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AN EFFICIENT DATA TRANSFER PROTOCOL

FOR ETHERNET

CHAPTER 1

INTRODUCTION

Local Area Networks (LANs) represent a rapidly growing facet

of networking. They provide a low cost solution to the problem of

strong connectivity among computers, in addition to data transfer

rates as high as 10 million bits per second. LANs play a very

important role in a distributed computing environment where

most of the transactions involve a good amount of communication

among the machines. A network, interconnecting several CAD

workstations, database and file servers, is designed to have the

ability to carry large amounts of data at high transfer rates.
However, efficient utilization of high network capacity is possible

only if the protocols involved are efficient. Quite often, the

protocol turns out to be efficient only when designed with
considerable attention towards the special characteristics of the

underlying network. In fact, most of the general purpose
protocols fail to utilize the high data rate such as the one found on

Ethernet.

TCP/IP is among the most widely used family of protocols in

any UNIX networking environment, often involving Ethernet.

However, as Corner (COMER 87) rightly points out, the main aim of

Internet architects was to come up with a transport protocol that

was rugged enough to handle all possible adverse conditions
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offered by a Wide Area Network (WAN) that could span the globe.

However, it is an irony that the very features built into TCP, that

make it so efficient in a WAN, turn out to be the causes of
performance degradation in an Ethernet LAN environment, as

proven in later chapters.

This research work proposes a new protocol that is tailored to

Ethernet LANs to provide a speedup of more than 50% over the

Internet File Transfer Program (FTP) which uses TCP. All the

important features, particular to Ethernet LAN, like maximum and

minimum packet sizes, extremely short round trip delays, high

data rates, absence of routing, fragmentation and multiple paths

between two machines, are taken into consideration during
protocol design. An implementation of this protocol, the simple

and elegant 'Fast File Transfer Program' (FFTP) demonstrates its

effectiveness and speed. This program provides a print server in

addition to PC to PC file transfer functions. An adaptive algorithm,

called the 'dynamic timeout scheme', gives this program the ability

to perform data transfer between two machines that differ greatly

in their speed of communication, without sacrificing the efficiency.

Dual buffer scheme is another novel technique used in FFTP

implementation to reduce the effective delay involved in accessing

the data in the secondary storage.

This thesis is organized into five chapters. Chapter 2 is an

introduction to Local Area Networks and various Media Access

Schemes (MAC) being used. IEEE standards 802.3, 802.4 and

802.5 (also known as CSMA/CD Ethernet, Token Bus and Token

Ring respectively) are discussed. This chapter also deals with
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various protocols that use Ethernet and compares them with the

ISO model of networking. Chapter 3 discusses in detail, the
design of the Fast File Transfer Program, underlying protocol, and

some important design and implementation issues that make it

the most suitable for data transfer on Ethernet. The Client-server

model of distributed computing, design and implementation of the

print server and the basic differences between a UNIX based print

server and the one that runs on DOS, are described in Chapter 4.

Chapter 5 gives a theoretical comparison of performance of the

two protocols considering machine and network dependent delays

and tabulates the observations. Suggestions about porting the

protocol to machines running UNIX, hints for possible

improvements, enhancements and installation, are also given in

this chapter.
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CHAPTER 2

AN OVERVIEW OF LOCAL AREA NETWORKS

2.1 An Introduction to LANs

Local Area Networks are an essential part of any computing

environment. A LAN is characterized by a diameter not more than

a few kilometers, high data rates exceeding 1 Mbps and short

propagation delays. Unlike Wide Area Networks that communicate

in a point to point fashion, LANs use the broadcast method. All the

machines, connected to the network, access a common
transmission medium in a way that is both fair and efficient.

Control is distributed in that, one machine can talk to the other

without going through a master controller. Speed of data transfer

and spread of a LAN are constrained only by the limitations of the

physical medium.

LANs are being used extensively to serve the needs for

communication in an office building, a manufacturing floor, a wide

spread campus of an educational institution, as well as a
distributed computing facility. High speed LANs provide an

infrastructure that can support a variety of applications
simultaneously. Exchange of information and sharing of expensive

resources can be achieved, in an efficient way, with a LAN

supporting high speed data transfer. CSMA/CD, Token Bus and

Token Ring, are among the most widely used local networking

schemes. These can be differentiated by the way they access the



transmission medium. They have been standardized by the
Institute of Electrical and Electronics Engineers (IEEE) as 802.3,

802.4 and 802.5 MACs respectively, and share a common 802.2

Logical Link Control layer.

2.2 MACs : Token Ring, Token Bus and CSMA/CD

Media Access Schemes (MACs) can be broadly categorized

based on whether they are collision free or not. Collision occurs

when a machine starts transmitting before another one is done

with its transmission, thus causing interference and garbling of

signals. Token ring and Token bus are collision free, whereas

Ethernet allows collisions to occur, and provides a way to detect

and handle it.

TOKEN RING : In this scheme, the machines are interconnected

in a physical ring configuration. Each of the stations plays an

active role by reading every bit on its input side and writing it to

the output side. Distributed control is provided by means of a

token, which is nothing but a special pattern of bits. A station can

transmit only when it has the token for itself. The message passes

through the nodes on the way to its destination node. Each node

examines the destination address in the packet header and passes

the message to the next one in the ring, copying the message into

its internal buffers if it matches the address of that node. The

destination alters the token after copying the message and when

the packet eventually reaches the source node, the token is set

free. Slotted ring, concurrent ring and bidirectional ring, are
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some variations of this scheme. Because of its collision free

nature, the token ring has a high degree of predictability.

TOKEN BUS : Though the topology is of that of a common bus,

the system operates like a logical ring. A token is passed from a

machine to the next in the logical ring. This scheme removes the

restriction that the logical successor of a station must also be the

physical successor, still retaining the predictability of a ring
network. As it combines the features of both the ring and the bus,

it has been selected for manufacturing automation applications

where sensing devices, programmable controllers and robots

exchange prioritized information and where time critical

operations require predictable response times.

CSMA/CD : The Carrier Sense Multi Access/Collision Detect

method is based on the 'Ethernet' principle developed by Xerox in

1976 [Metcalfe 761. It is supported by DEC and Intel, and was

modified later to form the IEEE 802.3 MAC. Based on a concept

that is totally different from that of the above mentioned schemes,

it operates on a bus. A co-axial cable or a twisted pair can be used

for the bus. Being a collision detection system, it requires that the

transmission time for one frame must exceed the round trip bus

delay. It should also be closely tuned to its physical medium in

order to reduce collisions. Possibilities of random collisions make

its behavior highly unpredictable. However, the exponential

backoff strategy used with most Ethernet implementations, tends

to have a stabilizing effect and allows communication even on a

heavily loaded network. The stations tend to be 1-persistent in

that a station senses the medium for any carrier activity and
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immediately starts transmitting if the medium is free. A station

operates as if it has the exclusive ownership of the medium until a

collision changes the situation. Adding a new station is as simple

as plugging a transciever into the ether.

Ethernet has a large advantage over the other schemes in that

it is simple to implement and the throughput of a station,
connected to the ethernet, does not depend on the total number

of stations present; it depends only on the activity of any other

station when transmission is attempted. Throughput drops with

increasing load, with collisions causing delays in completing an

operation. Because of these characteristics, it is considered to be

the ideal network for interactive computing where transmissions

are short and infrequent, being caused by the activity of hundreds

of users on remote terminals. Ethernet can be a 'thick wire' type

or a 'thin wire' one, and operated in either baseband or broadband

mode using a radio frequency carrier. Data rates can be as high as

10 Mbps, with a round trip delay as short as 45 microseconds, and

it is possible to connect machines up to 500 meters apart without

the need for a repeater. Maximum separation allowed between any

two machines is 2500 meters.

An Ethernet frame consists of a preamble of 8 bytes of

alternating zeros and ones (useful for synchronizing the receiver

hardware) followed by two fields of 6 bytes (octets) of destination

and source address, 2 bytes of 'packet type' field, data bytes and

ends with four bytes of Frame Check Sum (FCS) as shown in figure

2.1. The IEEE 802.3 frames differ from the Bluebook Ethernet



Figure 2.1

ETHERNET PACKET FORMATS

BLUE BOOK (XEROX-DEC-INTEL) IEEE 802.3 ETHERNET

ETHERNET PACKET PACKET

PREAMBLE ( 8 OCTETS )

10101010101010101..

DESTINATION ADDRESS

( 6 OCTETS)

SOURCE ADDRESS
( 6 OCTETS)

PACKET TYPE
( 2 OCTETS)

DATA

( 46 1500 OCTETS )

FRAME CHECK-SUM (4 OCTETS)

PREAMBLE ( 7 OCTETS )
1010101010101010....

START FRAME DELIMITER ( 1 OCTET)

DESTINATION ADDRESS

( 2 6 OCTETS )

SOURCE ADDRESS
( 2 6 OCTETS )

PACKET LENGTH
( 2 OCTETS)

DATA

( 46 1500 OCTETS )

( 0 0 0 0 ... PADDING)

C.R.C. ( 4 OCTETS )
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frames, only in that the 'type' field is replaced by a field indicating

the packet length.

2.3 Novell Network for Distributed Computing

Novell, Inc. contributed to the growing field of distributed

computing by introducing its network operating system and

servers. The netware includes a Novell shell, network drivers and

a file server. A machine is dedicated as a file server and runs a

multitasking operating system. It holds user files, account
information and application software, in addition to taking care of

security issues. In order to get connected to the server, the user

runs the Novell shell on the workstation and logs in. Once a
workstation is attached to the file server, all network operations

become user-transparent and the server appears to the user as just

another disk drive. All the computations are carried out at the

local workstation utilizing its full power. The applications,

residing on the server, are loaded into local memory before

execution, by means of network transfer. All the requests by the

system to transfer data into this new 'drive', are intercepted and

handled by the network drivers. Thus, Novell provides network

access that is transparent to the applications running on the local

machine. IPX and SPX (which stand for Internetwork Packet

exchange and Sequenced Packet exchange protocols) form the

network and transport layers, respectively, of the Novell protocol

family. These are nothing but modified Xerox Network System

(XNS) protocols, known as IDP (Internet Datagram Protocol) and
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SPP (Sequenced Packet Protocol). There can be several print

servers to receive and process printing requests, and

communication servers which enable communication with another

Novell network. However, all this facility is not without some

shortcomings and inconveniences, as described in Chapter 3.

2.4 TCP/IP and DOS to UNIX Communication

The TCP/IP family of protocols (Transmission Control
Protocol/ Internet Protocol), widely used in Wide Area Networks

like Internet, are also being used extensively for DOS to UNIX

communication. IP serves as the network layer while TCP serves

as the transport layer, and they support a large family of network

application programs: mail, rlogin, telnet, ping, Ipr, and FTP

being the major ones. Implementations of NFS (Network File

System) have IP/UDP (Unreliable Datagram Protocol) as their basic

communication protocols. SU-PC/IP from Stanford University and

the Telnet package from Clarkson University, have been the two

major implementations of the Internet family of protocols in a

personal computer network. However, both support only one way

transaction, the PC always being the initiator. SU-PC/IP comes

with its own driver, inseparably built into the rest of the programs.

The driver and multitasking programs need to be memory
resident before any of the applications, that use the network, can

run.

Clarkson telnet uses a packet driver that confirms to NCSA

(National Center for Supercomputing Applications) specifications,
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and is more flexible in dealing with different network hardware,

physical and data link layers.

Both of these packages support ARP (Address Resolution

Protocol) and name server query, in order to get ethernet
addresses from Internet addresses and for Internet name to

address conversion. They allow the user to connect a personal

computer to a machine running UNIX through ethernet, and to use

the PC as a dumb terminal to the main computer.

2.5 The ISO Model of Networking and its Relevance to Different

Protocol Implementations

The Open Systems Interconnections (OSI) model of

networking, proposed by the International Standards Organization

(ISO), as specified by Zimmermann [Zimmermann 801, is

comprised of seven layers. The layering is done to meet the

following requirements.

1. Each layer should be able to perform a well-defined function.

2. Layer boundaries should be so chosen as to minimize the

data transfer across the interfaces.

3. The layers should be large enough to include similar functions

together, and small enough to be practical to implement.

The seven layers and their brief functional description are given

below.

PHYSICAL LAYER : This layer takes care of all physical aspects of

the communication channel like voltage and current levels of the
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signals, modulation and demodulation, recognition of individual

bits of data, mode of transmission (simplex, half duplex or full

duplex), interface of the circuits to the physical medium,
connector and cable specifications, mechanical and electrical

aspects of the connection, etc. The unit of information handled by

this layer, is a bit.

DATA LINK LAYER : It uses the raw bit transmission facility,

provided by the physical layer, to exchange frames of information

between two units. It takes care of error checking by means of a

frame checksum or cyclic redundancy check, and flow control

using handshakes.

NETWORK LAYER : The basic unit of data, handled by this layer, is

a packet . This layer carries out routing of the packets through

several of the alternate network connections, does network error

checking and reporting, and controls network congestion.
However, reliable delivery is assured only up to the next machine,

and not to the ultimate destination. The packet is fragmented and

reassembled as required. This layer decides the division of labor

between the host computers and the machines that interface the

host to the network.

TRANSPORT LAYER : This is the first layer to perform host to

host communication. It is the responsibility of this layer to take

care of the packets lost in transmission through the network,

damaged and corrupted packets, correct sequencing of the
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packets that might have arrived in random order and duplicate

packets. The transport layer either does reliable delivery of the

message handed over to it, or reports the status that the message

cannot be delivered. It also handles multiplexing and

demultiplexing of the packets among multiple network
connections, and end-to-end flow control.

SESSION LAYER : It is the responsibility of this layer to negotiate,

setup, carry out and terminate the connection between two
machines in an orderly manner. It also handles user
authentication and transaction processing whenever necessary.

PRESENTATION LAYER : The major functions of this layer include

machine dependent data and file format conversions, encryption

and decryption of sensitive data, terminal emulation, screen
handling for interactive sessions and data compression for
minimizing transmission costs.

APPLICATION LAYER : Usually created by end users of the system,

this layer can perform functions like providing access to the
network in a way that is transparent to the user, division of a

problem for distributed processing, easy-to-use user interfaces and

many more.

It is an interesting fact that most of the actual

implementations do not adhere to the OSI model strictly. In the

Internet family, IP does most of the functions of the network
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layer, except reliable packet delivery to the next machine. TCP

functions as the transport layer and handles more burden due to

the unreliable network layer. Application programs like FIT, Mail,

Telnet, Rlogin, etc. consist of the upper three layers of the ISO

model. Layers below IP are not defined, and can be system or

network dependent.

Novell netware has its own driver that performs part of the

data link and network layers. IPX is part of the network layer and

SPX forms the transport layer. Novell shell, file server and

application programs handle the rest of the layers. The distinction

between several adjacent layers is not very clear. The netware

drivers can be configured to use different networking hardware.

FFTP has the NCSA packet driver as the Data Link layer and

almost no network layer (an elaborate network layer is not
required in a LAN). Reliable packet delivery routines along with

the stop and wait algorithm form the transport layer and the rest

of the higher layers are combined in a set of functions.

Figure 2.2 compares and contrasts the OSI model with the

above protocol implementations. The ethernet configuration in the

ECE department is shown in figure 2.3.
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Figure 2.3
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CHAPTER 3

THE FAST FILE TRANSFER PROTOCOL :

DESIGN AND IMPLEMENTATION

3.1 The Motivation

Ethernet LAN supports data transfer rates of up to 10Mbps

with a maximum of 1526 bytes per frame. Applications which

transfer a large volume of data, like bitmap image files, document

files and executable files, benefit by the presence of an efficient

communication program. The two mechanisms available on our

network (Novell Netware and the Internet FTP) suffer from some

drawbacks in this respect.

Novell netware has created a distributed computing
environment with its network shells and servers. However, there

is no means for two PCs on the Novell network to communicate

with each other, nor is there a way to do PC to PC file transfer

without going through the file server. The only way to effect this

transfer is by logging on to the file server from two PCs, copying

the file from the first PC to the server drive, copying the file from

the server drive into the second PC, and then deleting the file

from the server storage. This procedure is both elaborate and

time consuming, especially if several files are to be transferred

frequently. It also puts an extra load on the file server which is not

always desirable. More complications can occur during transfer of
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large files especially if the user is near the limit of his quota of

storage space. Another undesirable characteristic (at least in the

current version) of the Netware is that it is found to interfere with

other network drivers due to its interaction with the local
operating system.

On the other hand, the TCP/IP family of protocols has been

developed to carry out communication across the Internet, which

belongs to the class of Wide Area Networks. As a result, TCP/IP

includes facilities to set up and sustain connections in spite of lost,

corrupted, duplicate or out of sequence packets, extremely long

delays, failure of arbitrary nodes in the network, packet
fragmentation, network congestion or other undesirable
conditions prevalent in any WAN. It also has provisions to
effectively route the data packets through a maze of networks and

machines. Many of the features that make it reliable and efficient

on the Internet cause excessive overheads and large delays when

used in an Ethernet LAN, thereby degrading its performance. Its

implementation in a highly layered fashion, large header sizes,

packet sizes that are just about one third of the maximum allowed

on Ethernet, and the sliding window flow control technique, as

mathematically proved in Chapter 5, are among the major factors

that contribute to its inefficiency. Again, the FTP software, which

operates on TCP/IP, is incapable of transferring files between two

PCs without going through a UNIX machine.

Most of these difficulties can be overcome by designing a

protocol that takes into consideration some important aspects of

LANs that are entirely different from those of WANs.
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1. There is no real routing involved in an Ethernet LAN. A

packet with the ethernet address of the destination, is picked up

by the right machine, without any extra efforts on the part of the

sender.

2. No fragmentation and re-assembly are necessary, as, the

sender and the receiver are both present on the same network.

3. Sequence number fields in the header can be as small as a

few bits as the delays involved are of the order of 40 to 50

microseconds.

4. The Ethernet header is sufficient to identify the source and

the destination, and the error checking, performed by the DLL

(Data Link Layer), is sufficient for most purposes.

5. Due to the short round-trip delays involved, there is no

need for an elaborate sliding window flow control algorithm. Flow

control methods, as simple as the 'stop and wait' scheme, are

sufficient. In fact, this simple scheme is found superior to the

sliding window, in a heavily loaded network, as it causes less

number of retransmissions as shown in Chapter 5.

6. The protocol can be made to utilize the smallest possible

header and the largest allowed packet size, in order to increase

the data transfer efficiency.

3.2 Flow Control Methods for Transport Layer

Flow control is necessary during data transfer to prevent the

faster machine from swamping the slower one with data. There
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are two major schemes available for flow control, namely stop and

wait and the sliding window schemes. In the stop and wait
method of flow control, the sender transmits a packet and waits

for an acknowledgement (ACK) before transmitting one more.

Usually all the senders will have a timer associated with the

packet, which is started as soon as the packet is transmitted. ACK

may not arrive because either the data packet did not reach the

receiver or the ACK packet was lost on the way. In either case, the

timer expires and the sender re-transmits the data packet. Such a

method results in wastage of bandwidth if there is a large delay

involved in the network, as, the sender has to sit idle until the

ACK arrives.

In the sliding window scheme, the sender and the receiver

agree upon a common window size, W. Usually, this is an indication

of the maximum buffer space available at the receiver. The sender

transmits W packets and starts a timer for each packet. If all the

packets reach the receiver, it will send a single acknowledgement

indicating the next sequence number expected. Upon reception

of this ACK, the sender resets all the timers and advances its
window forward. On the other hand, if the receiver does not get

all the packets intact, it sends ACK for the highest sequence

number received, and the sender retransmits all the packets from

the next sequence number, to the end of the window. The worst

case is when the first packet is lost, in which case, all the packets

are to be retransmitted even if the receiver got the remaining

packets intact. If the ACK is lost, the sender retransmits packets

as the timers expire.
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Figure 3.1 shows the transactions between two machines for

these two schemes. The sliding window method has great
advantage over the stop and wait method if transmission delays

are predominant, as it allows some processing to be done while

the packets are in transit. However, it also has a disadvantage

that, in order to have a large window, more memory is required.

In addition, it is considerably more complex to implement. The

following section discusses the limitations in detail.

3.3 Limitations of the Sliding Window Flow Control Scheme

Most of the emphasis in this work is on the elimination of the

sliding window scheme and on the improvements in data size to

packet size ratio in the transport protocol design. Here is Carl

Sunshine's [Sunshine 77] observation on the flow control methods.

as long as the packet loss/damage probabilities remain low,
the throughput will be flow-control-limited by a small window
size. However, in networks under heavy load conditions,

transmission errors and collisions are more likely, and the
throughput may become retransmission limited because
retransmission of pending packets have priority over the new
transmissions and also the number of packets, retransmitted,
is a function of the error probability as well as the window
size.

Let us consider M as the ratio of arrival to consumption rate

for the packets. For M » 1 , no amount of buffers suffice because

all will be filled up in the steady state, and most arriving packets

will have to be discarded. Hence a small window size, with a few
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buffers, is preferred. The limiting case is with the machines
differing greatly in speed, when window size = 1 will be reached.

However, at light loads. where M « 1, data transfer speed is

limited more by the sender's production rate and not by the
network speed. This is especially true where the production rate

is 2 to 3 orders of magnitude smaller than the packet transmission

speed, including the round trip delay. This is exactly the case

with PCs attached to Ethernet. Delay in accessing the secondary

storage, where all the data is initially stored, is found to be about

100 times more than the largest network delay. This aspect is

also pointed out by J. Vinyes [Vinyes 861 in his article describing

why a window size greater than 1 is not effective in a
microcomputer network.

Another fact against the sliding window scheme is that it is

more effective where acknowledgement packets can be totally

eliminated by sending piggy-backed acknowledgements, as is often

done if data transfer is in both directions (duplex). This is even

more important where the bandwidth is a scarce resource, as with

leased phone lines. Instead of pure stop and wait, if the sender

can have two buffers and refill one while waiting for the
acknowledgement for the other, considerable improvement in

performance can be obtained. In fact, FFTP uses a variation of this

scheme, where the acknowledgement timer is started after

refilling the secondary buffer.
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3.4 Implementation of FFTP

The Fast File Transfer Program includes network, transport,

session and presentation layers in a single package. Modular

design principles are followed to ensure ease of debugging and to

help program development. Totally layered construction is

carefully avoided in order to minimize the overheads. An

important point to be kept in mind while designing any network

software is that the layering of the ISO model does not imply

design of six layers of software. As Corner [Corner 87] rightly

points out, such an approach is bound to suffer from excessive

overheads. Time critical functions like ethernet interrupt handler

and the packet demultiplexer have been designed so as to
minimize all possible overheads. Structured design principles are

compromised wherever time is a factor of greater importance.

Accordingly, practices like the use of global variables instead of

parameter passing and the use of macros instead of function calls,

can be found in all critical procedures.

The program was developed in Turbo C for two main reasons:

1. The C language, because of its advanced system interfaces,

low level operations like bit level arithmetic and logic

operations and direct memory addressing functions, has

been considered to be the most ideal language for the

development of operating systems, compilers, editors and

other complex programs. It is also a structured language,

still not as rigid as Pascal in type checking and in following
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the conventions. Because of these considerations, C was the

language of choice for writing this communication program.

2. Turbo C was used for its enhancements over the standard

C, which give the user access to low level DOS and BIOS

calls, I/O addressing capability, register addressing and

interrupt handling capabilities. Also the integrated

environment, with the editor-compiler-debugger combined,

is highly conducive to program development. However, parts

of the program, like the driver interface routines, were

written in the 8086 assembly language to take care of the

operations which a higher level language can not handle.

A network protocol consists of a set of rules that specify the

method of session setup, data transfer, and termination (with all

the handshakes involved). Basically, design of a protocol is very

much similar to the design of a state machine. The arrival of a

packet of a particular type acts as the event that causes state

transition in this machine. All possible state transitions and

abnormal conditions like session abort, timeout, user break,
system and network errors are to be considered for a reliable

protocol design. Elaborate timeout mechanisms are needed to

prevent indefinite wait states when the remote host is not
functioning properly.

Network independence is also another important aspect of

protocol design. Though FFTP was developed basically for

Ethernet, it can be used with all existing packet drivers that

confirm to NCSA specifications, at the lowest level. This enables

the program to be used with a wide range of media access
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methods. For instance, a RS232 port on the PC can also serve as

the communication port to the FFTP, with a driver that can handle

this interface. This approach has another significant advantage in

that several protocols that use the same network interface can co-

exist with the FFTP software still performing normally. However,

some delay parameters will have to be modified before such a

porting can be efficient.

The FFTP packets use a header of 4 to 22 bytes, depending on

the packet type. Sequence number, checksum and packet type

are the parameters that are present in every FFTP packet header.

There are six different packet types, as shown in Figure 3.2.

The user runs FFTP from the command line, and selects one

of several options from the main menu. The program takes the

user through sub menus, if required, to get all the information

about the file transfer. The four major functions of the transport

layer are implemented as described below.

Reliable delivery is ensured using a positive acknowledgement

scheme. A packet is transmitted and a counter is started. If no

acknowledgement is received by the time the timer has expired,

the packet is re-transmitted and a retry count is incremented. If

no acknowledgement arrives by the time the retry count exceeds

its maximum limit, the session is aborted after informing the user

of the fact. This approach takes care of both lost packets as well as

lost acknowledgements.

When a packet is received, its sequence number is checked

with that of the receiver sequence number. A packet, with non-

matching sequence number, is discarded after an ACK followed by
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Figure 3.2
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an ABORT is sent. Duplicate packets are also treated in an
identical way, except that no ABORT message is sent.

If checksum field of the received packet is non-zero, a 16 bit

checksum is computed using the header and data portion of the

FFTP packet (excluding the checksum field itself). If the
checksum does not match the computed sum, the packet is
assumed to be in error and is discarded without acknowledging it,

relying on the sender to timeout and re-send the packet. A zero in

the checksum field indicates that no checksum is desired.

Flow control is done using the stop and wait scheme with a

variation, as described earlier. Additional flow control is provided

by the lower layer of software (driver interface routines). If a

packet is received when no buffers are free, it is discarded without

notifying the higher layers.

When the driver encounters any hardware errors, it informs

the higher layers by returning an error code. It is the

responsibility of the higher layers to take suitable action.

The Dynamic Timeout Mechanism is a novel feature of FFTP.

If a packet is acknowledged before the timer runs out, the

timeout period is decremented by a number proportional to the

difference between the current timer count and the maximum

count. On the other hand, if timeout occurs after sending a
packet, the timeout interval is incremented by a unit time and

used for the retransmitted packet. This feature has interesting

results, in that, it allows the program to adjust its transmission

speed to that of the slower machine. Each timeout causes the

next timeout to be delayed, thus slowing down the transmission.
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Each case of no timeout is handled by shortening the next timeout,

expecting a faster reply. Maximum and minimum values of timeout

have been chosen considering the fastest system encountered.

This scheme is found to have a levelling effect on the performance,

which is found to remain constant under varying network load

conditions. The following algorithm is used for timeout
recalculation : if T is the current timeout interval and T1 is the

current response time,

if T > T1

then T = T INT((T-T1)/2) (no timeout)

else T = T + INT((T1-T)/2) (timeout occured)

Connection oriented service is used and the connection
passes through three distinct phases : an establishment phase, a

transfer phase and a termination phase. Connection is simplex

though packets are sent and received by both sides.

3.5 Physical, Data link and Network Layers for FFTP

Western Digital Ethernet controller is used as the network

interface. The WD8003 chip, used in the card, has all the the

logic necessary to handle carrier sensing, collision detection,
transmission and reception of data bits, address recognition, CRC

(Cyclic Redundancy Check), a ring buffer for storing up to 8 octets

of received data, and the interfaces to interact with a
microprocessor system. The WD8003 card has a user selectable

I/O base and buffer memory addresses, configurable hardware

interrupt vector and software configurable ethernet address.
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The NCSA packet driver forms the second layer that operates

above the ethernet interface card. This driver attaches itself to a

software interrupt vector and stays as a memory resident program.

It intercepts the ethernet hardware interrupt and takes care of

transferring the octets from the ring buffer of the driver chip into

a buffer in the memory. After the whole packet is assembled, the

driver upcalls a user-specified routine and hands over the packet.

The driver uses the 1-persistent transmission algorithm with
exponential backoff to stabilize the network operation at high load

conditions. It also keeps an account of the number of bytes sent

and received, the number of collisions, damaged packets and the

packet type being received.

These two layers take care of receiving only the packets
addressed to this unit (and all the broadcast packets), ignoring the

packet type. It is the responsibility of the higher level protocol to

accept or discard the packets based on their type or source

address.

Development of the next higher layers was done in three

phases.

1. A low level driver interface that provides the basic packet

transfer mechanism, with collision and error detection, was first

constructed.

2. A reliable packet delivery mechanism was built using the

positive ACK and timeout-retransmission scheme. This layer is

capable of informing the higher layers of the success or failure of

the delivery attempt.
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3. A reliable file transfer function that uses the reliable packet

delivery mechanism, was next designed. It is this layer that takes

care of lost, damaged, duplicate and out of sequence packets,

sequences data, exerts flow control and hands over the assembled

data in the form of a file to the higher layer. All the information

required for further processing of the file (like store/print

options, name and size of the file, etc) is also transferred along

with the file. This layer handles system errors encountered in

naming or storing the file, user interrupt (control C) and other

catastrophic conditions. It also has a simple, menu driven user

interface.

3.6 Protocol and Header Formats

The sender performs a data transfer operation as shown

below.

1. A session SETUP packet, containing the file name, file size,

operation to be performed on the file, and the identification of the

printer on which it needs to be printed, is sent to the destination

machine.

2. After receiving the ACK for the setup packet, DATA packets

are sent with confirmation of delivery.

3. End of transmission is conveyed by sending an END packet.

4. The sender now expects the STATUS of the transfer to be

returned, reports it to the user and exits.

... and the receiver acts accordingly.
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1. The receiver processes the SETUP packet and opens a

temporary file to store the data. It also preserves all the
information in the setup packet and sends an ACK.

2. It receives all the DATA packets and writes them to the

file, checking for error conditions. Any error causes an ABORT

packet to be sent to the sender, which is expected to abort the

session immediately.

3. The END packet is received and acknowledged. This

triggers more processing activity. The temporary file is closed and

renamed. After making an attempt to store the file or spool it for

printing, as the case may be, the receiver sends back a STATUS

packet to the sender. It terminates the session after receiving an

ACK for the status packet. Following are some additional features

built into the program.

1. After a session has been setup, if no data packet arrives

within a certain amount of time, the receiver unilaterally aborts

the session after sending an ABORT packet. This is done to ensure

proper operation of the receiving machine in case the sender

crashes after sending the setup packet.

2. All the SETUP packets result in sending an ABORT when a

session is in progress. This is essential when the program is

implemented on an operating system like DOS which does not

support multitasking, thus making concurrent sessions impossible.

State machine representations of the FFTP sender and the

receiver are given in Figures 3.3 and 3.4 respectively. The

flowcharts for main routines like send_packet, send_file,

receive_packet and receive_file, are given in Appendix B.



Figure 3.3

STATE DIAGRAM FOR FFTP SENDER

abort
data

abort

stet

abort

33

Si START
S2 FILE OP
S3 SESSION SETUP
S4 SEND DATA
S5 SEND LAST
S6 STATUS WAIT
S7 CLEANUP

S8 ABORT SESSION



34

Figure 3.4
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CHAPTER 4

DESIGN AND IMPLEMENTATION

OF THE PRINT SERVER

4.1 The Client-Server Model of Distributed Computing

The concept of distributed computing can be applied to a

wide range of machine configurations, ranging from tightly
coupled multiprocessor systems to hundreds of machines
connected by LANs, WANs and long haul networks. Several models

of distributed computing exist, like the Hierarchical model and

the CPU Cache model where a central control exists, the Pool

Processc,r model where control is more distributed, the Data Flow

model which is close to the multiprocessor system with very fine

grain of computation carried out at each node, and the User-server

or Client-Server model where control is totally distributed among

the machines involved and the grain size is the largest. This

Client-Server model is the one that is most widely implemented at

this time.

A Client-server system consists of interconnected machines,

each being totally autonomous. The machines that provide
resources to the network, are termed as servers and the
machines that utilize these resources, are known as clients. A

machine that is a server, may itself be a client to some other

server. Following are some major types of servers, often found in

distributed systems.
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1. FILE SERVER : This is a machine with large secondary

storage capacity, ranging from hundreds of Megabytes to several

Gigabytes of hard disk. Usually, all the file servers are accessed

through explicit commands from the user. However, in a Network

File System (NFS) environment, the server access may be

transparent to the user.

2. BACKUP SERVER : A backup server's main goal is to

provide a centralized backup storage facility to all the machines on

the network. It usually has several cartridge and stream tape units

that can be used by machines to do remote backup and restoration

of their whole file system.

3. PRINT SERVER : This server may have several hard copy

devices like plotter, dot matrix printers, high speed line printers,

laser and color printers. Usually, there will be several prim.

servers, each attached to a some of these devices.

4. DATABASE SERVER : A specialized server with large

database management system and required storage space. A

database can be distributed among the file servers, in which case,

storage and retrieval of records will be done over the network,

without the user knowing the physical location of these machines.

These servers need to have enough redundancy, protection and

security mechanisms to preserve the integrity of the databases.

5. COMMUNICATIONS SERVER : A communications server

is usually a bridge that connects two or more similar networks, or

a gateway that connects dissimilar networks. These servers allow

the machines on one physical network to communicate with

machines on a different network, by performing packet format and
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protocol conversion. Gateways may connect LANs to long haul

networks or to WANs. The communication link can be a leased

phone line, satellite link, or some other long distance carrier.

6. NAME SERVER : It is a centralized unit that contains

tables of names, network addresses and other information on the

machines on the network and types of services offered by different

machines. Internet has a domain name server system that does

recursive searching for an address if it is outside its own domain.

7. COMPUTATIONAL SERVER : This is a machine equipped

with vector processors, numeric co-processors etc. to provide very

high speed computational capability. For instance, a super-
computer on the network may be used as a computational server,

and in that case, all the clients must be provided with a cross

compiler that generates code that can be executed by this
machine. A computationally intensive program can be sent to this

server and the results obtained back.

Servers allow sharing of expensive resources in the system in

a fair and efficient way. As all the machines on the network can

have access to the resource, its utilization greatly increases.
However, there should always be mechanisms to restrict access

and security can be a major problem when everyone can have

access to a resource.

4.2 Need for a Print Server

In an environment where several personal computers and

workstations are connected together by a local network, the
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printers attached to individual machines are the ones that are not

well utilized. Attaching a printer to every workstation can be

expensive especially when letter quality, laser printers and
plotters are involved. Maintenance of devices scattered
throughout the building, can also be a major problem. Users will

have to wait for the workstation with a printer, to become free, in

order to print a single file. A machine, dedicated as a print server,

can be the only plausible solution under such circumstances.

Print servers are found on most of the UNIX machines

attached to the network. A background process will monitor the

print requests and will spool the jobs for printing. The ability to

do high speed data transfer, accurate status reporting and the
ability to handle multiple print requests at a time, are some of the

desirable features of a print server.

4.3 Requirements for PC to PC Printing Operation

PC to PC printing is straightforward because no session setup

or user authentication is required. Reliable transfer of the file

from the PC to the print server is the only major operation.
However, if the server PC has more than one printer attached to it,

there should also be a mechanism that allows the user to specify

the device required. In addition to the devices themselves, the

server needs to have the drivers that allow multifont operation and

such additional features.

A PC print server has been implemented utilizing the PC to PC

file transfer program. The session SETUP packet contains all the
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information required for printing a file, like the name of the file,

file size and printer identification number. The server, after

receiving the whole file, attempts to spool the file for printing and

sends a STATUS packet back to the sender, informing it of the

result of this attempt.

As MS DOS is not a multi-tasking operating system, the print

server can handle only one print request at a time. All other

requests will trigger transmission of an ABORT message to the

sender, thus rejecting the transfer operation, till a file is spooled

for printing.

4.4 Requirements and Mechanism of PC to UNIX Printing

A print server on the UNIX operating system is usually
implemented as a print daemon which is a background process

that is started during boot time. The process detaches itself from

the controlling tty (teletypewriter or a terminal) and monitors a

well known communication port. When it receives a print request,

it forks off a child process and reverts back to its monitoring job.

The child process accepts the print request and performs user
authentication before receiving the file for printing. The result of

the spooling attempt is sent back to the client, and the child
terminates after ending the session. The multitasking support of

the UNIX system allows the server to handle several print requests

at the same time.

In the current implementation, the daemon assumes a user id

(identification number) of 'puser', a user created for print serving
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purposes. This scheme allows system administrators to limit

access to only a few printers in the system. Another alternative is

to make the print server run with the root id, at the highest
possible privilege level, in which case it can have access to all the

printers in the system. However, the latter scheme is not
desirable because of the security risks involved. The possible error

messages returned to the client are, 'no access to the printer',

'user authentication failed', 'error in storing the file', etc.

4.5 Security and Authentication Issues

When a print server is implemented on UNIX, all the security

aspects of a multi-user system will have to be carefully considered.

No user can logon to the system unless he/she has an account and

a valid password. If the print server needs to serve only the
registered users, provision should be made to obtain the user

name and the password before accepting the print request. The

user name is to be compared with that in the password file and the

password is to be verified by calling the related system routines.

This approach, though more restrictive, has advantages in that

each user will be able to print only on the printers allowed for

him/her and no other. The child created by the print server will

assume the id of the user who is sending the file and all the

related aspects of group checking etc. are handled by the system

itself. The current print server is run with the id of the 'puser'

and hence will have access to only the printers that are allowed for

'puser'.
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CHAPTER 5

PERFORMANCE EVALUATION AND ANALYSIS OF PROTOCOLS

5.1 Analysis of Stop and Wait Flow Control Scheme

A protocol can be analyzed by taking into consideration, the

size of the header it uses, the way acknowledgement is received,

the network and processing delays involved in dispatching a
packet, the retransmission schemes used, and time required to

process acknowledgements. We choose the following notations for

the parameters that are required for the analysis :

F size of the file to be transferred, in bytes

Pf number of data bytes sent by FFTP in a single ethernet frame

Pt number of data bytes sent by TCP in a single ethernet frame

Hf FFTP header size

Ht TCP header size

p percentage of packets lost by collision

t round trip delay on ethernet

Tf time required to transmit one FFTP packet

Tt time required to transmit one TCP packet

Ta time required to transmit an ACK packet

Of machine overheads ( processing ) for one FFTP packet

Ot machine overheads for one TCP packet

Oa overheads associated with ACK processing,

Os storage overheads
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The total time T1 required for confirmed delivery of one FFTP

packet is given by : T1 = Of (tx) + Tf (tx) + t + Tf (rx) + Of (rx)

+ Oa

which is the sum of correspponding delays at the transmitter (tx)

and the receiver (rx).

The total number of data packets to be transmitted to send

the file F is given by :

N1 = F/Pf

= number of acknowledgements.

The number of data packets lost due to collision = p(N1) = p(F/Pf)

As one ACK is sent for each data packet that is successfully
received, number of ACKs = N1(1-p) and out of these, pN1(1-p)

may be lost again. A lost data packet as well as a lost ACK packet

eventually requires retransmission. These two events are mutually

exclusive in that a lost data packet can not generate an
acknowledgement, hence the probability of both happening for a

packet is zero. Thus the total number of packets to be transmitted

in the presence of collisions is given by :

Nf = N1 + p(N1) + pN1(1-p)

= N1(1+2p-p*p)

However, again p percentage of retransmitted packets can get

lost, as can be their ACKs. This gives rise to an infinite series

which is a geometric progression with common multiplier = 2p-

p*p. Hence

Nf = Ni + N1(2p-p*p) + N1(2p-p*p)(2p-p*p) + . . which can

be simplified to Nf = N1 ( 1 + (2p-p*p) + (2p-p*p)(2p-p*p) + . . )
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which converges to the following equation for 0 <= p < 1 :

Nf = (F/Pf)*(1/(1-2p+p*p))

Now, the total time taken to transmit a file of size F in
presence of collisions is :

Tfftp = (20f + 2Tf + t/2 )(F/Pf)*(1/(1-2p+p*p)) + Os

+(20a+t/2+2Ta)(F/Pf)*(1-p)/(1-p+p*p), considering

the time required for data packets as well as ACK packets.

5.2 Analysis of Sliding Window Flow Control Scheme

Using the above notations again, this time considering TCP

parameters, we have : N2 = F/Pt

Assuming that TCP transmits with a window that is W packets

wide, (which may not be a very realistic assumption because the

window size can vary dynamically) and one ACK is sent per every

window, the number of ACK packets differs significantly from the

number of data packets, given by : N3 = N2/W = F/(PtW). The

total number of data packets lost due to collision is given by :

Nc = pN2 and hence only (1-p)N2 packets reach the

destination. Totally (1-p)N2/W ACKs are sent, out of which,

N4 = p(1-p)N2/W ACKs are lost.

However, there is another important fact to be considered

here. As one ACK is sent for W packets in the window, a lost ACK

causes all the W packets to be retransmitted. Hence N4 ACKs

lost, cause WN4 retransmissions. As the probability of any of the W

packets in the window getting lost is the same, and a lost packet

causes retransmission of that packet to the end of the window, on
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an average, pN2 lost data packets cause pN2W/2 retransmissions.

Thus, a total of

N2 + pN2*W/2 + p(1-p)N2/W packets will be transmitted at

the first instant. Applying the same error criterion to the
retransmitted data packets and ACKs, we get an infinite series

Which is a geometrical progression with common multiplier given

by (pW/2 + p - p*p).

Therefore,

Nt = ( F/Pt)(1+(pW/2 + p p*p) +

(pW/2 + p p*p)(pW/2 + p p*p) + ...)

or Nt = (F/Pt)(1/((1 pW/2 p + p*p))

and Ttcp = (F/Pt)(20t + 2Tt + t/2)(1/(1 pW/2 p + p*p))

+(F/(WPt)(1-p)/(1-p+p*p))(0a +t/2+Ta) + Os

Comparing the equations for Nf and Nt , we see that for small

probability p (low loads), the two protocols tend to have the same

number of retransmissions. However, as the term (1-pW/2)

appears in the denominator, the error probability is magnified by

the window size before affecting the number of retransmissions.

On the other hand, the term (1-2p+p*p), appearing in the
denominator of the stop and wait protocol, does not have such a

magnification factor. Figure 5.1 shows that, the number of
retransmissions caused by a sliding window increase with the size

of the window, and are always more than those caused by the stop

and wait scheme for a particular value of error rate.
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5.3 Network, Transmission, and Machine Delays

Comparison of the total time taken by each of these protocols,

for transfer of F bytes of data can be realistic only if the delays

caused by the machine as well as the network are taken into

consideration.

An IBM PC/AT with a Intel 80286 CPU running at 8MHz

clock, has the following timing restrictions.

Disk to memory transfer : 110 K Bytes/sec

Time required to transfer 1Kb : 10 mSec

Average number of clock cycles per call : 130 ( approx. for saving

all the registers )

Average instruction execution time : 750 nSec ( 6 clocks)

Corresponding network parameters are,

round trip delay on ethernet : 45 microSec

minimum packet size : 512 octets

minimum packet transmission time : 51 microSec

maximum packet transmission time : 1.25 milliSec (ms)

time required to transmit 1Kb of data : 0.833 ms.

Considering a no-collision transfer, The total time taken by FFTP,

for transferring 1.5 Kb using the stop-and-wait scheme, is given by:

Ts = (10 *1.5)ms (retrieval time at tx) + (0.833*1.5)ms (t -tx)

+ ((0.833*1.5)ms (t-rx) + 0.05ms (round trip) + 0.05ms

(ack-tx) + 0.05ms(ack-rx) which is 32.55 ms.
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It will take 21.7 mSec for 1Kb to be transferred, which is

equivalent to a maximum data transfer rate of 46Kbps ( without

considering computational overheads).

On the other hand, the total time taken by TCP, using the

sliding window scheme for transferring 0.5Kb is given by :

Tw = 5ms (retrieval -tx) + 5ms (storage-rx) + 0.4ms (t-tx)

+ 0.05ms (round trip)

= 10.45 ms.

This corresponds to 20.90ms/Kb or a maximum data rate of

47.84Kbps (without considering computational overheads).

A comparison between these two indicates that TCP gains only

a marginal advantage over FFTP (4% faster), in the absence of

collisions. This can be attributed to the large delays involved in

the storage and retrieval of data in a microcomputer environment,

which nullifies the biggest advantage of the sliding window.

These results also indicate that the network delay is negligible

compared to the storage and processing delays. We have seen

from previous references that the sliding window is not very
effective if the transmission is limited by machine performance

rather than by the network delay. In fact, this result also warns us

against using TCP as it is, on a local ethernet. Figure 5.2 is a graph

that compares the time taken by each of these protocols to
transfer files of different sizes, under varying network loads. It can

be observed that TCP overheads deviate more and more from

FFTP overheads as the file size increases. Timing measurements

that use small file sizes, may not be accurate enough to make a

good comparison. For this particular observation, the network was
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flooded with dummy packets to simulate various loading
conditions. Low load condition implies 300 packets/min, medium

load up to 1500 packets/min and high load being above 3000

packets/minute, as counted by the Netwatch program. These

loads do not seem to have much effect on the rate of transfer, as

can be deduced from the fact that, 3000 packets/min or 50
packets/sec amounts to just 2% of the ethernet capacity.

The difference in performance can be attributed to three

major factors :

1. Smaller packet size used by IP for sending TCP segments

2. Inefficient flow control algorithm in a collision environment

3. Large header sizes that reduce the transfer efficiency.

Untill now, all the computations were done without
considering the effect of header size on the data transfer efficiency

and channel utilization. The following section deals with these

aspects in detail.

Definite improvements in the performance of TCP have been

reported by Sharon Heatley [Heatley 881 who modified the IP

algorithms to use a null header with no Internet address. As

Tanenbaum [Tanenbaum 811 states in his book on networking, the

header size indeed has much effect on channel utilization as shown

below.

Considering

A number of bits in an ACK frame

C channel capacity in bps

D number of data bits per frame,

E probability of a bit being in error,
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H number of bits in the header

F = D + H (total frame length)

I propagation delay

P1 probability that a data frame is lost

P2 probability of ACK being damaged,

R mean number of retransmissions per data frame

T timeout interval

U channel utilization (efficiency)

W window size

the channel utilization turns out to be

U = D/(H+D) (1-P1)(1-P2) 1/(1+CT/(H+D))

With P1 and P2 -> 0, the utilization is given by

U = D/(F+CT)

Thus, the efficiency of transfer, in absence of errors/collisions

in the channel, depends mainly on the header size relative to the

frame size and the timeout interval. Since the timeout interval is

based on the response time, network load and other factors, we

consider header sizes for our next comparison.

TCP uses a header that has a minimum size of 24 bytes. While

enclosing the TCP segments in its packet, IP places its own

header which is at least 20 bytes long. An IP packet is enclosed in

an ethernet frame, which adds 26 more bytes as ethernet
addresses, type, checksum and synchronizing fields. That makes a
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total of 70 bytes of header. Usually, IP limits the packet size to

576 bytes so that they may pass through the intermediate
networks without being fragmented. This results in a data size

that is 506/576 or 87.84% of the packet size. Standard TCP
implementations cause extra overheads as, the maximum allowed

packet size on ethernet is 1526 bytes, and only 576/1526 or a

mere 38.4% of the actual capacity is utilized while transmitting

one frame.

On the other hand, FFTP uses just 4 bytes of header with

transport, network and all other layers added together, in addition

to a packet size of 1526 bytes. This enables it to keep the header

overheads to just (26 + 4)/1576 = 2.1%. Thus, FFTP gains

another advantage over FTP that uses TCP/IP for communication.

Figures 5.3 and 5.4 show a TCP packet and a FFTP packet
respectively, enclosed in an ethernet frame before transmission.
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Figure 5.3

A TCP PACKET ENCLOSED IN AN ETHERNET FRAME
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Figure 5.4

A FFTP PACKET ENCLOSED IN AN ETHERNET FRAME
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Observations

This work demonstrates that a general purpose protocol can

be inefficient when used in a LAN environment and also an
approach to design a protocol for maximum efficiency. In addition

to theoretical considerations, implementation of this protocol was

done by a program to effect file transfer and print serving. This

program, called FFTP, was found to be faster than FTP under all

testing conditions. Its performance too, was constant with varying

network load and error conditions. In addition to its academic

value, FFTP also has great utility value. Here are the comparisons

between FFTP and FTP at a glance.

Table 6.1 : Performance of FFTP and FTP with
Varying Machine Speeds

Speed of
Operation

80286 (8MHz)
FFTP FTP

80386 (25MHz)
FFTP FTP

Maximum
(low load)

Minimum
(high load)

33 Kb/s 31 Kb/s

26 Kb/s 18 Kb/s

41.6 Kb/s 33.7 Kb/s

38.5 Kb/s 20.7 Kb/s

FFTP was observed to be at least 25% faster than the FTP.
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These results also indicate the extent of improvement in
protocol performance when a machine of higher speed is used.

They also provide us a hint that the processor speed may not really

be a limiting factor.

The implementation includes a new technique called 'dynamic

timeout scheme' which helps the program to adopt itself to
varying speeds of transmission. Modular program design with

reduced header size, increased packet size and low overheads

achieves the goal without any difficulty. Portability was also given

some consideration during the design process. Hints for porting

FFTP to the Unix system and installation aspects are discussed in

Appendix C.

6.2 Scope for Further Enhancements

Though this is a complete work in itself, it still provides

several opportunities for improvements.

1. Instead of the currently used double buffer scheme, a
linked list of buffers can be used to speed up the data transfer

operation. These buffers may be filled/emptied while waiting for

acknowledgements or next packets.

2. A Negative Acknowledgement scheme (NAK) can be used

to further reduce the number of retransmissions. In this scheme,

not only will the number of packets exchanged between the

machines be reduced, but also the effect of collisions on the traffic
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will be reduced. NAK can be seen to be more efficient than a
sliding window flow control.

3. Provision could be made to apply data compression
algorithms to a file before transmitting it, and to decompress it at

the receiver. There are well known algorithms that compress text

files by as much as 50%. This feature may be implemented as an

enhancement to the presentation layer. Though computationally

intensive, this procedure serves to reduce the network traffic to a

great extent. Bitmap image files readily yield themselves to such

data compression.
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APPENDIX A

NCSA Packet Driver Specifications

Revision 1.08 : December-12-1988
Developed by : FTP Software, Inc. P.O.Box 150 Kendall Sq.

Boston, MA 02142, (617) 868-4878

Note: this document is public domain and may be distributed

freely and without fee or permission. FTP Software's name and

this notice must appear on any reproduction of this document.

1 Introduction and Motivation

This document describes the programming interface to

PC/TCP packet drivers. Packet drivers provide a simple common

programming interface that allows multiple applications to share

a network interface at the data link level. The packet drivers

demultiplex incoming packets among the applications by using

the network media type field. Through the use of the packet

driver, the actual brand or model of the network interface can be

hidden from the applications.

The packet driver provides calls to initiate access to

specific packet type, to end access to it, to send a packet, to get

statistics on the network interface and to get information about

the interface.

Protocol implementations that use the packet driver can

completely coexist on a PC and can make use of one another 's

services, whereas multiple applications which do not use the
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driver may not coexist on one machine properly. Through use of

the packet driver, a user could run TCP/IP, DECnet, and a
proprietary protocol implementation such as Banyan's, Life Net's,

Novell's or 3COM's without the difficulties associated with

pre-empting the network interface.

Two levels of packet drivers are described in this

specification. The first is the basic packet driver, which

provides minimal functionality but should be simple to

implement and which uses very few host resources. The basic

driver provides operations to broadcast and receive packets. The

second driver is the extended packet driver, which is a superset

of the basic driver. The extended driver supports less commonly

used functions of the network interface such as multicast, and

also gathers statistics on use of the interface and makes these

available to the application. All basic packet driver functions are

available in the extended driver.

2 Identifying network interfaces

Network interfaces are named by a triplet of integers,

<class, type, number>. The first is the class of the interface. The

class tells what kind of media the interface is for: DEC/Intel/Xerox

Ethernet, IEEE 802.3, IEEE 802.5/TokenRing, ProNET-10,

Broadband Ethernet, Appletalk, serial line, etc.

The second number is the type of interface: this specifies a

particular instance of an interface supporting a class of medium.
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Interface types for Ethernet might name these interfaces:

3COM 3C501 or 3C505, Inter lan NI5010, Univation etc.

The last number is the interface number. If a machine is

equipped with more than one interface of a class and type, the

interfaces must be numbered to distinguish between them.

The type OxFFFF is a wildcard type which matches and

interface in the specified class. It is unnecessary to wildcard

interface numbers, as 0 will always correspond to the first

interface of the specified class and type.

This specification has no provision for the support of

multiple network interfaces. We feel that this issue is best

addressed by loading several Packet Drivers, one per interface,

with different interrupts (although all may be included in a

single TSR software module). Applications software must check

the class and type returned from a driver_info() call already, to

make sure that the Packet Driver is for the correct media and

packet format. This can easily be generalized by searching for

another Packet Driver if the first is not of the right kind.

3 Initiating driver operations

The packet driver is invoked via a software interrupt in the

range 0x60 through 0x80. This document does not specify a

particular interrupt, but describes a mechanism for locating

which interrupt the driver uses. The interrupt must be
configurable to avoid conflicts with other pieces of software

that also use software interrupts. The program which installs
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the packet driver should provide some mechanism for the

user to specify the interrupt.

The handler for the interrupt is assumed to start with 3

bytes of exectuable code; this can either be a 3-byte jump

instruction, or a 2-byte jump followed by a NOP (do not specify

"jmp short" unless you also specify an explicit NOP). This must

be followed by the null-terminated ASCII text string "PKT DRVR".

To find the interrupt being used by the driver, an application

should scan through the handler for vectors 0x60 through 0x80

until it finds one with the text string "PKT DRVR" in it.

4 Programming interface

All functions are accessed via the software interrupt

determined to be the driver's via the mechanism described

earlier. On entry, register AH contains the code of the function

desired.

The handle is an arbitrary integer value associated with

each MAC-level demultiplexing type that has been established via

the access_type call. Internally to the packet driver, it will

probably be a pointer, or a table offset. The application calling

the packet driver cannot depend on it assuming any particular

range, or any other characteristics.

Note that some of the functions defined below are labelled

as extended driver functions. As their implementation is optional.

the programs wishing to use these functions should use the



62

driverinfo() function to determine if they are available in a given

packet driver.

4.1 Entry conditions

FTP Software applications which call the packet driver are

coded in Microsoft C and assembly language. All necessary

registers are saved by FTP's routines before the INT

instruction to call the packet driver is executed. Our current

receiver() functions behave as follows: DS and the flags are saved

and restored. All other registers may be modified, and should be

saved by the packet driver, if necessary. Processor interrupts

may be enabled while in the upcall, but the upcall doesn't

assume interrupts are disabled on entry. On entry, receiver()

switches to a local stack. Current FTP Software receiver() routines

may modify all registers except DS, so the caller must save and

restore any that must be preserved across the call.

4.2 Byte ordering

Developers should note that, on many networks and protocol

families, the byte-ordering of 16-bit quantities on the network

is opposite to the native byte-order of the PC. (802.5 Token

Ring is an exception). This means that DEC-Intel-Xerox ethertype

values passed to access_type() must be swapped (passed in

network order) The IEEE 802.3 length field needs similar
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handling, and care should be taken with packets passed to
send_pkt(), so they are in the proper order.

When a packet is received, receiver is called twice by the

packet driver. The first time is to request a buffer from the

application to copy the packet into. AX == 0 on this call. The

application should return a pointer to the buffer in ES:DI. If the

application has no buffers, it may return 0:0 in ES:DI, and the

driver should throw away the packet and not perform the second

call.

It is important that the packet length (CX) be valid on the

AX == 0 call, so that the receiver can allocate a buffer of the

proper size. This length (as well as the copy performed prior to

the AX == 1 call) must include the Ethernet header and all

received data, but not the trailing checksum.

On the second call, AX == 1. This call indicates that the

copy has been completed, and the application may do as it wishes

with the buffer. The buffer that the packet was copied into is

pointed to by DS:SI.

802.3 vs. Blue Book Ethernet

One weakness of the present specification is that there is

no provision for simultaneous support of 802.3 and Blue Book (the

old DEC-Intel-Xerox standard) Ethernet headers via a single

Packet Driver (as defined by its interrupt). The problem is that

the Ethertype of Blue Book packets is in bytes 12 and 13 of

the header, and in 802.3 the corresponding bytes are interpreted
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as a length. In 802.3, the field which would appear to be most

useful to begin the type check in is the 802.2 header, starting at

byte 14. This is only a problem on Ethernet and variants (e.g.

Star lan), where 802.3 headers and Blue Book headers are likely

to need co-exist for many years to come.

One solution is to redefine class 1 as Blue Book Ethernet,

and define a parallel class for 802.3 with 802.2 packet headers.

This requires that a 2nd Packet Driver (as defined by its interrupt)

implemented where it is necessary to handle both kinds of

packets, although they could both be part of the same TSR

module.

James B. VanBokkelen

(jbvb@ftp.corn)



APPENDIX B : Flow Charts

Figure B.1

SEND_PACKET

START

b5



66

Figure B.2
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Figure B.3
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APPENDIX C

PORTING AND INSTALLATION OF FFTP

Hints for Porting FFTP to UNIX System

The FFTP print server is currently implemented on IBM

PC/ATs. The Unix print server still uses TCP. This is mainly due

to the absence of low level driver access mechanisms in UNIX. As

soon as this is done, the program can be ported to UNIX without

any modification. However, a layer of software is still needed to

simulate the NCSA packet driver. Multiple service requests can be

handled by the new print server by opening a new socket instead

of a TCP socket. The following are the major requirements of a

driver interface.

1. The interface should be able to provide access to ethernet

packets of arbitrary 'type' field, with correct destination address.

2. The interface should be able to transmit ethernet packets

handed over to it, with arbitrary destination address.

3. There should be a provision to call a user routine
asynchronously when the packet with matching 'type' is received.

More requirements can be found in the NCSA Packet Driver

Specifications, given in Appendix A. A name server can be
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implemented as a daemon to eliminate the need for address files

on each PC.

Installing FFTP on a PC

FFTP can be installed on any PC with the following
accessories.

1. An ethernet interface card

2. A NCSA compatible driver for the above card

... and the following files must be present in some directory

that is included in the PATH environment variable on DOS.

1. SADDRESS containing the ethernet address of the local

machine in the following format :

XX abcdef
where XX is the machine number (1 for AT1 etc) and a..f are

hexadecimal numbers representing the ethernet address. The

fields must be separated by either tab or space/s

2. DADDRESS containing the number and ethernet address of all

machines with which, communicaiton is desired. The file format

is as shown below.

)0C

yl al bl cl dl el fl

y2 a2 b2 c2 d2 e2 f2

....
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where XX is the total number of machines in the file, and thee

rest is similar to SADDRESS

3. The file TCPBIN.EXE if communicaiton with a UNIX machine is

desired. ( such a mac.hine is currently given machine number 99 )

In addition to the above, an NCSA compatible packet driver, by

name WD8003E.COM, must be present in the search path if the

default installation part of the FFTP program is to be used. The

program tries to install the driver if it is not already installed

through the AUTOEXEC.BAT file, at boot time.

Basic debugging can be carried out in case of problems by

recompiling the program after setting the XDEBUG option in the

header file. Currently, the program is contained in three files

FFTP.C, FUNCTION.0 and PDRIVER.H


