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FORMING DIMENSIONLESS PRODUCTS BY USING 
AN ALGORITHM DEVELOPED FROM MATRIX THEORY 

INTRODUCTION 

There is some scattered literature on dimensional 

analysis embracing the use of matrices. In most of these 

references, the ideas of matrix algebra and of transforma- 

tions have not been adopted. But the matrix concepts are 

easily mastered. Consequently, the author thinks it is 

opportune to exploit these ideas. 

Some definitions pertaining to matrix algebra are 

given. Elementary transformations are stated and exempli- 

fied. The elementary approach to dimensional analysis 

found in most texts is presented. An alternative treatment 

is then examined. This treatment consists of applying 

matrix algebra to the same dimensional analysis. A trans- 

formation technique is demonstrated and leads to an algo- 

rithm adopted for the solution of the associated homogene- 

ous underdetermined matrix equations. A matrix solution 

similar to that obtained by the elementary approach is 

sought. This comparison exposes the merits of the matrix 

method. 

Usually in dimensional analysis, convention dominates. 

Thus, in a good part of the literature available, 

"conventional" concepts of mass, length, and time are 

used. However, there is good reason to introduce what 
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might be considered "unconventional" concepts. It is by 

the use of such "unconventional" concepts that different 

dimensional products are calculated. It is suggested that 

the strangeness of some of the products is not sufficient 

cause for us to disregard them. 

As a mode of representation of data, a rearrangement 

of some dimensionless products may be profitable. 

Certainly this rearrangement involves combinations of 

already available dimensionless products. Hence the 

result of the reshuffling is not new. But the different 

dimensionless products mentioned above are obtained by 

using "unconventional" concepts. They are not a conse- 

quence of reshuffling or of any combination. Therefore, 

they are not to be thrown out. They should serve to open 

up new areas of experimentation. It is felt that numerical 

solutions obtained from such experiments should be the 

criterion used in judging their retention or rejection. 



MATRIX ALGEBRA 

De f i ni t io n s 

General 

A rectangular array of numbers or of functions is 

called a matrix and will be designated by a capital letter. 

Thus 

is read, B represents the array of numbers (i 2 3\ 

\ 
¿4. 5 o). 

B s a matrix. Brackets are usually used to enclose the 

array in question. 

The numbers or functions are called the elements of 

the matrix and are denoted by where subscripts i and 

j identify the particular row and column respectively, and 

show where that element is situated inì the array. 

A matrix M has m rows and n columns. That is, 

i = 1, 2, 3 ..... m 

I = 1, 2, 3 ..... n. 

M is said to be of order (m, n) or to be an m x n matrix. 

Any matrix with a1 = O for all i and j is called the 

zero matrix. It is designated by O. 
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The identity matrix is a square array, m = n, for 

1 1, for all i = j 

ij 
tO, for all i J. 

For example, the 3 x 3 identity matrix is 

(i O O 

(O i G 

O O i 

The symbol I will be used to designate the Identity matrix. 

Product of Matrices 

The product of matrix P and Q is denoted as PQ. It 

Is defined as that matrix whose element in the ith and jth 

column is found by multiplying corresponding elements of 

the ith row of P by the elements in the jth column of Q and 

adding the results. 

Symbolically, let the elements of P, Q and PQ be 

described by Pija jl3 r11 In that order where, in Pija i 

represents rows and j represents columns. 

From the definition of the product PQ, we have 

k ci = i, 2, 3 ... ni 

r11= 2I_ Pijjl ? J=l L=l, 2, 3 ... n 

Notice that multiplication has meaning only when the 

number of columns of P is the same as the number of rows of 
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Q. When this is so, the matrices involved are said to be 

conformable for multiplication. 

Multiplication, in general, is not commutative. That 

is, the order of multiplication is important. In fact, 

reversing the order of multiplication will not have meaning 

unless the matrices P and Q are square. 

With P conformable to Q for multiplication, P is said 

to be postmultiplied by Q, with the product written as PQ. 

This operation is also described as Q premultiplied by P. 

Other General Definitions 

Corresponding to the system of equations 

v+ w - x+ y+ z = i 

-w+xy-z=O 
2w +y+z=2 

is the coefficient matrix, 

/1 1 -1 1 1 

10 -1 1 1 -1 

0 2 0 1 J. 

which will be designated by A. Its elements are the co- 

efficients of the variables y, w, x, y and z appearing in 

the system of linear equations. 

The matrix 

/1 1 -1 1 1 1 

(o -i i 1 -1 0 

2 0 i 1 2 
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which contains the eoefficient3 of the variables arid the 

constant terms on the right-hand side of the equations is 

called the augmented matrix (7, Ch. i). 

The variables can be used to form the 5 x i matrix 

V 
w 
X 

y 
z 

which will be designated by X. Such a matrix is usually 

referred to as a column matrix. 

The rows and columns of a matrix can be interchanged 

so as to produce another riatrix of order n x ni. This new 

matrix is called the transpose of the original matrix and 

is designated by a superscript T. For example, correspond- 

Ing to 

V 

is the transpose matrix (y w x y z), a row matrix, de- 

noted by 

Illustration i. MultIplication 

The number of columns of the coefficient matrix re- 

ferred to in the section above is 5. The number of rows 

of X is 5. Thus matrix A is conformable to X for multipli- 

cation, and the product AX can be formed. 
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Applying the definition of multiplication, 

1 1 -1 1 1 7v 
(w 

o -i 1 1 -1 

o 2 0 1 1 

( + w - X + y ± z\\ 

- [-w±xyz] 4 fC/ 
\ [2W 

and AX is of order 3 x 1. The reader can see that the 

product XA cannot be formed since X is a x i matrix, 

and A is a 3x5matrix. 

The choice of X above has been specially made to 

demonstrate the multiplication. However, notice the 

relation between AX and the left-hand side of the system 

of equations. If D IS the array 

i 

o 

2, 
It is noted that the system of equations is obtained by 

equating corresponding elements of matrices AX and D. So 

in compact matrix form that system is written as AX = D. 

Inverse Matrix 

If A, B are matrices such that 

AB = I, 

the matrix A is said to be the inverse of B (and vice 
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versa). The inverse matrix is designated by a superscript 

-1, such as B1. Note that an inverse does not necessarily 

exist for any matrix. In order that a matrix have an 

inverse, it is necessary that it be a square matrix and 

that its determinant be non-zero. Sometimes B, as it is, 

may not have ari inverse. 

Successive Multiplication 

Question: Is (PQ)R = 

This, in general mathematical language, is asking 

whether the multiplication of matrices is associative. 

The answer is yes (7, p. 8). 

Following the rules of multiplication, a product 

(PQ)R can be formed from matrices PQ and R if PQ and R 

are conformable. The result may be written without 

parenthesis as PQR. Again (PQR)A can be formed if PQR 

and A are conformable. Successive multiplication then is 

possible and can be extended indefinitely. 

Illustration 2 

J. 0 0 

LetR = 3 1 0 

o O I 



Then, 

Next, 

Also, 

/ n r r T 
-. 

J. 2 - -: 

-j. Li 
n Li 

/1 u o 

Q =o o 

o i 

(1 -1 0 

P =10 1 0 

2 1 

/1 

/u 

= 

-1 

o o\ ¡o u o i 

i 0 1 1 2 -3 _i) 

o i -1 0 -1 0 

o 0 1 1 

1 2 0 2 

0 -1 0 -2 

(i o o\ /0 0 0 1 

(o -- o) ( 1 2 0 2 

o i/ \_i o -i 0 -2 

fo o o i i 

= - i 0 1 

-1 0 -i 0 -2 

C; 
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E) i 

= i o 

o i i o o) 

Since, due to assoclativity, the brackets on the left-hand 

side may be removed, we write PQA = D. 

Partitioning Matrices 

It is sometimes convenient to subdivide matrices into 

rectangular blocks of elements. This is called partition- 

!& matrix. Examine the matrix D. 

1_- - -i 
1 0 

]:=' 
( .. 

2L i O i 

\o i i o o 

D may be subdivided in several ways. The partitioning 

shown has subniatrices of order 2 x 3 in the upper left 

block, 2 x 2 in the upper right block, i x 3 in the lower 

left block, and J. x 2 in the lower right block; namely, 

(- - -A /1 o\ 
i ( i (0 1 l)and(O o) 
I I 

2 2 J, ' 

respectively. Designate these submatrices by W, I, Y, and 

Z in that order. Then the matrix D is designated in 

partitioned form s 



Use of Partitioning into Submatrices in Multiplication 

by 
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Let the partitioning of matrices A and X be indicated 

(A11 A21 A22) 

\\ Xf L 

Assuming that the partitioning indicated is such that 

A11, A21 are conformable to X, and Al2, A22 are conform- 

able to X2 for multiplication, it can be shown (7) that the 

product AX is 

i 
Xl ± 

12 
X2 

;/\ K 
2l 

X1 + A22 2) 

Elementary Transformations 

Certain Products of Matrices 

Suppose 

I' 
2 3 0 

N144L 5 6 1 

I 2 3 24 
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Consider the following multiplications Involving M 

(7, p. 95). 

PremultIp1ict'.ons on M: 

0 0 /1 2 3 0 (1 2 3 0 

(001 ) 561 (l 2 3 4 

3. 0 1 2 3 5 6 1 

(b) i O O ¡1 2 3 0\ 1 2 3 0 

o p o 4 5 6 1 = 5p 6p p 

001 1234 1 2 3 4 

(e) i o o (i 2 3 0 / 1 2 3 0 

o :i o 6 1 = 4 5 6 1 

o g 1 3. 2 3 4 1+kg 2+5g 3+6g k-i-g 

Postmultiplications on M: 

(d) 1 2 3 o\ /i o O O /i 2 0 3 46i = (4516 
1 2 3 4 \o O i O \i 2 4 3 

(e)/1 2 3 \ 1 0 0 0 /1 2q3 0' (4563.(oqoo\ (45q61\ 
lo o i o) = 

2 3 4( 0 O 0 1) 1 2q3 4f 

(1)11 2 3 O 'i O O ot '12h2 3 

(4 56 1 0 0\ (k+ShS 6 i 
(O o 1 0' = 23 4( \o o o i) 1+2h2 3 4) 
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Effects of These Multiplications 

The products octained in cases (a), (b) and (c) are 

of the form 

GM H. 

Those obtained in cases (d), (e) and (f) are of the form 

MJ K. 

Examine the equations (a) through (e). The effect on M 

of the premultiplication by G is observed to be a change 

involving the rows. In (a) the second and third rows of 

M are interchanged as seen in H. The effect in (b) is that 

the second row of M is multiplied by a constant p. In (e) 

g times the second row is added to the third row of M to 

obtain H. 

Now, examine equations (d), (e) arid (f). The effect 

of the poatmultiplication of M by J is to change the 

columns of M. In (d) there is ari interchange of the third 

and fourth columns of M to produce K. In (e), the second 

column of M is multiplied by a constant q. In (f), h times 

the second column is added to the first column of M. 

Types of Transformations 

The Matrix as an Operator 

In all cases shown in the preceeding section, the 

multiplications can be considered to be operations on M 
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producing changes in rows or columns. The operations 

which are accomplished are three in number (7, p. 90). 

They are: 

i) Cases (a) and (d) 

The interchange of any two parallel lines of 

a matrix 

2) Cases (b) and (e) 

The multiplication of all the elements of any 

line by the same constant 

3) Cases (e) and (t) 

The addition of an arbitrary multiple of any 

parallel line to another parallel line. 

Matrices and Elementary Transformations 

The operations listed above are called elementary 

transformations of a matrix. The set of matrices desig- 

nated by G and J above are special. They are like identity 

matrices. In fact, any of them can be obtained from an 

identity matrix by changing just one element or two. In 

case (e), for instance, the matrix G() multiplied with M 

is the identity matrix, except for the element in the third 

row, second column. When g times the second row is added 

to the third row of M, matrix I-i is obtained. In this 

case, observe that g times the second row of the 3 x 3 

identity makes the row read (O g o). Adding this to 
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the third row, the third row becomes (o g i). This is 

the third row of G(c) of the last section. So G(c) has the 

same form as H. 

What these special matrices or elementary transforma- 

tions achieve is stated in the theorem which follows. 

Theorem 

To effect an elementary transformation on any matrix, 

first perform the intended elementary transformation on an 

identity matrix of' appropriate order, then premultiply the 

given matrix by the result if the operation is on rows, or 

poatmultiply if' it is on columns (7, p. 96). 
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DIMENSIONAL ANALYSIS. THE ELEMENTARY APPROACH 

What is Dimensional Analysis? 

since i. buckingham published his paper (3) in 1914, 

a procedure has ìeen introduced into physical science known 

as dimensional analyais. It is one that a1low a set of 

variables having an undefined relationship to be organized. 

The arrangement does not destroy the generality of the 

relationship (18), but makes possible an easier determina- 

tion of it. Jee (2) and (16)J. When the relationship 

involves three variables, the associated graphs or 

nomograma may not be complicated. As the number of vari- 

ables increases, aids such at double alighrnent charts, 

Eiffel charts or logographs (17) become useÍui. So that 

apart from the immense experimental difficulty in finding 

the influence of any one variable in the presence of many 

others, there exists also the problem of pictorial or 

graphical representation. 

Dimensional analysis Is suggested to eliminate some 

of these difficulties. A grouping of the physical vari- 

ables results from the analysis. The groups are dimension- 

less with respect to the concepts or dimensions (mass, 

length, time, etc. ) used. Usually, because the dimension- 

less groups are of a fewer number than the original number 
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of variables, the graphical representation is easier. The 

dimensional analysis does not give the distinct form of 

the functional relationship. This form has to be deter- 

mined experimentally. 

Buckingham's Theorem 

The theory of dimensional analysis is based on the 

hypothesis that the solution of the problem is expressible 

by means of a dimensionally homogeneous equation in terms 

of specified variables. A theory of the mechanism of the 

phenomenon being considered is formed, and upon this, the 

decision is made as to which variables enter the problem. 

Definition 

An equation is said to be dimensionally homogeneous 

if the form of the equation does not depend upon the 

fundamental units of measurement. 

Buckingharnt s Theorem 

"If an equation is dimensionally homogeneous, it can 

be reduced to a relationship among a complete set of 

dimensionless products." (li, p. 18) 

Comments ori the theorem 

From the statement of the theorem, any dimensionally 

homogeneous equation, 
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V = , Q2 ... Qn) - (i) 

cari be reduced to the form 

= F(ç1, 2 
(2) 

in which ]]J J\2 ...Jcp are dimensionless. 

The Greek letter J stands for product. 

Each of the products, J , is assumed to be a product 

of powers of the variables. That is, 

= Q1k1 Q2k2 ... Qk vkn+i ----- (3) 

Generally p n. That is, the number of iks is less than 

the number of Q's. 

By considering dimensional homogeneity with respect 

to the physical dimensions (mass, length, time, etc.), the 

products are determined, arid the final form, 

-ï: 

is obtained. 

The steps in the proof of the theorem, implying that 

this reduction is possible, depend on various theoreme and 

lemmas found in the literature Ru, p. 58) (l8j. 

. 

Typical Problem 

From experience with turbulent flow (11, p. 99), it 

iS observed that the flow in a pipe may depend upon 

variables such as 

u = average velocity at distance y from the pipe wall, 
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= roughness height of the wall, 

= length or diameter of the pipe, 

= fluid density, 

V = kinematic viscosity, 

= shear stress at the wall. 

It is necessary to relate the above variables by 

considering the dimensions or mass, length and time. 

Procedure 

The procedure of obtaining L "i 2 in 

equation (2) is illustrated in the following. 

Consider the product 

= Li k2k3 k5k6 k7 
(4) 

where k denotes an exponent to be determined such that 

the -i-s: dimensionless. 

::c 

The dimensionless ratios -r , - can be formed by 

inspection so that the variables ct and need not be used 

in the product See (3. The product relation that needs 

to be considered, in this case, is the following. 

k1 k2 vk3 Qkk k5 ------- (5) 

Method, Using Elementary Approach 

Rewriting equation (5) in terms of the dimensions of 

mass (M), length (L), and time (T) (refer to Appendix I, 

if necessary) ives 
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Q 
(NLT) (LT-)'1 (L)'<2 (L2T_1)k3 (Mi[3)k4 (*1T2)k5 

(6) 

Equate the indIces for each dimension. 

ForM: kk5O 
For L: k1 + k2 + 2k3 - 3k4-+. k_ = O (7) 

For T: -k1 - k3 k5 O 

In solving for the indices, we obtain relation- 

ships between them, e.g., 

k2 -k3 

k5=-(k1k3) (8) 

and k4 = (k1 + 

Substitute for k2, k5 and kt1. in equation (5) 

r k1 -k3 vk3 (k1+k3) -(k1 + k3) 

Group terms with k1, k3 separately; - 

J)k Çy)k3 () 
Because the system of equations, (3) above, is under- 

determined, values have to be chosen for k1 and k3. 

Choosing k1 = 1, and k3 = O yields 

iv1= ç) 
Choosing k1 = O, and k3 = O gives 

Rewriting equation (9) in the form 
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F(T11, 2 îv) 
we obtain 

(lo) 

By including the 1th ratios, the equation takes the 

form 

No te 

' 
(11) 

It is wellb observe that there are different types 

of variables which might enter into a problem. For 

purposes of model theory, there will be three types (16). 

a) Geometrical Variables: Length, diameter, thickness, 

chord, span, etc. These variables have a length 

dimension. 

b) Kinematic Variables: Velocity, mass flow, accelera- 

tion, angular velocity, revolutions/minute. 

e) Dynamic Variables: (1) Fluid properties - density, 

specific weight, viscosity, elasticity, surface 

tension. These variables give rise to various forces. 

( 2) Characteristics of performance - pressure, 

hydraulic head, torque, resistance, stress, shear, lift, 

drag, etc. 
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A MATRIX SOLUTION 

Diriensional Table 

Matrix Equations 

Before proceeding further, re-examine equations (7) 

whIch are obtained by the elementary approach. 

k14 + k5 = O 

k1 + k2 + 2k3 -3k14 - k5 = O 

-k1 -k3 -2k5=O 

Adopting matrix notation, this set is rewritten as 

/0 0 0 1 1 k1 o 
k0 o 

J. 1 2 -3 -1 k = o (12) 

-i 0 -1 0 -2 k5 o 

The Table 

From any given functional form, e.g., equation (5), 

a table, called the dimensional table, can he formed. In 

general, the skeleton of this table consists of the vari- 

ab1e as the column headings, and the physical concepts 

(or dimensions -- M, L, T, etc. ) as the row headings. 

Any dimension of a particular variable in the 

equation appears in the column headed by that variable, 

and will be located on the row (labeled M, L, T, etc.) 

corresponding to that dimension. For convenience, the 



undetermined power, of the variable is placed in the 

last row. 

Table 1, which follows, is self-explanatory. 

Check: --c5 = (M1 L1 T2)k5, from equation (6). 

In the column, Table i has 1, -1,-2 which are the 

dimensions (M, L, T) of t 

Table 1. Dimensional Table 

Variable 

M O 0 0 1 1 

L 1 1 2 -3 -1 

T -1 0 -1 0 -2 

Unknown 
k1 Ic2 k3 k k5 

Powers 

Note that the array of numbers in the table is the 

first matrix on the left-hand side of equation (12). In 

other words, if equation (12) is rewritten in the notation 

form, 

AX=0 (13) 

the matrix A is the array appearing in the dimensional 

table (11, p. 33). 
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The Matrix Transformation Technique 

The Pivot Element 

From equations (12) or Table 1, the matrix shown 

below is obtained. 

fo o o j i 

( 
1 1 2 -3 -1 

0 -1 0 -2 

This matrix is operated upon in the section Successive 

Multiplication (see page 8) to give 

- -1 1 0 

1 01 
o i i o o 

in accordance with the rules in that section. The parti- 

tioning indicated first appeared in the section entitled 

Partitioning Matrices. In the upper right-hand corner is 

found an array which is the identity matrix of order 2 x 2. 

This form is very desirable in computations, and the way 

to achieve it is discussed next. 

Pick any element. Call this the "pivot" element. 

This element is to be transformed Into unity by any or all 

of the elementary transformations. After this is achieved, 

all other elements appearing in the same column as the 

"pivot" element are changed to zero by similar operations. 
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This procedure is the basis of the matrix transformation 

technique. 

The idea is to change "pivot columns" (i.e., the 

columns containing the chosen pivot elements) into columns 

having 

1, for a certain i and j, and 

= O, for all other elements in the jth column. 

Such columns are similar to columns of an identity 

matrix. Then a permutation of columns or rows or both will 

produce an identity matrix of appropriate order as a sub- 

matrix. In the above case, an identity matrix of order 

2 x 2 is obtained in the upper right-hand corner. 

Illustration 3. 

Let the array shown in Table i be designated as a 

matrix A. 

/0 0 0 1 1 

71\ <==, ( 
. i 2 -3 -1 

k-i o -i -2 

Using a14 and a25 as the pivot elements, the idea of 

obtaining an identity matrix, I, is pursued. To effect 

the elementary operations, premultiply matrix A by such 

matrices as can accomplish that operation. These opera- 

tions are depicted in section Successive Multiplication 

whence 



(Pn)A = D - (1)4) 

Partition as in section Partitioning Matrices, the 

operation is completed. 

where 

We have, finally, 
w 

z 

-: -) 
1 i) 

4=> (o o). 

Solving the Matrix Equation DX = O. 

A Comparison 

From equations (13) and (1)4), 

DX=O 

Write 

- -- -J. i o\ D1 

ID ¿ i o ï 

o i i O O D3 

where D1, D2, D3 designate the three row matrices. 

(15) 
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Hence, computing D3X, D1X and D2X, the following equations 

result. 



k2 + k3 

4k1 _.k2 -k3 + kk 

=0 

=0 (16) 

k1 + k3 +k5 O 

From these, equations (C) are again obtained, namely, 

k2 -k3 

k5 = 4(k3+k1) 

(8) 
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By way of comparison, refer to equations (7), (8) and 

(13). Equations (7) and (13) are the same. And above, 

they lead naturally to the same result, equations (d). 

But it is agreed that th result is obtained directly from 

equation (15), whereas it is obscure in the elementary 

approach which yielded equations (7). 

The above convinces the reader that the transforma- 

tion technique can change a matrix into a more suitable 

form for computation. Hence it is seen that there is a 

ju5tification for all these operations. 

X1 =EZ 

The solution to equation (13) is equation (8) 

k2 = -k3 

k5 = -(k1+k3)1 (8) 

k = 

This ±5 the equation, 



where 

X1=EZ -(17) 

(k2 \ 
i k 

\ X 
I, 
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and /0 -1 

Since X1 and Z consist of elements, k1, it is 

possible to write 
/ Z 

x= 1- 
't'X1 

where the column matrix X has elements, k1. In equation 

(8), if values are chosen for k1 arid k3, then k2, k, and 

k5 can be determined. 

Example 

a. Choose for Z, k1 1 and k3 0. 

Then 

b. Choose for Z, k., - O and k, = 1. 

The product corresponding to the first choice is 

() =Lk22 

-1 



and corresponditi to the second choice iS 

J4 
A Goal 

The reduction from 

u = f(5, vt1T-sL) 
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P(1t1912, 
is completed by writing in the W-valuec. Thus, equation 

(ii) is obtained again. 

J ------d.---- (J) 

During the reduction process, the equation 

AX = O 

is obtained. It is the primary purpose of the analysis to 

ake the relationships easier to handle. T'nerefore, it is 

desirable to alter the matrix form such that X or its sub- 

matrix X1 can be 'rtten down by inspection. This reaults 

irA a matrix equation, 

DX= O, 

where D is in a aultable form. 

Note: 

X can be partitioned thus 
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X1 is theu deteruiined iroi 

Xj =EZ. 

The ieaturet of the above equation will be discussed 

in the next section. 
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FEATURES OF AN IMPORTANT MATRIX EQUATION 

Deriving X1 -131CZ from AX - O 

Consider the nOn-homogeneous matrix equation MY = Q 

in its equivalent form HY-Q O. By using partitions, 

write it compactly as 

(H\Q)( = 

with A4(H 
\ 
-Q) 

and (Y) 

the associated homogeneous equation is 

AX = O. 

So in general it is sufficient to consider AX = O alone. 

Consider A and X (in the equation AX o) partitioned 

as follows 

A = (i3kc) 

(x1 
X = 

where B is of orde' m x m, and B and X1 are such that they 

are conformable for multiplication. C and Z are also cori- 

formable. Therefore, the orders of C, X1 and Z are 

nl x (n-m), m x 1, and (n-m) x 1, respectively. 

Now AX=O 

(x \ 

l=O (B\c) 
f 

\ 
Z ,/ 



Xl 1- C O 

EX1 = -CZ 

Then if B1 exists, 

= -(Bc)z (18) 

This is an important matrix equation. Note that X1 

and Z are parts of the sanie X for which a solution is 

sought. 

It is seen from equations (17) and (18) that 

E (-Bc). 

In section 14, A MATRIX SOLUTION, X1 is solved by 

arbitrarily specifying the elements in Z. Hence, by th.e 

same tokens 
the resuitinL X in the above derivation is 

nade up as follows, 

/ Z assumed 
X =( 

calculated 

Consider the matrix B. Ita number of rows is fixed, 

so is its order which is ni x ni. Consequently, X1 also is 

of fixed order, ni x 1. 

How to Obtain B1C 

Attention is now focused on equtton (18), namely, 

Xl = (-Bc)z. 

The question is asked, "Is there a way of evaluating 

separately?" The answer to this is '1yes. 
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Proc cd ure 

After having selected a matrix B, reduce it to I by 

a series of elementary transformations. This involves 

the successive use of pivot elements. Then as a by- 

product, the original C matrix, also a part of the A 

matrix, reduces to B'C, hich is what is being sought. 

The procedure is illustrated below with an example. 

Example 

The relation 

V = f(P, Q, R, S, T, u) (19) 

is given. To reduce it to a relation involving products, 

a product of the following form is assumed. 

lT = pk1Qk2Rk3sk4Tk5ukk7 ----- (20) 

It is assumed that the dimensional table shown below is 

obtained from equation (20), in accordance with the section 

entitled Matrix Transformation Techniq»e. 

Table 2. Dimensional Table 

Matrices C B 

Variables P Q R S V U T 

M 

L 

T 

2-1 
i 

O 

0-1 
1 

3 

0 

0 

0 

3 

1 

2 

2-1 

-2 

1 

0 

2 

1 

Matrices Z X1 

Indices k1 k2 k3 kj1 kr k6 
j 
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Note: It does not matter actually whether A is partitioned 

as 

A = (Bic) or (C\B). 

It is only required that X1 and Z be conformable to matrix 

B and matrix C respectively. This Idea Is used in the 

table above. 

Transformations 

To perform the requisite transformations, suppose N, 

N, F, G and H are chosen as follows, for row operations on 

matrix A. (A Is the array in Table 2, above). 

/0 0 J. 

1 

\i o o 

i o o 

o 

o o i 

(1 2 0 

1 0 

\0 -3 i 

(i o o 

1 -2 

o o i 
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¡1 0 0 

\4:';; (_2 i O 

O i 

Particular pivot elements are 

Ai7, A35, end A26. 

(The suffixes have their usual ¡ceanirigs.) 

Let (MNFGH)A = D. 

Then performing the transformations, we obtain, 

/11 -9 9 -15 1 0 0 

-5 6 0 1 0 

7 7' 12 0 0 1 

Partitioning D as indicated above, we have 

D = (E'\I) 

where I is of order 3 x 3. 

By performing row transformations, I has been obtained 

under the columns which once were B. Hence the products 

of the matrices must amount to B1. Since this is the case 

( checked), then under the columns constituting C before, 

we have also premultiplied by B". This is now 13C. The 

submatrix E' is then B"C which we set out to find. 

What Z's to Assume 

In the section entitled, Solving the Matrix Equation 

DX = 0, above, a choice of matrix Z made up of elements k1 



which were either unity or zero led to Tv(i), (2)' 
or 

simply 
i' 2 To generalize this Idea, always assume 

¿ a a "pivot column." Recall that such columns are 

similar to columns of the identity matrix. 

That is, for a 4 x J. Z matrix, 

/1 IO' ¡O 

jOt 
z 

i1t () los' 

Ito) = = h) and 

\\OJ 

(o 
(ot 
\cJ 
kif. 

Matrix Z is different in each case. Let a superscript 

indicate a specific choice. 

z(M) = 

36 

Generally Z will be given as 

where O is the zero matrix. 

(M) = 1, 2 .... (n-m) 

That is, there are (n-ni) choices of Z that can be made. 

Calculating X1 

Each choice of Z, z(M), leads to a specific column 

matrix, x1(M), x(M) corresponding to a is obtained 

from equation (18). 

x1(M) (E_1c)z(M) ---------- (18) 



E;mplc 

From pase 35we obtained matrix EC, namely, 

11 -9 9 -1 

= - ¿_ -: 

-L 7 -7 12 

The following X1 values are calculated using equation (18). 

/91 1-91 (iï 
x1(2) = X1 = 5) 

-7j , 

I 15 
and = ( 

-6 
12/. 

The Features - Summary 

Consider equation (18) 

x1 = 

The pai't of the right-hand side involving has to be 

obtained by using elementary transformations. Elements in 

matrix Z have to be assumed, By completing the multipli- 

cations indicated in the equation, X1 is obtained. Hence, 

it is seen that to solve the underdetermined matrix equation 

AX O essentially means solving 

Xl = -(Bc)z. 

This is an important observation. 
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DEVELOPMENT OF AN ALGORITHM 

Algorithm 

From pages 22, 31, and 32, the reduction of 

V = f(p, q, r, s, t, u) to 

= F(T1, 
2 

actually is equivalent to solving for X in the relation 

AX O. Consider the partitioning of this equation (see 

page 31). 

A = (Bic) 

(x 
x=I- 

\\Z 

With B conformable to X1, and C conformable to Z for multi- 

plication, we can rewrite the equationì AX = O as 

X] = -(Bc)z ---------- (18) 

It has been shown that to solve for X, Z has to be assumed 

and X1 calculated from it. This then forms the basis of 

an algorithm. 

An algorithm is developed based on the features of 

equation (18). The method is stated in three steps as 

follows. 

1. By successive operations on rows, transform submatrix 

B into the identity matrix I. When this is completed, 

the submatrix which is originally C changes into 



(Submatrices B and C of matrix A are obtained from 

the dimensional table developed f Qi' the paí'ticuiar 

dimensional analysis problen.) 

2. Aasuie Z such that each is a column of the ident- 

ity matrix of order (n-m) x (n-m). Then obtain x1(M) 

from the respective columns of the natrix -BC. (If 

the array shows only BC, obtain X1 by changing the 

sign of each element,) 

(M) 1, 2 .... (n-m). See page 36. 

(z assumed 
3. Form X = 

X1 calculatea 

Each ives a i. Hence the :eduction is corn- 

pleted. 

(Note that since X is a column, it will he prefer- 

able to save space by writing its transpose, xT, The 

M columns become M rows). 

Finally, introduce into the relationship. 

TT= F(1, 2 "' 

Form of the Transformation Table 

A transformation table will be set up that shows the 

steps given in the previous paragraph. The dimensional 

table will be included in the transformation table. It 

will be referred to as the array (cB). I, an identity 

matrix of order w X m is merely attached to the right-hand 



side of the (c\B) riatrx to cive (c(B'\I). Also appended 

on the left-hand side of (cB) is matrix T. Matrix T is 

that transformation matrix operating on (clBI) at that 

point in the calculation. 

So (cB) and I are written down first. Then T is 

filled in to achieve the row operation that the calculator 

has in mind. As the table is set up, the matrices T, 

(cB) and I are arranged in order. 

Example 

33. 

An example follows, using Table 2 as given on page 

Notice that the single vertical line indicates a 

partition. The double vertical lines distinguish the 

beginning and end of one matrix from another. 

STEP i 

As shown below, write the transformation table for 

matrix A, obtained from Table 2. 
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Transformation Table or Algorithm 

r T C B 

OPERATION P Q R S V U T 1 2 3 

3. 0 0 2-1 3 0 1-2 0 1 0 0 

-2 1 0 1 0-1 0 2 2. 2 0 1 0 

-2 0 1 0 1 0 3 2-1 1 0 0 1 

i o o 2-1 3 0 1-2 0 100 
o 1-2 -3 2-7 0 0 5 2 -2 1. 0 

o o i -k 3-6 3 0 3 i. -203. 
i 2 0 2-1 3 0 1-2 0 100 
0-1 O 5Ll 5.6 0-1 0 2 1-2 
0-3 3. -4 3-6 3 0 3 2. -203. 

-8 'T -7 12 1 0 0 -3 -2 k 

- k -5 6 0 1 0 -2 -1 2 

11 -9 9-15 0 0 1 k 3 -5 

-1 BC I 
-1 

B 

STEP 2 

Now choose the ronowing values for Z. 

:: 
; 

z(2> 

. ( 
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STEP 3 

Using X = where X1 = -(BC)Z, set out the x1 

table for X as follows. 

The X-Table 

X 1234 
(1 0 0 0 (k1 

z ' 

lo o i O 1k3 
O O i 

1 8 -7 7' -12 (k5 
X1 5 - 5 -6 6 

-1l 9 -9 15 tk7 

In matrix forni the solution X is given by 

\X 

where X1 = -B'CZ with rows equal in number to the dimen.- 

sional matrix A, and Z is assumed to be a pivot column. 

(Preferably, the result is written as xT. ) Call this the 

matrix of solutions. 

Matrix of Solutions, (i.e., xT (zT x1T) 

P Q R S T U V 

1 0 0 0 -ii 5 
8 

O i O 0 9 L 

O O i O -9 5 7 

O O 0 1 15 -6 -12 



t) 

Each row gives a (Sae section Calculating X1) 

With i in the order 1, 2, 3, 4 from top row to the bottom, 

pr1lu5v8 

= T9U V 

= RT9UV7 

= ST15U_6V_12 

and it is observed that P, Q, R, S occur only once in 

their corresponding dimensionless products T 2 

TVL (ii, p. 36). 



FINAL STEP 

Introduce .nto the relt1onship 

1= 
2 

PT11U5 V8 = F(QTUV, RT9U5V'7, ST15UV12). 

Observation 

Since B'1I = B, the columns of I transform into 

in the end. They also indicate the products of the 

various T matrices. That IS, in the end, with T1 = E, 

T2 = F; ....Tk = L 

B' = (EF .... L). 

To check for errors, determine whether this final matrix, 

and matrix B form a product B1B equal to I. 

Check: 

-3-2 k 1-2 0 /1 0 0 

-2-1 2 2 1 2 = o . o 

4 3-5 2-1 1 o i 

Modification 

After this section, the matrices I and T will not 

be included, The dimensional table will be used as given, 

(C B), and the three steps followed. Horizontal lines 

drawn across the page will indicate the end of each trans- 

formatîon. 
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The Typical Problem 

Try this algorithm on the problem that was done in 

chapter 3 and again in chapter 4. 

M O O 0 1 1 (1) 

TiO2 (3) 

L 1 2 1 3 1 (2) 

k1 k2 k3 kJ4 k5 

Indicate the rows by (i), (2), (3) in order. Omit the 

intermediate steps. The array containing I is as follows. 

O 1 1 0 0 (2) 

- -. o i o (i) 

O O i (3) 

B'C I 

Notice the row permutation above. Matrix xT is given by 

the following matrix of solutions. 

ì! 

-n-1 
1 0 0 - 

2 -' 4 
T T 

V(1 



and 

Permutation 

k6 

A permutation of columns and/or rows results in a 

different array. Hence, the resulting 's are also 

different. 

Example 

The same example as before: 

1H 
M O O O iiJ (i) 

L 1 1 2 -3 
-1 ¡ 

(2)E 

-O -1 0 -2 
¡ 

(3) 

_k2 I 

JLLLL 
- - -]. 1 0 

* * 1 0 1 

O 1 1 0 0 

o i o 2 2 

i i 
- O O 1 

0 1 1 0 0 



k7 

o i i o o (3) 

- i O 1 0 (1) 

- O 0 1 (2) 

xT is the following array 

k1 k2 
I 

k3 kk k5 

rc1 - 

Here 
2 

is different from the previous result. 

The Algorithm versus Other Methods 

There are numerous ways of solving a set of equations 

(generally called underdetermined) that consist of ni 

equations in n unknowns., and with m n. Among the methods 

are the use of flow-graphs, and the gradient methods (6). 



o 
9. L 

There are also matrix procedures. In the matrix procedures 

elementary transformatiorts play a major role. It is noted 

that once rows and columns of numbers or functions have 

been arranged in a specified way, simple operations can be 

performed on them without literally knowing what the 

numbers or functions stand for. Thus, one can proceed to 

obtain an identity matrix (as a submatrix of a partitioned 

matrix) with only the concepts of row operations in mind. 

Hence the algorithm that is developed from matrix theory 

is easy to use. This cannot be said of some of the other 

methods. 
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List or Synibos for the Next Section 

Mechanical 

a = cce1eratioi 

A = area 

F = force 

m1m2 
K = constant in F - K - 

r 
k = conductivity 

= mass deriity 

V = volurae 

'C = thear stress 

,tA = dynamic coefficient of viscosity 

= kinematic coefficient of viscosity 

Q flow = flow rate, ft.3/ sec., say 

du 
= velocity gradient 

I moment of inertia 

E = modulus of ela8ticity 

= temperature 

= temperature difference 

Q = quantity of heat, thermal energy 

h = heat transfer coefficient 

U = energy 

P = pressure, hoad, or power 

3 = coefficient of thermal expansion 

C specific heat 



'J 

Electrical 

c = capacitance 

inductance 

J = current density 

V = voltage, electrical potential 

Q = charge 

m = mass, e.g., mass of electron 

1 - distance, as between electrodes, say 

-C = permittivity 

permeability 

q) = flux 

P - power 

I = current 

U = energy, in watts, say. 
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Symbols of Dimensions (or Concepts) 

Mq = mass, as quantity of matter 

= mass, as inertia 

Lx = length, axial 

L = length, radial 

P = power: thermal, electrical or radiant 

= flux: thermal, electrical or radiant 

Q = quantity of heat 

Q = electrical charge 

I = electric current 

V = voltage 

T = time 



FURTHER CONCEPTS 

"Unconventional" Concepts 

In the preceding sections, the concepts of mass, 

length and time are used as fundamental concepts upon 

which the analysis is based. This procedure amounts to 

sticking to ari old and rather restrictive idea. This 

is the idea oít describing physical things in terms of 

mechanics only. It is also in order to regard temperature 

(designated by ) and electric charge (Q) as fundamental. 

In fact, the concepts are arbitrary. However, it is noted 

that these concepts of mass, length and time form the 

basis of other concepts. Others are derived from them 

through the definitions and statements of physical laws. 

As indicated on page 16, when describing some 

phenomenon, previous knowledge is used to determine which 

variables are worth considering. The variables can be 

chosen. It seems reasonable that the concepts or dimen- 

sions of the variables must also be chosen. Such an idea 

of choice is promoted in this section. 

The Length Concept 

Consider length in two mutually perpendicular 

directions: 1 and Or consider an axial and a tan- 

gential direction: 'r and l. Though the lengths are in 
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different directions, they are measured in the same units 

(feet, say). 

The Mass Concept 

In some relations, mass appears as a quantity of 

matter. For example, mass appears as such in the heat 

equation, (S1. 

where Q = quantity of heat 

ni = mass 

C = specific heat 

and A= change in temperature. 
In others, mass is inertia. For instance, inertia 

mass is under consideration in the equation of motion, 
F s ma 

where F = force 

ni = mass -- inertia 

a = acceleration. 

Distinguishing between these two kinds of mass, let Mq and 

M1 refer to mass as a quantity of matter, or as inertia, 

respectively. These considerations follow the lines of 

Moon and Spencer (13) and Huntley (8). 

a) It is advisable to consider mass as a quantity of 

matter when dealing with mass flow (8, p. 125). 

b) When dealing with pressure gradient, pressure, 

dynamic coefficient of viscosity and heat transfer 



coefficient, consider macs as inertia. 

c) When specific heat Is involved, use the ratio 

M1 Mq. (8) 

Some Suggested Combinations of Concepts 

Hoping to see various kinds of legitimate and reason- 

able combinations that will enhance the meaning of 

dimensional analysis, the following combinations of 

concepts are presented. This presentation is meant to 

introduce flexibility. 

Table 3. Table Showing Various Concepts 

Concepts 

Mechanicc M 

Heat M L T 

Heat Mq Nj Lx 

Electricity M L T 

Not using mass 

He a t 

Electricity 

Electricity 

Electricity 

Light 

L L T 

L T I 

L T I 

ILT 
Lx L T 

See Appendix 

T 

L 

Q 

V 

P 

I 

Q 

T 
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Examples 

An Electrical Example 

Problem: Determine the nature of the functional relation 

J = f(V, Q, m, 

Case I: Use the basic concepts of mass (M), length (L), 

time (T), and electric charge (q) in forming the 

dimensional table. 

Variables J E 

L -2 -3 

M o -1 

T -1 2 

1 2 

Indices k1 k2 

V Q m i 

2 0 0 1 

i o i o 

-2 0 0 0 

i i o o 

k3 k4 k5 k6 

(1) 

(2) 

(3) 

(4) 

A pivot element to be selected is a33. After corn- 

pleting the transformations, permute the rows as shown 

by the numbers in brackets below. 

4 -1 i O O O (3) 

3/2 1 O i O O (4) 

--i. o o o i o (2) 

-3 -1 0 0 0 1 (1) 

The same methods as in the previous section were 

followed to obtain B'C. This is made up of the first 

two columns in the array above. 
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Write xT, Indicating the rows as 

V Q m 1 

1 0 - .-3/2 3 

O 1 1 -1 0 1 

k1 k2 k3 k4 k- k6 

- I mi \ 
k1 (\_L\k2 

R= C(J /21 
V2Q'/ \ Q 

or In the usual form, 

J = e) 

Case II; Instead of L, M, T and Q, use Lr, Lt, T, I and P, 

I stands for current and P for electrical power 

(13, p. 507). 

Variables J - V Q ni i 

Lr -1 -3. 0 0 0 0 (1) 

Lt -1 0 0 0 -2 1 (2) 

T O i O i 3 0 (3) 

I i 2 -1 1 0 0 (f4) 

P 0 -1 1 0 1 0 (5) 

Indices k1 k2 k3 k4 k5 k6 

Follow through the transformations, using the rows as 

numbered above. Finally, rearrange rows to obtain an 

identity above k2 k3 .... k6; thus, 
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i i o o o o (i) 

3/2 0 1 0 0 0 (4) 

2 o o i o o (3) 

o o o i 0 (5) 

-2 0 0 0 0 1 (2) 

Write xT 

V Q ni 3. 

i I -1 -3/2 - 2 

k11 k2 k3 k4 k5 k6 

rnk2 
= c1j 

or 
C(eV3/2 
mL2 

Comparison 

Substituting K 

for f( ) 

in the final result in Case I, we have 

Q3/2 _____ J = C1\ K 

= C[ v3'2 

This substitution then gives 



- 

j = cJ 
v3/2 

m 
L2 

as in Case II. 

Comment 

It is worth noting that the evaluation of f 

would require an experiment. 

But here, by a judicious choice of concepts, the 

function comes out of the analysis directly 

as K . This is a remarkable feature of the idea 

of unrestricted concepts. The equation obtained in Case 

II is often zeferred to as Child's Equation. 

Heat Transfer Example 

Consider next the heat transfer coefficIent evaluated 

for a body immersed in a fluid. 

h = f( L, e , , e 
», c 

, 

where C is the specific heat. 

Case I: We use as basic concepts M, L, T and ê 

Dimensional 

Variables h g C 

Table 

L ,, K 

M i O C O i I i (i) 

L O 1 2 1-3-1 1 (2) 

T -3 -2 -2 0 0 -1 -3 (3) 

-1 0 -1 0 0 0 -1 (4) 

Indices k1 k2 k3 k4 k5 k6 k7 
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Assume from the relation 

2\L 

that must be dimensionless. After the matrix 

transformations, permute the rows and rewrite them below. 

-1 -3 0 1 0 0 0 (2) 

o -2 0 0 3. 0 0 (i) 

o 2 -3. 0 0 2. 0 (3) 

1 0 1 0 0 0 1 (4) 

Then xT is given as below. 

h g c L c U% K 

1 0 0 3. 0 0 -1 

0 1 0 3 2 -2 0 

o o i 0 0 1 -1 

k1 k2 k3 k4 k5 k6 k7 

i K 

ii- 

2 

and , as assumed. 
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The Final Relat.ion 

f() = ) 

Case II: The heat transfer problem is reconsidered with 

the basic concepts of M, L, T, , and Q. 

Variables hjC L& e 
Ák K 

M O 0 0 -3. 0 0 1 1 0 (i) 

L -2 1 0 0 1 0 -3 -1 -1 (2) 

T -1 -2 0 0 0 0 0 -1 -1 (3) 

-1 0 -1 -1 0 1 0 0 -1 (ii) 

Q 1 0 0 1 0 0 0 0 1 (5) 

Indices 2 k3 kk k5 k6 k7 k3 k 

After the transformation, re-arrange the rows. 

-1 3 0 0 1 0 0 0 0 (2) 

O 0 -1 0 o i 0 0 o (k) 

o -2 0 0 0 0 1 0 0 (i) 
0 2 0 -i 0 0 0 1 0 (3) 
i O O i O O 0 0 3. (5) 

Hence is given in tabular form as follows: 

i O O 0 1 0 0 0 -1 

1 0 0 3 0 2 -2 0 

ti3 O 0 1 0 0 1 0 0 0 

O O 0 1 0 0 0 1 -1 

k1 k2 k3 kk k5 k6 k7 k8 k9 



'- 
i K 

- 3 1/ )- 

iT1 = 

nd 

Note: The product ¼' = was assumed in Case I. 

By using all the variables given in Case II, the same 

results as in Case I were obtained. 

Modification 

The relation 
/ Z\ 

(Bc)(-) = o 

or X1 = -BCZ 

is very important, as it underlies all the above work. 

Since B is in x m., Z is consequently m x (n-m). 

m = number of rows in matrix A 

n = number of columns in matrix A. 

A legitimate increase in m would cause (n-m) to decrease. 

That is, we would have fewer elements in Z to name 

arbitrarily. 

The result in Case II had been obtained by increasing 

the number of concepts. The dimensional table for the 

same heat transfer problem will now be modified by 
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reconsidering :sengtn. Suppose a case of axial symmetry 

were considered. The appropriate deignator. of 1enth 

would be as follows: 

Lx for axial length, and 

L for radial length. 

These lengths essentially refer to the length of the pipe 

and the radius of the pipe, respectively. 

Case III: Use the concepts of M, L, 1y' T, e and Q. 

The resulting table follovm. 

(a) ____ h g C L ' /-( K 

M O O O -1 0 0 1 1 0 (i) 

-2 0 0 0 0 0 -1 -1 -3. (2) 

O i O O 1 0 -2 0 0 (3) 

T -1 -2 0 0 0 0 0 -1 -1 (4) 

-1 0 -1 -i 0 1 0 0 .-1 (5) 

Q i O O i O 0 0 0 1 (6) 

k1 L2 k5 k6 k7 k8 k9 

Put the rows in the order (3), (2), (5), (i), (4) and (6). 

The resulting products are given below: 

i 2 3 

(b) By choosing another B matrix, the final arrangement 

of rows follows in the order (6), (2), (5), (i), (14) and 

(3). 



The Result 

i 

2 

"3 

The Products 

h g CL K 

1 0 0 -3 -1 0 0 -3 -2 

o i o o o 3. 0 0 0 

0 0 1 -3 2 0 2 3. 1 

k1 k2 k3 kk k5 k6 k7 k8 k9 

'pl 

i 

- 

I 

3 
- 

(e) In this case, and A& are omitted 

h K g CL 
1 

0 -2 -1 -5 -k 8 

0 1 -1 -1 -3 -2 

1 

2 
- 

Ajeo (\3 - (31 (assumed). 

Comment: 

All theses products are as weird as Grashof'a Number, 

namely 
o - 



The resemblance (even if slight) of these products to 

already accepted numbers calla for further experimental 

investiga tion. 

Forced Convection Problem 

In the forced convection problem that follows, the 

dual role of mass Is introduced. 

h = f(E:, , K , c- , L ) 

Recognize here that c = Q (8, p. 125). 

Caae I. Use M, M1, L, T and as concepts 

- h- ts& k C L 

Mq 0 1 0 0 -1 0 (1) 

i 0 0 1 1 0 (2) 

L 0 -2 0 1 2 1 (3) 

T -3 -1 0 -3 -2 0 (Li.) 

0 0 1 -1 -3. 0 (5) 

k1 k2 k3 k4 k5 k6 

Perform the necessary transformations. After permut1n 

rows to read in order (5), (2), (1), (3) and (4), we 

obtain xT below. 

h- - 1: L 

k1 k2 k3 k4 k5 k6 
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Products 

''1 i:K 
- (L 

Ceee II: Consider A.-k as a pertinent variable. 

Concepts: Use M1, L, T, arid & as before. 

Resulting Producta 

We will obtain the products underneath. 

i 

- 

fc 
and 

- :ï-::- 

Typical Problem is Modified 

We will return now to the initial problem. Table 3. 

(see pase 23) is modified by using the dimensions L L in 

place of L. 

Case I Here volume is considered to have the dimensions 

L2 Lx 
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Modified Table 

Variables u 

M 0 0 0 1 1 (i) 

L, 0 -1 0 -1 -1 (2) 

l 31-20 (3) 

T -1 -1 0 0 -2 (Lt) 

Indices k1 k2 k3 kk k5 

By the algorithm we obi 

o 

i 

- 

i 

2 

Hence xT is given by 

;airì the following array: 

1 0 0 0 (Lt) 

0 1 0 0 (3) 

o 0 1 0 (1) 

o o 0 1 (2) 

u V 
i 

1 0 0 

This means 

= constant. 

Case II: Consider the dimensions of volume to be L3. 



Resu1tin Dimensional Table 

Variables u 

M O O O 3. 1 (i) 

0 2 0 3 -1 (2) 

L i o i o o (3) 

T -1 -1 0 0 -2 (ii) 

k1 k2 k3 k4 k5 

The product obtained from xT (when the rows follow in 

order (4), (3), (i), (2)) is 

That is 

- 
-c 

UJT 

A 

Physical Implications: 

Both results (Cases I and II) disagree with the re- 

suit on page 21. However, one or the other of the above 

results have appesred earlier in the literature when 

assumptions such as a smooth surface, infinite wall, etc., 

were used. The question herc is whether the above results 

are not the true ones and whether the earlier result is 

not a very general but less informative result. 



Significance of the Results 

Some interesting results have been made possible by 

a foresight that had not been utilized before. In the 

above examples many more dimensionless products were found 

by the inclusion of non-conventional concepts. We did not 

have these products before. Their significance can only 

be checked by experiment. 
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COMPLETING THE ANALY3IS 

A Back-Reference 

Let us refer back to the problem from which we 

obtained 

i1 = PT'1U5V8 

= 

= RT9U5V7 

= 
¿3. 

on page 43. 

Expressing '2' i4 88 functions of 

Kila b T-4c 

(pm1l5tJ8) = K(QTU-4V*7)a (RT_9u5\T7)b 

(sTl5uv2)c 

The constants K, a, b, e are yet to be determined. We 

could choose to determine these constants by assuming 

= 2' l = 3)J = f( lT ¿3.) each 

separately. That is, we hold the others constant and 

determine the function in question by a plotting of data. 

Thanks to Levenspiel, Weinstein and Li (12), we 

simply calculate the dimensionless groups T for each run 

and tabulate them. The procedure for evaluating K, a, b, 

e then is one developed from multiple regression analysis. 
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The Equations 

A matrix equation of the type 

QY=P 

or (QP) 
(4.') 

= o 

is obtained from the multiple regression analysis. 

Ifdet QO, 

then Q'QY = Q'P. Therefore, Y = Q'P. 

So starting with (Q 
\ 

P), the same methods as before will 

be applied to obtain 

(i 
\ 
Q1P) 

and that column matrix, Q'P, would equal Y. 

The Nature of Yand (Q)P) 

First, 
b0 
b1 

k 

where b0 = log K, 

K being the constant in the relation 

1 

= KT25 b 
(9) 

That Is, y = b0 + b1x1 + b2x2 + b3x3. 

b1=a, b2=b, b3=bk=c. 
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For N runs, (Q f 
p) is given 

(Q\P) = 

C- 

- 

II)c - -- 

1x_ 

IX\( ILj 

IL 

This is a symmetric matrix obtained (in -) by 
statistical methods. N number of runs. 

= log ' 1 

X2 = 10g 
2 

Xk = log 

y = log T 

and x1, X2, X12, X22, etc., are products computed for each 

run, and y = b0 + b1x1 + b2x2 + .... bkxk. 

Comments: 

The matrix Q is a 

solution exists other 

constants can be found 

compute (Q\P). 

The data helps to 

xl 

square matrix. Hence since a 

than the trivial Y = 0, all the 

by using the experimental data to 

determine Z in the matrix equation 

= -(Bc)z. 



72 

Similar matrix procedures applied to the data lead to 

definite values of the elements of matrix Z. 

The fact that Y could be calculated from values of 

the square matrix Q arid P, shows that if we were to 

obtain an m x n matrix A from the start that had m = (n-l), 

experimentation would not be necessary to determine the 

exponent. It is realized though, that experimentation 

would be necessary to confirm or reject the product. 



CONCLUSIONS 

The dimensional analysis leads to a system of under-. 

determined equations. In other areas similar equations 

are encountered. What is done is to develop certain 

criteria to supplement the equations? Instances of this 

appear in feedback theory. In dimensional analysis, this 

is not possible, for the analysis is not meant to give a 

clear-cut solution. It is true that one encounters a 

scaling criterion but it must be pointed out here 

that the scaling crterin does not belong to the category 

mentioned above. 

This difference makes it imperative on the analyst 

to use other means. Since a system of under-determined 

equations is arrived at, some parameters, Z must be 

arbitrary. This statement is amply made In the matrix 

equation 

X1 

where X, the solution sought, is 

This matrix equation is arrived at through simple opera- 

tions on the matrices, Por instance, it is. to be observed 

that in the process of obtaining Xl, the parallel lines 

(i.e., the rows or columns) of the matrix are, sometimes, 



7)4. 

to be rearranged. This is because sorne variables that are 

easily measurable are thought fit to appear in only one 

product, T 
. 

The simple nature of all the operations or 

transformations adopted in this thesis makes the resulting 

algorithm stand out clearly as one that can be adopted 

wherever the system of under-determined equations rears 

its head. 

A great attribute of the algorithm developed is that 
it is adoptable for machine use. Owing to the various 

number of ways in which the products can be formed, it is 

concluded that machine computations will greatly help in 

this work. The programming will follow the lines of 

routines which are available in most computing centers. 

[See Appendix. It merely involves a matrix inversion 

with careful rounding off of answers. This is one of the 

marty reasons why this method is discussed here instead of 

other equally useful ones, namely: the relaxation method 

(15), or any of the gradient methods (6). 

By the application of art unrestricted number of 

concepts, it has bee 

matrix A can be made 

columns. That is, rn 

concluded that there 

concepts. Regarding 

length, and time, it 

1 shown that the number of rows of the 

almost equal to the number of 

could be brought closer to n. It is 

must be some better ways to use all 

the old mechanical concepts of mass, 

is apparent that we are not being 
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Bpecific in our definitions. It has been dernorìtrated 

that we can asBociate sorne sort of tdirectionfl to length. 

The question remaine unanswered whether other concepts 

like energy arid power are not equally basic. Lastly it 

is hoped that by the use of the methods mentioned in 

this thesis, there will be some further thought on the 

subject of dimensionless analysis. It is noted that 

the theory of nodels is based in part on dimensional 

analysis. Would this analysis reveal some disturbing 

phenomenon in the theory of models? We do not know yet. 
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APPENDIX 1. 

Dimensions of Some Physical Quantities 

RELATION, ETCS 

Mechanics and Materials 

P - ma 

km,m2 
F - - - ma 

r 

p w 
y (density) 

(shear) 

A 

stress 
E - strain 

Mass Moment of Inertia 

Moment of Inertia 

Fluid Mechanics 

Maas Plow 

DIMENSIONS 

[iir?; [M - [FL'T2 

[F3 [LT]; [M 

-[ML3 

- [tLr2/L2 [-lT-2Ç 

EI 

E3 - [F,/L2 3 

L'ma = [MIfl 

['area3 - TL 

\f low3 \IL3T1 

/A LLA: [FL2TLL-13 -[-lT-lJ 

,-ì//_ L-v]_ LML'T'M1LD - 

Momentum [mV3- [rr] = [MLT'Ç 

Energy [u= [z3 
L2J- 'J 



RELATION, ETC. 

Fluid Mechanics (cont'd) 

Power 

Heat Flow 

Quantity of Heat 

Heat Equation 

Specific Heat 

Thermal Capacity 

Thermal Capacity/Unit 
Volume 
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DIMENSIONS 

[I3 [gr'J 1î2T3J = LIVIÇ 

= [FLI 

[Q= [iic] 

3= CQw-'S [L2T_2o] 

[mC'. 
[Q_l] 

[mCL3] = 

Coefficient of Thermal 
ExpansionAL =/LA& 

QJT = KA-L/L [kiS= [(Q)(LT)-l] T3e1I 

Q/T = hAL- Eh3 = UQ)(TL2èYJ = MT1J 

Electricity 
I = d/dT 
L = 

J = I/A 

E = F/Q (field in- 
tensity) 

V = -E (potential) 

C = dQJdV 

R = V/I 

Note: Q = charge; V = voltage 

1Iii= iiQT-'] 

[r3= \VQ'T2J 

[ jJ = [1A'l = [QT'L2IJ 

LE= LT2QJ 

vj= \E]a MLr2Q1J 

Cc:J= Q)(MLT2Q')l = 

r_ MLT2Q2 J 
v)(QT_lylJ = [T_1QJ 



RELATION, ETC. 

Electricity (cent 'd) 

Magnetic Field Intensity 

4Tr 

i 

B - H (induction) 

BA, flux 

DIMENSIONS 

LHI5 - LIL'I 

[e3 LM1L3T2Q21 - 1TIVJ 

{/u3'=' [a_21T -[(LTY2 E'I 

LB] - [(m 2)(LT¼)'] 

[mTQJ 
[_ [(Q-)L2 J 2T_lQ_lJ 
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APPENDIX 2. 

TABLE OF CONCEPTS 

Dimert8ion8 Lx L T P 

Energy O O 3. 0 1 

Entropy O O 3. -1 3. 

K 1 -2 0 -1 1 

2 0 -2 -1 0 

ELECTRICAL L7 T I P 

Field Strength 0 -1 0 -3. 1. 

V o o o -1 1 

D -1 -1 1 1 0 

E: 1 0 1 2 1 

Capacitance 0 0 3. 2 -3. 

Inductance 0 0 1 -2 3. 

Flux 0 0 1 -1 1 

Lx L7 T M Q 

Field Strength 1 0 -2 1 -1 

Flux 2 0 -3. 1 -3. 

LIGHT L L7 T (J.) P 

Energy,E 0 0 3. 0 3. 

4) 0 0 0 3. 0 

P 0 0 0 0 1 



L L7 T ni 

Energy,P 0 2 1 

0 2 -2 1 

MECHANICAL Lx T 

g O 1 -2 

V 2 0 -1 
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APPENDIX 3 

Machine Computation 

AX = O 

(x1 \ 
(Bc) -2= o 

= -Cz 

If is ni x n with mn, make B an m x ni. 

Then C is an ni x n - 

Xl is in x i 

Z is (ri-m) x 1. 

The machine procedure is good for square matrices. 

Example: Heat Transfer Problem 

h g c L ,,A. K 

i O O O i i i (i) 

L C) 1 2 1 -3 -1 1 (2) 

T -3 -2 -2 0 0 -1 -3 (3) 

-' 0 -1 
- 

( Q Q ..] (Li.) 

Bn, 

0 J. 2 1 -3 -1 1 (2) 

i o o o i I a. (i) 

-3 -2 -2 0 0 -1 -3 (3) 

-1 0 -1 0 0 o -i (Li.) 



n:, 

It will be necessary to u C aa a square matrix. 

To make C square, add a column of zeros. 

0 0 1 2 

o i o o C= 
o -3 -2 -2 

o -i o -1 

But we have a product -Cz = D, say. Therefore Z becomes ( 1) x i 

i.e., z 
= (.) 

ExaLnple: 

z = 
fo li 

i 

(o 
z12 = 

o 
z_ = o 

D 

i 

Flow Chart for the Program So Far 

We need to input Matrix B 

Matrix C 

li Vector X1 

Compute X1 = -BCZ = B1D 

Output X1 

A r t T A r ,' 

Present Subroutines are 

Column or Vector Input = 30 

Vector Product = 2d, such as -CZ = D 
ti t, 

la, such as B1D = X1 

Vector Output = 3.1 X1 out. 



Flow Chart No.1 

Clear Working Storage I. 

Input ( 30 BJ (rn) 
rows 

1, 2, 3 ... m o 

ear WSI =0 

Input 

(n-i) 
time s 

Input 

Compute 

Compute 

Output 

=0 

Cloaì Working Storage I 

top. 



APPENDIX k. 

Some Examples 

Example 3.: (2, p. 92) 

p = f(D, V, N, g, X) 

Dimensional Table 

PN g-v D V 

L 1 0 1 2 1 1 -3 

T -2 -1 -2 -1 0 -1 0 

M i O O O O 0 3. 

k1 k2 k3 kk k5 k6 k7 

Matrix of Solutions 

PN g-'- DV 
1 0 0 0 -2 -2 -1 

0 1 0 0 3. -1 0 

R3 0 0 1 0 1 -2 0 

O 0 0 1 -1 -1 0 

(_____ 
1ND\ 

D2V2 2 (V ) 

'gD\ (v\ 
"3 (y2) k v) 



Example 2: (ii, p. k3) 

f - (P, M, L, D, C,»,, N) 

where o - clearance 

f = friction coefficient 

m * moment 

Dimensional Table 

N M L C D ,AkP 

L 0 2 1 1 1 -1 1 

M 0 1 0 0 Q 1 1 

T -1 -2 0 0 0 -1 -2 

k1 k2 k3 k14 k5 k6 k7 

Matrix of Solutiona 

N M L C D 

1 0 0 0 0 1 -1 

"2 0 1 0 0 3 0 -1 

113 0 0 1 Q -1 0 0 

Ti14 0 0 0 J. -1 0 0 

i 

Tf3 

-Cl-) 



Example 3: 

u = 

M1 O O O 3. 0 (3.) 

Mq O O 0 0 1 (2) 

L 3. 2 1 -3 -1 (3) 

T -1 -1 0 0 -2 (k) 

k1 k2 k3 kk k5 

1 3. 0 0 0 (k) 

-1 0 1 0 0 (3) 

o o o 1 0 (1) 

o O 0 0 1 (2) 

Example k: 

h 

h 

- f(,Y,/q,M, 

,, 4 

L, K, 

K 

e) 

CL 
-E)- O O 0 0 3. -1 -1 0 

L 0 -3 1 -1 0 1 0 1 

M 1 1 0 3. 0 1 0 0 

T -3 0 -3. -3. O -3 -3 0 

k1 k2 k3 kk k5 k6 k7 k8 

i O 0 0 -1 -1 0 3. 

T12 0 1 0 0 0 -1 1 k 

113 001 0 -1/30-1/3-1 

O o o i -1/3-12/32 



C 

-[ç 
/hL 

i 

(L\) 

ir 
(Lc/3 

Ç\/3Lc'/3 ) 

Example 5: BoussineJ Problem 

h (r4G. K, C, L) 

MKCL 
M 3. 1 0 1 0 0 (J.) 

L 0 -2 0 1 2 1 (2) 

T -3 -J. 0 -3 -2 0 (3) 

e O o 3. -1 -.1 0 

k1 k2 k3 k k5 k6 

1 0 1 0 0 0 

1 1 0 1 0 0 (i) 

0 -.1 0 0 1 0 (3) 

-1 -1 0 0 0 3. (2) 

Write xT as below 

h7i- L& K C L 

1 0 -1 -3. 0 3. 

O 1 0 -1 1 3. 

T1 [hL_S\ "2 (K) LK ) 


