

+m.(1-4.Hy.log(Y.+0.-y.)log(1-y.)] + logei
miYi)

Estimation involves the score vector as described in section 5.3 and

the following derivatives are needed:

1
m.01 .(y1.- 0)at p1

(1) + at aa ao
70 pt(1-pt)

17 7.4 and
vpo

dt mpi8(i
*(i1Y-p*)1 E(x.lz

at de g
i i )

where = 4(1/0i) + mirsilog(0)+(1-y.)log(1-1T]

mi[yilog(yi)+(1-yi)log(1-yi)],

1
-(m.-1) AVar(x.

1
lz.)(1-2/1 -2fi E(x. IZ-

1
)]de -1 dO 0 1 1

and
1-01-T2' [14(1-1:1) Po

#0 (mi-1)Var(xilzi)(2#0/11-24/31-2fl04E(xilzi)+4E(xilzi)]

41(1-1V2

The derivatives for the information matrix include the following,

it [I et et de dO 11+11 et d8 viq dO +dt (729 d20 1

dfli (dp*) 2+ Tflo d9) 2N 00 PO W/o ( dO) 2 (a00) j



64

82c 82c 88 el0 i(x iz.)1
eiflodfii 1.1 dP*) 2 734li 7c() r i' 1 -1

alt 82t de 80 ky 80 +dc 020 820 1

+ 7-05-*+-07-27i rio 7R (do 2 dflOdflii

and

Ticiej= R(opo2:0E(xilzi)+0802opt
*
80 80 bt )1
Ti zi j

Ro:62%E(xiizi,+() nr td.igt +L 820 820d2c 88 84 188
v,vi (O0) 2 ( ofli)

-m. 9. [1, -2y. plc+ (0) 2]
where

alt 1 1 1 1 1 i
(op*)2 [1:1(1-pi0)] 2 t

et
TRIT2 T9 T2'

820 2
( 90) 2

82t mi (Yi-Pp

71W*- '

82*
2 (2.-1) 92Var (x. lz. )10(1-p'.1) +[1-290-2filE(zi Izi)] 2

1

("0) 2 [0(1-0)]3

2t
f [fi-00-34E (x I z i)h(1-q)

"" -2 (m1 1 )Var (xi Izi)
2

q
0 1 1p

E (Xi IZi) 4 [1-00-2fl1E (Xi IZi) ] 2

[PI(1-4)]3
and

i2 =
1[1-4-2flcE(xlz)+8E(xlz)]q(1-pa

2 (m-1)Var (xIz)
o p

2

1 [P1(1-Pp ] 3

E (Xi 1zi) [1-2,90-291E(xi Izi)] [00/31-24#1-2,904E(zi Izi)+4E(mi lzi)]

[PI (1-Pp ] 3
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The exact distribution of yi given zi, assuming the additive

measurement error model, can be expressed as follows:

f(yilzi) = f(yilxi).f(xilzi)dxi
o

/ mi ) miYi
m.-m.y.
1 1 1 10 (1-0) ------exp( -4(x. -p)2/0]dx.

j: miyi 1 i i i
liTil

12 0.0
x

where p = p
x

+ -171.7.77(zi-px) and 0 = 722. The exact distribution of
x d x d

yi given z.1 , as illustrated here, does not have a closed form

solution. It can be approximated using numerical integration. The

derivatives for this process can be very difficult to calculate and

numerical integration can be complicated. Also, the actual

calculation process is very time consuming even with the aid of a

computer. Although the derivatives are difficult for the double

binomial distribution, numerical integration is avoided and the

computations are much easier. As it turns out, in the simulation for

the example considered, the exact maximum likelihood is slightly less

biased than the proposed method, with a slightly smaller mean square

error. Very little, if any, information is lost by using the double

binomial distribution instead of the exact method in the situations

considered.

5.6.3 The Poisson Case with Identity Link Function

Suppose yilxi is distributed Poisson(pi), where

E(yilxi) = pi = flo+filxi and
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Var(yilxi) = pi.

Then, from (5.2) and (5.3)

E(yilzi) = 00+fl1E(xilzi) = /II and

Var(yilzi) = E[(fi0 + flixi)lzi] + 4.Var(xilzi)

= plc + 021.Var(xilzi)

4.Var(xilzi)

where 071 1= 1 + . The mean and variance are in the same
14i

form as the original distribution of yi given xi with the addition of

O. in the variance. The double Poisson distribution used as an
1

approximation to the distribution yi given zi is:

lol.eice-yi.yiyi 1-0i
1

(Ydz.) = 0.!
Yp. 8 !

1
Yil

Using f as the likelihood, the usual asymptotic inference can be0,0

performed. The exact distribution of yi given zi, as it was for the

binomial case in section 5.4.2, can be expressed as follows:

0 Y.e

f(Ydz.) = y !

1
-#)2/0]dx.

J:
.

02 f2.,2
x d

where p = 7,17.77.7(z.-# ) and o2 -y--y.
I 1 x

^ vx d x d
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The exact distribution of yi given zi as illustrated here does

not have a closed form expression. It can be approximated using

numerical integration. So the same type of advantages, for using the

double Poisson distribution over the exact distribution, hold for the

Poisson case as they did for the binomial case of the last section.

5.7 Special Cases with Nonlinear Link

This section features the proposed method using nonlinear link

functions. In the case of the identity link, the assumption that

E(x.1z.) and Var(x.1z.) are known resulted in ft being the only unknown

part of E(yilzi) and Var(yi lzi) . Thus, for the nonlinear link,

g(#i) fleflixi'

E(yilzi) = E[g
-1

(fleflixilzi] so either additional assumptions are

needed or g
-1

() must be approximated so that E(x.1z.) and Var(x.1z.)

provide the necessary information. If an attempt is made to linearize

g
-1

() in xi, a first order Taylor's approximation about E(xilzi)

yields

-1 -1 -1
g (flepixi)= g g [flefliE(xilzi)]fli[xi-E(xilzi)],

1
i

.

where g (.) is the derivative of g
-1

() with respect to its argument.

When this approximation is used the mean and variance for the

distribution of yi given zi are as follows:

E(yilzi) = E[E(yilxi) lzi] = mr -11R +A 1 1 -1r11 +A vi"Lg Ipeo-riXi. Izii = g
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and

Var(yilzi) = E[Var(yilxi)Izi] + Var[E(yi lxi) Izi]

=E[Var(yilxi)Izi] +Var[g
-1

(flo+flixi) Izi]

= E[Var(yilxi)Izi] + Var[g
-1

[flefilE(xilzi)]

+--1g

= E[Var(yilxi)lzi] + (g1[flo+fliE(xilzi)]124Var(xilzi)

In both of the examples considered later in this section, Var(yilzi)

is a function of E(x.lz.) and Var(x.lz.) when the first order Taylor's

approximation is used. Now assuming E(xilzi) and Var(xilzi) are

1-

known, and because we know g
-1

() and g (-), all that remains to

estimate is the parameters of interest, as is true for the identity

link.

Two cases are considered, the binomial distribution and the

Poisson distribution. In section 5.5.1, the binomial case using the

natural link function, the logit link, is investigated. Section 5.5.2

uses the log link for the Poisson case. Once again, either of the

measurement error models described in section 5.1 would be appropriate

assumptions for the nonlinear link situation.
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5.7.1 The Binomial Case with Logit Link Function

Suppose Yilxi is distributed binomial (mi,pi)/mi where

fl +fl x.

=
e 0 1 1

and
0 1 1 ii.eflo+flixi

p.(1-p.1 )

Var(y.lx.)
1

m.1
1

P.

whereg(Pi
1

)= logit(p.) = log(14)- #
0
+fl

1 1
x. and fl = (flo,fli) are the

parameters of interest. These assumptions lead to the following mean

and variance for yi given zi:

E(y.lz.) = E[g
-1

1
(1-p.)

Var(y.lz.) = E
1 m.

1

+filxi) Izi], and

z. l + Var[g
-1

(#
0

+ fl
1
x.) lx.]

._Elg (fi
0
+ft

1
x.) [1-g

-1 (fl
0
+fi

1
x.)] lz.I l+Var[g

-1
(fl

0
+fl

1
xi) lz

i

When the Taylor's approximation is used, the mean and variance for the

distributionof.given z.
1
are as follows:
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1 -1 -1 -1
Var(y.iz.)=---Elg (fl x.)(1.-g +fl x.)flz.l+Var[g (# +fl x.)1z.]

1 . m . 0 1 0 1 1 0 1 1 1

r -1
#0411E(xilz.)]-1g

-1
[flefilvxilzim2

41i-luefilvxilzi),12varcxilzid

1[ 0+ 1E (xilzi)]-(g- l[fl0 +fl1E(xilzi)] }2]

(1-717)4(i-1 u moillE(xilzi2var(xilzi)

1 * * 1 .2 !_-1
= ---p.(1-p) + (1- )P 1g [fl E(x.1z.)])

2
Var(x.1z.)

m. 1 1 m. 1 0 1 1 1 1
1 1

* *

p.3. (1-p.)

m1'

(-1(fl +fl(m.-102(4
where 971= 1 +

1 1 0 lE xi
Izi)])

2
Var(xilzi)

1 p*(1-0)
3.

*
= 1 + (m.3. -1) rp.

1
(1-p.

*
)Var (x. l2.z.)

The simplification in results from the fact that for the logit link

pi
, *, -1 a

= 0 [PefliE(xilzi)].

Now E(yilzi) and Var(yilzi) are functions only of the unknown

parameters fl =
0'

fl
1
). The mean and variance are in the same form as

the original distribution of yi given xi with the addition of Oi in

the variance. A double binomial model with this mean and variance can

be used to estimate Q. The exact distribution of yi given zi does not



71

have a closed form solution and must be approximated using numerical

integration.

5.7.2 The Poisson Case with Log Link

Suppose yilxi is distributed Poisson(#i), where

E(yilxi) = #i = g
-1

(flo+flixi) = exp(flo+flixi) and

Var(yilxi) = #i,

where g(#i) = log(#i) = flo+flixi is the natural log link and fl =

0'
fl

1
) are the parameters of interest. These assumptions lead to the

following mean and variance for yi given zi:

E(yilzi) = E[g
1
(fleflixi)Izi] and

Var(yilzi) = E(oilzi) + Var[g-1(fl0 +

= E[g
-1

(flo+filxi)lzi] + Var[g
-1

(fleflixi)Izi].

When the Taylor series expansion is used, the mean and variance for

thedistributionof.
Y1

given z
i
are as follows:

-1
E(yilzi) = g [floillE(xi(zi)] = p: and
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Var(ydz.) = E[g
-1

0
+fl

1
x.) lz.] + Var[g

-1
(fl
0 1

x.) lz.]

-1 .-1
= 0 tflo+filE(xilzi)] + pilg [fiefl1pxilzi)112Var(xilzi)

+ #1(011(flo+fl1E(xilzi)]12var(xilzi)

AZ

where
gii

= 1 + 41il[fl0 +filE(xilzi)]12Var(xilzi)/pI

= 1 + #201IVar(xilzi).

The simplification in results from the fact that for the log link

.-1 a
Pi = 0 bo+fliE(xilzi)]. Now E(yilzi) and Var(yilzi) are functions

only of the unknown parameters fl = 0' 1
). The mean and variance are

in the same form as the original distribution of yi given xi with the

additionofe.in the variance. A double Poisson model with this mean

and variance can be used to estimate Q. The only change from the

Poisson case with the identity link is the form of ;01. The exact

distribution of yi given zi does not have a closed form solution and

must be approximated using numerical integration.

5.8 Notes about the Requirement that E(xlz) and Var(xlz) are Known

Recall from section 2.2 that even with the assumption that the

vector (yi,xi,di) was distributed normally, all of the parameters were

not identifiable. In this particular example, we had one more

parameter than minimal sufficient statistics. The need for additional
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information in that section took a number of different forms, one of

which was the variance of the measurement error.

The means for both xi .and z.
1
can be estimated from the observed

z.
1

since the expected value of the z . is p . The variance of the

observed z.
1
is equal to 0 + f2. If either 0 or 0 are known we

could estimate the other value by subtracting the known value from q.

Knowledge of fl provides the necessary information for estimating

E(x.3. 1z.) and Var(x.3. 1z.3. ), with the assumptions we are using for the

measurement error models introduced in section 5.1.

It is not likely that such knowledge of the measurement error

variance is available. A sensitivity analysis involves fixing the

measurement error variance at various possible values in order to

estimate fl, and then exploring the results of interest over a

plausible range of these values.

Another alternative to arrive at the information needed for

estimating E(xilzi) and Var(xilzi) involves approximating E(xilzi) by

a linearfunctionofz.1 .This idea is explored by Cochran (1975) for

the additive measurement error model and by Schafer (1988) for the

multiplicative measurement error model. Thus, by assuming E(xilzi)

can be expressed as a linear function of zi, say L0+ Lizi, it is

possible to solve for L
0

and L
1
in terms of known or estimable values.
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Chapter 6

Data Examples

This chapter focuses on the analysis of the examples introduced

in chapter 1. Although complete analysis of these data sets are not

given, estimates of parameters are provided using the proposed double

exponential family estimator and several alternative methods. Section

6.1 contains the model and resulting analysis for the chromosome

aberration data. Section 6.2 considers an example of the association

between serum cholesterol and heart disease.

6.1 Chromosome Aberration Data Analysis

Recall from section 1.2.1 that this data set involves 649

survivors of the atomic bomb dropped on Hiroshima. The underlying

model used for this data set results from research conducted at the

Radiation Effects Research Foundation in Hiroshima and those

affiliated with this organization, including Gilbert (1984). The

underlying model is laid out in the following points.

1) The response variable, yi, is the proportion of cells with

chromosome aberrations, out of 100 examined, and the explanatory

variable,x.1 ,is an individual's true radiation exposure. The

distribution of yi given xi is

binomial(100,pi)/100.

2) The relationship between pi and xi is linear, i.e.
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pi = #
0

+
1
x..

This assumption is rather unusual for the binomial framework, but

there are biological reasons as well as empirical evidence for

this model. (See Otake and Prentice (1984) for a more detailed

discussion.)

3) The observed measurements of radiation, zi, are thought to be

related to the true radiation by

z. = x. d.
1 1 1

The values of E(x.1z.3. ) and Var(x.3. 1z.3. ) are taken from work done by

Pierce, Straw, and Vaeth (1989) based on the assumptions that

x1 .....,Weibullandd1 .ft.lognormal. The standard deviation of d. is
1

assumed here to be 0.30; as is assumed by Prentice (1986). It

would be wise to explore the sensitivity of parameter estimates

to this choice of measurement error standard deviation and to the

particular model from which E(x.
3. 3.

lz.) and Var(x.lz.) are derived,

but this will not be pursued here. Because the measurement error

is believed to be multiplicative, Var(xilzi) is a function of zi.

The values of E(x.3. 1z.3. ) and Var(x.3. 1z.3. ) that are used for the

chromosome aberration data set are in Table 1.

4) The data has been grouped into the following seven dose

categories measured in rads: (0, 1-99, 100-199, 200-299, 300-399,

400-499,500andabov0.111evaluesthatareusedforz.1 in each

group
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Tablel_conditimalmansandvariancesuseciforx.1 given z..
1

Measured Radiation, z E(xlz) Var(xlz)
0.0 0.0 0.0

38.0 38.35 133.9

143.9 135.60 1596.4

244.1 220.40 4133.8
346.9 303.11 7763.3

440.7 375.59 17789.6

666.6 541.22 23872.8

Measurement Error = 0.30.

are given in the first column of Table 1. These values are the

average of the observations within the group.

Recall from section 5.5.2 that the mean and variance for yi given

zi,whenthedistributionofy.1 givenx.1 is binomial with an identity

link function, are

E(yilzi) = /Jo + #1E(xilzi) = pi and

0(1-0)
%

.2

i

*

0(1-0)

Var(x.1z.)
1

where 0.1= 1 + (m-1)p V. with v. This mean-variance
1

relationship is incorporated in some way into all the methods

illustrated in the data example that follows, except for the naive

method which ignores measurement error.

The methods that were used to analyze the data include the

following,

1) Naive method This method uses ordinary binomial regression

treating the zi's as if they were the true radiation exposures.
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2) Naive method corrected for attenuation Measurement error

spreads out the explanatory variable, attenuating the slope

parameter. By dividing the naive estimate by

L
1
= E(di)

var(z.)

var(x.)

a consistent estimate of # is obtained. This result is for the

multiplicative measurement error model given by Schafer (1988).

3) Naive method with z replaced by E(xlz) This method uses

ordinary binomial regression (maximum likelihood) treating

E(x.I. 1z.) as if it is the true radiation exposures but makes no

adjustment to the variance function.

4) IWLS Armstrong's method is exactly the same as using

iteratively weighted least square (IWLS) in the regression of yi

on E(x.I. 1z.I. ) with weights, 1/Var(y.3. lz.3. ), updated at each

iteration. (See section 3.3.4 for a more thorough discussion of

Armstrong's method.)

5) Prentice's method This method uses the beta-binomial

distribution to approximate the density of yi given zi. Maximum

likelihood techniques are used to estimate O. (See section 3.3.5

for a more thorough discussion of Prentice's method.)

6) Double Exponential Family (DEF) method This method uses

Efron's double binomial distribution to approximate the density

of yi given zi. Maximum likelihood techniques are then used to

estimate ft. (See section 5.3 for more details on estimation

using the double exponential family distribution.)
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7)APProximateDEFmethod1 ---Inthismethod,V.1 is estimated at

each iteration but treated as known. Maximum likelihood

estimates are obtained from the DEF model with

Bi
.2 *

= 1 + (m.a. -1)p
1
V.

where V* is taken as known.

8) Approximate DEF method 2--- This method replaces 4 with a

differentparameter,butV.is still a function of fl. The form

of 9.
1

becomes

9i 1 + (m.-1)a
1
V.

1

where V . is not assumed known. Estimation is carried out as in

6) above.

9) Approximate DEF method 3--- This method allows for the variance

tobeindependentoffi.TheformaClbecomes

91
1

71= 1 + (m.-1)e
1
V.

where Vi is treated as known in each iteration as in 7) above.

10) Lognormal MLE -- This method involves numerical integration of

the exact distribution of yi given zi assuming that log(xi) given

log(zi) is normal with an estimated mean and variance for the

distribution of log(xi). Numerical integration is used to

approximate the derivative values and the Newton-Raphson method

is used to estimate the parameters. It is not expected that the

data follow these distributional assumptions but there is some
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interest in exploring the results on this oversimplified model,

as used by Prentice (1986).

Table 2 contains estimates of the variance of yi given zi

separated, for each radiation group of the chromosome data, as follows

Var(yilzi)

0(1-0)
+ (1 - )

miml
#2Var(x.lz.)

(biusual

nomial + binomial ).

variation variation

Notice that there is very little overdispersion due to measurement

Table 2 Contributions to Var(x.1z.).

Methods Measured Radiation, z, in nunareas
Variance Contributions 0 0-1 1-2 2-3 3-4 4-5 5+

Naive
Binomial variation 8 18 43 65 87 105 145

Regress on E(xlz)
Binomial variation 8 18 45 67 87 103 138

IWLS
Binomial variation 8 18 45 67 87 104 138

Extra-variation 0 1 13 35 65 98 200

Prentice
Binomial variation 7 19 46 69 90 107 143

Extra-variation 0 1 15 39 72 109 221

DEF
Binomial variation 7 19 49 73 96 114 151

Extra-variation 0 1 17 45 83 127 257

DEF Approx. 1
Binomial variation 7 20 52 78 102 121 159

Extra-variation 0 1 20 52 97 147 299

DEF Approx. 2
Binomial variation 8 19 45 67 87 104 138

Extra-variation 0 1 13 35 65 98 200

DEF Approx. 3
Binomial variation 8 19 45 67 86 103 137

Extra-variation 0 1 13 34 64 97 196

Table values have been multiplied by 10 .
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error in the low dose categories but that it accounts for over half of

the variation in the two high dose groups.

Table 3 contains the resulting estimates for the slope parameter.

The following items are technical comments about the estimates:

1) The naive estimate of slope is the smallest, as expected, since

measurement error, in general, tends to attenuate the regression.

2) The Lognormal MLE method assumes, along with multiplicative

measurement error, that the di's and xi's are distributed

lognormal which implies that the zi's are lognormal. An

examinationofthedistributionofthez.'s reveals that this is

not true. Also these assumptions do not allow for zeros,

although there are many present in this example. Making this

incorrect assumption for this data, we observe similar results to

thosewhenitisassumedthatthez.'s are measured without

error.

Table 3 Slopes for Chromosome Aberration Data Analysis
with Measurement Error = 0.30

Estimate SE of

Methods of Slope (x10:) Estimate (x10n
naive 252 5.7

Corrected for Att. 288 6.5

Regress on E(xIz) 290 6.5

IWLS 291 8.4

Prentice 306 8.5

DEF 330 9.2

DEF (Approx. 1) 356 10.4

DEF (Approx. 2) 291 14.7

DEF (Approx. 3) 288 14.8

Exact MLE 256 7.5
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3) The IWLS, Prentice and DEF methods produced very similar

estimates of #1, with the DEF method having a slightly higher

estimated standard error.

4) The IWLS method, which uses no information about fit contained in

the variance to estimate #
l'

seems to produce similar results to

the approximate DEF method 2 that replaces 4 with al. This

seems to imply that as far as feedback information in the

variance is concerned, the Al term contains most of this

information (and not V).
1

6.2 Heart Disease Data Analysis

This data was introduced in section 1.2.2. A goal of this study

was to measure the degree of association for serum cholesterol level

and heart disease for 350,977 men between the ages of 35 and 57. It

should be pointed out that it would be quite important to have

information on age and smoking habits to analyze this data. The data

reported publicly by Iso et al. (1989) contains age-adjusted rates of

heart disease. These will be used to illustrate the double

exponential family method. Figure 2, on page 6, suggests that the log

of E(yi) is approximately linear in observed cholesterol. The problem

once again for this data set is that we only have the observed

cholesterol level which contains measurement error. In addition to

the presence of this form of measurement error, the data is also

grouped into the following 10 categories, (less then 140, 140-159,

160-179, 180-199, 200-219, 220-239, 240-259, 260-279, 280-299, more

than 300).
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Let the response for individual k, yk, be defined as follows,

f 1 if the kth individual had coronary heart disease

Yk 1 0 otherwise

and let x
k

= true serum cholesterol for the kth individual, and

suppose

E(yklxk) = pk = exp(00-01xk).

Let z
k
be the observed level of cholesterol and suppose that the

requirements for the normal additive measurement error model of

section 5.1 are satisfied so that

xklzk N N(#x(1-R)+Rzk, Rc1). (6.1)

Recall that R = 0/(0d+,2). This assumption implies that z
k

is
x x

normally distributed. Figure 3 shows a frequency polygon for the

distribution of observed cholesterol levels and a superimposed grouped

normal distribution. The assumption seems to be reasonable, although

the distribution is slightly skewed to the right.

The mean for the distribution of yk given zk is

E(yklzk) = E[exp(flo+filxk)lzk]

= exp[flefilE(xklzk)] = Pi

where = fl + 02#'
0

0R. The moment generating function of (6.1) may
0 Ald

be used to evaluate E[exp(flix
k k) lz ]*

The corresponding variance is

Var(yklzk) = pi(1-pi)
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Figure 3. Frequency Polygon for Cholesterol Levels

N

0
100 150 200 250

Cholesterol Levels
300 350



84

because yk is a Bernoulli random variable.

The following discussion concerns the mean and variance of

observed counts in intervals grouped by measured cholesterol level.

Let 4 denote the proportion with coronary heart disease in group i,

i.e.

V1IHEd/e,where6-1=lk :
ci-1

< z
k 1

< c.1
k 1

1

and m* equals the number at risk in group i, for i=1,...,10. Let
1

VI = E(zklci_i < zk < ci). Because zk is assumed normal VI is the

mean of a truncated normal. Table 4 contains the values z, using
1

formulas for the mean and variance of a truncated normal distribution

taken from Johnson and Kotz (1984).

Table 4 -- Means and Variances for Truncated Normal

Serum
Cholesterol

mg /dl

Group

(i)

E(zkIci_1(zi(ci) Var (zklci_1<zi<ci)

< 140 1 125.6 165.68

140-159 2 151.4 30.40

160-179 3 171.0 31.58

180-199 4 190.6 32.33

200-219 5 210.1 32.66

220-239 6 229.7 32.54

240-259 7 249.2 31.98

260-279 8 268.8 30.99

280-299 9 288.3 29.60

> 300 10 313.2 142.42
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The distribution of yt given zt has the following mean and

variance when a first order Taylor's approximation is used for

exp(#5+#,Rzk) and exp[2(#5+#1Rzk)],

= E(y /101z*)11 kii
1

= exp(fi + filitzt) = pi and

Var(yt(zt) = E Var(yk/mtlzt)

0(1-0) 0 2

1 .2 2
= + Var(zklci_1(zk<ci)

1 1

02

pi 1 .2 2
mom- + R Var(z

k
lc. (z

k 1
<c.)

MT 1 1-1
1 1

p11

1 1

where Bit= 1 + 4R2ptVar(xklci_i<xk(ci), #5 = #0+41#1x+flipx(i-R), and

pi = 0(1-0), because of the assumptions (1-0 =) 1 when 0 is small.
1 1

Based on what has already been discussed in this section the

following model will be fitted,

E(yilzt) = pt =exp(e0+&lzt) and
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pi
Var(y.lz*)

3. 3.

where so=1, el= fi1R and 8
;1 2

zk < ci) .

In order to estimate II, estimates of the nuisance parameters, px,

r; and od are needed. The mean of xk, #x, is estimated using the

sample mean of zI. The variance of zk is estimated with the variances

given in Table 4 using formulas from the truncated normal via Johnson

and Kotz (1984). All that remains is to estimate ol. A profile

likelihood analysis is used to estimate and a value of oil = 38.1 is

estimated. Ideally, it is desired to have more knowledge about the

measurement error associated with serum cholesterol.

The estimation of the parameters is done using a program written

in Pascal. Appendix B contains the code for a similar program used

for the binomial logit link model. Table 5 contains the estimates of

the slopes using three methods: the naive method using VI; iteratively

weighted least squares, and the double exponential family, maximum

likelihood, method.

Table 5 Slopes for Heart Disease Data with oi = 38.1

Methods

Estimate

of Slope (x104

SE of

Estimate (x10
4

naive using z* 119 5.5

IWLS 119 5.5

DEF 122 5.6
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Technical comments for the heart disease data:

1) Because the values of pI are small the values of ei = 1 (i.e.

very little overdispersion due to measurement error).

2) The DEF method is affected more by changes in el than the other

methods presented here.

This is not a complete analysis of the heart disease data. The

above discussion does, however, illustrates how the double exponential

family method can be used to estimate fl in similar situations.
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Chapter 7

Comparison of the Double Exponential Family Method With Other Methods

The first section of this chapter discusses some conceptual

issues distinguishing the proposed method, based on the double

exponential family, from Prentice's (1986) approach and iteratively

weighted least squares (IWLS). The latter is basically Armstrong's

method and has been suggested by others including Pierce, Stram and

Vaeth (1989). The remainder of the chapter compares these estimators

and the exact maximum likelihood estimator, using simulations for a

model in which yi given xi is binomial and the measurement error is

multiplicative. Section 7.2 addresses the comparisons of efficiency

of these methods when the underlying model is binomial with identity

link (similar to the chromosome aberration data) and with logit link.

The issue of robustness is considered for two situations in section

7.3. Section 7.4 presents the simulation results for the binomial

model with identity link, when sample estimates of the nuisance

parameters are used. In section 7.5, the standard errors for the

methods are compared to the sampling standard deviations.

The five methods compared in the simulation are: 1) the naive

method; 2) the MLE based on a multiplicative measurement error model

with lognormal x. and lognormal measurement errors (referred to as the

Lognormal MLE); 3) iteratively weighted least squares (IWLS); 4)

Prentice's method, and 5) the double exponential family (DEF) method.

A summary of these methods is given in section 6.1.
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7.1 Conceptual Differences

The proposed method is similar in spirit to that suggested by

Prentice (1986), who approximated the density of yi given zi.by a

beta-binomial distribution. In fact, the estimation procedure is

identical except for the approximating distribution. The methods are

both feedback methods, meaning information about fi in the variance of

Y1 1
. given z. is used in the estimation of the fi.

The proposed method offers two advantages over Prentice's method.

First it is more general, working just as easily with any

one-parameter exponential family as it does with a binomial

distribution. Second, it is a simpler approach which directly

incorporates the correct mean-variance relationship. An additional

weakness of using the beta-binomial distribution is that the

convergence time for this method is more than ten times longer than

any of the other methods considered, except the Lognormal MLE method.

On the other hand, for proportions, the beta-binomial offers a richer

class of models to approximate the correct density of yi given zi.

The biggest difference between the proposed method and IWLS is

that the latter is not a feedback estimator. The IWLS method updates

the weight at each stage of the iteration using current estimates and

does not use information in the observed variability concerning the

regression parameters of interest. The advantage of IWLS is that it

is a simple method and it should be preferred if it can be shown to be

relatively efficient. A further issue concerning the use of the

feedback methods is robustness. Because information about 0 in
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Var(yilzi) is used in these procedures, they will be more susceptible

to outliers.

7.2 Efficiency

For each of the situations of interest, 300 data sets are

generated. For each of these data sets an estimate of slope, fil, is

calculated using each of the five methods listed at the beginning of

this chapter. The particular data sets act as blocks and the

treatments of interest are the methods of estimation. The question of

efficiency is addressed by comparing the exact maximum likelihood

estimator (MLE) to the other estimators in terms of bias and mean

square error (MSE). Because it is known that the exact MLE is

asymptotically efficient this estimator serves as a standard in order

to judge how well the other estimators are performing.

In order to obtain estimates of bias and MSE, the following mixed

model for the relative bias of the slope for each method over the

different data sets is used:

(fl. -fl )ik 1
= a

k ik'
+ B. + eik, for i=1,...,300 and k=1,...5,

1

where

/la is the estimate of slope for the kth method on the ith data set,

fi

1
is the true slope used in the simulation,

k
is the bias of the kth method, as a proportion of fl1,

B. is the blocking effect of the ith data set with BiN N(0
' b
$12) and

eik is the random error with cue. N(0,(1).
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Thus, the relative bias, rx

k'
is a fixed effect and the data sets are

chosen at random so that the block effect, Bi, is a random effect.

Relative MSE is estimated from this as follows,

(0 -fl )
2

ik 1 MSE ^62 ;2 ;2

-77T- k b k'

7.2.1 Binomial Model with the Identity Link Function

7.2.1.1 Design of the Simulation

This simulation study is designed to recreate the chromosome

aberration data as closely as possible. Three values of measurement

error standard deviation, rd, (0.1, 0.3, 0.5), are considered. Three

hundred data sets were generated for each value of EachEach of these

data sets contains the following elements for i=1,...,100:

1) log xi N normal(#x,o;) with #x=4.0 and r;=0.5,

2) log di ... normal(0,r1),

3) z.
1

= x.I. d.,
3.

4) yi N bin(100,pi)/100, where pi = 0.018 + 0.0003xi and

5) E(x.3. 1z.3. ) and Var(x.3. lz.3. ) are computed exactly, according to the

lognormaldistributionofx.1 given z. (see page 48 for details):

E(x.3. lz.3. )=-z.exp[(1-R)#x
+4(1-R) 0] and

Var(x.3. 12.)
1

z.2RexP[2(1-R)#x+(1-R) PI] [ (1-R) r2] -11 ,

where R = 0/(0.2.1.0)
x x d
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In the chromosome aberration data, the standard deviation of the

measurement error, rd, is thought to be about .3 as reported by

Gilbert (1984). A measurement error value of .5 is thought to be

extreme, but is included to judge the effect of an extremely large

multiplicative measurement error. All the methods investigated reduce

to the usual binomial regression estimates in the absence of

measurement error. This is very evident for re 0.1, as the estimates

are very close for all methods considered.

7.2.1.2 Results of the Simulation

The estimators of #
1

(the slope parameter) are compared according

to relative bias and relative mean square error (MSE/4). The

nuisance parameters andand I are taken to be known in this

study. The effect of estimating these is exploded in section 7.4.

Appendix B contains the computer program for the simulation presented

in section 7.2.2, which is very similar in structure and content to

the program for this simulation. Only values where methods converged

are included. As it turns out this is only a problem for the

situation where the underlying model for log di is contaminated

normal.

Figures 4, 5 and 6 contain pair-wise scatterplots of the 300

values of the four estimators of interest (Lognormal MLE, IMLS,

Prentice and DEF) for measurement error standard deviations of .1, .3,

and .5 respectively. The histograms for the bias as a proportion of

#
1

are shown for each estimator individually. All four of the methods
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produce very similar estimates for all blocks (data sets) for small

measurement error (.1), as is seen in figure 4. For larger

multiplicative measurement error the differences are more pronounced.

Figures 5 and 6 illustrate that Prentice's method produces estimates

that are very highly correlated with the Lognormal MLE and that the

DEF method is slightly less correlated. The IWLS method is the most

variable in this simulation experiment but, as is seen in the

histogram, is nearly as efficient as the other methods except for very

large measurement errors.

Very similar conclusions can be drawn from the summary tables.

Table 6 summarizes the relative bias for this situation (binomial with

identity link). In general, the basic pattern of larger bias with

larger measurement error held true. The naive estimator is

considerably more biased than the other estimators; the bias is only

about 2% when the standard deviation of di is .1 and about 44% when

the standard deviation is .5. The simulation did not have enough

Table 6 --- Bias in fl
1
as a Proportion of #

1
(x 100)

Standard e

Measurement Error

Method Standard Deviation
0.1 0.3 0.5

Naive -2.26 -18.80 -43.85
(0.9) (0.9) (1.2)

Lognormal MLE 0.01 -0.06 -2.24

(0.9) (0.9) (1.1)

IWLS 0.17 0.02 -1.22

(0.9) (0.9) (1.1)

Prentice 0.08 -0.77 -2.99

(0.9) (0.9) (1.1)

DEF 0.14 0.01 -1.04

(0.9) (0.9) (1.1)

rror of estimates are in Parentheses.
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power to pick up differences in bias between the four estimators of

interest although it is clear that, at least in comparison to the

naive estimator, they are all essentially unbiased for these

conditions.

The MSE increased with the measurement error for all estimators,

see Table 7 for a summary of MSEs scaled by 1/4. The MSE for the

naive estimator is considerably larger than the other estimators

except when the measurement error is small. The size of the relative

MSEs follows the same pattern as the spread seen in the graphs. Thus,

estimators can be ranked in terms of efficiency as Lognormal MLE,

Prentice, DEF, and IWLS. However, for small and moderately sized

measurement error there seems to be little practical difference

between these methods.

Table 7 --- MSE(fi1)/4 (x 100)

Measurement Error

Method Standard Deviation
0.1 0.3 0.5

Naive
2.48 6.20 22.63

Lognormal MLE
2.43 2.53 3.66

IWLS
2.43 2.57 3.95

Prentice
2.43 2.54 3.73

DEP
2.43 2.56 3.76
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7.2.2 Binomial Model with the Logit Link Function

7.2.2.1 Design of the Simulation

This simulation study is designed to create data sets that fit

into the situation described in section 5.5.1. The purpose is to

compare the results for a non-identity link function using some of the

same methods as the analysis in section 7.2.1. The set-up is the same

as section 7.2.1, except that the identity link is replaced with the

logit link in step 4). Thus step 4) becomes

4) yi N bin(100,Pi)/100,

P.

iP
where logit( pi) = log(17,7) = 0.5 + 0.0075xi.

yi

7.2.2.2 Results of the Simulation

Figure 7 contains pair-wise scatterplots of the 300 values of the

four estimators, for a multiplicative measurement error standard

deviation of .1. There is little difference between the estimators

for this case. In figures 8 and 9, for measurement error standard

deviations of .3 and .5 it is apparent that Prentice's and the DEF

estimator are both highly correlated with the Lognormal MLE. The IWLS

estimator is slightly more variable.

The basic pattern of larger relative bias with larger measurement

error held true; see table 8 for a summary of the relative bias. For

measurement error standard deviations of .3 and .5 the last three

estimators contain more bias (as a proportion of fir) than they did in

the linear model. This may be due to the linearization approximation

necessary to compute E(xilzi). The Lognormal MLE does not require

such an approximation. At least, these biases are only about 3% for
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measurement errors with a standard deviation of .3. The larger the

measurement error error, the wider the range of g
-1

(.) we are trying

to approximate with a straight line. IWLS, Prentice's, and the DEF

methods appear to be giving very similar results, with IWLS doing

slightly better especially in the presence of high measurement error.

Table 8 --- Bias in fl as a Proportion of #
1

(x 100)

(Logit Link)

Measurement Error
Method Standard Deviation

0.1 0.3 0.5

Naive -2.75 -22.10 -46.97
(0.4) (0.5) (0.7)

Lognormal MLE 0.01 -0.11 -0.58
(0.4) (0.5) (0.6)

IWLS -0.36 -2.36 -4.96
(0.4) (0.5) (0.7)

Prentice -0.49 -3.51 -7.23

(0.4) (0.5) (0.6)

DEF -0.42 -3.11 -6.67

(0.4) (0.5) (0.6)

Standard error of estimate are in parentheses.

The MSE is larger for larger measurement errors as expected, see

Table 9 for a summary of MSE scaled by 1/4 for all methods. The

naive estimator has considerably larger MSEs. All four of the

remaining methods have similar MSEs for smaller values of measurement

error, but for larger measurement error values Prentice and DEF have

smaller MSE as is all seem in figures 8 and 9. Again, in comparison

to the naive estimator, the others are quite similar. Based on tables

8 and 9 we can surmise that the Prentice and DEF methods are more

affected by the linear approximation than is the IWLS method. The

exact reason for this remains to be studied.



Table 9 --- MSE(fl1)/4 (x 100)

(Logit Link)

Measurement Error
Method Standard Deviation

0.1 0.3 0.5

Naive
0.59 5.70 23.58

Lognormal MLE
0.51 0.68 1.17

IWLS
0.51 0.77 1.56

Prentice
0.52 0.81 1.73

DEF
0.51 0.78 1.64

7.3 Robustness

103

The issue of robustness is addressed using two situations. The

simulation in Section 7.3.1 allows for the underlying model for the

d.1 's to be misspecified. In section 7.3.2, the underlying model for

thedistributionofthex.'s is incorrectly specified. Thus, in both

situationsthedistributicalofx.givenz.1 assumed by the estimating

procedures is incorrect. Two effects of these wrong assumptions are

that the distribution of Yi given z
i

used for the exact MLE is

incorrectly specified and the mean and variance of yi given zi used in

IWLS, Prentice's method and the DEF method are also incorrect. It

would be better if, with the wrong underlying model, we could consider

these effects separately, but they are confounded in the situations

considered here.
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7.3.1 Measurement Errors Distributed Contaminated Lognormal

7.3.1.1 Design of the Simulation

This simulation study is designed to create data sets that are

binomial with identity link as described in section 7.2.1, except that

the underlying model for the distribution of di is incorrect. The

set-up is the same as section 7.2.1, except that the log di's in step

2) are no longer normally distributed. Step 2) becomes

2) log di ft, contaminated normal, where there is a 90% chance of

log di being normal with mean 0 and variance fl and a 10% chance

of log di . being normal with mean 0 and variance 9,2 the
d'

resulting mean and variance of the log di's is (0, 1.8/.

The data is analyzed as if it is generated as described in section

7.2.1.1, where the log di are normal.

7.3.1.2 Results of the Simulation

Figure 10 compares the four methods for a measurement error

standard deviation of .1. All methods seem to be giving very similar

estimates of slope for this value of measurement error. The relative

bias is bigger as evident by the larger horizontal scale of the plots.

Figures 11 and 12 exhibit more variability as is seen in earlier

situations. The comparative results for the different methods look

very similar to the results from section 7.2.1.2.

As is true for section 7.2, very similar results can be concluded

from the summary tables. The basic pattern of larger relative bias

with larger measurement error held true; see table 10 for a summary of

the relative bias. Relative bias does seem to be affected some by the
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incorrect assumption about the distribution of log di. The relative

MSE (table 11) does seem to be larger than when the distribution of

the log di's is correctly assumed in section 7.2.

Table 10 --- Bias in #1 as a Proportion of #1 (x 100)

(Identity Link and log d's Contaminated Normal)

Method
Measurement Error
Standard Deviation

0.1 0.3 0.5

Naive -4.20 -32.88 -61.68

(1.1) (1.2) (1.4)

Lognormal MLE -0.11 -0.99 -0.22

(0.9) (1.1) (1.2)

IWLS 0.04 0.38 4.66

(0.9) (1.1) (1.3)

Prentice -0.07 -0.81 -1.12
(0.9) (1.1) (1.2)

DEF 0.09 0.97 2.19

(0.9) (1.1) (1.2)

Standard error of estimate are in parentheses.

Table 11 --- MSE(#1)/4 (x 100)

(Identity Link and log d's Contaminated Normal)

Method
Measurement Error
Standard Deviation

0.1 0.3 0.5

Naive
2.84 15.23 43.93

Lognormal MLE
2.65 3.71 4.12

IWLS
2.65 3.80 5.15

Prentice
2.65 3.76 4.30

DEF
2.65 3.85 4.46
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7.3.2 Explanatory Variable Distributed Weibull

7.3.2.1 Design of the Simulation

This simulation study is designed to create data sets that are

binomial with identity link as described in section 7.2.1, except that

the underlying model for the distribution of xi is different from what

is assumed. The set-up is the same as section 7.2.1, except that the

log xi's in step 1) are no longer normally distributed. Step 1)

becomes

1) x1 . ,N, Weibull(1.25, 77.5), (this has approximately the same mean

and variance as the xi in section 7.2.1.

The data is analyzed as if it is generated as described in section

7.2.1.1, where the log xi are normal.

7.3.2.2 Results of the Simulation

Figure 13 compares the four methods for a measurement error

standard deviation of .1. All methods seem to be giving very similar

estimates of slope for this value of measurement error. The relative

bias is bigger as evident by the larger scales of the plots. Figures

14 and 15 have similar variability compared to section 7.2.1. The

comparative results for the different methods look very similar to the

results from section 7.2.1.2.

The basic pattern of larger relative bias with larger measurement

error held true; see table 12 for a summary of the relative bias.

Relative bias does seem to be larger when the assumption about the

distribution of xi is incorrect. The summary of MSEs is presented in

table 13.
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Table 12 --- Bias in fli as a Proportion of #1 (x 100)

(Identity Link and x's Weibull)

Measurement Error
Method Standard Deviation

0.1 0.3 0.5

Naive -1.35 -15.20 -39.11
(0.8) (0.8) (1.1)

Lognormal MLE 0.74 2.90 4.96

(0.8) (0.8) (1.0)

IWLS 0.80 3.38 6.30

(0.8) (0.8) (1.0)

Prentice 0.72 2.73 3.98

(0.8) (0.8) (1.0)

DEF 0.75 3.26 5.18

(0.8) (0.8) (1.0)

Standard error of estimate are in parentheses.

Table 13 --- MSE(fi1)/421 (x 100)

(Identity Link and x's Weibull)

Measurement Error

Method Standard Deviation
0.1 0.3 0.5

Naive
1.76 4.43 18.61

Lognormal MLE
1.75 2.08 2.97

IWLS
1.75 2.14 3.29

Prentice
1.75 2.08 2.91

DEF
1.75 2.14 3.09

7.4 Sample Estimates Used to Estimate Nuisance Parameters

7.4.1 Design of the Simulation

The parameters p
x

, 0, and 02 are nuisance parameters in this

problem. Because this is a simulation these values are known, but in

practice it is likely that they would have to be estimated from
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knowledge about el and sample statistics of the zi's (see Carroll et

al, 1984). Since the estimation of fit is dependent on the nuisance

parameters, it is desired to know how using estimates rather.than the

true values affects the estimation of fli. For this case the data is

generated as in section 7.2.1, but analyzed using the sample estimates

for the parameters #x, el, and 94, i.e. if zI = log zi, then

ez = s2 -
ff
-2 and

S
2

- f2
z d

z
R =

7.4.2 Results of the Simulation

Figures 16, 17 and 18 contain pair-wise scatterplots of the

estimates based on 300 simulated samples for the four methods and the

three measurement error standard deviations. The plots look very

similar to those in section 7.2.1.2, although there appears to be

slightly more bias and bigger relative MSEs for the largest

measurement error standard deviations. These facts also are supported

by the summary tables 14 and 15. The estimation process does not

appear to suffer greatly when sample estimates are used for these

nuisance parameters.
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Table 14 --- Bias in fl1 as a Proportion of fl1 (x 100)

(Identity Link and Sample Estimates Used)

Method
Measurement Error
Standard Deviation

0.1 0.3 0.5

Naive -3.06 -19.15 -43.13
(0.9) (1.1) (1.4)

Lognormal MLE -0.81 0.30 -0.11

(0.9) (1.0) (1.2)

IWLS -0.71 0.71 1.72

(0.9) (1.0) (1.3)

Prentice -0.77 0.27 -0.97

(0.9) (1.0) (1.2)

DEF -0.70 1.28 1.05

(0.9) (1.0) (1.2)

Standard e

Table 15 --- MSE(01)/4 (x 100)

(Identity Link and Sample Estimates Used)

Method
Measurement Error
Standard Deviation

0.1 0.3 0.5

Naive
2.28 4.98 24.17

Lognormal MLE
2.19 3.08 4.46

IWLS
2.19 3.12 4.80

Prentice
2.19 3.09 4.51

DEF
2.19 3.14 4.65
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7.5 Standard Error Used to Estimate the Standard Deviation of the

estimate

Figures 19 through 23 summarize the comparison between the (Monte

Carlo) standard deviation of the estimate displayed here as a

proportion of #
1

(SD/#
1

) and the average of the standard errors

displayed here as SE/0 .1 calculated from the asymptotic formulas for

each sample. For these comparisons 1000 data sets were generated for

each combination of the following situations with each of the

measurement error standard deviations of (0.2, 0.3, 0.4, 0.5):

Situation 1 -- yi is binomial, log xi is normal, log di is normal and

the identity link used as described in section 7.2.1. The data for

each of these four measurement error standard deviations is analyzed

assuming the correct distributions for yi, xi, and di. The true

values for the nuisance parameters (#x, trIc, R) are used.

Situation 2 -- Same as situation 1, except the logit link is used.

This situation is described in section 7.2.2. This data is analyzed

with the correct underlying model used.

Situation 3 -- Same as situation 1, except the log di's are

contaminated normal. This data is analyzed as in situation 1. Thus,

the wrong underlying model for the di's is used. This situation is

described in section 7.3.1.

Situation 4 Same as situation 1, except the xi's are Weibull. This

data is analyzed as in situation 1. Thus, the wrong underlying model

forthex.'s is used. This situation is described in section 7.3.2.

Situation 5 Same as situation 1, except sample estimates of the
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Figure 21. SD of Estimate vs. Average SE (Log d Contam. Normal)
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Figure 23. SD of Estimate vs. Average SE (Sample Estimates Used)
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nuisance parameters are used. This data is analyzed as in situation

1. This situation is described in section 7.4.

The general pattern is that the SE's underestimate the standard

deviation of the estimate. The four methods of interest, IWLS,

Lognormal MLE, Prentice, and DEF, appear to be doing an adequate job

of estimating the standard deviation of the estimate for small and

moderate measurement errors. For larger measurement error standard

deviations the difference is more noticeable in most cases.

The standard deviation of the estimates and the standard errors

do not seem to be affected much by the use of sample estimates of the

nuisance parameters, see figure 23. Whereas the differences between

the standard deviation of the estimates and the standard errors are

larger in situation 3, figure 21. It seems surprising that the

violation in situation 4 (figure 22) resulted in the variability of

the estimates being reduced, as is also true for relative MSE. The

standard deviation of the estimates for the DEF method are just

slightly larger than the Lognormal MLE in some situations, but

Prentice's method does better at producing similar results to the

Lognormal MLE for the identity link situations. The DEF method does

slightly better for the situation with the logit link.
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Chapter 8

Conclusions

8.1 Summary of Double Exponential Family Maximum Likelihood Method

This thesis presents the double exponential family model as a

means for estimating linear parameters of generalized linear models

when explanatory variables contain random measurement error. The use

of the procedure on several cases of interest has been illustrated and

the method has been compared to several other estimators with similar

purposes and to the exact maximum likelihood estimator (which requires

numerical integration) for a few special cases.

The mean and variance in the generalized linear regression may be

written as

E(Yilxi) = #i = g
-1

(flo+flixi) and

Var(yilxi) = V(#i).

If
i

z.
1

is the measurement of x.
1

then the density function for
Y

given

z. is

f f(yilxi)f(xilzi)dxj, (8.1)

which is usually quite difficult to use for estimation. On the other

hand, it is easy to see that the mean and variance for yi given zi are

E(yilzi) = #I = Vg-10001xi)lzil = g-100441E(xilzi)], and
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I lra a I ,2.2
Var(yilzi) = E[V(#i)Izi] + tg piVar(xilzi).

A double exponential family density is similar to the corresponding

one parameter exponential family, except for the addition of an extra

parameter to model the dispersion. The proposed method supposes that

the density of yi given zi is a double exponential family density with

this mean and variance and uses maximum likelihood techniques to

estimate /J.

8.2 Exact Maximum Likelihood, Approximate Maximum Likelihood and

Iteratively Weighted Least Squares Methods

The methods that have been compared may be listed in order of

sophistication in the following way:

1) The exact maximum likelihood estimator based on (8.1).

2) The approximate maximum likelihood estimators based on an

approximation to (8.1)

i) with the beta-binomial distribution used as the

approximation and

ii) with a double exponential family distribution used as the

approximation.

3) The iteratively weighted least squares (IWLS) estimator based on

E(yilzi) and Var(yilzi).

The exact distribution of yi given zi as given in (8.1) does not

have a closed-form solution for the situations that are simulated in

chapter 7. Thus, the estimation of ft involves numerical integration.
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The conceptual idea of maximum likelihood is straight forward, but is

complicated by not having a closed form solution.

The idea of the approximations in 2) above is to arrive at an

approximation to (8.1) that has solutions close to the exact maximum

likelihood estimator but does not involve numerical integration.

Prentice (1986) uses the beta-binomial distribution to approximate

(8.1). He comments in his paper that the use of the beta-binomial

distribution may often have little motivation other than statistical

convenience. The double exponential family maximum likelihood method

adds an extra parameter to the original one-parameter exponential

family model that does not contain measurement error. By adding this

parameter and allowing the overdispersion to be a function of

covariates it is desired to adequately model the overdispersion

associated with measurement error. This extension to the

one-parameter model provides a natural motivation for the proposed

method.

Both of these approximations are feedback models that use

information about fl contained in the variance of yi given zi to

estimate Q. Also both of these approximations use the correct mean

and variance but assume different higher order moments from the true

distribution of yi given zi and from each other. It is desired to

know what effect each of these situations has on the estimation of O.

Iteratively weighted least squares (IWLS) is neither a feedback

model nor does it assume any higher order moments. Thus, it gives us

a benchmark for determining if situations described in the above

paragraph have an effect on estimation of O. Also, because IWLS is
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straightforward to use and understand, it will be considered a good

choice for estimation if it is fairly efficient.

It is expected that the exact MLE would be the most efficient

when the underlying model is correct. The use of the information

about # contained in the variance of yi given zi may give Prentice's

and the DEF methods the edge over IWLS in terms of efficiency.

The simulations results support these expectations. For small

measurement error there is relatively small differences between the

mean square errors (MSEs) and the standard deviations of the

estimates. For larger measurement error the distinctions are greater.

The Lognormal MLE method has the smallest MSE and standard deviation

of the estimate and IWLS has the largest. The differences between the

four estimators which account for measurement error were quite small

relative to the differences of each with the naive method.

Prentice's method estimates the Lognormal MLE result very closely

for the identity link. The bias, MSE, standard deviation of the

estimate and average standard error for these two methods are very

close even for the largest measurement error standard deviation. The

DEF method does less well than Prentice's method in approximating

(8.1) for the identity link. For the simulation using the logit link,

the DEF method does slightly better at this than Prentice's method.

Another important criterion for estimators, in addition to

efficiency, is robustness. This is particularly important here since

it is very difficult to check distributional assumptions with this

kind of data. It is not expected that the exact MLE method is very

robust. It is likely that the feedback models may be susceptible to
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outliers. Because iteratively weighted least squares is not based on

a particular distribution and does not use information about

contained in the variability of yi given zi, it can be expected to be

the most robust of this group.

A limited study of robustness was carried out with simulations

here. The simulated situations from section 7.3 use estimators based

on incorrect assumptions about the data. In these particular

situations we see that the bias is very similar for the DEF method,

IWLS and Prentice's method and even for the Lognormal MLE method.

This could be due to the confounding discussed in section 7.3. The

distribution for yi given zi is incorrect for the Lognormal MLE, and

E(x.lz.) and Var(x.lz.) are incorrect for the remaining three methods.

Thus, the situations considered have not allowed us to distinguish

much between methods in terms of robustness. More work is needed in

this area to determine how robust the methods are.

8.3 Other Issues

1) Accuracy of the Standard Errors. From the results of the

simulation and from section 5.5, it seems that the DEF method is

estimating the true variability fairly well in the situations

considered. The tendency for all of the methods in the

simulation study is that the average (asymptotic) standard error

underestimates the standard deviation of the estimate.

2) Requirement that E(x.lz.) and Var(x.iz.) are known. In all that

is done with the DEF method (and for IWLS and Prentice's method,

as well), it has been assumed that E(x.1z.) and Var(x.lz.) are
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known. There are few situations where it is convenient to

estimate these values as presented in section 5.1. In general,

they are not easy to obtain in practice. Considerable

computation is necessary to arrive at the estimates in Table 1

for the chromosome aberration data set. In order to make all of

these methods more practical, it would be desirable to know more

situations where these values could be estimated easily and to

know the consequences of using these estimates. In the

simulation of section 7.2, the use of estimates of the nuisance

parameters seems to do very well with only slightly higher

variation for large measurement error.
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APPENDIX A

Data Sets

Chromosome Aberration Data: Number of Cells With Aberrations Out of

100 Cells Examined Per Individual.

Number of
Aberrant
Cells

Measured Radiation, z, (in rads*100)

0 0-1 1-2 2-3 3-4 4-5 5+

0 139 20 23 2 1 3

1 66 23 12 2 1 1

2 35 6 20 5 1 1 2

3 17 7 23 5 1 1 2

4 3 3 6 3 3 3 2

5 2 2 12 14 3 4

6 1 5 12 3 3 1 1

7 2 12 2 3

8 5 4 3 2 1

9 1 2 3 3 1

10 5 5 3 3

11 1 2 1 1 1

12 2 1 1 1

13 7 3 2 1

14 1 1 3 2 2 1

15 1 1 1

16 2 2 1 3

17 1 2 2 1 4

18 4

19 2 1

20 1 1 1

21 1 1

22 1 1 1

23 1

24 1 1

25 1 1 1

26-27
28 1

29 1 1

30-33
34 1

35-36
37 1

38-39

40 1

41

42 1 1
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Heart Disease Data: Deaths During Six Year Follow-Up and Age-Adjusted
Rate of Death from Coronary Heart Disease, All Strokes, All
Cardiovascular Disease, and All Causes, According to Serum Cholesterol
Levels, in 350-977 Men, 35 to 57 Years of Age.

Serum
Cholesterol

mg /dl

Number
at

Risk
Actual
Deaths

Age-adjusted
Deaths

per 10,000

< 140 5,062 9 25.5

140-159 16,123 33 24.6
160-179 42,276 122 32.9
180-199 65,381 227 36.7
200-219 76,570 398 52.1

220-239 61,856 433 67.5
240-259 41,332 338 77.8
260-279 23,749 291 116.1
280-299 10,445 138 124.4
> 300 8,183 135 160.3
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APPENDIX B

Computer Code for
Binomial Simulation Using the Logit Link

program SIMULATION_of the_Logit_Link(input,output);

const n=100; m=100; (< n=#of obs, m=binomial sample size)
mean_logx=4.0; var_logx.5; mean_logd4.0;
true_b1=0.05; true_b2=0.0075; (<-- True intercept and slope)
maxparameters=2;

type vector = array[1..n] of real;
dim = array[1..maxparameters] of real;
matrix=array[1..maxparameters] of array[1..maxparameters] of real;
matl = array[1..maxparameters] of anuy[1..1] of real;
methods = (naive,adj_naive,naive_zs,IWLS,Exact_MLE,prentice,defl);
vector2 = array[1..n] of integer;

var true_p,p,th,d,g,z,zs,vs,y : vector; y2 : vector2;
rj,pn,iterations,n1,q1,q2,q : integer;
b,seb,t,individl,dthdb,dpdb,dden,dddb : dim;
score,product : matl;
info,individ2,covar : matrix;
initial_bl,initial_b2,b2,c1,c2,var_est,var_logd,R : real;
dldth,d1dp,d21dp2,zbar,d1dg,d21dg2,d21dgdp : real;
method : methods; rel_eff of IWLS_to_DEF1 : real;
beta2,sum_b2,sum_b22,sse,se_b2,sum_se,sum_se2 : array[methods] of real;
ave_estimate,bias,sd_est,ave_se,sd_se,mse : array[methods] of real;
total,timel : array[methods] of integer,
start,stop,start2,stop2,time2,hours,min,sec : integer,
measurement_ error : real;
check : boolean;
sumf,sumbl,sumb2,sumb12,sumb22,sumblb2 : real;
max_x : integer,

function power(base,exponent : real) : real; ( <- raises base to power exponent)
begin
if (bas0.0) then power:.0
else power.= exp(exponent *ln(base));

end;

procedure initialize_sums;
begin
for method:=naive to defl do begin
sum_b2[method]:a10; sum_b22[method]:10; sse[method]:=0.0;
se_b2[method]:.0; sum_se[method]:=0.0; sum_se2[method]:=0.0;
total[method]:=0; timel[method]:3;

end;
var_logd:=measurement_error*measurement_error;
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R:=var_logx/(var_logx+var_logd); (<-- Reliability ratio)
end;

morm generates n obs. from a Normal(mean,variance) )

procedure rnonn(mean,variance : real; var nm : vector);
var a,b,k,rnonnl,monn2 : real; i : integer,
begin
i:=1;

while (i <= n) do begin
a:=2.0*random(q1)-1.0; b:=2.0*random(q2)-1.0;
k:*a+b*b;
if (k <= 1.0) and (k<>0.0) then begin

morml:=(a*sqrt(-2.0*ln(k)/k))*sqn(variance) +mean;
morm2:=(b*sqrt(-2.0*ln(k)/k))*sqn(variance) +mean;
nm[i]:= rnonnl; nm[i +1]:= rnorm2;
i:=i+2;

end; (*if*)
end; (*while*)

end; (*proc*)

rbinomial generates obs from binomial(m,true_p[i]) )

procedure rbinomial; var ij,count : integer;
begin
for i:=1 tondo begin
count:;
for j:=1 to m do if (random(q1) < true_p[i])
then count:=count +1;

y[i]:=count/m; y2[i]:=count;
end; (*i*)

end; (*proc*)

Generates data and calculates E(xlz) and Var(xlz) )

procedure generate_data;
var lx,x,1z,lh : vector,

i : integer, mu,ada,sigma : real;
begin
monn(mean_logx,var_logx,lx); morm(mean_logd,var_logd,1h);
for i:= 1 to n do begin
x[i]:=exp(lx[i]);
true_p[i]:xp(true_bl+true_b2*x [i])/(1+exp(true_bl+true_b2*x[i]));
lz[i]:=1x[i]+lh[i]; z[i]:xp(lz[i]); (* Measurement Error in the z's *)

end; (i)
mu:=mean_logx; sigma:=var_logx; (<-- setting the values for the )
ada:=mu-R*mu; zbar:=mean_logx; ( known nuisance parameters )
for i:= 1 to n do begin
zs[i]:=power(z[i],R)*exp(ada+0.5*(1-R)*sigma); { *E(xlz) *)

vs [i]:=power(z [i],2*R)*exp(2*ada+( 1 -R)*sigma)*(exp(( 1 -R)*sigma)-1); f *V(xlz)* )
end; (i)
rbinomial;
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end; (proc)

procedure set_derivatives_0; var j,lc : integer;
begin
for j:=1 to pn do score[j,1]:=0.0;
for j:=1 to pn do for k:=1 to pn do info[j,k]:4.0;

end;

procedure update_p_theta; var i : integer; z 1 : real;
begin
b2:=b[2]*b[2]; (<-- slope squared )

for i:= 1 to n do begin
if (method=naive) then z1:=z[i] else z1:=zs[i];

the inverse of the logit link for p )
p[i]:=exp(b[1]+b[2]*z1)/(1+exp(b[1]+b[2]*z1));(<----' )

if (method=def1) then
di[i]:=1+((m-1)*b2*vs[i])*p[i]*(1-p[i]); (<-- reciprocal of dispersion )

if (method=prentice) then begin
d[i]:=b2*vs[i]*(0]*(1-p[i]));
g[i]:=d[i]/(1-d[i]);

end; (if prentice)
end; (i)
for j:=1 to pn do t[j]:=b[j];

end; (proc)
(<-- stores last value of beta)

procedure loglikder(i : integer); (<-- derivatives for the beta-binomial)
var k : integer,

s 1 ,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,k1,k2,k3 : real;
begin
sl:=0.0; s2:4).0; s3:10; s4:=0.0; s5:=0.0; s6:4).0; s7:=0.0;
s8:=0.0; s9:3.0; s10:10; s11:3.0; s12:4.0;

if y2[i]>0 then begin
for lc:= 0 to y2[i] -1 do begin
kl:= 1/(p[i]+k*g[i]);
sl:= sl + ki;
s3:= s3 - kl*kl;
s5:= s5 + k*kl;
s8:= s8 - k*k*kl*kl;
s11:= sll - k*kl*kl;

end; (k loop)
end; (check for y4)

if y2[i] <100 then begin
for lc:= 0 to m-y2[i]-1 do begin
k2:= 1/01-p[i])+g[irk);
s2:= s2 - k2;
s4:= s4 - k2*k2;
s6:= s6 + k*k2;
s9:= s9 - k *k *k2 *k2;
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s12:= s12 + k*k2*k2;
end; (k loop)

end; (check for y=100)

for k:= 0 to m-1 do begin
k3:= k/(1+k*g[i]);
s7:= s7 - k3;
s10:= slO + k3*k3;

end;

dldp:= sl +s2; dldg:=s5+s6+s7;
d21dp2:= s3 + s4;
d21dg2:= s8 + s9 + s10;
d21dgdp:= sib + s12;

end; (*proc*)

procedure firstderivative(i : integer);
var w,ths,dthsdth,dgdd : real;
begin
if (method=def1) then begin

( The derivatives of the )

(<-- log-likelihood function with)
respect to p and gamma )

(*<--------defl 1st derivatives*)

if (y[i]<>0.0) then w:=y[i] else w:=y[i] + 0.0001; ( <-- checks for zeros)
if (y[i]=1.0) then w:=y[i] - 0.0001; (<-- checks for ones )
ths:=1/th[i]; ddisdth:=-1/(th[i]*th[i]);
dldth:=1/(2*ths)+m*w*ln(p[i])+(m-m*w)*ln(1-p[i])-m*w*ln(w)-(m-m*w)*ln((1 -w));

didP:=m*ths*(Y[i]-P[iMP[1]*(1-P[1]));

c1:=p[i]*(1-P[i]); c2:1*(1-exp(b[1]+b[2]*zs[i]))/(1+exp(b[1]+b[2]*zs[i]));

dpdb[1]:1; [<-- derivative of p w/r beta0)
dpdb[2]: =zs[i]*c 1; (<-- derivative of p w/r betal)

dthdb[1]:=(m-1)*b2*vs[i]*c2; (<-- der. of theta wit' beta0)
dthdb[2]:=(m-1)*vs[i]*(2*b[2]*cl+b2*zs[i] *c2); (<-- der. of theta w/r betal)

(1st derivative contributions for an individual)

for j:=1 to pn do
individl[j]:=d1dp*dpdb[j] + dldth*dthsdtledthdb[j];

end; (*defl*)

if (method=prentice) then begin (*< prentice 1st derivatives*)
dgdd:=1/((1-d[i])*(1-d[1]));
loglikder(i);

c1:=p[i]*(1-p[i]); c2::.--c1*(1-exp(b[1]+b[2]*zs[i]))/(1+exp(b[1]+b[2]*zs[i]));
dpdb[1]:1;
dpdb[2]:=zs[i]*c1;
dddb[1]:=b2*vs[i]*c2; ( < -- der. of delta w/r beta0)
dddb[2]:=vs[i]*(2*b[2]*cl+b2*zs[i] *c2); (<-- der. of delta w/r betal)

[1st derivative contributions for an individual)
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for j:=1 to pn do individl[j]:= dldp *dpdb[j] + dldg*dgdd*dddb[j];
end; (*prentice*)

end; (pros)

procedure secondderivative(i : integer);
var z,v,d21dth2,d21dpdth,ths,dthsdth,dgdd : real;

d2thsdth2,d2gdd2,kl,k2,c3 : real;
d2thdb,d2pdb,d2ddb : matrix; j,k : integer;

begin
if (method=defl) then begin (< defl 2nd derivatives)

z:=zs[i]; v:=vs[i];
kl:xp(b[1]+b[2]*z); k2:=exp(b[1]+b[2]*z)*exp(b[1]+b[2]*z);
c3:=c1*(1-4*kl+k2)/((l+k1)*(1+k1));

ths:=1/th[i]; dtlisdth:=-1/(th[i]*th[i]); d2thsdth2:=2/(th[i]*th[i]*th[i]);

d2pdb[1,1]:=c2;
d2pdb[2,2]:=z*z*c2;
d2pdb[1,2]:=z*c2;
d2pdb[2,1]:=z*c2;

(<-- derivatives of p w/r beta)

d2thdb[1,1]:=(m-1)*v*b2*c3; (<-- derivatives of theta w/r beta)
d2thdb[2,2]:=(m-1)*v*(2*c1+4*b[2]*z*c2+b2*z*z*c3);
d2thdb[1,2]:m-1)*v*(2*b[2]*c2+b2*z*c3);
d2thdb[2,1]:12thdb[1,2];

d21dth2:=-1/(2*ths*ths);
d21dp2:=-m*y[i]*ths/(p[i]*p[i]) - (m-m*y[i])*ths/((1-p[i])*(1-p[i]));
d21dpdth:=m*y[i]ip[i]-(m-m* y[i])/(1-p[i]);
for j:=1 to pn do for k:=1 to pn do

(2nd derivative contributions for an individual)

individ2[ j,k]:=(d21dp2*dpdb[k]+d21dpdth*dthsdth*dthdb[k])*dpdb[j]
+dldp *d2pdbU,k]

+(d21dpdth*dpdb[k]+d21ddi2*dthsdth*dthdb[k])*dthsdth*dthdb[j]
+dldth*(ddisdth*d2thd[j,k] + d2thsdd2 *dthdbUrdthdb[k]);

end; (*defl*)

if (method=prentice) then begin (*< prentice 2nd derivatives*)
dgdd:=1/((1-d[i])*(1-d[i])); d2gdd2:=2/((1-d[i])*(1-d[i])*(1-d[i]));
z:=zs[i]; v:=vs[i];
kl:xP(b[1]+b[2]*z); k2:=exp(b[1]+b[2]*z)*exp(b[1]+b[2]*z);
c3:=c1*(1-4*kl+k2)/((l+k1)*(1+k1));

d2pdb[1,1]:=c2;
d2pdb[2,2]:=z*z*c2;
d2pdb[1,2): =z *c2;
d2pdb[2,1]:=z*c2;

(<-- derivatives of p w/r beta)

d2ddb[1,1]:=v*b2*c3; (<-- derivatives of delta w/r beta)
d2ddb[2,2]:=v*(2*c1+4*b[2]*z*c2+b2*z*z*c3);
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d2ddb[1,2]:=v*(2*b[2]*c2+b2*z*c3);
d2ddb[2,1]:=d2ddb[1,2];

(2nd derivative contributions for an individual)

for j:=1 to pn do for k:=1 to pn do
individ2[j,k];=(d21dp2*dpdb[k]+d21dgdp*dgdd*dddbac1)*dpdb[j]

+dldp*d2pdb[,k]
+(d21dgdp*dpdb[k]+d21dg2*dgdd*dddb[k])*dgdd*dddb[j]

+dldg*(d2gdd2*dddb[j]*dddb[k] + dgdd *d2ddb[j,k]);
end; (*prentice*)

end; (pros)

(Finds the inverse of the information matrix)

procedure inverse; var temp : real; ij,k : integer;
begin
for i:=1 to pn do begin for j:=1 to pn do begin

if i=j then covar[i j]:=1.0
else covar[i,j]:.0; end; end;

for i:=1 to pn do begin for j:=1 to pn do begin
if j=1 then temp:= info[i,i];
if temr().0 then writeln(' ** warning singular matrix **');
info[ii]:=infoDiVtemp; covadij]:=covarD,Ntemp; end;

for k:=1 to pn do begin
if (koi) then begin
for j:=i to pn do begin
if i=j then temp:=info[k,i];
info[ki]:=-temP*info[ii] +info[ki]; end;

for j:=1 to pn do covar[kj]:=-temp*covar[i ,j]+covar[kj];
end; end; end; end;

(This does the matrix multiplication for the Newton-Raphson method)

procedure matrixmult(rl,cl,c2 : integer); var temp : real;
ij,k : integer;
begin
for i:=1 to rl do
for k:=1 to cl do
product[i,k]:10;

for i:=1 to rl do begin
for k:=1 to cl do begin
for j:=1 to c2 do begin
temp:ovailiii*score[,1c];
product[i,k]:=product(i,k]+temp;

end; end; end; end; (proc)

(Using the Newton-Raphson method of updating estimates)

procedure estimates;
var i : integer;
begin
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inverse;
matrixmult(pn,l,pn);
for i:=1 to pn do b[i]:= t[i]- product[i,l];

end; (estimates)

procedure set_std_errors; var i : integer;
begin
for i:=1 to pn do seb[i]:=sqrt(-covar[i,i]);

end;

function convergence(var old : dim; new : dim) : boolean;
var k : integer;
begin
convergence:=FALSE;
for k:=1 to pn do
if (abs((old[k]-new[k])/new[k])>0.0001) then convergence:=TRUE;

end;

function b2_convergence : boolean; (<-- checks for unusual answers like NaN)
begin
b2_convergence:=FALSE;
if (beta[method]>-100.0) and (beta2[method]<100.0)

and (se_b2[method]>0.0) and (se_b2[method]<100.0)
then b2_convergence:=TRUE;

end;

Cummulates the individual contributions for the score vector and the }
( information matrix

procedure score_and_info; var j,k : integer;
begin
for j:=1 to pn do score[j,1]:=score[j,1]+individl[j];
for j:=1 to pn do for k:=1 to pn do info[j,k]:=inforj,k1+individ2[j,k];

end;

(Sets initial guess for last 4 methods to the Naive_zs estimate)

procedure set_initial_guess; var i : integer;
begin

b[2]:=initial_b2;
for i:=1 to pn do t[i]:=0.0; iterations:;

end;

procedure weighted_least squares;
var sumtop,sumbottom,sumwy,sumwzs,sumw,stunwzsy,sszs,sigma,bzsy,ssy : real;

w,z1,p1,y1,ada : real;
i : integer;

begin
sumwy:4.0; sumwzs:=0.0; sumw:4.0; sumwzsy:=0.0; sszs:4.0; ssy:=0.0;
for i:=1 to n do begin
if (method=naive) then zl: =z[i] else z1:=zs[i];
if (method=naive) or (method=naive_zs) then
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if (iteration0) then pl:=y[i] else pl:=p[i]; (<-- sets initial guess }
if (method=IWLS) then pl:=p[i];
if (p1=1.0) then p1:19999;
if (p13.0) then pl:.0001;

ada:=1n(p1/(1-p1));
yl:=ada + (y[i]-p1)/(p1*(1-p1)); (<-- working dependent variable)
if (method=naive) or (method=naive_zs) then
w:=m*p1*(1-pl) else (<-- usual binomial weight)
w:=m*p1*(1-p1)/(1+(m-1)*b2*pl*(1-pl) *vs[i]); (<-- Armstrong's weight)

sumwzsy:=sumwzsy+w*zl*y1; sumwy:=sumwy+w*y1;
sumwzs:=sumwzs+w*zl; sumw:=sumw+w; sszs:=sszs+zl*w*z1;
ssy:=ssy+yl*w*y1;

end; (*i*)

(y1 regressed on zl with weights w)

sumtop:=surnw*sumwzsy-sumwzs*sumwy; sumbottom:=sumw*sszs-sumwzs*sumwzs;
b[2]:=swntop/sumbottom;
b[1]:=(sumwy*sszs-sumwzs*sumwzsy)/(sumw*nn-sumwzs*sumvas);
bzsy:=bursumwy+b[2]*sumwzsy;
sigtna:=sqrt((ssy-bzsy)/(n-pn));
seb[1]:=1/sqrt(sumbottorn/sszs);
seb[2]:=1/sqrt(sumbottom/sumw);

end; (*proc*)

(Iterative cycle for IWLS)

procedure IWLS_loop;
begin
set_derivatives_0; set_initial_guess;
while convergence(t,b) do begin
update_p_theta;
weighted_least_squares;
iterations:=iterations+1;

end; (*while*)
update_p_theta;
beta2[method]:=k2]; se b2[method]:=seb[2];

end; (proc)

(Iterative cycle for DEF, Prentice and EXACT MLE)

procedure estimation_loop;
var i : integer;
begin
set_derivatives_0; set_initial_guess;
while convergence(t,b) do begin
update_p_theta;
for i:=1 to n do begin
firstderivative(i); secondderivative(i); score_and_info;

end; (*i*)
estimates; set_derivatives_0; iterations:=iterations+1;
if iterations>30 then for i:=1 to pn do t[i]:=b[i];
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end; (*while*)
update_p_theta; set_std_errors;
beta2[method]:=b[2]; se b2[method]:=seb[2];

end; (proc)

procedure naive method; (<-- Regresses y on z using )
begin ( binomal regession (ML) )
method:=naive; pn:=2;
start:= wallclock;
IWLS_loop;
stop:=wallclock; timel [method] :=timel[method]+(stop-start);

end;

procedure naive_zs_method; (<-- Regresses y on E(xlz) using )
begin ( binomal regession (ML) )
method:=naive_zs; pn:=2;
start= wallclock;
IWLS_loop;
stop:=wallclock; time1[method]:=timel[method]+(stop-start);
initial_b2:=b[2];
initial_b1:=b[1];

end;

procedure adj_naive_method; var e2,LO,L1,mean_x,mean_h : real;
begin
method:=adj_naive;
e2:=measurement_error*measurement_error,
L1:=(exp(var_logx)-1)/(exp(e2/2)*(exp(var_1ogx+e2)-1));
mean_x:==p(mean_logx+var_logx/2);
mean_h:=exp(e2/2);
LO:=rnean_x-Ll*mean_x*mean_h;
b[2]:=b[2]*(1/L1); (<--Corrects for the bias in the Naive method)
b[1]:=b[1]-b[2]*LO;
beta2[method] :=b [2] ; se_b2[method] :=(1/L1)*seb [2] ;

end;

procedure armstrong_method_IWLS; (Iteratively weighted least squares)
begin
method:=IWLS; pn:=2;
start=wallclock;
IWLS_loop;
stop:=wallclock; timel[method]:=timel[method]+(stop-start);

end; (proc)

procedure DEF_Method_1; (*basic DEF method*) var i : integer;
begin
start=walklock;
method:=defl; pn:=2;
estimation_loop;
if (not b2_convergence) or (iterations>30) then begin
write(method,'convergence problem ',r); check:=FALSE;
writeln(iterations:5);
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end; (if)
stop:=wallclock; time1 [me thod] :=timel [method] +(s top-start);

end; (DEF)

procedure Prentice_Method;
begin
start=wallclock;
method:=prentice; pn:=2;
estimation_loop;
if (not b2_convergence) or (iterations>30) then begin
write(method,'convergence problem ',r); check:=FALSE;
writeln(iterations:5);

end; (if)
stop:=wallclock; timel[method]:=timel[method]+(stop-start);

end; (Prentice_Method)

(The next 3 procedures are for the Lognormal MLE method)

(This procedure calculates the derivatives for the Lognormal MLE method)

procedure sunimations(Ubl,fb2,f2b1,f2b2,f2b1b2,c : real;
j,step_size : integer; check2 : boolean);

begin
if (j)) or (inax_x) then begin
sumf:= sumf+c *f;
sumbl:umbl+c*fbl;
sumb2:=sumb2+c*fb2;
sumb12:=sumb12+c*f2b1;
sumb22:=sumb22+c*f2b2;
sumb 1b2:=sumb 1b2+c*f2b1b2;
check2:=FALSE;

end; (zero,max)
if (j mod (2*step_size) = 0) and check2 then begin
sumf:=sumf+c*f*2;
sumbl:=sumbl+c*fbl*2;
sumb2:=stunb2+c*fb2*2;
sumb12:=sumb12+c*f2b1*2;
sumb22:=sumb22+c*f2b2*2;
stunblb2:=sumb 1b2+c*f2b1b2*2;

end; (even)
if (j mod (2*step_size) = (step_size)) then begin
sumf:=sumf+c*f*4;
sumbl:umbl+c*fbl*4;
sumb2:=sumb2+c*fb2*4;
sumb12:=sumb12+c*f2b1*4;
sumb22:=sumb22+c*f2b2*4;
sumblb2:=sumblb2+c*f2b1b2*4;

end; (odd)
end; (proc)

(Numerical integration for f(ylz) and derivatives for Lognormal MLE)
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procedure numerical_integration(i : integer);
var mu,my,p,p_my,q_m_my,p_my_l,p_my_2,q_m_my_1,q_m_my_2 : real;

x,k1,k2,k3,f,fbl,f2b1,fb2,f2b2,f2b1b2,c,e1,e2,e3,e4,e5 : real;
j,step_size,old_step,last_change : integer; check2,check3 : boolean;
dpdbl,dpdb2,d2pdb12,d2pdb22,d2pdblb2 : real;

begin
check3:=FALSE;
sumf:.0; sumbl:=0.0; sumb2:10; sumb12:=0.0; sumb22:1.0; sumblb2:=0.0;
mu:=mean_logx*(1-R)+R*1n(z[i]);

InY:=m*Y[1];
j:d); step_size:=2; old_step:=2; last_change:=2000;
while j<=max_x do begin
check2:=TRUE;
if (jam) then x:L).0001 else x:=j;
p:xp(b[ 1]+b[2]*x)/(1.0+exp(b[1]+b[2]*x));
p_my:=power(p,my); p_my_1:=power(p,my-1); p_my_2:=power(p,my-2);
q_m_my:=power(1.0-p,m-my); q_m_my_1:=power(1.0-p,m-my-1);
ci_m_my_2:=power(1.0-p,m-my-2);
k1:=sqrt(2*arctan(1)*4*R)*measurement error;
k2:=-0.5/(R*measurement_error*measurement_error);
1[3:=0/(x*k1)*exp(k2*(1n(x)-mu)*(1n(x)-mu)));
f:=p_my*q_m_my*k3;

el:=my*p_my_l*q_m_my; e2:=(m-my)*p_my*q_m_my_1;

cl:=p*(1.0-p); c2:1*(1.0-exp(b[1]+b[2]*x))/(1+exp(b[1]+b[2]*x));

dpdbl:=c1;
dpdb2:=x*cl;

(<-- derivative of p w/r beta0)
(<-- derivative of p w/r betal)

fb1:=k3*(e1-e2) *dpdbl;
fb2:=k3*(e1-e2) *dpdb2;

e3:=my*(my-1)*p_my_2*q_m_my; e4:=my*(m-my) *p_my_1 *q_m_my_1;
e5:=(m-my)* (m-my-1)*p_my*q_m_my_2;

d2pdb12:2;
d2pdb22:=x*x*c2;
d2pdb 1b2:=x*c2;

( < -- derivatives of p w/r beta)

f2b1:=0*((e3-2*e4+e5)*dpdbl*dpdb1+(el-e2)*d2pdb12);
f2b2:=k3*((e3-2*e4+e5)*dpdb2*dpdb2+(el-e2)*d2pdb22);
f2b1b2:=k3*((e3-2*e4+e5)*dpdbl*dpdb2+(el-e2)*d2pdb1b2);
if (k4).00000000000000000000000001) and (j mod 40 = 0) then
if (j>199) then step_size:=20; (larger step size for integ.)

if (step_size=20) and (j mod 100 = 0) then
if (j>=1ast_change+100) then step_size:=100; (larger step size for integ.)

if (step_size=ald_step) then c:=step_sizel3 (width of block being integrat.)
else begin
c:=(step_size+old_step)/6;
last change: j;

end;
summations(Ubl,fb2,f2b1,f2b2,f2b1b2,c j,step_size,check2);
j:=j+step_size; (set next pt of integrat.)
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old_step:=step_size;
end; (while)

end; (proc}

(Computes score vector and information for Lognormal MLE method)

procedure exact_derivatives; var sum2 : real; i : integer;
begin
max_x:00;
if (max_x mod 2 = 1) then max_x:=max_x-1;
for i:=1 to n do begin
numerical_integration(i);
score[1,1]:=score[1,1]+(sumb 1/sumf);
score[2,1]:=score[2,1]+(sumb2/sumf);
sum2:=sumf*sumf;

info[1,1]:=info[1,1]+(sumb12*sumf-sumbl*sumbl)/sum2;
info[2,2]:=info[2,2]+(sumb22*sumf-sumb2*sumb2)/sum2;
info [1,2] :=info [1,2]+(sumblb2* sumf-sumbl*sumb2)/sum2;

end; (i)
info[2,1]:=info[1,2];

end; (proc)

procedure EXACT_MLE; var j : integer; (<-- Lognormal MLE method)
begin
method:=exact_MLE; pn:=2;
start=wallclock;
set_derivatives_0; set_initial_guess;
while convergence(t,b) do begin
for j:=1 to pn do t[j]:=b[j];
exact derivatives;
estimates; set_derivatives_0; iterations:=iterations+1;
if iterations>30 then for j:=1 to pn do t[j]:=b[j];

end; (while)
beta2[method]: =b[2]; se_b2[method]:=sqrt(-covar[2,2]);
if (not b2_convergence) or (iterations>30) then begin
writeln(method,'convergence problem ',r); check:=FALSE; end;

stop:=wallclock; timel[method]:=timel[method]+(stop-start);
end; (proc)

(Cummulates the summary statistics)

procedure sum_statistics;
begin
for method:= naive to deft do begin
if b2_convergence then begin (*< -checks for convergence of b2*)
sum_b2[method]:=sum_b2[method] + beta2[method];
sum_b22[method]:=sum_b22[method] + beta2[method]*beta2[method];
sse[method]:= sse[method] + (beta2[method]-0.0075)*(beta2[method]-0.0075);
sum_se[method]:= sum_se[method] + se_b2[method];
sum_se2[method]:= sum_se2[method] + se_b2[method]*se_b2[method];
total[method]:= total[method] + 1;

end; (*b2_convergence*)
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end; ( *method *)
end; (*proc*)

(Calculates the summary statistics for the 1000 data sets)

procedure calc_summary_stats;
begin
for method:= naive to defl do begin
n1:=total[method];
if nl>0 then begin
ave_estimate[method]:=sum_b2[method] /nl;
ave_se[method]:= sum_se[method] /nl;
mse[method]:=ssermethodVnl;

end; (*if 0*)
if nl>1 then begin
var_est:=(sum_b22[method] -sum b2[method]*sum_b2[method] in1)/(n1-1);
sd_est[method]:=sqrt(var_est);
sd_se[method]:=sqrt((sum_se2[method]

-sum_se[method]*sum_se[method] /n1)/(n1-1));
end; (*if 1*)

end; (*method*)
rel_eff of IWLS_to_DER:=sd_est[IWLS]* sd_est[IWLS]/(sd_est[defl] *sd_est[defl]);
end; (*proc*)

(Outputs results)

procedure print table;
begin
writeln;
writeln; write('Measurement Error = ',measurement_error:4:2); writeln(' R= ',R:5:3); writeln;
writeln(' Average of Mean Square SD of Average SD of
writeln(' Method Estimate Error Estimate SE SE');
writeln(' ');
for method:= naive to defl do begin
write(method: 9,ave_estimate[method]:10:7,mse[method]: 16:12);
write(sd_est[method]:13:9,ave_samethod]:14:11,sd_se[method]: 18:14);
writeln;
end; (*method*)
writeln;
writeln; write('Relative efficiency of IWLS to DEFT = ');
writeln(rel_eff of IWLS_to_DEF1:9:6); writeln;

writeln;
for method:=naive to defl do begin
hours:=timel[method] div 3600;
min:=(timel[method] mod 3600) div 60;
sec:=(timel[method] mod 3600) mod 60;
if methodoadj_naive then
writeln(method:9,' took ',hours:4,' hours ',min:4,' minutes ',sec:4,' seconds');
end;'
end; (*proc*)

procedure print_fixed_constants;
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begin
writeln('Data sets = 1000 and n=100 and m=100');
writeln('Mean of the true logx = ',mean_logx:5:3,' Variance of true logx = ',var_logx:6:4);
writeln; writeln('Starting seed=',q2:15);
end; (*proc*)

begin
ql:=(wallclock mod 1000000)*1217; ( Initializes the starting)
q2:bs((q1*8192-67099547*trunc(q1*8192/67099547)));( <- values for the random )
q:=seed(q2); ( number generator )

print fixed constants;
measurement_error.2;

while measurement_error<.5 do begin
start2:=wallclock;
initialize_sums; r:=1;
while (r < 1001) do begin
check:=TRUE;
generate_data;

naive_method;
adj_naive_method;
naive_zs_method;
annstrong_method_INVLS;
DEF_Method_1;
Prentice_Method;
EXACT_MLE;

if check then begin
r.=r+1;
sum_statistics;

end;(*iP)
end; (*r*)

(<-- Checks the convergence of all methods)

calc_summary_stats;
print table;
stop2:=wallclock;
time2:=stop2-start2;
hours:=time2 div 3600;
min:=(time2 mod 3600) div 60;
sec:=(time2 mod 3600) mod 60;
writeln('total time was ',hours:4,' hours ',min:4,' minutes ',sec:4,' seconds');
measurement error:=measurement_error+0.1;
end; ( *measurement error*)
writeln('n= ',n:3,' m= ',m:3,' Monte Carlo Run',r-1:3);
end.


