
AN ABSTRACT OF THE DISSERTATION OF

Mark J. Clement for the degree of Doctor of Philosophy in Computer Science

Presented on July 25, 1994.

Title: Analytical Performance Prediction of Data-Parallel Programs

ftAbstract approved-

Michael J. Quinn

A combination of static and dynamic performance prediction techniques can

be used effectively to address the problems of performance debugging, architectural

improvement, machine selection and compiler optimization for data-parallel pro-

grams on multicomputers. This research develops two analytical models which

account for the effects of CPU execution time, cache behavior and message pass-

ing overhead for multicomputers. These factors have been shown to be significant

in determining performance on distributed memory systems. The first model per-

forms static analysis on Dataparallel C source code in order to determine critical

algorithmic parameters which can be used to predict performance when the prob-

lem size is fixed. The second model uses information obtained at compile time along

with a single instrumentation run to generate a symbolic equation for execution

time. This model can be used to predict performance even when the problem size

varies. By leveraging technology from the Maple symbolic manipulation system

[15] and the S-PLUS [89] statistical package we implement a system which presents

users with critical performance information necessary for performance debugging,

architectural enhancement, and procurement of parallel systems. The usability of

these results is improved by specifying confidence intervals as well as predicted

execution times for parallel applications. Cost optimal analysis techniques are also

developed using the symbolic equations for execution time.

Redacted for privacy

Analytical Performance Prediction
of

Data-Parallel Programs

by

Mark J. Clement

A DISSERTATION
submitted to

Oregon State University

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Completed July 25, 1994
Commencement Jung 1995

Doctor of Philosophy dissertation of Mark J. Clement presented on July 25, 1994

APPROVED:

M or Professor, representing Computer Science

Chair of Computer Science Department

Dean of Gradua chool

I understand that my dissertation will become part of the permanent collection

of Oregon State University libraries. My signature below authorizes release of my

dissertation to any reader upon request.

Mark J. Clement, Author

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy

ACKNOWLEDGMENTS

Much of the work presented in this thesis originated from stimulating dis-

cussions with Dr. Michael Quinn. His encouragement and direction have been

invaluable in formulating and polishing the ideas which I wanted to pursue.

Thanks are also due to Intel Corporation and the staff of its Supercomputer

Systems Division. Their insights into industrial requirements for performance pre-

diction motivated the design and specifications of this research. Special thanks

go to Brent Baxter whose direction during a summer intern experience gave me

exposure to several relevant issues in this field. Without the financial support pro-

vided by Intel Foundation, Sequent Computer Systems and the Oregon Advanced

Computing Institute, I would not have been able to complete this research in a

timely manner.

Comments from other researchers in the field have also helped me to focus on

relevant issues. Discussions with Mark Crovella from the University of Rochester

have helped to crystallize my understanding of different approaches used in this

field.

The support of my wife Laura and my children Kendell, Nathan, Spencer,

Sarah and Rebecca has been greatly appreciated. They have born the brunt of

many long nights and Saturdays spent in the office instead of on the baseball field.

Laura has also contributed significantly to the quality of this work during the

proofreading process.

Table of Contents

Chapter Page

1 Introduction 1

1.1 Problem Statement 2

1.2 Research Contributions 6

1.3 Dissertation Organization 8

2 Related Work 11

2.1 Queueing Theoretic Models vs. Real Applications 13

2.2 Simulation vs. Analytical Methods 14

2.3 Automatic vs. Manual Systems 16

2.4 Static vs. Dynamic Analysis 17

2.4.1 Dynamic Methods 18
2.4.2 Isoefficiency 19
2.4.3 Static Methods 21

3 Static Performance Prediction 25

3.1 Model Specifications 26

3.2 Performance Metrics 27

3.3 Model Development 28

3.3.1 Compiler Effects 29
3.3.2 Parallel Overhead 29
3.3.3 Trends in Floating Point Performance 30
3.3.4 Communication Overhead 30
3.3.5 Memory Effects 31
3.3.6 Applying the Assumptions 32

3.4 Experimental Results 35

3.4.1 Source Code Variation 35
3.4.2 Experimental Results on Different Target Machines 36
3.4.3 External Sorting 41

4

3.5

4.1

4.2

Summary

Dynamic Performance Prediction

Scalable Algorithms

Dynamic Model Development

46

47

48

51

4.2.1 Instrumentation Run 54
4.2.2 Architectural Linearization 60
4.2.3 Linear Parameter Model 64

5 Statistical Analysis of Machine Parameters 67

5.1 Advantages 67

5.2 Assumptions 68

5.3 Statistical Model 69

5.4 Experimental Results 71

6 Evaluation of Dynamic Modeling Techniques 77

6.1 Accuracy Analysis 77

6.1.1 Layer 80
6.1.2 Shallow 81
6.1.3 Matrix 82
6.1.4 Gauss 83
6.1.5 Jacobi 84
6.1.6 Ocean 85

6.2 Analysis Using Performance Prediction Results 86

6.2.1 Cost Optimal Methods 90

7 Conclusions 99

7.1 Significance of Research 100

7.2 Future Directions 101

Bibliography

Appendix

A Statistical Consulting Study

103

113

113

List of Figures

Figure Page

1.1. Diverse architectures available to a single researcher. 3

3.1. Experimental and predicted values results for 256 x 256 matrix
multiplication on the iWarp array. 36

3.2. Experimental and predicted results for the shallow water at-
mospheric model. 37

3.3. Speedup results for the shallow water atmospheric model with
variable message startup cost. 39

3.4. Speedup results for the shallow water atmospheric model for
64 processors with variable message startup cost (Startup) and
cache miss penalty (Cache). 39

3.5. Mflops results for the shallow water atmospheric model for 64
processors and variable message startup cost and cache miss
penalty. 40

3.6. Predicting Mflops/dollar for the Shallow Water Model 40

3.7. Experimental and predicted results for the Ocean Circulation
Model and Sharks World on the Intel iWarp multicomputer. 41

3.8. Experimental and predicted results for the Ocean Circulation
Model and Sharks World on the Intel iPSC/860 multicom-
puter. 42

3.9. Results of an analytical model developed to investigate the
impact on the sorting algorithm of varying system parameters. 44

3.10. Closer view of the maximum speedup plane of the analytical
model. 45

3.11. Analytical results for the PSRS algorithm as the number of
processors becomes large. 46

4.1. Illustration of problem size scaling for the Jacobi algorithm. . 50

4.2. Block diagram for dynamic performance prediction system . . 53

4.3. Call graph data structure. 57

5.1. Quantile plot of model errors for experimental data from the
Meiko CS-2 vs. a normal distribution of residuals. 70

5.2. Predicted and experimental execution time in seconds for the
Ocean Circulation Model on the nCUBE 3200 multicomputer
with (a) 128 and (b) 640 segments in the east-west direction. 73

5.3. Predicted and experimental values for the Shallow Water Model
with a 64 x 64 grid and 1200 iterations for an iPSC/860 mul-
ticomputer. 74

5.4. Predicted and experimental execution time in seconds for the
Ocean Circulation Model on the Meiko CS-2 multicomputer
with 640 segments in the east-west direction. 75

5.5. Predicted and experimental execution time in seconds for the
Ocean Circulation Model on the Meiko CS-2 multicomputer
with 1280 segments in the east-west direction. 75

6.1. Percent error for experimental runs of applications in the val-
idation suite. 78

6.2. Percent error for constant virtual processor emulation loop
overhead contrasted with the scaled model. 80

6.3. Percent error for experimental runs of the Layer application
on the iPSC/860, Meiko CS-2 and nCUBE 3200. 81

6.4. Percent error for experimental runs of the Shallow application
on the iPSC/860, Meiko CS-2 and nCUBE 3200. 82

6.5. Percent error for experimental runs of of block matrix multi-
plication on the Meiko CS-2 and nCUBE 3200. 83

6.6. Percent error for experimental runs of Gaussian elimination
on the iPSC/860, Meiko CS-2 and nCUBE 3200. 84

6.7. Percent error for experimental runs of the Jacobi application
on the iPSC/860, Meiko CS-2 and nCUBE 3200. 85

6.8. Percent error for experimental runs of the Ocean application
on the iPSC/860, Meiko CS-2 and nCUBE 3200. 86

6.9. Percentage of execution time spent in broadcasting the pivot
row for Gaussian elimination on an nCUBE 3200. 87

6.10. Views of basic block contributions to overall execution time
under different scaling schemes. 88

6.11. Contributions of basic blocks in Gaussian elimination appli-
cation with speedup scaling. Lighter colors indicate a higher
percentage of time. 89

6.12. Sensitivity to changes in message startup cost for Gaussian
elimination as a function of problem size and number of pro-
cessors. 90

6.13. Execution time plots comparing the nCUBE 3200 with a net-
work of workstations connected with Ethernet. 91

6.14. Predicted (I) for Gaussian elimination on 8 workstations as
network bandwidth varies. 92

6.15. Predicted (I) for the Shallow Water Model as bandwidth and
CPU speed vary. 93

6.16. Price performance curve as cache size is varied for the Shallow
Water Model. 94

6.17. Price performance curve with two local maxima. 97

List of Tables

Table Page

1.1. Notation used for static model. 9

1.2. Notation used for dynamic model. 10

2.1. Characteristics of queuing theoretic models vs. models derived
from real applications. 15

2.2. Characteristics of analytical models and simulation systems. 16

2.3. Characteristics of isoefficiency, static and dynamic models. . 22

2.4. The targeted uses of performance information impose specific
constraints on the types of models which can be employed in
generating predictions. 24

3.1. Actual and predicted speedups for the PSRS algorithm. Ac-
tual speedup results are from Shi [86]. 45

5.1. Output of statistical parameters for the nCUBE 3200 multi-
computer. 72

6.1. Experimental error values. 79

6.2. Coefficient and standard error values for /ivp with constant
virtual processor emulation loop overhead. 79

6.3. Cost optimal values for system parameters for applications in
validation suite. 98

Analytical Performance Prediction of Data-Parallel Programs

Chapter 1
Introduction

Computational experiments have played a key role in making recent ad-

vances in several scientific and engineering disciplines [11, 16, 17, 97]. Several im-

plementations of "Grand Challenge" problems require far more processing power

than any sequential processor can deliver [23] . Although significant progress is

being made in the speed of microprocessor based computers, there is nearly univer-

sal agreement that continuing increases in computational power for large scientific

applications will require parallel processing.

Massively Parallel Processing (MPP) systems promise to provide contin-

ued increases in performance through employing thousands of computing elements

in the solution of a single problem. These distributed memory machines can be

assembled using the fastest microprocessors with relatively inexpensive commu-

nications networks. The actual performance achieved on these machines for real

applications, however, can be disappointing. For example, traditional supercom-

puters such as the Cray C-90 deliver 50% of their peak advertised performance

on the NAS benchmarks while multicomputers like the IBM SP1 and the Meiko

CS-2 currently achieve less than 5% of the advertised rate [4, 7, 48]. The causes

of this low level of efficiency can be traced to unbalanced hardware systems and

inefficient algorithmic implementations.

2

1.1 Problem Statement

Several problems have been noted in the parallel processing environment that

cause reported performance results to be much poorer than would be expected

when actual programs are developed to run on multicomputers:

Performance Debugging

It is difficult for a programmer to predict the impact that system parameters

will have on parallel code. As a result, software developers are frequently

not able to evaluate different algorithmic implementations in order to arrive

at an optimal solution. There is also little information available to indicate

which parallel architecture, if any, will execute a given program in an efficient

manner.

Architectural Improvement

Parallel system designers are handicapped by the lack of information on the

effect changing system parameters will have on the performance of actual par-

allel programs. As a result, systems may be designed with such a high level

of imbalance that few parallel programs will be able to execute in an efficient

manner. Extensive work has been performed to determine theoretical bounds

on the performance of various parallel architectures [1, 28, 56, 77, 79, 85].

Similar work has explored routing algorithms for these diverse architectures

[8, 53, 64]. Each of these implementations claims to be optimal under cer-

tain assumptions about the nature of parallel applications. Consensus in

the microprocessor industry on the benefits of RISC processors came only

after exhaustive analysis of instruction traces of real sequential programs.

Similarly, progress in achieving a convergence for parallel architectures will

require attention to the characteristics of production parallel codes.

Machine Selection

The high performance computing environment has changed significantly with

M1111,11MMIIM.=111=1=1
1=11=1=11 Mil==i1=1

. .1mmm ommm. .===.==: 1:==: ===: ==11==e,,tiMI==. !===!.

---. ---
mmml ===. mmmt . =mew1=1.1=1, 11M1=1=1 1===11. MIMI=INNAM=1. Mi==.=11 1==Mil. ==1M.1. ==.M.

3

High Speed Workstations

Loosely Coupled Topologies

6

Workstation Clusters

MPP Systems

Figure 1.1. Diverse architectures available to a single researcher.

the advent of high speed workstations. Much of the work that was pre-

viously performed on large centralized computers is now done on desktop

workstations. Clusters of workstations are often available for larger jobs

with Massively Parallel Processing (MPP) machines being reserved for the

most demanding applications. Figure 1.1 illustrates the machines that may

be available to a single researcher. Selecting the appropriate computing plat-

form to achieve efficient execution can be a difficult task. In order to make

efficient use of a parallel machine, the user must also determine the optimal

number of processors to use to maximize efficiency [37]. There is little in-

formation to guide the user of a parallel machine into making the correct

selection.

Compiler Optimizations

Compilers for high level parallel languages are often not able to choose opti-

mizations which will result in the best performance for an application. When

4

optimizations are performed on sequential code, the compiler can be fairly

certain that the changes will improve performance. In order for parallel com-

pilers to make intelligent decisions, they must be provided with detailed in-

formation regarding the performance tradeoffs for alternate transformations

[3, 27, 93].

Solving the problems of performance debugging, architectural tuning, ma-

chine selection and compiler optimizations is a critical step in improving the effi-

ciency of multicomputers. For sequential environments, system performance can

be adequately described in terms of the amount of computation time required to-

gether with the processor instruction rate. The performance of parallel systems is

influenced by multiple factors related to the structure of applications and to their

ability to exploit the parallel features of a particular system [10]. As a result of

the multidimensional nature of this environment, users must be able to account for

and visualize the effects of multiple variables on system performance [43]. With-

out an accurate model that takes all of these factors into account, it is difficult

to determine what changes are needed to improve the performance of multicom-

puters. This multi-dimensional nature of distributed memory architectures makes

sophisticated performance tools necessary in order to effectively utilize these sys-

tems [76, 87]. Performance prediction tools have been identified as an important

technology in achieving the solution to grand challenge problems [23].

Dan Reed, a member of the performance analysis team for the National

Consortium for High Performance Computing (NCHPC), has said:

Performance analysis has both short-term and long-term goals. Typ-
ical short-term goals are to help write and tune programs that run fast
for current problems on current computer systems, and to establish
procurement criteria. One long-term goal is to produce programs that
will also perform well in the future (e.g., for larger or longer prob-
lems on computer systems with more processors or different compu-
tation/communication tradeoffs). A complementary long-term goal is

5

to help design computer systems that will effectively support future
applications.

All of these goals require determining the performance characteris-
tics of application programs and computer systems. However, currently
available tools and techniques provide only a subset of the capabilities
needed to meet these goals. These tools are generally restricted to
empirical measurements of a particular combination of code, system,
and sample problems. Little or no support is provided for develop-
ing predictive models of application performance, or even for acquiring
the information to construct such models. Additional work is needed
to characterize massively parallel systems and extract application re-
quirements, as well as to construct and validate models [81].

High level parallel languages are essential in making parallel processors fea-

sible for large programming projects. They allow the program to be written in a

machine independent manner, and abstract away the complexity of explicit mes-

sage passing. David Kuck, a noted authority on computer architecture, has said:

HPCCI has distributed memory MPPs as its cornerstone architec-
tural component Since the 1960's, the generally acceptable com-
puter language level has risen from the machine level to the point where
PC users now have problem-solving environments that do not require
users to be programmers at all, but instead users may express them-
selves in terms of their own disciplines. Parallel processing cannot suc-
ceed by attempting to reverse this historical market force. ... if paral-
lel processing is to emerge from its current niche market and become a
practical technology it is essential that architectures be improved [58].

The Dataparallel C programming language provides a SIMD model of par-

allel programming with explicit parallel extensions to the C language [46]. Perfor-

mance tools which are linked to a compiler for a high level parallel language have

access to algorithmic information which can improve the accuracy of their analysis.

Any methodology which addresses the performance problems for multicomputers

should be tailored to applications written in high level languages.

6

1.2 Research Contributions

This research develops two predictive analytical models which are used to provide

solutions to the problems we have described. We use these models to implement

two performance prediction systems in order to show that the models are feasible.

The first model analyzes application source code in order to estimate speedup

for static programs on different hardware systems. The second model uses an

instrumented run of the application, along with source code analysis, to provide

detailed predictions of execution time for scalable applications. Both models use

algorithmic information extracted from the source code of existing Dataparallel C

applications. The concepts developed here can also be extended to other data-

parallel languages.

Static applications solve problems with a fixed number of data items. The

number of computations performed also remains fairly constant as the number of

processors varies. For many of these problems compile time analysis of the source

code is sufficient to predict the speedup attainable by a given parallel architecture

[41]. Absolute execution time is difficult to estimate with static analysis, but the

relative number of communications and computations can provide fairly accurate

estimates of speedup values. Our research into static performance prediction con-

centrates on the relative speedup attained on a fixed problem size as the principle

performance metric. Static analysis can provide rapid feedback to an optimizing

compiler on the relative benefit of alternate transformations. It can also be used to

predict performance for static applications with too many computations to admit

an instrumentation run.

When additional processing elements are added to a computation, scalable

applications can increase the problem size in order to maintain efficient execution.

Speedup cannot be used as a performance metric for these applications since the

number of computations will change as the number of processors vary. The per-

formance prediction methodology used for scalable applications uses algorithmic

7

information derived from the source code of a high level parallel language and an

instrumentation run of the application with a small problem size. This information

is combined with an analytical hardware model in order to derive an exact equation

for execution time as the number of processors and the problem size vary. Since

this modeling technique uses run-time data, it can be viewed as a dynamic perfor-

mance prediction method. Through maintaining a symbolic representation of the

performance equation, algebraic manipulation packages such as Maple [15] can be

used to analyze and visualize the performance ofan application. The equations for

execution time can be differentiated in order to determine sensitivity to changes

in variables and to determine cost optimal points for hardware architectures.

Through focusing on algorithmic variables in the dynamic model, perfor-

mance debugging can be performed in order to create applications which will be

efficient on a target architecture and more portable across architectures of interest

to the user. Given a set of performance data from important applications, parallel

system architects can determine which modifications to current designs will result

in the largest improvements in performance for real programs. When parameters

for actual parallel machine are specified, the dynamic model can assist in selecting

the appropriate architecture and number of processors for an application.

Although predicted execution times can be useful in improving the perfor-

mance of multicomputers, their value can be limited unless there is some way of

determining the accuracy of the prediction. Through utilizing multivariate sta-

tistical techniques, this research can specify a confidence interval for predictions.

It is my thesis that a combination of static and dynamic performance prediction

techniques can be used effectively to address the problems of performance debug-

ging, architectural improvement, machine selection and compiler optimization for

data-parallel programs on multicomputers.

8

1.3 Dissertation Organization

In Chapter 2 previous work in performance prediction is discussed and contrasted

with the research presented here. The static analytical model is described in Chap-

ter 3 and results are illustrated for several applications. Chapter 4 describes the

implementation of the dynamic performance model and specifies the importance

of the scalable applications. The statistical techniques developed in Chapter 5 are

shown to be useful in creating confidence intervals for predicted values. Several

applications are analyzed in Chapter 6 in order to show the utility of dynamic

performance prediction. The accuracy of the model is also analyzed and a method

is devised for estimating cost optimal values for system parameters. Finally, in

Chapter 7 the results are summarized and future directions for this research are

outlined. Table 1.1 and Table 1.2 explain the notation which we will use in the

remainder of the thesis.

9

Static Model

1),P Number of processors

VP Virtual Processor

N Problem Size

S(p) Speedup on p processors

U(p) Utilization of p processors (S(p)/p)

Tl Execution time on a single processor

T, Execution time of sequential code

Tp Execution time of parallel code

cr(P1T) Communication overhead function

Communication network topology

Cost for an operation

Time to execute a floating point instruction

X), Number of VP emulation loops

TA Time spent in VP emulation loops

Number of operations in sequential code

Xp Number of operations in parallel code

Message startup time

X, Number of communications

C, Normalized message startup cost

Xm Number of uncached memory accesses

Cm Normalized cache miss cost

Table 1.1. Notation used for static model.

10

Dynamic Model

t

e

Tseq

Tpar

SS(p)

E(p)

Countq

Countpar

XOps

#0ps

Predicted execution time

Experimental execution time

Error

Time spent in sequential execution

Time spent in parallel execution

Scaled Speedup

Efficiency (E(p) = SS(p) /p

Number of sequential operations

Number of parallel operations

Number of operations

Time in nsecs for CPU operation

C OuntVPloops) XVP Number of VP emulation loops

fivP Time in nsecs for VP emulation loop

CountLimiss, XLI Number of first level cache misses

/3L1

COUntL2Miss, XL2

COUntCStart

last

Time in nsecs for first level cache miss

Number of second level cache misses

Time in nsecs for second level cache miss

Number of message startup times

Message startup time in nsecs

C OUniCBand, XBw Number of bytes transmitted

i3B w Time in nsecs to transmit one byte of data

Standard deviation of errors

C.O.V. Coefficient of Variation

M MFLOPS of performance attained

C Cost in dollars

(I) Price-performance metric (11-)

Table 1.2. Notation used for dynamic model.

11

Chapter 2
Related Work

Performance analysis is a key step in the design and selection of computer hard-

ware and software. Many of the techniques which have traditionally been used

in optimizing sequential machines have been applied to multicomputers. Perfor-

mance prediction plays a much more important role with these parallel machines

because of the large variance in performance between different applications on a

single system and different hardware platforms for the same software. A simple

profile of where time is being spent in a parallel application may give little insight

into where improvements should be made in order to improve overall performance.

The multidimensional aspect of performance analysis on multicomputers imposes

certain constraints on the types of tools which can be effectively used in this envi-

ronment. This chapter will examine four characteristics of performance modeling

tools which are of pivotal importance with reference to MPP systems. The research

performed in this dissertation focuses on two important problems which have not

been adequately addressed by other methodologies.

In the remainder of the chapter we will differentiate our work from other

research in this field through analyzing the different design decisions which must be

made in developing a performance model. Previous work in performance prediction

can be categorized in the following ways:

Queueing Theoretic Models vs. Real Applications

Sequential analysis has traditionally relied heavily on representing workloads

with Markov models using random distributions. This modeling technique

12

has been extended to parallel systems with limited success. Other analysis

methodologies use real applications to build a performance model. These

methods either examine the source code of real programs, require the pro-

grammer to write the code in an alternate modeling language or use sampling

data from an instrumented run in order to adequately characterize the ap-

plication.

Simulation vs. Analytical Methods

Approaches involving simulations attempt to emulate the behavior of the

hardware as an application is executing. These methods are generally com-

putationally intensive and often are able to examine more detailed aspects

of the execution. Analytical models attempt to derive equations for the be-

havior of a system. Variables in these equations are then modified to predict

performance for other environments.

Automatic vs. Manual Systems

Ease of use is an important consideration in developing performance analysis

techniques. Some methodologies require the user to rewrite applications in

new modeling languages. Manual techniques such as this will not be used

even if they promise superior results.

Static vs. Dynamic Analysis

Methodologies which rely totally on compile-time information for their char-

acterization of an application can be termed "Static". Other modeling tech-

niques which require instrumentation runs are "Dynamic" in nature. Static

analysis is preferable from a usability viewpoint since results can be pre-

dicted immediately and there is no need for access to an actual machine.

Dynamic information, however, can significantly improve the accuracy of the

prediction.

13

2.1 Queueing Theoretic Models vs. Real Applications

'Queueing theory is a key modeling technique for the performance analysis of batch

systems and computer networks. It has also been applied to the parallel environ-

ment. Queueing theory is used to estimate the time that jobs spend in various

queues in the system [52]. These times can be used to predict the mean response

time for a task. The workload and execution time are modeled using random vari-

ables with distributions which can be determined from studying existing computing

environments. The principle drawbacks to queuing theoretic models are accuracy

and usability. Predicted results may have little or no correlation to experimental

data for a real application. Detailed analysis of the time spent in various blocks

of an application is also impossible so tools based on these models cannot be used

for performance debugging. The believability of results derived from using statis-

tical workloads is also low. Users are more likely to trust predicted results from

simulated executions of actual programs than they are to believe queuing theoretic

models [52]. For this reason models which use real applications in their analysis

process hold a big advantage. The models we develop in this research are based

on actual programs. Although it is more difficult to extend these models to aver-

age system performance, they are more accurate and can be used for performance

debugging, which is one of the key goals of this research. Developing queueing

theoretic models is also difficult for most programmers and violates the ease of use

criterion which we will examine later.

Several different approaches have been taken in developing queuing theo-

retic models. Akyildiz developed a hierarchical system which separated the global

process model from process communications. The work attempts to model applica-

tions which communicate with each other using "SEND" and "WAIT" operations

[2]. Results for utilization, mean response time and communication overhead are

validated through a simulation of a system. Specific applications are not modeled

14

and no attempt is made to compare predicted results with non-simulated experi-

mental data. Similar work has also been performed by Sotz [88].

Mac [66] uses Markov models to predict performance for series parallel task

programs. Predictions are within 10% of simulated results but the workload is

all synthetic. Kapelnikov et al. have used an amalgamation of queuing theoretic

models of physical system characteristics combined with graph models of actual

applications in order to analyze the performance of parallel programs with looping

constructs [55]. This technique incorporates actual application code to alleviate

some of the drawbacks of queuing theoretic approaches, but the authors still con-

clude that the accuracy of the system is acceptable for preliminary evaluation of

various system designs, but that further detailed analysis is necessary to draw

specific conclusions. Research by Dimpsey and Iyer [29] attempts to use statistics

from a cluster of real applications as input to their model.

The cost optimal analysis performed by Born et al. assumes that messages

are generated so that the time between successive messages is an exponential ran-

dom variable [9]. This model is attractive in terms of its ability to compare and

contrast various network topologies, but it is limited in its accuracy and ability

to predict execution time for a given application. Kleinrock has also investigated

models to determine the optimal numbers of processors to use given specified ar-

rival rates [57].

Queuing theoretic and statistical models of programs do not allow users to

make critical performance debugging and hardware selection decisions. Table 2.1

summarizes the characteristics of these models. Because of our requirements of

ease of use and accuracy for a specific application, these models are not sufficient.

2.2 Simulation vs. Analytical Methods

The principle advantage of simulation based approaches is their accuracy. Given

sufficient computational resources an emulation of each machine instruction could

15

Queueing theoretic

models

Models derived from

real applications

Ease of Use Difficult Automated

Accuracy Low High

Ability to

Generalize Simple Difficult

Table 2.1. Characteristics of queuing theoretic models vs. models derived from
real applications.

potentially give perfect prediction of performance for a selected application. The

Principle drawback of simulation methods is the time and resources necessary to

run the simulation. A CPU intensive simulation must be performed for each new

machine configuration and problem size. This makes the exploration of relation-

ships between different system parameters difficult to perform. Analytical models

can arrive at predicted performance values much more quickly. If the model is

represented as an equation (as it is with the models described in this research),

mathematical manipulations can be performed to determine the sensitivity of an

algorithm to machine characteristics. This rapid prediction characteristic of ana-

lytical models makes them attractive for the problem of performance debugging.

A programmer will not be likely to try many alternate implementations if the

performance predictions take hours to complete.

Mehra et al. have conducted research into minimizing the time necessary to

perform a simulation [68]. They use trace files to generate a model which can be

simulated in order to generate predicted performance for varying problem size and

numbers of processors. Simulation efficiency can also be improved through using

execution driven simulation to replace basic blocks with an increment of the total

number of instructions executed [24].

16

Analytical Models Simulations

Time Required Low High

Ease of Use High Low

Accuracy Low High

Table 2.2. Characteristics of analytical models and simulation systems.

The characteristics of Simulations vs. Analytical models are summarized

in Table 2.2. Although analytical models achieve lower levels of accuracy, their

ease of use and rapid results generation makes them the only viable choice for a

performance model. Through specifying the confidence level for a prediction, lower

accuracy levels can be tolerated for analytical models.

2.3 Automatic vs. Manual Systems

Several performance modeling systems require a rewrite of application code in a

modeling language. This requirement of manual intervention can discourage use

of tools which rely on these models. Tools which rely on information which can be

acquired from application source code, trace files, or an instrumented run of the

program are much more likely to be used in improving performance.

Morris et al. have developed a simulation data flow language for modeling

distributed and parallel systems. The language includes a graphical interface as

well as a text representation. In addition to being cumbersome, the language

appears to be limited to small configurations of processors and does not scale to

MPP systems. The LaRCS language developed by Lo et al. is used to describe

data flow in an application [65]. The system then builds a task graph which is

used to map a problem to a physical processor array.

17

Performance prediction is important enough that some researchers have

suggested incorporating performance analysis into the early stages of the software

engineering process. Wabnig and Haring have developed a system where programs

are specified using directed task graphs [44]. The PAPS (Parallel Program Per-

formance Prediction Toolset) is then used to generate a timed Petri net for the

application [94]. A Petri net simulator is then used to generate a PICL (Portable

Instrumented Communication Library) file. Using this system the programmer

is able to focus on performance early in the design cycle and project results for

various architectures [95].

Saghi et al. have developed a system to select the best mode of parallelism

to use for an application [83]. The user specifies the complexity of each part of

an application by hand and the system determines which parallel implementation

will result in the highest performance on a particular hardware architecture. Since

algorithmic complexity must be specified by hand this technique results in excessive

overhead for the programmer.

By having the programmer input an augmented task graph representation

of an application, the methodology proposed by Menasce predicts the performance

of message passing programs with looping structures [71].

2.4 Static vs. Dynamic Analysis

Of particular importance are prediction techniques which incorporate information

from the source code or from an instrumentation run of a target application. These

methods achieve higher accuracy and allow a programmer to view the effects of

modifications to an algorithm and implementation. Dynamic performance predic-

tion techniques use sample runs on a target architecture to determine the amount

of time spent in communications and computations. Static methods gather in-

formation strictly from the application source code. Isoefficiency metrics can be

18

viewed as a static performance prediction method but the overhead necessary to

have an analyst derive the isoefficiency function limits their usability.

Previous work in reconstructing instruction traces has examined the mini-

mal amount of data necessary to represent control constructs in sequential appli-

cations [61]. A similar analysis of parallel applications indicates that pure static

analysis is not sufficient to characterize the execution time of an application. Al-

though static methods may be able to predict speedup values for many programs,

predicting the number of operations to be executed requires knowledge of the flow

of control which cannot be predicted at compile time.

2.4.1 Dynamic Methods

The PPPT, a Parameter based Performance Prediction Tool, developed by Fahringer

is a dynamic technique used to parallelize and optimize code in the Vienna Fortran

compilation system [31]. An instrumented run of an existing Fortran 77 program

is used to locate sections of the code where a majority of the time is spent. The

instrumentation run also is used to determine program unknowns, such as loop

iteration counts and branch probabilities. The prediction system is not applied to

scalable applications and the authors have noted that performance prediction for

programs with variable problem size is an open problem. Similar work has also

been performed by Chapman [14].

Through examining system statistics at run time, Crovella et al. determine

the cause of poor performance in an application [25]. This information is used

in performance debugging of an application. More recent work has focussed on

using a large number of instrumented runs of a sample application in order to

fit equations to the various overhead functions for parallel programs [26]. These

equations can then be used to predict performance as the problem size is varied.

Dynamic performance prediction techniques have the following characteris-

tics:

19

Strengths

The analysis procedure for these techniques is automated and requires

little effort from the programmer.

High levels of accuracy can be attained for the problem size used during

instrumentation run since constants are preserved in expressions for the

number of operations performed.

Weaknesses

These methods generally discard symbolic information about loop iter-

ation variables and are limited in their ability to accurately model the

behavior of complex loop constructs.

Curve fitting is inexact and time consuming. Multiple runs of an ap-

plication on the target architecture for multiple algorithm implementa-

tions require excessive use of scarce computational resources. The time

required may also discourage programmers from experimenting with

multiple implementations in order to optimize an application.

2.4.2 Isoefficiency

The isoefficiency metric has been developed to describe the rate at which the prob-

lem size must be increased in order to maintain constant efficiency as the number

of processing elements grows [36, 59, 60]. In order to develop the isoefficiency

function, an algorithm must be analyzed to determine asymptotic equations for

the number of computations and communications performed in a parallel applica-

tion. Applications with lower order isoefficiency functions will generally be able

to make more effective use of increasing numbers of processors [38, 39]. Other

researchers have developed metrics similar to isoefficiency which describe the rate

20

at which the problem size must be scaled in order to achieve acceptable parallel

performance [73].

Isoefficiency analysis can be characterized in the following way:

Strengths

Complex iteration constructs can be accurately modeled since the pro-

grammer has access to structure of the source code or algorithm.

The performance prediction process can occur extremely quickly since

sample runs of the application are not necessary.

Weaknesses

Since an asymptotic analysis is performed, the constants are lost as

equations for operation counts are derived. Execution time cannot be

predicted unless more detailed analysis is performed. Although isoeffi-

ciency may provide a good theoretical measure of an application, esti-

mating the performance on a finite number of processors with a finite

problem size requires additional details.

Analysis of algorithms is an extremely labor intensive activity. Most

programmers are unwilling to perform the work necessary to determine

the complexity of each part of their code.

The symbolic performance prediction techniques described in Chapter 4

combine the strengths of dynamic methods and isoefficiency. A single instrumen-

tation run is performed on the program with a scaled down problem size in order to

build a call graph. This call graph is combined with symbolic information about

the iteration variables in enclosing loops obtained through static analysis. An

exact expression is then generated for execution time as a function of system pa-

rameters and the problem size [21]. With compiler inserted instrumentation code,

little effort is required from the programmer. The instrumentation run can also

21

be performed on a single processor workstation, freeing MPP systems for running

production code.

Previous research into deriving order notation bounds on the complexity of

computations and communications for important applications [82] could be used as

input into our model in order to investigate applications where there is no available

source code implementation.

2.4.3 Static Methods

Balasundaram et al. [5] have developed a static performance estimator based on a

training set approach. Their analysis focuses on matching sections of source code

with templates for which performance has previously been computed. Compiling

a sufficient number of templates to match a given program is a difficult task and

has been shown to be impractical by other researchers [30].

The MetaMP language described by Otto et al. was developed for use

as an intermediate language between HPF and message passing level code [75].

The Tiny loop restructuring tool [96] can be used to predict the performance for

MetaMP programs. Tiny symbolically analyzes code to count the frequency of

floating point operations, memory accesses, stride-1 inner loops, non-stride 1 inner

loops and invariant in inner loops. An attempt is then made to analyze which

loop structure will result in the highest performance. Although the tool is able to

analyze the effects of loop restructuring it does not address the problem of speedup

calculations for an entire application.

While researching automatic data partitioning techniques, Gupta and Baner-

jee have also investigated performance prediction [40, 41]. They use constraints

derived statically from the source code in order to generate a model. Although

the user is currently required to input loop bounds and true ratios for condi-

tional statements, the authors feel that compilers should be able to generate most

of this information. Pattern matching at the statement level is used to derive

22

Isoefficiency Static Dynamic

Ease of Use Difficult Automated Automated

Accuracy Low Medium High

Table 2.3. Characteristics of isoefficiency, static and dynamic models.

constraints on data distributions. These constraints combined with goodness mea-

sures, which approximate the communication penalty if the constraints are not

satisfied, are used to predict the execution time for a program. The work is based

on Paraphrase-2 [78] and focuses on data distributions for Fortran 77 code. The

authors state that static compile time analysis should be feasible for applications

with a regular computational structure and static dependence patterns that can

be determined at compile time.

Although static analysis cannot be used for predicting execution time, it

can be useful in guiding a compiler through estimating the relative speedup values

attainable by alternate optimizations of a program [20, 18]. The model described in

Chapter 3 implements a static analysis technique designed to differentiate between

various implementations of a program. It can also be used for applications with

fixed problem size where a sample execution run would take too much time to be

practical.

Figure 2.3 summarizes the characteristics of static and dynamic models.

Static methods are necessary in order to aid in compiler optimizations and for

performance prediction of fixed problem size applications. A single instrumentation

run with a small problem size, combined with static information can be used to

predict performance for scalable applications.

The static model described in Chapter 3 differs from related work in that

it is a first attempt at performing totally static prediction for applications across

diverse hardware platforms. The dynamic model described in Chapter 4 represents

23

new work in accurate performance prediction for scalable applications. These mod-

els are tailored to meet the requirements for performance debugging, architectural

improvement, hardware selection and compiler optimization. Table 2.4 specifies

which characteristics are necessary in order to meet these requirements. By using

analytical models which automatically incorporate information from real applica-

tions, all of these criteria can be met. This work is the first to our knowledge

to apply the regression techniques described in Chapter 5. The full equation for

execution time generated by the symbolic performance model allows us to perform

mathematical manipulations to determine the sensitivity of an application to var-

ious system parameters. This sensitivity and cost optimal analysis presented in

Chapter 6 also originated with this research.

24

Models based on

real programs

vs.

Theoretic Models

Analytical

Models

vs.

Simulations

Automatic

model

generation

vs.

Manual

Static

vs.

Dynamic

Performance

Debugging Real Programs Analytical Automatic Don't Care

Architectural

Improvement Real Programs Don't Care Automatic Don't Care

Selection Real Programs Don't Care Automatic Don't Care

Compiler

Optimization Real Programs Analytical Don't Care Static

Table 2.4. The targeted uses of performance information impose specific con-
straints on the types of models which can be employed in generating predictions.
The rows of the table show the four uses of performance prediction information.
The columns indicate different ways of categorizing models. A given use may
require a specific characteristic in given category, or it may have a don't care
condition.

25

Chapter 3
Static Performance Prediction

Historically there have been two significant barriers to the development of accurate

performance models for multicomputers. Programmers who are familiar with the

structure of parallel applications often do not have the motivation or hardware

background to build accurate models of parallel architectures. As a result, they

usually do not have adequate performance feedback during the development of a

parallel application. Secondly, architects who understand the underlying systems

have not had access to algorithmic information from real applications to use as

input into their models. Consequently, engineering models typically use statistical

inputs or simplified program "kernels" instead of data collected from the execution

of non-trivial parallel programs. As a result there has not been a consistent im-

provement in the balance between the subsystems of multicomputers [22, 49, 92].

The static performance prediction technique described here provides a vital bridge

between parallel system designers and programmers. It allows programmers to

evaluate algorithmic choices on different parallel architectures, and it allows sys-

tem designers to understand the effects of varying system parameters using real

application data.

For our purposes, multicomputers will be defined as parallel computers

where the processors do not have shared memory [80]. This definition includes ev-

erything from clusters of workstations on Ethernet to machines with much faster

and more complex interconnection schemes. These systems promise to provide

solutions to many problems that require more computational resources than are

available on conventional sequential processors.

26

We will use the term "Architectural Scaling" to denote the process of writ-

ing an application for platforms ranging from a cluster of workstations to a MPP

system. A similar term, "Distributed Program Development" [76], has been coined

to describe the process of developing an application on a machine when the pro-

gram is intended to run on another specific machine. Architectural scaling is the

process of developing an application which will run on several different parallel

architectures. This process relies heavily on the ability to predict the performance

as system parameters change and can benefit from the results of static analysis.

A single processor family will often be used from the desktop to the MPP

machine. In this environment, programmers will want feedback on the likely per-

formance of their codes as they move them between different computing platforms.

This process of architectural scaling can consume significant computational and

human resources if performance prediction is not available. System designers in

this environment will need performance prediction information to know where to

target their MPP machines to provide the highest increase in performance over

clusters of workstations.

3.1 Model Specifications

Performance prediction information is useful only if it can be obtained at a reason-

able cost in terms of programmer effort and computational resources. This model

has been tailored for the following uses:

During program development, it is important for the programmer to deter-

mine the effect that changes to the source code will have on the performance

of the algorithm. If this performance prediction is difficult or time consuming,

the programmer will not be likely to try very many different implementations

of an algorithm. For this reason, our performance model will rely primarily

on algorithmic information extracted from the source code.

27

Where multiple parallel architectures are available, performance prediction

information can also allow the user of an application to choose the architec-

ture and number of processors which will result in the most efficient use of

computational resources. Because our model can make predictions of MPP

performance from data collected on smaller systems, it offloads performance

tuning tasks from large production systems. This is particularly valuable

when a smaller configuration of a multicomputer is locally available and the

larger system is a shared national resource.

Many parallel applications fail to achieve good performance on multicomput-

ers because the systems are unbalanced. If the message passing time is too

high compared to the time for a computation, then fine grain applications

will never achieve good performance. System designers have little informa-

tion about how balanced the communication and computation must be to

perform acceptably on a target set of applications. Since this model does not

require sample runs on the target architecture, system designers can use it

to determine the effects of varying system parameters on a variety of parallel

applications.

3.2 Performance Metrics

There are several ways of evaluating performance in a parallel environment. On

a sequential machine, the principle performance goal is to minimize the execution

time of an application. In a parallel environment it is also important to make

efficient use of the available processors. If the parallel machine is not able to

execute the algorithm significantly faster than a single node, then there is no reason

to buy a parallel machine; it would be more cost effective for the algorithm to be

run on a single processor. Speedup is often used as a measure of how efficient an

architecture is at executing a parallel algorithm. Although opinions are divided on

28

exactly how speedup should be measured, there is some evidence that a majority

of computationally oriented mathematical researchers feel that speedup should be

used as the primary measure of parallel performance [6]. The speedup achieved by

an algorithm running on p processors can be defined as:

Time to solve a problem using the best

sequential algorithm on one processor
Speedup(p) =

Time to solve the same problem with

the parallel algorithm on p processors

It is often extremely difficult to determine the execution time of the best sequential

algorithm for a given problem. For this reason we will use parallelizability, or rela-

tive speedup, as the primary performance measurement in this research. Relative

speedup is defined as:

S(p) =

Time to solve a problem using the parallel

algorithm on one processor

Time to solve the same problem with

the parallel algorithm on p processors

3.3 Model Development

Previous research has identified factors which are important predictors of perfor-

mance. Several trends in modern distributed memory parallel systems permit us

to make simplifying assumptions which lead to a more understandable model. We

use these assumptions to develop the preliminary parallel model described here.

The time to execute the program on a single processor T1 = T. + Ty where

T. is the inherently sequential part of the algorithm and Tp is the parallelizable

part of the algorithm. Several researchers [32, 73] have suggested the following

formula to model the parallel execution time of an algorithm:

T (P) = + + cr(P T)

29

where cr(p,r) is a function which estimates the communication overhead given the

topology T. We will use an enhanced version of this formula.

3.3.1 Compiler Effects

The Dataparallel C compiler generates a standard C program as its output. The

native C compiler then compiles the C code into an executable. The quality of

the native C compiler can have a big effect on the number of machine instructions

generated for each logical operation specified in the program. A constant for each

compiler Co can be determined through benchmarks or through extrapolating from

results of the same compiler on other architectures. This compiler factor will be

used to create a better estimate of the number of instructions executed in an

application.

3.3.2 Parallel Overhead

We have found that it is important to include a term for parallel overhead intro-

duced by the emulation of virtual processors in Dataparallel C. Depending upon

the choice of global or local variables, different optimizations are possible which

result in variable overhead for virtual processor (VP) emulation. The number of

times the compiler must set up a VP emulation loop (XA) can be used to esti-

mate the parallelization overhead in the computation. The time spent in parallel

overhead, TA will be accounted for in our model by the term CoXA.

The generalized form of the relative speedup for p processors can be ex-

pressed as:
T1 Ts + Tr

S (PI 7-(p) Ts 4- lf, + cr(131T) + TA

This reduces to Amdahl's law when cr(p,7) = 0 and TA = 0.

30

3.3.3 Trends in Floating Point Performance

In the past, floating point arithmetic was so much more time consuming than

integer arithmetic that integer instructions were ignored in calculations of algo-

rithmic complexity. The current generation of microprocessors exhibit floating

Performance that is equal to or greater than the integer performance. Many of

the microprocessors used as compute nodes in multicomputers can execute two

floating point operations (an add and multiply) in the same time that an integer

instruction can execute. Several of the major multicomputer vendors are using this

class of microprocessors for computational nodes. The Intel Paragon uses the i860

processor which has this feature [51]. The IBM POWERparallel machine (SP1)

uses RS/6000 technology which also has comparable times for floating point and

integer instructions.

Since floating point and integer instructions take close to the same amount

of time in these machines, it is possible for the model to estimate the number

of computations through examining the parse tree generated by the compiler and

counting the number of operations in sequential code (X3) and in parallel code

3.3.4 Communication Overhead

The o(p, r) term incorporates overhead caused by communication between proces-

sors during the computation. In the general case, it accounts for effects caused by

the topology dependent distance between processors, link bandwidth and message

startup time for communications. For this analysis, we will assume that the ma-

chine uses cut-through or wormhole routing. With these circuit-switched routing

schemes, the transfer time between any two nodes is fairly similar. Most modern

parallel computers employ some form of circuit-switched technology to avoid the

delay associated with store and forward routing. This simplifies the o(p, r) term by

31

allowing us to ignore distance considerations when estimating the communication

cost for an operation.

One of the most significant contributors to communication overhead in the

current generation of multicomputers is the message startup time (TO. We will de-

fine message startup time as the total time between the call to the communication

library and when data begins to be transmitted across the interface. This startup

cost includes time spent in the communication library and system call overhead

as well as the inherent time for the hardware to begin transmitting. As multicom-

puters have matured, they have added multitasking operating systems and more

stringent error checking which has increased the overhead associated with starting

a communication. Several researchers have noted that startup cost is the predomi-

nant factor in determining the total cost of communication [49, 92]. For this reason

we will assume that overhead induced by limitation in actual bandwidth on the

communication channels and link congestion are actually second order effects, and

we will not consider them in our model. This makes the model much simpler, since

it does not have to deal with message length, but can just account for the num-

ber of messages exchanged. Some applications which transmit large data sets will

also see the the network bandwidth as a first order effect, but for problems with

neighbor communications it can often safely be ignored. Since the Dataparallel

C compiler inserts explicit message passing calls into the instruction stream, the

number of communications X, can be determined from the source code. We will

define the normalized message startup cost C, as the ratio Tc/Ts (where To is the

time to execute a floating point instruction). The model will estimate the total

number of cycles spent in communication to be XeCc.

3.3.5 Memory Effects

Several researchers have noted that the memory hierarchy can have a significant

impact on the performance achieved by a parallel program [35, 98]. References to

32

parallel variables in Dataparallel C are grouped into arrays of structures with an

element for each virtual processor. When a program enters parallel code through

the domain statement, we will assume that the entire array containing parallel

variables used there will be accessed. This assumption holds for the problems

we will be studying in this research and is approximately true for many other

Irregular computational problems. Because of the predictable sequential access

of these arrays, it is possible to predict the number of memory accesses which

will occur. These uncached accesses will generally be limited to parallel code and

have a significant effect on the performance of popular multicomputer processors

including the iPSC/860 [72]. The number of uncached memory accesses (Xm)

and the number of cycles necessary to access an uncached memory location (Cm)

account for the time spent waiting for cache lines to fill.

3.3.6 Applying the Assumptions

Using information extracted from the source code, the compiler can estimate X,

and Xp, the number of operations in the sequential and parallelizable portions of

the code. Let 7', = CoX,T4, and Tp = (CoXp + Cm Xm)To.

Our model of o(p, r) involves only the startup cost 7', and the topology.

We can express i'(p, r) = olp,r)1To in terms of the normalized startup time. For

a broadcast communication on a hypercube topology o'(p, r) = XXVI. + log(p)).

Neighbor communications would result in cri(p,r) = XcCc.

Using the dominant effects we have described here,

T, = (Cp(X.,+ Xp) + C,X,,)T4,

(CoXp+ C,X,,)T4,Tp = Cd,X,714,+ +Tocl(p,r) + Tit,C4,XA
P

With speedup

S(p) = T, /Tp

33

--.-- coxp+cx,CoX, + + a(p,r) + C146 XA
P

co(x, + Xp) + c,nxn,

the To terms drop out and we are left with a speedup equation dependent only on

the variables which are available to our prediction tool.

The terms X,, Xp, X,n, XA and X, can all be determined from the internal

parse tree generated by the compiler. The term Co can be determined through a

sample program or through experience with the compiler on other processors. Co

describes the efficiency of the compiler in generating optimized code. The terms

Cc and Cm can be obtained from system specifications or through benchmark

programs.

Given an equation for S(p), we can derive expressions describing the levels

of balance which are required for an efficient parallel architecture. For our analysis

we will assume that an efficient execution of an algorithm will require a relative

speedup of at least p/2 where p processors are used. This results in processor

utilization of 50%.

Theorem 3.1 In order to achieve a utilization of 50% on grid problems with

neighbor communications, the following inequality must hold:

Cc
Co(X + Xp) + CmXmCmXm (p 1)CoX, pC44XA<

PXc

Proof:

Given S(p), we can determine the utilization

S (p)
ZAP) =

=

=

P

CC (Xs + Xp) + CniXT.
pC0X3 + C4,Xp + C,,,X,, + pcqp,r) + pC0XA

C,6(X. + Xp) + CmXm
(cc/(x, + Xp) + CmXm) + (p 1)CoXs + PerqP, r) + PC0X,

1
:---- 1 (P-1)0X,+Peri(P,) 4-PC0XA

C4,(Xii-Xp)i-CXm

In order to achieve a utilization greater than 50%

(p 1)C0X, + pVcC, + pCi6X),
C4,(X, + Xp) + CmX, < 1

This can only occur when

Ce < Co(X. + Xp) + Cm Xm (I) 1)C,6X. pC4,XA

pX,

0

34

Several intuitive relationships can be observed as special cases of Theo-

rem 3.1. If the message startup cost, C is to have a positive value, then:

Co(X, + Xp) + C,X,,, > (p 1)CoX, pC0XA (3.1)

If we assume that the memory component of the execution time (CmXm) and the

loop overhead (pC4,X)J are not dominant, then Equation 3.1 reduces to Xp > peYs.

The parallel component of a computation must be more than p times as large as

the sequential component if U(p) is to be greater than 50%.

Assuming memory accesses and loop overhead are insignificant and that the

parallel component of the execution time dominates the sequential time

C, <
CoXp

pX,

Essentially, this expression indicates that the grain size must be larger than the

cost of a communication.

We can also observe that higher communication costs can be tolerated when

a slower memory subsystem is used or when a poor compiler causes increased values

of Co. Theorem 3.1 also indicates the sensitivity of parallel computations to VP

emulation loop overhead.

35

3.4 Experimental Results

The results of several experiments are presented here to illustrate the utility of the

analytical model in predicting performance. One set of experiments was performed

to determine if the tool could accurately predict the performance effects of chang-

ing the implementation of an algorithm on a fixed target machine. This kind of

performance prediction information would be used by a programmer or compiler to

optimize a program. Other experiments were performed to demonstrate that the

tool could predict performance on different target machines for several different al-

gorithms. This kind of prediction information would be useful to system designers

in determining the effects of changing system parameters.

3.4.1 Source Code Variation

One of the challenges of programming in Dataparallel C is determining the parallel

type to use for different variables. Dataparallel C has a notion of global (mono)

variables which are kept consistent across all of the physical processors and local

(poly) variables which may be different for every virtual processor. There is a
complex set of rules for determining which parallel type to use for loop variables

or array index variables to produce the best performance [46]. In some cases,

the choice depends on the target architecture to be used by the application. If

the compiler were able to predict the performance characteristics for each of the

choices, it could automatically select the correct types and relieve the programmer

of the task of variable type selection.

Matrix multiplication is often used as a benchmark on parallel machines.

Several versions of the matrix multiplication algorithm have been implemented in

Dataparallel C. As a test of the model we changed two of the loop indices from par-

allel local variables to parallel global variables. The experiment was performed on

the Intel iWarp array. The iWarp is connected in a mesh topology, uses wormhole

0...0
E.I

60

50

40

30

20 -

10

Local loop vacs (act) -A--
Local loop vacs (pred) -`.
Global loop vars (act) -8

Global loop vacs (pred) -13--

I0
0

t

10 20 30 40 50
Number of Processors

60

36

Figure 3.1. Experimental and predicted values results for 256 x 256 matrix mul-
tiplication on the iWarp array.

routing, has a message startup latency of 470 cycles and has similar floating point

and integer execution times. The prediction tool was able to accurately predict

the performance of the original version and the new version called "matrix2+"

The results are shown in Figure 3.1.

3.4.2 Experimental Results on Different Target Machines

A second set of experiments was performed using two target architectures that

exhibit the features we described in our model development. The experiment

was performed on the Intel iWarp array and on an iPSC/860. The iPSC/860

uses the Intel i860 processor, is connected in a hypercube topology, uses wormhole

routing, has a message startup latency of 5280 cycles and has similar floating point

and integer execution times. Experiments were performed using several standard

Dataparallel C applications and were reported previously [20]. The experimental

45

40

35

30

25

20

15

10

5

Experimental iWarp
Predicted iWarpiWarp A'

Experimental 1860 -e
Predicted i860 -13

0
0 10 20 30 40 50

Number of Processors
60

37

Figure 3.2. Experimental and predicted results for the shallow water atmospheric
model.

results indicate that the analytical model is successful in predicting performance

in the cases we have examined. Given an accurate model, important analysis can

occur with respect to a specific application.

The shallow water atmospheric application was developed by the National

Center for Atmospheric Research for benchmarking the performance of parallel

processors [46]. The program solves a system of shallow water equations on a
rectangular grid using a finite differences method. The model uses a two dimen-

sional array of data elements that communicate with their nearest neighbors. The

performance prediction tool is able to approximate the actual performance fairly

accurately. More significantly, the tool was able to differentiate clearly between

the performance to be expected on the two machines. The results are shown in

Figure 3.2.

Performance information from an analytical model can allow a system archi-

tect to observe the effects of changing specific system parameters. In Figure 3.3 the

38

message startup cost is varied for the shallow water atmospheric model to show the

effect this parameter has on speedup. Figure 3.4 shows how cache miss penalty

and message startup cost interact in predicted speedup results. Machines with

large cache miss penalties will achieve greater speedup values for a given message

startup cost because their effective grain size is larger. The performance in Mflops,

however, degrades on machines with large values of Cm as is shown in Figure 3.5.

Although machines with extremely low latency memory and network subsystems

may promise higher performance, a more inexpensive solution may be acceptable

for many users. If we assume an exponential increase in cost, corresponding to

improvements in memory and network speed, a plot of performance per dollar can

be generated as is shown in Figure 3.6. Given this information, manufacturers can

position new machines near the cost optimal points for important applications.

Users can also select parallel architectures which will be most economical for their

particular needs. Results from this analytical model can be of significant use to

systems architects and MPP users.

Ocean Circulation Model

This program simulates ocean circulation using a linearized, two-layer channel

model [46]. This application also uses nearest neighbor communication; however,

in this case the two machines achieve nearly identical speedup results. This is

due to a combination of differences in grain size and the number of accesses to

uncached memory between the Ocean Circulation Model and the shallow water

model. It would be difficult for a programmer to guess that the two programs would

perform with such disparity from perusing the source code. Again, the performance

prediction tool was able estimate the speedup attained by the application. The

results are shown in Figure 3.7 and Figure 3.8.

39

Figure 3.3. Speedup results for the shallow water atmospheric model with variable
message startup cost. C, is the message startup time divided by the time for an
arithmetic operation. A C, value of 470 corresponds to the iWarp processor. The
value 5000 approximates the iPSC/860.

Figure 3.4. Speedup results for the shallow water atmospheric model for 64
processors with variable message startup cost (Startup) and cache miss penalty
(Cache).

40

Figure 3.5. Mflops results for the shallow water atmospheric model for 64 proces-
sors and variable message startup cost and cache miss penalty. A processor speed
of 10Mflops is assumed for each processing element.

Figure 3.6. Predicting Mflops/dollar for the Shallow Water Model

a
V3

60
Experimental Ocean -4.-

50 - Predicted Ocean -A.--
Experimental Sharks -8

40 Predicted Sharks

30

20

10

0
0 10 20 30 40 50 60

Number of Processors

41

Figure 3.7. Experimental and predicted results for the Ocean Circulation Model
and Sharks World on the Intel iWarp multicomputer.

Sharks World

Sharks World is included as an example of an application with few communications.

The program simulates sharks and fish on a toroidal world [46]. As expected, both

machines are able to achieve near linear speedup on this application. The predicted

and actual results are shown in Figure 3.7 and Figure 3.8.

3.4.3 External Sorting

External sorting is a disk intensive problem. N records must be read and written

to disk while O(Nlog(N)) comparison operations are performed. Additionally, in

the worst case, all N records will have to pass through the bisectional bandwidth

of the interconnection network. If the disk speed is not well balanced with the

processor and network speed, the time spent reading and writing data will often

dominate [63]. There are few guidelines as to how well balanced these system

parameters should be in order to achieve acceptable performance. Preliminary

60

50

40

30

20

10

0
0 10 20 30 40 50

Number of Processors
60

42

Figure 3.8. Experimental and predicted results for the Ocean Circulation Model
and Sharks World on the Intel iPSC/860 multicomputer.

work has been done to predict the effects of architectural features on the sorting

problem. We have developed a new parallel sorting algorithm that maximizes

the overlap between the disk, network and CPU subsystems on a parallel node

[19]. This algorithm hides much of the imbalance of a particular subsystem behind

the operations of the others. Because of this overlap, we are able to draw some

conclusions about the minimum levels of system balance that are necessary for any

sorting algorithm. A model was built using this algorithm to examine the sorting

problem on parallel architectures.

Figure 3.9 shows the speedup values predicted on 100 processors with skew

equal to 1.5 as the network and disk speeds vary. Skew is defined as the ratio of

the maximum number of records which are written to disk by any processor to

the average number of records written by a node on the machine. The system

parameters of several actual machine architectures have been labeled to show the

estimated performance of the overlapped sorting algorithm on actual machines.

All of the machine plots were made assuming SCSI disks on each node with a

43

3Mbyte/sec transfer speed. Figure 3.10 shows a close-up view of the region of

maximum speedup. The Intel Paragon is shown to be on the plateau of maximum

performance, but it is near the point where severe performance degradation would

occur if network transmission time were increased. The network on the Paragon

was assumed to have 200Mbyte/sec links configured in a mesh [51]. The IBM SP1

is plotted assuming a 6Mbyte/sec omega network [62]. The Meiko CS-2 has a

logarithmic network where bisectional bandwidth increases linearly with the num-

ber of processors. The Meiko plot assumes that each node has a 50Mbyte/second

link [70]. The SP1 appears to have higher disk transmission times because of the

faster CPU speed. Both the network and disk axes are given in terms of the CPU

speed. The Ethernet plot in Figure 4 pertains to a network of Sun SPARCstation

1 workstations with SCSI disks connected with Ethernet. It is obvious that the
network bisectional bandwidth must be significantly increased before a network of

workstations can be used with the overlapped sorting algorithm.

In order to validate our analytical sorting model, we used algorithmic infor-

mation from the Parallel Sorting by Regular Sampling (PSRS) [86] algorithm in our

model. We then compared our speedup predictions to those documented by the

authors of the PSRS paper [86]. Our results were within 10 percent of the empiri-

cal results for the iPSC/2 and the iPSC/860 multicomputers. The authors claimed

37% lower performance than we predicted for the network of 8 Sun 3/80 worksta-

tions. It was impossible to determine the exact test environment used with the

workstations and we attribute the additional error to our assumptions. Table 3.1

shows the predicted and actual results for the PSRS algorithm. In Figure 3.11

we show the impact of message startup time on the PSRS algorithm. Before the

last merging phase of the algorithm can proceed, p communications must be initi-

ated by each processor. As the number of processors becomes large, this message

startup time degrades the speedup attained. With the analytical model we have

proposed, algorithmic limitations can be detected without using critical resources

100

80

60

Speedup 40

20

44

1000

Figure 3.9. Results of an analytical model developed to investigate the impact
on the sorting algorithm of varying system parameters. The Disk and Network
axes are given in number of comparison times to transfer a tuple. Skew is assumed
to be 1.5. Points are plotted for the Intel Paragon, IBM SP1, Meiko CS-2 and a
network of Sun SPARCstation 1 workstations connected by Ethernet.

on MPP systems. The majority of time spent in performance debugging should be

spent working with a performance prediction tool in a workstation environment.

Proper system balance is important to achieving acceptable speedup on the

sorting problem. Modeling algorithmic behavior can help system designers know

what effect their design decisions will have on the efficiency of an algorithm family.

45

Figure 3.10. Closer view of the maximum speedup plane of the analytical model.
The Disk and Network axis are given in number of comparison times to transfer a
tuple. Skew is assumed to be 1.5. Points are plotted for the Intel Paragon, IBM
SP1 and Meiko CS-2.

Actual Predicted

Machine Nodes Items sorted Speedup Speedup Error

iPSC/2-386 32 4000000 27.5 25.0 9.08%

iPSC/860 64 8000000 38.0 34.0 10.6%

Network 8 500000 4.0 5.5 37.1%

Table 3.1. Actual and predicted speedups for the PSRS algorithm. Actual
speedup results are from Shi [86].

46

Figure 3.11. Analytical results for the PSRS algorithm as the number of proces-
sors becomes large. The transfer time is given in number of comparison times to
transfer an integer. The message startup time is set at 5000 comparison times.
This corresponds to the startup time for the iPSC/860.

3.5 Summary

Static performance prediction plays an important role in improving the efficiency

of multicomputer environments. It can be used to provide feedback to optimizing

compilers on the relative benefits of alternate program transformations. Static

models are also important in characterizing the performance of fixed problem size

applications where an instrumentation would take an excessive amount of time.

We have shown how this methodology can be used in analyzing the perfor-

mance of several application classes. The accuracy of static analysis is also shown

to be quite high on some applications. For other applications with irregular struc-

ture, an instrumentation run of the application run is necessary in order to achieve

acceptable accuracy.

47

Chapter 4
Dynamic Performance Prediction

When additional processing elements are added to a computation, scalable ap-

plications can increase the problem size in order to maintain efficient execution.

Speedup cannot be used as a performance metric for these applications since the

number of computations will likely change as the number of processors vary. The

performance prediction methodology used for scalable applications uses algorith-

mic information derived from the source code of a high level parallel language

and an instrumentation run of the application with a small problem size. This

information is combined with an analytical hardware model in order to predict

execution time as the number of processors and the problem size vary. The tech-

niques described here are termed dynamic because of their reliance on run-time

instrumentation data. They also employ static information generated by the Dat-

aparallel C compiler. By maintaining a symbolic representation of the computa-

tional model additional mathematical characterizations can be made through the

use of algebraic manipulation packages such as Maple [15].

This model can be used to improve the architecture of future multicom-

puters through quantifying the relative benefits to real applications of enhancing

different subsystems. The performance prediction system also can be used by

programmers to improve the performance of scalable applications by pinpointing

performance bottlenecks and allowing the developer to evaluate performance as

the architecture and problem size vary. Some applications, however, will not be

able to make effective use of a given hardware platform regardless of how many

performance improvements are made. The prediction tools developed here can be

48

used to determine which architectures will yield maximal performance for a set

of target applications. This information can be used to make wise procurement

decisions and to avoid the frustration of using a machine with a poor match to a

problem space. The automated performance modeling techniques described here

simplify the multi-dimensional task of algorithmic and architectural analysis.

In this chapter we first specify the class of scalable parallel applications

which are targeted by this research. The dynamic performance prediction model

and its implementation are then described.

4.1 Scalable Algorithms

Scalable, data parallel applications are an important sub-class of problems which

can be solved on multicomputers. It has been estimated that 90% of scientific and

engineering applications are data parallel in nature [33]. Many of these programs

can be scaled up by varying the number and size of data elements. The increased

complexity induced by varying problem size makes automated performance pre-

diction even more important for these programs.

Scalable algorithms are able to utilize increasing numbers of processing el-

ements efficiently. Let Tq be the number of sequential operations and Tp, be

the number of parallel operations in an application. The total execution time on

p processors can be expressed as:

Tp,71(p) = Ts, +

49

The maximum attainable relative speedup for a non-scalable application on p pro-

cessors is:

S (p) < T (1) / T (p)

Taeq Tpar
T se

Tseq T
Tq Tpar

Taeq
as p 00

If f is defined as the fraction of operations which are sequential in nature, then

f

and

Tseq

Tseq Tpar

S(p) <= 7

This limitation on speedup for applications with a constant number of computa-

tions is commonly referred to as Amdahl's law [80].

As the number of processors increases, the accuracy of scalable applications

increases while the elapsed time may remain constant. For example, a weather

prediction program may require results in less than 24 hours, with the number of

computations being scaled to achieve that execution time. Figure 4.1 illustrates

the use of the Jacobi relaxation algorithm in solving for the steady state tem-

perature distribution across a steel plate [80]. The plate is divided into square

elemental regions, and the temperature is assumed to be constant across each re-

gion. A virtual processor is associated with each region. During an iteration of the

algorithm, every virtual processor finds the average of the temperatures of each

of its four adjacent regions in order to compute a next state temperature value.

When this algorithm is mapped to a parallel machine, a single physical processor

executes a virtual processor emulation loop to compute values for many regions.

As the number of available processors increases, the problem size can be scaled

50

ire--.......

(

,...../-"No

Virtual Processor

Scale Up

c

(

Figure 4.1. Illustration of problem size scaling for the Jacobi algorithm.

up, creating additional rows with smaller elemental regions. The resulting steady

state distribution will be more accurate because the temperature is assumed to be

constant across a smaller area.

Scaled speedup on p processors, denoted SS(p), has been used to determine

the efficiency of scalable applications [42, 59].

Leg + pTparSS(p) <
Tseq + 71T---7

,=.-, p when Tpar >> Leg

If we define efficiency on p processors, denoted E(p), as the ratio E(p) = SS(p) /p,

then efficiency for scalable applications can be as high as 100% on MPP sys-

tems. The ability of these applications to increase the number of computations

as additional processors become available gives them an important advantage over

programs with fixed problem sizes. The problem size can be scaled linearly with

the number of processors or with the size of memory available as new processing

nodes are added to the computation [74].

Performance prediction is particularly important for scalable applications

because they are not amenable to traditional performance debugging techniques.

51

Given a sample application that runs for one hour on 1000 processors, it is im-

practical to gather trace data or to perform a simulation of the program to gather

performance information. If we assume that accurate trace-based analysis requires

2 Mbyte/sec of data [50] then our sample application would generate 6 Tbytes of

trace data. This data volume is clearly impractical even if the data could be written

in real time without significant performance perturbation. Methods which reduce

trace volume by an order of magnitude [61] are still unacceptable when viewed in

light of the current trend towards machines with rapidly increasing CPU speeds

and relatively constant disk bandwidth. Simulation techniques would require in

excess of 1000 hours for this sample program. This lower bound on simulation

time exceeds the maximum acceptable overhead for performance debugging. With

multiple MPP systems becoming available to a single researcher, performance pre-

diction is also an important tool in matching the appropriate hardware platform

to a specific application.

Accurate performance prediction information can be used by programmers

for performance debugging, by compilers to guide optimizations, and by system

architects to determine optimal hardware configurations for scalable applications.

The complexity of manual performance analysis for scalable applications is signif-

icantly greater than that found on parallel programs with constant problem size.

This research uses dynamic performance prediction techniques to make progress

in solving this important problem.

4.2 Dynamic Model Development

Many of the goals of this research were motivated by meetings with a commercial

MPP vendor to determine requirements for a performance analysis tool. Members

of the programming tools and system architecture groups suggested the following

specifications for a performance prediction system.

52

The model should allow a user to predict performance for larger problem sizes

and larger number of processors than the machine used during performance

debugging. This allows smaller parallel machines or workstations to be used

during program development with large MPP machines being reserved for

solving computational problems. It also speeds up instrumentation runs

of a program since smaller problem sizes can be used during performance

debugging.

One means of determining the portability of an application is to determine

the sensitivity of a program to changes in critical system parameters. A

performance model should allow the user to view the sensitivity to system

parameters as the problem size and number of processors vary. The validity

of the model can also be determined through analyzing the sensitivity of the

model to a particular parameter and the confidence level for that parameter.

Several of the MPP systems currently in production support advanced op-

erating systems with virtual memory. An effective performance prediction

model should account for paging activity as the data size grows to the point

that it does not fit in physical memory.

In order to enable performance debugging, a performance model must allow

the user to determine the relative contribution of each basic block in an

application program.

Figure 4.2 shows a block diagram of the dynamic performance prediction

system. Our implementation focuses on analysis for the Dataparallel C program-

ming language [46]. The basic constructs can be extended to other explicitly

data-parallel languages. We have found that programs written in high level paral-

lel languages enable more accurate and complete performance analysis techniques

than code written in an imperative language with message passing. This is another

argument for high level languages as opposed to the message passing added to an

53

Memory Hierarchy

Network Topology

System Parameters

Dataparallel C I

(Instrumentation Run)

Architectural Linearization)

I
--<Linear Parameter Model)

1

Equation for Execution Time

Figure 4.2. Block diagram for dynamic performance prediction system

imperative language style which is often used today. Given Dataparallel C source

code, instrumentation code is inserted to gather execution statistics which will be

used to build a call graph for the application. Architecture specifications for the

target machine are then passed to a linearization phase which outputs operation

counts for significant system parameters. These counts are then combined with

costs in time for each operation type resulting in a symbolic equation for execution

time. Since the result of this model is an equation rather than a time estimate

for a given problem size the execution time can be differentiated with respect to

a given system parameter. The resulting equation can be used to determine the

sensitivity of the application to changes in that parameter as the problem is scaled

lip.

We use a dense linear system solver as an example problem to illustrate

the steps taken in developing an analytical model for an application. Gaussian

elimination with partial pivoting and back substitution is used as the algorithm for

our sample application because of its complex iteration structure. Previous work in

54

performance prediction using a sampling method failed to achieve accurate results

for this application [20]. The program solves the linear system AX = b when the

matrix A is a dense array. Gaussian elimination reduces the A matrix to an upper

triangular system and then performs back substitution to compute the final X

values [80].

In the parallel implementation of this algorithm, two-dimensional data are

distributed by rows to all processors. For each column of the A matrix, the row

with the largest value in that column is used to reduce the remaining rows in

the system. Pseudo code for the elimination phase of the algorithm is shown be-

low. Performance prediction using sampling techniques is difficult for this problem

because the initialization value for the iteration variable of the innermost loop

depends on the iteration variable for the outermost loop.

for(i = 0; i < N; i++) {

pivot_row = find_max_row(i);

broadcast(pivot_row);

for(active virtual processors) {

for(k = i; k < N; k++) {

data [k] = data [k] - pivot _row [10 *data [i] /pivot_row [i] ;

4.2.1 Instrumentation Run

Instrumentation required by the dynamic performance prediction system can be

inserted by a source-to-source compiler. It consists of static declarations of pre-

defined data types and calls to a prediction library routine. The time spent in

instrumentation library routines has been minimized to reduce the execution time

55

for the prediction library calls. By using existing techniques, the perturbation

caused by instrumentation could be removed from the time for the instrumenta-

tion run [67]. This time could then be used to improve the operation count for

the program. The following examples show instrumentation code for major control

constructs.

Shape Declarations

static struct cg_shape_desc cg_shape1 = {1, 17, N, N };

Iteration constructs

for (i = 0; i < N; i++)

{

static struct cg_loop_desc loop_tmpl = ffii","0","N","i++"1;

static struct cg_desc cg_tmpl = f&cg_root,__LINE__,CG_LOOP,

2,0,0,&loop_tmpll;

cg_count(&cg_tmpl);

Conditional Code

if (DPC_temp_O[DPC_vpi]) {

static struct cg_desc cg_tmp6 = f&cg_tmp6,__LINE__,CG_COND,41;

cg_count(&cg_tmp6);

Virtual Processor Emulation

static struct cg_shape_inst cg_instl = { &cg_shapel,

N*sizeof(double),0};

static struct cg_shape_inst cg_inst2 = { &cg_shapel,

3*sizeof(int),&cg_inst1};

static struct cg_desc cg_tmp2 =

CG_VPLOOP,2,&cg_inst2,0};

cg_count(ficg_tmp2);

for (DPC_vpi = 0; DPC_vpi < DPC_num_vp_system; DPC_vpi++)

56

Communications

static struct cg_comm_desc cg_comi = {CG_REDUCE, &cg_inst2 };

static struct cg_desc cg_tmp3 = { kcg_tmpl,

__LINE__,CG_COMM,0,0Acg_com1};

cg_count(tcg_tmp3);

Dataparallel C replicates scalar values on all processors and distributes par-

allel variables across the nodes of the system. Total data volume for scalable

applications will be dominated by parallel variables. The instrumentation code

accounts for the size of parallel variables through declaring a shape descriptor

structure which will specify the number of dimensions in a shape and the number

of positions in each dimension.

Iteration constructs are instrumented with a loop descriptor structure which

specifies the symbolic name of the iteration variable along with the initialization,

termination and increment expressions. This symbolic information will be used to

analyze complex iteration constructs. Conditional code is also instrumented to de-

termine the true ratios. Virtual processor emulation loops are instrumented with

shape instance descriptor structures which are organized in a linked list. Informa-

tion on the data size accessed during each virtual processor loop will be used to

determine the number of cache misses. The type of communication and the size of

the data instance to be transferred are also accounted for in each communication

block.

At the conclusion of the instrumentation run, the performance prediction

system builds a call graph data structure which is used to scale the number of loop

iterations and the size of each shape to the problem size. A sample call graph is

shown in Figure 4.3. The instrumentation library code recursively descends the call

graph and for each loop construct the following attempts are made to determine

the complexity of the loop:

57

Root

Loop

1
0

1

Loop

i 1 0 1

VP emulation

Shape

Rank I Positions

Communication

Figure 4.3. Call graph data structure.

1. The most accurate results occur when the number of loop iterations can be

determined from symbolic information. A search is made beginning from the

parent node of the loop under analysis to the top of the call graph tree. If

the initialization or termination values for the loop are iteration variables for

an enclosing loop, then that symbolic value is used in subsequent analyses.

2. If a symbolic value cannot be found then a simplified fit is attempted to

determine if the number of iterations found in the instrumentation run is an

even multiple of the problem size.

3. If the initialization or termination expression cannot be scaled to problem

size then it is assumed to be constant.

This instrumentation strategy is effective in structured programs where the

iteration variables are not modified within the loop body. It is also restricted to

58

non-recursive applications without "goto" statements. In a survey of 112 super-

computer applications from the College of Oceanographic and Atmospheric Sci-

ences at Oregon State University, 98% of the loop constructs were amenable to

this analysis strategy. Shape descriptor structures are also scaled to the problem

size in a similar manner. Since the call graph structure is constructed symbolically,

program complexities which cannot be analyzed computationally can be entered

by a programmer in symbolic form if additional accuracy is required.

The instrumentation library outputs counts of important predictors in terms

of the problem size. The equations for large programs can be highly complex since

there is an element corresponding to each basic block in every equation. The

variables Countq and Countpar account for the number of sequential and parallel

operations performed in the application. Countvp/oops represents the number of

virtual processor emulation loops that are executed. Cache behavior is evaluated

through CountLimi and CountL2mi which indicate the number of cache misses

in the first and second level caches respectively. Message passing overhead is dealt

with through enumerating the total number of message startup times (Countcstart)

and the number of bytes (CounicBand) which are transmitted through the network.

Countseq :=

(sum(2 + (7) * 1.00, i = 0..N 1) + sum(2 + (1) * 1.00,

i = 0..N 1));

Countpar :=

(sum(N * 1 * (6 + (20) * 0.49) + N * 1 * (6),1 = 0 ..N 1) +

sum((N * 1 * (5 + (sum(64, k = i..N + 1) + 4) * 0.50)) * 1.00 +

N*1*(6 +(4)*0.01)+N*1*(4)+(N*1)+N*1*(2),

i = 0..N 1));

COUntVPloops :=

59

(sum((N * 1) + (N * 1), i = 0..N 1) + sum(((N * 1)) * 1.00 +

(N* 1) + (N * 1) + (N * 1),i = 0..N 1));

C ountLimiss :=

(sum(g1C ache(((8 * N) + 0) * N * 1)) + (L1C ache(((8 * N) + 12) *

N * 1)), i = 0..N 1) + sum(((L1C ache(((8 * N) + 12) * N * 1)))

*1.00 + (L1C ache(((8 * N) + 12) * N * 1)) + (L1C ache(((8 * N) + 12) *

N * 1)) + (L1C ache(((8 * N) + 12) * N * 1)), i = 0..N 1));

CountL2miss

(sum((L2C ache(((8 * N) + * N * 1)) + (L2Cache(((8 * N) + 12) *

N * 1)), i = 0..N 1) + sum(((L2C ache(((8 * N) + 12) * N

1))) * 1.00 + (L2Cache(((8 * N) + 12) * N * 1)) + (L2Cache(((8 * N) +

12) * N * 1)) + (L2C ache(((8 * N) + 12) * N * 1)), i = 0..N 1));

C ounicstart :=

(sum((C omStart(BC) + C omStart(BC)) * 1.00, i = 0..N 1) +

sum(C omStart(BC) + ComStart(RE), i = 0..N 1));

C ountCBand :=

(sum((C omBW (BC, 12, N * 1) + C omBW (BC ,12, N * 1)) * 1.00,

i = 0..N 1) + sum(C omBW (BC , N * 8, N * 1) +

C omBW (RE ,12, N * 1),i = 0..N 1));

The summation operator represents iteration constructs. Fractional nu-

meric values are derived from true ratios for conditional code. The problem

size is denoted by the variable "N ". The Maple [151 symbolic computation sys-

tem can then be used to reduce the output to expressions which are functions

of the fundamental architectural features of a particular parallel implementa-

tion. The following equations represent counts of arithmetic operations (Xops =
C ountseq + C ountpar I P), virtual processor emulation loops (Xvp), on-chip cache

60

misses (XL1), page faults (XL2), message startup times (Xst), and number of bytes

transferred through the communication network(XBiv). In addition to the problem

size, the equations also are dependent on the number of processors (P), the expres-

sions for level one and level two cache misses (L1Cache(), L2Cache()), the number

of message startup times for each communication library invocation (Com Start())

and the number of bytes in each message (ComBWO). These equations are in-

dependent of the particular machine architecture used and will be passed to the

linearization phase where a specific architecture will be modeled.

Xop, = 121.8400000N2 + 16.0N3
12.0N +

Xvp = 6.0N2

XL1 = N (L1Cache(8 N2) + LlCache((8 N 12) N))

4.0N LlCache((8 N 12) N)

XL2 = N (L2Cache(8 N2) + L2Cache((8 N + 12) N))

4.0N L2Cache((8 N 12) N)

Xst = 2.0N Comstart(BC) N (Comstart(BC) Comstart(RE))

XB, = 2.0N ComBW (BC ,12,

N (ComBW (BC ,8 N, N) ComBW (RE, 12,N))

4.2.2 Architectural Linearization

The architectural linearization phase of performance prediction reduces complex

machine characteristics to equations linear with respect to the speed of hardware

subsystems. The major architectural features we analyze here are:

On-chip cache and page fault behavior.

Message startup times for interprocessor communications.

61

Bandwidth characteristics for different communication patterns.

Several researchers have noted that the memory hierarchy can have a signif-

icant impact on the performance achieved by a parallel program [35, 98]. Previous

research has indicated that a combination of local analytical models and empirical

observations can characterize the performance of the memory system [34]. Ref-

erences to parallel variables in virtual processor emulation loops have a highly

sequential access pattern, enabling accurate prediction of the number of cache

misses and page faults which will occur during the execution of a scalable appli-

cation. For our analysis we assume that if the size of all data accessed during a

virtual processor emulation loop is greater than the cache size, then the proces-

sor will miss in the cache for the whole data array. Otherwise there is no cache

miss penalty. This applies to both on-chip cache and virtual memory. We use the

Heaviside step function to represent this relationship where

Heaviside(x) =
1

0 if x < 0

1 otherwise

When the Heaviside function is differentiated it results in the Dirac delta function.

Dirac(x) =
1

oo if x = 0 d
=

(Heaviside)0 otherwise

This differentiability property will be used in later analysis to derive the cost

optimal point for cache sizes. As a result of this linearization step, expressions

for the number of cache misses can be derived (L1Cache and L2Cache). The

"size" parameter passed to Ll Cache and L2Cache is generated by a compile time

calculation of the total size of data items accessed from within a virtual processor

emulation loop.

62

L1 Size := 1024 * 4; # On-Chip Cache

L1C ache := proc(size)

H eaviside(((size I P)I LlSize) 1) * (size' P)I Ll Size; end;

L2Size := 1024 * 1024 * 32; # Physical Memory

L2C ache := proc(size)

H eaviside(((size 1 13)1 L2Size) 1) * (size I P)I L2Size; end;

Interprocessor communication can have a significant impact on the perfor-

mance of a parallel application. We have found that modeling the number of

message startup times necessary for a communication and the number of bytes

transmitted results in an accurate estimation of the total communication cost. For

each communication type, we model the number of messages which must be initi-

ated to perform the transfer. Neighbor communications require a single message

while broadcasts using a binomial tree algorithm require time logarithmic in the

number of processors. The complexity of the other communication patterns for

Dataparallel C has been thoroughly investigated previously [46] and is included in

our model of the application. The expressions for message startup times and for

the bandwidth must be altered to model different topologies, but will be constant

for architectures with similar communication networks. The values given below

are intended to approximate a hypercube topology. A different expression is gen-

erated for each communication pattern. The log[2](P) terms are Maple notation

for log2(P).

63

ComStart(N R) := 1; #Neighbor Read

ComStart(NW) := 2; #Neighbor Write

ComStart(BC) := log[2](P); #Broadcast

ComStart(RW) := log[2](P); #Random Write

ComStart(RR) := 2*P; #Random Read

ComStart(RE) := log[2](P); #Reduction

ComStart(M R) := P * log[2](P); #Multireduce

ComStart(PO) := 1; #Point to Point

As a result of the architectural linearization phase, expressions for operation

counts are computed as a function of the problem size and the number ofprocessors.

The following output for Gaussian elimination can be combined with the cost

in seconds for each of these operations in order to derive an equation for total

execution time for the application.

XOps

Xvp

XL1

=

=

=

121.8400000N2 + 16.0N3
12.0N +

6.0N2

(122.p

P

1) N2
N

512 P

Heaviside (181:(7,-,N 1) (8 N + 12)

4096 P

N2 Heaviside ((8 4N0VP2)N 1) (8 N + 12)
+ 0.00097

P

XL2 = N
(419:73204 1) N2

4194304 P

Heaviside ((3835N514132)NP

33554432 P

1) (8 N + 12) N

N2 Heaviside (138315v54all,
.11910

P
1) (8 N + 12)

64

2 N ln(P)Xst = 2.0N +
ln(2)

XBw = + N +
24.0N ln(P) (8 N ln(P) 12 ln(P))

In(2) ln(2) ln(2) j

4.2.3 Linear Parameter Model

Given counts for each operation and the cost for that operation on a given system,

total execution time can be predicted for the application being modeled. For a

given problem size and number of processors the execution time

t = Xop.i3op. + Xvp #vp + XIAPLA + XL2A2 + XStfiSt + XBw13Bw + e

where e is the error, or difference between the predicted and actual time. The

variable ,80p, is the time in nanoseconds to perform one CPU operation, i3vp is the

overhead associated with setting up a virtual processor emulation loop, i3L1 and

fiL2 represent the penalty for a miss in level one and two cache respectively. The

variable Ast is the message startup cost and /3Bw is the time required to transmit

one byte through the bandwidth of a connection to a processing element. The

predicted execution time I = t e.

If we consider a sample of n observations with X values from applications

with different problem sizes and numbers of processors, then in vector notation,

we have:

ti

t2 =

to

XOpsi AVIA XL11 XL21 XSt1 XBwi

X0p32 XVP2 XL12 XL22 XSt2 el'Bw2

XOpsn XVPn Alin XL2. Xstn XBwn

180ps

#vp

Ai
PL2

fist
)8Bw

+

el

e2

en

Or

t = X f3 e

where

65

t = a column vector of n observed values of t = ftt_1, _ t2, tn}

X = an n row column matrix containing linearized algorithmic characteristics

a column vector containing the cost in seconds for each operation

e = a column vector of the errors between predicted and experimental values

The value of predicted execution time for the Gaussian elimination sample

program is

121.84N2 + 16.0N9)I = 10-9 (12.0N + flop. + 0.610 -8 N2 13vp

N2
N2(N (Heaviside (1) r

512 P 512 p

(
Heaviside

(8 N +
6 P
12) N

1) (8 N 12) N 4096P) +
409

) +)
0.00097N2 Heaviside ((8 N + 12) N O NP 12A110

-9 +
40 96 P

N2 N2(N (Heaviside (4194304
P

1)
4194304 P+

Heaviside
((8N+

44

12)N
1) (8 N -F 12) N +335532 P 3.3 107P

(+ N 1
0.1210 -7 N2 Heaviside

(8N
1

(8 N +12\
933554432

12)

P A210- +

0.410 -8 N ln(P)fist
ln(2)

(24.0N ln(P) (8 N ln(P) 12 ln(P)
9

))
ln(2) ln(2) ln(2) 4w10-

Values for the vector can be obtained from system manufacturers or

benchmark programs. The matrix formulation of the model also makes it possible

to use multivariate techniques to obtain fl values given a statistically significant

66

number of experimental runs with different problem sizes and numbers of proces-

sors. These statistical techniques will be explored in the next chapter.

The dynamic performance prediction methodology presented here derives

detailed symbolic equations accounting for major components in execution time.

These equations can be used to analyze performance for scalable applications as

the problem size and architecture varies.

67

Chapter 5
Statistical Analysis of Machine Parameters

Multivariate statistics refers to a group of inferential techniques that have been

developed to handle situations where sets of variables are involved as predictors

of performance [45]. In classical scientific experiments, an effort is made to elimi-

nate all but one causal factor through experimental control. The variables in our

analytical model are difficult to isolate; hence, more complex methods are needed

to estimate the value of model coefficients. Statistical software packages such as

S-PLUS [89] allow large quantities of multivariate data to be analyzed with relative

ease [13].

5.1 Advantages

Using statistical techniques to estimate the coefficients (3 values) for the dynamic

performance prediction model has several advantages:

Statistical packages provide standard error values for each of the prediction

variables. These values allow us to specify a confidence interval as well as an

expected value for predicted performance on a target architecture.

The model can be fit in an automated and structured way using real appli-

cations similar to the expected load for a parallel system.

Standard information available from statistical software packages assesses the

correlation of the model to experimental data. This information allows us to

tune the model in order to reduce prediction error.

68

Multivariate statistical analysis must have access to a large number of sam-

ples in order to fit the model. Scalable applications are good candidates for this

environment because multiple samples can be obtained from a single program us-

ing different problem sizes. Our results indicate that a reasonably accurate fit can

be obtained from a limited number of applications. Statistical methods for finding

coefficients may also be applicable to non-scalable applications if a larger number

of sample applications are available.

5.2 Assumptions

The performance prediction model developed in this research was designed to cre-

ate a linear model with respect to the important system characteristics we have

identified. The following assumptions have been made in order to apply statistical

techniques to this model:

Both the predictor variables and the model errors are statistically indepen-

dent. As the number of mathematical operations performed by a parallel

application increases, there will not necessarily be a corresponding increase

in the number of cache misses or communications performed by the appli-

cation. The independence of these variables is important to the application

of linear regression methods. This assumption is approximately true within

runs of a single application as the problem size is varied. The assertion that

the X values are independent is even stronger when multiple applications are

included in the set of programs used to fit the model.

The X matrix is able to characterize important performance indicators equally

well from application to application. Given an application A which we would

like to make predictions for and a set of applications S used in fitting the

model where A S we assume that the X matrix represents algorithmic

69

characteristics equally well for A as for the other applications in S. This as-

sumption can be made in a particularly strong way among programs address-

ing a single problem. A supercomputing site may have several researchers

developing fluid dynamics applications and a model fit to existing fluid flow

programs will generalize well to other applications in this class. Our experi-

ence has shown that as long as S contains a large number of samples, the fit

is quite good for programs not in the fitting set.

The true relationship between the predicted time and model variables is linear

and the algorithmic measurements are accurate. Inaccuracies in X values can

degrade the validity of regression results. Our results indicate that accurate

operation counts can be obtained through an instrumented run of a scaled

down version of an application.

Errors are normally distributed with zero mean and a constant standard

deviation. The shape of the quantile-quantile curve can be used to determine

the correlation of residuals to a normal distribution. The quantile plot of

Figure 5.1 indicates that the residuals for the Meiko CS-2 have slightly longer

tails than a normal distribution [52, 12].

We use a "Systematic Sampling" approach to selecting experimental values

for the fitting process [84]. This approach was suggested in a study performed

through the Statistics Department at Oregon State University. The results of this

study are provided in Appendix A.

5.3 Statistical Model

Multiple linear regression techniques model a numeric response variable, y, by a

linear combination of p predictor variables x2 for j =1,...,p. The predicted values

are the sum of coefficients f3 multiplied by the corresponding x3.

y --= thxi + + fipxp

.

-2
Quantiles of Standard Normal

2

70

Figure 5.1. Quantile plot of model errors for experimental data from the Meiko
CS-2 vs. a normal distribution of residuals.

Linear least-squares models (LSQ) estimate the coefficients to minimize the squared

sum of errors between predicted and experimental values. If the response and

predictors corresponding to the ith of n observations are yi, xil, xi2, , xip, then

the fitting criterion chooses the igj to minimize E7_1(yi Aixi;))2 [13].

One side effect of using the LSQ criterion is that outliers (experimental

values with a large error) tend to have a big effect on the derivation of values.

From one perspective, this is reasonable because the seriousness of an error in

prediction is more than linear as the magnitude of the error increases. Although

we would like to have all predicted values within a certain percentage error of the

experimental value, it is more important to estimate values correctly when the

execution time is in thousands of seconds than it is with millisecond run times. In

order to minimize the effects of erroneous measurement we have manually removed

outliers which were suspect. The technique of "ridge regression" could also be used

which would allow some bias in the estimated Q values in exchange for a potentially

large decrease in variability in the presence of "wild" observations [45].

71

Our analytical performance model uses counts of critical operations gener-

ated from the linearization module as predictor variables for multivariate analysis.

The /3 values generated by the statistical package are estimates of the actual val-

ues for system parameters in a particular parallel architecture. A number of real

data-parallel applications are run on an existing parallel machine in order to fit

the model. Since the algorithmic characteristics have been abstracted into simple

operation counts, the statistical package can make predictions, with confidence

intervals, for other parallel applications on the selected platform.

5.4 Experimental Results

The statistical model was fit using actual runs on the iPSC/860, nCUBE 3200

and Meiko CS-2 multicomputers. The S-PLUS software package was then used to

predict performance for two fluid dynamics modeling applications not included in

the fit process. The results indicate that /3 values derived from sample applica-

tions can generalize to future programs analyzed by this performance prediction

methodology.

Our initial experiments were run with the nCUBE 3200 multicomputer. The

model was fit using three applications (Gaussian elimination, matrix multiplication

and a Shallow Water Model) with several different problem sizes for a total of 58

experimental runs. The Shallow Water Model solves the system of shallow water

equations using a finite difference method. The resulting /3 values are shown in

Table 5.1.

The coefficient of determination (Multiple R-squared term) for this regres-

sion is 0.9978 indicating that over 99% of the total variation in the response is

explained by the fitted values [13]. Values in Table 5.1 are given in microseconds.

Given the system clock cycle time of 125nsec, the Pop value indicates that it takes

approximately 5 clock ticks for an average operation. The 13vp value suggests that

it takes approximately 120 cycles to set up a virtual processor emulation loop.

72

System

Parameter Value (psec) Std. Err. Significance

flop, 0.6001 0.0044 0.00000000

/ivP 15.2648 5.1386 0.00000000

fist 367.8870 757.9475 0.02351422

/3Bw 2.3690 0.5341 0.00004550

Table 5.1. Output of statistical parameters for the nCUBE 3200 multicomputer.

The startup time of 368psec is similar to that found in previous research on the

nCUBE [22].

The standard error column in Table 5.1 is an estimate of how much the

regression coefficient /3 will vary from sample to sample. If multiple samples of the

same size were taken from the same population and used to calculate the regression

equation, this would be an estimate of how much the regression coefficient would

vary from sample to sample [54]. The large standard error value for the message

startup cost indicates that a more detailed model needs to be investigated for

this parameter. Through analyzing standard error values, the quality of the dy-

namic performance prediction model can be improved. The "Significance" column

describes the result of an .7--test to determine the probability that the variance
accounted for by the coefficient could come from a F distribution. Small values

indicate that the variable is important in explaining variance. All of the entries in

this column indicate that the coefficients are highly significant in accounting for

variance in the experimental data.

Figure 5.2 illustrates predicted output for the Ocean Circulation Model

on the nCUBE 3200. The program models wind-driven circulation in a density-

stratified ocean [46]. The problem scales up by increasing the number of segments

modeled in the east-west direction. The vertical bars join the upper and lower

350
300
250

"' 200
150

100

50
0

-50 '
4

90% confidence intervals --- -
Predicted

Experimental

16 32 64
Processors

(a)

2500
90% confidence intervals

2000 Predicted -----
Experimental

.0 1500

1000c.)

500

0
2 4 8 16 32 64

Processors
(h)

73

Figure 5.2. Predicted and experimental execution time in seconds for the Ocean
Circulation Model on the nCUBE 3200 multicomputer with (a) 128 and (b) 640
segments in the east-west direction.

twice-standard-error points, meant to represent approximately 90% confidence in-

tervals for the mean response. Communication costs make up a higher fraction of

total execution time for the smaller problem in Figure 5.2. Since the standard er-

ror value for communications is higher than that for computations, the confidence

interval for the 128 segment problem is wider.

Figure 5.3 examines predicted output for the Shallow Water Model applica-

tion on the iPSC/860. The National Center for Atmospheric Research has devel-

oped this application for use in benchmarking the performance of MPP systems.

The program solves a set of nonlinear shallow water equations in two horizontal

dimensions [46]. For this experiment we rely exclusively on previous experimental

data for execution times in order to fit the model. The instrumentation run for

the applications was performed on a single processor workstation and yet accurate

results were still obtained.

The Meiko CS-2 multicomputer consists of SPARC processors connected

in an Omega network configuration [70]. Each node is equipped with two vector

processors to improve floating point performance. A copy of the multi-user Solaris

70

60

50

0
40

30
ri)

20

10

0
2 4 8

Processors
16 32

74

Figure 5.3. Predicted and experimental values for the Shallow Water Model with
a 64 x 64 grid and 1200 iterations for an iPSC/860 multicomputer.

operating system executes on each node increasing the variability of successive

runs of the same program on the machine. Figure 5.4 and Figure 5.5 show the

results obtained for the Ocean Circulation Model with two different problem sizes.

The experimental data has a much larger number of outliers than were found on

the other two machines. Some of this variability can be attributed to the multi-

user nature of the machine. The current implementation of Dataparallel C on

the Meiko relies on libraries written for the iPSC/860 which use the NX message

passing interface provided on the Meiko. This extra level of software indirection

may also account for some of the inaccuracies in the model. Future work will focus

on adapting this modeling technique to networks of workstations where high levels

of variability exist in the message passing latency. This work on the Meiko is a

first step in that direction.

Through analyzing the statistical results, we have discovered several areas

where our model needs to be improved.

40

35

30,,g

=o 25
8

En
20

15

10
1 2 3 4 5 6 7 8 9

Processors

75

Figure 5.4. Predicted and experimental execution time in seconds for the Ocean
Circulation Model on the Meiko CS-2 multicomputer with 640 segments in the
east-west direction. The error bars are 90% confidence intervals for the predicted
values.

cn
In=0
8w

70
65
60
55
50
45
40
35
30
25
20
15

1 2 3 4 5 6 7 8 9
Processors

Figure 5.5. Predicted and experimental execution time in seconds for the Ocean
Circulation Model on the Meiko CS-2 multicomputer with 1280 segments in the
east-west direction. The error bars are 90% confidence intervals for the predicted
values.

76

If designers and users of parallel systems are to benefit from the results of

performance prediction, they must be able to determine how accurate the predic-

tions are. The statistical methods described here allow confidence intervals to be

placed on predictions in order to fulfill this requirement. The statistical informa-

tion can be obtained in an automated fashion using statistical software packages

such as S-PLUS [89]. Additional information from the statistical analysis can also

guide the development of more accurate models.

77

Chapter 6
Evaluation of Dynamic Modeling Techniques

Dynamic modeling techniques can be used to meet the needs of performance de-

bugging, architectural enhancement and machine selection. In this chapter we

analyze the accuracy of this model with several applications when run on the

iPSC/860, Meiko CS-2 and nCUBE 3200 multicomputers with varying problem

sizes and numbers of processors. Examples are also given to show the utility of

this approach in providing performance information. A methodology for deriving

expressions for cost optimal points is also developed.

6.1 Accuracy Analysis

Several applications were analyzed during the course of this research in order to

validate dynamic performance prediction techniques. They represent a good cross

section of the data-parallel programs which are used for scientific research includ-

ing matrix multiplication, a linear system solver and finite difference solutions to

differential equations.

For our error analysis we have used the classical error computation method:

Predicted ActualError =
Actual

A total of 246 executions of the validation suite applications were performed using

different problem sizes and numbers of processors. The error contours shown in

Figure 6.1 indicates that over 90% of the experimental runs achieve less than 40%

error for all three machines.

g
rz 0

eR

70

60

50

ao

30

20

10

0
0 20 40 60

% Experiments
80 100

78

Figure 6.1. Percent error for experimental runs of applications in the validation
suite.

The standard deviation of errors

j SSE
V n 3

where the sum of squared errors

n

SSE = E 4
i=i

can be examined to determine the quality of the model. The weighted average

value of a is 5.4 seconds. The weighted average of the mean I is 53.7 seconds. The

ratio of standard deviation to the mean, or the coefficient of variation (C.O.V.) can

also be used as a unitless measure of error. For the nCUBE and Meiko the standard

deviation was less than 9% of the mean experimental value. One problem with the

standard deviation of error is that it tends to be influenced disproportionately by

the relative error of long experimental runs because of the squared nature of SSE.

The average error of all validation runs indicates that the model is able to predict

results at an acceptable level for the uses we have targeted. A summary of the

accuracy analysis is shown in Table 6.1.

79

System

Number of

Experiments o I C.O.V. Average Error

nCUBE 3200 115 8.87 sec 105 sec 0.084 12%

Meiko CS-2 63 0.55 sec 6.36 sec 0.087 20%

iPSC/860 46 5.4 sec 12.7 sec 0.425 23%

Table 6.1. Experimental error values.

Machine fivp Value in nsec Standard Error

iPSC/860 -209069 215109

Meiko CS-2 152512 326691

nCUBE 3200 38194 219144

Table 6.2. Coefficient and standard error values for Pvp with constant virtual
processor emulation loop overhead.

Through examining data from the statistical package, improvements to the

accuracy of the model can been made. A previous version of the model accounted

for the overhead of a virtual processor emulation loops with a constant value. The

standard error values for the fivp coefficients shown in Table 6.2 was unexpectedly

large. After analyzing the experimental data, we hypothesized that the overhead

for a VP loop could be accounted for more accurately by a term which scaled with

the number of virtual processors being operated on in the loop. This change in

the model resulted in the increased accuracy shown in Figure 6.2.

g
pa

tsR

70

60

50

40

30

20

10

20 40 60
% Experiments

go 100

80

Figure 6.2. Percent error for constant virtual processor emulation loop overhead
contrasted with the scaled model.

6.1.1 Layer

The Layer application implements a simple two-layer ocean circulation model with

periodic boundary conditions on the north and south edges and wraparound bound-

ary conditions on the east and west edges. This model is amenable to data-parallel

treatment and naturally fits a two dimensional toroidal grid representation. The

model is simplified by assuming that there are no intervening continents. The pro-

gram iterates through 7500 iterations of updating local values based on the values

of the nearest neighbors in the grid. In the Dataparallel C version of the program,

each data point in the grid is treated as a virtual processor, regardless of the actual

number of physical processors involved. The program can be configured to output

graphical data to show changes in the data points that model the circulation over

time. Figure 6.3 shows the error contour for this application.

50

45

40

35 Meiko CS-2 ----
iPSC.PS60 --8---

30 nCUBE 3200 --m--

ot 25
bR

20

0
0

........

10 20 30 40 50 60 70 80 90
% Experiments

100

81

Figure 6.3. Percent error for experimental runs of the Layer application on the
iPSC/860, Meiko CS-2 and nCUBE 3200.

6.1.2 Shallow

The shallow water equations were developed at the Laboratoire de Meteorologie

Dynamique du C.N.R.S., Paris in order to investigate different finite-difference

schemes. The National Center for National Center for Atmospheric Research,

Colorado uses a model based on this work in benchmarking the performance of

MPP systems.

The equations explain the flow of a two dimensional slightly compressible

inviscid fluid:

- - 1 V - V) = 0+TIN A (PV) + V (P +at
aP" - -+ v (PV) = 0
Ot

where V is the velocity, P the density of pressure, , the potential vorticity,

rot 1-7/P, and fif a unit normal to the plane. The slightly compressible case is

enforced by a balance condition for the initial fields [69]:

g
to
tiz

45

40

35

30

25

20

15

10

5

Meiko CS-2 *--
iPSC/860 --e

nCUBE 3200 -.1-

10 20 30 40 50 60 70 80 90 100
% Experiments

82

Figure 6.4. Percent error for experimental runs of the Shallow application on the
iPSC/860, Meiko CS-2 and nCUBE 3200.

t' . V' = o
at . V' = o

at

The program solves a set of nonlinear shallow water equations in two hori-

zontal dimensions using a finite difference method [46]. It assumes periodic bound-

ary conditions and uses a leap frog time differencing scheme so that the fluid flow

is confined to the surface of a torus. Figure 6.4 shows the error contour for this

application.

6.1.3 Matrix

Matrix multiplication is an important element of many scientific applications.

When multiplying two N x N matrices A and B in order to yield the N x N
matrix C, g(N3) operations will be performed. Because the computational com-

plexity grows more quickly than the 8(N2) number of communications which must

50

czt 30

20

10

Meiko CS-2 -4
nCUBE 3200 -14--

........---iimi-m .

10 20 30 40 50 60
% Experiments

70 80 90 100

83

Figure 6.5. Percent error for experimental runs of of block matrix multiplication
on the Meiko CS-2 and nCUBE 3200.

be performed, matrix multiplication can achieve high efficiency values on parallel

machines if the problem size can be made sufficiently large. A block matrix mul-

tiplication was used for this validation application [80]. The algorithm breaks the
A, B and C matrices into i., x ,77., blocks. One of these blocks is assigned to

each processor. The algorithm memory locality and has been found to be highly

efficient on processors with on-chip caches. Figure 6.5 shows the error contour for

this application.

6.1.4 Gauss

This program solves the linear system AX = b when the matrix A is a dense

array. Gaussian elimination reduces the A matrix to an upper triangular system

and then performs back substitution to compute the final X values [80]. In the

implementation of this algorithm, two-dimensional data are distributed by rows to

all processors. For each column of the A matrix, the row with the largest value

45

40

35

30

14

25

* 20

15

10

5

0
0 10 20 30 40 50 60 70 80 90

% Experiments
100

84

Figure 6.6. Percent error for experimental runs of Gaussian elimination on the
iPSC/860, Meiko CS-2 and nCUBE 3200.

in that column is broadcast and used to reduce the remaining rows in the system.

Figure 6.6 shows the error contour for this application.

6.1.5 Jacobi

The Jacobi application uses an iterative method to solve a system of linear equa-

tions. Iterative algorithms such as this are often used to solve the large, sparse

linear equations generated from partial differential equations. This program uses

Jacobi relaxation to solve for the steady state temperature distribution across a

steel plate [80]. The plate is divided into square elemental regions, and the tem-

perature is assumed to be constant across each region. A virtual processor is

associated with each region. During an iteration of the algorithm, every virtual

processor finds the average of the temperatures of each of its four adjacent regions

in order to compute a next state temperature value. Figure 6.7 shows the error

contour for this application.

Meiko CS-2 -
iPSC/860 --e--

nCUBE 3200

10 20 30 40 50 60
% Experiments

70 80 90 100

85

Figure 6.7. Percent error for experimental runs of the Jacobi application on the
iPSC/860, Meiko CS-2 and nCUBE 3200.

6.1.6 Ocean

The Ocean application is derived from a model of wind-driven circulation in a

stratified ocean [46]. The program employs finite element methods to implement a

linearized, two-layer channel model using forward-backward schemes to calculate

baroclinic and barotropic flows. Conventional ocean models have assumed that the

ocean has a rigid "lid" which allows them to exclude the fast surface gravity waves

and concentrate on general circulation. This program does not make this assump-

tion since the resultant data dependencies would be difficult to accommodate on

a massively parallel architecture. Instead, it uses the classical wave equation for

displacement of the free surface. As a consequence, many small time steps must

be simulated to insure computational stability. Figure 6.8 shows the error contour

for this application.

86

70

60

50

g
ao

w
tiR 30

20

10

0
0 10 20 30 40 50 60 70 80 90 100

% Experiments

Figure 6.8. Percent error for experimental runs of the Ocean application on the
iPSC/860, Meiko CS-2 and nCUBE 3200.

Given a validated model the performance of applications and architectures

can be analyzed in detail. Our validation testing indicates that an accurate perfor-

mance model can be obtained with minimal user intervention through leveraging

existing software tools for symbolic computations and statistical analysis. The

next section will describe how this prediction methodology can be used to achieve

detailed performance analysis.

6.2 Analysis Using Performance Prediction Results

Many aspects of parallel performance have been examined from a purely theoretical

perspective. Additional insights can be obtained from a detailed analysis of perfor-

mance using an analytical model derived from an actual application. The following

examples show how this performance prediction system has been used to analyze

performance as the problem size and architecture are scaled. We also examine cost

optimal metrics which can indicate algorithm-architecture compatibility.

87

....,$."..?7:SS%-.%Z.....,....c....,

,..
,r,:-Z.,,zz....-r.z.z.."......

ss :.,,..

Azos . :,%;.,, ,,ve....,,,,,,,,,74.7,Z,

\\ 1 5 ,. . 1 t. , ZNAZZ.Z6 ZitZ.

.;,,, .77,41.,...4.204.4~6A0060006

:',....X.0",:tOWZOZONNINOXVOCS
';', NIZZ.Vis,..\\WIANNAMWWW40,...4.,,e,

71:t .6. VV:tin.,1,Mtia, s'Itt,Zit4 WV'WV4:6:11,,Z.Z.v.ww,,n,

. ,..

Figure 6.9. Percentage of execution time spent in broadcasting the pivot row for
Gaussian elimination on an nCUBE 3200.

A fundamental use of performance prediction results is in the area of per-

formance debugging. Figure 6.9 illustrates the percentage of time spent in broad-

casting the pivot row for the Gaussian elimination application on an nCUBE 3200.

For extremely small problem sizes, the execution time is dominated by message

startup costs for the communications. Since all communications in the application

grow at an equal rate with P, the percentage of time spent in this basic block is

constant. For medium sized problems the fraction of time grows logarithmically

with P due to the number of messages required for the binomial tree broadcast

algorithm. For larger problem sizes the communication ratio grows linearly with

the number of processors.

Given our analytical model with variables corresponding to the problem size

and number of processors an application can be analyzed to determine the relative

contribution of each line of code under selected scaling schemes. The speedup

i
Lines
of
Code

N 1...

88

Figure 6.10. Views of basic block contributions to overall execution time under
different scaling schemes.

metric can be examined by increasing the number of processors as the problem

size is held constant. Scaleup can be examined to determine the impact of each

basic block as the problem size increase with a fixed number of processors. The

scaled speedup metric examines performance as both the problem size and number

of processors vary. Figure 6.10 summarizes the different views of an application

under these different scaling schemes. Figure 6.11 shows the contributions of basic

blocks in a Gaussian elimination application under speedup scaling.

The ability to predict the sensitivity of an algorithm to changes in sys-

tem parameters is critical to determining its portability. As architects are able

to predict the sensitivity of applications to changes in system parameters the ef-

ficiency of parallel hardware should increase. Since the result of this performance

prediction system is a symbolic expression for execution time, the equation can

89

AW:Wv4440iA0044 444/40004W 4E41004444
Gtr (i d; (i < 11-1) as nation; i..)is top;
if (Mockedas
aLtaleammet(falbs(ali1). id. apidicsd))

MAIN' 1; / Mak pivot row ./
pivot i; /. Timmtedi penitim '/

tam_arrq ripickad).a;
tonp_olaemt tomp_arrap(i] ;

if (fabo(timp_olmmt) < DI ON) (
NAM:

elm if (Mankind) (
b.. ali1 / timp_oleanet;
far (le i; it < 1.1; k..) (

a[kl afk] - timp_arrap(k1 tap;

if (loonkmd) pivot
if (oilmtim) (

for (i i)- V; i)
if (pivot i)

pmelkod - id,
maff altl:

''s=alizt\MM,%

gb.rtakVaaiggg§wsmmmNII.siTh'Mnnnmmrn)
MASOMM"(.\\VNIkki11%,.` `1,`

.N.V.."*ZOIM, ."%nd.:C.C.N.CMOMM, e KMICMAIMM
;. ?,17 ss,.., \s,,s

``,:. s:`

Figure 6.11. Contributions of basic blocks in Gaussian elimination application
with speedup scaling. Lighter colors indicate a higher percentage of time.

be differentiated with respect to critical system parameters in order to view the

effect modifications will have on performance as the problem size is scaled up. In

Figure 6.12, the execution time was differentiated with respect to message startup

cost where

Sensitivity =
dt

dfist

The vertical scale shows the increased execution time in seconds for each increase

of 1 Opsec in message startup cost. The sensitivity increases linearly with problem

size since a constantly growing number of communications must be performed as

problem size increases. The sensitivity grows logarithmically as the number of

processors increases due to the complexity of the binomial tree broadcast algo-

rithm. Similar analysis can be performed to determine the effect of other system

parameters.

Although theoretical comparisons of multicomputer topologies have been

performed previously using asymptotic bounds, the additional detailed information

0.5

0.4

0.3

Sensitivity
0.2

0.1

10 2 30
Processors 50 60 2000

1000
1500 Problem Size

500

90

Figure 6.12. Sensitivity to changes in message startup cost for Gaussian elimina-
tion as a function of problem size and number of processors.

available from symbolic performance prediction allows us to compare network con-

figurations for practical numbers of processors. Figure 6.13 compares performance

for Gaussian elimination on the nCUBE 3200 and a network of SPARC worksta-

tions. For small numbers of processors the workstations are significantly faster

than the multicomputer. As the number of processors and problem size increases,

the bandwidth limitations of Ethernet reduce the performance of a workstation

cluster and the nCUBE system becomes superior.

6.2.1 Cost Optimal Methods

Recent advances in the speed of workstations have motivated several systems ven-

dors to introduce workstation clusters as parallel computing platforms. These sys-

tems are attractive because they deliver high levels of potential processing power

91

Figure 6.13. Execution time plots comparing the nCUBE 3200 with a network
of workstations connected with Ethernet.

for a reduced dollar cost. Through mathematical manipulations of the basic exe-

cution time equations produced by the symbolic performance prediction system, a

cost optimal architecture for a given application can be determined.

For our analysis we have concentrated on the dollar cost for the CPU, on-

chip cache and the interconnection network. A more detailed analysis could be

performed by users familiar with the cost structure available to their organiza-

tion. With Opsseq and Opspar as the number of sequential and parallel operations

performed in an application we define a price-performance metric (4)) as

where performance in MFLOPS

and cost in dollars

=
C

M = Ops
q /10

Opspar /106

C = COSTcpu COSTL1 COSTnet

92

50
100 1000

MBytes/sec 150 1500 Problem Size
2(X) 2000

Figure 6.14. Predicted 1 for Gaussian elimination on 8 workstations as network
bandwidth varies.

In order to determine the dollar cost for communication networks we ob-

tained quotes for high speed network connections using switched Ethernet, FDDI

and ATM technology. Through connecting workstations to switched hubs, many

of the bandwidth limitations caused by contention can be eliminated. We then fit

a curve to these points and derived an expression for dollar cost as a function of

network bandwidth

COSTnet = $800 + $30, 000 * (2(1000 /13Bw))

Figure 6.14 plots 4> as bandwidth and problem size vary. Our analytical results

indicate that a network bandwidth of 50Mbyte/sec is near the cost optimal point

for a network of 8 workstations.

The value of COSTcpu was computed in a similar manner by fitting a curve

to the dollar costs of several commercial microprocessors

COSTcpu = $50 + $100 * 21001 018

0.25

0.2

(I) 0.15

0.1

0.05

0

10

50 1000

93

Figure 6.15. Predicted (I) for the Shallow Water Model as bandwidth and CPU
speed vary.

The exponential nature of the dollar cost functions makes sense from a practical

Standpoint. As the time to execute an instruction approaches zero, the dollar

cost for the CPU approaches infinity. Figure 6.15 shows the price-performance

plot for the Shallow Water Model when considering both CPU speed and network

bandwidth.

In analyzing cost optimal cache configurations we will focus on the cache

size instead of the /3L1 value or the time necessary for a level one cache miss. The

Ai value may be dependent on the processor architecture, the disk subsystem and

even the operating system and does not have a definite relationship to the dollar

cost of the cache. As the size of the on-chip cache increases, the cost of the cache

increases approximately as the cube of the cache size [47]. This occurs because of

the increase in defects occurring in larger die sizes and the reduced number of dies

which will fit on a wafer. We examined data from the PowerPC 601 chip in order

to fit this general cost model to an actual implementation [91]. The PowerPC 601

has 32Kbytes of cache with a total area of 119mm2 and sells for approximately

1.802

1.801

PPF 1.8

1.799

1.798

50000 100000 150000 200000
Ll Size

94

Figure 6.16. Price performance curve as cache size is varied for the Shallow Water
Model.

$450. Since the cache consumes 31% of the die area we assume that the cost of

this size of cache is approximately $166. The resulting dollar cost for on-chip cache

COSTIA is

COSTLi = $5 * 10-12 * LlSize3

The price-performance curve for the Shallow Water Model as a function of

level one cache size is shown in Figure 6.16. The steps in the graph occur when the

cache size reaches a level where data in a virtual processor emulation loop all fits

in cache. Once the cache size becomes large enough for all data to stay in cache

additional increases in Ll Size will not result in additional performance increases.

At this point the additional cost of larger cache reduces the 4) value.

The gradient of the price-performance equation V4) represents the slope of

the function 4 = in each dimension at all points in the graph.

d(I) dot d(1)

[430p, di3Bw dLlSize

Given V4), system designers can determine the dimension where enhancements

to system parameters will result in the most progress towards the cost optimal

95

point for the system. Through setting V = 0 and solving for the cost sensitive

Variables, the maximum value can be determined if (I) has a single maximum. If

the 4) surface is not unimodal the maximum point is found through an exhaustive

search of practical values for the system parameters in question. The Maplesystem

generates the gradient automatically and can solve the simultaneous equations for

the cost optimal point for some 4) equations.

Theorem 6.1 If C is twice differentiable with the second gradient universally non-

negative and M is twice differentiable with the second gradient universally non-

positive, then the function 1 = M IC is unimodal and there is a non-trivial maxi-

mum.

Proof:

If V2C is non-negative then the surface of C is concave up with the slope increasing

or remaining constant as system parameters are enhanced. The cost function

for many subsystems will conform to this condition. As the CPU cycle time or

the time to transmit a byte across the network decreases linearly, the slope of

the increase in cost for the subsystem will be strictly increasing. The function

C is also strictly increasing as system parameters are improved.

When V2M is non-positive then the surface of M is concave down with the slope

decreasing as the speed of a subsystem is increased. As a particular /3 value is

improved its contribution to the execution time will decrease with respect to

other parameters. If the M surface is concave up and increases faster than the

C function in any dimension then the optimal value for # is either zero or oo.

This trivial case is not attainable for real implementations. Regions of the 4)

surface where VM is negative can also be ignored since a cost optimal point

will not exist in regions where the slope of performance is negative.

Given these assumptions, the following conditions can be specified for the 4:0 surface

in the region where cost optimal conditions can occur.

C > 0,C1 > 0,C" > 0

96

and

M > 0,M' > 0,M" < 0

Let xo be the location of a local maximum where

(1)'(x0) = 0

Assume that there is another local maximum at x2 where 4)(x2) > (1)(x0). A local

minimum must exist between xo and x2 at xi (see Figure 6.17).

In the region between the two maxima 4)1:10 < 0, 4121 > 0, and (1)"1:20 > 0 is

concave up.

M. T
M'C MC'

C2

[(M"C + M'C') (M'C' + MC")]C2 [2CC' (M'C MC')]
C4

M"C MC" 2C' (M'C MC'.
C2 C C2

C2=
(6.2)

The first term of Equation 6.2 is strictly negative since M" < 0 and C" > 0. If
0"Irx20 > 0 then the second term of Equation 6.2 must be positive, which can

only occur if VI% < 0. This is a contradiction since by construction (1)12 > 0.

0

Table 6.3 specifies cost optimal values for the applications we have studied in

this research. The problem sizes were scaled for an execution time of 1000 seconds

on 1000 processors. In order to compute these values, we developed a program

which took, as input, the symbolic equation for 0. A hill climbing technique was

then used to calculate the maximum point in the 0 surface.

97

(1)

a

Figure 6.17. Price performance curve with two local maxima.

The Gaussian elimination application favors a higher bandwidth network

with slightly slower CPU speed than the other applications. The applications

using finite difference methods all have bandwidth requirements which could be

satisfied with a switched Ethernet configuration if the switch could be extended

to allow connections for 1000 processors. The overhead for message startup time

in a TCP/IP environment is the limiting factor for these applications rather than

bandwidth. If an expression were available which related message latency to the

cost of a system, an optimal startup time could also be specified. The cache sizes

specified suggest that some of these applications could make effective use of more

than the 8 Kbytes of data cache available on many microprocessors.

Additional analysis could be performed for more complex network config-

urations using dollar cost estimates developed specifically for these topologies [9].

Computer architects can use the symbolic equations for execution time combined

with cost functions for critical system parameters in order to improve performance

in the most effective way.

98

Application Problem Size Pops in nsec Ll Size in bytes fiBw in nsec/byte

Gauss 3.9 * 104 18 21310 851

Matrix 4.3 * 108 16 5090 1751

Jacobi 1.8 * 108 15 2390 20000

Layer 2.4 * 108 15 7640 20000

Ocean 9.3 * 107 15 3630 20000

Shallow 2.8 * 104 16 12030 3181

Table 6.3. Cost optimal values for system parameters for applications in validation
suite.

99

Chapter 7
Conclusions

Performance prediction can be used in performance debugging of parallel appli-

cations and in making architectural improvements for multicomputer hardware

and system software. Using predicted performance results for existing commercial

MPP systems, users can optimize their selection of parallel platforms to use for

production runs of scientific applications.

The static methods developed here can provide rapid feedback to an opti-

mizing compiler on the relative benefit of alternate transformations. It can also be

used to predict performance for static applications with too many computations

to admit an instrumentation run.

The dynamic performance prediction techniques allows performance anal-

ysis to be performed on scalable parallel applications. This important class of

programs imposes different requirements on an analysis system than traditional,

constant-size problems do. The simultaneous use of analytical and sampling tech-

niques allows this technique to accomplish the goals of ease of use and accuracy

which are important for performance prediction models.

If decisions are to be made on the basis of predicted behavior, the accuracy

of the estimates must be specified. Through using multivariate statistical analysis

to determine critical system parameters, confidence intervals can be determined

for predicted results. This statistical characterization can also assist in improving

the accuracy of the model. By automatically determining the values for system

parameters, the overall ease of use is also improved.

100

Through preserving the symbolic equations which characterize the detailed

behavior of each basic block in the application, the dynamic model can be used to

mathematically evaluate cost optimal architectures for a given application. The

estimated performance of an application can be viewed across continuous values of

each hardware parameter, allowing quantitative measures of application portability

to be performed.

7.1 Significance of Research

MPP system users, programmers and designers are all interested in performance

analysis since their goal is to achieve the highest possible performance at the lowest

cost. Performance prediction techniques can play a significant role in improving

the efficiency of this environment. Historically, little effort has been placed on

analysis methods which use actual applications. Instead, most of the research has

concentrated on theoretical bounds as a means of characterizing the performance

of systems. This work represents an important proof of concept, indicating the

efficient analytical models can be based on real scientific programs. The resulting

analysis information is shown to be important in solving important problems in

this area.

Multivariate data analysis techniques simplify the performance prediction

process by deriving system parameters from experimental runs of sample applica-

tions. The utility of prediction data is also increased as users are able to evaluate

the confidence interval for estimated execution time. Improvements to the under-

lying analytical model can be made through focusing on predictor variables which

have a large variance in the statistical analysis. This research is the first to in-

vestigate using statistical analysis techniques in this way. Multivariate statistical

techniques improve the utility and accuracy of performance prediction models.

We have analyzed the needs of several groups requiring performance pre-

diction information. This research is unique in being able to meet the needs of all

101

these groups. The use of this type of performance analysis system by system archi-

tects and programmers should increase the efficiency of MPP systems in general

and scalable applications in particular.

7.2 Future Directions

Future work will focus on improving the accuracy of these modeling techniques

and using them to solve other performance prediction problems. Through examin-

ing statistical data which evaluates the correlation of predicted and experimental

performance, we plan to make improvements in the accuracy of the model. Addi-

tional analysis will also be performed to determine new model features which will

allow performance prediction on a broader range of parallel programs and hard-

ware architectures. We also plan to develop portability measures similar to the

isospeed metric [90] which can be quantified through analyzing the sensitivity of

applications to changes in system parameters. Finally, this modeling methodology

will be integrated into a graphical performance tool.

The complexity of computations and communications for algorithms and

the corresponding effects of topology and routing scheme for hardware platforms

have been studied through analyzing asymptotic bounds. Through dynamic per-

formance prediction, detailed complexity results can be obtained for specific algo-

rithmic and architectural characteristics. We plan to conduct research comparing

hypercubes, meshes and fat trees for several classes of real applications. This re-

search will attempt to determine if the increased expense incurred in building more

complex topologies is justified by the performance obtained.

The use of performance prediction systems by system architects and pro-

grammers should increase the efficiency of MPP systems in general and scalable

applications in particular. Much work is left to be done as far as generalizing the

model to other applications and architectures, but this approach has the potential

102

to provide much needed information to the multicomputer user community. Per-

formance prediction tools can aid multicomputer users and designers in increasing

parallel efficiency on these machines. High efficiency parallel execution will be

essential if "Grand Challenge" problems are to be solved on multicomputers.

103

BIBLIOGRAPHY

[1] S. Abraham and K. Padmanabhan. Performance of the direct binary n-cube
network for multiprocessors. IEEE Transactions in Computers, 38(7):1000
1011, July 1989.

[2] I. F. Akyildiz. Performance analysis of a multiprocessor system model with
process communication. The Computer Journal, 35(1), 1992.

[3] M. Annaratone and R. Ruhl. Balancing interprocessor communication and
computation on torus-connected multicomputers running compiler-parallelized
code. In Proceedings SHPCC 92, pages 358-365, March 1992.

[4] D. H. Bailey, E. Barszcz, L. Dagum, and H. D. Simon. NAS parallel bench-
mark results. Technical Report RNR-93-016, Nasa Ames Research Center,
October 1993.

[5] V. Balasunderam, G. Fox, K. Kennedy, and U. Kremer. A static performance
estimator to guide data partitioning decisions. SIGPLAN Notices, 26(7):213

223, July 1991.

[6] R. S. Barr and B. L. Hickman. Reporting computational experiments with
parallel algorithms: Issues, measures, and experts' opinions. ORSA Journal
on Computing, 5(1):2-18, Winter 1993.

[7] G. Bell. Scalable, parallel computers: Alternatives, issues and challenges.
International Journal of Parallel Programming, 22(1):3-46, 1994.

[8] D. D. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J. N. Tsitsiklis.
Optimal communication algorithms for hypercubes. Journal of Parallel and
Distributed Computing, 11:263-275, 1991.

[9] R. G. Born and J. R. Kenevan. Theoretical performance-based cost-effectiveness
of multicomputers. The Computer Journal, 35(1):63-70, 1992.

104

[10] M. Calzrossa and G. Serazzi. Workload characterization: A survey. Proceed-
ings of the IEEE, 81(8), August 1993.

[11] D. Case. Computer simulations of protein dynamics and thermodynamics.
Computer, 26(10), October 1993.

[12] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graphi-
cal Methods for Data Analysis. Wadsworth International Group, Belmont,
California, 1983.

[13] J. M. Chambers and T. J. Hastie. Statistical Models in S. Wadsworth Si
Brooks/Cole Advanced Books & Software, Pacific Grove, California, 1992.

[14] B. M. Chapman, T. Fahringer, and H. P. Zima. Automatic support for data
distribution on distributed memory multiprocessor systems. Technical Report
TR 93-2, Institute for Software Technology and Parallel Systems, University
of Vienna, 1993.

[15] B. W. Char, K. 0. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and
S. M. Watt. Maple V Language Reference Manual. Springer-Verlag, New
York, 1991.

[16] A. Chen. No challenge too grand: Intel supercomputers in the mainstream.
Microcomputer Solutions, November 1992.

[17] R. S. M. Christopher R. Johnson and M. A. Matheson. Computational
medicine: Bioelectric field problems. Computer, 26(10), October 1993.

[18] M. J. Clement and M. J. Quinn. Architectural scaling and analytical per-
formance prediction. Submitted to The Seventh International Conference on
Parallel and Distributed Computing Systems, Las Vegas, Nevada, October 6-8,
1994.

[19] M. J. Clement and M. J. Quinn. Overlapping computations, communications
and I/O in parallel sorting. Submitted to Journal of Parallel and Distributed
Computing, October 1993.

[20] M. J. Clement and M. J. Quinn. Analyticalperformance prediction on multi-
computers. In Proceedings of Supercomputing '93, pages 886-905, November
1993.

105

[21] M. J. Clement and M. J. Quinn. Symbolic performance prediction of scal-
able parallel programs. Technical Report 94-80-6, Department of Computer
Science, Oregon State University, April 1994.

[22] M. J. Clement, M. J. Quinn, and B. Baxter. Medium grain size applications on
distributed memory multicomputers. Technical Report 93-80-13, Department
of Computer Science, Oregon State University, September 1993.

[23] Committee on Physical, Mathematical, and Engineering Sciences Federal Co-
ordinating Council for Science, Engineering, and Technology. Grand Chal-
lenges 1993: High Performance Computing and Communications. National
Science Foundation, Washington, D.C., 1993.

[24] R. G. Covingtion, S. Dwarkadas, J. R. Jump, J. B. Sinclair, and S. Madala.
The efficient simulation of parallel computer systems. International Journal
in Computer Simulation, 1:31-58, 1991.

[25] M. E. Crovella and T. J. LeBlanc. Performance debugging using parallel per-
formance predicates. Third ACM/ONR Workshop on Parallel and Distributed
Debugging, May 1993.

[26] M. E. Crovella and T. J. LeBlanc. The search for lost cycles: A new approach
to parallel program performance evaluation. Technical Report 479, Computer
Science Department, University of Rochester, Dec. 1993.

[27] L. A. Crowl. Architectural adaptability in parallel programming. Technical
Report 381, Department of Computer Science, University of Rochester, May
1991.

[28] W. J. Dally. Express cubes: Improving the performance of k-ary n-cube
interconnection networks. IEEE Transactions on Computers, 40(9):1016-
1023, September 1991.

[29] R. T. Dimpsey and R. K. Iyer. Performance prediction and tuning on a
multiprocessor. Comput. Archit. News, 19(3):190-199, May 1991.

[30] T. Fahringer. Evaluation of benchmark performance estimation for parallel
Fortran programs on massively parallel SIMD and MIMD computers. In
Proceedings of the 1994 Euromicro Conference, Spain, 1994.

106

[31] T. Fahringer and H. P. Zima. A static parameter based performance predic-
tion tool for parallel programs. Technical Report ACPC/TR 93-1, University
of Vienna Department of Computer Science, January 1993.

[32] H. P. Flatt and K. Kennedy. Performance of parallel processors. Parallel
Computing, 12:1 20, 1989.

[33] G. Fox. What have we learnt from using real parallel machines to solve real
problems? Technical Report C3P-522, Caltech, December 1989.

.[34] K. Gallivan, D. Gannon, W. Jalby, and A. Malony. Experimentally charac-
terizing the behavior of multiprocessor memory systems: A case study. IEEE
Transactions on Software Engineering, 16(2), February 1990.

[35] A. J. Goldberg and J. L. Hennessy. Mtool: An integrated system for perfor-
mance debugging shared memory multiprocessor applications. IEEE Trans-
actions on Parallel and Distributed Systems, 4(1):28-40, January 1993.

[36] A. Y. Grama and V. Kumar. Scalability analysis of partitioning strategies for
finite element graphs: A summary of results. In Proceedings Supercomputing
'92, 1992.

[37] A. Gupta and V. Kumar. Performance properties of large scale parallel
systems. Journal of Parallel and Distributed Computing, 19:234-244, 1993.

[38] A. Gupta and V. Kumar. The scalability of FFT on parallel computers.
Technical Report TR-90-20, Computer Science Department, University of
Minnesota, October 1992.

[39] A. Gupta and V. Kumar. The scalability of parallel algorithms for matrix
multiplication. Technical Report TR-91-54, Computer Science Department,
University of Minnesota, September 1992.

[40] M. Gupta and P. Banerjee. Automatic data partitioning on distributed mem-
ory multiprocessors. In Proceedings of the Sixth Distributed Memory Com-
puting Conference, pages 43-50, April 1991.

[41] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning
techniques for parallelizing compilers on multicomputers. IEEE Transactions
on Parallel and Distributed Systems, 3(2):179-193, March 1992.

107

[42] J. L. Gustafson. Reevaluating Amdahl's law. Communications of the ACM,
31(5):532-533, May 1988.

[43] S. Hackstadt and A. Malony. Next-generation parallel performance visual-
ization: A prototyping environment for visualization development. In Pro-
ceedings of Parallel Architectures and Languages Europe (PARLE), Athens,
Greece, July 1994.

[44] G. Haring and A. Ferscha. Performance oriented development of parallel
software with capse. In Proceedings of the Workshop on Environments and
tools for Parallel Scientific Computing, Blackberry-Inn, Walland/Tennesee,
May 25-27 1994.

[45] R. J. Harris. A Primer of Multivariate Statistics. Academic Press Inc., New
York, 1985.

[46] P. J. Hatcher and M. J. Quinn. Data-Parallel Programming on MIMD Com-
puters. The MIT Press, Cambridge, Massachusetts, 1991.

[47] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

[48] R. W. Hockney. The communication challenge for MPP: Intel Paragon and
Meiko CS-2. Parallel Computing, 20:389 398, 1993.

[49] R. W. Hockney and E. A. Carmona. Comparison of communications on the
intel iPSC/860 and touchstone delta. Parallel Computing, 18(9):1067 1072,
1992.

[50] J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program in-
strumentation for scalable performance tools. In Scalable High Performance
Computing Conference, Knoxville, Tennessee, May 1994.

151] Intel Corporation. Paragon OSF/1 C Compiler User's Guide, January 1993.

[52] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley
and Sons, Inc., New York, 1991.

[53] S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized com-
munication in hypercubes. SIAM J. Sci. Stat. Comput., 38(9):1249-1268,
July 1988.

108

[54] J. Joseph F. Hair, R. E. Anderson, and R. L. Tatham. Multivariate Data
Analysis with Readings. Macmillan Publishing Company, New York, 1987.

[55] A. Kapelnikov, R. R. Muntz, and M. D. Ercegovac. A methodology for per-
formance analysis of parallel computations with looping constructs. Journal
of Parallel and Distributed Computing, 14(2):105-120, February 1992.

[56] P. Kermani and L. Kleinrock. A tradeoff study of switching systems in
computer communication networks. IEEE Transactions on Computers, C-
29(12):1052-1060, December 1980.

[57] L. Kleinrock and J.-H. Huang. On parallel processing systems: Amdahl's
law generalized and some results on optimal design. IEEE Transactions on
Software Engineering, 18(5):434-447, May 1992.

[58] D. J. Kuck. What do users of parallel computer systems really need? Inter-
national Journal of Parallel Programming, 22(1):99-127, 1994.

[59] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel
Computing. Benjamin/Cummings Publishing Company, Inc., Redwood City,
California, 1994.

[60] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and
architectures. Technical Report TR-91-18, Computer Science Department,
University of Minnesota, June 1991.

[61] J. R. Larus. Abstract execution: A technique for efficiently tracing programs.
Technical Report TR912, University of Wisconsin Department of Computer
Science, February 1990.

162] F. T. Leighton. Introduction to Parallel Algorithms and Architectures. Mor-
gan Kaufmann Publishers, Inc., San Mateo, California, 1992.

[63] C. Leopold. A fast sort using parallelism within memory. In Proceedings
of the Fourth IEEE Symposium on Parallel and Distributed Processing, pages
326-333, 1992.

[64] D. H. Linder and J. C. Harden. An adaptive and fault tolerant wormhole
routing strategy for k-ary n-cubes. IEEE Transactions in Computers, 40(1):2-
12, January 1991.

109

[65] V. Lo, S. Rajopadhye, M. A. Mohamed, S. Gupta, B. Nitzberg, J. A. Tel le,
and X. Zhong. LaRCS: A language for describing parallel computations for
the purpose of mapping. Technical Report CIS-TR-90-16a, University of
Oregon, 1990.

[66] V. W. Mak and S. F. Lundstrom. Predicting performance of parallel computa-
tions. IEEE Transactions on Parallel and Distributed Systems, 1(3):257-270,
July 1990.

[67] A. D. Malony. Event-based performance perturbation: A case study. SIG-
PLAN Notices, 26(7), July 1991.

[68] P. Mehra, M. Gower, and M. Bass. Automated modeling of message-passing
programs. In Proc. Int'l. Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS 9.4), Durham, NC,
pages 187-192, Jan 1994.

[69] Meiko World Incorporated. Weather Prediction with the Computing Surface,
1992.

[70] Meiko World Incorporated. Computing Surface 2 Overview Documentation
Set, 1993.

[71] D. Menasce, S. H. Hoh, and S. K. Tripathi. A methodology for the per-
formance prediction of massively parallel applications. In Proceedings of the
Fifth IEEE Symposium on Parallel and Distributed Processing, pages 250-257,
December 1993.

[72] S. A. Moyer. Performance of the iPSC/860 node architecture. Technical
Report IPC-TR-91-007, Institute for Parallel Computation, School of Engi-
neering and Applied Science, University of Virginia, May 17, 1991.

[73] D. Muller-Wichards. Problem size scaling in the presence of parallel overhead.
Parallel Computing, 17(12):1361 1376, December 1991.

[74] W. Oed. The Cray Research Massively Parallel Processor System. Technical
report, Cray Research, 1993.

[75] S. W. Otto and M. Wolfe. The MetaMP approach to parallel programming.
In Proceedings of the Fourth IEEE Symposium on the Fronteers of Massively
Parallel Computation, October 1992.

110

[76] C. M. Pancake. Why is there such a mis-match between user needs and tool
products? Keynote address, 1993 Workshop on Parallel Computing Systems,
Keystone, Colorado., April 1993.

[77] J. H. Patel. Performance of processor-memory interconnections for multi-
processors. IEEE Transactions on Computers, C-30(10):771-780, October
1981.

[78] C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, and D. Schouten.
Parafrase-2: An environment for parallelizing, partitioning, synchronizing and
scheduling programs on multiprocessors. In Proceedings of the 1989 Interna-
tional Conference on Supercomputing, August 1989.

[79] F. P. Preparata and J. Vuillemin. The cube-connected cycles: A versatile
network for parallel computation. Communications of the ACM, 24(5):300-
309, May 1981.

[80] M. J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill Book
Company, New York, New York, 1994.

[81] D. Reed and R. Harrison. Performance characterization and evaluation. In
Proceedings of the Workshop and Conference on Grand Challenges Applica-
tions and Software Technology, GCW-0593, Pittsburgh, Pennsylvania, pages
36-41, May 1993.

[82] E. Rothberg, J. P. Singh, and A. Gupta. Working sets, cache sizes, and node
granularity issues for large-scale multiprocessors. Comput. Archit. News,
21(2):14-25, May 1993.

[83] G. Saghi, H. J. Siegel, and J. L. Gray. Predicting performance and selecting
modes of parallelism: A case study using cyclic reduction on three parallel
machines. Journal of Parallel and Distributed Computing, 19:219-233, 1993.

[84] M. R. Sampford. An Introduction to Sampling Theory. Oliver and Boyd Ltd.,
Tweeddale Court, Edinburgh, 1962.

[85] C. L. Seitz. The cosmic cube. Communications of the ACM, 28:22-33,
January 1985.

[86] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of
Parallel and Distributed Computing, 14(4):361-372, April 1992.

111

[87] P. H. Smith. System software and tools for high performance computing
environments. Report on the Findings of the Pasadena Workshop, April
14-16 1992.

[88] F. Sotz. A method for performance prediction of parallel programs. In
Proceedings of CONPAR 90 - VAPP IV, Zurich, Switzerland, September 1990.

[89] Statistical Sciences Inc. S-PLUS Users Manual, September 1991.

[90] X.-H. Sun and D. T. Rover. Scalability of parallel algorithm-machine combi-
nations. IEEE Transactions on Parallel and Distributed Systems, 5(6):599-
613, June 1994.

[91] T. Thompson. Power. Byte, August 1993.

[92] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Ac-
tive messages: A mechanism for integrated communication and computation.
Technical Report UCB/CSD 92/#675, Computer Science Division EECS,
University of California, Berkeley, CA 94720, March 1992.

[93] R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler
analysis for irregular problems in Fortran D. Technical Report 92-22, ICASE
Final Report, June 1992.

[94] H. Wabnig and G. Haring. Petri net performance models of parallel sys-
tems methodology and case study. In Proceedings of PARLE'94 - Parallel
Architectures and Languages Europe,Athens, Greece, July 4-7 1994.

[95] H. Wabnig, G. Haring, D. Kranzlmuller, and J. Volkert. Communication
pattern based performance prediction on the nCUBE 2 multiprocessor system.
In Proceedings of CONPAR 94 VAPP VI, Linz, Austria, September 1994.

[96] M. Wolfe. Experiences with data dependence and loop restructuring in the
tiny research tool. Technical Report CS/E 90-016, Oregon Graduate Institute,
1990.

[97] P. R. Woodward. Interactive scientific visualization of fluid flow. Computer,
26(10), October 1993.

112

[98] X. Zhang. Performance measurement and modeling to evaluate various effects
on a shared memory multiprocessor. IEEE Trans. Software Engineering,
17(1):87 93, January 1991.

APPENDIX

113

Appendix A
Statistical Consulting Study

The following recommendations were given to Mark Clement from the Department

of Computer Science by Nobutaka Yagi from the Statistics Department in refer-

ence to the feasibility of using multiple regression techniques to estimate machine

parameters for multicomputers.

Advice Given to Client

So far as the objective of the study is to specify the given linear model

by estimating the basically unknown machine parameters (coefficients), the study

statistically corresponds to a multiple regression analysis, where numbers of op-

erations in each of particular preidentified sections in processing play a role of

explanatory variables which would associate to the observed execution time. The

biggest issues that I am concerned with in the study are the aspects of sampling

and the analytical approach to a regression problem.

A.1 Sampling

A.1.1 Analysis

I think that the problem generated from a given program is the sampling unit of

your study, and the sample population of the study would be all possible problems

generated from the program. Therefore you will be able to make an inference on

a program basis processed by a given architecture. One particular consideration is

114

taken in terms of the size of your sample for multiple regression analysis. Details

of this point will be discussed later but the major point is, generally speaking, that

the size of sample, which is now specified as the number of observations, is to be

at least several times larger than the number of parameters to be estimated in the

model.

A.1.2 Recommendations

Your study would lead a best inference if you follow one of the sampling schemes

based on probability sampling when you actually determine the problems to be

used in your study. Primarily speaking, in probability sampling, each elementary

unit (an individual unit of population being examined) has a known equal proba-

bility of being selected into a sample. The most simple technique to be concerned

with here is the Simple Random Sample, in which you can sample as many units

as you want by using, for instance, random numbers generated by a computer.

One major disadvantage of Simple Random Sampling is that it is possible that

you get a sample which only has many small sizes of problems. The alternative to

avoid this situation and improve the validity of your estimates is achieved by using

"Systematic Sampling". This technique is very advantageous when the sampling

units are listed in order of a population characteristic of interest and can be used

even if you really don't know the total number of the sampling units. For further

information on Systematic Sampling, see any elementary sampling textbook. The

analysis procedure of Systematic Sampling is the same as that of Simple Random

Sampling.

