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GLOBALLY OPTIMAL RUNGE-KUTTA

METHODS

I INTRODUCTION

Considerable effort has been expended to obtain efficient

numerical procedures for solving systems of ordinary differential

equations. Much of this effort is directed at the development of

methods suitable for use in computer library subroutines. A recent

paper by Hull and Others [4] summarizes the current status of these

efforts. The development of all purpose routines is complicated

by the fact that they must work in as wide a class of situations

as is possible. Thus, the methods employed must be relatively

insensitive to the particular problem to be solved.

There is a contrasting situation in which maximal efficiency

is required. This is in the area of the real time applications

associated with digital process control. For any particular

control system the associated system of differential equations is

not a general system but is quite specific. The functional form

of the equations remains fixed throughout the solution of the

problem. A method which is efficient in a general setting may not

be the most appropriate selection in a specific case.

In this thesis we develop a numerical integration procedure

which can be optimized for specific problems. We have chosen a

Runge-Kutta method for this purpose. This choice was motivated

by the fact that such methods are frequently employed in real

time digital control system applications. In such an application



the choice of the numerical integration method is often critical.

A method is generally needed which is stable, provides sufficiently

accurate results and requires a minimal amount of computer time.

Runge-Kutta methods are used for this purpose since they have good

stability properties, provide flexibilty in the choice of integra-

tion step size are easy to code and are efficient when accuracy

requirements are modest. The method we shall propose produces

a very small global error even when a coarse integration step is

used. This has the effect of producing accurate results for a

minimal amount of computation time and is therefore particularly

applicable to real-time applications.

The usual approach to increasing the accuracy of a numerical

integration procedure is to increase the order of the formula or to

decrease the step size. We purposely avoid either of these ap-

proaches. Low order methods have several practical advantages.

They allow the utmost flexibility in the selection of the inte-

gration step size. This is particularly apropos of the situation

where discontinuities are present in the coefficients of the

differential equations. The combination of a low order formula

coupled with a coarse integration step has obvious computational

advantages provided that the results are sufficiently accurate.

As an alternative to reducing the step size or increasing the

order of the method we develop a procedure that uses optimally

weighted formulas to increase assuracy. This is accomplished by

adjusting a free parameter appearing in the general second order
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Runge-Kutta method so that the resultant formula is optimally

weighted.

As is usually the case, the word optimal must be viewed with a

degree of caution. What is optimal in one situation may be in-

effective in another. There are several references in the litera-

ture to optimal Runge-Kutta methods [1, 5, 6, 7, 9]. In each of these

the free parameter or parameters are selected to minimize certain

terms appearing in the expression for the local truncation error.

The development is in every case for a general first order differ-

ential equation. Once the free parameter has been selected it

remains fixed not only throughout the solution of a problem bat

from one problem to another. Certain specific values of the free

parameter yield the classical second order Runge-Kutta methods

such as the Heun method and the modified Euler method (see Henrici

[2], p 67).

The optimal methods developed herein differ considerably from

those developed previously. The main differences are that:

the free parameter is selected to minimize the total

(global) error rather than the local truncation error,

the optimal value of the free parameter depends strongly

on the particular differential equation (or system) to

be solved,

the optimal value of the parameter depends on the initial

conditions of the problem and, possibly, on other

parameters appearing in the problem.
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It is the dependence of the Runge-Kutta formula on the initial

conditions of the problem that is the distinguishing feature of

our method. The basic idea is to first solve the differential

equations for a sample set of initial conditions (usually taken

from some compact set). These sample solutions are obtained using

any convenient numerical procedure with as small an integration

step as is needed. For each of the initial conditions of the

selected sample, optimal weighting parameters are determined so that

the total error is small (usually zero). The optimal parameter is

then treated as a function of the initial condition. Standard

approximation techniques are used to fit the optimal parameter as

a function of the initial condition. Thus, in its real time

application, the numerical integration procedure uses a dynamically

computed weighting factor which depends on the initial conditions

at the time of solution.

This method is clearly intended for use in very specific situa-

tions. These are characterized by the following conditions:

1, the system of differential equations is to be solved

repeatedly for different initial conditions,

. computational speed is at a premium,

the total error at the end of a specified interval is

to be minimized,

it is economically feasible to perform the required

optimization calculations.



II BACKGROUND AND PRELIMINARY ANALYSIS

11.1 The Basic Problem

In this chapter we will consider a single differential equation

in one unknown function. Most of the analysis will be applicable,

with certain modifications, to a system of differential equations.

Systems will be discussed in a subsequent chapter.

It will be assumed that the differential equation has been

transformed so that the independent variable lies in the unit

interval. The problem under consideration is defined by,

Y' = f(t , Y)

Y(o) = Yo
(2-1)

where f isareal valued function, - <a<Y <b< .... and
o

t 6[0 1]. It will be assumed throughout that for each
Yo

6 [a , b]

there is a unique function Y(t) which is continuous on [0 , 11 and

which satisfies the differential equation. We are therefore consider-

ing a family of continuous solutions to the problem (2-1) whose

initial values lie in [a , bl. We will use the notation Y (t , Yo)

to denote a specific member of the family. If
Yo

is fixed for a

particular argument we will normally denote the solution corres-

ponding to
Yo

as Y(t). We will assume that Y(t , Yo) is a

continuous function of
Yo.

Derivatives of Y with respect to t

will be denoted by the usual prime notation.

Taking the integration step as h we introduce a uniform grid

5



on [0 , 1] where,

I ={
i Ito = O' i+1

t =ti +h'tN =1 i=0, 1, ..., N-11

This definition implies that h = 1/N where N is the number of

integration steps. A uniform grid is used for algebraic convenience

only; the procedure we shall develop can also be used with a non-

uniform grid. The exact solution evaluated at a grid-point will be

denoted by Y(ti) or Yi. The numerical solution of (2-1) is a

function ay mapping Ih into the reels. The value of the

numerical solution at the ith grid-point is Ui. Naturally we

would like the Ui to approximate Y. for all grid-points.

Throughout the discussion we will make use of the definitions

both to establish notation and concepts.

11.2 Review of the Method

In order to motivate the analysis which follows we shall briefly

review the second order Runge-Kutta Method. The derivation of the

method is given in several references, e.g., Hildebrand [3]. The

following definition will be needed.

Definition 2.1

i.f (t , y), fty (t , y), ... denotes partial derivatives;

we may omit the arguments and write f f
t ty'

fv(t ,y) =
ft

(t , y) + f (t , y) f (t , y)

The basic procedure consists of computing the numerical

solution of (2-1) from the formula,

6



(t.(JI U. 4. ch f(t. , U.))]
a.

4-

i = 1, 2, N-1

where c is a nonzero real parameter. This is the free parameter

mentioned previously. The well known modified Euler method is

obtained for c = 1/2 while for the method of Heun c = 1 (Henrici

[2]). In the optimal method developed by Ralston [9] c turns out to

be 2/3. Later we shall generalize the method to also include the

case where c = 0.

The local truncation error of the method is given by

u3 [ if - 3c (Y!" - YI' fy(ti , + 0 (h4) (2-3)

It should be noted that usually no choice of c will make (2-3)

vanish at every grid-point for arbitrary f. Note also that the

truncation error depends not only on drivatives of the solution Y

but also on f. This is typical of Runge-Kutta methods; in many

other numerical methods the error depends only on derivatives of Y.

It can be seen from (2-3) that if Y''' - Y'' f vanishes

identically the principle part of the truncation error does not

depend on c. There are cases where the entire truncation error

of the method does not depend on c.

As an example of this type of behavior consider the differential

equation,

7

U = U.a. +
h

i+1 2c
(2c - 1) f(t. , Ui ) + (2-2)



[
a2+a2(81+,a2t.-Fa3 U.)]i i

Using Definition 2.1,

f(ti , Ui) = al + a2 ti + a3 U.

and

(t. , U.) = a + a (a + a t. + a U.)2 3 1 2i 3i

so that (2-5) can be written,

h2

Ui+1 = Ui + h f(ti
'

U) + f' (ti ,

Ui)2

This formula is recognizable as a three term power series approxi-

mation and the method is approximate analytical continuation. Note

that the numerical solution is independent of c. It should be

noted also that the reduction to a power series method can also

occur for higher order Runge-Kutta methods.

In the subsequent discussion, sufficient conditions on the prob-

lem (2-1) will be given for the existence and uniqueness of a value

of c which Minimizes the total error of the method. In addition,

8

Y' =
al

+
a2

t +
a3

Y (2-4)

where the coefficients are constant. It is easy to see that

yll f
is identically zero. In this case formula (2-2)

reduces to,

U.+1 = Ui + h
al

+
a2 ti

+
a3

+
1

(2-5)



simple transformations of (2-1) will be suggested which will ensure

these conditions.

11.3 Preliminary Analysis

In the next sections sufficient conditions are given so that the

method converges for all c in a prescribed compact interval. In

order to include negative values for c in the analysis we will

need to enlarge the domain of f to include values of t outside

[0 , 1].

Definition 2.2

Let S be the infinite strip defined by,

= f(t , y) 1-c < t < 1 + c, yl

where e > 0 is a fixed constant.

Definition 2.3

The function f appearing in the differential equation

(2-1) satisfies Property A if:

Sc:R2 R where R denotes the real numbers,

f and its partial drivatives through order two exist

and are continuous on S.

Definition 2.4

G (t , y ,

[[

t + ch, y + ch f(t , f (t, y)
1

when c 0

G (t , y , o) = fy (t , y) when c = o

9



(t , y , 0) =
fty

(t , y) + f y) f (t , y)
YY

If some of the arguments of G are understood from context

we may omit them.

Definition 2.5

Let A be a fixed positive constant and c6[-A, A]. The

general second order Runge-Kutta method is defined by

Uil_1(c) = Ui(c) + h f(ti, U. (0) + G (ti, Ui(c), c) (2-6)

i = 0, 1, 2, ..., N-1

We shall often omit some of the arguments and write, for

example,

+11 "t. 11""2

We now establish a simple Lemma which guarantees that for small

enough h the points ti + ch are in [-e, 1 + e].

Lemma 2.1

Let e > 0 and A > 0 be fixed constants. Then there is an h < 1
e

such that for all h < Ii, t + che[-c, 1 + s] for every ce [-A, A]

and t 6 [0, 1]

Proof:

Take h = min {1, e}.

10



Lemma 2.2

Let f satisfy Property A and h < he then G(t , y , c) is

continuous for all points (t, y, c) in S X [-A , A].

Proof:

Let (t* , y*) be in S, ce [-X , A] and c 0, then G is

continuous at (t*, y*, c) since it is the finite composition of

continuous functions. F or the case c = 0 we have, by

Definition 2.4,

G(t , y, c) =

[

lc- f(t + ch, y + ch f(t , y))- f (t , y)

where (t + ch, y + ch f (t
, Y)) is in S since h < h (Lemma

e

2.1) and f:S .± R.

Since f satisfies Property A we can apply Taylor's Theorem

in R2 to obtain

G (t (t + Och, y + Och f(t y))

(t + ech, y + ech f (t , y)) f(t , y)

where 0 < 8 < 1. Since S is a convex set (t + Och, y + Ochf(t,y))

is in S. Using the fact that f, ft and f are continuous

on S and Definition 2.4 we take limits on both sides to obtain,

Lim G(t , y , 0)
ft

(t*, y*) + f (t*, y*) f (t*, y*)

Y Y*

= f' (t*, y*) = G (t* , y* , 0)

11



and G is continuous at (t*, y*, 0).

Lemma 2.3

If f satisfies Property A, Uo = Yo and h < he then Ui(c)

is a continuous function of c on [-X, XJ, i = 0, 1, ..., N.

Proof:

The proof will be by induction. Since Uo = Yo by Definition

2.5

(c) =
Yo

+ h f(t , Y) + G (t
' Yo

c)
o o z o

For c 0 0, U1(c) is the composition of continuous functions and is

therefore continuous. Taking the limit on both sides, using

Lemma 2.2 and Definition 2.4 yields

Lim Ul
c o

)=Yo+hf (t , Y ) +
12!

f' (to, Yo) = U1 (0)o o 2

Thus U (c) is continuous on [-X, A] for h < h1 6.

The induction hypothesis is that U. (c) is continuous. From

Definition 2.5,

\ h1.44 (0 U. + h f (t., U.(c)) + G (t., U. (2 /

From the induction hypothesis, the continuity of f and Lemma 2.2,

111.41(c) is continuous on [-A , A].

Lemma 2.4

Let {} be a sequence of real numbers satisfying an inequality

of the form,

12



13

1 1_4.11 <A+ B i=0, 1, N

where A and B are non-negative and independent of i. Then,

if A 0 1,

[Ai - 1]
A - 1

for i = 0, 1,

Proof:

The proof is by induction and may be found in Henrici [2].

Lemma 2.5

For any real number 6, 1 + 6 < e

Proof:

Since e6 is a convex function, 1 + 6 < ed.

Lemma 2.6

If 6 > 0, B is a non-negative constant and tEi is a sequence

of real numbers satisfying ly < (1 + 6)
1 Ci_i "4" B, i=0, 1,...,N

then

id 1 1 (eid -1)
< e lEol B 6

Proof:

Lemmas 2.4 and 2.5 with A = 1 + 6



Definition 2.6

A function f:S R2 satisfies a Lipschitz condition or is

Lip K in y on S if there is a constant K > 0 such that,

I f (t Y1) - f(t y2) K 1 Y1 Y2

for all points (t , yl) , (t , y2) in S.

Ordinarily the convergence of the numerical solution generated

by (2-6) to the exact solution is established by assuming that f

is Lip K on S, e.g., Henrici [2]. From this assumption it can

be shown that the U. lie in a compact set and from this fact the

convergence is readily established. In general, the parameter

is not allowed to assume values outside the interval (0, 1].

The functions f, which we shall be interested in, often fail

to satisfy a Lipschitz condition on S. Because of this we attack

the problem of convergence from a different direction.

We shall start by assuming that the points (t. , U.) and

(t , Y) lie in some convex compact subset of S for all i. The

differentiability properties of f are then used to obtain a

Lipschitz condition for f and G on the compact set. The

ensuing convergence proof is nearly the standard one, except that

we allow c to assume values outside (0, 1]. Later, we will show

that, for functions satisfying Property A, the points (ti, Ui)

and (t Y.) necessarily lie in a compact subset of S if h is

sufficiently small.

14



Lemma 2.7

Let f satisfy Property A, then for each convex compact subset

of S there is a K > 0 such that f is Lip K in y on S/.

Proof:

Let (t, y/) and (t , y2) be arbitrary points in the convex

compact set Sic:S. By the Mean Value Theorem,

f(t Yl) -f (t Y2) = fy (t, Yl OY2) (Y1 - Y2)

where 0 < e < 1. Since
S1

is convex (t,Y1 + 8572)8 S1. Since
S1

is compact the continuous function f is bounded on
S1.

We can

take K > 0 to be this bound so that,

f(t , yl) - f (t , y2) I ..<.K J Y/ - Y2 1

and f is Lip K in y on Sl.

Lemma 2.8

If f satisfies Property A, h is sufficiently small and

ce. [-A , ] then G (t , y , c) is continuous on S X [-A , A].

Proof:

Take h < h so that (t + ch , y) is in S for all y.
c

For c 0 0 we use the chain rule along with Definition 2.4

to obtain

G (t , y , c) = f (t + ch, y + ch f(t
c y ) - f (t , y).]

+ ch f (t , y) f (t + ch, y + ch f (t , y)) (2-7)

15



Since f satisfies Property A we apply Taylor's Theorem in R2

to obtain,

t , y , c) = fty (t + Och, y + Och f(t , y)) +

f (t + Och, y + Och f(t , y)) f (t , y) + (2-8)
YY

ch f (t , y) f (t + ch, y + ch f(t , y))

which is continuous at (t , y , c) for c 0.

To show that G is continuous at a point (t*, y*, 0) we compute

from (2-8)

Lim G (t, y, c) = fty (t*, y*) + fyy (t*, y*) f (t*, y*) (2-9)

c + 0

t*

y*

where we have again used the continuity properties of f and its

partial derivatives. By Definition 2.4 the limit (2-9) is

G (t* , y* , 0) and the result follows.

Lemma 2.9

Let f satisfy Property A, ce [-X , X] and h < 11E. If S1

is a convex compact subset of S there is a constant K > 0 such

that f and G are both Lip K on Sl.

16



Proof:

The proof is nearly identical to that of Lemma 2.7 with an

appeal to Lemma 2.8. We take K to be an upper bound on If I

and IG I which are continuous on S1.
1

Definition 2.7

For (t , y) and in S,

1. D fa , ; t , y) = ft , + f ( , -3-7) f (t Y)

ii. D2 f ( , t y) = f , 37) + 2 f (1- , f (t ,y)
tt ty

+ f a , [f (t y)]2
YY

Lemma 2.10

If f satisfies Property A, h < h and c f-X , X] then
E

ch2 2G(t, y, c) = h f' (t , y) + D f (t + Och, y + @oh f (t, y); t,y)

where 0 < 8 < 1.

Proof:

By Taylor's Theorem and Definition 2.1,

(t + ch, y + ch f(t , y)) = f (t , y) + ch f' (t, y)

+ (ch) f + 2 f f (t , y) + f [f (t
[

ty
,

tt YY

where the partial derivatives are evaluated at (t + Och, Y

6ch f(t, y))and 0 < 6 < 1. For c 0 we can divide by c and

invoke the definitions of G and D2 to attain the desired result.

Taking the limit as c 0 and using the continuity of G (Lemma

2.2) the result holds for c = 0.

17



11.4 Convergence of the Method

In this section we will be dealing with two types of error;

local (truncation) error and global (total) error. It is presumed

throughout that all arithmetic is exact (no round-off error).

Definition 2.8

The truncation (or discretitatiOn) error induced by using (2-6)

is defined to be the amount that Y (t) restricted to Ih fails

to satisfy the difference equation (2-6). That is,

i+1 = Y. + h f (ti , Yi) + G (Yi) + Ti+1 (2-10)

Where Ti+1 is the truncation error. i = 0, I, ..., N-1

Definition 2.9

The total (or global) error at a point ti of Ih is defined to be,

E. = U. -Y.
1 1 1

The total error at tN = 1 is then

EN = UN YN = UN - Y (1)

In addition to propagated truncation error the total error

could include an error in the initial condition (i.e.,

E = UY0).0 0

18



Theorem 2.1

If f satisfies Property A, h < hE and c 6 [-X , X] the

truncation error (2-10) can be written in the form,

Ti+1

rtlt(r
6i+1) c D2 f(t, + 6. c h, Y. + (2-11)

4

6.ch f(t., Y.) ; t. Y.)1

where 0 < 6. < 1, t. < E < t and i = 0, 1, 2, ..., N-1i+1

Proof:

By Taylor's Theorem,

2 ,3
Y = Y. + h Y' + Y" n1 i 2 i (i+1)

where t.< <
t4.11 i+1

The definition of truncation error coupled with Lemma 2.10

yields,

±i+1
= Y. + h f (t. , Y.) + 11 f' (t. , Y. ) +2

3
ch _2,u r (t. + 6 ch, y. + 6. ch f(t. , Y.); t., Y.) +

Ti+14 1

Subtracting the two relations for and using the fact that

YI = f and Y'' = eyields the desired result.

Lemma 2.11

Let f satisfy Property A and E be a constant such that

0 < E < 1. If there is a Y* and h* < h such that for all

h < h*

19



Since f satisfies Property A each term is continuous on R.

Therefore each term is bounded on R.

Consider now the expression (2-11) of Theorem 2.1. Since

yt I t Is continuous on [0 , 1] there is a bound for Y''' (Ei+i)

for all i < N - 1. The point (ti..1 + ch, + ch f Yi_1))

is in R by hypothesis for all t. < E. Since c = 0 is in

[- X, X] it follows that
(t1'.

Y1-1
R.. ) is in R Since R is1- C

convex and 0 <i-1< 1 the point (t../ + Oi ch, + c h

Y....1)) is in R. Noting that 1cl < X we see that thef(ti-1 1

expression in square brackets in (2-11) is bounded for all
ti

E

whenever h < h*. It is sufficient to take the bound to be T.

+ ch1 ,Yi ) -Y I< Y*
1 -1 o

for all t < E and ce[-A , A] then there is a constant T depend-

ing only on E and X such that,

1
Ti

I
< h3 T1 -

for all i such that t. < E and h < h*1-
Proof!

Let R be the compact rectangle [-e, E] x [Yo - Y*, Yo + Yfl.

From Definition 2.7,

f(, -3-7- t, Y) =f (,-37) + 2 fty (t 37)

12

+ f , -37) [f(t,YY

f (t , y)

20



Theorem 2.2

Let f satisfy Property A, U0 = Yo and E be a constant such

that 0 < 1. Suppose that there are constants Y* and h* such

that for all h < h*,

!U. - Y I < Y*
1-1 o

IU1 i-1' i-1.
+ c h f(t U )-Y0 I < Y*1-

+ c h f(ti_i, Y1_1)-Y0l < y*

for all t. < and c e [-A , A]. Then the U. converge, uniformly

in i, to Y for all t. <
1

Proof:

The proof is similar to that found in standard works, e.

Henrici [2].

Let R = [-e, El x [Yo - Y* ,
Yo

+ Y*].

Under the hypothesis, f and G are Lip K on the convex compact

set R by Lemma 2.9. From Lemma 2.11 there is a T such that

!T.! < h3 T on
RE.

Of course, both K and T depend on

tracting (2-10) from (2-6),

Definition 2.9 yields,

h
+ -2-IG (ti_1, U1_1) -

using the definition of T and

!Eil !Ei_11 + h
t1-1' Ui-1) - f(ti-1' Yi-1) I

G (ti-1' Y1-1)
I+ !

21
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which hold for t1 < E. Applying the Lipschitz conditions yields,

IE I
3 1 1

+ 2:h Kr 1Ei-1
+ h3I

3Employing Lemma 2.6 with 6 = h K and B = h3 T we obtain,
2

3

2 (e< 3-1) h3 Th K

for t. < E . But i h = t. < E so that,1

Theorem 2.3

3

2 2 h
< (e -1) h2

which holds for t. <E and h < h. Thus, as h + 0,6

ti...alicitheconvergenceisuniformint.for t. <

+ 0 for

Let f satisfy Property A, ce[-X , A] and U = Y. Then the0 0

Ui converge, uniformly in i, to Y..
1

Proof:

We start by selecting h < he. Let 6 > 1 be a fixed positive

constant. Since Y (t) is continuous on [0 , 1] there is a constant

A > 0 such that 1Y (t) - Yol < A. Let Y* = A + 26 and form the

rectangle R* = [- , 1 + El x [ Yo - Y*, Yo + Y*1. Since f and G

are continuous there is an M > 0 such that,

1f(t,y) + G(t, y, c) < M (2-12)
2
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and

Ich f(t , y)1 <M (2-13)

on the compact set R* x [-A , A].

We form a sequence of positive numbers = Min (1, (y* - 6 +

i OM. The points of the sequence represent the abscissas of

the intersection of the lines y = Yo ± Y* with a set of lines

having slope M (see Figure 2-1). The sequence has the property that

for some n = 1 for all n > nin
We assert that for each n there exists an h(n) such that for

all h < h(n),

lui_l - yol (2-14)

and

I + ch
f(t.1 '

U) Y (2-15)

and

1Yi-1 + ch f (t. Y ) - Y I < Y* (2-16)1-1 ' i-1 o

for all t < E . The proof will be by induction on n.i n

For n = 1, select h < h(1) < Min {116 , y. We shall prove,

by induction on i, that (2-14), (2-15) and (2-16) hold for all

t. <1

When i = 1, (2-14) follows immediately since U0 = Y. Since

(tU ) 6 R* and U = Y we apply (2-13) to obtain,o o o o
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Ich f(t ,Y)I <Mh <Mh(1) < Y*
o o

and this establishes both (2-15) and (2-16) for i = 1.

Our induction hypothesis on i is that the three inequalities

hold for i = k. By (2-6),

k -1

1= Y + (f(t , U ) + G (t U )o )m m m m
m=0

The induction hypothesis implies that, (ti_1, Ui_1) e R* for

ti <. tk Therefore, by (2-12),

lUk -Y <khM<kh(1)M<
tk+1 M < 1 M < Y*

which holds for tk.4.1 y This establishes (2-14). Similarly,

from (2-12) and (2-17)

IUk + ch f(tk ,U) -Yo I <khM+hM<tk+1 1
N < m< y*

k

which holds for t1 <
.

C This establishes (2-15) for i=k + 1.k+

The inequality (2-16) is treated in the same fashion. By induction

the assertion is proved for all i for which ti < Ci.

The induction hypothesis on n is, that there is an h (k)

such that, for all h < h(k), (2-14), (2-15) and (2-16) hold for

all t. <
k.

The induction hypothesis is sufficient for Theorem 2.2 to be

applied with h* = h(k). Since the convergence is uniform in i

for ti < Ck, there is an h(k+1) < h (k) such that,

(2-17)
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for all t. < E
k

Let n = k + 1. We shall show, by induction on i, that for all

h <h (k + 1), (2-14), (2-15) and (2-16) are satisfied when

< k+1 The case where i = 1 is the same as above when n was.

equal to 1.

The induction hypothesis on i is that (2-14),(2-15) and

U. -Y I < Y* - 6
1 o -

(2-16) hold for i<p whenever t <p Ek+l.

value of i for which t. < E- k+1.

By (2-15),

26

(2-18)

Let i* be the largest

Consider the case where i = p + 1.

Up+1 = Ui* - h If(t , Urn) + - G(t , Urn) 1
1m2 m

m=i*+1

Subtracting
Yo from both sides and applying (2-18) and (2-12) yields,

IUp 1 - Yo I -6 + (p - j* 4) h M

* - 6 + (p-i* -1) h (k + 1) < Y* - 6 + (tp - ti* 4.1) M

-6 + (16.1 - 1(.) M < Y* -6 + 6 = Y*

< Y*

Thus, by induction, we have (2-14) satisfied for all i such that

t. < E
-- k+1 But this means that h (k+1) satisfies our assertion1 .

on n for n = k + 1. Thus, by induction, (2-14) holds for all n.

The inequalities (2-15) and (2-16) are established in a similar

fashion.
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We have proved that there is an h(n) such that (2-14), (2-15)

and (2-16) are satisfied for all h < h (n) whenever ti <

Taking h* = h(n), we apply Theorem 2.2 to prove that the Ui

converge uniformly in i for t. < to Y. Since then are all
i

one for large enough n we have convergence on [0 , 1].

Theorem 2.3 shows that the points (ti , Ui), (ti + c h, U. +

ch f(ti , Ui)) (ti , Yi) and (ti + ch, Yi + ch f(ti , Yi)) all lie

in a compact subset of S for sufficiently small h. Furthermore,

since Y (t, Yo) is continuous there is a compact subset of S

containing these points for all
Yo

in [a , bl. It is convenient to

work with the compact rectangle defined below.

Definition 2.10

Let R = [-E, 1 +E] X , where V is selected large

enough so that,

U. -Y1 <
1 0 -

. + ch f(ti , Ui) - Yo

1Y + ch f(t., Y -.) Y

I

for all sufficiently small h, c 6[-A ] and Yo a , bl.



III GLOBAL OPTIMIZATION

111.1 Introductory Statement

In this chapter we investigate the conditions under which;

there is a c for which [EN(c) I is minimized,

there is a unique c for which
IEN(c)I is minimized,

there is a unique c for which EN(c) = 0

From the preceding chapter we know that if f is sufficiently

differentiable and h is small enough then EN(c) is a continuous

function of c on [-A , A] for fixed N. Since [-A , AI is compact,

IEN(c)I achieves a minimum for some c and the conditions for A

are determined.

The conditions for B are not so easy. The example discussed

in Chapter I shows that in some cases c may not be unique.

From Theorem 2.1 it can be seen that if D2f vanishes identically

the local error does not depend on c. In this chapter we deter-

mine conditions on f under which both B and C are achieved.

Furthermore, a simple transformation of variables will be proposed

by which c can be achieved for a transformed form of the basic

problem (2-1).

111.2 The Vanishing of D2f

We are interested in classifying the types of functions f for

which D2 f does not vanish at any points ofh. From Definition

2.7,
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(t y ; t ,

= ftti

[

f(ti, yi)+ f (t , y)
YY

H(t , y) =

(t , y) + 2 f

32

((,f

fty)tt

fyt yy

ty

This expression can be developed from another point of view which

will better illuminate the geometric properties of f.

Definition 3.1

For f satisfying Property A the Hessian of f is the

matrix of partial derivatives,

where it is understood that the derivatives are evaluated

at (t y). Since f is twice continuously differentiable

H is symmetric.

With this definition (3-1) can be written as the real quadratic

form,

zT H z (3-2)

where z is the column vector representation of the vector whose

first component is 1 and whose second component is f(t. y.).



Definition 3.2

A real quadratic form with symmetric matrix A of dimension

n is positive definite if

xT A x > 0

for all vectors x 0 in Rn.

Definition 3.3

A real symmetric matrix is positive definite if its associated

quadratic form is positive definite.

It is known that if H is positive definite at all points

(t , y) in the domain of f then f is a strictly convex function

of t and y (Rockafeller [10]). If f is strictly convex then

(3-1) and (3-2) are positive on the strip S. In this case, we

see by Theorem 2.1 that the global error depends on c.

Since the vector z of (3-2) has a first component which is

never zero the class of functions for which (3-1) is positive is

broader than the set of strictly convex functions. This is

illustrated via the following definition.

Definition 3.4

Let S1 = {(1 , x) x real}. Let f satisfy Property A and

let the Hessian of f be positive definite on Sl. That is,

(1 x) H (t , y) > 0

for all (t y) S and for all (1 , x) 6 S1. We will denote
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the class of all such functions by gr.

We note that gr contains the class of functions satisfying Property

A which are strictly convex on S. In addition, g contains functions

which are not strictly convex on S. For example, f (t y) t2 + y

is not strictly convex but,

(1 x) H (1) =
x) (2 o) (1) _ 2 , 0

x o o x

We will show that if f eg then EN(c) is a strictly increasing

function of c.

Lemma 3.1

For f satisfying Property A, c 6 [-X, X] and h sufficiently

small,

Proof:

By the chain rule.

Lemma 3.2

For f satisfying Property A, c 6 [-X , A] and h sufficiently

small,

d f (t.
, U. (

3.

dc
d Ui (c)

, Ui (0) dc
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d f ,

dc

d f , Y.) - h Df (t , y t. , U.) +dc

+ch
fy

(ti.
dui

dc

where-t-=ti+chand3T=U.+c h f (t. , U.) i = 0, 1, ... N-1

Proof:

Taking the derivative yields,

(WI_

377) -hfta, 37) + f a Y)[
dc

+ c h

^

d f (ti , U.)

dc]
+ h f

(t.1
Ui)

Collecting terms, applying Definition 2.7 and Lemma 3.1 yields the

desired result.

Lemma 3.3

For f satisfying Property A, c e[-A , A], c 0 and h

sufficiently small,

d G (ti , U,) G (t., Ui)
_

d c + Df(t , y ; t. , U.)

d U.
+ [hf , y) f (t. , U.) + (f , - f (t U.))]ylicy y dc

where t = t1 + c h, 37- h f (t.' U.)
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Proof:

From the definition of G, (Definition 2.4) and Lemmas 3.1 , 3.2,

G(ti , Ui) /d G (ti, U1) d f (t y) d f (t
'

U)
dc c [d c dc

G(ti ,U) u

+11-c
Df ,y ; t. , U.) + h f(t , y) f (t. , U.) +y y

(f(t,Y) - f (t.

ui))] dd U.

1

with t = t. + c h, -3-T.-= U. + c h f (t, , U1).

Lemma 3.4

2c

1

For f satisfying Property A, c6 [-X , X], C 0 and h

sufficiently small

d U

d c1+1 = 1 + h f (t. , U.) + h2 f Ti) (yi 2y t ' fy-ti'

d U.
(f (1- , }-7) - f (t. , U.))yi dc

[Elf (E , Y". ; ti , ui) -G (ti , Ui)

c

where t t. ch, y h f (t
' Ui)

Proof:

Differentiating (2-6), yields,
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d
U1+1 d U. d f (t.U ) d G(ti, Ui)1 1 ' i+ hd c d c d c 2 dc

using Lemmas 3.1, 3.3 and collecting terms yields the result.

Lemma 3.5

For f satisfying Property A, c ei-x , A], c 0 and h

sufficiently small,

+ch,U.+o h f (t. , U.)) f (t. , U.)1 1 y 1

= h [ fty + f(t. , U.)f
1 i yy]

where the partial derivatives are evaluated at

(tii-ei
11 1ch,U.-1-8.chf(t.,04)) and 0 < ei < 1

Proof:

By the Mean Value Theorem and the continuity of the partial

derivatives.

Lemma 3.6

Let f satisfy Property A, c 6r-A , Aj and c 0 0 then there

is an h such that,

62
= 1 + hf (ti U.) + -

fy
(t. + c h, 1.1.

1
+ c h f(t. ,

Ui
))fyl(t. 1

U.)
Y a. 2 1 1 '

+ [y 1 1 if (t. + c h, u. 4- c h f (t
'

U.)2c)1

f (t. , U.)] > 0y 1 1
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on the rectangle RT of Definition 2.10.

Proof:

We first take h small enough so that all the involved points

are in S. Lemma 3.5 and the fact that all partial derivatives are

bounded below on the compact set R7 yield the result; that is,

Pi
z.:1 for small enough h.

Lemma 3.7

If f6 gr and h is sufficiently small then,

[

h
-a- Df (ti + c h, U. + c h f (ti , Ui) ; ti , Ui) - G (ti , Ui)

is positive for all non-zero c e [-X , A]

Proof:

By Taylor's Theorem and the definition of Df,

,U.)=Ot.+ch,U.+c h f (ti , Ui))

--chDf(t.+ch,U.+c h f (ti , Ui) ; ti , Ui)

+ c2 h2
(zT H z)

2

where zT = , f(t. , U.)) and the partial derivatives in H are

. The latter

point is in R since (ti ,U.) and (ti-i-c h, Ui + c h f (ti , UI))

are in R and it is a convex set. Since fe g implies zT > 0

it follows that,
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-f(ti + c h, U. + c h f (ti Ui) + f(ti , Ui)

+ c h Df (t.1+ c h, U.1 c h f(ti Ui) ;

t.1
Ui) > 0

Since c 0 0 the desired result is obtained by dividing twice by c.

Lemma 3.8

If f e g and h is sufficiently small then,

d U1(c)

dc

for all c 0 0 in [-X , X].

Proof:

d U d f (to ,U)
Since = 0 anddc dc

3.3 we have,

>0

= 0 by (2-6) and Lemma

d
Ul h

d G(t , U)
o o

= - G(t , U )d c = 2 d c o o

+ Df(t + c h, U +chf (t ,U) t
,Uo)2c o o o

which is positive by Lemma 3.7.

Theorem 3.1

If f 6 g and h is sufficiently small and fixed then
EN(c)

is a strictly increasing function of c on [-X , X].
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Proof:

We shall show that (c) > 0 for c # 0.dc N

We take h small enough so that all points involved lie in R

and the expression of Lemma 3.6 is positive. Then fix h (or N).

We have,

d EN (c) d UN (c)-YN. d UN (c)

dc dc dc

By Lemmas 3.4 and 3.6

d
UN

(c) d
UN-1

(c)

dc pN de

[Df(tN_I, + c h,
UN-1

+ c h
f(tN-1 ' UN-1

) ; t U)2 N-1' N-1

G(tN.4, UN-1)] (3-5)

where P is the positive quantity (3-4) of Lemma 3.6. The last

d
UN

term in (3-5) is strictly positive by Lemma 3.7. Thus

d U

d

N-1is positive whenever is positive. Since N is fixed
c

d U1(c)
it is sufficient to show that

d c
is positive and the result

dU1
(c)

follows by induction. But
d c

> 0 by Lemma 3.8.

Therefore, dc
d EN(c)

> 0 for all c e[-X , A] except possibly

= 0. Since
EN

is continuous and has a positive derivative on

all but a finite point set it is strictly increasing on [-A , A].
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Theorem 3.2

If f 6g and h is sufficiently small then there is a

unique c [-A , A] which minimizesIEN '

(c)1.

Proof:

By Theorem 3.1, EN is a strictly increasing function of c

on [-A , A]. If EN > 0 for all c [-A , A] then IEN I has its

minimum at -A. If EN < 0 then IENE has its minimum at A. If EN

has both positive and negative values there is a c* such that

EN (c*) = 0 by the Intermediate Value Theorem. In this case

IE (c*)I °.

This theorem establishes the conditions for B in the intro-

duction of this chapter.

Theorem 3.3

For f Gg h small enough and A large enough there is

a p such that Ti+1 < 0 and (-p) > 0 for i = 0, 1,...,N-1.
Proof:

Let (t , 7) and (t , y) be any two points in R = For

z = (1,f(t , y)) , D2f(1- , t, y)EzHz

where the partial derivatives in H are evaluated at (-t- ,

Since feg, zHzT > 0 for sufficiently small h. In addition,

f and its partial derivatives are continuous on R so that

there is a number L > 0 such that z H zT > L > 0 for all pairs of

points in R

From Theorem 2.1,



so that

T. (11 ) 01+1 2

Now let u = max (1111 ,

11121)
then

111< p'
and -p <

u2
so that,

TT (11) < 0 and T (-11) > 0.

1.+1

112
(z. H z,) <112 U <

m
2

< -3- yiff,

39

Cc) =
h3 [2

Ti+1 Y''' - c zi H zi

where ti < < ti+1, zi =( 1, f (ti Yi)) , H is evaluated at

c h f (t. , Y.)) and 0 < e. < 1.

Now, Y''' is continuous so that it achieves a maximum and

minimum on [0 , 1]. Let denote the minimum and

denote the maximum. VI,
M

We select
111 3

>
2

L
and X large enough so that

lp1I

Since,

H zT) > P L > -2 Y'" >
2

(Ei+1)i 1 3M 3

for c = we have
T1+1 (111)

< 0. In addition, if c < u, then

T (C) T. < (1.1).T.1+1
Similarly, there is a U > 0 such that z. H z. < U on R For,

1 YylIt
2

112<3 and -X <
p2

< X
U
m



Lemma 3.9

Letfeg, h be sufficiently small and Fp! < X. Then

E (p) > 0 and E (-p) < 0.

Proof:

By definition, El = U1 - Yl. Applying the formula (2-6) along

with Lemma 2.10 and subtracting the Taylor series expansion for

Y1 yields,

E (u) = u - Y + h [f(t , U ) - f (t , Y )11 o o o o o o

[
--- 11 z H zT - 4-Y"' (t + C. t.)4 ooi o 1 1

where 0 < E. < 1, zo = (1, f (to , Uo)) and the partial derivatives

in H are evaluated at the usual point. Since U = Y and the fact
o o

that the last term is - T1 (p) by Theorem 2.1

El (P) = -
T1

(0

BY Theorem 3.3 E/ (P) > 0.

A similar argument establishes that El (-p) < 0.

Theorem 3.4

If f 6 g, h is sufficiently small and Ipl < X there is a

unique c such that EN(c) = 0.
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Proof:

Using (2-6), Lemma 2.10 and subtracting the power series

expansion of Yi+1 yields

E.+1 =Ui+1 -Y =Ui -Yi +h[f(t. , U.) - f(t. , Y.i+1

[ft (ti , Ui) - f' (ti , - Til_1(c)

Applying the Mean Value Theorem yields,

h2
E1+1 = + h fy + E. - Ti+1 (c)

where f and f' are evaluated at points in RT and thus in view of

their continuity properties are bounded on R . Therefore, there

is an h for which

. + h fy + f;.7 > 0 for all points in R
y

For h small enough and fixed consider

E (11) = Q. E. (11) - (P)i+1 Ti+1

where p is defined in Theorem 3.3. Since- (p) > 0 if
Ei

(p)
Ti+1

is > 0 then
E1+1

(p) > 0.

From Lemma 3.9, El (p) > 0 so that E2 (X) > 0. Proceeding

recursively precisely N-1 times we conclude that

EN
(p) > 0

By a symmetrical argument
EN

(-p) < 0. Since
EN

(c) is a continuous
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function of c on [-A ,Aj by the Intermediate Value Theorem

there is a c for which EN(c) = 0. Since
EN

(c) is a strictly

increasing function, the c so obtained, is unique.

At this point several observations are in order. If y'''

is positive for all t then the 112 of Theorem 3.4 is positive and

we can develop a theorem like Theorem 3.4 for c 6[p2 , Al. In this

case we would not have to bother with the c = 0 case which has

complicated the previous analysis.

Clearly we could have started with the hypothesis that was

negative definite in Definition 3.4. There would then be obvious

duals to each of the theorems in this chapter. In particular,

EN would be strictly decreasing and again we would show the

existence of a unique c for which EN(c) = 0. At times it may

be more convenient to use the dual theory.

111.3 Transformations

In many cases f will satisfy Property A but D2f will not

be one-signed on R This problem can be circumvented by intro-

ducing a simple transformation of variables. We assume throughout

that the derivatives involved are continuous. The arguments

of functions will often be omitted unless they are particularly

pertinent to the discussion. In view of the remarks following

Theorem 2.3 it is sufficient to consider f defined on the

compact rectangle R of Definition 2.10.

Let

W(t) = Y(t) + g(t) (3-6)
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then

W' = Y' + g'

and from (2-1)

W' = f(t , W - g) + g°

W(o) = Y(o) + g(o)

Letting F(t , = f(t , W-g) + e(t) the transformed problem

becomes,

W' = F (t , W)

(3-7)

W = Y +g
o o o

In this formulation F is defined on the compact rectangle R

[- , 1 + ei X [-Y* , Y*] where IY*I = Y + Max Ig(t)!. Thus,

F Ry* R.
-e < t<l+e

We shall begin by computing D2F and from this determine the

nature of g(t) such that 14, > 0 on R. Using the chain rule,

Ft = f - g' fy + g"
t

Ftt = ftt - g" f - 2 g' fyt + (g')2 f + g°'
YY

FW = fy
F = fww

yy

FtW =f ty
- g' f

YY

The above relations, along with some fortuitous cancellations

yield,
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D2F , ; t , W) = D2f(t , t , y) + g'"(t) - g" f (t ,y)

(3-8)

We would like to choose g(t) so that D2F is strictly positive

on Ryie We assume that D2f has both positive and negative values

on Since D2f is continuous on R there is a constant L > 0y

such that D2 f > - L on R We wish to choose g such that
Y

elf gli f L (3-9)

on R . If this can be done, from (3-8)

D2F = D2f + g"' - g" f > D2f + L > 0y

We will arbitrarily choose g'" > 0 and g" > 0 for t 6 [-e , 1+6].

Since f is continuous there is an M > 0 such that If < M on R
Y

Under the assumptions on g the left side of (3-9) is the smallest

when,

ell Mg'' L (3-10)

This is a linear differential equation with the solution,

g" = -L/M + AeMt (3-11)

where A is a constant of integration. We must select A so that

> 0 and g" > 0. By selecting A > -1-= we have
M

ff L
g > [-1 + eMt] > 0 as requiredm (3-12)



Furthermore,

g'" = AMeMt = Lemt >0

as required. By taking A = L/M we determine that,

-L 2 L Mtg(t) = t + e

Mj

is sufficient for (3-9).

We recall that (2-6) requires f' to be computed if c takes

on the value zero. It would be desireable to avoid this computa-

tion. From the remarks following Theorem 3.4 we know that if

Y'"(t) is positive on [0 , 11 then the optimal c is positive.

A modification of (3-12) will ensure this.

Since Y'"(t) is continuous on [0 , 11 there is an m > 0 such

that -m < Y'"(t). In (3-11) choose A > Max

eft > 0 and by (3-12) g" > 0. In addition,

Wirt 4. ell elf

= - m +AMeMt > m + mel+mt >0

as desired.

Thus the transformation,

L 2 Ag = - t + eMt

e , 1 then

(3-13)

(3-14)

L mwith A = max {' is sufficient to guarantee that 10" > 0M M

and D2 F > 0 on Ry*.

For digital computation the exponential function is relatively
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expensive to compute. It would be desirable to have g be a

simpler function, for instance, a low order polynomial in t.

There are two special cases of (3-11) which are particularly useful.

In both cases a preliminary transformation is used to make W''' > 0.

Using the lower bound -m on Y''' let,

Then W''' = Y''' + m > 0 and the transformed problem (2-1) is,

In view of (3-16) we will assume below that Y''' > 0 for (2-1).

Case 1.

If there is a constant Ml such that 0 < M/ f on

Ry then (3-9) is satisfied by,

mt3
W = Y +

6

+-3

W' = f(t , W
6

) + m t2

2

2
g(t) =

L

2171.1t

(3-15)

(3-16)

(3-17)

Since Y''' > 0 by assumption we have W''' = Y''' > 0 so that the

optimal C is positive.

Case 2.

If there is a constant M2 > 0 such that fy _< - M2 < 0 then,

g =
2M2

2
(3-18)

satisfies (3-9) with W''' > 0.

46



47

While the above transformations provide insight into the type of

transformation that is needed this is not the whole story. All of

the suggested transformations are sufficient for our purpose and

are by no means necessary conditions. For instance, for large

enough n, g(t) = (t + 1)11 will satisfy (3-9). We can also get

another family of transformations by selecting g so that g'" > 0

while g" < O. Since the selection of an appropriate transformation

is highly problem dependent we will not pursue the subject except

to point out certain facets of the problem.

It should be noted that it may be more desirable to choose

g so that D2 < 0 and to employ the dual theory. The analysis is

similar in this case.

In practice, we recommend trying the method directly without

introducing the transformations. The conditions we have given for

the existence of a unique optimal c are only sufficient conditions.

Our experience with the method indicates that it applies to a

much wider class of situations. If a transformation must be used

the values of the precise bounds on f and Y''' may not be needed.

In fact, we suggest estimating some values and trying the

transformation. If optimal values of c are obtained which are

sufficiently smooth functions of
Yo

this will suffice.

It also should be noted that while a transformation might be

theoretically usable it may be worthless in practice. In particular

if M is very large in (3-13) both g and W will be large

but opposite in sign. In order to recover Y we would have to



add large numbers with opposite signs. The potential for losing

significance is high in this case.
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IV. APPLICATION TO SYSTEMS

The procedure developed in the previous chapters is also

applicable to systems of differential equations. A theoretical

development paralleling that of the preceding chapter is consider-

ably more difficult in this case. However, some analogous results

can be obtained. We shall indicate what is involved and leave a

detailed analysis to later investigations.

Throughout this chapter, superscripts will generally represent

indices used to denote vector components. Superscripts on scalars

will represent powers. Subscripts will be used in the same manner

as in previous chapters.

We shall denote a set of real valued functions, defined on the

domain (-6, 1 + e], by Yj(t). The index j will always range

over 1, 2, ..., n.

The argument t will frequently be omitted so that y(t) E yj.

2Similarly, let fj (t yl yn
) be a set of real valued

functions defined for t er-c ,1 + EJ, yj real.

It will be convenient to adopt vector notation. Thus, Y(t)

is a vector with components y(t) while the vector f(t , y) has

components I) (t y). We may also write these, respectively,

as f(t , yl , yn) and fj (t , yl nN
...2 Y ).

Using vector initiation the problem we shall consider is,
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Y'(t) = , Y(t))

(4-1)

Y(t) = Y
o o

where 0 t <1, YT(t) and Y(o) are vectors with components Yj

and Y (o) = Yo respectively.

It is assumed that a solution to (4-1) exists, is unique and

continuous for t 6[0 , 1]. The grid, Ih , on [0 , 11 is the

same as before. The exact solution of (4-1) will be denoted by the

vectorYwhilethevectoru.will represent the numerical solution

at t.. The subscript i, will range over 0, 1, ..., N. The

components of U. will be denoted by Ul where j ranges over

. In addition, c is a vector with components cj.

The variables h and t are scalars.

In analogy with the preceding chapters we adopt the following

definitions.

Definition 4.1

n n
1. R [-c , 1 + e1 X [-Y Y X ... X [-Y

where e > 0 and the Y are real

S = { (t , y) I -c < t <1+ e, ye Rn}

Definition 4.2

The real functions fj defined on S will satisfy Property A

if fj and all partial derivatives through order two exist and

are continuous on S.
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Definition 4.3

Let {0} be a set of fixed positive constants and let cj

be in [-Xj XJ] for each j. The general second order

Runge-Kutta method for systems of equations is given by,

Ui+1 = Ui + h f(t.U.) + G (t. , U.(c)) (4-2)1 '12 11
where the components of the vector valued function G are

given by,

(t ,, c) = 1-7 (t + cj h , y + cj h f (t , y))

cJ

- fi (t , y)] when cj 0

and

Gj (t , y 0 ) = h fj (t , y)

E hp (t , y) + fj (t , y) f (t y).]

when cj = 0.

Note that in Definition 4-3 the variable c is a vector.

This is a generalization of the conventional Runge-Kutta method

for systems whtre c is treated as a scalar. Of course (4-2)

includes the usual formulation as a special case.

Definition 4.4

The truncation (discretization) error induced by applying

(4-2) to (4-1) is the vector Ti+1 defined by,
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y . Y. + h f (t. , Y.) + 11- G(t , Y.) + T1+1 1 1 1 2 i 1 i+1

Definition 4.5

The total (global) error at a point ti of is the vector,

E. = U. -Y.
1 1 1

which has components

E = U. - Y.i 1 1

For convenience, we assume that Yo = U so that E = o.
o o

In view of the above discussion we can pose analogues of the

propositions of section 111.1. For any convenient norm for Rn we

investigate the conditions under which;

there is a vector c for which FIE(c)11 is minimized,

there is a unique c for which l[EN(c) 11 is minimized,

We consider A first. If the fj satisfy Property A it can be

shown that the total error at t = 1 is a continuous function of

c for fixed h. Since norms are continuous it follows that

11E ( )11 is a continuous function of c. Because the cj are in

[-Xi , Ai] for each j the vector c lies in a compact subset

of Rn. Thus, IIEn(c)11 attains a minimum for some value of c.

The other two propositions are more difficult to analyze.

However, if each component fi of the right hand side of (4-1)

satisfies a certain Convexity property, analogous to that of the
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(4-3)

C. there is a unique c for which E (c) = 0



previous chapter, some partial results can be obtained.

Definition 4.6

For f- satisfying Property A the Hessian of fj is the matrix

of partial derivatives,

fj fi ] fj nt y
tt

Hf (t, y) = fil q1y2 fylyny t
i

. .

fjn finnn
y t Y Y

where it is understood that the partial derivatives are to

be evaluated at a point (t , y).

Definition 4.7

Let S1 = {(1, x) x 6 e}. Let fj satisfy Property A and

let the Hessian of 0 be positive definite on Sl. That is,

(1 x) H f (t , y) > 0

for all (t , y) in S and all (1, x) in
S1.

Then we shall

denote the family of all such functions fi by g.

In what follows, we shall assume for f satisfying Property

A , cj 6 [-A and h sufficiently small that there is a

compact set R y (see Definition 4.1) such that,

53



for all i < N - 1.

Lemma 4.1

If f satisfies Property A, h is sufficiently small and

cie [-A Ai] then the jth components of the truncation error

(4-3) can be written,

4tt,
(

c,3 +1) T
z

g
=

Ti 1 6 4

where TI:= HO evaluated at a , = t. + O. h,
.

+ O ci h fj (ti
' Yi)

0 < ej < 1 , ti <i < ti+1

and z = (1, f
(ti ' Yi

)) .

Proof:

The proof is nparly identical to that of Theorem 2.1.

We consider first the case where c is treated as a scalar;

more precisely, let e be real and set c= for all j. Then,

for a fixed h, the total error EN can be viewed as a vector valued

function of the scalar In particular, the components Ej

are functions of E. In this context the following theorem can be

proved.

Jul - tpj <0 -

1
U. + cj h

(ti '
U) -

+ cj h fJ(t. ,1 1 j yoil
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Theorem 4.1

Let f 6 g for all j, h be sufficiently small and

afj01 for all j. If, aym 0 when j m, then Ej(C) is

strictly increasing function of C for all j.

The proof of this theorem follows along the lines of Theorem

3.1 of the previous chapter. Note, however, the additional

condition on the partial derivatives of fj.

What this Theorem says is that all the components of EN are

strictly increasing in C. This would imply that it may be

possible to select a unique C so that one of the components of

EN vanishes. This can be established in a fashion analogous to

that of Theorem 3.1. A practical example of such an application

is included in the next chapter.

At first sight, the condition that the "off diagonal" partial

derivatives be non-negative appears to be overly restrictive.

In practice, this may not be important. First, systems of

differential equations are often obtained by transforming a higher

order equation to a first order system. The process by which

this is achieved yields a system in which the off diagonal partial

derivatives of the first n-1 equations are all zero. Secondly,

practical experience with the method has revealed that the error

components increase with C even when the partial derivative

condition is violated.

Aside from the partial results we have obtained problems B

and C remain open.
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V. APPLICATIONS AND EXAMPLES

This chapter contains some experimental results obtained by

applying our technique to a set of sample problems. The use of

the transformations suggested in Chapter III will be illustrated.

We also show some results associated with a successful application

of the method to a real time control system problem.

Problem P1

becomes,

= z

56

0< t< 1

zo
=1

2
This example was chosen because

Df
E O. Thus, the error of the

method does not depend on c. The problem was solved for N = 5

and N = 10. The results are plotted in Figure 5-1 and will be

used for comparison with the results obtained in the next problem.

Problem P2

In this problem we introduce a transformation of the previous

problem which produces a strictly increasing error function. We

first note that in Pl, fz > 0 which is case 1 of the transformations

of Chapter III. Therefore, we let,

L 2

g = -214 t

2where L and M are to be specified. Since Df E 0 and fz = 1 we

take L = M = 1.

Under the transformation Y = z - I!
the problem of P1

2
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t2
YI = Y +

1-
- t

Yo
=1

t2
which has the exact solution Y = et -2 . The transformed

problem was solved using the same grid as in PI for a sample set

of c values. The total error is plotted as a function of c in

Figure 5-1. The total error is an increasing function of c as

was desired. The value of c which gives zero error is slightly

larger than one for both N = 5 and N = 10. We note that the

optimal method of Ralston (c = 2/3) does not produce zero error.

In Figure 5-2 the total error is plotted for several values

of c as afunctionoftIt is interesting to note that the

error at all grid points tends to be small when the optimal

value of c is used (c1).

Problem P3

Y' = Y3
2

D2 (t yf $ ui)

0 < t < 1

0 < t < 1

3
Ui \

)(0

0

)

(1 )

2
0 -3Y -U.3

2

3 6= - TY Ui < 0 if Y > 0. Thus, the total error should be a

strictly decreasing function of c for sufficiently small h. The
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Yo= 1

which has the exact solution Y = (t + l)-1/2 In this case,
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problem was solved for N = 5 and the results are shown in Figure

5-3. As expected, the error is decreasing, with the optimal

z1.5.

Problem P4

Y' = Y Cos t 0 < t < 1

Y(o) = Yo

where the exact solution is Y =
Yo

eSin t

This problem was solved for both 5 and 10 integration steps

for three initial conditions taken from the interval [1 , 21.

The total error is plotted as a function of c for each initial

condition in Figure 5-4 (5 step case). These results are interesting

because the optimal c is insensitive to the initial condition.

Similar results were obtained for the 10 step case.

Problem P5

The method has been successfully applied to a real time control

system (Toms et. al., [12, 13]). This application involves the

development of a weapon delivery algorithm suitable for use in

a small airborne digital computer. The primary function of this

algorithm is to predict the impact point of projectiles for a

given set of release conditions. In this system the impact point

of the projectile is computed almost continuously. Deviations of

the impact point from the target location are used to provide

steering commands to the aircraft. With the high speeds involved

there is an inherent requirement that the computations be done

1 < Y <20
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in real time. In addition, the typical airborne computer has a

basic computation rate which is much slower than large ground-based

computers. Finally, the airborne computer is simultaneously

performing other computational tasks related to flight control

and navigation. The point is, that in a system like this, compu-

tation time is at a premium.

The primary computation involved in the trajectory algorithm

is the numerical solution of a system of ordinary differential

equations. These equations govern the flight path of ballistic

objects released within the atmosphere of the earth. These

equations need to be repeatedly solved for continuously changing

initial conditions.

Using time as the independent variable and employing suitable

simplifying assumptions the equations of motion for a projectile

can be developed [81. The principle assumptions are that the

projectile is a point mass acted on only by the force of gravity

and retardation forces due to air resistance. The Earth is

assumed to be flat and non-rotating. The trajectory is restricted

to a vertical plane by ignoring cross-track effects such as winds.

It has been noticed that if the equations of motion are

re-formulated with range and altitude as independent variables

their numerical solutions are dramatically better behaved [12].

This is the formulation used in the trajectory algorithm.



The following symbols are employed:

X = range

Z = altitude

VX
= the velocity component in the X direction

V = the velocity component in the Y direction

g = the gravitational constant

H = the coefficient of drag

S = frontal area

P = air density (depends on Z)

V projectile speed

M = Mach number

C (M) = ballistic coefficient

The ballistic coefficient
CD

is a known function of Mach number

which in turn depends on V and certain atmospheric properties

related to air temperature. The relation between speed and the

velocity components is V = (V2 + V2)1/2. In addition, we have,

Vx
= V cos e

z
= V Sin 0

where U is the instantaneous angle between the velocity vector

and the horizontal axis. These relations permit the computation

of initial values for the velocity components.

With the above notation the equations of motion with range as

the independent variable can be easily developed from those where

time is the independent variable [12]. They are,
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V
d Z z

X V

d Vx

d X
= H

d Vz H Vz -g
d X -

Vx

t_ 1
d X

Vx

The corresponding equations with altitude as the independent

variable are,

X Vx-
Z

Vz

Vz --H _
Z

Vz

(5-2)

VxVTi x

Z = -
Vz

t _l
Z V

The system (5-1) has a singular point when Vx = 0 while (5-2)

is singular when Vx = 0. The trajectory algorithm uses the system

(5-1) during the early portion of the trajectory when 6 is not

too large. As the projectile starts to fall steeply the algorithm

(5-1)
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automatically switches to the system (5-2). For most projectiles,

including the one used in the example which follows, the impact

angle is relatively small. This means that most of the time

the system 5-1 is being used.

In the trajectory computation the important component of the

solution vector is the impact range. For this reason we chose

to select the vector c in (4-2) too minimize the error in range

at impact. The resulting optimal vector has three equal scalar

components which we shall denote by c.

The process for determining c so that the range error is

small (zero) is best illustrated by example. For this purpose

we selected a projectile which is retarded by a parachute device.

For such projectiles the drag forces are substantial and the

deceleration is very rapid. For such projectiles, a very fine grid

is required if conventional Runge-Kutta methods are used. We shall

show that our method yields a satisfactory solution for a very

coarse grid.

For the initial condition sample, 27 data points were selected.

They were all combinations that can be formed from,

Vo = 200, 400, 600 (Knots)

o
= 100, 3000, 5000 (ft)

eo = 0, -15, -30 (degrees)

The resulting combinations of initial conditions span the entire

delivery envelope for this projectile.
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The ballistics equations we solved for each of the 27 sample

initial conditions using a very small step size and the classical

fourth order Runge-Kutta method. For our purpose this solution

was treated as being the exact one. For each set of initial condi-

tions the formula (4-2) was used for a selected sequence of c

values. These solutions were obtained using only five integration

steps. The range error at impact turned out to be monotonically

increasing with c for each initial condition. This permitted the

selection of a value of c which gave zero error for a particular

initial condition. Some plots of these optimal c values versus

the initial conditions are given in Figures 5-5 and 5-6. The solid

lines in Figure 5-5 show the values of c for which a zero

impact error was attained. The dashed lines enclosing the 200 knot

curve show the values of c for which the error was t 20 feet.

This gives an indication of the sensitivity of the error to the

value of c. In this instance the approximation of c as a

function of initial conditions can be relatively gross.

The optimal c values were approximated by a linear function

in V , and Z. This was done using a standard least square
o o

curve fit of the 27 data points. This approximation was then

used in conjunction with (4-2) to again obtain solutions using

five steps. Initial conditions were chosen both at and between

the 27 sample points. The maximal error was found to be much less

than ten feet for all cases.

Similar results have been obtained for other projectiles.

Since many projectiles have similar drag characteristics the
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same approximating function for c is used for classes of

projectiles. Eventually, it is expected that the drag coefficient

will be included directly in the optimal c calculation. In

this way a single approximating function for c will suffice for

all projectiles processed by the system.

In an application of this type there is an obvious tradeoff

between the allowable complexity in the approximating function for

c and the number of steps employed. As the step size decreases

the error becomes relatively insensitive to the value of c.

On the other hand, if the steps are large a very precise fit of

the optimal c data may be required.
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VI RECOMMENDATIONS AND CONCLUSIONS

The Preceding development generates several interesting topics

for future investigations. For example, we have primarily used

the global error in the process as a criteron for optimization.

It was indicated in Chapter IV that sometimes a component of

the error can be made zero by appropriate selection of c. The

last example in Chapter V shows that this can be a desirable

criterion in some applications. In other instances an alternate

criterion may be more useful. That is, it may be more important

to minimize some norm of the error instead of a component.

A similar study could be performed for RungeKutta methods

of higher order where there would be more than one free parameter

to adjust. A higher order method may prove to be worthwhile in

some applications. The analytical treatment in this case appears

to be considerably more complex. Since higher order methods involve

more than one parameter the approximation of these as a function

of initial conditions would likely be more difficult. One

possible approach would be to reduce the set of free parameters to a

single one by making some of them depend on the others. For

example in the case of a fourth order method there are two

parameters say a and b. One could select b = 2a. In this way

there is only one free parameter to adjust but the method is

still fourth order.

One of the principle features of the method we have developed

is that the numerical integration formula depends on the initial
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conditions present at the time of solution. In essence, the

formulas used are weighted so that a small error is produced for a

specific set of initial conditions. It is reasonable to postulate

that this basic idea can be applied to other numerical integration

methods. This would include other single Step procedures such

as implicit Runge-Kutta methods and also multi-step methods. In

addition, it is probable that the same sort of thing could be

done for boundary value problems. Thus, this general approach

should be applicable in any situation where systems of ordinary or

partial differential equations are to be repeatedly solved for

similar boundary conditions. One example of this type is a

digital simulation of electrical power systems networks. Another,

might be, a simulation of transient heating effects in nuclear

reactors.

Some of the recently developed numerical integration procedures

utilize dynamically computed error estimates in order to change

the order of the method as the integration proceeds [4]. This

is akin to those methods in which the integration step size is

modified in order to account for local variations in the estimated

error. The variable order methods sometimes are much more

efficient than fixed order methods [4]. However, they have the

disadvantage of being difficult to code and do not seem to be

effective when discontinuities are present in the differential

equations [4]. One can postulate that the procedure developed

in the previous chapters can be modified to provide a dynamically
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adjustable weighting factor. What we have in mind here is a method

which uses a local error estimate in order to select an appropriate

value of the free parameter. In such a method the order of the

process would remain fixed. This would permit the use of a low

order method which would simplify the coding problem and might

yield good results in the neighborhood of discontinuities. This

approach should be explored.

The principle unsolved theoretical problem associated with

our method is to determine the conditions under which there is a

vector c for which EN(c) = 0 for a system of differential equations.

A possible approach to the problem is to assume the existence and

uniqueness of such a c on some compact set in Rn. Then one could

apply such devices as the contractive mapping principle, the

Newton-Kantorovich Theorem or the Implicit Function Theorem to

deduce what properties the right hand side of the differential

equation must have to guarantee a solution. Our attempts have so

far not produced a complete answer.
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