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Classification of Motion Capture 

Sequences 

1.  Introduction 
  

Motion capture (mocap) is the process of recording movement and translating movement 

into digital form. After the data has been captured, it can be used in military, sports, 

entertainment and medical applications. Mocap systems can simulate more realistic 

motions, than motions created by hand. It can also synthesize more complex motions. 

Mocap is frequently used in games and movies due to its detail and ability to express 

subtle expressions such as the movement of fingers and facial expressions.  

There have been great achievements in the field of mocap. Some famous movie 

characters such as Gollum, the Mummy and King Kong were created using mocap.  Two 

out of three nominees of the 2006 Academy Awards for best animated film were 

“Monster House” and “Happy Feet” which used mocap technology (Academy Awards, 

2007). Gait Analysis is the major application of mocap in clinical medicine.  

There are a few shortcomings to mocap. Mocap requires specific hardware and software. 

The cost of hardware is currently very high. Secondly, movement that does not follow the 

laws of physics generally cannot be captured. Due to these reasons, data is usually stored 

in short clips for easy hand labeling, sequencing and searches based on keywords 

describing the behavior. Extended sequences have many advantages over short clips. 

Longer shots may be more comfortable for the actors and capture natural transitions 

between the behaviors.  However, in capturing the long sequences, the major problem is 

to manually segment and label the motion sequences for retrieval and other processing. 

This manual labeling is a tedious process. We categorize mocap problems broadly into 

four basic problems: classification, segmentation, motion warping and motion synthesis.
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Classification refers to building the systems that can recognize the human motion and 

activities. Recognition of human body movements is recently receiving more attention in 

robotics research, since robots must recognize the motion of humans to interact with 

them.  Human motion can be used as a model to train robots. In some computer games, a 

human-controlled sprite fights with a computer-controlled sprite. The common actions 

are kicks, punches, blocks, lean and swerve to the left or right, which are usually 

controlled by a keyboard or joystick. Now consider a game where animations are not 

computer generated but use actual mocap data. There must be a system that identifies the 

correct actions in the data for appropriate animations. 

 Segmentation refers to segmenting a long sequence into distinct behaviors. Usually, 

long sequences consist of several activities performed by an actor in a single shot e.g. A 

person walking then jumping and then walking again. The task is to segment the long 

sequence into “walk”, “jump” and “walk”. This task can be done manually but for very 

long sequences and large numbers of such examples, the job is tedious. Consequently, we 

need to automate the segmentation process. This problem is related to the field of change 

point detection (Balakumar, 2002; Fang, Runger, and Eugene, 2006).  

Motion warping (Witkin and Zoran, 1995) is used to edit the original captured motions. 

Mocap can be used to create custom animations or to create libraries of reusable clip-

motions. These custom animations must be tweaked or adjusted to eliminate artifacts. In 

order to reuse clip motion we must be able to easily alter the geometry, such as animating 

a character to move on an uneven terrain. We might also add a transition between 

motions. We want these motions to be as smooth as possible and should look as close to 

reality as possible.  

Motion synthesis is similar to motion warping. The animator specifies the constraints on 

the keyframe. For example, suppose the animator specifies that he needs a throwing 

action at a particular frame but the starting frame belongs to a walk motion. A motion 

synthesis system should create a smooth transition from walk to throw in a particular time 

frame. Some applications include specifying the path, such as requiring to take the shape 
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of the numerical digit ‘8’.  The database in this case contains walk motions performed in 

a straight line. 

All these problems have the common underlying problem of modeling the motion data.  

If we are able to find a reliable model then we can find an answer to the above mentioned 

problems. The high dimensional, continuous, non-linear and time-variant nature of 

mocap data makes it very difficult to model the data. This area is fairly new in the field of 

machine learning. Although there has been past research using graphical models for 

motion data (Yamoto, Ohya, and Ishii, 1992; Bobick and Wilson, 1995; Goddard, 1994; 

Startner and pentaland 1995; Oliver, and Pentaland, 1997), none of the past work has 

approached the task of classifying entire motion sequences where each frame represents a 

full 96 dimensional vector of the joint angles of an articulated skeleton.  

In this paper, we are primarily concerned with classifying entire pure mocap sequences. 

First, we investigate the use of discrete models for this classification task. Discretization 

of the data results in faster algorithms during classification but it comes at a cost of losing 

information. Secondly, we explore the use of continuous models for classifying mocap 

sequences. For both discrete and continuous models, we explore the use of two main 

dimensionality reduction algorithms- PCA, which is a linear method, and GPLVM, which 

is a non-linear method. In addition, another angle that I investigate is the effectiveness of 

discriminative versus generative approaches. Discriminative models capture the 

conditional probability P(M|Y), where M is the motion label and Y is the observed data 

i.e. the frames in the sequence.  In contrast, the generative models model the join 

probability P(M,Y). In a nutshell, discriminative models are best suited for distinguishing 

between motions while generative model are best suited for synthesis of motions. The 

rest of the paper is organized as follows:  

Chapter 2 gives a brief introduction to motion capture and the BVH motion capture data 

format. In Chapter 3 we discuss the related work. Chapter 4, introduces the basic 

concepts of dimensionality reduction methods, graphical models and discretization 

methods. We also give a detailed survey of dimensionality reduction methods. Chapter 5 
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is devoted to the preprocessing of motion capture data, We discuss discrete models in 

chapter 6 followed by continuous modeling in chapter 7. The chapter 8 and 9 are the 

results and discussion for discrete and continuous approach respectively. We conclude in 

Chapter 10 and in chapter 11 we discuss future work.   
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2. Motion capture data 

In this section we describe how the mocap data is acquired, what the data formats are and 

what applications are possible for motion capture data. 

2.1 What is motion capture? 

Motion capture is a technique that digitally records the movements. These movements are 

widely used in entertainment, military and medical applications. In mocap, movements of 

actors are sampled many times per second. Mocap has some advantages over traditional 

computer animation of 3D model. Mocap can be used to capture more realistic and 

complex human movements but animal motions are difficult to capture. Another 

disadvantage is that, if something goes wrong in the process of data capture, the whole 

motion needs to be re-captured. Also, the specific hardware required for motion capture 

is fairly expensive.   

2.2 How motion is captured? 

A performer wears markers near each joint to capture the positions and angles of these 

markers as the performer moves.  The mocap computer software records the positions, 

angles, velocities, acceleration and impulses.  

Optical systems utilize data captured from image sensors to triangulate the 3D positions 

of a subject between one or more cameras calibrated to provide overlapping projections. 

These systems produce data with 3 degrees of freedom for each marker, and rotational 

information must be inferred from the relative orientation of three or more markers. For 

instance shoulder, elbow and wrist markers provide the angle of the elbow.  

Passive optical systems use markers coated with reflective material to reflect light back. 

An object with markers attached at known positions is used to calibrate the cameras and 

obtain their positions and the lens distortion of each camera is measured. Provided two 

calibrated cameras see a marker, a 3 dimensional fix can be obtained. Typically a system 
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will consist of around 6 to 24 cameras although systems of over three hundred cameras 

currently exist to try to reduce marker swap.  

Active optical systems triangulate positions by illuminating one LED at a time very 

quickly.  Here the markers are themselves powered to emit their own light. Each marker 

is given a unique identification number.  

Intensive research in computer vision is leading to rapid development of markerless 

mocap systems in which performers do not have to wear any markers. Special computer 

algorithms are designed to allow the system to analyze optical input and identify the 

human body.  

Non-optical systems such as inertial systems, mechanical motion and magnetic systems 

also exist. An inertial system is based on miniature inertial sensors. This is a low-cost and 

easy-to- use system based on biomechanical models and fusion algorithms. In mechanical 

systems, a performer attaches a skeleton like structure to their body. Typically, they are 

rigid structures of jointed, straight metal or plastic rods linked together with 

potentiometers that are articulated at the joints of the body.  Magnetic systems calculate 

position and orientation by the relative magnetic flux of three orthogonal coils on both 

transmitter and receiver.  

2.3 Motion capture data format 

2.3.1 Terminology. 

The following list (Meredith and Maddock, 2001) outlines some important keywords that 

are used to identify a human motion. 

• Skeleton: The whole character for which motion represents. 

• Bone: The smallest segment within the motion to which individual translation and 

rotations are applied during the animation. 
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• Channel or Degree of freedom: Each bone is subject to a position, orientation. 

The each parameter specifying these transformations is referred as a channel or 

degree of freedom. 

• Frame:   Each motion is comprised of a number of frames, where each frames 

depicts the position of each bone.  Mocap can be performed at the rate of 240 

frames per second but 30 to 60 frames per second is the norm.  

• Hierarchy: Mocap data contains a hierarchy of joints. For instance, the left wrist 

(lwrist) joint is the parent of the left fingers (lfingers) joint.  Hence any 

transformation to lfinger joint is applied in accordance with the lwrist joint.  The 

segment joining lwrist and lfinger is a bone.  

Figure 2.1 shows the sample hierarchy for Mocap data and the corresponding human 

skeleton can be seen in Figure 2.2.  The keyword “End site” in the hierarchy corresponds 

to end-effectors.  Specifically this encapsulates an offset that is used to infer the bone’s 

length for the joints, which does not have child.   

 

Figure 2.1: Hierarchical structure of human figure.          
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Figure 2.2: Human skeleton corresponding to the hierarchical structure given in figure 

2.1. 

2.3.2 Mocap file formats 

The following table 2.1(taken from (Meredith and Maddock, 2001)) outlines the available 

mocap file formats. ASF-AMC and BioVision Hierarchy (BVH) are the most widely 

used formats. We will discuss the BVH format in detail in section 2.3.3. 
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File Extension Associated 

Company / 

Description 

File Format Reference 

ASC Ascension NO LINK 

 

ASF and AMC Acclaim http://www.darwin3d.com/gamedev/acclaim.zip 

 

ASK and SDL BioVision/Alias NO LINK 

 

BVA and BVH BioVision http://www.biovision.com/bvh.html 

 

BRD LambSoft 

Magnetic 

Format 

 

http://www.dcs.shef.ac.uk/~mikem/fileformats/brd.h

tml 

C3D Biomechanics, 

Animation and 

Gait Analysis 

 

http://www.c3d.org/c3d_format.htm 

CSM 3D Studio Max, 

Character 

Studio 

 

http://www.dcs.shef.ac.uk/~mikem/fileformats/csm.

html 

DAT Polhemous 

 

NO LINK 

GTR, HTR and 

TRC 

Motion 

Analysis 

 

http://www.cs.wisc.edu/graphics/Courses/cs- 

838-1999/Jeff/ {HTR.html, TRC.html} 

MOT and SKL Acclaim-

Motion 

Analysis 

 

(Under Development - 

http://www.cs.wisc.edu/graphics/Courses/cs- 

838-1999/Jeff/SKL-MOT.html) 

 

Table 2.1:  Motion capture file formats and references. 

2.3.3 BVH file format 

The BVH file format includes skeleton hierarchy information in addition to the motion 

data.  
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A BVH file has two parts. First the header section describes the skeleton hierarchy and 

initial pose of the skeleton. Second, the data section contains the motion data.  The start 

of the header begins with the keyword ‘HIERARCHY’.  The following lines start with 

the keyword ‘ROOT’.  A BVH file may contain any number of hierarchies. 

Each segment of the hierarchy contains some data relevant to just that segment then it 

recursively defines its children. The line following the keyword ‘ROOT’ contains a left 

curly brace ‘{‘.  The first piece of information of a segment is the offset of that segment 

from its parent.  The offset will generally be zero.  The offset is specified by the keyword 

‘OFFSET’. The line following the offset contains the channel header information.  This 

has the ‘CHANNELS’ keyword followed by a number indicating the number of channels 

and then a list of many labels indicating the type of parameter it is.  The order of rotation 

is in the order Z,X,Y.  On the line following the channels there could be one of two 

keywords: either ‘Joint’ or ‘End site’. A joint definition is identical to the root definition 

except for the number of channels.  The end site information ends the recursion and 

indicates that the current segment is the end effectors.  The end site definition provides 

one more bit of information. It gives the length of the preceding segment just like the 

offset of a child defines the length and the direction of its parent’s segment. The end of 

any joint, end site or root definition is denoted by a right curly brace ‘} ’. 

The data section begins with the keyword ‘MOTION’ which is followed by a line 

indicating the number of frames by the ‘Frames’ keyword.  On the next line after the 

frame definition is the ‘Frame time’ which indicates the sampling rate of the data.  

The rest of the file contains the actual motion data.  Each line is one sampled frame of 

motion data.  In total, there are 31 joints, one for the root and the remainder for the joints. 

The root joint has 6 channels and the remaining 30 joints have 3 channels each. 

Therefore, we have a total 96 degrees of freedom.  Each of the lines in the data section is 

a vector of 96 elements. The order is decided by the hierarchy. To calculate the position 

of a segment, a transformation matrix is created in which the translational information is 
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specified in the hierarchy section and the rotational information is found in the data 

section.  

The rotation matrix R is given by, R = ZXY. Once the local transformation is created, it is 

concatenated it with the local transformation of its parent, then its grandparent and so on. 

We used the BVH format for our experiments. The data can be found at the CMUMocap 

Library (CMU Mocap Lirary). 
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3. Literature review 

Human motion analysis can be broadly divided into three main categories: motion 

recognition, motion tracking, and analysis of body part movement. Since our main focus 

in this thesis is motion recognition, this chapter will discuss related work in motion 

recognition. Much of this chapter is based on earlier surveys (Agarwal and Cai, 1999; 

Wang, Weiming, and Tieniu, 2002). 

Motion recognition 

Human motion recognition is based on tracking the human body through the sequence of 

images or sequence of poses captured using a motion capture system. Motion recognition 

approaches can be broadly divided into two categories: template matching and state 

space. The major work to recognize human motion relies on state- space approaches 

(Yamoto, Ohya, and Ishii, 1992; Bobick and Wilson, 1995; Goddard, 1994; Startner and 

pentaland 1995; Oliver, and Pentaland, 1997).   

i) Template matching 

Template matching (Polana and Nelson, 1994; Bobick and Davis, 1996; Galata, Johnson, 

and Hogg, 2001) is an approach, which extracts features from the unlabeled sequence and 

compares these features with pre-stored features obtained from existing motions in a 

database. Polana and Nelson (Polana and Nelson, 1994) used optical flow fields (Galata, 

Johnson, and Hogg, 2001)between frames to divide the motion into X and Y directions for 

template matching. Features derived from 2D meshes were used. Bobick and Davis 

(Bobick and Davis, 1996) interpret human motion in an image as Motion Energy Images 

(MEI) and Motion History Images (MHI). The motion images are obtained by subtracting 

two consecutive images and thresholding this difference into binary values. Over a period 

of time such images are accumulated. These images are called MEI, which are then 

enhanced to MHIs where each pixel value is proportional to the duration of motion. A 

nearest neighbor algorithm is then used for the motion recognition. Chomat and Crawley 
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(Chomat and Crowley, 1998) generated motion templates by using temporal-spatial 

filters computed by PCA. Recognition is performed by a naïve Bayes classifier. The 

advantage of template matching is its low computational cost and its simple 

implementation. The drawback is its sensitivity towards noise. For example, a motion of 

a person walking slowly will be considered distinct from a person walking quickly. 

Template matching also does not take into account the correlation between various joints 

such as while walking, the left leg moves in front in correspondence with the right hand.  

There has been a great deal of research on template matching by using similarity 

measures for multi-attribute pattern recognition.  Various similarity measures have been 

defined based on PCA (Krzanowski, 1979; Shahabi and Yan, 2003).  

ii) State space approach 

State space models are widely used to predict, estimate and detect time variant signals. 

The state space approach defines each pose as a state. Each state can be defined using a 

probabilistic model of some form, such as a multivariate Gaussian which can incorporate 

the inter-joint correlation. These states are connected by certain transitional probabilities. 

Any motion can be seen as passing through the states with the given probabilities.  

During training of the model in the given motions from the database the major task is to 

calculate the probabilities. For a given unknown motion, the joint probability is 

calculated with each different motion. The maximum value is selected as a criterion for 

classification. The example of state space techniques are Hidden Markov Model (HMM) 

and Neural Networks (NN).  

Bobick (Bobick and Wilson, 1995) and Campbell (Bobick and Davis, 1996) applied 2D 

or 3D tracking of joints for activity recognition. Both approaches transform the 

continuous state space into a corresponding discrete version using K-means. Finally, a 

motion is described as a sequence of such discrete symbols. Goddard (Goddard, 1994) 

and Yamato et al. (Yamoto, Ohya, and Ishii, 1992) used HMMs to recognize human 

motion. Yamato (Yamoto, Ohya, and Ishii, 1992) used 2D blobs as a feature to identify 

human motion. Learning was implemented by generating symbol pattern for each class.  
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Neural networks is another approach to answer the human motion recognition task. Guo 

et al. (Guo, Xu, and Tsuji, 1994) used a neural network to understand human motion 

behavior and the underlying pattern. Similarly, Rosenblum (Rosenblum, Yacoob, and 

Davis, 1994) used a neural network to recognize emotions of a subject.  

Apart from HMMs and basic neural networks there have been other types of models used 

for recognition such as methods based on PCA (Chomat and Crowley, 1998; Rosenblum, 

Yacoob, and Davis, 1994), variants of HMMs that include Coupled Hidden Markov 

Models (Bregler, Oliver, and Pentaland, 1997), Variable Length Markov Model (Galata, 

Johnson, and Hogg, 2001) and Time Delay Neural Networks (Lin, Nein, and Lin, 1999) 

is another variation of NN which tries to recognize motion. Problems with many of these 

more complex models include the absence of a closed form solution, an intrinsic non-

linear model, and local optima. Also, ‘under fitting’ or ‘over fitting’ could be a problem 

depending on the amount of training data. 

Other recognition methods: 

The above taxonomy was discussed in (Agarwal and Cai, 1999 ; Wang, Weiming, and 

Tieniu) but there exist other analysis methods which do not fall into the above categories.  

Recently, linear dynamic systems (LDS) have been shown to be successful at modeling 

motion. Fitzgibbon (Pavlovic, Rehg, Cham, and Murphy, 1999) proposed autoregressive 

(AR) models. These approaches model the temporal behavior but breaks down when 

underlying characteristics are non-linear. To overcome the above problem multiple linear 

systems were used.  Pavlovic et al. (Pavlovic, Rehg and Maccormick, 2002) propose a 

switching linear dynamic system (Bregler, 1997; Murphy K. P., 1998). However, it is 

difficult to learn the model with transitions between the linear systems. Li et al. (Yan, 

Wang, and shum, 2002) propose two-level statistical models to learn non-linear 

dynamics. In their model, they have N textons, which are image template that can be 

transformed geometrically and photometrically. Each texton is defined by a LDS. These 
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LDSs are used to find the local linear dynamics and transition matrix to model global 

non-linear dynamics.  Later on, the textons are used to describe the pattern in the process. 

We now briefly summarize other work which do not use LDSs. Nakata (Nakata, 2007) 

uses inter-limb correlation analysis to segment and recognize the distinct human 

behavior. Chuanjun Li et al. (Li, Kulkarni, and Prabhakaran, 2007), used Singular Valued 

Decomposition (SVD) and Support Vector Machine (SVM) to segment and recognize the 

human motion data. The SVM classifiers neglect the temporal dependencies across the 

frames. 

Altun et al. (Altun, Hoffman, and Smola, 2004) used Gaussian Process classification for 

segmenting and annotating the human motion sequences. The main objective of Altun et 

al. was to combine the advantages of Conditional Random Fields (CRF) with SVMs. 

They retained the probabilistic semantics of CRF which helps to incorporate prior 

knowledge within a probabilistic framework. Also, posterior probabilities can be used for 

predictions. The curse of dimensionality is overcome by the use of kernels.  

Sminichisescu et al. (Sminchisescu, Kanaujia, Zhiguo, and Metaxas, 2005) proposes a 

complementary discriminative approach to human motion recognition based on CRFs and 

Maximum Entropy Markov Model (MEMM). They were able to significantly improve 

the accuracy over the HMMs. 

Most of the previous research considers human motion as a sequence of images. 

Moreover, past work models temporal dynamics with a HMM. In this thesis we deal with 

all the joint angles on an articulated human skeleton and not with images.  
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4. Background 
 

In this chapter we will discuss the background of various algorithms and method. First, 

we discuss dimensionality reduction followed by discretization methods and at the end 

we discuss the basic concept of graphical models.  

4.1 Dimensionality reduction. 

The high dimensional nature of mocap data makes the distances between two motions 

almost the same, making them difficult to distinguish. This is nothing but “Curse of 

dimensionality (Beyer, Goldstein, Ramkrishnan, and Shaft, 1999)”. A large number of 

dimensions makes motions difficult to model and increases the computational expense at 

the same time. As discussed earlier, mocap data has 96 dimensions to represent a single 

human motion frame. Many times, only a few dimensions are sufficient to represent the 

motion, such as when a person is clapping, the only joint angles that have more variations 

are the hands as compared to the legs. This property allows us to use a dimensionality 

reduction technique as a preprocessing step. Dimensionality reduction is a technique to 

reduce the number of dimensions under consideration by finding a lower dimensional 

representation of the original data while preserving most of the information. In this section 

we will explore the different dimensionality reduction techniques. Also, we will discuss 

the pros and cons of using these techniques on MOCAP data. 

Dimensionality reduction can be divided into feature selection and feature extraction. In 

this thesis we will concentrate on feature extraction, which maps a higher dimensional 

representation into a lower dimensional space. We will compare these methods on the 

basis of the number of parameters required, time complexity, memory requirement and 

out-of-sample extension. By out-of-sample extension, we mean the ability to incorporate 

new high dimensional data points into an existing low dimensional space (Matten et al., 

2007). In a parametric out-of-sample extension, dimensionality reduction techniques 

provide all necessary parameters in order to transform a new data point. 
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There are two major categories of feature extraction techniques. 

i. Linear techniques. 

ii. Non-linear techniques. 

4.1.1 Linear techniques 

Let Y be a higher dimensional representation of data with dimensionality � and � is its 

lower dimensional embedding with dimensionality � where � �  �.  Linear techniques 

try to find the linear mapping of data into a lower dimensional space so as to retain the 

maximum amount of information. In mathematical terms, linear techniques try to find A, 

such that  � � 	
.  The matrix A has dimensions � � � �
.  Similarly we can reconstruct 

the original data from its lower dimensional representation 
’ �  	��� .  This 

reconstruction results in the following reconstruction error,   

� �  � ��� �  ��′ ���
�,���                                                                                                               �4.1
   

where �|�|�  !�  !  indicates Euclidean distance and the number of data points 

respectively. 

Linear techniques try to find 	 such that the reconstruction error ′�′ is minimized. The 

classical linear techniques include PCA, Multi-Dimensional Scaling (MDS), Independent 

Component Analysis (ICA), and Linear Discriminant Analysis (LDA). 

4.1.1.1 Principal Component Analysis (PCA):    

PCA (Hotelling, 1933; Smith, 2002) is the most commonly used dimensionality reduction 

technique. It performs a linear mapping to a lower dimensional subspace in such a way 

that as much of the variance of the data is retained as possible in the lower dimensional 

space.  



 18 

 

First, the original data is centered, causing its empirical mean to be 0. This can be done by 

subtracting the mean of the data from each data point. Then the correlation matrix of the 

data is constructed and the eigenvectors on this matrix are computed. The eigenvectors 

can also be constructed by performing a Singular Value Decomposition of the centered 

data. The eigenvectors that correspond to the � largest eigenvalues (the principal 

components) form the columns of matrix ".  Matrix " can now be used to reconstruct a 

large fraction of the variance of the original data. The original space with dimensionality 

D has been reduced with some loss in accuracy to the d dimensional space spanned by a 

few eigenvectors. 

With PCA, we are left with the issue of selecting the number of dimensions d in lower 

dimensional space. 

Suppose we have D eigenvalues, � �� , ��, �#, … , �%
.  We select the first �  eigenvectors 

corresponding to the first d eigenvalues. Then the percentage of information that we are 

retaining can be calculated as,  

& �  � ��
%

��� � ��
'

���                                                                                                                    �4.2
)  

  

We select the minimum d such that, r ≥ 0.90. This is a typical criterion for PCA analysis 

(Fukunga, 1990).  

PCA, however has few disadvantages. First, PCA assumes that there exists a linear 

relationship between the observed data and the basis vector. Secondly, PCA neglects the 

lower (D - d) dimensions resulting in some reconstruction error. Finally, PCA assumes 

that the important dynamics are summarized by the principal components that account for 

the majority of the variance.  

Probabilistic PCA (Tipping and Bishop, 1997) was developed to provide probabilistic 

interpretation of PCA which can account for noise in the dimensionality reduction process. 
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To relax the linear assumption non-linear methods such as kernel PCA (Scholkopf et al., 

2001) have been developed. This will be discussed in non-linear technique section.  

Due to its simplicity PCA is widely used as a preprocessing step to reduce the 

dimensionality. PCA provides the matrix  ", which can then be used to transform any new 

data point. Hence, PCA is a parametric out-of-sample extension technique. It has time 

complexity of *��#
 and memory requirement of *���
. 

4.1.1.2 Independent Component Analysis (ICA):    

Independent Component Analysis (Comon, 1994) is a method for separating multivariate 

data into independent components. ICA assumes that data is generated from k independent 

components +�.  , �  1,2,3, … , .,   and the observed data 
 �  � 
� , 
/, 
0, … , 
1
.  are 

generated as a sum of independent components.   

2�  �  a�,�. +�  4  a�,�. +�  4  … 4 a�,5. +5                                                                                 �4.3
 
weighted by the weights a6,7. Now, the observed data can be represented as Y = AS.  ICA 

tries to find W = A
-1

. Hence the original sources can be found as S = WY.  One approach 

to estimating the independent component is minimization of mutual information. ICA is 

closely related to PCA; we chose to use PCA due to it being a more commonly used 

technique for motion capture analysis.   

4.1.1.3 Linear Discriminant Analysis (LDA):  

LDA (Fisher, 1936) is a supervised technique requiring class labels in order to maximize 

the between-class scatter and minimizes the within-class scatter. LDA considers 

maximizing the following objective: 

8�9
 �   :;.<= .::;.<: .:,  where <= is the “between-class scatter matrix” and <: is the “within- 

classes scatter matrix”. Due to its supervised nature, LDA was not used as a 

dimensionality reduction method in our work. 
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4.1.1.4 Multidimensional Scaling(MDS): 

Multidimensional scaling (Cox, Cox, and Raton, 2003) maps data from a high dimensional 

space to a lower dimensional space by retaining the pair wise distances between the data 

points.  The mapping is assessed in terms of a stress function.  A stress function is a 

measure of error between pair-wise distances in the high dimensional space and the 

corresponding low dimensional embedding. MDS has many variants which simply modify 

the input distance matrix. Performing multidimensional scaling with the input expressed 

as squared Euclidean distance is equivalent to performing PCA.  This is due to the 

relationship between the eigenvectors of the covariance matrix and the squared Euclidean 

distance matrix (Matten et al., 2007). It has the time complexity of *�!#
 and the memory 

complexity of *�!�
. Due to its high computational and memory requirement, we prefer 

PCA over MDS in this thesis. 

4.1.2 Non- linear technique. 

The assumption that there exists a linear relationship between the higher and lower 

dimensional space makes linear dimensionality reduction techniques difficult to use on 

natural datasets. Non-linear techniques assume that the data of interest lies on an 

embedded non-linear manifold within the higher dimensional space.  Non-linear 

techniques try to unfold the embedding.  

There exist two categories of non-linear techniques, those which actually provide a 

mapping and those that just provide visualization.  Non-linear mappings can be subdivided 

into three subcategories: 1) techniques that attempt to preserve 
global

 properties, 2) 

techniques that attempt to preserve local properties and 3) techniques that perform global 

alignment of mixture local models. In this section we discuss non-linear techniques such 

as: Isomaps, Kernel PCA, Locally Linear Embedding (LLE), Laplacian Eigenmaps and 

the GPLVM.  

4.1.2.1 Kernel PCA: 
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Kernel PCA(Scholkopf et al., 2001) is an extension of PCA that uses kernel methods 

which allow the linear operations of PCA to solve non-linear problems. Kernel PCA is a 

global technique that preserves global properties of the data. The kernel trick maps the 

original non-linear observations into a higher-dimensional space. The most frequently 

used kernel functions are linear kernel, polynomial kernel and Gaussian kernel. The major 

disadvantage of kernel PCA is the size of the kernel matrix. It is proportional to the square 

of number of instances  ′!′.   

A linear kernel makes kernel PCA equal to traditional PCA.  Kernel PCA has a time 

complexity of *�!#
 and a memory complexity of *�!�
. Due to such a high time and 

space complexity PCA is preferred over kernel PCA. 

4.1.3 Isomap: 

MDS suffers from the fact that it depends on the Euclidean distance between two data 

points, thereby having a memory requirement of *�!�
. Also, it might not be able to 

unfold the manifold and the straight line distance might not be the actual distance between 

two points on the manifolds.  

Isomap (Tenenbaum, De Silva, and Langford, 2000) is a global technique that takes into 

account the distribution of the neighboring data points. Isomap preserves the pair wise 

geodesic distance between two points, where the geodesic distance is the distance between 

two points measured over a manifold.   

In Isomap, the neighborhood graph G is first constructed. In this neighborhood graph 

every data point is connected to its k-nearest neighbor.  The shortest path between any two 

points is a good approximation to the geodesic distance. The shortest path can be easily 

calculated using Dijkstra’s shortest path algorithm. Once the neighborhood graph G, is 

constructed MDS is applied on it in order to find the lower dimensional representation.  If . is equal to ! � 1, Isomap reduces to MDS.  
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There are few disadvantages of Isomap. Isomap may construct erroneous connections, it 

cannot unfold non-convex manifolds, it may suffer from holes in the manifold and finally, 

it is not resilient to noise. 

The main disadvantage that forces us to discard the Isomap as a candidate for 

dimensionality reduction method is the out-of-sample state extension. For Isomap a 

nonparametric out-of-sample extension is presented in (Bengio, Paiement, and Vincent, 

2004) which tends to be computationally expensive. For classification of motion data, the 

out-of-sample property is very important.   

4.1.2.4 Locally Linear Embedding ( LLE): 

In contrast to isomap, LLE is a local dimensionality reduction technique that attempts to 

preserve local properties. In LLE every data point is written as a linear combination of its .-nearest neighbors. LLE attempts to retain the weights learned in the higher dimensional 

space into the lower dimension. Roweis and Saul (Roweis and Saul, 2000) showed that the 

lower dimensional subspace can be found by an eigenvalue decomposition of the 

covariance matrix of the local manifold. The smallest d nonzero eigenvalues give the 

lower dimensional embedding. Similar to Isomap, LLE also has a nonparametric out-of-

sample extension with high time complexity.  

4.1.2.5 Laplacian eigenmaps: 

Another local technique is the Laplacian Eigenmap. In a Laplacian Eigenmap, the 

distances between a data point and its k-nearest neighbors are minimized.  This method 

uses weights such that the point which is closest to the data point is given more weight 

than the other points. The Laplacian Eigenmap algorithm first finds the neighborhood 

graph G. The weight of the edge is calculated by using the Gaussian kernel function.  In 

the cost function, larger weights correspond to small distances between two data points. 

Similar to Isomap and LLE, Laplacian Eigenmaps also has the problem of not having a 

computationally efficient way to handle out-of-sample extension.  



 23 

 

4.1.2.6 Gaussian Process Latent Variable Model (GPLVM): 

The GPLVM is equivalent to non-linear probabilistic PCA. GPLVM can be seen as a 

Gaussian Process with a Radial Basis Function (RBF) kernel. Suppose we have high 

dimensional observation   
 �  >
�, 
/, … , 
1?, @A�&� 
6 B C' . The task is to find its 

lower dimensional representation � �  >��, �/, … , �1?, @A�&� �6 D C% and  � �  �. In 

PPCA, the relationship can be written as, 


1  �  9�1 4 E1  where, W B C' F % is the linear relationship between the observation 

space and the latent space G represents Gaussian noise.  H�E1
 �  I� E1| 0 , K��. L 
 

In (Lawrence, 2005) Lawrence has shown that the marginal likelihood for each point can 

be found analytically through marginalization of latent variables as, 

H� 
1 | 9, K 
 �  I � 
� |0, M. MN 4  K��. L  
                                                                �4.5
   
This is a typical representation of latent models where we marginalized latent variables. 

In a Bayesian framework, parameters such as W, are viewed as random variables.  We 

can find the dual of PPCA by optimizing latent variables. i.e. we marginalize the 

parameters W  instead of latent variables now.  The dual of equation (4.5) is given by, 

HP 
: ,R  � �, K 
 �  I P 
:  ,R  � 0 , �. �; 4  K��. L  
                                                            �4.6
 

In order to optimize �, we must maximize the following log likelihood term, 

T�

 �  � �. U2 T!�2V
 �  �2  T!|W| �  12  X&�W��. 
. 
Y
                                                 �4.7
 

Where,   W �  �. �; 4 K��. L   
the values for X which maximize the likelihood are given by, 

� �  [\];                                                               �4.8
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Where, [ is an ! � � matrix whose columns are the first � eigenvectors of 
. 
;, \ is a 

diagonal matrix whose diagonal entries give the eigenvalues and ] is an arbitrary rotation 

matrix. We refer the reader to (Lawrence, 2005) for more details. 

We can view the PPCA equation (4.7) as a Gaussian Process with the covariance function 

equal to  W �  �. �; 4 K��L.   In fact, PPCA is equivalent to a special case of the 

GPLVM with a linear kernel. If we replace this kernel with a RBF kernel, we get non-

linear probabilistic PCA which is the standard representation of the GPLVM. The RBF 

kernel takes the form, 

.P�6, �_` �  Ѳbcd ��H e�λ. P�6 �  �_`YP�6 �  �_`2 g 4  Ѳc�hi 4  Ѳjk�lm . δ��           �4.9
 

Ѳpqr, Ѳq6st, Ѳ:u6vw , x are kernel parameters and y6_ is Kronecker’s delta. 

4.1.3 Comparison according to MOCAP data. 

In section 4.1.1 and 4.1.2 we discussed various linear and non-linear dimensionality 

reduction techniques. This list is not exhaustive. There exist many more dimensionality 

reduction methods. Also there are many variations available for the above discussed 

methods. In this section we will compare the performance of these dimensionality 

reduction methods on the mocap data. We assess the comparison according to the 

classification accuracy achieved for mocap data.  Please refer to the table 4.1, which was 

taken from (Matten, Postma, and Van der Herik, 2007) for comparison of the general 

properties of these dimensionality reduction methods. These properties include the 

convexity of the optimization problem, number of parameters required, computation 

complexity, and time complexity.  

All the methods optimize a convex cost function, allows a global optimum to be found. 

The second column gives the free parameters that need to be optimized.  Here . is the 

number of nearest neighbors. W�. , . 
 is the kernel function chosen and z is the weight. 

Columns 3 and 4 gives the computational and memory complexities. ! is the number of 
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samples. � is the number of dimensions and H denotes the ratio of nonzero elements in 

sparse matrix to the total number of elements.  

We selected PCA and GPLVM as dimensionality reduction methods for the classification 

of mocap sequences. PCA was selected due to its simplicity, computational efficiency 

and its wide use on natural datasets. GPLVM is a non-linear technique which is prevalent 

in motion synthesis (Yan, Wang, and shum, 2002). Recent work has shown that GPLVM 

performs well on the problems of synthesizing motion.  

Technique Convex Parameters  Computational Memory 

PCA Yes None *��#
 *���
 

LDA Yes . *�!. .
 *�!
 

MDS Yes None *�!#
 *�!�
 

Kernel PCA Yes {�. , . 
 *�!#
 *�!�
 

ISOMAP Yes . *�!#
 *�!�
 

LLE Yes . *�H!�
 *�H!�
 

Laplacian 

eigenmaps 

Yes ., z *�H!�
 *�H!�
 

 

Table 4.1: Comparison of different Dimensionality reduction method according to 

their General Properties  

4.2 Discretization. 

One approach for Mocap Classification is to discretize the data. Suppose we have 

continuous data � �  > ��, �/, �0, … . �; ?  where �6   B C% .  We need to discretize the 

space C% into | different states. This section describes the options that we considered. 

1) KD-trees:   A KD-tree is a multi-resolution space-partitioning data structure for 

organizing data points in a k-dimensional space. A KD-tree is built by first placing all 
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data points in one large node at the root of the tree. Then, this node is partitioned into two 

by choosing the point located at the median of a particular dimension. The two “child” 

nodes now continue this process recursively
1
. This process terminates when either: i) the 

desired depth is reached, ii) the number of points in the KD-tree node falls below a 

certain threshold or iii) we have reached the desired number of nodes. Once the tree is 

built we represent each node with a hyper rectangle. All data points in the hyper rectangle 

are represented as the same state. The problems with a KD-tree is that all the points in a 

hyper rectangle may not be similar to each other and should not in fact be considered as 

the same state.  

 2) K-means: K-means is an algorithm to cluster n objects into k partitions where . �  !.  

The K-means objective is to minimize the total intra-cluster variance or the squared error 

function.   

} �  � � ��_ � µ6
�                                                                                                 �4.10
��_ ~ i�

5

���  

Suppose there are k clusters  ��, , �  1, 2, . . . , ., and μ �  is the centroid or mean point of 

all the points��_ B ��
 .   

The K-means algorithm first selects k initial centroids, either at random or using some 

heuristic. The algorithm then assigns all the points to the nearest centroid. It then 

calculates a new centroid for each set of clusters. In the second step, the algorithm 

reassigns the point according to these new centroids. These two steps are repeated until 

convergence, which is obtained when the points no longer change their assignments to 

the current clusters. Note that K-means converges to the local optima of (4.10). K-means 

overcomes the drawback of KD-trees by taking all dimensions into account rather than 

splitting one dimension at a time.  

                                                           
1
    There are many variations on the KD-tree splitting criterion, One may choose the mean instead of 

median and one may choose the dimension (i.e. axis randomly) instead of cycling through the axes in a 

round-robin fashion.   
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While using K-means for discretization, we assign each cluster as a state and represent 

the state with its centroid.  Any new point then can easily be assigned by finding the 

closest centroid. The main problem in using K-means for discretization is knowing the 

value of k. i.e. the number of clusters.  

3) X-means: X-means (Pelleg and Moore, 2000) is an extension to K-means that 

determines the value of . using the data. It searches the space of cluster locations and the 

number of clusters by optimizing a model selection criterion such as the Bayesian 

Information criteria (BIC), which introduces a high penalty term for a model having a 

large number of parameters in order to avoid overfitting.  The algorithm first applies 

traditional K-means to the data. In the next step X-means tries to determine . . The 

algorithm does so by deciding which cluster to split and if splitting does in fact improve 

the model selection criteria. These two steps are repeated until no improvement in the 

model selection criteria is observed.  

4.3 Graphical Models. 
 

“Graphical models are a link between probability and graph theory” (Pearl, 1988). They 

provide a natural tool for dealing with uncertainty and complexity. Probability theory 

ensures that the system as a whole is consistent and provides a way to connect models to 

data. The graph theoretic side of graphical models provides a graphical modeling 

language that is easy for humans to use for general purpose algorithms. Examples of 

graphical models include HMM (Rabiner, 1990), Kalman Filters (Kalman, 1960), CRFs 

(Sutton and McCallum, 2006) and Bayesian Networks (Pearl, 1988). Probabilistic 

graphical models are graphs in which nodes represent random variables. The arc 

represents the dependencies between the variables. There are two major categories of 

graphical models: directed and undirected graphical models.  

4.3.1) Directed Graphical models: In directed graphical models, one can very 

informally interpret an arrow from A to B as “A causes B”.  For example, weather causes 

the condition of the ground. i.e. cloudy whether causes the ground to be wet.   
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The probability distribution is given as, 

P(weather = 

sunny) 

P(weather = 

cloudy) 

0.5 0.5 

  Weather     Ground condition 

Table 4.2.  The conditional Probability table for the directed model in figure 4.1. 

Each node encapsulates the conditional probability H��� | H &�!X����

 where H &�!X����
 are the parents of �� in the graph. In example above, the conditional 

probability distributions are represented as tables. By the chain rule, the joint probability 

of the models is given by, H��, ��
 �  H��
 �  H��� | �
.  the examples of directed 

graphical models are HMM, Linear Dynamic System (LDS), Bayesian Networks and 

Kalman Filters (KF).  We discuss HMMs and LDS briefly.  

1) Hidden Markov Models:   Suppose we have a system which may be in one of N 

possible states ��, ��, … … , �� . The system undergoes set of random transitions from one 

state to another. The probability that the system is in state ‘A’ and will go in state ‘B’ is 

called a transition probability. Suppose that the timestamp is denoted as X � 1, 2, … , � and the actual state at time X  ,� �l.  In the simplest form, the system state  �l  

depends only on the previous state  �l��. This type of model is known as first order 

Markov chain since the current state only depends on the previous state. Also, we can say 

that   �l  is independent of all other previous states except  �l�� .  We can define the 

probability of the system being in state �l at time X as,   

H��l � �l |�l�� � �l��, �l�� � �l��, … , �l�5 � �l�5  
 � H��l  �  �l|�l�� �  �l��
        �4.11
 

Weather 
Ground 

condition Figure 4.1. Directed model 

P(GC/weather) P(GC = wet) P(GC = dry) 

Weather = sunny 0.1 0.9 

Weather = 

cloudy 

0.9 0.1 
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We refer to probabilities of the form in Equation 4.11 as transitional probabilities. For 

compactness of notation, we represent the transition probability of moving from state sj to 

state si as  ��  where  �� � 0  !� ∑  �� � 1. So far we have seen a Markov model in 

which every state corresponds to an observable state.  In HMM the observation is a 

probabilistic function of the state.  

A HMM is characterized by the following properties:  

1) N- the number of states in the model. Let the state take on N possible values.  i.e. < � >��, ��, … … … … , �� ? 

2) M- the number of observable symbols per state. Let the symbols per state be ] � >��, ��, … … … … , �� ?. 

3) The state transitional probabilities 	 �  >  ��?,  
4) The observation symbol probability distribution in state j, 

 �5 � H � 2l �  �5 | �l  �  �� � . 
5) The prior distribution,  � �  H���  �  ��
. 

Let the model be � �  >+, }, ", �, �?. We can use the information given by λ to generate 

the sequences given the initial state, to find the likelihood of the sequence given the 

model λ. As a HMM is very useful for temporal sequences, we can illustrate the HMM by 

unrolling the time slices. Here node Xs are the hidden states whereas Ys are the 

observation nodes. 

 

Figure 4.2. Unrolling the 

hidden Markov model in 

time slice. X can take 

values from S.Y can take 

any values in V. 
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Given the observation 2 �  2�2� … 2Y and a model �, we can calculate the probability of 

observed sequence given the model p�2 | �
 to find how likely the given sequence is. In 

this thesis we address the above which is of more interest in classification of mocap data. 

If we are given a sequence of observation Y. and we are required to find the likelihood of 

the sequence given the model λ, we can find the likelihood as, 

H�2|+, λ 
 � ����2�
. ����2�
 … ����2Y
   !�  H�� | λ 
 �  ��� .   �� ,��. …  ����,��.   
                 �4.12
 

Since we are dealing with pure motion sequences, there are no hidden state transitions.  

Discrete and Continuous HMM: 

According to the nature of the observable state we can have discrete and continuous 

HMMs. 

The HMM that has observable state as finite and discrete is called as a discrete HMM. 

Model with continuous and infinite state values are considered to be continuous HMMs. 

When hidden states are also continuous we call such a model a Linear Dynamics System 

(LDS). We will see a LDS briefly in the next section. 

2) Linear Dynamic Systems: HMMs and LDSs (Minka, 1999) are based on the same 

assumption: a hidden state variable. Both have the same independence diagram, learning 

and inference algorithms. The difference is that a HMM uses discrete state hidden 

variables and a LDS uses continuous state hidden variables with linear Gaussian 

dynamics. In this section we briefly discuss the similarities and differences between 

LDSs and HMMs. For a detailed explanation refer to (Minka, 1999). In both cases we 

specify a joint probability distribution over hidden states and observations. The 

independence diagram is the same as for a HMM,  
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The joint distribution of the above dependence diagram is given as. 

H�
�, 
/, … , 
;, ��, �/, … , �;
 �  H���
. H�
�|��
. � H��v|�v��
. H�
v|�v
     �4.13
Y
l��  

We will focus on using a LDS for classification problem. In HMM, as state variables are 

discrete, the integrals become sums. This leads to a HMM forward-backward propagation 

algorithm. To get a linear time algorithm, we must have a constant number of parameters; 

otherwise the integrals take time proportional to T. The only distribution with this 

property is an exponential family distribution. A Gaussian belongs to this family. Let us 

consider the state �l to have a Gaussian distribution conditioned on  �l�� as follows:  

H��v | �v�� 
 ~ I�	. �v��, � 
                                                                                              �4.14
 
H�
v | �v
     ~  I��. �v, �
;                                                                                                  �4.15
 
We can write a LDS as a set of linear equations, 

�v  �  	. �v��  4  9v; 
9v ~  I�0, �
; 

v  �  �. �v  4  ]v; 
]v~  I�0, �
; 

Figure 4.3.  Graphical representation for linear dynamics system. 
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The parameters �	, �, �, �
 depend on time t. We can use a Kalman filter (Kalman, 1960) 

and Kalman smoothing (Kalman, 1960) to find the forward backward propagation similar 

to forward-backward algorithm of HMM. 

4.3.2) Undirected Graphical Models: Undirected graphs are also defined as G = (V, E). 

Where V is a set of vertices and E represents a set of edges.  We describe Conditional 

Random fields (CRF) in this section. 

1) Conditional Random Fields: A CRF (Sutton and McCallum, 2006; Wallach, 2004) is 

a discriminative model, meaning it models the conditional likelihood ��� | 2
, which is 

used to discriminate between the labels � conditioned on observing an input sequence 
 . 
In contrast, a HMM is a generative model that models the joint likelihood ���, 

 which 

generated the motion sequence. In classification tasks CRFs have an advantage over 

HMMs by focusing on the discriminative aspects of the data allow it to distinguish 

between class labels while HMMs focus on modeling the distribution that generated the 

data. A CRF corresponding to a HMM is illustrated below: 

        X (label sequence) 

 

 Y (Observation Sequence) 

 

Now, let us combine the advantages of discriminative model and sequence modeling. 

This yields a linear chain CRFs.  The joint distribution of HMM is given by, 

H��, 

 �    ∏  H��v |�v�� 
. H �
v | �v 
 ,where  H ��� |�� 
  �  H���
                  �4.17
 

We can write the equivalent CRF conditional distribution ��� |2
 as,  

H�� | 

 � H��, 

∑ H��′, 

�′

 �  exp >∑ @5. ¢5�
, �, �£
?¤5��∑ exp >∑ @5. ¢5�
, �, �£
?¤5��F′

                                       �4.18
  

Figure 4.4.  Unrolled conditional random fields 
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Where K is the total number of features. 

Parameter estimation: Parameter estimation is performed by penalized maximum 

likelihood. We optimize the following conditional log likelihood,     

T�

 �  � log> H ��6|
6
 ?                                                                                               �4.19
�
���  

As a measure of over fitting we add the penalty term on number of parameters.  Adding a 

penalty term to regularize eqn. (3) yields, 

T�

 �  � log> H ��6|
6
 ?  �  � ¨λ5σ�ª¤
5��                                                                  �4.20
�

���  

In general, the function cannot be maximized in closed form; hence we use an iterative 

convex optimization method such as L-BFGS (Nocedal, 1980).  

Inference: Inference for linear chain CRFs can be performed efficiently using dynamic 

programming. Refer to section 1.3.3 of (Sutton, McCallum, 2006) for more details. 
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5. Experimental data and preprocessing 
 

In this section we describe the data used in our experiments and pre-processing steps that 

were required.  

5.1 Data Description 

Source of Data 

The mocap that we used was from the CMU Graphics Lab Mocap database (CMU Mocap 

Lirary). This mocap data was created for research and commercial use and is publicly 

available; There are 2605 trials in 6 categories (Human Interaction, Interaction with 

environment, Locomotion, Physical activities and sports, Situations, Test motions) with 

23 subcategories available. The mocap was performed at CMU including 144 subjects. 

For the purpose of modeling and classifying the motion data we use the BVH file format. 

We focus on motions with a single subject and pure motions, where by a pure motion; we 

mean that the motion consists of a single motion rather than a mixture of motions in a 

single trial.  

Set of motions 

After selecting the motions appropriate for our classification problem we were left with 

the motions as listed in table 5.1. We selected the number of training motions in order to 

have a reasonably balanced dataset and avoid the problem of severely imbalanced 

classes.  

 

Serial 

Number 
Motion 

Total 

motions 

Training 

motions 

Testing 

Motions 

Average no of 

frames per 

motion. 

1 Basketball dribble 12 6 6 857 

2 Bend 13 7 6 417 

3 Boxing 9 5 4 3427 

4 Cartwheel 8 4 4 453 

5 Dance 29 14 15 931 

6 Golf picking ball 10 5 5 471 
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Serial 

Number 

 

Motion 

 

Total 

motions 

 

Training 

motions 

 

Testing 

Motions 

 

Average no of 

frames per 

motion. 

7 Golf placing tee 10 5 5 444 

8 Golf placing ball 10 5 5 428 

9 Golf putt 10 5 5 416 

10 Golf swing 20 10 10 404 

11 Hop 19 9 10 435 

12 Jump 32 16 16 514 

13 March 10 5 5 446 

14 Punch 8 4 4 146 

15 Run 30 15 15 153 

16 Run Adventure 34 17 17 331 

17 Sit stand 11 5 6 2183 

18 Skateboard 15 8 7 281 

19 Swimming 18 9 9 2463 

20 Walk 43 20 23 735 

21 Walk action 34 15 19 1110 

22 Walk baby 26 12 14 904 

23 Walk martial 12 6 6 2264 

24 Walk MJ 14 7 7 1098 

25 Walk obstacle1 14 7 7 436 

26 Walk obstacle2 28 14 14 368 

27 Walk slope 8 5 3 487 

28 Walk stylish 40 20 20 2766 

29 Walk uneven ground 32 16 16 3683 

30 Walk weird 40 20 20 1790 

 

Total 

 

30 

 

565 

 

278 

 

287 

 

1221 

 

Table 5.1 Data description. This table describes the motions from the CMU mocap 

database that were suitable for our experiments.  

Experiments:  

We created a set of 8 experiments to assess the performance of various graphical models. 

We chose the data for these 8 experiments so that the classification tasks seemed 

sufficiently difficult and there were a challenging mix of motion types. A description of 

each experiment can be found in table 5.2  



 36 

 

In all the experiments except for experiment 8, we made sure that data from the same 

subject was present in both the training and testing data. Between-subject variability is a 

challenging problem in motion capture analysis. In experiment 8, we allow data from 

different subjects to be randomly assigned to the training or testing data. The purpose of 

experiment 8 was to determine the robustness of the algorithms to differences between 

subjects. 

Exp 

number 

Experiment description( Motions included ) 

1 Dance, Hop, Jump, Punch, Run and Walk 

2 Hop, Jump, Punch, Run, Sit-Stand and Swimming 

3 Basketball dribble, Cartwheel, Dance, Hop, Jump, March, Punch, Run and 

Walk. 

4 Jump, Run and Walk 

5 Walk action, Walk like a baby, Martial art walk, MJ walk, Walking on 

obstacle, Walking on a slope and Walking on an uneven ground. 

6 Run, Run Adventure, Walking on a obstacle, Stylish walk and Weird walk 

7 Golf pickingball, Golf placingball, Golf placingtee, Golf putt, Golf swing, 

March and Sit-Stand 

8 Bend, Boxing, Punch, Skateboard, Swimming and Walking on a uneven 

ground 

 

Table 5.2 Experiment description. 

5.2 Preprocessing 

The BVH data is 96 dimensions with the first 6 dimensions corresponding to root joint 

translation and rotation. The remaining 90 dimensions are the X, Y, Z rotation angles for 

each of the 30 joints. In total, we have 6 dimensions (root joint) + 30 joints * 3 

dimensions per joint (for the X, Y, Z rotation angles) = 96 dimensions. The rotations are 
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defined in Euler angle notation. In data preprocessing we first remove the root joint and 

then convert the Euler angle notation to Axis of angle notation.  

1) Removal of root joint 

The root joint contains information about the absolute body position and body orientation 

information. Excluding root joints makes all the motion independent of the specific body 

position and orientation. For our experiments absolute body positions is not necessary. In 

other experiments, such information may be useful.  

2) Conversion to Axis of Angle notation 

The different types of rotational angle representations include Euler angles, Axis of angle 

and Quaternions. We will not discuss the quaternion representation here.  

i) Euler Angle: Leonhard Euler proved that any 3D rotation can be expressed as three 

basic rotation about the coordinate axes. Usually a right handed coordinate system is used 

as a reference. The order decides the sequence in which rotations will be applied to the 

respective axis. The order �, 2, « means that the X rotation will be followed by Y which 

will then be followed by Z.  In BVH format, the order is «, �, 2 .  Let  F,  ¬ ,  ­  be the 

amount of rotation around the �, �  !� ® axes respectively. Let C���
 be the function 

that rotates the object in the ,th
 dimension by an amount �, where the i

th
 dimension is 

either the X, Y, or Z dimensions. The angle values are specified in radians or degrees. The 

effective result for the rotation order of «, �, 2 would look like the following, 

C­F¬P F,  ¬ ,  ­` �  C­P ­
CF� F
C¬� ¬`                                                                           �5.1
 

The rotation matrices are given as follows, 

  

CF� F
 �  e1 0 00 cos �a±
 �sin �a±
0 sin �a±
 cos �a±
 g                                                                               �5.2
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C¬� ¬
 �  ´cos Paµ` 0 �sin Paµ`0 1 0sin Paµ` 0 cos Paµ` ¶                                                                              �5.3
 

      

 

C­� ­
 � ecos �a·
 �sin �a·
 0sin �a·
 cos �a·
 00 0 1g                                                                                �5.4
  

Let  Cx = cos �a±
; Cy = cos Paµ`; Cz = cos �a·
;  Sx = sin �a±
; Sy = sin Paµ`; Sz = 

sin �a·
  

C­F¬P F,  ¬ ,  ­` �  eCz. Cy �Sz. Cx 4 Cz. Sy. Sx Sz. Sx 4 Cz. Sy. CxSz. Cy Cz. Cx 4 Sz. Sy. Sx �Cz. Sx 4 Sz. Sy. Cx�Sy Cy. Sx Cy. Cx g                �5.5
 

Euler angles suffer from a “gimbal lock” problem. A Gimbal lock occurs when two of the 

three pivoted supports that allow rotation (gimbal) needed to compensate for the rotations 

in the three dimensional space are driven to the same direction. Another explanation 

would be that a gimbal lock is a phenomenon of two rotational axes pointing in the same 

direction. 

 

For example, suppose we rotate the object around the � axis by 90 degrees then 2 by 90 

degrees and finally 90 degrees in the « direction.  If we put these rotations in eqn. (5.5) 

we get the effective result as rotating 90 degrees in the Y direction: C­F¬ �90, 90, 90
 = C¬ �90
. This means that we can achieve the same results by rotating 90 degrees in the Y 

direction. 

To avoid the above problem we need to convert the Euler angle representation to some 

other format such as the Axis of Angle representation and the quaternion representation. 

We will discuss only the Axis of Angle representation here and the conversion procedure. 
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ii) Axis of Angle: Any 3D rotation can be specified by an axis and the angle of rotation 

around the axis.  The axis is defined as the unit vector. The raw BVH data is found in 

Euler angle representation. After the removal of 6 root joint dimensions we are left with 

90 dimensions corresponding to 30 joints. We have Z, X and Y rotations for each joint. 

The task is to convert the Euler angle to Axis of angle notation. Axis of angle is 

represented by a unit vector axis and the amount of rotation about the axis. In total, we 

have 4 dimensions. At the end of the preprocessing step we have 90 X 4/3 = 120 

dimensions. Now, every joint angle is specified by unit vector and the amount of rotation.  

An example of how to convert from Euler angles to axis of angle is as follows:  

 

Let, 

C1 = ¼½� �2/2
 

C2 = ¼½� �«/2
 

C3 = ¼½� ��/2
 

S1 = �,! �2/2
 

S2 = �,! �«/2
 

S3 = �,! ��/2
 

Then, 

The angle of rotation is given by,  

Angle = 2*cos (C1.C2.C3 – S1.S2.S3); 

X         = S1. S2. C3 + C1. C2. S3;  

Y         =  S1. C2. C3 + C1. S2. S3; 

Z         =  C1. S2. C3 -  S1. C2. S3; 

 

To find the unit vector we divide the X, Y, Z by, 

magnitude =    √�� 4  2� 4 «� 

X = X/ magnitude; 

Y = Y/ magnitude; 

Z = Z/ magnitude; 
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After conversion we have 120 dimensions instead of 96 dimensions.  As the 

preprocessing step is independent of the actual experiment we convert all the data to Axis 

of angle notation and use the preprocessed data in our experiments. 

 

5.3 Generic pipeline 

The high dimensional nature of the data makes the classification procedure 

computationally challenging. Also in human motion data, hence dimensionality reduction 

is necessary. We explore PCA (a linear technique) and GPLVM (a non-linear technique). 

We explore both discrete and continuous models for representing mocap data. We use 

Gaussian Markov process (for continuous data) and Markov model (for discrete data) 

to incorporate temporal characteristics of the data. Furthermore, the order of the Markov 

model is yet another variation in the temporal models.  We consider 1
st
 order and 2

nd
 

order Markov process for the human motion classification process.  Markov models are 

generative models and CRFs are the discriminative counterpart of Markov models.  

These different combinations have been evaluated on all 8 experiments.  Figure 6.1 

shows a graphical representation the basic modules in the experiments. Here is the 

meaning of each graphical object.  

Solid Arrow (  ): Shows the flow of data. 

Dotted Arrow (             ): Parameters generated by the module at the tail of the arrow can 

be use by the module pointed to by the head. 

 Curved edge Rectangle (               ): Each curved edge rectangle describes a module in 

the whole pipeline. Input and output data is shown as entering and exiting arrows. Dotted 

arrows show the generation of parameters.  

Filled diamond (        ): It describes that one of the possible path must be taken. 

However, if you have chosen the discrete path during training then you must choose the 

discrete path during testing. 
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Below, we provide an overview of the entire pipeline. 

Preprocessing: Input to this module is raw data (96 dimensions) and output is data in 

Axis of angle representation (120 dimensions.)    

Dimensionality Reduction: This step takes input as 120 dimensional data. We can 

choose the DR method to be PCA or GPLVM.  The DR step generates the parameters for 

reduction that is applied to the test data.   

Discretization(X means): Input to this module is the continuous data with dimensions d 

(d << 120). The parameter d is determined in the DR step. The output of this module is 

the discrete data. This module generates the . centroids, which can be used to discretize 

the test data. (here . is the number of states found by the X-means algorithm with BIC). 

Training: Input to this module is continuous/ discrete data. Depending on the selection, 

one of the possible algorithms is chosen. The output is a trained classifier that is then 

used in the testing phase. Possible algorithms are:  

- For Continuous :  

i) Gaussian Markov process ( order 1 ) 

ii) Gaussian Markov process  ( order 2 ) 

iii) Conditional Random field  ( order 1 ) 

iv) Conditional Random field  ( order 2 ) 

 

- For Continuous :  

i) Gaussian Markov process ( order 1) 

ii) Gaussian Markov process ( order 2 ) 

iii) Conditional Random field ( order 1 ) 

iv) Conditional Random field ( order 2 ) 

Testing: The testing module receives the model created by the training phase and also the 

testing data. Testing data can be continuous or discrete depending upon the selection 
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done by the user during the training phase.  The testing phase generates the confusion 

matrix for the corresponding experiment along with the and overall accuracy. 

 

Fig 5.1 Mocap Classification pipeline. See the description in the text for the meaning of 

each graphical object.  

As preprocessing has been already discussed we will now discuss the other modules in 

detail. We will start discussing dimensionality reduction in this chapter. Discrete and 

continuous methodologies will be discussed in later chapters. 

5.4 Dimensionality reduction 

This section discusses the details that we encountered during experiments. 
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5.4.1 Principal Component Analysis (PCA): 

Input: 120 dimensional output of preprocessing step.  

Step I) Merge: To ensure the consistency of state space through all the motions we 

merge all the training data together.  Let 
 be the  �! � 120
  dimensional data  
 � �
�, 
/, … , 
;
  where T is the total number of frames for merged data and 
6 is a D-

dimensional vector.   

Step II) Centering of data: As a part of PCA we first subtract the empirical mean of 

data from 
. Let μ be vector of size �1 � 120
 as the empirical mean of  
.  Let 
À  � 
 �  μ.  

Step III) Eigenvalues:Next we calculate the covariance matrix Á for centered the data. 

The size of � is �120 � 120
.  We then calculate the eigenvalue �ÂÃsÄ
 and eigenvector 

(ÂÃwÅv) for the covariance matrix � .  Arrange these matrices in descending order of 

eigenvalues. Let us call these matrices ÂÃsÄÆ  and ÂÃwÅvÆ   for eigenvalue and eigenvector 

respectively. 

ÂÃsÄÆ  =  e�� Ç 0È É È0 Ç ���Êg  ;    ÂÃwÅvÆ
 =  e ��,� Ç ��,��ÊÈ É È���Ê,� Ç ���Ê,��Êg  

Where,   �� Ë �� Ë �# Ë Ç Ë ���Ê 

Step IV) Selecting d (the number of reduced dimensions): Most of past research 

(Barbic, Safanova, Pan, Hodgins, and Pollard, 2004) use the criteria which selects d such 

that 90% of information is retained.  This criteria is given by equation (5.6) 

r�  ∑ m�Ì�Í�∑ m���Î�Í�                                                                                                                      (5.6)                     

We select the minimum d such that, r ≥ 0.7 (i.e. 70% information). Once d is found, we 

select only the eigenvalues from�� Ë Ç Ë �%   and their respective eigenvectors. We 

discard the rest of the eigenvalues and eigenvectors. Let the truncated eigenvector matrix 

be A of size (n X d). 
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Step V) Reduce the data: Finally the reduced data is Y is found by, 

� �  �	;. 
À
;                                                                                                      (5.7) 

� is the final data with �! � �
 as dimension. The empirical mean µ, and the d x 120 

matrix of principal components A. are the parameters stored for future use. These 

parameters are used to reduce the Test data.  

Step VI) Reduce the test data: We use the parameters stored in (step V) to reduce the 

dimensionality of the test data.  Let 
Ï be the new test data set and �Ï be the reduced test 

data. Then 
Ï  is discretized as follow, 


Ï= 
Ï- µ;                                                                 (5.8) 

�Ï= (A
T
.
Ï)T   

                                                  (5.9)
 

 

5.4.2 Gaussian Process Latent Variable model (GPLVM): 

We used the MATLAB implementation available from (Lawrence, 2005). Here we 

discuss the steps that we took to reduce the data using GPLVM. 

Step I) Merge: We decided to use the same method that we used for PCA. GPLVM 

calculates a gigantic kernel matrix of size (!  x !
  (where, !  is the total number of 

frames). It is infeasible to keep such a big amount of data in memory. This limitation 

forced us to down sample the data by a factor of 8 frames.  Let 
 be the merged training 

data. 

Step II) Centering of data: At this step we receive the sampled data from step I. Similar 

to PCA we find the empirical mean of the data and subtract it from the data. 

Step III) Selecting d (reduced dimensions): It is infeasible to search over d in the 

GPLVM setting because it is too computationally expensive. Hence, we used the criterion 

used by the PCA experiments to determine d. 
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Step IV) Learning the GPLVM model. GPLVM involves maximizing the likelihood 

given in equation (4.7 and 4.9). We used Scaled Conjugate Gradient (SCG) for 

optimization. (Refer (Scaled Conjugate Gradient,1995)) for detailed explanation. 

We learn the hyper parameters ϴ and find the latent space representation of  
. We call � 

the latent dimensional representation. The model along with ϴ, � and 
 are saved for 

future use. Also, KY
-1,

 a kernel matrix learned through optimization is saved so that it can 

be used in the future and need not be recomputed during the inference of a new point. 

Step V) Reducing the training data. Recall that in (step I) we down sampled the 

training data by the factor of 8. We use equation (14, 15, 16 of (Urtasun and 

Darrell,2007)) to reduce all the frames of the training data which we missed during step I. 

As optimization requires optimization and saved parameters, we use Ѳ, X, Y and KY
-1 

learned in (step IV). The missing frames of step I can now be reduced to � dimensions. 

Step VI) Reducing testing data. The same method is used as in Step V. Here the input 

data is testing data instead of training data.  
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6.  Discrete modeling 

Let us revise some notations that will be used throughout this chapter. Let, Ò �  >��6
, Ó��
?����  be the training data, where each  ���
 � > ����
, ����
, … , �Y��
 ? be the 

sequence of discretized training input. Let Ô  be a vector of motion label such that, Õ �  >Ó�, Ó�, … , Ó�?. Let �Æ � > ��Æ , ��Æ , … , �YÆ ? be a motion sequence in the test data 

where ��Æ represents the i
th

 frame of test sequence. Let Ó be the number of motions in the 

experiment and . be the number of discrete states found during X-means.  

The first step in discrete modeling is to discretize the continuous state space using X-

means, which produces . centroids.  

We need to convert �Æ into the discrete states defined by X-means during training. To do 

so, we assign each ��Æ to the nearest of the . centroids, where Euclidean distance is used 

as a measure of proximity. Note that the centroids are represented by a d dimensional 

vector. The rest of the chapter is divided into sections for generative and discriminative 

models. 

6.1 Generative models. 

Figure 6.1 shows the 1
st
 and 2

nd
 order generative models. The top layer of each model 

corresponds to the motion label assigned to the entire sequence. These models are 

[Markov models of pure motions , hence there are no transitions between each motion 

label.]  

      

                                                    

 

 Fig 6.1 (a). First order generative model 

for discrete approach.  

Ô Ô 
�� 

Fig 6.1 (b). Second order generative model 

for discrete approach.  

�� �Y 
�� 

 

�� �# �Y 
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6.1.1  First order model: Figure 6.1(a) illustrates a first order Markov model. This 

model requires prior probabilities H���| Õ
 and  H�Õ
 as well as transition probabilities H��v |�v�� , Õ
.  These probabilities are learned though Maximum Likelihood Estimation 

(MLE). We assume a uniform prior for ��Ô
. For the transition probabilities, MLE 

effectively “counts” the transitions between states, conditioned on the motion label. We 

use Laplacian smoothing to deal with the zero counts.  

To classify a motion sequence, we need to compute 

argmaxmØ ��Ô � Ó|XXXXÏ
 

= argmaxØ ÚPXXXXÛ���Ø`Ú���Ø
Ú�XXXXÛ
 � argmaxØ ��XXXXÏ|Ô � Ó
��Ô � Ó
 

= argmaxØ ��XXXXÆ|Ô � Ó
 (due to uniform priors) 

As a result, we need to compute the likelihood of the test sequence with respect to each 

motion m. The new motion sequence is assigned the label of the motion with the highest 

likelihood. As before let �Ï is a motion sequence in the test data, then the log-likelihood  TØ���Æ , ��Æ , … , �YÆ 
 of the m
th

 motion is calculated as: 

 TØ���Æ , ��Æ , … , �YÆ 
 � log  H���Æ  |Ó
 4  � log  H�Y
��� �lÆ  | �l��Æ , Ó 
                                     �6.1
 

6.1.2 Second order models: In the first-order models we assumed that the current 

observation only depends on the previous observation. We now modify the model such 

that the current observation depends on the past two observations. Such an assumption 

increases the power of the model but it also increases the number of parameters in the 

model. We could also increase the order of the model further but we limited our 

experiments to only 1
st
 and 2

nd
 order models. In fact, we tried the results with 3

rd
 order 

models but there was no significant improvement in the results. Figure 6.1(b) illustrates 

the 2
nd

 order generative models.  
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As in the first order case, we have prior probabilities ���� | Ô
 and ��Ô
 to learn. The 

two changes with a 2
nd

 order model is in an additional prior probability ���� | ��, Ô
 and 

in the transition matrix H��l | �l��, �l��, Ô
.  In the first order transition matrix, we had Ó.� entries. In a second order model, we have Ó.# entries to learn. As before these 

parameters are learned using MLE with Laplacian smoothing. 

The classification procedure is similar to that of a first order Markov model. The log 

likelihood of the m
th

 motion TØ���Æ , ��Æ , … , �YÆ 
 for second order generative models is 

computed as: 

TØ���Æ , ��Æ , … , �YÆ 
 � log  H���Æ  |Ó
 4  log  H���Æ  | ��Æ  , Ó
 4 � log  H�Y
��� �lÆ  | �l��Æ , �l��Æ , Ó 
      �6.2
 

6.2 Discriminative models. 

CRFs are the discriminative counter-part of Markov models. Undirected models are 

described by potential functions rather than a probability distribution. However, to make 

it probability distribution we divide it by normalization constant. Recall from section 4.3 

that the CRFs take the form of    H�Õ |� 
 �  �Ü exp>∑ @5. ¢5�Ó, �l, �l��
?¤5��        where 

K is the total number of features. We now describe the 1
st
 and 2

nd
 order discrete CRFs 

and show what features were used. 

 

 

 

 

   

 

Fig 6.2 (a) First order discriminative model for 

discrete approach.  
Fig 6.2 (b) Second order discriminative model 

for discrete approach.  

�� 

Ô Ô 

�� �# �Y 

�# �� �� �Y 
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6.2.1 First order models: The features in our first order model are as follows: 

 ¢��Ó, �l , �l��
 � L>Ô �  Ó?. L>�l�� �  �l��?  ;   

¢��Ó, �l, �l�� 
 �  L>Ô �  Ó?. L>�l �  �l?. L>�l�� �  �l��?   
In the features above, xt is the discrete state taken by the t

th
 frame and m is the label of the 

given motion. I{M = m} is  an indicator function taking the value 1 when M = m 

otherwise it takes the value 0. These features are defined over the nodes in the maximal 

clique for each time slice. This maximal clique is shown in figure 6.3. 

 

 

 

 

i) Training: In training, we learn the parameters @5 associated with the features. These 

parameters are learned through a convex optimization routine, which in our 

implementation is SCGD. The conditional probability is given by, 

H�Ô|� 
 �  1« exp>� � @5. ¢5�Ó, �l , �l��
?¤
5��

Y
l��                                                              �6.4
 

Let 

« �  � exp>� � @5. ¢5�Ó′, �l , �l��
?¤
5��

Y
l��     ØÆ                                                                 �6.5
 

Then,  

H�Ô|�
 � exp>∑ ∑ @5. ¢5�Ó, �l , �l��
?¤5��Yl��       ∑ exp>∑ ∑ @5. ¢5�Ó′, �l, �l��
?¤5��Yl��     ØÆ                                              �6.6
    
                                       

�v�� �v 

Õ Figure  6.3 Maximal clique 

for first order discriminative 

structure shown in figure 

6.2(a) 

�6.3
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Then the log likelihood T���
  for N motion datasets is given as, 

T�Ý
 �  � � � @� . ¢�ÞÓ��
, �l��
, �l����
 ß�
���

Y
l��

�
���  – � T½á«                                                      �6.7
�

���  

 As there is no closed form solution we compute the gradient to learn the parameters. The 

gradient is given by (Sutton & McCallum , 2006), 

�T�@� �  � � ¢��Ó��
, �l��
, �l����
 
Y
l�� � � � � ¢� ÞÓ��
, �l��
, �l����
 ß . H�Ó��
|Ø

Y
l��

�
��� �l��
, �l����
 
�

���    �6.8
 

ii) Testing: To predict the class label, we compute 

argmaxØ ��Ô � Ó|�Æ
 

 � argmaxØ � � @� . ¢��Ó, �lÆ , �l��Æ 
�
���

Y
l��  –  T½á«                                                                   �6.9
 

6.2. b Second order models: 

The second order discriminative model we used is show in figure 6.2(b). Second order 

learning and testing is similar to that of first order modes but with additional parameters. 

Figure 6.4 shows the maximal clique for time slice t for a second order model. The 

features at each time slice are defined as,  

 ¢��Ó, �l , �l��, �l�� 
 � L>Ô �  Ó?. L>�l�� �  �l��?; 

 ¢��Ó, �l, �l��, �l�� 
 � L>Ô �  Ó?. L>�l�� �  �l��?. L>�l�� �  �l��? 

¢#�Ó, �l, �l��, �l�� 
 � L>Ô �  Ó?. L>�l �  �l?. L>�l�� �  �l��?. L>�l�� � �l��? 

 

 

�6.10
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i) Training: Training is similar to first order models. The corresponding equations are 

given as follows:  

H�Ô|� 
 �  1« exp>� � @5. ¢5�Ó, �l , �l��, �l
?¤
5��

Y
l��                                                      �6.11
 

Let, 

« �  � exp> � � @5. ¢5�Ó′, �l , �l��, �l��
?¤
5��  Y

l��   ØÆ                                                     �6.12
 
Then, 

H�Ô|�
 � exp>∑ ∑ @5. ¢5�Ó, �l , �l��, �l
?¤5��Yl��       ∑ ��H> ∑ ∑ @5. ¢5�ÓÏ, �l, �l��, �l��
?¤5��  Yl��   ØÆ                                  �6.13
 
 

Then the log likelihood T�Ý
  for N motion datasets is given as, 

T�Ò
 �  � � � @� . ¢��Ó��
, �l��
, �l����
 , �l����
 
#
���

Y
l��

�
���  –  � T½á«                               �6.14
�

���  

 The gradient is given by eqn. �6.8
 , 

ii) Testing: Predicting the class label is the same as in first order models. Log likelihood 

with m
th

 motion can be found as, 

�v�/ �v�� 

Õ 
Figure 6.4. Maximal clique for 

second order discriminative 

structure shown in figure 

6.2(b) �v 
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 argmaxØ ��Ô � Ó|�Æ
 

�  argmaxØ � � @� . ¢��Ó,  �l� ,  �l��� ,  �l��� 
#
���

Y
l��  –  T½á«                                             �6.15
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7. Continuous modeling 
 

With continuous models, we can work with the continuous data as is, rather than 

discretizing it in a pre-processing step. In doing so, we avoid the problem of aggregating 

certain data points into a single discrete state when they should in fact be treated as 

distinct “states”. However, in order to make computation tractable, we still need to reduce 

the dimensionality of the data and we need to make some assumptions about the form of 

the data. We receive the input after it has gone through a dimensionality reduction 

algorithm. The number of dimensions is found by the PCA criteria described in section 

5.4. In continuous modeling, we assume that each dimension is distributed as a Gaussian 

and that the mean of the Gaussian is a function of the value of all other dimension in the 

previous time step. Similar to discrete modeling discussed in previous chapter we discuss 

the 1
st
 and 2

nd
 order continuous models.  

 

We now define the notation used throughout this chapter. Let Ò � > ��6
 , Ó��
?���� be the 

sequence of training data obtained after dimensionality reduction, where each  ��6
 �> ���6
, �/�6
, … , �;�6
 ?be the sequence of T frames. As before, we simplify notation by 

assuming each motion sequence consists of T frames when in fact sequences do vary in 

their length. Each �v�6
 is a d-dimensional vector representing a frame. Note that this 

vector is in the reduced dimension spaceC%, where the number of dimensions d is found 

in the dimensionality reduction step described in section 5.4. We denote the j
th

 dimension 

of the t
th

 time frame and i
th

 sequence as �l�,��

.  Since this notation is cumbersome, we 

often drop by the (i) superscript when we are not referring to a specific sequence eg. �l� . 

 

7.1 Generative models. 

7.1.a First order models:  We model motion sequences as a first order Gaussian Markov 

Process (GMP). Figure 7.1(a) illustrates the graphical order model for the first order 

GMP.  
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The GMP can be written as a linear equation:  �v �  	. �v�� 4  9v                                                                                                                 �7.1
  @A�&�, 9v ~ I�0, Г
    where Г is the variance of Gaussian noise 9v.                       �7.2
  6. w.  H� �v | �v�� 
 ~ I � 	. �v��  , Г 
                                                               �7.3
  

                                                         

      

                                                   

  

 

 

 

i) Training: For each dimension we find parameters for a multivariate Gaussian 

distribution. Let I�	. �l��, Г
 be the Gaussian distribution for the t
th

 time slice. The 

overall parameters can be seen as follows: 

 

	 �  ã"�� "�� … "�%"�� "�� … "�%… … … . ."%� "%� … "%%
ä                                                                                                 �7.4
 

Г �  ãГ�� Г�� … Г�%Г�� Г�� … Г�%… … … . .Г%� Г%� … Г%%
ä                                                                                                   �7.5
 

               

The likelihood is given by,        H��v|�v��
 � H���
. ∏ I�	Yl�� . �v��, Г 
                                  �7.6
      

 

I��v|	. �v�� , Г
 �  ��/å
R//.|Г|� /æ . exp ç� ��v�	.�v��
;.  � Г 
�� .��v�	.�v��
/   è              �7.7
   

  

We use negative log likelihood to optimize for 	 and Г using Scaled Conjugate Gradient 

(SCGD).   

Fig 7.1(b) The second order generative 

model for continuous approach.  

�� �� �Y 
Fig 7.1(a) The first order generative model 

for continuous approach.  

�Y �# �� �� 
Ô Ô 
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T�Ý
 �  log>H���
?  4 � é� ��v � 	. �v��
Y .  Г�� . ��v � 	. �v��
2 ê � log ¨�2V
%� . |Г|� �æ ª  �7.8
�
l��  

  

ii) Testing: For prediction we calculate the log likelihood with each motion and label the 

motion with the highest log likelihood. The log likelihood is calculated using equation 

(7.8).   

 

7.1 b Second order models: Figure 7.2(a) depicts a second order model. We can write 

this model as a linear equation:  

 �v �  	. �v�� 4  =. �v�/ 4 9v                                                                                               �7.9
  

Where, 9v ~ I��, Г
                

 

From this linear equation, we see that the transition function is a normal distribution i.e.  H��v | �v��, �v�/ 
 �  I � 	. �v�� 4  =. �v�/, Г
                                                     (7.10) 

 

i) Training: For each dimension we find parameters for Multivariate Gaussian 

distribution. Let I�	. �v�� 4  =. �v�/, Г
 be the Gaussian distribution for t
th

 time slice. 

In all we have d dimensions. The overall parameters can be seen as follow, 

	 �  ã"�� "�� … "�%"�� "�� … "�%… … … . ."%� "%� … "%%
ä       �7.11
 B�  ã��� ��� … ��%��� ��� … ��%… … … . .�%� �%� … �%%

ä            �7.12
  

Г �  ãГ�� Г�� … Г�%Г�� Г�� … Г�%… … … . .Г%� Г%� … Г%%
ä       �7.13
         

 

The likelihood is given by,        H��v|�v��
 � H���
. ∏ I�	Yl�� . �v�� 4  =. �v�/, Г
                                                   �7.14
     



 56 

 I��v|	. �v�� 4  =. �v�/ , Г
 �
 ���ë
Ì/�.|Г|� �æ . exp ç� ��v�	.�v��� =.�v�/
�.  Г�� .��v�	.�v��� =.�v�/
�   è                              �7.15
   

  

 

We maximize the likelihood with respect to A, B and Г using (SCG).  T�Ò
  �  log>H���
?      
  

         4 � é� ��v � 	. �v�� � =. �v�/
Y .  Г�� . ��v � 	. �v�� �  =. �v�/
2    ê   � log ��2V
%� . |Г|� �æ 
     �
l��  

�7.16
   

Testing: Prediction is the same process as before. Equation (7.16) is used to find the 

likelihood. 

 

7.2 Discriminative models. 

 

7.2.1 First-order model 

The Gaussian Markov Process in the previous section can be converted into a CRF by 

training the model parameters to maximize the conditional likelihood H� Ô | �
.  An 

illustration of the CRF is shown in figure 7.2(a). In figure 7.2(a), the nodes �l��

 are a 

multivariate vectors. We can convert this graphical model into an equivalent model by 

breaking the multivariate vector �l��

 into individual components �l���
, �l���
, … , �l%��
.  

where �l���

corresponds to the value of the j

th  
dimension of the t

th
 frame of the sequence. 

This equivalent model is shown in 7.2(b)  

We assume that for each dimension j,  

 �l�    ~ I P @�. �l���   4 @�. �l��� 4 … 4  @% . �l��%  , z `                                                  �7.17
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This is the same autoregressive (AR) model used in the Gaussian Markov Process. 

However, to convert the GMP to an AR-CRF, we need to first define features over the 

maximal cliques in the graph. If we consider the maximal clique in the CRF (formed after 

moralization and triangulation), we get a fully connected graph with (d+1) nodes.  This 

large clique poses substantial computational challenges for learning and inference. In 

fact, if one re-arranges the terms of the likelihood of the data in terms of the sufficient 

statistics of the Gaussian distribution, the pair-wise interactions terms within a time slice 

and across adjacent time-slices can be considered as features. (Refer to Appendix A for 

the derivation of AR-CRF features) Thus, to simplify matters, we define the features over 

this maximal clique to be as follows: 

 

Features for t-1 observation: P�l��� `. P�l��5 `;   ì½& 1 í î í . í � .     
We can see this feature as an upper-triangular matrix capturing the interactions between 

every pair of dimensions in the (t-1)th frame giving 
%�%��
� 4  � ¢� Xï&�� .  
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Features for t observation: P�l�`. P�l5`;   ì½& 1 í î í . í �.            
 

Similarly, this feature captures the interactions between every pair of dimensions in the 

tth frame giving a total of   
%�%��
� 4  � ¢� Xï&�� . 

 

Features capturing the cross-interaction terms between the tth and (t-1)th frame: P�l��� `. P�l5`;  ì½& 1 í î  �; 1 í . í �.         
 

There are a total of  �� cross-interaction features. 

In total, at each time slice we have,   Uð� � %�%��
� 4 � 4 %�%��
� 4 � 4 �� � 2. �� 4 �  ¢� Xï&��    

             (7.18) 

 

By defining the features in this way, we simplify the problem by only considering for 

each motion; all interactions within a time slice and between adjacent time slices. 

Training involves learning the weights on these features. At this point, we find the 

weights that maximize the conditional log likelihood through SCGD. For training and 

testing we use the equation (6.11 – 6.14).  

 

7.2.2 Second order models: For second order models, each �l�   now depends on all 

dimensions from the (t-1)th time slice and the (t-2)th time slice. The features are defined 

as follows:  

 

Features for (t-2) th observation: P�l��� `. P�l��5 ` ;    ì½& 1 í î í . í �.       
There are a total of   %�%��
� 4 � features. 
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Features for (t-1) th observation: P�l��� `. P�l��5 ` ;  ì½& 1 í î í . í �.                                                                                                                                
There are a total of 

%�%��
� 4 �  features. 

 

Features for (t)th observation: P�l�`. P�l5` ;  ì½& 1 í î í . í �.     
 

Features based on the pair-wise cross-interaction terms between the tth and (t-2)th frame: P�l��� `. P�l5`;  ì½& 1 í î í �  !� 1 í . í �.                                 
There are a total of ��  features. 

 

Features based on the pair-wise cross-interaction terms between the tth and (t-1)th frame: P�l��� `. P�l5`;  ì½& 1 í î í �  !� 1 í . í �.    
There are a total of ��  features. 

 

Features based on the pair-wise cross-interaction terms between the (t-1)th and (t-1)th 

frame: P�l��� `. P�l��5 `;  ì½& 1 í î í �  !� 1 í . í �.     �½X T ��  ¢� Xï&��                               
There are a total of ��  features. 

 

In total, for each time slice we have,    Uð� �  %�%��
� 4  � 4  %�%��
� 4  � 4  %�%��
� 4  � 4 3. ��    �
Þñ�ß . �� 4  Þ#�ß . �  ¢� Xï&��        

(7.19) 

As in the first-order models, we learn these weights by optimizing the conditional 

through SCGD. 
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8. Results and Discussion (Discrete modeling) 
 

Due to a limited number of sequences available for training and testing, we used 2-fold 

cross validation to measure the classification accuracy. The Table 8.1 shows the 

classification accuracy obtained for discrete modeling. Table 8.1(a) reports the average 

accuracy for 2-fold cross validation. 8.1(b) gives the classification accuracy for fold 1 

and fold 2 accuracy is reported in table 8.1(c).  

 

Exp No. 

Discrete 

PCA GPLVM 

DMP-1 DMP-2 CRF-1 CRF-2 DMP-1 DMP-2 CRF-1 CRF-2 

1 86.32 88.17 86.945 82.62 88.16 86.935 83.81 83.81 

2 93.275 90.66 95.835 94.075 88.935 87.21 89.825 80.66 

3 80.115 81.1675 79.59 75.92 45.965 53.585 47.55 42.815 

4 90.355 88.45 91.39 85.51 85.62 85.565 88.395 87.63 

5 92.85 93.565 96.425 93.565 82.85 84.28 79.995 82.855 

6 68.03 68.02 72.09 69.785 71.51 70.345 62.2 62.2 

7 97.53 100 100 96.31 79.145 81.435 81.55 77.77 

8 84.34 87.445 85.36 88.51 79.37 81.495 76.265 76.265 

 

Table 8.1(a) Classification accuracy averaged over the two folds. The best accuracy 

for each experiment is shown as the shaded value. 

Exp No. 

Discrete ( fold1 ) 

PCA GPLVM 

DMP-1 DMP-2 

CRF-

1 

CRF-

2 DMP-1 DMP-2 

CRF-

1 

CRF-

2 

1 83.75 83.75 85 85 82.5 83.75 77.5 77.5 

2 90 91.67 91.67 93.33 91.67 91.67 90 71.67 

3 83.15 84.21 82.1 76.84 26.31 37.38 30.52 21.05 

4 86.27 84.31 90.19 78.43 82.35 80.39 82.35 88.23 

5 94.28 92.85 97.14 91.42 81.42 82.85 74.28 80 

6 76.76 73.25 80.23 77.9 83.72 80.23 79.06 79.06 

7 97.56 100 100 95.12 68.29 70.37 75.6 78.04 

8 85.71 89.79 87.75 89.79 69.38 69.38 65.3 65.3 

 

Table 8.1(b) Fold1 classification accuracy. 
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Exp No. 

Discrete (fold 2) 

PCA GPLVM 

DMP-1 DMP-2 CRF-1 CRF-2 DMP-1 DMP-2 CRF-1 CRF-2 

1 88.89 92.59 88.89 80.24 93.82 90.12 90.12 90.12 

2 96.55 89.65 100 94.82 86.2 82.75 89.65 89.65 

3 77.08 78.125 77.08 75 65.62 69.79 64.58 64.58 

4 94.44 92.59 92.59 92.59 88.89 90.74 94.44 87.03 

5 91.42 94.28 95.71 95.71 84.28 85.71 85.71 85.71 

6 59.3 62.79 63.95 61.67 59.3 60.46 45.34 45.34 

7 97.5 100 100 97.5 90 92.5 87.5 77.5 

8 82.97 85.1 82.97 87.23 89.36 93.61 87.23 87.23 

 

Table 8.1(c) Fold2 classification accuracy. 

In table 8.1 (a) , (b) , (c) , DMP – 1 means the first order discrete Markov process,  DMP-

2 stands for second order discrete Markov process. Similarly, CRF-1 and CRF-2 stands 

for first and second order conditional random fields respectively. The same sets of 

experiments are repeated when GPLVM was used as a dimensionality reduction method.  

 

8.1 PCA vs. GPLVM 

Number of states: 

Table 8.2 shows the number of dimensions and number of states found by performing 

PCA, GPLVM and X-means respectively.  

 

 

Table 8.2 Dimensions and number of states for fold 1 and fold 2. Number of 

dimensions remains the same for PCA and GPLVM.  
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There is a noticeable difference between the number of states found when X-means is 

applied after PCA than when X-means is applied after GPLVM. GPVM produces fewer 

states than PCA. For the experiments 3 - 8 it is as low as 2 to 7.  We can see the direct 

relation between the accuracy and the no. of states found during X-means. As the number 

of states increases, so does the classification accuracy. For experiment 3 (fold 1), we have 

accuracy as low as 37% due to only 3 states.  

 

Wilcoxon signed rank sum test: 

From table 8.1(a),(b) and (c) we can say that PCA performs better than GPLVM for 

discrete models.  To establish statistical significance, we applied the Wilcoxon signed 

rank test to the 16 accuracy results for both folds 1 and 2. PCA was found to produce 

significantly better accuracy.  

Test Significance p 

PCA-DMP-1   vs   GPLVM-DMP-1 0.0209 

PCA-DMP-2    vs   GPLVM-DMP-2 0.0193 

PCA-CRF-1      vs  GPLVM-CRF-1 0.0034 

PCA-CRF-2      vs  GPLVM-CRF-2 0.0067 

 

Table 8.3 shows the result of Wilcoxon signed rank sum test conducted for PCA vs. 

GPLVM. The first column describes the test that was conducted. The second 

column describes the significance level of the test. 

 

Running time: 

Table 8.4 describes the time taken to run the different algorithms on fold 2 of experiment 

5. The experiment was run on a dual-core 1.6 GHz Intel processor with 2GB of memory. 

We can see a significant difference in the dimensionality reduction step. PCA takes 

around 6 minutes whereas GPLVM takes around 42 hours to reduce the data. We are 

using a relatively unoptimized version of GPLVM. GPLVM can be sped up through a 

number of methods such as the Informative Vector Machine (Lawerence, Seeger and 

Herbrich, 2003) or KD-trees (Bentley, 1975). Regardless of the optimizations to 
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GPLVM, PCA is still much faster in terms of running time. Furthermore, PCA gives 

better classification accuracy as shown inTable 8.19(a). For discrete models, these 

advantages indicate that PCA is a better choice for dimensionality reduction than 

GPLVM. 

 

Exp. 

Detail 

 Experimental time for Experiment 5 ( Fold2) - Discrete case 

Dimensionality 

Reduction(sec) 

Discretization 

(X-means) 

(sec) 

Training and 

Testing                      

(sec) 

Total Time 

(Sec.) 

Total Time 

(Hrs.) 

PCA GPLVM PCA 

GPLV

M PCA 

GPLV

M PCA 

GPLV

M 

PC

A 

GPLV

M 

DMP-1 173 156239 1228 1528 14 15 1415 157782 0.39 43.83 

DMP-2 173 156239 1228 1528 14 15 1415 157782 0.39 43.83 

CRF-1 173 156239 1228 1528 1254 1165 2655 158932 0.74 44.15 

CRF-2 173 156239 1228 1528 1634 1345 3035 159112 0.84 44.20 

 

Table 8.4 Running time for (discrete) experiment no. 5 for the 2
nd

 fold.  

 

8.2 Generative (DMP) vs. Discriminative (CRF). 

From table 8.1 (a), we can see that when PCA was used as a dimensionality reduction 

method CRF-1 performs better than the Discrete Markov process. The exceptions are 

experiment 1 and 3 where DMP-2 outperforms CRFs. The improvement in accuracy 

achieved by discriminative models with discrete states was not statistically significant in 

most cases as shown in Table 8.5. 

 

Test Significance p 

PCA-CRF-1 vs PCA-DMP-1 0.005 

PCA-CRF-2 vs PCA-DMP-2 0.3222 

GPLVM-CRF-1 vs GPLVM-DMP-1 0.3421 

GPLVM-CRF-2 vs GPLVM-DMP-2 0.1118 

 

Table 8.5 The result of the Wilcoxon signed rank sum test conducted for CRF vs. 

DMP discrete model.  
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8.3 Other Observations 

Order of the models:  

Table 8.6 shows the Wilcoxon signed rank sum test for first and second order models. 

The results show that there is no significant difference between both the models. 

Although there is no clear winner in terms of the order of the model, the number of 

parameters in the first and second order models might be a criterion for selecting between 

them. The first order model has, m . { 4 Ó. {� � Ó{. � 1 4 {
 parameters while the 

second order model has m . { 4 Ó. {� 4  Ó. {# � Ó{. � 1 4 { 4  {�
 � parameters. 

where K is the total no. of states and m is the total motions in the experiments. As we 

increase the order of the models number of parameters increases exponentially. For 

example Experiment 2 (PCA - fold 1) will have 3600 parameters for order 1 in 

comparison to 86544 parameters for the second order(here N = 6 and K = 24). This large 

number of parameters can be a concern if data is limited and overfitting becomes a 

serious issue. From the discussion in section 8.1, 8.2 we can say that combination of 

PCA, CRF and 1
st
 order models attains the accuracy of (85% - 100%). 

 

Test Significance p 

PCA-DMP-2 vs PCA-DMP-1 0.2891 

PCA-CRF-2 vs PCA-CRF-1 0.0139 

GPLVM-DMP-2 vs GPLVM-DMP-1 0.3077 

GPLVM-CRF-2 vs GPLVM-CRF-1 0.4692 

 

Table 8.6 The result of Wilcoxon signed rank sum test conducted for 1
st
 order vs. 2

nd
 order 

models (discrete).  

 

Classification of similar motions:  

Another interesting aspect of the results is the accuracy obtained for Experiments 5, 6, 7 

and 8. The main objective of Experiments 5, 6 and 7 was to evaluate the performance of 

the algorithms when the motions appear to be similar but with slight variations. From a 

human perspective, these motions seem to be difficult to distinguish.  Surprisingly, 
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Experiments 5 and 7 achieved the accuracy of 96.5% and 100% respectively. Experiment 

6 posed some difficulties as it contained variations of run and walk eg .run, adventure 

run, walking on a obstacle 2, stylish walk and weird walk. Table 8.7 shows the confusion 

matrix for experiment 6 (CRF-1 with PCA). The accuracy was 78% (67 out of 86 

motions classified correctly). For Fold 1, all 19 misclassifications were due to other 

motions being classified as Walk_Stylish. Similarly, for Fold 2, 55 out of 86 were 

classified correctly for an accuracy of 64%. Out of 31 misclassified motions, 27 were 

incorrectly classified as Walk_Obs2.   

 

Randomly distributed training data: 

In Experiment 8, we did not ensure that motions from a particular subject appeared in 

both training and test data. Instead the motions, regardless of subject, were randomly 

assigned between training and test data. Surprisingly we achieved maximum accuracy of 

88.7%.  

 

 Table 8.7(a) Confusion matrix for Experiment 6 (CRF-1 with PCA) fold1  

 

 

 

Table 8.7(b) Confusion matrix for Experiment 6 (CRF-1 with PCA) fold2 
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From the above discussion we conclude that the combination of PCA with 1
st
 order CRF 

models gives the better accuracy for discrete approach. Our model was able to 

successfully discriminate between the similar motions and achieve the accuracy above 

90% in most of the cases.   
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9. Results and Discussion (Continuous modeling) 
 

As in the discrete modeling experiments, 2-fold cross validation was performed to 

calculate the classification accuracy due to limited training and testing data. Table 9.1 

shows the classification accuracy obtained. Table 9.1(a) gives the average accuracy for 2-

fold cross validation. 9.1(b) gives the classification accuracy for fold 1 and finally, fold 2 

accuracy is reported in table 9.1(c).  

Exp No. 

Continuous Results ( Average) 

PCA GPLVM 

GMP-1 GMP-2 CRF-1 CRF-2 GMP-1 GMP-2 CRF-1 CRF-2 

1 51.555 34.97 90.7 94.405 61.58 40.42 91.32 91.32 

2 55.145 56.175 91.61 88.935 54.17 67.645 95.745 94.91 

3 47.105 76.97 92.655 91.605 53.48 61.905 92.15 92.675 

4 75.25 70.04 94.385 93.3 58.495 64.755 92.53 92.48 

5 41.425 28.57 92.855 92.14 42.85 42.135 97.855 98.57 

6 36.04 65.115 74.415 80.81 36.625 49.415 77.9 81.975 

7 33.35 52.85 87.5 92.53 45.7 51.765 91.28 92.53 

8 18.71 67.8 88.555 91.655 45.455 63.5 81.195 80.975 

 

Table 9.1(a) Classification accuracy averaged over the two folds. The best accuracy 

for each experiment is shown as shaded value. 

Exp No. 

Continuous Results ( Fold1) 

PCA GPLVM 

GMP-1 GMP-2 CRF-1 CRF-2 GMP-1 GMP-2 CRF-1 CRF-2 

1 52.5 41.25 93.75 93.75 76.25 47.5 93.75 93.75 

2 51.67 41.67 86.67 91.67 58.34 76.67 96.67 95 

3 45.26 78.94 90.52 88.42 48.42 50.26 92.63 93.68 

4 91.25 88.23 98.03 92.15 72.54 64.7 98.03 96.07 

5 32.85 34.28 100 100 42.85 62.85 97.14 97.14 

6 29.06 62.79 84.88 83.72 22.09 47.67 86.04 88.37 

7 31.7 70.7 100 97.56 43.9 58.53 97.56 97.56 

8 20.4 63.26 87.75 91.83 63.26 65.3 83.67 93.87 

 

Table 9.1(b) Fold1 classification accuracy for continuous models. 
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Exp No. 

Continuous Results ( Fold2) 

PCA GPLVM 

GMP-1 GMP-2 CRF-1 CRF-2 GMP-1 GMP-2 CRF-1 CRF-2 

1 50.61 28.69 87.65 95.06 46.91 33.34 88.89 88.89 

2 58.62 70.68 96.55 86.2 50 58.62 94.82 94.82 

3 48.95 75 94.79 94.79 58.54 73.55 91.67 91.67 

4 59.25 51.85 90.74 94.45 44.45 64.81 87.03 88.89 

5 50 22.86 85.71 84.28 42.85 21.42 98.57 100 

6 43.02 67.44 63.95 77.9 51.16 51.16 69.76 75.58 

7 35 35 75 87.5 47.5 45 85 87.5 

8 17.02 72.34 89.36 91.48 27.65 61.7 78.72 68.08 

 

Table  9.1(c) Fold2 classification accuracy. 

In table 9.1 (a) , (b) , (c) , GMP – 1 stands for first order Gaussian Markov process,  

GauMP-2 stands for second order Gaussian Markov process.  

 

9.1 PCA vs. GPLVM 

Unlike discrete case, there were mixed results regarding PCA and GPLVM. Experiments 

1, 4, 7 and 8 has the best accuracy with PCA as a dimensionality reduction method while 

Experiment 2, 3, 5 and 6 have the best accuracy with GPLVM. 

  

Wilcoxon signed rank sum test: 

 Table 9.2 shows the results of Wilcoxon significance test involving PCA vs. GPLVM. 

There is no significant difference between both of these methods. 

 

Test Significance p 

PCA-GMP-1 vs GPLVM-GMP-1 0.238 

PCA-GMP-2 vs GPLVM-GMP-2 0.6171 

PCA-CCRF-1 vs GPLVM-CCRF-1 0.9362 

PCA-CCRF-2 vs GPLVM-CCRF-2 0.7642 

 

Table 9.2 Wilcoxon signed rank test for PCA vs GPLVM in continuous approach  
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Running time: 

Table 9.3 gives the running time for experiment 5 fold 2.  The experiment was run on a 

Core 2 Duo 1.6 GHz processor with 2GB of memory.  

 

Exp. 

detail 

 Experimental time for Experiment 5 ( Fold2) - Continuous case 

Dimensionality 

Reduction(sec) 

Discretization          

(X-means) (sec) 

Training and 

Testing                      

(sec) 

Total Time (Sec.) 
Total Time 

(Hrs.) 

PCA GPLVM PCA 

GPLV

M PCA GPLVM PCA GPLVM PCA GPLVM 

GMP-1 173 156239 N/a N/a 730 454 903 156693 0.25 43.52 

GMP-2 173 156239 N/a N/a 923 560 1096 156799 0.30 43.55 

CRF-1 173 156239 N/a N/a 8759 7863 8932 164102 2.48 45.58 

CRF-2 173 156239 N/a N/a 10823 8144 10996 164383 3.05 45.66 

 

Table 9.3 Running time for Experiment no. 5 for the 2
nd

 fold.  

 

As before, PCA takes around half an hour to complete the experiment while GPLVM 

takes approximately two days to complete the experiment. The majority of time was 

spent in applying GPLVM to the data. Both PCA and GPLVM were able to achieve 

accuracy over 80% hence it is very difficult to select the one best method out of PCA and 

GPLVM.  One may choose PCA over GPLVM due to its speed and relatively high 

accuracy.  

 

9.2 Generative (DMP) vs. Discriminative (CRF). 

From table 9.1 (c), we can conclude that discriminative models outperforms the 

generative models for continuous state process.  CRFs were able to achieve the best 

accuracy of more than 91% except in experiment 6 with 81% accuracy. Also, the low 

accuracy of Gaussian Markov process models indicates the inability of generative 

continuous models to discriminate between the motions in our experiments whereas 

much better accuracy achieved with CRFs indicates the benefits of discriminative 
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models. The improvement in accuracy was found to be statistically significant in all cases 

as shown in Table 9.4. was found to be 0.0005% significant in all the cases.  

Test Significance p 

PCA-CRF-1 vs PCA-GMP-1 0.0005 

PCA-CRF-2 vs PCA-GMP-2 0.0005 

GPLVM-CRF-1 vs GPLVM-GMP-1 0.0005 

GPLVM-CRF-2 vs GPLVM-GMP-2 0.0005 

 

Table 9.4 Results for Wilcoxon signed rank sum test for CRF vs Gaussian Markov 

process. 

9.3 Other Observations 

From our results, we conclude that second-order discriminative models perform the best 

on our experiments. CRFs were successfully able to classify similar motions like walk 

(Experiment 5, 6, 7). Also, when subjects were randomly divided across the training data, 

CRFs performed fairly well to give accuracies over 91%. In the continuous case, it is 

very difficult to pick one best dimensionality reduction method. One may choose PCA 

over GPLVM due to its simplicity and faster running time.  
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10. Conclusion 
 

The main contributions of the thesis are twofold. First, we provide an empirical 

comparison of various sequential supervised learning algorithms for classifying entire 

sequences composed of 96-dimensional frames. Second, we develop an Auto-Regressive 

Conditional Random Field which was shown to be very effective at classifying high 

dimensional sequences. 

 

Our first contribution was an empirical comparison of different graphical models for the 

problem of classification of mocap data. We compared various algorithms along the axes 

of 1) discrete versus continuous models, 2) generative versus discriminative models and 

3) PCA (a linear dimensionality reduction technique) versus GPLVM (a non-linear 

dimensionality reduction technique). We also investigated models which varied in terms 

of the order of the Markov assumption. Different variants of these algorithms were 

evaluated on a total of 8 separate experiments. In each experiment, we created a data set 

consisting of a variety of motion sequences. The classification accuracy for 2-fold cross 

validation was used as a measure to evaluate the models.   

 

From the results presented in chapter 9 and 10 we can conclude that discriminative 

approaches such as Conditional Random Fields (CRF) outperform generative approaches 

such as Gaussian Markov Processes. When we compared discrete models against 

continuous models, we found that in the discrete case, classification accuracy was highly 

dependent on the number of clusters found during discretization, with PCA surprisingly 

producing better results than GPLVM. For continuous models, there was no clear winner 

in terms of dimensionality reduction techniques, although the extremely long running 

time of GPLVM can be considered a detriment. However, discriminative models clearly 

outperformed generative models.  
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In our second contribution, we developed an Auto Regressive (AR-CRF) model for 

continuous state spaces. Earlier research on CRFs focused on discrete state spaces and 

most approaches using CRFs for motion capture operated on much fewer than 96 

dimensions. Furthermore, we investigated the problem of classifying entire motion 

sequences rather than each frame. Our AR-CRF addressed these issues and outperformed 

its generative counterpart – a Gaussian Markov Process. We were pleasantly surprised by 

its ability to distinguish between motions that, to the human eye, appear to be slight 

variants of each other. 
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11. Future work 
 

There are a number of different future directions that we would like to pursue. In our 

work with CRFs, we did not take advantage of adding arbitrary features defined over the 

input motion sequence, which is one of the powerful benefits of using CRFs. We believe 

that adding features such as periodicity, velocity and acceleration can improve 

classification accuracy. In addition, another assumption was the full connectivity of the 

graphical model structure in the continuous case. We can use techniques from graphical 

model structure learning to find the dependencies between the dimensions of two 

consecutive time slices and thus reduce the complexity of the model. In our experiments 

with GPLVM, we found that time and memory were considerable bottlenecks to using 

this algorithm. We would like to investigate the use of KD-trees to speed up the 

performance of GPLVM. 

 

There is also a need to develop algorithms for motion segmentation. The models used for 

classification in this thesis could be extended to motion segmentation by using a sliding 

window over the motion sequence. Data prior to the sliding window is used to train a 

model while data falling within the sliding window is treated as test data to be classified. 

If the log-likelihood of the data in the sliding window exceeds a threshold, the data is 

considered to be different from the current model and hence a segmentation point can be 

declared. Currently, the expensive running time of our models prevents online 

segmentation and future work would consist of developing efficient online segmentation 

algorithms. 

 

Finally, we would like to apply our algorithms for classifying high-dimensional, 

continuous, and time-variant data to domains other than motion capture. In the future, we 

would like to apply our models to other datasets with these properties, such as functional 

magnetic resonance imaging (fMRI) data and bird acoustics.  
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Appendix A 

In this section, we show how we derive features for a one-dimensional first-order auto-

regressive Condition Random Field (AR-CRF). This derivation can be easily extended to 

AR-CRFs of higher dimensions. Figure A.1 shows the first-order AR-CRF models and its 

corresponding maximal clique is shown in Figure A.2 

 

 

 

 

 

 

 

The dependency between �l��  !� �l can be seen as a Gaussian distribution. 

�l  ~ I � @. �l��  , z 
                                                   
The probability for directed model corresponding to fig A.2 is given as, 

� H��l |Y
l��  �l��
 . H�Ô
                                                                                                            �". 1
 

Since we consider uniform prior over P(M) we can drop the second term. Equation (A.1) 

can be rewritten as, 

� 1√2Vz� . ��H é�12 ¨�l �  @. �l��z ª�êY
l��                                                                              �". 2
 

The equation for undirected model (i.e. a CRF) in figure A.2 is given as, 

� exp >� �5. ¢5�Ó, �l, �l�� 
 ¤
5�� ?Y

l��                                                                                           �". 3
 

Ô 

�� �� �Y 
Figure A.1:  First order CRF model.  

m is the motion label and Xs are the 

observation in reduced space.  Here 

d = 1 

Ô 

�l�� �l 
Figure A.2:  Maximal clique 

corresponding to figure A.1. 
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Following Vail et al. (Vail et al. 2007), our goal is to convert, Equation A.2 into a form 

suitable for undirected models (ie. Equation A.3)             

First we take the log: 

 

� òlog ¨ 1√2Vz�ª  4 é�12 ¨�l �  @. �l��z ª�êóY
l��                
Let us drop the summation and find the features for a time slice ‘t’ 

 

� 1z� . ��l
� 4  @z� . ��l
��l��
 � @�z� . ��l��
� � log Þô2Vz�ß   
 

This can be written as, 

��. ��X
2 4  ��. ��X
��X�1
 4  �#. ��X
2                 
 

We can define, 

¢��Ó, �l , �l�� 
     �   ��X
2 
 

¢��Ó, �l, �l�� 
     �   ��X
��X�1
 

¢#�Ó, �l, �l�� 
     �   ��X�1
2  
 

Note that the features defined in equation (A.4) are sufficient statistics for the 1-

dimensional Gaussian distribution.  

We now briefly show the feature derivation for a two-dimensional first-order AR-CRF. 

Figure A.3 shows the first order AR-CRF model. �l is a d-dimensional vector where d=2. 

Figure A.4 shows the model equivalent to the model in figure A.4. 

 

�". 4
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We assume that the value of �l�  depends on the value of all dimension in the previous 

time slice. After applying graph moralization and graph triangulation to the figure A.4 we 

get the undirected graph as shown in figure A.5. 

 

 

 

 

The maximal clique for the time slice t can be seen in figure A.6. In auto-regressive CRF 

model. the distribution for P(�l�| �l���
) is a Gaussian distribution: 

�l�    ~ I P @�. �l���   4  @�. �l���  4   @#. �l5, z `;     î õ .      

Figure A.5:  Undirected graph obtained after 

applying graph moralization and 

triangulation to the model in figure A.4 

�l���

�l���

�l� 

�l� 

Ô 

Figure A.6:  Maximal clique 

for time slice t corresponding 

to AR(1)-CRF.   

Ô 

�� �� �Y ��� 
��� 

��� 
��� 

�Y� 
�Y� 

Ô 

Figure A.3: First order AR-CRF 

model. M is the motion label and Xs 

are the observations in reduced space. 

Here d = 2 and �l is the 2-dimensional 

vector. 

Figure A.4: Shows the model equivalent 

to the model shown in figure A.3. Note 

that the value of  �l�  depends on the 

value of all dimensions in the previous 

time-slice. 
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Following a similar procedure involving rearranging the terms in the Gaussian, we can 

obtain features for the two-dimensional AR-CRF that involve nodes within the tth time 

slice, nodes within the (t-1)th time slice, and interactions between the nodes in the tth and 

(t-1)th time slices. These features are described below: 

The features for the ‘t’th time slice are: 

��l��� 
. ��l��� 
 ;  ��l��� 
. ��l��� 
 ;  ��l��� 
. ��l��� 
  ;    
 

The features within the (t-1)th time slice are: 

��l�
. ��l�
 ;  ��l�
. ��l�
 ;  ��l�
. ��l�
  ;   
 

The features involving interactions between tth and (t-1) th time slice are: ��l��� 
. ��l�
;   ��l��� 
. ��l�
 ;  ��l��� 
. ��l�
 ;   ��l��� 
. ��l�
  
We can generalize the procedure above to d-dimensional first-order AR-CRFs where the 

features can be written as: 

Features for the (t-1)th time-slice: P�l��� `. P�l��5 `;   ì½& 1 í î í . í � .     
 

Features for tth time-slice: P�l�`. P�l5`;   ì½& 1 í î í . í �.            
 

Features capturing the cross-interaction terms between the tth and (t-1)th time-slice: P�l��� `. P�l5`;  ì½& 1 í î  �; 1 í . í �.         
 

 


