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a  b  s  t  r  a  c  t

Angiosperm  and coniferous  tree species  utilize  a continuum  of  hydraulic  strategies.  Hydraulic  safety
margins  (defined  as differences  between  naturally  occurring  xylem  pressures  and  pressures  that  would
cause hydraulic  dysfunction,  or  differences  between  pressures  resulting  in  loss  of  hydraulic  function
in  adjacent  organs  (e.g.,  stems  vs. leaves)  tend  to  be much  greater  in  conifers  than  angiosperms  and
serve  to prevent  stem  embolism.  However,  conifers  tend  to  experience  embolism  more  frequently  in
leaves and  roots  than  angiosperms.  Embolism  repair is  thought  to occur  by  active  transport  of  sugars  into
empty  conduits  followed  by  passive  water  movement.  The  most  likely  source  of  sugar  for  refilling  is from
nonstructural  carbohydrate  depolymerization  in  nearby  parenchyma  cells.  Compared  to angiosperms,
conifers  tend  to  have  little  parenchyma  or nonstructural  carbohydrates  in  their wood.  The ability  to
rapidly  repair  embolisms  may  rely  on  having  nearby  parenchyma  cells,  which  could  explain  the  need
for  greater  safety  margins  in  conifer  wood  as compared  to angiosperms.  The  frequent  embolisms  that
onstructural carbohydrates occur  in the  distal  portions  of  conifers  are  readily  repaired,  perhaps  due  to the  abundant  parenchyma
in  leaves  and  roots,  and  these  distal  tissues  may  act  as  hydraulic  circuit  breakers  that  prevent  tension-
induced  embolisms  in  the  attached  stems.  Frequent  embolisms  in  conifer  leaves  may  also  be  due  to
weaker  stomatal  response  to  changes  in ambient  humidity.  Although  there  is  a  continuum  of  hydraulic
strategies  among  woody  plants,  there  appear  to be two distinct  ‘behaviors’  at the  extremes:  (1)  embolism
prevention  and  (2)  embolism  occurrence  and  subsequent  repair.
© 2012 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

It has been nearly three decades since Zimmermann [1] pro-

its blockage by air embolisms. These classic hypotheses stipulate
that distal portions of the hydraulic pathway should be more dis-
posable than the stems to which they are attached enabling the
more proximal stems to become hydraulically isolated when con-
osed the hydraulic segmentation hypothesis, which was  later
odified by Tyree and Ewers [2] as the hydraulic vulnerability seg-
entation hypothesis. Vulnerability in this context refers to the

usceptibility to disruption of xylem water transport resulting from

∗ Corresponding author.
E-mail address: daniel.m.johnson@duke.edu (D.M. Johnson).

168-9452/$ – see front matter ©  2012 Elsevier Ireland Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.plantsci.2012.06.010
ditions warrant. In Zimmermann’s version the segmentation is the
result of the drop in water potential along the hydraulic contin-
uum across segments with similar vulnerability to embolism. Tyree
and Ewers made the additional stipulation of lower resistance to

embolism in the distal segments that insure the safety of the more
proximal stems. These views have guided much hydraulic research
and how we view the plant hydraulic continuum. Although the
idea that terminal components of the hydraulic pathway (roots and

dx.doi.org/10.1016/j.plantsci.2012.06.010
http://www.sciencedirect.com/science/journal/01689452
http://www.elsevier.com/locate/plantsci
mailto:daniel.m.johnson@duke.edu
dx.doi.org/10.1016/j.plantsci.2012.06.010
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Fig. 1. Hydraulic safety margins decreased with increasing stem capacitance ((a),
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eaves) in which the plants have invested less energy should expe-
ience more embolism than stems is supported in many species
e.g., 3–6],  it may  only be part of the story of how plants cope with
ranspiration-induced negative pressures and resulting embolism
n their xylem.

Embolism repair has received much attention lately [see 7–9].
he mechanism(s) responsible for embolism repair are still in ques-
ion, but there is strong support that sugars are involved in the
efilling process [10–13].  One other important question concerning
mbolism formation and repair is why do embolisms develop daily
n different organs (roots, stems, leaves) of some species, but not in
ther species? What are the structural and physiological trade-offs
nvolved in experiencing versus avoiding frequent embolism in a
iven plant organ? What are the costs and benefits associated with
eaving stomata open permitting carbon fixation while allowing
ension-induced xylem dysfunction to develop that subsequently
eeds to be repaired, versus constructing a xylem that is embolism
esistant? Are there characteristics of species that embolize daily
hat allow them to be more efficient at embolism repair than species
hat avoid embolism? These will be the guiding questions that this
aper will explore. The data presented in this paper were obtained
rom a broad literature search and the goal was to make the data
ollection as inclusive and thorough as possible.

. Hydraulic safety

The various metrics used to describe the degree of conservatism
n a plant’s hydraulic strategies are typically expressed as hydraulic
afety margins. For example, the difference between the minimum
ylem pressure a stem experiences during a day or season and the
ressure at which it would lose 50% of its hydraulic conductivity
PSTEM − P50, see Fig. 1a) is a very informative measure. It tells how
lose a species operates hydraulically to the steepest point of its
ylem vulnerability curve and therefore to potentially catastrophic
mbolism. Xylem vulnerability curves describe the relationship
etween water status (as xylem pressure) and the percentage of
ydraulic function remaining as compared to the maximum. They
re typically sigmoid in shape, with low percentages of hydraulic
unction lost at pressures near zero until a threshold negative pres-
ure is reached at which air entry begins to accelerate. Once a tissue
as reached its P50 it is on the part of the curve that is steepest,
hich means that even a slight drop in pressure will produce a

ubstantial reduction in hydraulic function (Fig. 1b).
Other hydraulic safety margins relate to properties between

ifferent plant organs. Stem P50 minus leaf P50 (P50STEM − P50LEAF
)

nforms of the magnitude of the difference between leaf hydraulic
afety and stem hydraulic safety. It has been suggested that a
ighly negative P50STEM − P50LEAF

may  imply that leaves are act-
ng as hydraulic fuses by embolising before stem xylem, closing
heir stomata and effectively stopping transpiration, thereby pre-
enting stems upstream from reaching embolism-inducing xylem
ressures [14]. These distal organs typically have more living tis-
ue than stems [15] and these living tissues could be involved with
mbolism repair (see below). Another noteworthy aspect of plant
ydraulic safety is that woody tissues become increasingly resis-
ant to embolism with increasing height, especially in very tall
rees [e.g., 16,17].  However, this difference in embolism resistance
ith height is small compared to the differences in safety margins

etween conifers and angiosperms.
Although a PSTEM − P50 continuum exists among conifers and

ngiosperms, conifers tend to have greater safety margins. Sim-

larly, evidence suggests absolute values of P50STEM − P50LEAF

and
50STEM − P50ROOT are greater in conifers than angiosperms (Fig. 2,
18–21]). Furthermore, it seems that many angiosperm species
re able to operate at negative safety margins (meaning that they
data from [26,72]) and a hypothetical vulnerability curve (b) illustrating that the P50

often occurs within the steepest portion of the curve.

would experience large amounts of embolism). Meinzer et al. [22]
found that daily minimum water potentials in branches of tropical
angiosperms corresponded to 24–40% losses in branch hydraulic
conductivity. In fact, several studies have reported stem water
potentials experienced during non-drought conditions resulting
in daily losses of hydraulic conductivity in stems of tropical
angiosperms [22–25].  There also appears to be a strong trade-off
between hydraulic safety margins and stem hydraulic capacitance
(Fig. 1a), such that species with high capacitance tend to have
narrower (or even negative) safety margins [26]. Stem hydraulic
capacitance is the amount of water released as stem xylem pres-
sures become more negative. Capacitance contributes to embolism
avoidance and therefore hydraulic safety through transient release
of stored water into the transpiration stream, which buffers daily
fluctuations in xylem pressure [26,27].

In order to achieve high intrinsic resistance to embolism (highly
negative P50) in wood, species must construct a network of fibers
and conduits with thick walls [28–30].  These investments in
hydraulic safety result in wood that is very dense, but precludes
having large volumes of living parenchyma cells, which may  be a
source of capacitance for embolism repair (see below).

3. Loss and recovery of hydraulic function

Loss and recovery of hydraulic conductance on a daily basis is
more widespread in distal portions of the hydraulic pathway than

in the main stem and branches due to lower resistance to embolism
in roots and leaves as compared to stems [e.g., 5,18,19,31].  Conifers
are particularly prone to loss and recovery of hydraulic conductance
in leaves on a daily basis (Fig. 3, [21,32]), losing nearly 100% of
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their hydraulic conductance and restoring it completely by the
next morning. However, loss and recovery of hydraulic function
in angiosperm leaves has also been reported [33–36].  Loss and
recovery of hydraulic function has been observed in roots of corn
[37] and several tropical angiosperm tree species [38]. However,
even stems of some species lose and recover hydraulic conductivity
on a daily basis as has been shown in Vitis and multiple tree species
[9,39–41], and this may  be an especially common phenomenon in
tropical tree species with low wood density [22].

An emerging picture is that a continuum of hydraulic safety
strategies exists in conifers and angiosperms. However, conifers,
in general, have large leaf-to-stem and root-to-stem safety mar-
gins. They experience little embolism in stems, but large degrees
of embolism in distal tissues. Conversely, many angiosperms have
very narrow or even negative safety margins and experience stem
embolism and repair on a daily basis [22,24].

4. Why  are there differences between safety margins and
loss and recovery of hydraulic capacity in angiosperms
versus conifers?

Stomatal response to vapor pressure deficit (VPD) may be a
major determinant of why species from different clades fall into
different hydraulic functional groups. Stomatal conductance (gs)
generally declines with increasing VPD, but stomatal sensitivity
to changes in VPD varies substantially across species [43–51].  A
weaker stomatal response, either as sensitivity to VPD or response
speed (i.e. kinetics), to reductions in humidity may represent a func-
tional liability that necessitates mitigating strategies that prevent
the development of excessive embolisms. These species may  need
to rely on “hydraulic circuit breakers”, such as highly vulnerable
leaves to prevent stems from experiencing dangerous xylem pres-
sures, while species with greater stomatal sensitivity can rely more
on the stomatal response. Using an analysis adapted from [44] we
compared stomatal sensitivity of angiosperms and conifers to VPD
using the following equation:

gs = −m ln VPD + b

where gs is canopy stomatal conductance estimated from sap flux,
the parameter b is a reference conductance (b = gsref ) at VPD = 1 kPa
and the parameter −m quantifies the sensitivity of gs to VPD, and
it is equivalent to −dgs/d ln VPD. A survey of 12 angiosperm tree
species and 12 conifer species from the literature showed signifi-
cant differences in stomatal sensitivity to VPD (p < 0.0001). Mean
−m (mmol  m−2 s−1 ln(kPa)−1) was 73 and 34 for angiosperms and
conifers, respectively, with relatively little overlap between groups
(Fig. 4a). The lower sensitivity of conifer stomata to VPD, as com-
pared to angiosperms, may  contribute to the large daily losses in
conifer leaf hydraulic conductance and the observed wide safety
margins between stem and leaf.

Another potential explanation for the differences in safety mar-
gins and loss and recovery of hydraulic conductance in angiosperms
versus conifers might be differences in their ability to repair
embolism. In order to repair embolism, according to current
thought on the refilling process [7,8], sugars must be transported
into the embolized conduit with water passively following along a
gradient in osmotic potential. This sugar and its transport would
need to be derived from living cells: either parenchyma or phloem,
although an earlier study suggested that transfusion tissue in pine
needles may  also serve as a source for solutes [52]. Since distance to
phloem varies with sapwood depth, one strategy that a plant could

employ would be to embed parenchyma throughout the xylem,
allowing more conduits access to sugars in the case of embolism.

This strategy may  help explain the differences in hydraulic
behavior between conifers and angiosperms. In some angiosperms,
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the signals involved in refilling embolized conduits are still unre-
solved, the majority of evidence points to carbohydrates in nearby
ompiled from [44,48–51].  Branch NSC and parenchyma area data compiled from
nline resources (see text) and [54–56].

ive axial and ray parenchyma can account for as much as 40%
f the total sapwood volume [53]. In a survey of 14 tree species
seven angiosperms, seven conifers; species selection was based
n availability of carbohydrate data and tangential wood section
mages from main stems (i.e. trunks), parenchyma data were
btained from web sources including The Virtual Plant website at
ictoria University, Inside Wood at North Carolina State Univer-
ity and www.Sciencephoto.com;  carbohydrate data were from
54–56]), we found that the mean tangential parenchyma area
raction was 25% in angiosperms and only 8% in conifers with
o overlap (Fig. 4b). To our knowledge, little is known about the
imilarity or dissimilarity in ray and axial parenchyma functions
n conifers and angiosperms. However, two earlier studies found
tarch only in axial parenchyma (none in ray parenchyma; [57])
n ten tropical angiosperms, but starch was found in both ray and
xial parenchyma in Pinus strobus [58]. Furthermore, nonstructural
arbohydrate concentration (as a percentage of dry mass) in
ranch sapwood was 14% in the angiosperms and only 5% in gym-

osperms, again with no overlap (Fig. 4b). Interestingly, the ratios of
arenchyma area and nonstructural carbohydrate concentrations

n angiosperms versus conifers were nearly identical (3.2 and 3.1,
espectively, not significantly different). This potential connection
ence 195 (2012) 48– 53 51

between parenchyma abundance, storage carbohydrates and the
ability to refill embolized xylem is consistent with the obser-
vation that leaves, with their abundant parenchyma (up to 70%
parenchyma volume per leaf volume, [59,60]) and capacity to syn-
thesize sugars also exhibit vigorous embolism reversal [17,27,43].
Although two studies found no difference in axial parenchyma
volume in roots versus stems of conifers [61,62], they did observe
both larger and more numerous cross-field pits (i.e. pits on the
surface of parenchyma that are also in contact with tracheids) in
roots versus stems. This would allow for much more pit area to
be exposed between root parenchyma and tracheids compared to
those in the stem. In general, it appears that roots of angiosperms
had more axial parenchyma than stems in both diffuse-porous and
ring-porous trees [63, see also 64 and references therein].

As implied above, the potential for generating osmotic gradi-
ents to drive refilling of embolized conduits may  be achievable
due to the presence of nonstructural carbohydrates in nearby tis-
sues. Using an estimate of the average fresh mass to dried mass
ratio of wood of 2.3 (DMJ unpublished data, four conifers and four
angiosperms, S.E. = 0.1), we  can estimate the volume of apoplastic
water per wood volume.

volume apoplastic water
wood volume

= fresh mass − dry mass
(dry mass/wood density)

This results in an average apoplastic water to wood volume ratio
of 0.6, or 0.6 ml  of water for every cm3 of wood. Using the Van’t
Hoff relationship [7],  1 mg  of starch per gram of fresh weight stem
(or 0.6 g of water and 0.4 g of wood) could generate an osmotic
gradient of approximately 1 MPa  if all of the starch were con-
verted to sucrose. Based on the average NSC concentrations for the
angiosperms and conifers from our literature survey, the observed
concentrations would result in a maximum osmotic pressure of
2 MPa  in conifer wood and 6 MPa  in angiosperm wood. Estimates
of plant cell membrane hydraulic conductivity vary over sev-
eral orders of magnitude (e.g., 5.1 × 10−6–2.6 × 10−8 m s−1 MPa−1,
[65–67]) and can result in required osmotic gradients of 0.2–40 MPa
for movement of water from parenchyma into an embolized vessel
[7]. Furthermore, reflection coefficients for movement of sucrose
from a living parenchyma cell to an embolized conduit have been
estimated at 0.5 (where 0 and 1 are all particles and no parti-
cles traveling across the membrane, respectively) and membrane
permeability coefficients for sucrose have been approximated at
10−6 m s−1 [68]. The magnitude of resistance to solute movement
and water flow at the interface between living cells and embolized
conduits deserves considerable future research to fully understand
the refilling process.

Although multiple studies have shown that phloem activity
is necessary for complete hydraulic repair in some species [e.g.,
10,31] there could potentially be an interaction between local-
ized nonstructural carbohydrates in parenchyma and compounds
transported via the phloem. Some research has suggested [e.g.,
69,70] that hormonal signals (e.g., auxins) in the phloem may
induce hydrolysis of starch in parenchyma cells near embolized
xylem elements. Other research suggested that the energy released
by the embolism event was  sufficient to induce starch hydroly-
sis and embolism repair [71]. Conversely, there is evidence that
sucrose accumulation on vessel walls results in starch depolymer-
ization in parenchyma cells and refilling of xylem [13]. Although
parenchyma as the source for the osmotica that drive refilling. We
suggest that the same parenchyma may  also perform a dual func-
tion as a capacitor that transiently discharges water required for
refilling.

http://www.sciencephoto.com/
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. Conclusions

Although our understanding of embolism formation and repair
s far from complete and even though there is a continuum of
ydraulic strategies in both angiosperms and conifers, there are
istinctive differences between the two groups that are related
o hydraulic function. Conifer stems have greater hydraulic safety

argins than those of angiosperms. Distal organs (leaves and
oots) of conifers embolize and refill more frequently than those
f angiosperms, which could be related to low stomatal sensitivity
nd/or a lesser ability of conifers to repair stem embolisms. Conifers
lso have less xylem parenchyma and lower nonstructural carbo-
ydrate concentrations in their stems than angiosperms, both of
hich may  be required for embolism repair. The highly negative

afety margins found in conifers are likely a reflection of the relative
nefficiency of their stem embolism repair mechanism(s).

Future research should be aimed at understanding the relation-
hip between phloem carbon (i.e. carbon transported through the
hloem to sites of embolism) and parenchyma NSC and the signal(s)
esponsible for hydrolysis of starch in the parenchyma, the fate of
arbon used for refilling embolized conduits, and the biophysical
roperties of the interface between living cells and embolized con-
uits. One unresolved question is: do conifers have greater safety
argins than angiosperms due to (a) less effective repair systems

ssociated with less stem parenchyma and nonstructural carbo-
ydrates; (b) slow stomatal responses; or (c) a relative paucity of
arbon compared to angiosperms (less carbon fixed per individual);
r some combination of the above?
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